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Preface

Foreword to the First Edition

Today, software systems are generally complex products and the use of engi-
neering techniques is essential if the systems are to be produced successfully.
Over the last three decades, this finding, which is frequently quoted but is
now more than 30 years old, has led to intensive work on languages, meth-
ods, and tools in the IT field of Software Engineering to support the software
creation process. However, despite great advances, we must concede that in
comparison with other much older engineering disciplines, many questions
still remain unanswered and new questions are constantly arising.

For example, a superficial comparison with the field of construction
quickly shows that in there, international standards have been set for creat-
ing models of buildings, analyzing the models, and then realizing the mod-
els in actual constructions. The distribution of roles and tasks is generally
accepted and there are professional groups such as architects, structural en-
gineers, as well as engineers for construction above and below ground.

This type of model-based approach is increasingly finding favor in soft-
ware development. In recent years in particular, this has led to international
attempts to define a generally accepted modeling language so that just like
in construction, a model created by a software architect can be analyzed by
a “software structural engineer” before it is implemented in executable pro-
grams by specialists responsible for the realization, i.e., programmers.

This standardized modeling language is the Unified Modeling Language
and it is subject to continuous further development by an international con-
sortium in a gradual process. Due to the wide range of interested parties in
the standardization process, the current version 2.0 of UML has emerged as
a language family with a great many open questions with regard to scope,
semantic foundation, and methodological use.

Over the past few years, Professor Rumpe has dedicated himself to this
problem in his scientific and practical work, the results of which are now
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VI Preface

available to a wide audience in two books. In these books, Professor Rumpe
focuses on the methodological process. In line with the current finding that
lightweight, agile development processes offer great advantages particularly
in smaller and medium-sized development projects, Professor Rumpe has
developed techniques for an agile development process. On this basis, he
has then defined a suitable modeling language by defining a language profile
for UML. In this language profile, UML/P, Professor Rumpe has made UML
leaner and rounded it off in some places to produce a manageable version of
UML in particular for an agile development process.

Professor Rumpe has explained this language UML/P in detail in his
previous book “Modeling with UML”, which offers a significant basis for
the current book (the content of the previous book is briefly summarized).
The current book, “Agile Modeling with UML”, is dedicated primarily to the
methodological treatment of UML/P.

Professor Rumpe addresses three core topics of model-based software de-
velopment. These are:

• Code generation, i.e., the automated transition from a model to an exe-
cutable program

• Systematic testing of programs using a model-based, structured defini-
tion of test cases

• Further development of models using techniques for transformation and
refactoring

Professor Rumpe initially examines all three core topics systematically
and introduces the underlying concepts and techniques. For each topic, he
then presents his approach based on the language UML/P. This division and
clear separation between basic principles and applications make the presen-
tation extremely easy to understand and also allows the reader to transfer
this knowledge directly to other model-based approaches and languages.

Overall, this book is of great benefit to those who practice software de-
velopment, for academic training in the field of Software Engineering, and
for research in the area of model-based software development. Practitioners
learn how to use modern model-based techniques to improve the production
of code and thus significantly increase quality. Students are given both im-
portant scientific basics as well as direct applications of the basic techniques
presented. And last but not least, the book gives scientists a comprehensive
overview of the current status of development in the three core topics it cov-
ers.

The book therefore represents an important milestone in the development
of concepts and techniques for amodel-based and engineering-style software
development and thus offers the basis for further work in the future. Prac-
tical experience of using the concepts will validate their stability. Scientific,
conceptual work will provide further research on the topic of model trans-
formation based on graph transformation in particular. It will also deepen
the area of model analysis in the direction of structural model analysis.



Preface VII

This deeper understanding of the IT methods in model-based software
development is a crucial prerequisite for a successful combination with other
engineering-style methods, such as in the field of embedded systems or the
area of intelligent, user-friendly products. The fact that the language UML/P
is not specific to any domain also offers a lot of opportunities here.

Gregor Engels

Paderborn, September 2004

Preface to the Second Edition

As this is the second book on agile software development with UML, in-
terested readers will probably be familiar with the first book [Rum16]. The
preface in [Rum16] holds true for both books and here, therefore, I refer to
the first book, in which the following aspects are discussed:

• Agile methods and model-based methods are both successful software
development techniques.

• So far, the two approaches have not been harmonized or integrated.
• However, the basic idea of using models instead of programming lan-

guages provides the opportunity to do exactly that.
• This book contributes to this integration in the form of UML/P.
• In the second edition, UML/P has been updated and adapted to UML 2.3

and Java Version 6.

I hope you enjoy using this book and its contents.

Bernhard Rumpe

Aachen, Germany, March 2012
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Preface to the English and 3rd Edition

Colleagues have asked when the English version of the two books would
be published. The first one was finished in 2016 and now, here comes the
second one. I wish all the readers, students, teachers, and developers fun
and inspiration for their work.

I would like to thank all the people that helped me translating and qual-
ity checking this book, namely Tracey Duffy for the main translation, Sylvia
Gunder and Gabi Heuschen for continuous support, Robert Eikermann for
the Latex and continuous integration setup, Kai Adam (for reviewing Chap-
ters 5,7 and 10), Vincent Bertram (8), Arvid Butting (3,8,10), Anabel Derlam
(1), Katrina Engelbrecht (3,9,10), Robert Eikermann (3,8,9), Timo Greifenberg
(6,7,11), Lars Hermerschmidt (11,), Steffen Hillemacher (3,7,11), Katrin Höll-
dobler (9,10), Oliver Kautz (3,8,10), Thomas Kurpick (2), Evgeny Kusmenko
(2,5), Achim Lindt (1,2,9), Matthias Markthaler (7,9), Klaus Müller (4), Pe-
dram Mir Seyed Nazari (1,5), Dimitri Plotnikov (1,4,5), Deni Raco (6,7,8),
Alexander Roth (4), Christoph Schulze (6,8,11), Michael von Wenckstern
(2,3,4,6), and Andreas Wortmann (1,11).

Bernhard Rumpe

Aachen, Germany, February 2017

Further material:

http://mbse.se-rwth.de
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Introduction

The real purpose of a book is
to trap the mind into

doing its own thinking.

Christopher Darlington Morley

Many projects today demonstrate quite spectacularly how expensive incor-
rect or faulty software can be.

In recent years we have seen a continuous increase in the complexity of
software-based projects and products, both in the domains of operative or
administrative information and web systems, as well as in cyber-physical
systems such as cars, airplanes, production systems, e-health andmobile sys-
tems. To manage the arising complexities, an effective portfolio of concepts,
techniques, and methods has been developed, allowing Software Engineer-
ing to become a fully-fledged engineering discipline.

The portfolio is in no way fully matured yet; it still has to become much
more firmly established, above all in today’s industrial software develop-
ment processes. The capabilities of modern programming languages, class li-
braries, and existing software development tools allow us to use approaches
today that seemed unfeasible just a short time ago.

Further material:

http://mbse.se-rwth.de

© Springer International Publishing AG 2017
B. Rumpe, Agile Modeling with UML,
DOI 10.1007/978-3-319-58862-9_1

1
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As part of this Software Engineering portfolio, this book examines a
UML-based methodology which focuses primarily on techniques for using
UML in practice. The most important techniques recognized and examined
in this book are:

• Generating code from models
• Modeling test cases
• Refactoring of models to enable evolution

This book, Volume 2, is based heavily on the first volume, “Modelingwith
UML. Language, Concepts, andMethodology.” [Rum16], which explains the
language profile UML/P in detail. Therefore, when reading this volume,
[Rum17], we recommend that you take the first volume [Rum16] at hand,
even though parts of Volume 1 are repeated in a compact form in Chapter 3
of this second volume.

1.1 The Goals and Content of Volume 1

Joint mission statement of both volumes: One of the core goals of both vol-
umes of this book is to provide basic techniques for model-based develop-
ment (MBD) for the Software Engineering portfolio referred to above. Vol-
ume 1 presents a variant of UML that is particularly suitable for efficiently
developing high-quality software and software-based systems. Building on
this foundation, this second volume contains techniques for generating code
and test cases and for refactoring UML/P models.

UML standard: The UML 2 standard has to satisfy a multitude of require-
ments from a variety of influences and is therefore inevitably overloaded
with plentitude of different modelling diagrams with a broad and semi-clear
semantics. Many elements of the standard are not suitable for our purposes,
or at least not in their given form, and other language concepts are missing
entirely. This book therefore presents an adapted language profile of UML
referred to as UML/P. This adapted language profile UML/P is optimized
for the proposed development techniques for design, implementation, and
maintenance and can therefore be used more easily in agile development ap-
proaches.

Volume 1 concentrates primarily on defining the language profile and
providing a general overview of the proposed methodology.

UML/P has arisen as the result of multiple basic research and applica-
tion projects. In particular, the sample application presented in Appendix D,
Volume 1 was developed using the principles described here. The auction
system is also ideally suited for demonstrating the techniques developed in
both volumes of this book because changes to the business model or the com-
pany environment occur particularly frequently in this application domain.
Flexible but high-quality software development is essential here.
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Object orientation and Java: New business applications today use pri-
marily object technology. The existence of versatile class libraries and frame-
works, the variety of tools available, and not least the largely successful lan-
guage design substantiate the success of the programming language Java.
The UML language profile UML/P and the development techniques that
build on it are therefore tailored to Java.

Bridge between UML and agile methods: At the same time, the two vol-
umes of this book form an elegant bridge between two approaches generally
held to be incongruous: agile methods and the modeling language UML.
Agile methods, and in particular Extreme Programming, have a number of
interesting techniques and principles that enrich the Software Engineering
portfolio for certain types of projects. These techniques typically involve no
documentation being created; they concentrate on flexibility, optimize the
time to market, and minimize the quantity of resources used. Nevertheless,
these techniques still ensure the required quality. Agile methods are therefore
very suitable as a basis for the goals of this book.

Agile approach based on UML/P: UML is used as notation for a range
of activities, such as modeling business cases, analyzing the current and re-
quired form of a system as well as architecture and preliminary and detailed
design at various levels of granularity. The artifacts of UML are therefore an
important foundation for planning and controlling software development
projects that are based on milestones. Accordingly, UML is used primarily
in plan-based projects that involve a relatively high level of documentation
and the inflexibility that this causes. However, compared to a normal pro-
gramming language, UML is more compact, more semantically comprehen-
sive, and more suitable for representing complex content. It therefore offers
significant advantages for modeling test cases and for the transformational
evolution of software systems. Based on a discussion of agile methods and
the concepts they encompass, Volume 1 outlines an agile method that uses
the UML/P language profile as the basis formany activities without bringing
in the inflexibility of typical UML-based methods.

The goals described above were implemented in the following chapters
in Volume 1:

1 Introduction
2 Class Diagrams

Introduces the form and use of class diagrams.
3 Object Constraint Language

Discusses a version of the textual description language OCL which has
been adapted to Java, extended syntactically, and consolidated semanti-
cally.

4 Object Diagrams
Discusses the language and methodological use of object diagrams as
well as their integration with the OCL logic to enable a “diagram logic”
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in which undesirable situations, alternatives, and combinations can be
described.

5 Statecharts
In addition to introducing Statecharts, this chapter contains a collection
of transformations for simplifying Statechartswhilst simultaneously pre-
serving their semantics.

6 Sequence Diagrams
Describes the form, meaning, and use of sequence diagrams.

A Language Representation with Syntax Class Diagrams
Offers a combination of Extended Backus-Naur Form (EBNF) and spe-
cialized class diagrams for representing the abstract syntax (metamodel)
of UML/P.

B Java
Describes the abstract syntax of that part of Java used in the book.

C The Syntax of UML/P
Describes the abstract syntax of UML/P.

D Sample Application: Internet-Based Auction System
Outlines the background information for the auction system example
used in both volumes of the book.

1.2 Additional Goals of This Book

To increase efficiency in a project, developers need effective notations, tech-
niques, and methods. Because the primary goal of any software develop-
ment is to produce the executable and correctly implemented product sys-
tem, UML should not be used solely for documenting designs: automated
transformations of UML models into code using code generators, the defini-
tion of test cases with UML/P for quality management, and the evolution of
UML models with refactoring techniques are essential aspects.

The combination of code generation, test case modeling, and refactoring
offers significant synergy effects which contribute, for example, to quality
management, to increasing reuse, and to improving the capability for evolu-
tion.

Code generation: Generating code from abstract models is essential for
creating a system efficiently. The form of code generation discussed in this
book allows us to develop models for specific domains and applications
compactly and largely independent of a concrete technology. Technology-
dependent aspects such as the database connection, communication, or the
GUI representation are only added when the code is generated. This means
that we can use UML/P as a programming language and there is no con-
ceptual break between the modeling language and the programming lan-
guage. However, it is important to differentiate between executable and ab-
stract models explicitly in the software development process and to use each
type of model appropriately.
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Modeling automatable tests: Developing and executing tests systemati-
cally and efficiently is a key factor in ensuring the quality of a system. The
goal is that once created, the tests can run automatically. Code generation is
therefore used not only for developing the product system, but in particular
also for test cases in order to check the consistency between the specification
and the implementation. Using UML/P to model test cases is therefore a sig-
nificant part of an agile methodology. In particular, object diagrams, OCL,
and sequence diagrams are used to model test cases. Fig. 1.1 illustrates the
first two goals of this book.

Fig. 1.1. Notations in UML/P

Evolution with refactoring: The flexibility discussed in this book for a
quick reaction to changes in the requirements or the technology requires a
technique for adapting the existing model or the implementation systemat-
ically. Ideally, we use refactoring techniques for system evolution reacting
to new requirements or a new form of use, as well to eliminate structural
deficits in the software architecture. The book therefore also focuses on es-
tablishing and embedding refactoring techniques as part of the more general
approach for model transformation. It also discusses which types of refactor-
ing rules can be developed for UML/P or adopted from other approaches.
In this context, special attention is given to class diagrams, Statecharts, and
OCL.

With regard to both, test case modeling and refactoring techniques, the
book presents findings from the basic theories and applies them to UML/P.
The goal of the book is to explain these concepts using numerous practical
examples and to adapt them to UML diagrams in the form of test patterns
and refactoring techniques.
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Model-driven architecture (MDA) is a development method initiated by
the industry consortium OMG1. Its primary goal is to intensify the use of
UML tools in software development. MDA, for example, for code genera-
tion, offers similar techniques to the approach discussed in this book. The
refactoring of models presented in this book extends MDA by to “horizon-
tal” transformations.

Limitation:With the techniques discussed, this book concentrates mainly
on supporting design, implementation, and maintenance activities but does
not cover these activities in their entirety. Important aspects that are also
not covered here are techniques and notations for eliciting and managing re-
quirements, for project planning and execution, for control, and for version
and change management. Instead, there are references at appropriate points
to relevant further literature.

1.3 Overview

Fig. 1.2 provides a good overview of the matrix-type structure of further
parts of both volumes. While this second volume deals more intensively with
methodological issues, Volume 1 explains UML/P.

Fig. 1.2. Overview of the content of both volumes

Chapter 2 outlines an agile UML-based approach. This approach uses
UML/P as the primary development language for creating executable mod-
els, generating code from the models, designing test cases, and planning ar-
chitecture adjustments (refactoring).

Chapter 3 gives a brief and compact summary of Volume 1, [Rum16]. In
particular, it presents the language profile of UML/P introduced in Volume
1 very compactly and therefore incompletely.
1 The Object Management Group (OMG) is responsible for the definition of UML in
the form of a “Technical Recommendation”.
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Chapters 4 and 5 discuss principal and technical problems with regard to
code generation. This discussion addresses the architecture of a code gener-
ator and methods for controlling it, as well as the suitability of UML/P nota-
tions for test or product code. Building on this discussion, these two chapters
introduce a mechanism for describing code generation. Furthermore, using
selected parts of the various UML/P notations, these chapters show how test
and product code can be generated from the models created in those parts of
UML/P. In this context, the chapters discuss alternative results of the gener-
ation and demonstrate the effects of combining transformations.

Chapters 6 and 7 discuss the concepts for test approaches which are fa-
miliar from literature. These chapters also discuss the special features which
arise due to the use of UML/P as the test and implementation language and
which have to be taken into consideration during testing. The chapters de-
scribe the appearance of an architecture for automated test execution and
discuss how we can use UML/P diagrams to define test cases.

Chapter 8 uses test patterns to show howwe can use UML/P diagrams to
define test cases. These test patterns contain practical information for defin-
ing programs that can be tested, in particular for functional tests for dis-
tributed and concurrent software systems.

Chapters 9 and 10 discuss techniques for transforming models and code
and thus provide a solid foundation for refactoring as a type of transfor-
mation that preserves semantics. For refactoring, the chapters introduce an
explicit notation of observation that can be used in practice and discuss how
we can apply existing refactoring techniques to UML/P. Finally, the chapters
propose an additive approach that supports refactoring on a larger scale using
OCL invariants.

1.4 Notational Conventions

Various types of diagrams and textual notations are used in this book. To en-
able easy identification of the type of diagram or textual notation presented
in each case, the top right-hand corner contains a label in one of the forms
illustrated in Fig. 1.3. This is an approach which deviates from UML 2. These
labels are also suitable for labeling textual parts of diagrams and are more
flexible than the UML 2 labeling. On the one hand, a label is used as an ori-
entation aid; on the other hand, it is used as part of UML/P, as the name of
the diagram and certain diagram properties can be added to the label in the
form of stereotypes. In individual cases, special types of labels are used and
these are generally self-explanatory.

The textual notations such as Java code, OCL descriptions, and textual
parts in diagrams are based exclusively on the ASCII character set. For a
better readability of these textual notations, individual keywords are high-
lighted or underlined.
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Fig. 1.3. Labels for diagrams and text parts

The following special characters are used in this book:

• The representation indicators “. . . ” and “ c©” are a formal part of UML/P
and describe whether the representation presented in a diagram is com-
plete.

• Stereotypes are specified in the form �stereotypeName�. Tags have the
form {tagName=value} or {tagName}.
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Agile and UML-Based Methodology

The most valuable insights are the methods.

FriedrichWilhelm Nietzsche

As useful modeling language must be embedded in a methodology. This
chapter presents characteristics of agile methods, in particular those of the
process of Extreme Programming (XP) [Bec04, Rum01]. Using these character-
istics and further elements, the chapter introduces a proposal for an agile
methodology based on UML.

2.1 The Software Engineering Portfolio . . . . . . . . . . . . . . . . . . . 11
2.2 Extreme Programming (XP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Selected Development Practices . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Agile UML-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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For many years now, the improvements in Software Engineering have been
responsible for the continual increases in efficiency in software development
projects. These days, software has to be created with a high level of qual-
ity with increasingly fewer personnel resources in increasingly shorter time-
frames. Processes such as the Rational Unified Process (RUP) [Kru03] or the
V-Modell XT [HH08] are more suitable for large projects with a lot of team
members. For smaller projects, however, these processes are overloadedwith
activities that are not entirely essential for the end result. Consequently, the
processes are too inflexible to be able to respond to the rapidly changing
environment (technology, requirements, competing products) of a software
development project.

A relatively new group of processes has arisen under the common label of
“agile processes”. These new processes are characterized primarily by flex-
ibility and quick feedback. They concentrate on the main work results and
focus on the people involved in the project—in particular, customers.

The Standish Report [Gro15] describes how significant causes of project
failure can be found in poor project management: there is insufficient com-
munication; too much, too little, or incorrect documentation; risks are not
counteracted in time; and feedback is requested from users too late.

It is the human element in particular—the communication within the
project and the cooperation amongst the developers and between the de-
velopers and the users—that is seen as the main cause of failure for software
development projects. [Coc06] also states that projects rarely fail for techni-
cal reasons. On the one hand, this indicates that the developers have a good
command of even innovative technologies; but on the other hand, this claim
must be questioned to some extent at least. If the technology used causes
difficulties, these problems often disrupt the communication between team
members. As the project continues, these problems in communication come
to the fore for emotional reasons and are ultimately remembered as “per-
ceived” reasons for the failure of the project.

Because use only a reduced set of appropriate languages and tools is used
this generation of processes can be regarded as lightweight. The more com-
pact the language and the better the analysis and generation tools, the less
redundancy is necessary. In addition, the efficiency of the developers is im-
proved by reducing additional efforts and expenses for management and
documentation.

Today, Software Engineering offers an extensive portfolio of approaches,
principles, development practices, tools, and notations that we can use to de-
velop software systems in various forms, sizes, and levels of quality. These
elements of the portfolio complement each other to some extent, but can also
be used as alternatives to one another, which means that there is a wide
range of selection options available for managing, controlling, and execut-
ing a project.

This chapter looks firstly at the current status of the Software Engineering
portfolio. Section 2.2 discusses “Extreme Programming” (XP) and Section 2.3
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presents three essential practices from XP. Section 2.4 contains a sketch for
a method that is suitable as a reference for the use of UML/P and the tech-
niques discussed in detail in this book.

Chapter 3 provides a compact overview of the Unified Modeling Lan-
guage profile UML/P. This profile can be used for the method proposed
here and is supported, e.g., in [Sch12] with a suitable tool. Like UML itself,
UML/P is largely not method-specific. This means that it is possible and even
helpful to use UML/P in other methods. However, as UML/P focuses on the
ability to generate code and tests, it is particularly suitable for agile methods.

2.1 The Software Engineering Portfolio

[AMB+04] and [BDA+99] attempt to consolidate the knowledge about Soft-
ware Engineering that has built up over more than 40 years into a “Software
Engineering Body of Knowledge” (SWEBOK). In the SWEBOK, concept for-
mations are standardized, the main core elements of Software Engineering
are presented as an engineering discipline. The goal is to establish a generally
accepted consensus about the content and concepts of Software Engineering.

Some of the terminology used for software development processes which
is significant for our deliberations is shown in Fig. 2.1.

Experience gained from the execution of software development projects
in recent years clearly shows that there cannot be one, unique process for soft-
ware development: Projects strongly differ in importance, size, area of appli-
cation, and project environment. Instead, efforts are being made to compile
a collection of concepts, best practices, and tools that allow project-specific
requirements to be taken into account in an individual process. The level of
detail and the precision of the documents, milestones, and results to be deliv-
ered are defined dependent on the size of the project and the desired quality
of the results in each case. Existing process descriptions, which can be viewed
as templates, can be helpful. However, project-specific adjustments are con-
sidered necessary in most cases. Therefore, it is useful for those involved in
a project to be familiar with as many approaches from the current portfolio
as possible.

The 1990s saw a strong trend towards complete and therefore rather bu-
reaucratic software development processes. The agile methods of the 2000s
have broken away from this trend. Two factors enabled this change of direc-
tion: firstly, the significantly increased understanding of the tasks involved
in developing complex software systems; and secondly, the availability of
improved programming languages, compilers, and a number of other devel-
opment tools. Today, it is almost as efficient to implement a GUI immediately
as it is to specify the GUI. The specification can therefore be replaced by a
prototype which the user can try out and which can be reused in the real-
ization of the final product. The trend towards reducing the level of required
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Development method: A development method (synonym process model) describes
the procedure “for executing software creation in a project” [Pae00]. We can
differentiate between a technical, a social, and an organizational development
method.

Software development process: This term is occasionally used as a synonym for
“development method” but is often understood as a more detailed form. Thus,
[Som10] defines a process as a set of activities and results used to create a soft-
ware product. In most cases, the chronological sequence or the dependencies of
the activities are also defined.

Development task: A process is divided into a series of development tasks. Each
task delivers certain results in the form of artifacts. The team members partici-
pating in the project perform activities in order to complete these tasks.

Principle: Principles are fundamentals on which action is based. Principles are gen-
erally valid, abstract, and as general as possible in nature. They form a theoreti-
cal basis. Principles are derived from experience and findings (see [Bal00]).

Best practices: This term describes successfully tested development practices in devel-
opment processes. A development practice can be perceived as a specific, opera-
tionalized process pattern that implements a general principle (see RUP [Kru03]
or XP [Bec04]).

Artifact: Development results are represented with a specific form of notation—for
example, natural language, UML, or a programming language. The documents
of these languages are called artifacts and examples include requirements analy-
ses, models, code, review results, or a glossary. An artifact can have a hierarchi-
cal structure.

Transformation: Developing a new artifact and improving a version of an exist-
ing artifact can both be understood as transformations. The development or im-
provement can be automated or manual. Ultimately, almost all activities can be
seen as transformations of the set of given artifacts in a project.

Fig. 2.1. Terminology definitions for the software development process

developer capacities is intensified by the fact that having fewer people in-
volved in a project also reduces the level of organizational overhead, which
in turn can further reduce the workload.

When we use agile methods, the increased emphasis on the individual
capabilities and needs of the developers and customers involved in a project
allows us to reduce project bureaucracy even further in favor of greater in-
dividual responsibility. This focus on the team can also be observed in other
areas of economic life—for example, where flat management hierarchies are
used. It is based on the assumption that mature and motivated project par-
ticipants will demonstrate responsibility and courage by taking the initiative
when the project environment gives them the opportunity to do so.
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2.2 Extreme Programming (XP)

Extreme Programming (XP) is an “agile” software development method. The
main elements of this method are described in [Bec04]. Although XP as an
approach was defined and refined in, for example, software development
projects at a Swiss bank, its name already indicates a strong influence by the
software development culture of North America, which is defined by prag-
matism. Despite its given name, XP is no hacker technology; rather, it has
some very detailed, elaborate methodological aspects which have to be ap-
plied rigorously. These aspects allow its supporters to postulate that XP can
be used to create high-quality softwarewith relatively low effort, within bud-
get, and to the satisfaction of the customers. Statistically meaningful studies
of XP projects are more than mere anecdotes [DD08, RS02, RS01].

XP is rather popular in practice. Many books have already been written
about XP [Bec04, JAH00, BF00, LRW02] discussing different aspects of XP
in detail, as well as the current levels of knowledge about this methodol-
ogy or illustrate case studies of projects that have already been conducted
[NM01]. [Wak02] and [AM01] contain particular practical aids for imple-
menting XP, [Woy08] looks at cultural aspects, and [BF00] discusses planning
in XP projects.

[EH00a] and [EH01] offer a critical description of XP with an explicit dis-
cussion of its weaknesses. Amongst other things, these works criticize the
lack of use of modeling techniques such as UML and draw a critical com-
parison with Catalysis [DW98]. A dialectic discussion of the advantages and
disadvantages of Extreme Programming can be found in [KW02]. It high-
lights, for example, the necessity of a disciplined approach, as well as the
strong and, compared to classic approaches, significantly modified demands
placed on the team leader and the coach in particular.

Important elements of XP are presented and discussed below in accor-
dance with the introductions given in [Bec04] and [Rum01]. Further topics in
literature now treat XP in parallel with other methods [Han10, Leh07, Ste10,
HRS09] and thus support a portfolio of agile techniques. Alternatively, they
adapt agile methods for distributed teams [Eck09] or cover the migration of
companies to agile methods [Eck11].

Overview of XP

XP is a lightweight method of software development. It dispenses with the
need for a number of elements from classic software development in order
to allow faster and more efficient coding. The potential deficits this causes
for quality management are compensated for by a stronger weighting for
other concepts (in particular, the test process). XP consists of a larger number
of concepts. Within the scope of this overview, we will cover only the most
important of these.
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XP tries explicitly not to use new methodological concepts or method-
ological concepts that have not yet been tested to any great extent. Instead, it
integrates proven techniques into a process model which focuses on the es-
sentials and dispenses with the need for organizational ballast as far as pos-
sible. Since the ultimate goal of software development is source code, this is
what XP focuses on from the very beginning. Any additional documentation
is considered to be ballast that should be avoided. Creating documentation
takes a lot of effort, and the documentation is often much more erroneous
than the code itself because it cannot usually be analyzed and tested auto-
matically to a satisfactory extent. In practice, customers frequently present
new or modified requirements; documentation reduces the flexibility of the
evolution and adaptation of the system as a quick response to these new or
modified requirements. Therefore, almost no documentation is created in XP
projects (with the exception of the code and the tests). To compensate for
this, good comments in the source code based on coding standards and an
extensive test suite are very important.

The primary goal of XP is the efficient development of high-quality soft-
ware on time and within budget. The mechanisms used to do this are il-
lustrated by the values, the principles, the basic activities, and the development
practices implemented in the activities shown in the pyramid in Fig. 2.2.

Fig. 2.2. Structure of Extreme Programming

Success Factors of XP

Now that XP has been in use for some years, we can clearly identify some of
the major factors for the success of XP projects:

• The team is motivated and the working environment is suitable for XP.
This means, for example, that working places are set up for pair program-
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ming and the developers sit in close proximity to one another and to the
customer.

• The customer is actively involved in the project and is available to answer
questions. The study [RS02] showed that this has to be rated as one of the
most critical success factors for XP projects.

• The importance of tests at all levels becomes clear as soon as there are any
changes, new developers join the team, or the system reaches a certain
size which means that manual testing can no longer be performed.

• The result of the drive for simplicity, which is a topic that is being dis-
cussed in all domains, means that documentation is omitted. Equally, the
design is as simple as possible. These factors allow a significant reduction
in the workload.

• The lack of system specifications and the presence of a customer who can
be included in negotiations about functionality during the course of the
project means that the customer is integrated in the project more inten-
sively. This has two effects: on the one hand, it allows a fast response to
changing customer wishes. On the other hand, it also allows the project
to influence customer wishes. The project success thus also becomes a
social agreement between the customer and the team of developers and
not solely an objectively tested achievement of objectives based on docu-
ments.

This last aspect in particular corresponds to the XP philosophy of less
control and a greater demand for individual responsibility and commitment.
In a world in which requirements are constantly changing, this could lead to
amore satisfactory result for everyone involved in the project than is possible
with fixed system specifications.

Limits to the Applicability of XP

As far as project documentation and the integration of customers are con-
cerned, XP is indeed revolutionary. Accordingly, there are a number of con-
straints and requirements that apply to the project size and project environ-
ment. These are discussed in various works, including [Bec04], [TFR02], and
[Boe02]. XP is particularly suitable for projects with up to ten team members
[Bec04] but it is evidently a problem to scale XP for large projects, as dis-
cussed in [JR01], for example. XP is simply one more approach in the Soft-
ware Engineering portfolio—just like many other techniques, it can only be
used under certain premises.

The basic assumptions, techniques, and concepts of XP polarize opinions.
On the one hand, some programmers believe that XP elevates hacking to the
status of an approach; on the other hand, XP is not taken entirely seriously
because it ignores a lot of development processes that have been compiled
over earlier decades. In fact, both arguments are only correct to a limited ex-
tent. On the one hand, it is true that hackers are more attracted to an XP-type
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approach than to an approach according to RUP. On the other hand, when
they look more closely, many software developers will recognize develop-
ment practices that are already established. Furthermore, the XP approach is
very strict and requires discipline for implementation.

It is certainly correct that XP is a lightweight software development
method which is positioned explicitly as a counterweight to heavyweight
methods such as RUP [Kru03] or V-Modell XT [HH08]. Significant differ-
ences in XP include firstly, the fact that it concentrates solely on code as a
result, and secondly, the integration of the needs of the project participants.
However, the most interesting difference is the increased capability of XP
to respond to changes in the project environment or the user requirements
flexibly. This is why XP belongs to the group of “agile methods”.

The Costs of Fixing Bugs in XP Projects

One of the fundamental assumptions in XP questions important findings
in Software Engineering. Previously, the assumption was that the costs for
fixing errors or for implementing modifications increase exponentially over
time, as described in [Boe81]. However, the assumption for XP is that these
costs flatten out over the course of the project. Fig. 2.3 shows these two cost
curves.

Fig. 2.3. Bug-fixing costs over the course of a project

In XP, the assumption is that the costs of modifications no longer increase
dramatically over time [Bec04, Chapter 5]. There is no real empirical evidence
for this assumption; however, it does have significant implications for the ap-
plicability of XP. If we assume that the cost curve can be flattened out with
XP, then it is actually no longer essential to develop an initial architecture
which is largely correct and which can be extended for all future develop-
ments. The entire profitability of the XP approach is therefore based on this
assumption.
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However, there are indicators that support at least a certain amount of
flattening out of the cost curve in XP. Defects can be eliminated more quickly
and more extensively by considering the following aspects, all of which are
reflected in coding standards: using better languages such as Java, using bet-
ter web and database technologies, and improving development practices.
The use of better tools and development environments also helps in elimi-
nating defects more effectively. Due to the common code ownership, even
defects that are not localized in one artefact can be eliminated without the
need for a series of planning and discussion meetings. The waiving of doc-
umentation removes the necessity of keeping any documents created con-
sistent. On the contrary, with XP we have the effort and expense of updating
automated tests. However, the fact that the tests are automated offers the sig-
nificant advantage that tests which are no longer correct can be recognized
efficiently—compared to the expensive and time-consuming proofreading of
written documentation.

One of the main indications of a reduced cost curve, however, is an ap-
proach that uses small iterations. Errors and defects that can be localized
in one iteration only have a local effect and remain within the iteration. In
the subsequent iterations the effect is limited, meaning that only a slow in-
crease in bug-fixing costs can then be expected there. The iterative approach,
possibly coupled with a decomposition of the system into subsystems, may
therefore produce the cost curve presented in Fig. 2.4. This is the cost curve
that we saw in the auction project, for example.1

Fig. 2.4. Bug-fixing costs in iterative projects

Depending on whether the error can be localized within one part of the
system, a certain increase in bug-fixing costs can arise in the causal and im-
mediately subsequent iterations. In later iterations, it is only the costs of iden-
tifying the defect and its source that should increase. For defects in the archi-
tecture, however, which by their nature affect many parts of the system, the
saturation occurs very late and at a high level. It is therefore generally worth
investing a certain amount of initial expense in modeling the architecture.

1 However, there is no statistically valid numerical data for this.
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Hence, even though certain arguments support the achievable cost reduc-
tion at least to some extent, this statement must first be proven with numeri-
cal data obtained by examining a sufficient number of XP projects.

However, we can say that one of the advantages of XP is that, as a result of
the development of automated tests, continuous integration, pair program-
ming, short iteration cycles, and permanent feedback with the customer, the
probability of finding errors at an early stage has increased.

Relationship between XP and CMM

In the article [Pau01], one of the authors of the Capability Maturity Model
(CMM) asserts that, rather than being incompatible contradictions, XP and
the software CMM [PWC+95] actually complement each other. Accordingly,
XP has good development practices that satisfy core requirements of CMM.
For many of the “key process areas” (KPA) demanded by CMM for the five
CMM levels, XP offers practices which, although to a certain extent uncon-
ventional, are well-suited to the project area covered by the XP approach.
These practices address the goals of CMM. The article [Pau01] breaks down
the support provided by XP for the KPAs individually in a table. Of the total
number of eighteen KPAs, seven are rated as negative and eleven are rated as
positive to very positive. Of the KPAs rated as negative, however, the train-
ing program can also be rated as more positive due to the pair programming
performed by experts with beginners, and the management of subcontracts
can be ignored. In agreement, [Gla01] describes how the XP approach ad-
heres to CMM Level 2 without any additional effort and indicates that the
project-based part of CMMLevel 3 can also be achieved with little additional
effort. However, full CMMLevel 3 requires cross-project measures across the
company which are not addressed by XP.

In summary, [Pau01] comes to the understandable conclusion that XP has
good techniques that companies could consider, but that very critical systems
should not be realized exclusively with XP techniques.

Findings from Experiences with XP

XP provides a lightweight process comprised of coherent techniques. As XP
focuses on the code, the process can be designed much more efficiently than
RUP, for example. This efficiency means that fewer resources are required
and the process is more flexible. The increased flexibility mitigates one of
the basic problems of software development, namely handling user require-
ments that change over the duration of the project.

Ensuring the quality of the product being developed calls for pair pro-
gramming and rigorous automated tests without, however, relying to much
on the test theory which has been around for a long time. The constant de-
mand for simplicity increases the quality and efficiency further.
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Based on this analysis of XP, which stems partly from literature and partly
from own project experiences, including the auction project described in Ap-
pendix D, Volume 1, we can categorize XP as an approach suitable for small
projects with approximately 3–15 people. To a limited extent, using suitable
measures, such as the hierarchical decomposition of larger projects based on
components [JR01, Hes01] and the accompanying additional activities, XP
can be scaled to larger tasks.

Alternatively, it may also be possible to reduce the size of the task using
innovative technologies, including reusing and adapting an existing system
where this is possible.

In particular, reducing the size of the task involves the improvement of
used languages, tools, and class libraries. Many parts of a program that have
technical code, such as the output, storage, or communication of data, have
similar structures. If these program parts can be generated and, using an
abstract representation of the application, composed to form executable code,
this increases the efficiency of the developers even further. This is true for the
product code but evenmore so for the development of tests which, in abstract
modeling, are also made more understandable with diagrams.

Accordingly, the goal of using an executable sublanguage of UML as a
high-level programming language must be to increase the efficiency of the
process of developing models and transforming them into code, thereby ac-
celerating the software development process further. Ideally, the design and
implementation part of a project is reduced to such an extent that a project
consists primarily of eliciting requirements that can be implemented effi-
ciently and directly.

2.3 Selected Development Practices

Three of the development practices of XP are being investigated further: pair
programming, the test-first approach, and the evolution of code. This is be-
cause they also play a significant role in agile modeling with UML.

2.3.1 Pair Programming

Pair programming existed before XP andwas described in [Con95], for exam-
ple. Although it was initially a stand-alone technique, today it is integrated
in XP (as well as other techniques) because it is a good basis for common
code ownership. It means that for all parts of the system, there are at least
two people who are familiar with it.

The main idea behind pair programming is also referred to as the “prin-
ciple of dual control”: two developers work on one task which they solve
together. They need only one computer to do so, and while one developer
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types in what they have developed, the partner performs a constructive re-
view at the same time. However, the keyboard and the control over the con-
structive work quickly alternate between the two parties involved. Origi-
nally, this principle was intended for use by developers with the same level
of expertise; however, it is also suitable for a combination of a system ex-
pert and a project beginner. It allows the beginners to familiarize themselves
with existing software structures and new techniques efficiently. In purely
mathematical terms, however, pair programming initially means double the
personnel expense.

In tests conducted at universities, pair programming has been studied in
more detail and analysis schemes have been created [SSSH01]. The studies
[WKCJ00] and [CW01] show that, for pair programming, after a relatively
short time for familiarization with the new programming style, the total ex-
pense compared to programming by individuals had increased but there was
a significant reduction in the duration of the project and in particular, a sig-
nificant increase in the quality of the software.2 However, it is also evident
that the technique of programming in pairs has to be learned and that pair
programming does not suit everyone.

Therefore, in practice rigorously enforced pair programming would not
be productive. Instead, cooperatively encouraging pair programming should
lead to optimal results, because among others a project also involves ac-
tivities that do not need to be performed in pairs. These activities include
planning activities, tool installation and maintenance, as well as (in some
circumstances) discussions with customers to elicit requirements. Unfortu-
nately, flexible working hours for developers and unfavorable room alloca-
tions are further obstacles to applying pair programming consistently.

2.3.2 Test-First Approach

Tests are performed at different points in time and discussed and used with
differing intensity in different methodologies. For example: the V-Modell XT
explicitly separates tests for methods, classes, subsystems, and the overall
system. In the Rational Unified Process according to [Kru03], however, there
is no differentiation between the test levels and no discussion of metrics for
test coverage. In XP, testing is one of the four core activities—it plays a sig-
nificant role and is therefore discussed in more detail here.

[Bec01] describes the advantages of the test-first approach propagated in
XP for software development very clearly. [LF02] elaborates on this approach
for describing unit tests and discusses the advantages and disadvantages as
well as themethodological use in a pragmatic form. [PP02] compares the test-
first approach with the traditional creation of tests after implementation in a
2 Statistically meaningful example figures are given in [WKCJ00] and [CW01], show-
ing that when pair programmingwas used, development costs rose by 15% but the
resulting code had 15% fewer defects. This allows a reduction in costs for bug fix-
ing. The total cost saving is estimated at between 15% and 60%.
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general context. [Wak02, p. 8] contains a description of a micro development
cycle based on tests and coding.

The main idea of the test-first approach is to think about test cases be-
fore developing the actual functionality (in particular, individual methods).
These test cases must be suitable for checking that the functionality to be re-
alized is correct in order to describe this functionality in the form of an exam-
ple. The test cases are documented in tests that run automatically. According
to [Bec01] and [LF02], this has a number of advantages:

• Defining test cases before the actual implementation allows an explicit
demarcation of the functionality to be realized, meaning that the test de-
sign equates de facto to a specification.

• The test justifies the necessity of the code and describes, amongst other
things, which parameters are required for the function that is to be real-
ized. This means that the code is designed such that it can be tested.

• Once the functionality has been realized, the existing test cases can be
used for immediate verification; this increases the confidence in the code
developed enormously. Although there is no guarantee that the func-
tionality is free of errors, practical application, including in the auction
project, shows that this confidence is justified.

• It is easier to separate the logical design from the implementation. When
test cases are defined—in this case before the implementation—the first
step is to determine the signature of the new functionality. This signature
contains the name, parameters, and the classes, which contain methods.
The methods are not implemented until the next step, that is, after the
definition of the tests.

• The amount of work involved in formulating test cases should generally
not be forgotten, especially if complex test data is required. According to
[Bec01], this leads to functions being defined in such a way that they are
provided with only the data necessary in each case. This results in classes
being decoupled, making the designs better and more simple.
This argument may be true in individual cases but it may not always be
correct. It would be more correct to state that classes are decoupled as
a result of the early detection of the possibility for decoupling or due to
retrospective refactoring. This is also demonstrated by typical examples
of the test-first approach [LF02, Bec01].

• Early definition of sets of test data and signatures is also helpful in pair
programming as it allows developers to discuss the desired functionality
more explicitly.

One advantage of test cases is that other developers can recognize the de-
sired functionality based on the test case descriptions. This is e.g. necessary
if the code is unclear and does not have sufficient comments and there is no
explicit specification of the functionality. The test cases themselves therefore
represent a model for the system.
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Experience shows, however, that the possibility of developing the func-
tionality based on the tests is limited. This is because tests are usually defined
less thoroughly than the actual code. Also, tests written in a programming
language do not represent the actual test data very compactly or clearly.

Although the test-first approach offers a number of advantages, in prac-
tice we must still assume that defining tests in advance does not provide suf-
ficient coverage for implementation. However, the coverage metrics that we
know from the testing theory are not explicit part of XP. A very informal con-
cept for test coverage based in particular on the intuition of the developers
is generally seems satisfactory. On the one hand, this is somehow unsatisfac-
tory for the controlling in a project, but on the other hand, it is successful in
practice. But there are also tools which automatically measure the extent to
which the tests detect local modifications in the code and therefore satisfy
certain coverage criteria. Some are even developed or adapted for the XP ap-
proach [Moo01]. These tools include mutation tests [Voa95, KCM00, Moo01]
that through simple mutation of the test object check whether a test detects
the modification (defect).

If the desired functionality is implemented, once the initial test suite has
been completed, the development of further tests should achieve a better
coverage. These further tests include, for example, the treatment of border-
line cases and the investigation of conditional expressions and loops that can
be necessary in part due to the technique or framework used and therefore
were not anticipated in the test cases developed in advance.

The test-first approach is generally seen as an activity which combines
analysis, design, and implementation in “microcycles”. However, [Bec01]
also refers to the fact that test methods which are used to define test cases
systematically and which measure the coverage of the code according to dif-
ferent criteria are generally ignored. This is consciously accepted with the
argument that these test methods involve a lot more effort but the results are
not (if at all) significantly better. [LF02, p. 59] at least points out that tests are
created not only before implementation but also after completion of a task in
order to achieve “sufficient” coverage, but does not explain precisely when
the coverage is sufficient.

Depending on the type and size of the project, the strict test-first approach
can be an interesting element of the software development process which
can typically be used after at least an initial architecture has been modeled
for the system and the system has been broken down into subsystems. By
using the executable sublanguage UML/P, this approach can be elevated to
the modeling level more or less unchanged. For this purpose, in a first step,
sample data and sample sequences can be modeled as test cases using ob-
ject diagrams and sequence diagrams respectively. Based on these test cases,
the functionality to be realized can be modeled using Statecharts and class
diagrams.
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2.3.3 Refactoring

The desire for techniques which incrementally improve and modify source
code using sets of rules is only a slightly more recent phenomenon than
the creation of the first programming languages [BBB+85, Dij76]. The goal
of transformational software development is to break the software devel-
opment process down into small, systematically applicable steps which are
manageable due to their effects being limited to the local environment. Refac-
toring was first discussed in [Opd92] for class diagrams. [Fow99] is highly
recommended. It describes an extensive collection of transformation tech-
niques for the programming language Java. The refactoring techniques allow
us to migrate code in line with a class hierarchy. They also allow us to break
down or divide classes, shift attributes, expand or outsource parts of code
into separate methods, and much more. The strength of the refactoring tech-
niques is based on how easy it is to manage the individual transformation
steps (referred to as “mechanisms”) and the ability to combine them flexibly,
which leads to large, goal-oriented improvements in the software structure.

The goal of refactoring is to transform an existing program but preserve
the semantics. Refactoring is used to improve the quality of the design whilst
retaining the functionality rather than to extend the functionality. It therefore
supplements the normal programming activity.

Refactoring and the evolution of functionality are complementary activ-
ities that can quickly alternate in the development process. The course of a
project can thus be outlined as shown in Fig. 2.5. However, there is no objec-
tive criterion for measuring the “quality of the design”. Initial approaches,
for example, measure the conformance to coding standards, but are insuffi-
cient for evaluating the maintainability and testability of the architecture and
implementation.

Fig. 2.5. Refactoring and evolution are complementary

No verification techniques are used to ensure that transformations which
preserve semantics are correct; instead, the existing test suite is used. If we
can assume that the existing test suite has a high level of quality, there is
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a high probability that faulty modifications, that is, modifications which
change the behavior of the system, will be detected. Refactoring often modi-
fies internal signatures of a subsystem if, for example, a parameter is added
to a method. Therefore, certain tests have to be adapted together with the
code. In the sense of the test-first approach, [Pip02] even proposes refactor-
ing first the tests and then the code.

Refactoring techniques are aimed at various levels of the system. Some
refactoring rules have a small effect; others are suitable for modifying an en-
tire system architecture. The possibility of improving a system architecture
that has already been realized in code means that it has become less neces-
sary to define a correct and stable system architecture a priori. Modifications
to the system architecture of course involve high costs. In XP, however, the
assumption is that maintaining system functions which are not used is more
cost-intensive over the long term. In accordance with the principle of simplic-
ity, the XP approach prefers to keep the system architecture simple and to
only modify or extend it as required using suitable refactoring steps.

While many refactoring techniques for Java based on [Fow99] are cur-
rently under ongoing development, at present only a few similar techniques
exist for UML diagrams [SPTJ01].

2.4 Agile UML-Based Approach

Due to the diversity of software development projects in terms of size, appli-
cation domain, criticality, context etc., we can conclude that a standardized
approach does not and will exist in the diversified project landscape.

Instead, as proposed in Crystal [Coc06], a suitable approach must be se-
lected (and adapted) where necessary from a collection of approaches based
on the following criteria: the size and type of project, the criticality of the ap-
plication, as well as the experience and knowledge of the people involved in
the project.

Corresponding to this diversity, this book outlines a proposal for a light-
weight, agile method using UML. This proposal concentrates in particular
on the technical part of an approach and does not claim to be suitable for all
types of projects.

Definition of “Agility”

The characterization of the agility of a method is outlined in Fig. 2.6.
Efficiency can be improved by cleverly omitting unnecessary work (docu-

mentation, functionality not required, etc.) and also through an efficient im-
plementation.

It is not necessarily the case that all of the techniques of an agile method
focus on the quality of the product developed. However, certain elements of
an agile method, such as concentrating on the simplicity of the design and
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An approach is deemed to be “agile” if it emphasizes the following criteria:

• The efficiency of the overall process and the individual steps is as ideal as possible.
• The reactivity, that is, the speed at which the approach reacts to changing require-

ments or a different project environment, is high. Planning therefore tends to be
short-term and adaptable.

• The approach itself can also be adapted flexibly so that it can adapt itself dynam-
ically to internal project circumstances, as well as to external project circum-
stances which are determined by the environment and which therefore can only
be partially controlled.

• Simplicity and practical implementation of the development approach and its
techniques lead to simple design and implementation.

• The approach is customer-oriented and demands active integration of the cus-
tomer during the project.

• The capabilities, knowledge, and needs of the project participants are accounted for in
the project.

Fig. 2.6. Terminology: agility of a method

the extensive development of automated tests, do support the improvement
in the quality. Other practices enforced by some agile methods, such as the
lack of detailed specifications and reviews, discourage using the method for
highly critical systems. In this case, an alternative process or a suitable exten-
sion must be selected.

Improved Support for Agility

The agility of a project can be improved not only by modifying the activities
but also in particular by increasing the efficiency of the developers. It is of
interest to improve the efficiency of creating models, the implementation,
and the tests. This is particularly effective if the implementation and the tests
can be derived as efficiently as possible or even completely automatically
from models. This type of automatic generation is interesting if the source
language used for the models allows a more compact representation than
the implementation itself could provide.

The premise for using models in this way is that they can be createdmore
quickly because they are more compact but still allow a complete description
of the system. In the form offered in the UML standard [OMG10], UML is not
sufficient for this purpose. Therefore, UML/P has been extended to include
a complete programming language.

Use Cases for Models

Models that are used to generate code require a high level of detail. But then
the usual coding activity, which is very time-consuming, is no longer neces-
sary. The detailed modeling and the implementation merge into one single
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activity. Code generation is therefore an important tool for using models suc-
cessfully. This allows us to achieve a goal similar to XP, in which design and
modeling activities are generally executed directly in code.

However, we can use models for other goals besides code generation. Ab-
stract or relatively informal models suffice for the communication between
developers. Abstraction means that details that are not necessary for describ-
ing the communicated content can be omitted. Informalitymeans that the lan-
guage correctness of the model represented does not have to be adhered to
precisely. For example, diagrams on paper can use intuitive notational ele-
ments that do not belong to the language if the developers have a common
understanding of their meaning as far as necessary. Furthermore, where in-
formal diagrams are used, they do not have to be completely consistent with
the content modeled or with other diagrams.

We can also usemodels to document the system. Documentation is a writ-
ten form of communication intended for long-term use. A higher level of
detail, greater formality, and/or consistency are therefore useful depending
on the goal of the documentation. A short document that gives an overview
of the architecture of a system and an introduction to important decisions
that led to this architecture will have a low level of detail, but the formality
and consistency within the model and with the implementation are impor-
tant. If complete documentation is required, the ideal way to ensure that the
documentation is consistent with the system implemented is to generate the
implementation and, as far as possible, tests, from the models of the docu-
mentation.

In a project that uses UML/P for modeling and for implementation, we
at least differentiate between:

• Implementation models
• Test models
• Models for documentation
• Models for communication

We can use UML/P for all of these purposes even though the models each
have different characteristics. However, there is a significant advantage in the
fact that there are no notational breaches between specification, implementa-
tion, and test cases. UML/P can be used for detailed as well as abstract and
incomplete modeling.

Modifying Models

If a model is used exclusively for communication, then it normally exists
only as an informal drawing. A model created by a tool has a formal rep-
resentation of the syntax3 and can therefore be used for further processing

3 For example,XMLMetadata Interchange Format (XMI) is a standard for representing
UML models and therefore this type of formal representation of the syntax.
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supported by tools. The syntax of UML/P is therefore precisely defined in
Appendices A, Volume 1, B, Volume 1, and C, Volume 1.

We have already identified code generation as one of the important tech-
niques for using models. There are two main variants of code generation:
product code generation and test code generation.

The necessity of adapting software based on changing requirements also
means that techniques must be available for transforming or refactoring mod-
els. Systematically adapting models to new and changed functionalities in
a process validated at each stage by automated tests and invariants allows
this dynamic adjustment which is already familiar from XP. As a model cre-
ated according to given requirements is more compact and therefore easier to
understand than the code, this also improves adaptability of models. For ex-
ample, we can adapt the structure within one class diagram, which is spread
across a number of files in the code. The necessity of developing a fixed archi-
tecture at an early stage of a project decreases very similar to the observations
made in the XP approach.At the same time, the flexibility for integrating new
functionality and therefore the agility of the project continues to increase.

We can therefore identify the following important techniques in handling
models [Rum02]:

• Generating product code
• Generating test code
• Refactoring models

Furthermore, various techniques for analyzing models are interesting, such
as the reachability of states in Statecharts. Another factor that is helpful in
creating tests efficiently is deriving many test cases from universal specifica-
tions, such as OCL constraints or Statecharts.

Special techniques, for example, for generating database tables, generat-
ing a simple graphical interface from data models, or for migrating data sets
conforming to the old model into a new model are also important and must
be supported by a code generator with suitable parameters. However, this
book does not cover such techniques in any further detail.

Further Useful Principles and Practices

To complete an approach, further principles and practices have to be selected
on a project-specific basis. For small projects, for example, we can identify the
following principles and practices, many of them adaptable from XP:

• Many small iterations and releases
• Simplicity
• Quick feedback
• Permanent dialog with a customer who is constantly available
• Short internal, daily meetings for coordination
• Review after each iteration for the purpose of process optimization
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• Development of tests before implementation (“test-first”)
• Pair programming as a technique for learning and review
• Common ownership for models
• Continuous integration
• Modeling standards as a requirement for the form and commenting of

the models similar to coding standards

We can very easily apply the development of tests before an implemen-
tation in accordance with the test-first approach discussed in Section 2.3.2
to UML/P. To do so, we initially model sequence diagrams, which are an
essential component of tests, as descriptions for use cases and we can then
transform them into test cases with an acceptable level of effort. A similar sit-
uation applies for object diagrams, which we can create as examples of data
sets during the recording of requirements.

Standardmodeling guidelines applicable across the project are necessary
to ensure the usability of the models; the project participants must be able to
adapt and extend these models as necessary.

Sometimes developers still need to learn the language UML/P for mod-
eling to become productive. Any necessary learning phase can be supported
by pair programming, which will now generally be referred to as “pair mod-
eling” in this book.

Quality, Resources, and Project Goals

The effects of the approach outlined in this section can be explained using
the value system discussed in Section 2.2 and the four criteria (time con-
sumption, costs, quality, and goal orientation) also used in XP, for example.

Communication is easier to accomplish based onUML/Pmodels than based
on implemented code if we can assume that the communication partners
are familiar with UML.

Simplicity of the software is better supported for two reasons: on the one
hand, as the software can be changed easily, it is even less important
to establish structures for future functionality that might potentially be
required and thus integrate potentially unused complexity at an early
stage. On the other hand, it is even easier to remove elements that are
no longer necessary from the model using refactoring steps. However,
the developers themselves must still be able to recognize unnecessary
complexity and superfluous functionality.4

Feedback is ensured by the greater efficiency in development and the result-
ing even shorter iterations.

Individual responsibility and courage can and must remain with the de-
velopers, as in XP.

4 Analysis tools can only provide limited support here by recognizing which meth-
ods, parameters, or classes are not required.
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The four main variables of project management are also addressed:

Time consumption: Time savings and, in particular, early availability of first
usable versions (“time to market”) are essential not only for Internet ap-
plications. The increased development efficiency and the higher level of
reusability of technical parts allow a reduction of the time necessary.

Costs: Costs also decline due to increased efficiency and the resulting de-
crease in time and personnel expense. This reduction in the personnel
expensemeans that somemanagement efforts can also be omitted, mean-
ing that the process used is more lightweight and thus enables further
savings.

Quality: The quality of the product is influenced positively by the following
factors: the more compact and therefore clearer representation of the sys-
tem; the easier modeling of test cases; and through the fact that there is
no longer a breach between the modeling and implementation language.
Concentrating on further aspects, such as the level of test coverage, addi-
tional model reviews, and actively integrating the customer determines
whether the quality of the resulting system meets the demands.

Goal orientation: In order to ensure that the system is implemented in the
form desired by the user, it is important to integrate the user actively.
Using UML/P does not influence this aspect in any direction, as we can
assume that it is unlikely that a user would be presented with UML dia-
grams for discussion.

The Problems of Agile, UML-Based Software Development

In addition to the advantages discussed above, the approach outlined has
some disadvantages that should be considered:

• The advantage that almost the same notation can be used for the ab-
stract modeling and implementation can prove to be a blowback. In prac-
tice, previous approaches for an abstract modeling of essential properties,
such as SDL [IT07b, IT07a] or algebraic specifications [EM85, BFG+93],
have been used often as high-level programming languages as soon as
their executability has been available through a tool. The same is now
proposed for a sublanguage of UML.5 If UML is used for specification,
this can lead to unnecessary details being filled out for the specification
because a later use of the specification as an implementation has been
anticipated to early. This phenomenon is also referred to as “overengi-
neering”.

• The teaching effort for using UML/P must be assumed as high. With re-
gard to syntax, UML/P is significantly more complex than Java, meaning

5 In algebraic specifications, this has led at least in part to a greater focus on trans-
formability into efficient code rather than on the abstract modeling of properties
and thus led to strange implementation-oriented specifications.
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that an incremental learning approach is recommended here. As an ini-
tial step, the use of UML/P for describing structures with class and object
diagrams can be taught. This can be followed by sequence diagrams for
modeling test cases and, building on that, OCL for defining conditions,
invariants, and method specifications. Using Statecharts for modeling be-
havior usually requires the most practice.
However, similarly to Java, it is not only the syntax that needs to be mas-
tered but in particular the use of modeling standards and design patterns,
which must also be learned.

• At present, there is not enough tool support that covers all aspects of the
desired code generation completely. In particular, efficient code genera-
tion is essential for creating the system quickly, which in turn enables
efficient execution of tests and the resulting feedback.
However, a number of tool developers are working on realizing this vi-
sion of complete tool support and are already in a position to demonstrate
results.

2.5 Summary

Agile methods represent a relatively new approach which, through several
characteristics, distinguishes itself explicitly from methods previously used
in software development. The tools, techniques, and the understanding for
the problems of software development have improved significantly. There-
fore, these methods can offer more efficient and more flexible approaches
for a subdomain of software development projects through, for example,
strengthening the focus on the primary result, the executable system, and
a reduction in the secondary activities. At the same time, the motivation
and the commitment of the project participants for rigorous execution of
their activities come to the fore and short iterations enable flexible, situation-
dependent control of the software development.

We have identified important factors for determining the size of a project:
the size of the problem and the efficiency of the developers. We can use these fac-
tors to derive the required method size, which consists mainly of the method-
ological elements to be executed, the formality required for the documents,
and the additional effort for communication and management. Due to ad-
ditional communication and management overheads, the efficiency of the de-
velopers is disproportionate in the determination of the project size, i.e., the
number of developers required and the runtime of the project. Therefore, im-
proving developer efficiency is a significant lever for reducing development
costs.

As a modeling language for architecture modeling, design, and implementa-
tion, UML/P provides a standardized language framework that allows us to
model the executable system and the tests completely. The compact size of
the representation leads to greater efficiency and results in scaling effects for
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the project size. The standardized framework prevents an otherwise often
observed notational breach between the modeling, implementation, and test
languages.
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Compact Overview of UML/P

The limits of my language
are the limits of my world.

Ludwig Wittgenstein

This chapter contains a compact summary of the language profile UML/P
which is introduced in Volume 1 [Rum16]. It describes some but not all of the
special features and deviations of the UML/P profile compared to the UML
2 standard. For a more detailed description, see Volume 1. Readers already
familiar with UML can use this chapter mainly for reference purposes when
required. The examples used in this chapter to introduce the language refer
primarily to the auction system application described in Volume 1.
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3.1 Class Diagrams

Class diagrams are the architectural backbone of many system develop-
ments. Accordingly, class diagrams and, in particular the classeswithin those
diagrams, have a number of roles to fulfill (Fig. 3.1): class diagrams describe
the structure or rather the architecture of a system and are thus the basis for
almost all other description techniques. The class concept is used universally
in modeling and programming; it therefore offers a backbone that enables us
to trace requirements and errors through the different activities of a project.
Class diagrams form the skeleton for almost all other notations and types
of diagrams as these are based respectively on the classes and methods de-
fined in class diagrams. Thus, for analysis purposes, we use class diagrams to
structure concepts of the real world, whereas in design and implementation,
we use class diagrams primarily to represent a structural view of a software
system.

The features and roles of a class are:

• Encapsulation of attributes and methods into a conceptual unit
• Representation of instances as objects
• Typing for objects
• Description of the implementation
• Bytecode (the compiled, executable form of the description of the implementa-

tion)
• Extension (set of all objects existing at a point in time)
• Characterization of the possible structures of a system

Fig. 3.1. The variety of features and tasks of a class

3.1.1 Classes and Inheritance

Fig. 3.2 presents the most important terminology for class diagrams.
Fig. 3.3 shows a simple class diagram consisting of one class. Depending

on the level of detail required, attributes and methods of the classes may be
omitted or only partially specified in a class diagram. The types of attributes
and methods, visibilities, and other modifiers are also optional.

We use the inheritance relationship to structure classes in manageable
hierarchies. Fig. 3.4 demonstrates inheritance and interface implementation
using the common features of multiple output types of the auction system
described in Chapter D, Volume 1. The diagram does not show interface ex-
tension which would look like inheritance between classes.
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Class: A class consists of a collection of attributes and methods which define the
state and behavior of the instances (objects) of the class. Classes are connected to
one another by associations and inheritance relationships. A class name identifies
the class.

Attribute: The state of a class is defined through its attributes. An attribute is de-
fined by its name and type.

Method: The functionality of a class is organized in methods, which consist of a
signature and a body. The body describes the implementation. An abstractmethod
has no body.

Modifier: The modifiers public, protected, private, readonly, abstract,
static, and final can be applied to classes, methods, and attributes to define
the visibility, instantiability, and changeability of the modified element. For the
first four of these modifiers, UML/P contains the graphical variants “+”, “#”,
“-”, and “?”.

Constants: Constants are defined as special attributes with the modifiers static
and final.

Inheritance: If two classes are in an inheritance relationship with one another, the
superclass passes its attributes and methods to the subclass. The subclass can add
further attributes and methods and can redefine methods—provided the mod-
ifiers allow this. The subclass forms a subtype of the superclass; in accordance
with the substitution principle, instances of the subclass may be used where in-
stances of the superclass are required.

Interface: An interface describes the signatures of a collection of methods. In con-
trast to a class, no attributes (only constants) and no method bodies are specified.
Interfaces are related to abstract classes and can also be in an inheritance rela-
tionship with one another.

Type: A type is a primitive data type (such as int), a class, or an interface.
Interface implementation: An interface implementation is a relationship, similar to

inheritance, between an interface and a class. A class can implement any number
of interfaces.

Association: An association is a binary relationship between classes, which we use
to realize structural information. An association has an association name, a role
name for each end, a multiplicity, and a navigation direction.

Multiplicity: The multiplicity is specified for each association end. It is of the form
“0..1”, “1”, or “*” and describes whether an association in the specified direc-
tion is optional, unique, or permits multiple links.

Fig. 3.2. Terminology definitions for class diagrams

3.1.2 Associations

An association places objects of two classes in a relationship with one an-
other. We can use associations to portray complex data structures and to call
methods of neighboring objects. Fig. 3.5 shows an excerpt from the auction
system with multiple associations in different forms.

An association usually has an association name, one association role respec-
tively for each of the two ends, a multiplicity specification, and a description
of the possible navigation directions. Individual details can also be omitted
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Fig. 3.3. A class in a class diagram

Fig. 3.4. Inheritance and interface implementation

Fig. 3.5. A class diagram with associations
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from the model if they are not important for representing the desired facts
and unambiguity is not lost by omitting them.

Associations can be unidirectional or bidirectional. If no explicit arrow
direction is specified, the association is assumed to be bidirectional. From a
formal perspective, in this situation the navigation options are considered as
unspecified and thus not constrained.

A composition is a special form of an association. It is represented by a
solid diamond at one association end. In a composition, the parts are heavily
dependent on the whole. The life cycles of all parts are also bound to the whole
(i.e., the composition). Often the life cycles are identical.

The UML standard offers a number of additional tags for associations.
These tags allow us to regulate the association properties more precisely. Fig.
3.6 shows some frequently used tags, such as {ordered}, which permits
an ordered access using an index. The tag {frozen} specifies that once an
auction object has been initialized, the two associations to the policy objects
cannot be changed. The tag {addOnly} models the fact that objects may be
added to the association but cannot be removed.

Fig. 3.6. Tags for associations

Qualified associations allow us to use a qualifier to select an individual ob-
ject from a set of objects. Fig. 3.7 shows multiple associations that are quali-
fied in different ways.

In explicitly qualified associations, we can select the type of qualifier;
whereas in ordered associations, integer intervals beginning with 0 are used.

3.1.3 Representation and Stereotypes

The goal of class diagrams is often to describe the data structure required
for a certain task, including the relationships within the data structure. For
the purposes of an overview, a complete list of all methods and attributes is
thus more of a hindrance. A class diagram therefore usually represents an
incomplete view of an entire system; individual classes or associations may
be missing. Within the classes, attributes and methods may be omitted or
may be represented incompletely.
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Fig. 3.7. Qualified associations

To enable developers to indicate whether the information contained in
a UML diagram is complete, UML/P offers representation indicators: “. . .”
indicates that information is incomplete and “ c©” indicates complete infor-
mation (Fig. 3.8).

Fig. 3.8. Forms of representation of a class

The indicators “ c©” and “. . .” have no effect on the class itself, only on
the representation of the class within a class diagram. A “ c©” in the class
name states that both the attribute list and the method list are complete. In
contrast, the incompleteness indicator “. . .” indicates that the representation
may be incomplete.

Both representation indicators are merely a special form of tag with their
own syntactical representation. In very general terms, UML offers the pos-
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sibility of labeling model elements using stereotypes and tags (Fig. 3.9). The
syntax of such a label is of the form �stereotype�, {tag}, or {tag=value}.

Stereotype: A stereotype classifies model elements such as classes or attributes. It
refines the meaning of the model element, allowing the element to be handled
more specifically during code generation. A stereotype can have a number of
tags.

Tag: A tag describes a property of a model element. It is denoted as a pair consisting
of a keyword and a value. Multiple values can be grouped in a list.

Model elements: Model elements are the (main) components of UML diagrams. For
example, the class diagramhas the followingmodel elements: classes, interfaces,
attributes, methods, inheritance relationships, and associations.
Tags and stereotypes can be applied to model elements but are not model ele-
ments themselves.

Fig. 3.9. Terminology definitions: tag and stereotype

3.2 Object Constraint Language

The Object Constraint Language (OCL) is a property-oriented modeling lan-
guage used for modeling invariants as well as preconditions and postcondi-
tions of methods. The OCL/P contained in UML/P is an extended variant of
the OCL standard that has been adapted to Java from a syntax perspective.

3.2.1 OCL/P Overview

Fig. 3.10 explains the most important terms of OCL.
One of the outstanding features of OCL constraints is that they are em-

bedded in a context which consists of UMLmodels. The class diagram in Fig.
3.11 shows such a context in which, for instance, the following expression can
be formulated:

OCL

context Auction a inv Bidders2:
a.activeParticipants == { p in a.bidder | p.isActive }.size
ExpressionBidders2 is quantified over all objects a of the class Auction.

It contains navigation expressions, such as a.bidder, which allow naviga-
tion via associations. The set comprehension {p in ... | ...} selects all
active persons of an auction. Set comprehension is a comfortable extension
compared to the OCL standard. It will be discussed later in more detail in
multiple forms.

If only one class is given the context, the name this can be used instead
of an explicit name. In this case, attributes without a qualification can also be
accessed. Closed conditions have an empty context:



40 3 Compact Overview of UML/P

Condition: A condition is a Boolean expression applicable to a system. It describes a
property that a system or a result should have. The interpretation of a condition
always results in one of the logical values true or false.

Context: A condition is embedded in a context over which it defines a statement.
The context is defined by a set of names and their signatures which can be used
in the condition. The names include class names, method names, and attribute
names of the model.

Interpretation: A condition is interpreted with respects to a concrete object struc-
ture. As part of the interpretation, the variables defined in the context are as-
signed values or objects of this object structure.

Invariant: An invariant describes a property that should be valid at any (observable)
point in time during a system execution. The observation times can be restricted
in order to permit time-restricted violations, for example, during the execution
of a method.

Precondition: A precondition of a method characterizes the properties that must be
valid for this method to deliver a defined and useful result. If the precondition
is not satisfied, there is no information about the result given.

Postcondition: A postcondition of a method describes the properties that are valid
after the execution of the method. In the postcondition objects can also be ac-
cessed in the state that was valid immediately before the method call (at the
“time” of the interpretation of the precondition). Postconditions are thus logi-
cally interpreted using two object structures which represent the situations be-
fore and after the method call.

Method specification: A method specification is a pair consisting of a precondition
and a postcondition.

Query: A query is a method offered by the implementation. Calling a query does
not cause a change in the system state. Although, new objects may be created as
a result of the call, they must not be connected to the system state by means of
links. Queries therefore have no side effects and can be used in OCL constraints.

Fig. 3.10. Terminology definitions for OCL

Fig. 3.11. Excerpt from the auction system
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OCLinv:
forall a in Auction:

a.startTime >= Time.now() implies
a.numberOfBids == 0

We can use the let construct to assign intermediate results to an auxiliary
variable, which can be used in the body of the construct in all places where
needed:

OCLcontext inv SomeArithmeticTruth:
let middle = (a+b)/2
in

a<=b implies a<=middle and middle<=b

The let construct can also be used to define auxiliary functions:

OCLcontext Auction a inv Time2:
let min(Time x, Time y) = (x<=y) ? x : y
in

min(a.startTime, min(a.closingTime,a.finishTime))
== a.startTime

We have already seen the conditional expression .?.:., which also can
be used in form if-then-else. In contrast to an imperative conditional
expression, the then and else branches must always be specified.

A special form of the conditional expression allows us to handle casts
as they occasionally occur in subtype hierarchies. For this purpose, OCL/P
offers a type-safe construction which represents a combination of a cast and
a query regarding the convertibility of the cast:

OCL

context Message m inv:
let Person p = (m instanceof BidMessage ? m.person : null)
in ...

In addition to a normal conditional expression, in the then branch of the
conditional expression, the type of the variable m is set to the subtype and
thereby allows us to select m.bidder. The type safety is retained despite the
conversion.

The primitive data types are the types familiar from Java: boolean,
char, int, long, float, byte, short, and double and the operators that
work on those types without any side effects. The increment operators ++
and -- and all forms of assignment are thus excluded. New functions that
are not known from Java are the Boolean operators implies and <=>, which
are used to represent implications and equivalences, and the postfix opera-
tors @pre and **.

Just like in Java, the data type String is understood not as a primitive
data type but as a class that is always available.
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Priority Operator Associativity Operand(s), meaning

14 @pre left Value of the expression in the precondition
** left Transitive closure of an association

13 +, -, ˜ right Numbers
! right Boolean: negation
(type) right Cast

12 *, /, % left Numbers
11 +, - left Numbers, String (+)
10 <<, >>, >>> left Shifts
9 <, <=, >, >= left Comparisons

instanceof left Type comparison
in left Element of

8 ==, != left Comparisons
7 & left Numbers, Boolean: strict and
6 ˆ left Numbers, Boolean: xor
5 | left Numbers, Boolean: strict or
4 && left Boolean logic: and
3 || left Boolean logic: or
2.7 implies left Boolean logic: implies
2.3 <=> left Boolean logic: equivalent
2 ? : right Expression selection (if-then-else)

Table 3.12. Priorities of the OCL operators

3.2.2 OCL Logic

The definition of the underlying logic for a constraint language needs to be
appropriate for the language to be used in practice. Therefore, in OCL/P, we
choose a two-valued logic and a special handling of the problematic “unde-
fined” value. A detailed discussion of these aspects can be found in Volume
1.

Mapping the undefined value to the logical value false is the most el-
egant solution because this gives rise to a two-valued logic. This simplifies
both specifications and reasoning, because there is no third case to be dealt
with. Unfortunately, these semantics, which are so convenient for the speci-
fication, cannot be implemented completely because we would then have to
determine whether a calculation does not halt and output the value false.1

Nevertheless, the selected solution is feasible (see Volume 1).
Fig. 3.13 shows the truth tables of the OCL operators with this implicit

mapping of undef to false.

3.2.3 Container Data Structures

Containers are the basis for the navigation via associations. Starting with one
single object, a navigation expression allows us to describe a set or a list of
1 However, the halting problem is undecidable.
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Fig. 3.13. Interpretations of the Boolean operators

reachable objects and to define certain properties for these objects. Like Java
generics, OCL/P offers three type constructors for containers (Fig. 3.14).

Set<X> describes a set over the data type X. The usual operators such as disjunction
or addition are available for sets. We can use any primitive data type, any class,
and any container type for the type X. For comparisons of sets, we compare
elements by value for primitive data types and by object identity for classes.
However, objects from certain classes such as String redefine the comparison
equals offering a value comparison.

List<X> describes ordered lists and the operations useful for such lists. List<X>
allows us to manage the objects of this list, starting with the index 0.

Collection<X> is a supertype for the two named types Set<X> and List<X>. It
provides the common functionality of these two types.

Fig. 3.14. OCL type constructors

A comparison of containers requires a binary operation that tests the
equality of the elements. If the elements are primitive data types or also con-
tainers, we use the comparison == for the elements. However, if the elements
are objects, we use the comparison equals. This corresponds to a compar-
ison by value for primitive data types and containers and (in most cases) a
comparison of the identities for objects. However, for special object types,
such as String, the method equals is redefined, providing also a compar-
ison by value.

Like Java generics, the subtype relationship of Set<X> and List<X> to
Collection<X> allows us to use values of the types Set<X> or List<X>
instead of values of the type Collection<X> for any type X.

The notation of sets and lists is based primarily on the extension of
classes, i.e. the sets of their objects, set comprehensions, and navigation ex-
pressions. Some examples:
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OCLAuction.size < 1700;
Set{};
Set{"text",""} == {"text",""};
List{8,5,8};
List{’a’..’c’} == List{’a’,’b’,’c’};

Set and List Comprehensions

Compared to the OCL standard, OCL/P offers an extensive collection of op-
tions commonly provided by functional programming languages for describ-
ing sets and lists in enumerations as well as comprehensions based on prop-
erties.

The general syntax of a list comprehension is of the following form:

OCLList{ expr | characterization }

Here, in the expression characterization (right), we define new variables
which we can use in the expression (left). The characterization can consist
of multiple generators, filters, and local variable definitions separated by com-
mas.

A generator v in list allows a new variable v to iterate over all ele-
ments of the list. This allows us, for example, to define square numbers as
follows:

OCLinv:
List{ x*x | x in List{1..5} } == List{1,4,9,16,25}

A filter describes a restriction on a list of elements. It evaluates to a logical
value which decides whether an element is included in a list. In combination
with a generator, we can therefore describe filters for partial lists:

OCL

inv:
List{ x*x | x in List{1..8}, !even(x) } == List{1,9,25,49}

To further improve convenience, we can calculate intermediate results
and assign them to local variables.

OCLinv:
List{ y | x in List{1..8}, int y = x*x, !even(y) } ==

List{1,9,25,49}

Container Operations

Sets, lists, and containers provide the operations listed in Fig. 3.15, 3.16, and
3.17. Their signatures represent a combination of the functionality familiar
from Java sets and the functionality offered by the OCL standard. In OCL, we
can write the operations size, isEmpty, and asList as attributes without
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SignatureSet<X> add(X o);
Set<X> addAll(Collection<X> c);
boolean contains(X o);
boolean containsAll(Collection<X> c);
int count(X o);
boolean isEmpty;
Set<X> remove(X o);
Set<X> removeAll(Collection<X> c);
Set<X> retainAll(Collection<X> c);
Set<X> symmetricDifference(Set<X> s);
int size;
X flatten; // when X is a collection type
List<X> asList;

Fig. 3.15. Signature of sets of the type Set<X>

brackets, because a query without any arguments can generally be treated
like an attribute. We can also write the operations as a query with brackets
due to the compatibility with Java.

In contrast to a Java implementation, the concept of exceptions is not
available for OCL expressions. Instead, all operators of OCL are robust, which
means that the interpretation of these operators always producesmeaningful
results.

Since containers do not have an object identity in OCL, both equality op-
erators == and equals are identical on containers:

OCLcontext Set<X> sa, Set<X> sb inv:
sa.equals(sb) <=> sa==sb

As already discussed, the comparison of sets uses the comparison of the
elements equals for objects and == for primitive data types. In OCL, == for
containers of objects is dependent on the freely definable equality equals
on the elements and differs from the comparison in Java.

Like in Java indexing of list elements begins with 0:

OCLList{0,1,2}.add(3) == List{0,1,2,3};
List{’a’,’b’,’c’}.add(1,’d’) == List{’a’,’d’,’b’,’c’};
List{0,1,2}.prepend(3) == List{3,0,1,2};
List{0,1,2}.set(1,3) == List{0,3,2};
List{0,1,2}.get(1) == 1;
List{0,1,2}.first == 0;
List{0,1,2}.last == 2;
List{0,1,2}.rest == List{1,2};
List{0,1,2,1}.remove(1) == List{0,2};
List{0,1,2,3}.removeAtIndex(1) == List{0,2,3};
List{0,1,2,3,2,1}.removeAll(List{1,2}) == List{0,3};
List{0..4}.subList(1,3) == List{1,2};
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SignatureList<X> add(X o);
List<X> add(int index, X o);
List<X> prepend(X o);
List<X> addAll(Collection<X> c);
List<X> addAll(int index, Collection<X> c);
boolean contains(X o);
boolean containsAll(Collection<X> c);
X get(int index);
X first;
X last;
List<X> rest;
int indexOf(X o);
int lastIndexOf(X o);
boolean isEmpty;
int count(X o);
List<X> remove(X o);
List<X> removeAtIndex(int index);
List<X> removeAll(Collection<X> c);
List<X> retainAll(Collection<X> c);
List<X> set(int index, X o);
int size;
List<X> subList(int fromIndex, int toIndex);
List<Y> flatten; // X is a collection type Collection<Y>
Set<X> asSet;

Fig. 3.16. Signature of lists of the type List<X>

SignatureCollection<X> add(X o);
Collection<X> addAll(Collection<X> c);
boolean contains(X o);
boolean containsAll(Collection<X> c);
boolean isEmpty;
int count(X o);
Collection<X> remove(X o);
Collection<X> removeAll(Collection<X> c);
Collection<X> retainAll(Collection<X> c);
int size;
Collection<Y> flatten; // X has the form Collection<Y> or Set<Y>
List<Y> flatten; // X has the form List<Y>
Set<X> asSet;
List<X> asList;

Fig. 3.17. Signature of containers of the type Collection<X>

Deeply nested container structures contains some structural information
about the nesting which is sometimes helpful for specifying systems. We can,
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for instance use the type Set<Set<Person>> to describe a grouping of sets
of persons.

OCLlet Set<Set<Person>> ssp = { a.bidder | a in Auction }
in ...

Using the operator flatten allows us to reduce the nesting depth of
container structures.

The flatten operator merges the two “upper” levels of containers with-
out dealing with the internal structure of the embedded element type X con-
tained in these two levels. This is also called shallow flattening. A precise
description can be found in Volume 1.

In navigation chains, the flatten operator is used by default and im-
plicitly such that the result of a navigation chain never represents a container
structure that is nested more deeply than the source structure. The only ex-
ceptions are navigation chains that start from a single object, which, depend-
ing on the form of the association, can lead to a set or a sequence.

Fig. 3.18. Abstract model for explaining navigation results

Starting with a simple object, the result of a navigation chain depends on
the multiplicity of the association as shown in Fig. 3.18:

OCLlet Auction a = ...;
Policy po = a.policy;
Set<Person> spe = a.person;
List<Message> lm = a.message

in ...

Quantifiers and Special Operations

We can use the two quantifiers forall and exists to describe properties that
must be satisfied for either all elements of a group or for at least one of the
group’s elements. Some of the previous examples have already shown how
we can use quantifiers to formulate expressions over the elements of a con-
tainer. We can combine quantifiers over multiple variables:

OCLinv Message1:
forall a in Auction, p in Person, m in a.message:

p in a.bidder implies m in p.message
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The third quantifier in this example shows that the source set that is being
quantified can be the extension of a class, but also any set-valued or list-
valued expression.

The existential quantifier is dual to the universal quantifier:

OCLinv:
(exists var in setExpr: expr) <=>

!(forall var in setExpr: !expr)

Both quantifiers are usually only applied to finite containers or sets of
class objects. This has the advantage of computability (at least in principle),
as the quantified variable ranges only over existing objects. For the quantified
set, it is essential to use the extension—in the form of all currently existing
objects—of a class, such as Person. The extension is unrestricted but finite
at any point in time.

In addition to finite sets of objects, OCL/P allows the use of quantifiers
across infinite primitive data types, such as int, which is naturally not com-
putable. Quantification over containers also ranges over all potentially pos-
sible sets and lists, and not over the Set and List objects that currently exist
in the system. Consider the following expression:

OCLinv SetQuantor:
forall Set<Person> lp: lp.size != 5

This expression interprets the variable lp across all potential sets over the
Person objects that actually exist at a point in time. Thus, a quantification
via Set<Person> is a combination of the interpretation of an infinite quan-
tifier on a primitive data type and a finite quantifier on the reference type
contained in the primitive data type. Accordingly, quantifiers on lists are in-
finite and we can therefore use them only for specification. As the power
set of a finite set is also finite, the above quantification via Set<Person> is
therefore finite and moreover it can be computed.

We can use the special operator any to select an element from a container
structure. This operator is not defined uniquely for sets, as the following
defining equations show:

OCL(any listExpr) == listExpr.get(0);
(any setExpr) == any setExpr.asList;
(any var in collection: expr) == any { var in collection | expr }
To process sets and lists element by element, we can also use the iterate

operator besides the already known form of comprehension. This operator
simulates a loop with a state memory known from functional and imperative
programming.

OCLiterate { elementVar in setExpr;
Type accumulatorVar = initExpr :
accumulatorVar = expr

}
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We can use the iterate operator, for example, to compute the total of a
set of numbers:

OCLinv Sum:
let int total =

iterate { elem in Auction;
int acc = 0 :
acc = acc+elem.numberOfBids

}
in ...

The defined operator allows us to handle undefined values. This oper-
ator returns true exactly when its argument is defined. For undefined argu-
ments, this operator evaluates to false:

OCLcontext Auction a inv:
let Message mess = a.person.message[0]
in

defined(mess) implies ...

A problem specific to OCL is the definition of transitive closures via nav-
igation paths: OCL is a first-order logic and therefore not capable of speci-
fying a transitive closure. OCL/P therefore has a special operator ** which,
when applied to an association, retains that association’s signature. In com-
bination with inheritance we have the four cases specified in Fig. 3.19.

Fig. 3.19. Typing of the transitive closure

3.2.4 Functions in OCL

We can specify the effects of methods of the underlying model using pairs
of preconditions and postconditions. Furthermore, the model can provide
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methods for specifying OCL constraints. These methods are called queries
and thus labeled with the stereotype �query�. Queries have no side effects
as described in Volume 1.

Whenmodeling complex properties, it is often useful or even necessary to
define additional queries which are not present in an implementation, how-
ever. We label these specification queries with the stereotype �OCL�.

Method Specifications

To describe individual methods, we use a method specification formulated in
the style of a precondition/postcondition.

The context of a method specification is defined by a method, the class
that contains the method, and the parameters. Two conditions, the precondi-
tion and the postcondition, which can both be given names, characterize the
effect of the method.

The precondition describes the properties under which a method can be
called to compute a defined and robustly implemented reaction. The post-
condition characterizes the result of the method call and the changes of the
object state.

In the postcondition, we assess the result of the method using the special
variable result. We use �static� to label static methods. Like in Java, no
thismay be used in the bodies of static methods.

Fig. 3.20. Excerpt of the person class

The postcondition of the method specification can use the state before the
method call explicitly. We can achieve this by using the postfix @pre. The
method addMessage from Fig. 3.20 is used to add a further message for a
person:

OCLcontext Person.addMessage(Message m)
pre: m.time >= messageList.last.time
post: messageList == messageList@pre.add(m)

The operator @pre may only be applied to individual attributes or navi-
gation elements. The expression a@pre evaluates to the value of the attribute
a at the time of the method call and thus allows the comparison between the
old and the new value.
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If the precondition is not satisfied, the specification gives no statement
about the behavior of the method. We can therefore use multiple specifica-
tions to describe a complex method. However, if preconditions overlap, both
postconditions must be satisfied. This composition technique allows method
specifications to be passed to and specialized in subclasses. For details, see
Volume 1.

For complex method specifications, there is an extended form of the let
construct that allows us to define variables that are assigned in both condi-
tions.

OCLcontext Class.method(parameters)
let var = expression
pre: ... var ...
post: ... var ...

Recursive definitions of functions are permitted but as discussed in Vol-
ume 1, may only be used in restricted form.

3.3 Object Diagrams

Object diagrams model actual structures in exemplary form. They are there-
fore particularly suitable for representing static, unchanging structures in dy-
namic, object-oriented systems or special situations used as preconditions or
postconditions for tests. The integration with OCL leads to an “object di-
agram logic” that permits a methodologically enhanced use of object dia-
grams.

3.3.1 Introduction to Object Diagrams

A short description of the most important terms for object diagrams is shown
in Fig. 3.21. These terms are explained in more detail below.

Fig. 3.22 shows a simple object diagram from the auction system that con-
sists of only one object. This object describes an auction for electrical power.

In principle, object diagrams conform to the structure specified by class
diagrams. They are very similar to class diagrams but differ in some sub-
stantial points and are therefore an independent notation. Objects contain
attributes that are usually specified with specific values. Multiple objects of
the same class may occur, which is why each object has its own (or if appli-
cable, anonymous) name.

No inheritance relationships are shown in an object diagram. Instead, we
can list the attributes inherited from superclasses explicitly in the object of the
subclass. The inheritance structure between classes is therefore “expanded”
in an object diagram.While class diagrams have a third field for representing
methods, methods are not detailed in object diagrams. We therefore do not
see a method list for objects in an object diagram.
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Object: An object is an instance of a class and contains the attributes defined by the
class. These attributes are initialized with a value (or, where applicable, are still
uninitialized). In an object diagram, prototypical objects are used to illustrate ex-
ample situations. There is normally no 1:1 relationship between the prototypical
objects visible in the diagram and the real objects in the system (see also the dis-
cussion in Section 4.2, Volume 1).

Object name: The object name allows an object to be named uniquely in the object
diagram. A descriptive name is used as the object name, which is this name not
usually found in the real system, because there system-specific object identifiers
are used.

Attribute: An attribute describes a part of the state of an object. In an object diagram,
an attribute is characterized by the attribute name, the type, and a specific value.
Further characteristics, such as visibility, can be added to the attribute. In abstract
object diagrams, we can use variable names or expressionswhose content remains
“unspecified” in the diagram instead of specific values. Attribute types or values
may also be omitted.

Link: A link is an instance of an association between two objects whose classes each
participate in the association. The navigation direction, association name, and
role name can also be represented on the link.

Composition link: A composition link is a special form of a link in which, in ad-
dition to the pure connection, there are further dependencies of the part on the
whole. A composition link is an instance of a composition.

Fig. 3.21. Terminology definitions for object diagrams

Fig. 3.22. Individual auction object

A link connects two objects. Just like an object is an instance of a class, a
link is an instance of an association. Fig. 3.24 shows an object structure for
an auction which contains at least the three persons specified. One of these
persons is permitted only as an observer.

If an association has a qualifier at one end, in an object diagram a con-
crete qualifier value can be specified at every link of the association. Fig. 3.25
shows such an object diagram.
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Fig. 3.23. Forms of representation for the auction object

Fig. 3.24. Object structure for an auction

Fig. 3.25. Qualified links



54 3 Compact Overview of UML/P

3.3.2 Compositions

A composition is represented in an object diagram by a solid diamond at one
association end. While a class may appear in multiple compositions in class
diagrams, in an object diagram linking one object as part to multiple compo-
sitions is not permitted. To highlight the dependency of parts on the whole
and the composition character more strongly, we can use the alternative rep-
resentation on the right in Fig. 3.26.

Fig. 3.26. Alternative representations for a composition

3.3.3 The Meaning of an Object Diagram

Due to the dynamics of object systems, the number of objects in a system
varies constantly. Furthermore, object structures can change their links dy-
namically. This means that an unlimited number of variations of object struc-
tures can arise, and it is usually not possible to represent these variations
completely. An object diagram therefore models a system situation valid for
a limited time, and in extreme cases, a snapshot valid for a single point in
time.

As discussed in Volume 1, structures modeled with object diagrams have
a prototypical, pattern-like character. They show an example situation without
this situation necessarily taking on a normative character. The situation rep-
resented in the object diagram does not have to occur in the actual execution
of the system. However, it can occur more than once, in chronological order
or even at the same time. Different or (sometimes) the same objects can be
involved in each of the situations that occur. Object diagrams can therefore
represent overlapping structures in the system. There must be a clear dis-
tinction between the representation of an object in the object diagram and
the real objects of a system. The objects represented in the object diagrams
are referred to as prototypical objects.

The ability to instantiate prototypical objects is a basis for integrating ob-
ject diagrams in the OCL logic.



3.3 Object Diagrams 55

3.3.4 The Logic of Object Diagrams

A core element of integrating the exemplary object diagrams in OCL is the
possibility of understanding an object diagram in simple terms as an expres-
sion about the objects described. As described in Volume 1 through a trans-
formation of object diagrams to OCL, the objects names act as free variables
of such expressions, whereas anonymous objects are existentially quantified.
Therefore, in the embedding OCL constraint, we must define all names used
in the object diagram.

The name of an object diagram represents the expression declared in the
diagram and can be used freely in OCL. The following expression can there-
fore be used to stipulate that in any auction that has already begun, a wel-
come message has been sent. The two object diagrams from Fig. 3.27 are
used here, with Welcome1A representing the prerequisite for the situation
in Welcome1B.

Fig. 3.27. Object diagrams for the welcome message

OCLinv Welcome1:
forall Auction a, TimingPolicy timePol:

OD.Welcome1A implies
exists Message welcome: OD.Welcome1B

The expression is as follows: “If objects a and timePol exist and satisfy
object diagram Welcome1A, then the object welcome exists and all proper-
ties formulated in object diagram Welcome1B are valid.”

By replacing specific values with variables or OCL expressions, we can
create abstract object diagrams. We can import the abstract values into an OCL
constraint and use them there to specify properties. For example, to arrange
a test auction with 100 persons, we can use the object diagram NPersons
from Fig. 3.28.

The integration of OCL and object diagrams is significantly more com-
fortable for descriptions than OCL alone. However, the expressiveness of the
descriptions corresponds to that of the original OCL. But object diagrams
have become more expressive, allowing us to describe:



56 3 Compact Overview of UML/P

OCLimport Auction test32 inv Test32:
forall int x in {1..100}: OD.NPersons

Fig. 3.28. Auction with parameterized persons object

• Alternatives
• Undesired situations
• Composed object structures
• Generalizations (patterns)

It is primarily the logic operators disjunction, negation, conjunction, and
quantifiers that are used here. This increases the power of expression of ob-
ject diagrams, elevating them from example expressions to generally valid
expressions.

3.4 Statecharts

Statecharts are an evolution of the automata applied to describe object behav-
ior. Each somewhat complex system has controlling parts that can be mod-
eled with Statecharts. The variant of Statecharts presented here uses OCL as
constraint language and Java statements as actions.

3.4.1 Properties of Statecharts

Automata occur in various forms. They can be executable, used to recognize
sequences of letters or messages, to describe the state space of an object, or
to specify response behavior to a stimulus. The overview article [vdB94] dis-
cusses a number of syntactical variants and semantic interpretation options
for Statecharts and shows that these have to be adapted to the respective
application domains. With suitable stereotypes for control, we can use the
UML/P Statecharts for modeling, generating code, or describing test cases.
Fig. 3.29 shows a Statechart that represents a simplifying abstraction of the
state system for an auction. Fig. 3.30 contains an overlapping list of tasks that
a Statechart can take over.

A compact overview of the Statechart constructs is summarized in Fig.
3.31, 3.32, and 3.33.

A Statechart describes the response behavior of an object that occurs
when a stimulus is applied to this object. A stimulus can be a method call, an
asynchronous message, or a timeout. The stimulus is processed atomically.
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Fig. 3.29. Statechart

The tasks of a Statechart can be:

• Representation of the life cycle of an object
• Description of the implementation of a method
• Description of the implementation of the behavior of an object
• Abstract requirement description for the state space of an object
• Representation of the order of the permitted occurrence of stimuli (order of calls)
• Characterization of the possible or permitted behavior of an object
• Link between the description of the state and the description of the behavior

Fig. 3.30. The variety of tasks of a Statechart

State: A state (synonym: diagram state) represents a subset of the possible object states.
A diagram state is modeled with a state name and optionally also a state invari-
ant, entry action, exit action, or do activity.

Initial state: Objects start their life cycle in an initial state. Multiple initial states can
be used to represent multiple forms of object instantiation. The meaning of an
initial state as part of another state is described in Section 5.4.2, Volume 1.

Final state: A final state describes that in this state, the object has satisfied its obliga-
tion and is no longer needed. However, objects can exit their final states again.
The meaning of a final state as part of another state is described in Section 5.4.2,
Volume 1.

Substate: States can be nested hierarchically. A superstate contains multiple sub-
states.

State invariant: A state invariant is an OCL constraint which, for a diagram state,
characterizes which object states are belonging to this diagram state. State in-
variants of different states may normally overlap.

Fig. 3.31. Terminology definitions for Statecharts, part 1: states
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Stimulus: A stimulus is caused by other objects or the runtime environment and
leads to the execution of a transition. Examples of stimuli include a method call,
a remote procedure call, the receipt of a message sent asynchronously, or the
notification of a timeout.

Transition: A transition leads from a source state to a destination state and contains
a description of the stimulus as well as the response to the stimulus in the form
of an action. Additional OCL constraints restrict the enabledness and specify the
response of a transition in more detail.

Enabledness: A transition is enabled exactly when the object is in the source state of
the transition, the stimulus is correct, and the precondition for the transition is
valid. If multiple transitions are enabled in the same situation, the Statechart is
nondeterministic and it is open which transition is chosen.

Precondition of the transition: Besides by the source state and the stimulus, we can
also restrict the enabledness of a transition with an OCL constraint which must
be satisfied for the attribute values and the stimulus.

Postcondition of the transition (also: action condition): In addition to an operational
description of the reaction to a stimulus, an OCL constraint can also specify the
possible reaction in a property-oriented form.

Fig. 3.32. Terminology definitions for Statecharts, part 2: transitions

Action: An action is a modification of the state of an object and its environment
described through operational code (e.g., with Java) or through an OCL specifi-
cation. A transition usually contains one action.

Entry action: A state can contain an entry action that is executed when the object
enters the state. If actions are described operationally, the entry action is exe-
cuted after the transition action. If there is a property-oriented description, the
conjunction of both descriptions applies.

Exit action: Analog to an entry action, a state can contain an exit action. In an opera-
tional form, it is executed before the transition action; in the property-oriented
form, the conjunction also applies.

Do activity: A state can contain a permanently enduring activity called the do activ-
ity. It can be implemented via various mechanisms for the creation or simulation
of parallelism, such as separate threads, timers, etc.

Nondeterminism: If there are multiple alternative transitions that are enabled in a
situation, this is referred to as nondeterminism of the Statechart. The behavior of the
object is thus underspecified. There are several methodologically useful options
for using and dissolving underspecification during the software process.

Fig. 3.33. Terminology definitions for Statecharts, part 3: actions

Therefore, the processing cannot be interrupted and is not parallel to other
transitions of the same Statechart.

While an object typically has an infinite state space, a Statechart consists
of a finite, typically even small set of diagram states. The diagram states
therefore represent an abstraction of the object state space. We can define the
relationship between diagram states and object states precisely by adding
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OCL constraints. The same applies for the preconditions and effects of tran-
sitions. Depending on the level of detail and the form of representation of
these conditions, a Statechart can therefore be seen as an executable imple-
mentation or as an abstract requirement description. We can therefore use
Statecharts beginning from requirements analysis until implementation.

Fig. 3.34 illustrates howwe relate the finite number of diagram states and
transitions of a Statechart with an underlying infinite transition system that
describes the behavior of an object.

Fig. 3.34. Interpretation of a diagram

The interpretation of an element of the diagram through a set of states
or transitions has certain effects and there is a detailed examination of these
effects in Volume 1. Important properties are summarized here:

• Statecharts are based on Mealy automata which process stimuli, allow
output to be emitted (for example, in the form of method calls), and allow
changes to the object state.

• There is no parallelism within the object described by the Statechart. The
UML/P Statecharts therefore have no parallel states (elsewhere called
“and”-states).

• Statecharts generally permit nondeterminism. This can lead to a real non-
determinism of the implementation, but can also be interpreted as an un-
derspecification of the model and can be eliminated later in the process
by more detailed, deterministic specifications.

• Spontaneous (ε-) transitions model observations in which the trigger-
ing stimulus remains invisible (for example, an internal method call or
a timer). This means that spontaneous transitions merely provide a spe-
cial form of underspecification.

• A Statechart can be incomplete in that it does not provide any transitions
for specific combinations of states and stimuli. In this case, there is no
statement made about the implementation and therefore any robust re-
action is possible. In particular, there is no need that the implementation
should ignore the stimulus.
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• If the Statechart is incomplete, we can define a specific behavior by apply-
ing a suitable stereotype that adds implicit transitions, e.g., into an error
state.

The two primary tasks of Statecharts are the representation of life cycles
of objects and the representation of the behavior of individual methods.

3.4.2 Representation of Statecharts

Fig. 3.35 shows an individual state that the class Auction can take. In addi-
tion to the name AuctionOpen, the state contains a state invariant, one entry
action, and one exit action, as well as one or do activity.

Fig. 3.35. A state of the class Auction with an invariant and actions

As a diagram state corresponds to a set of object states, we can use the
state invariant described in OCL to establish this relationship. State invari-
ants do not have to be disjoint. If they are disjoint, they are referred to as
data states, otherwise they are control states. The data state of an object is deter-
mined by the attributes of the object’s own and any dependent objects. In a
real system, the control state in addition manifests itself through the program
counter and the call stack, but a state invariant can only provide information
about the data state.

We can use a hierarchy for states to prevent a state explosion. Just like
any other state, a hierarchically divided state has a name and can contain a
state invariant, an entry and an exit action, and a do activity. The flat and
hierarchical representation of states in a Statechart is, as illustrated in Fig.
3.36, equivalent if the state invariants are taken into account accordingly.

Fig. 3.29 shows the label for the initial and final states at the highest hi-
erarchy level. We can also label initial and final states within a hierarchically
decomposed state. However, they then have a somewhat different meaning
(see Volume 1).
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Fig. 3.36. Introduction and expansion of a hierarchy

If the object is in the source state of a transition and satisfies the triggering
condition, the transition can be executed. Accordingly, an action is executed
and the target state of the transition is entered.

Stimuli

There are five different categories of stimuli that lead to the triggering of a
transition:

• A message is received
• A method call takes place
• The result of a return statement is returned in response to a call sent out

earlier
• An exception is caught
• The transition occurs spontaneously

For the receiving object, there is no difference between whether a method
call is transmitted asynchronously or as a normal method call. Therefore, in
the Statechart, there is also no differentiation between these two forms of
stimuli. This results in the types of stimuli for transitions shown in Fig. 3.37.

Firing Rules

The enabledness of a transition can be characterized as follows:

1. The object must be in an object state that corresponds to the source state
of the transition.

2. Either the transition is spontaneous and therefore does not require any
stimulus, or the stimulus required for the transition has occurred.

3. The values specified in the stimulus description (for example, method
parameters) match the actual values of the stimulus received. If variables
are specified in the stimulus description, the actual values are assigned
to these variables.
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Fig. 3.37. Types of stimuli for transitions

4. The precondition evaluated on the object state and the parameters of the
stimulus received evaluates to true.

It is possible that a precondition cannot be satisfied in any situation. In
this case the transition is useless, as it will never be executed. As a result of
nondeterminism (underspecification), it is also possible for multiple transi-
tions to be enabled simultaneously. This also means that an enabled transi-
tion does not necessarily have to be executed.Nondeterminism in a Statechart
does not necessarily mean, however, that the implementation has to be non-
deterministic, as the programmer can reduce the underspecification by se-
lecting the more suitable realization himself. Fig. 3.38 shows two permitted
situations for overlapping firing conditions.

Fig. 3.38. Situations for overlapping firing conditions

In both cases (a) and (b) both alternatives are possible. Case (a) can be re-
solved with explicit priorities. Furthermore, for nondeterminism at different
hierarchy levels, we can use the stereotypes �prio:inner� or �prio:outer� to
generally define whether inner or outer transitions are given priority.

If a Statechart is incomplete, we can also use a stereotype to specify the
behavior more precisely.
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1. �completion:ignore� indicates that the stimulus is ignored.
2. An error state is taken if there is a state labeled �error�. For processing

exceptions, a further state can be labeled with �exception�.
3. The stereotype �completion:chaos� permits arbitrary underspecification

in the incomplete part of the Statechart.

As discussed in Section 5.2.6, Volume 1, this results in differences in the
interpretation of the life cycle of an object. In the first two interpretations, the
life cycle is understood as the maximum possible; in the last, it is understood
as the minimum ensured.

The use of �completion:chaos� is particularly interesting in the specifica-
tion phase, when refinements are performed to specify the behavior in more
detail but not to adapt it.

Actions

We can use actions to describe the reaction to the receipt of a stimulus in a
certain state by adding them to the state as entry or exit actions or adding
them to the transition as a reaction. UML/P provides two types of actions:
a procedural form allows the use of assignments and control structures; a de-
scriptive action form allows the effect of an action to be characterized without
specifying how this action is actually realized.

Procedural actions are realized with Java and descriptive actions (“ac-
tion conditions”) are specified with OCL. Fig. 3.39 contains an excerpt from
a Statechart for the class Auction. This excerpt shows a transition with a
procedural action and a postcondition.

Fig. 3.39. Transition with a procedural and a descriptive action

On the one hand, we can formulate action conditions as a redundant ad-
dendum to action statements, so that they can be used in tests, for example.
On the other hand, action conditions can supplement the statements. Thus,
we can define part of the behavior procedurally and characterize part of it
descriptively using an OCL constraint.

The combination of entry and exit actions from states and transition actions
depends on the form of the specified transition. Fig. 3.40 shows the transfer
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of procedural actions to the transitions and demonstrates the order in which
entry and exit actions are executed in hierarchical states. Procedural actions
are thus composed sequentially.

Fig. 3.40. Entry and exit actions in hierarchical states

If the actions of a Statechart are specified by OCL action conditions, as
shown in Fig. 3.41, we use the logical conjunction instead of the sequential
composition.

Fig. 3.41. Conditions as entry and exit actions in states

An alternative to the logical composition is explained in Volume 1 and
characterizes a section-by-section validity of the conditions which is neces-
sary, for example, with transition loops.
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Advanced Concepts

State-internal transitions are independent transitions for which the entry or
exit action of the containing state is not executed. Fig. 3.42 illustrates a state-
internal transition.

Fig. 3.42. State-internal transitions

If a state represents a situation of the object in which an activity prevails—
for example, a warning message is flashing—we can describe it with a do
activity. Fig. 3.43 characterizes the interpretation of the activity by using a
timer.

Fig. 3.43. do activity as a time-controlled repetition of an action

The concepts introduced in Fig. 3.42 and 3.43 are explained by transfor-
mation to existing concepts of the Statechart. Volume 1 specifies a transfor-
mation system consisting of 19 rules that reduces Statecharts completely to
flat Mealy automata and therefore simplifies further processing. Statecharts
therefore have a transformation calculus that is suitable for a refinement that
preserves semantics.

3.5 Sequence Diagrams

We use sequence diagrams to model interactions between objects. A se-
quence diagram represents an exemplary excerpt from the interactions oc-
curring in a software system execution. It models the interactions andmethod
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calls that occur in this system run. We can extend the sequence diagram by
adding property descriptions in OCL.

A sequence diagramdescribes the order in which method calls are started
and finished. Similarly to Statecharts, it therefore models behavioral aspects.
However, there are some significant differences:

• A sequence diagram focuses on the interaction between objects. In con-
trast, the inner state of an object is not represented.

• A sequence diagram is always an example. Therefore, in the same way as
for the object diagram, the information represented can occur any number
of times during the execution of a system, multiple times in parallel, or
does not have to occur at all.

• Due to their exemplary nature, sequence diagrams are not suitable for
modeling behavior completely and are used primarily during the require-
ments specification and, as shown in this volume, for modeling test cases.

Fig. 3.44 shows a typical sequence diagram. The main terms that occur in
the sequence diagram are explained briefly in Fig. 3.45.

Fig. 3.44. Sequence diagram for accepting a bid

In a sequence diagram, objects are represented in a row next to one an-
other and have a timeline that points downwards. We simplify UML se-
quence diagrams by assuming that a simultaneous or overlapping sending
of messages does not occur. This simplification is motivated from the use of
sequence diagrams for test purposes, where concurrency is explicitly con-
trolled in order to obtain deterministic test results. This simplifies the mod-
eling with sequence diagrams significantly but under some circumstances,
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Object: In a sequence diagram, an object has the same meaning as in an object di-
agram (see Fig. 3.21) but is represented only with the name and type. Multiple
objects of the same type are allowed. Name or type are optional.

Timeline: In a sequence diagram, chronologically sequential events are represented
from the top to the bottom. Each object has a timeline that represents the pro-
gression of time for this object. The time is not true to scale and also does not
have to be identical in all objects. Thus, the timeline is used only to represent
chronological sequences of interactions.

Interaction: An interaction between two objects can be triggered by one of multi-
ple forms of stimuli. These include: method calls, returns, exceptions, and asyn-
chronous messages. In a sequence diagram, specifying the parameters of inter-
actions is optional.

Activity bar: To allow a method call to be processed, an object is active for a cer-
tain time. The activity bar is used to represent this activity. For a recursion, the
activity bar can also occur nested.

Constraint: OCL constraints can be used for a detailed description of properties
holding within a system execution.

Fig. 3.45. Terminology definitions for sequence diagrams

certain situations that can occur in an implementation cannot be represented
with sequence diagrams.

The types of interaction possible are shown in Fig. 3.46. Each interaction,
with the exception of the recursive call, is represented by a horizontal arrow.
This arrow symbolizes that the respective time consumed is disregarded.
Method calls, returns, or exceptions are specified on the arrows optionally
with arguments in Java.

Fig. 3.46. Forms of interaction in a sequence diagram

If a method is static, it is underscored, like in the class diagram. In this
case, the arrow ends at a class which is thus used analog to an object.

If an object is created during the interaction, this is represented by the
timeline of the object beginning later. Fig. 3.47 contains two typical forms of
object instantiation.
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Fig. 3.47. Creation of a new object

As Fig. 3.44 shows, in a sequence diagram, we can specify additional con-
ditions valid at specific times of the execution. In these OCL constraints, the
objects and values that appear in a sequence diagram are constrained. To do
this, we can access named objects as well as variables used as arguments in
method calls.

An OCL constraint can describe the objects and parameters that occur
and the effect of a message on an object more precisely, whereby the context
of the constraint (i.e. the usable variables) results from the sequence diagram.
Access to attributes is also possible through the qualification with the object.
However, if an OCL expression is exclusively attached to one timeline, it
belongs to this object and the attributes of this object can be accessed directly.

An OCL constraint has to be valid immediately after the last occurring
interaction or the last occurring activity bar. This means that the OCL con-
straint only has to be adhered to immediately after this interaction. If an ear-
lier value of an attribute is to be accessed in the constraint, this must be stored
explicitly in an auxiliary variable. As Fig. 3.48 shows, we use a let construct
based onOCL here, introducing new variables that are only accessible within
the sequence diagram.

Fig. 3.48. Auxiliary variables store values
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Semantics of a Sequence Diagram

We have already stated that sequence diagrams are exemplary in nature. To
use sequence diagramsmethodically, we have to differentiate betweenmulti-
ple forms of exemplariness. Analog to the object diagram, the exemplariness
of a sequence diagram is based on the description of a set of objects that can
occur in a system in this form in any frequency or even not at all. Moreover,
the sequence of interactions is highly exemplary, as it can itself appear in this
form any number of times consecutively or nested, or not appear at all.

In addition to these forms of exemplariness, a sequence diagram repre-
sents an abstraction of a sequence as it cannot contain all objects of a system
or all interactions that occur. Some interactions can also be missing from a
sequence diagram.

If a method call in a system takes place multiple times during the obser-
vation period, this also produces an ambiguous situation regarding which
actualmethod call corresponds to the interaction represented in the diagram.

However, we can define the form of observation more precisely using
suitable stereotypes. For objects in the sequence diagram, the representation
indicator “ c©” shows the completeness of the interactions depicted. The alter-
native representation indicator “. . . ” for incompleteness applies per default.

For an object that is observed completely in this sense, this inevitably
implies that for each call, we have to specify a suitable return. In doing so,
we have to specify all objects that interact directly with the object being ob-
served. This can lead to significantly more detailed diagrams than actually
desired. Therefore, Volume 1 introduces further stereotypes that allow re-
laxed variants of the definition of semantics.

For example, the stereotype �match:visible� is suitable for defining se-
quence diagrams for tests: �match:visible� prohibits the omission of inter-
actions with other objects specified in the sequence diagram but does allow
us to omit interactions with objects not specified in the diagram. The obser-
vation of this object is therefore complete with respects to all objects visible
in the diagram.
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Principles of Code Generation

Words enough have been exchanged,
let me at last see some action.

Faust, Johann Wolfgang von Goethe

Code generation is a significant success factor for the use of models in the
software development process. We can generate code efficiently for the prod-
uct system or test drivers frommanymodels, thus improving the consistency
between the model and its implementation as well as saving resources. This
chapter describes basic concepts, techniques, and problems of code genera-
tion. It also outlines a form of representation for rules for code generation
using transformation rules.
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The ability to generate executable code from a model offers interesting per-
spectives for software development and, to some extent, is even an essential
prerequisite for some the following goals:

• Increasing the efficiency of the developers [SVEH07]
• Separating application modeling and technical code, which simplifies

maintenance and evolution of the functionality as well as porting the
functionality to new hardware and new versions of operating systems
[SD00]

• Rapid prototyping using models that allow a more compact description
of the system than it would be possible with a general purpose program-
ming language such as Java

• Fast feedback via demonstrations and test runs
• Generating automated tests, which is a significant aspect of quality ma-

nagement

One of the strengths of code generation is that it allows us to create fre-
quently recurring similar code fragments (or “aspects”, [LOO01, KLM+97])
quickly. With regard to integrating technical aspects, such as the GUI, per-
sistence, or communication between distributed system parts, these aspects
often have identical structures and we can easily derive them from abstract
models. This drastically reduces the size and complexity of artifacts that we
have to createmanually. In turn, this reduces the number of programming er-
rors, the generated code has an even better conformity to coding standards1,
and we can create the system more quickly and adapt it more flexibly based
on models.

Problems with Current Tools

At present generating executable code from a model is justifiably one of the
main challenges faced by the vendors and developers of modeling tools.
This holds not only for UML-based tools, but also for tools for similar lan-
guages, such as Autofocus [HSSS96, Sch04], SDL (used in telecommunica-
tions) [IT07b, IT07a], or the Statecharts implemented in Statemate and Rhap-
sody [HN96]. Due to the various ongoing work, we can assume that the sit-
uation for code generation will continue to improve in the coming years.

Many of the tools that exist today already allow us to generate code or
code frames from parts of UML2. However, there are also a number of fun-
damental problems that require design improvements.

1. Generating code fragments from class diagrams is now state of the art.
In this process, fragments are generated for the classes. As a minimum,
these fragments contain attribute definitions and access functions. The

1 This is important, for example, for system certification.
2 An overview of generators can be found at umltools.net
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bodies of generated methods have to be entered manually. Because de-
tailed models in a project are usually subject to a high rate of change,
the code bodies inserted into the generated code manually have to be
updated after each generation or otherwise they are lost. “Roundtrip en-
gineering” [SK04] is therefore used as a workaround.

2. Roundtrip engineering allows the mutual transformation of code into
class diagrams and vice versa. It is important to ensure that both views
can be changedmanuallywithout changes in the other view being lost. In
particular, method bodies are retained in the code view even when they
are not visible in the class diagram. However, if the goal is to achieve a
most compact form of representation of the system, then this is a dead
end. Then an integrated, redundancy free presentation of graphical class
diagrams and textual code bodies is more useful. The first main obstacle
here is the fact that developers do not currently have enough confidence
in the generated code, which means that manual intervention is still de-
sired. It has also been not satisfactorily clarified, how and where code
bodies should be stored to allow developers to process them efficiently.
However, a similar situation occurredwith the first compilers. Assembler
source code was generated, which, in theory, should allow developers to
adapt the code manually. We can assume that with the increasing matu-
rity of the technology for code generation, the less important the level of
readable source code will become and we will be able to create bytecode
directly. It will then also no longer be necessary for generated code to
satisfy coding guidelines and to be easily readable.

3. If, as in roundtrip engineering, code bodies are inserted directly in the
generated code, in these code bodies, it will become increasingly diffi-
cult to abstract from the concrete realization of attributes, associations,
etc. Instead, the developer will have to know the form of implementa-
tion of these elements and the resulting access functions. However, if the
code bodies are also generated (rather than being inserted), then attribute
accesses can be replaced by corresponding get and setmethods, for ex-
ample. In that case, the instrumentation of the code for tests will also be
easier.

4. Unfortunately, the documented or underlying semantics (in the sense of
meaning, [HR04]) for the analysis and refactoring techniques on models
and the behavior arising from the code generation do not always match.
This is a general problem which requires that code generation, analyses,
refactoring techniques, and the documented semantics should be defined
very carefully otherwise a refactoring that is correct in terms of the de-
fined semantics may still modify the system behavior.

5. Simple tools often generate a rigid and closed form of code without ad-
dressing the specific needs of the project. A parameterization of the code
generation is desirable and also necessary at many points in the code in
order, for example, to integrate platform-specific adaptations, allow the
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use of frameworks and storage and communication techniques, or to en-
able optimization of the transformation of model elements.
There are many diverse possible forms of code generation andwe cannot
anticipate them directly. Therefore, on the one hand, we need a flexible
template or script language potentially assisted by a wizard, and on the
other hand, we must ensure that we do not loose the “essential seman-
tics” of the diagrams as a result of the technology-specific code genera-
tion.

This chapter discusses basic concepts for code generation, with explana-
tions based on the UML/P notation. For a more detailed study of genera-
tion techniques, see [CE00]. Section 4.1 examines concepts of code genera-
tors which also cover the use of UML for modeling test cases as discussed
in Chapter 7. Section 4.2 discusses requirements such as flexibility, platform-
independence, and the ability to control a code generator. Section 4.3 exam-
ines the relationship between code generators and the definition of the se-
mantics of the language. Section 4.4 describes the possible forms of a flexible
code generator. A generator for UML/P that can be adapted flexibly is avail-
able with [Sch12].

4.1 Concepts of Code Generation

In anticipation of the conceptual basics discussed below, Fig. 4.1 introduces
and defines the main terminology for code generation.

Using a code generator has advantages compared to conventional pro-
gramming. The modeling or programming language used becomes more un-
derstandable due to the fact that graphical elements make the language more
compact and/or clearer. The efficiency of the software development is also in-
creased. The fact that less code has to be written, checked, and tested man-
ually means that developers can become more efficient. Additional aspects,
such as the better reusability of abstract models from a model library increase
the efficiency of the developers even further. This reduces the overall effort
and workload necessary for a software development. As a consequence, less
project organization is necessary, which also allows further increases in effi-
ciency.

Reusability is possible at multiple levels. We can reuse a model in an
adapted form in a similar project or product line [BKPS04]. Ideally, repeated
improvement gives rise to a model framework that we can reuse directly for
similar projects and that even has a code generator specially suited to the
purpose. The technical knowledge embedded in the code generator regard-
ing, for example, the creation of interfaces or safe and efficient transfer mech-
anisms, can be reused independently of the model or model framework. We
can also reuse models within a project. For example, we can use an object
diagram both as a predicate and constructively to create an object structure.
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Constructive model: A specification of the system that is used for code generation
with the help of an automatic generator. Modifying a constructive model mod-
ifies the product directly. The modeling language is also seen as a high-level
programming language, as it can generally be executed.

Descriptive model: A specification which is used to describe the system without
actually being used constructively in the implementation of the system. The de-
scriptions are typically abstract and incomplete. These models are used as re-
quirements for manual implementation or are only produced as documentation
after the system has been developed.

Test model: A specification which is suitable for deriving tests manually or auto-
matically. The test model is compiled into executable code which is used to set
up test data records, as a test driver, or as an expected test result.

Constructive test model: A test model that is transformed into executable tests by
the code generator. In contrast, descriptive test models are transformed into tests
manually.

Code generation: The activity of generating code from constructive models.
Code generator: A program that transforms a constructive model of a higher level

programming language into an implementation (according to [CE00]). The gen-
erated code can be part of the product system or the test code.

Script: Contains the constructive control for the code generation. Scripts parameter-
ize the code generator and thus allow platform-specific and task-specific code
generation.

Template: A special form of a script. It describes code patterns in which specific
elements of the model are inserted during code generation. Typically, a macro
replacement mechanism is used.

Fig. 4.1. Terminology definitions for code generation

We can also use both forms in the product system and when defining test
cases. As discussed in Section 5.2, the code generated here is very diverse
and creating it manually therefore involves a lot more effort.

Some code generators today can also createmore efficient code than would
be possible with an acceptable effort throughmanual optimization. Of course,
this applies in particular to mature compilers of normal programming lan-
guages, which use a number of optimization techniques. For executable
modeling languages such as UML/P, we must assume that the increase in
the efficiency of the developers is currently at the cost of a less efficient im-
plementation. Accordingly, the generators for modeling languages are more
useful for individual software and not so much for embedded system soft-
ware operated en masse in devices that are as cost-effective as possible.

Ultimately, the flexible generation of code from specialist models allows
us to handle technical and, to some extent, specialist variabilities in the sense
of [HP02]. Open technical aspects of the functional model are filled out ap-
propriately by a generator that is adapted to the respective specific technol-
ogy.



76 4 Principles of Code Generation

4.1.1 Constructive Interpretation of Models

As already described in Volume 1, in essence, a model is a reduced or ab-
stracted representation of the original system in terms of scale, level of detail,
or functionality [Sta73]. We normally use models where the actual system is
so complex that it helps to analyze certain properties of the system using
the model first or to explain them to the customer using the model. This ap-
plies to architectural models of buildings as well as technical models of com-
plex machines or models of social and economic relationships. Somemodels,
such as construction plans or wiring diagrams, focus on describing the struc-
ture (architecture); for other models, being able to simulate functionality and
other behavior-oriented properties is more important.3

In general, however, these models and construction drawings are aids
that help us to subsequently create the respective artifact. If the model is
created for the purpose of subsequently creating the actual artifact, it has a
prescriptive effect. In contrast, a model is used descriptively if the original ex-
ists before the model. Examples of this are a model railway or photographs
[Lud02].

As software is intangible, models in software development exhibit a con-
structive effect as well as a descriptive effect. If all we need to do to gener-
ate executable software from an intangible model stored in a computer is to
press a button, then the model acts as a constructive specification. Due to the
automated transformation, the source code of a programming language can
be seen as equivalent to the object code created. Strictly speaking, the source
code and object code are also models of the system. However, for practical
concerns, they are identified with the system itself for the sake of simplicity,
and justifiably so. We can also assumpe this for executable UML/P models.

Using models constructively has some effects that do not occur other-
wise. For example, adding or omitting elements of the model changes the
systemmodeled immediately. One example is the use of multiple Statecharts
to model the behavior of a class at different levels of abstraction. A generator
that can do this simulates these different levels in parallel and thus realizes a
multidimensional state concept4 for a class.5 If a further Statechart is added
as a model, and this Statechart only represents existing information in a more
abstract form, the state concept is inflated even further. This may not change
the overall functional behavior but it does change the internal structure and
the timing behavior of the system.

Thus, we use models in various roles in software development, including
the automatic generation of product code and tests. We can also transform

3 For amore detailed discussion of the concept of themodel, see, for example, [Sta73]
or [Lud02].

4 Usually cross-products.
5 The assumption in this case is that tools are not automatically capable of recogniz-
ing that one Statechart is an abstraction of another.



4.1 Concepts of Code Generation 77

a model manually as well as create models once the artifact exists. Fig. 4.2
characterizes the three dimensions for differentiating the use of models.

Fig. 4.2. Variants of the use of models

Strictly speaking, it is possible to create a constructively used model after
the artifact and this is useful, for example, in reverse engineering. However,
in this case, the model is used not to create the existing original, but rather
for the next version.

The difference between the constructive and descriptive interpretation
of models is related to a similar phenomenon that was discussed in detail
in the domain of algebraic specifications. We should give a model used de-
scriptively a loose semantics [BFG+93], thus allowing to describe various im-
plementations that satisfy the model. Many of these implementations con-
tain, for example, further parts of the state, functionality, or interfaces that
are not mentioned explicitly in this incomplete model. A class diagram thus
describes an excerpt of a system that can have further, undisclosed classes.
A descriptive model can therefore be incomplete. For example, Volume 1
[Rum16] described loose semantics for sequence diagrams.

In contrast, a model used constructively represents a complete descrip-
tion of the software system, because the entire executable system can be gen-



78 4 Principles of Code Generation

erated from the model alone. For algebraic specifications, this corresponds to
initial semantics, where a model has exactly one implementation.6,7

4.1.2 Tests versus Implementation

UML/P allows us to create models suitable for generating both tests and the
product system. These models include object diagrams which, as discussed
in Section 4.4, Volume 1, are used (1) constructively as preconditions to estab-
lish the initial situation for a test, and (2) descriptively as postconditions to
specifywhich situation has to be satisfied after the application of the function
for the test result to be considered successful.

Certain parts of a model can be used to generate only test code but not
constructive code. For example, OCL constraints are generally executable. As
described in Section 3.3.10, Volume 1, this generally also applies for the use of
quantifiers: with the exception of quantifiers over primitive data types such
as int and set-valued or list-valued types of a higher grade, all quantifiers
are finite and can therefore be evaluated.

Nevertheless, there is a significant difference betweenwhether a postcon-
dition formulated in OCL can only be tested or whether it can be enforced
constructively. Almost all OCL constraints that are interesting from a practi-
cal perspective belong to the first category. Indeed, the category of construc-
tive OCL constraints is significantly smaller. This is demonstrated by the two
examples below.

Sorting

The task of the method sort is to sort an array of numbers (int). A descrip-
tion of this task in the form of a precondition/postcondition that is often
found is the following:

OCLcontext int[] sort(int a[])
pre: true
post: forall int i in {1..result.length-1}:

result[i-1] <= result[i]

This specification can be tested very easily and in linear time. However,
it is not suitable as a constructive description, because a generator cannot
use it to generate a sorting algorithm. Furthermore, it is incomplete with re-
gard to important properties as it does not ensure that the initial elements
of the array a[] have to reappear in the results array result[]. In fact, an
implementation in the form result=new int[0]would also be correct.
6 In the theory of algebraic specifications, models are referred to as “specifications”
and elements of the semantic domain or implementations are referred to as “mod-
els”.

7 A specifications can only have an initial semantics, when the specifications obeys
certain constraints. See also [EM85].
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It is possible to describe a sorting algorithm constructively in principle
but this is just as complex as a direct implementation. The significant advan-
tage of descriptive descriptions comes to the fore in particular for complex
algorithms, as they do not anticipate any specific form of implementation.
Specifications are therefore much easier to understand, in particular com-
pared to optimized implementations.

Equations as Assignments

The only task of a setmethod is to set the potentially encapsulated attribute:

OCLcontext void setAttr(Type val)
pre: true
post: attr==val

This specification is suitable both for tests of themethod setAttr and for
a constructive transformation into an implementation. If, namely, we replace
the equality operator ==with the Java assignment operator =, we can use the
postcondition as the implementation. However, this implementation is only
really correct if there are no further invariants that necessitate an additional
modification of other attributes.

Unfortunately, postconditions can only be transformed constructively un-
der certain, very narrowly defined usage conditions. Typically, a postcon-
dition may only consist of a conjunction of assignments to local variables
and later assignments must not invalidate earlier assignments. For example,
val==attr is equivalent to the above postcondition but cannot be trans-
formed directly into code in this form.8 The following condition is also un-
suitable for code generation as it contains cyclical dependencies:

OCLcontext void method(Type val)
pre: true
post: a==b+1 && b==2*a-val

Transforming this condition constructively requires that the linear set of
equations is solved, with the result being the following constructive formu-
lation:

OCLcontext void method(Type val)
pre: true
post: a==val-1 && b==val-2

There are a number of sophisticated techniques for interpreting condi-
tions that were developed for various high-level languages constructively. Of
these, the Horn clause logic from Prolog [Llo87], the evaluation of algebraic
specifications formulated in the logic of equations [EM85], and the addition

8 Strictly speaking, val=attr may be permitted in Java but then has a different
effect to that desired.
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of conditionals to these specifications are worthy of particular mention. For
example, the following specification can also be transformed constructively:

OCLcontext int abs(int val)
pre: true
post: if (val>=0) then result==val else result==-val

Types of Generation

As the UML/P notations are used for modeling exemplary and complete
structures and behavior, they are suitable for different forms of generating
code. Fig. 4.3 shows the types of diagrams used for system and test genera-
tion. However, not all concepts of UML/P documents are suitable for code
generation. UML/P allows the abstraction of details in principle—for exam-
ple, via the omission of type information for attributes or via underspecifica-
tion for methods and transitions—which means that the ability to generate
code and tests from a UML/P artifact depends, amongst other things, on the
completeness of the artifact. Intelligent generation algorithms can of course
also use incomplete artifacts to generate code. They do so by filling out open
aspects with defaults or guessing them intelligently. Thus, for example, a
standard error behavior can be added to an incomplete Statechart and, for
attributes for which there is no type information, generators can attempt to
use type inference to compute the required type at the points where the at-
tribute is used.

Fig. 4.3. Generation of code and tests from UML/P

Depending on the intended purpose of the generated code, we can use
instrumentation to add additional test code to this generated product code.
For test purposes, therefore, we can integrate inspection methods, interactive
stop points, functions for accessing private attributes, or a check of invariants
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in product code even though these are omitted when we generate the prod-
uct code for use as a finished product. This form of instrumentation would be
problematic if the optional code contains side effects that change the behav-
ior of the instrumented product code. It is important, therefore, that this type
of instrumentation is performed not manually but by code generators so that
side effects that modify behavior can be excluded. In concurrent systems, the
modification in the time behavior that arises as a result of the instrumenta-
tion must be examined in more detail.

4.1.3 Tests and Implementation from the SameModel

Models can be used on the one hand to generate tests, and on the other hand
to generate constructive code. However, generating both types of code from
the same model cannot create any additional confidence in the accuracy of
the resulting system: if we generate incorrect implementation code from an
incorrect model and also use the model to derive the tests for this implemen-
tation, the tests are equally incorrect. This is demonstrated by the following
simple example intended to compute the absolute value of a number:

OCLcontext int abs(int val)
pre: true
post: result==-val

The code generation can therefore create the following Java code:

Javaint abs(int val) {
return -val;

}
A typical collection of tests requiresmultiple input values for testing. Col-

lections of numbers in the form −n,−2,−1, 0, 1, 2, n for some large n have
proven to be good standard values for the data type int.9 Normally, these
representatives and limit values are specified by the developer. The expected
results do not have to be computed separately as the postcondition provides
an opportunity for checking whether the result is correct. It would be possi-
ble to generate the following test code for our example:

Java/Pint val[] = new int[] {-1234567,-2,-1,0,1,2,3675675};
for(int i = 0; i<val.length; i++) {

int result = abs(val);
ocl result==-val;

}
Since the test code would be just as incorrect as the implementation, the

error would not be recognized. In this type of situation, it is not the imple-
mented code that is tested; rather, the test determines only whether the code
9 The selection of the numbers is based on a simple classification for the values int
and the use of individual representatives and limit values from the classes formed.
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generator is working correctly. If an error were reported in this situation, it
would only indicate an inconsistency between the generated code and the
(also generated) test driver. This technique is interesting mainly when the
parameterization of the generator shall be tested.

A consequence of this observation is that we have to model the construc-
tive model used for code generation separately to the test model. However,
we can represent fragments of the test model and the constructive model in
the same diagrams. Nevertheless, there must be a clear distinction between
the concepts used for different purposes. For example, Statecharts are used
often constructively, but the state invariants can be used in the Statecharts
for checking in tests.

4.2 Code Generation Techniques

4.2.1 Platform-Dependent Code Generation

Although the fact that UML/P has been defined based on the programming
language Java means that a significant design decision has already been
taken, the form of the code generated is not fixed. There are multiple dimen-
sions of variations that have to be taken into account for code generation,
including the platform dependency discussed here, which is particularly im-
portant for embedded systems or the cloud.

Depending on the target platform, different mechanisms are available—
for example, for handling communication in a distributed system with the
controlled systems, neighboring systems, the cloud, or users, as well as for
storage and troubleshooting, or ensuring security, data authenticity, and data
integrity.

These mechanisms can be dependent on the hardware in which the soft-
ware is embedded or may have to be adapted to the available class libraries
or APIs. The pieces of code to be inserted into generated code cannot be pre-
dicted by the code generator because new platforms, new control devices,
or new versions of class libraries can lead to constant and fast changes, for
example. It is therefore essential that the code generation can be adapted
flexibly to the respective usage conditions. There are two main approaches
here:

• Generation of abstract interfaces, as illustrated in Fig. 4.4
• Parameterization of the code generation, as illustrated in Fig. 4.5

With regard to separating platform-specific and hardware-independent
code, the creation of an abstract interface and thus separating the layers is
an ideal approach that improves the portability of software. Many of the
Java APIs have been defined precisely for this purpose and have become
the standard. [SD00] examines this strict separation of code into application
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Fig. 4.4. Generation of code for an abstract interface

Fig. 4.5. Parameterized code generation

code (“A-code”) and platform-specific, technical code (“T-code”) in more de-
tail and identifies necessary mixed forms. One of the results of these inves-
tigations backed up by practice is that a standardized “T-architecture”—that
is, the technical code for saving, display, error processing, and similar stan-
dardizable technical functionalities—has a high potential for reuse. In code
generation, we can exploit this potential by flexibly combining T-architecture
parts with application (A) models provided by the developer.

As always the strict separation of the two code types can lead to ineffi-
ciencies when we introduce layers and adapters. For example, our auction
system is based on the asynchronous communication of messages. How-
ever, if the abstract interface provides only an RPC mechanism, the buffer-
ing of the messages (amongst other things) must also be coded. At the low-
est level, however, communication is again asynchronous via the Internet,
where buffer mechanisms are already integrated. We can increase efficiency
significantly, for example, by giving up the conceptual layer formation and
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by “interweaving” higher and lower layers.10 Alternatively, we can create
the abstract interface with a broad scope and in the example, offer both syn-
chronous RPC and asynchronous communication. However, this leads to sig-
nificantly increased efforts for the realization and evolution and pays off only
if the interface is reused often enough in other projects.

If we also assume that the generation of the target code is correct and
waivemanual postprocessing or inspection, adherence to architectural guide-
lines such as layer formation in the generated code is not very relevant.
Instead, during generation, we can focus more on efficiency and, similarly
to optimization techniques for the compiler, we can interweave platform-
independent and platform-specific code. According to [SD00], this gives rise
to an AT-code that is very difficult to maintain; it contains both application
knowledge and technical knowledge. This is another reason why it is es-
sential that only the initial models, separated by A and T aspects, and the
generator scripts are changed manually, but not the generated code.

In practice, we can assume that a mixed formmade up of both generation
mechanisms will lead to the best results. Furthermore, a system will have a
further component that provides a runtime environment for certain function-
alities that cannot be mapped into either Java class libraries or Java language
concepts. These additional components include extended functionality for
handling the sets and lists available in OCL and for processing state models
stored explicitly in the code. Fig. 4.6 therefore shows the principle structure
of a code generator.

Fig. 4.6. Structure of a code generator

10 These layers actually also arise here, but the layer architecture is developed not
horizontally (i.e., layer for layer) but vertically, meaning that we can take the needs
of higher layers into account directlywhen designing the lower layers. Developers,
e.g., can change from RPC to the asynchronous form of communication efficiently
with refactoring techniques [Fow99].
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The term “UML virtual machine”, defined in [BBWL01] and [RFBLO01]
for example, corresponds to the right-hand part of Fig. 4.6, which consists
of the UML runtime system and a platform-specific implementation of the
defined interfaces. Based on the “Java virtual machine” (the interpreter of
the Java bytecode), the code generator corresponds to the Java compiler. The
“UML virtual machine” represents a type of operational semantics of the
executable part of UML/P.

4.2.2 Functionality and Flexibility

We can use the parameterization of a code generator discussed in the last sec-
tion not only for adaptation to platform-specific features, but also for adding
additional functionality to the generated code. In principle, there is a lot
of flexibility possible. This is discussed below using the simple and widely
known example of code generation for attributes in the class diagram.

An attribute defined in a class of the class diagram has the “natural”
transformation as an attribute in the generated Java code that is demon-
strated in Fig. 4.7. With the exception of the tags for derived and read-only
attributes (/ and readonly), all tags, types, and initial assignments to the
attribute can be transformed directly. However, this direct transformation
bears some disadvantages, such as the broken encapsulation and unsynchro-
nized access by other objects.

Fig. 4.7. Direct transformation of attributes

It is therefore not common practice today to transform attributes from
analysis and design models directly into attributes of the implementation.
Instead, it is usual to provide an infrastructure in the form of get and set
methods. Fig. 4.8 shows the resulting code structure. Here, the attribute name
is often preceded by a suitable prefix, (for example, the underscore “_”). The
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use of access functions increases the flexibility. It allows, for example, the po-
tentially necessary synchronization of threads or the realization of the access
right readonly through two get/setmethods with different visibilities.

Fig. 4.8. Transformation of attributes using access functions

The transformations illustrated in Fig. 4.7 and 4.8 are today relatively
widespread but are by no means the only ones. There are further variants
which allow, for example, persistent attributes, storage of attributes in Enter-
prise JavaBeans [BR11], the propagation of attribute changes, and so on. To
enable the various and generally unpredictable variants of code generation
flexibly, however, we generally have to parameterize the transformation of
concepts of UML/P heavily and allow additional functionality to be added
on a technology-specific basis.

To a certain extent, we can identify “APIs”11, which each have to be trans-
formed, for the UML/P concepts. For example, for the concept “attribute” of
the class diagrams, we can identify the following API at least:

• Setting of an attribute
• Reading an attribute
• Initialization of an attribute with a default value

We can define extensions of this API for the following:

• Serialization
11 API in the sense of an abstract programming interface.
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• Loading from and storing into a database
• Screen output and reading in from a screen

We can also define extensions of the API for type-specific functionalities.
These include, for example, incrementing number values, appending strings
(analog to the Java operator +=), or handling individual elements in con-
tainer structures.

The desired flexibility for the code generation arises, therefore, not only in
the form of the transformation of UML/P concepts, but also in the function-
ality offered by the generated code. The functionality offered not only has to
be generated but must also be available in a form that allows developers to
access it in other places. There are two general approaches:

1. The functionality of the generated API is disclosed, for example, in that
the name and signatures of the respectively usable functions can be de-
rived uniquely from the name and the type of an attribute.
For example, if the attribute title is defined in the class diagram, it can
be accessed in Java with getTitle() and setTitle(...).

2. The model API itself is disclosed but the transformation remains hidden.
The manually written Java code therefore uses the API directly and also
has to be transformed during the code generation.
In the example, the attribute title is then also used in the Java code.
Depending on the form of use (read or write), during the code generation
this is replaced with a get or set method.

While the first approach leads to more simple code generators and re-
quires no handling of the Java code, the second approach offers more flexi-
bility and coding security. Hiding the actual implementation allows us to re-
place it or supplement it relatively easily. Furthermore, the use of the API is
more abstract and results in more compact code. In this approach, however,
code parts formulated directly in Java also have to be transformed during
the code generation.

Already the relatively simple example for realizing attributes shows some
of the many effects that may occur. Therefore, Section 4.4 below first de-
scribes a readable form of the representation of code generations and demon-
strates their applicability based on the transformation of attributes.

In some circumstances, the forms of code generation available for trans-
forming UML/P concepts into the implementation have an impact on the
semantics of the concepts. This is dangerous but is also an opportunity for
UML users to use semantic variations—often referred to as “variation points”—
to integrate project-specific or additional functionalities and capabilities. It is
not possible to describe these variations precisely within UML: on the one
hand because UML itself does not provide elaborated mechanisms for defin-
ing the semantics of the variations; and on the other hand because these vari-
ations are not valid generally but are instead dependent on potential target
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platforms and desired functionalities.12 In practice, therefore, the only option
is to specify individual forms of code generation and the thus intended se-
mantic interpretation in a constructive form. An extensive description of the
number of possible variants across the entire spectrum does not appear to be
possible. In [Grö10], feature diagramswere used to define variation points in
languages and, for example, were applied to multiple diagrams in [GRR10]
and [GR10].

The separation of the functionality and the platform-dependent code
parts has already been discussed in depth in the field of aspect-oriented pro-
gramming (AOP) [KLM+97, LOO01] and the closely related generative pro-
gramming [CE00]. These types of programming include techniques that al-
low a further separation of independent program aspects. Special techniques
(“weaving”) allow us to combine code parts that are initially formulated in-
dependently of one another and usually connected only via an abstract pro-
gramming interface. This approach is also used in a restricted form for the
code generation discussed here.

We can also use a generative approach to realize the composition of
classes from features discussed in [Pre97], [Pre00], and [KPR97]. Here, we can
use suitable stereotypes and tags to determine which class receives which
(additional) features as part of the generation.

4.2.3 Controlling the Code Generation

In order to fully make use of flexibility in the code generation, we must be
able to control the transformation appropriately. Therefore, it is often is nec-
essary, to realize different instances of the same concept differently within
one project. The options for transforming attributes (discussed many times
already in this book) can be dependent on the following, for example:

• The class that contains the attribute—because this class can have tasks
such as data storage or application control or can act as an interface to
other system parts and must therefore be synchronized

• The task of the attribute within the class—because, for example, the class
is persistent but the attribute can be computed or contains only tempo-
rary data

• The type of the attribute—because this exists in UML/P, for example, but
not in Java

We can supplement these static dependencies, defined at the time of the
code generation, with dynamic dependencies if, for example, we use a flag
to define whether an object should be persistent. Project-specific cases such

12 At best, we can indicate a special meaning of a construct using stereotypes. In
UML, it is not possible to define the stereotype and the intended semantics pre-
cisely. Instead, we can use an informal description, as presented in Section 2.17,
Volume 1.
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as these should typically no longer be realized by a predefined definition
of semantics but rather through a self-defined piece of code that is added
systematically by the code generator parameterized with templates.

We can generally control the form of implementation of any UML/P con-
cept with stereotypes and tags. In practice, however, this is not sufficient. It
is more practical to label UML diagrams with stereotypes, optionally sup-
plemented with additional parameter values and use additional templates or
scripts that are executed by the code generator and that parameterize the gen-
erator very flexibly, as illustrated in Fig. 4.6 for the transformation.

4.3 Semantics of Code Generation

In principle, code generation is the transformation of a model from one lan-
guage into another language. A definition of semantics is also essentially a
mapping of a language that is considered as unknown (here UML/P) into
a target language considered to be known and understood. Furthermore, if
the target language is formal and the mapping is formulated precisely, this
is referred to as formal semantics. In this sense, a mapping of UML/P to the
programming language Java implemented via a program can itself be un-
derstood as formal semantics [HR04]. However, there are several points that
have to be taken into account in this argumentation:

1. To understand a complex language such as UML/P, it is helpful to have
more than one explanation of the meaning (semantics). Using multiple
approaches to define the semantics of a language allows different prob-
lems to be recognized and thus integrated in the language definition itself
and when this definition is used (analysis, tests, refactoring).

2. In most cases, the generated code is not particularly easy to read, as
it generally contains a multitude of technology-specific or framework-
specific details that do not contribute to the actual semantics of the
model. It is not generally acceptable when developers have to inspect
the generated code to understand the meaning of a modeling language.
However, there are a number of language descriptions that are based on
discussing the principle of code generation in general terms. They appeal
to a wide audience as today, programming languages such as Java are the
most widespread “formal languages.”

3. During the transformation into executable code, certain aspects of a lan-
guage cannot be transformed or can only be transformed with a lot of
effort. These aspects especially include concepts that allow underspeci-
fication and are integrated in UML/P at multiple points. For example,
initializing values for attributes can be missing or multiple alternative
transitions can be enabled in the Statechart simultaneously. For code gen-
eration, the resulting nondeterminism is usually replaced by the selec-
tion of a transition with a higher priority (see Section 5.4.4, Volume 1).
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The system described by the generated code is therefore not generally
identical to the initial model and instead represents one of multiple pos-
sible specializations. Because a programming language is executable per
se, the mapping of underspecification and thus a complete definition of
the semantics of UML/P according to Java, for example, is generally not
possible.

4. UML/P is designed to a certain extent for executability, but also allows
to use nonexecutable concepts at many occasions. As alreadymentioned,
model information can be omitted. It is, for example, also possible to
specify conditions with infinite quantifiers. Automatic transformation of
OCL postconditions like discussed below to executable Java also belongs
to this group of problems. Therefore, a complete mapping of UML/P to
Java is not possible.

As an alternative to very implicit definitions of semantics, we can use
techniques of the formal methods to define formal semantics for the source
language independently of any form of code generation. These types of def-
initions of semantics are typically mappings that transform a UML model
into a suitable target language. They use mathematically formal calculuses
as target languages and the mappings are defined compactly so that they are
more easily accessible for an analysis.13 As argued in [HR00] and [Rum98],
the existence of two mappings for a source language can be used to increase
the confidence in the correctness of both mappings and thus in the code gen-
eration in particular.

If the code generation in the form proposed here is parameterized by
scripts that influence the behavior and structure of the generated code, we
can integrate this into a formal definition of semantics in two ways. Fig. 4.9
formalizes a variant for a definition of semantics in which the mapping of
the semantics is independent of the script used.

The formalization represented in Fig. 4.9 uses a set-valued semantic map-
ping on a system model [BCGR09b] to thus represent the variability of the
parameterized code generator. Such a formalization is heavily dependent on
the observed aspects of a language and its models. If, for example, only the
externally visible behavior is formalized, we have freedom in terms of the
transformation of attributes, associations, and other structure elements. For
such a big language as UML, it is actually not practical to fully formalize it
even though there is a remarkably complete but not overly elegant formal-
ization in [Öve00]. Instead, it makes sense to highlight individual, critical
aspects more precisely and thus give feedback into the standardization pro-
cess. The principle advantages and problems of a standardization have been
discussed in a number of publications [BHH+97, FELR98b, FELR98a].

13 A different form, for example, an axiomatic definition of semantics for UML or
individual parts, can be found in [EHHS00] and [EH00b] and is based on a trans-
formational approach that is based on graph grammars.
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The following definitions are required to formalize language and code generation:

• The source language (UML/P) as a setUML of syntactically well-formed expres-
sions

• A suitable formal target language Z

• The script language of the code generator with the vocabulary S

• The set J of all Java programs

A code generator is a (sometimes partial) algorithmic mapping Gen : UML → J .
In contrast, formal semantics is a mapping Sem : UML → P(Z). This maps a single,
typically underspecified and abstract model from the source language to the set of
all possible implementations. This mapping represents a form of loose semantics.
For a comparison of both mappings Sem and Gen, we need a form of semantics for
Java programs such as SemJava : J → Z. For each UML document u ∈ UML for
which code can be generated, the following must apply:

∀u ∈ UML : SemJava(Gen(u)) ∈ Sem(u)

This means that generally, the code generator selects one of multiple possible imple-
mentations by filling out open aspects with defaults. It is only when Sem(u) repre-
sents one single element that the specification was obviously complete and unam-
biguous.
A parameterized code generator is extended by the parameter, i.e., the script language
S: Genp : UML× S → J . The following must now apply:

∀u ∈ UML, s ∈ S : SemJava(Genp(u, s)) ∈ Sem(u)

This means that within the scope of the specification by Sem(u), the script s may
select a possible implementation for u.

Fig. 4.9. Semantics of the parameterized code generator

The formalization represented in Fig. 4.9 has an alternative viewpoint: To
a certain extent, the source language and script language together represent
a “programming language”. A definition of semantics can reflect this in the
form of a function Semp : UML×S → Z which selects precisely one element
of the target language Z .

4.4 Flexible Parameterization of a Code Generator

Code generators and general transformations need suitable forms of repre-
sentation. Chapter 5 demonstrates the properties of these representations in
forms of scripts using an example transformation of the UML/P constructs.
The concepts discussed here refer primarily to a code generator but can also
be applied to other forms of analysis tools and transformers. For example,
they can be used to describe changes in data structures or refactoring tech-
niques.
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4.4.1 Implementing Tools

Section 4.2.3 discusses the use of scripts and templates for a flexible parame-
terization of a code generator but also for analysis and test tools. A platform-
specific code generator designed for different implementation options does
actually require a flexible mechanism for controlling the code generation. In
principle, we can control the generator with stereotypes and tags. However,
we cannot document the details of the code to be created, or at least we can-
not do so comfortably, using stereotypes.

In general, the code structures to be created can be rather complex and
can take a wide variety of forms. Symbol tables are generally necessary and
auxiliary conditions that describe the applicability of a code generation or
possible optimizations must be checked. Due to the required flexibility, only
a programming language that is (generally) complete (in terms of expres-
siveness) allows a compact formulation of conditions and transformations.
Transformations formulated in this language are executed by the code gen-
erator in order to generate the implementation code. They are not present
themselves at runtime. Fig. 4.10 shows a typical internal structure of a gen-
erator.

Fig. 4.10. Internal structure of a code generator

Various suggestions have been made for script or template languages in
tool development. For example, interpreted derivatives of the language C,
Visual Basic, or script languages such as Pearl, or Tcl/Tk are used. Func-
tional programming languages such as ML [Pau94, MTHM97] also offer a
very compact form of parameterization for such tools. For example, the ver-
ification tool Isabelle [NPW02] is written in ML and offers good extension
options which also have to be formulated in ML.
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Another alternative is the now popular XML technology [McL06,W3C00]
and the use of XML/XSLT-based tools for transformation into the target
code. However, due to the explicit embedding of the tags (nonterminals),
on the one hand, XML often has a very poor ratio between usage informa-
tion and structural overhead, and on the other hand, the current parsing and
transformation tools for XML are still not as powerful as Yacc/Lex and its
derivatives like AntLR, which have been used in the domain of compiler
construction for a long time.

With its multitude of libraries, frameworks, and tools, as well as the op-
tion of loading class libraries dynamically, Java is also a good candidate
for, on the one hand, realizing a code generator, and on the other hand,
enabling parameterization via a plug-in mechanism. The Poseidon tool
[BS01a, BBWL01] uses this mechanism, for example.

However, an active script language has some uncomfortable deficits with
regard to the composition of artifacts of the target language. Therefore, a
macro replacement mechanism that processes templates and generates code
from them is also an option. In this sense, a template is a passive script lan-
guage that contains macros that are replaced with real names or other lan-
guage expressions by the template execution engine. A template can contain
active elements to thus enable control structures, such as alternatives, repe-
tition, or the integration of other templates, but also to perform calculations
to a limited extent. Here, XML tools based on the transformation language
XSLT, or a template mechanism combined with Java code similar to the JSP
pages [FK00] presented for example by [SvVB02] or FreeMarker [Dib01] can
be used.

The fact that the generator can be programmed flexibly means that de-
velopers have to develop not only in the target programming language but
to a limited extent also in the script programming language. Due to the
technology-dependent adaptations required on a regular basis, this addi-
tional development must take place parallel to the actual development and
therefore often in the same project. For the learning curve, therefore, it would
be an advantage if the script and target programming languages were simi-
lar.

The generator framework MontiCore [KRV10, Kra10, KRV08, GKR+08]
uses the template-based Java Template Engine FreeMarker [Dib01] to gener-
ate code from UML models, for example. The separation between the pro-
cessing frontend (parser and analysis of the context conditions) and the
generating backend allows us to adapt the generated code flexibly. This is
demonstrated in particular in the code generator for UML/P which is based
on this adaptivity [Sch12]. Here, the FreeMarker script language and the tar-
get language appear in interleaved form. In order to manage the templates
and thus the target structure of the code easily, a structuring of the templates
along the target structure of the code and support by MontiCore basic func-
tions is proposed. The MontiCore generator framework is realized in Java
and thus the UML/P generator [Sch12] can itself be extended with its own
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basic functions. Normally, however, it should be sufficient for the user to
cope with the template language.

If it was decided to take a script or a template language, it needs to be clar-
ified howwe can represent the effects of the scripts for the user of the genera-
tor in a compact, understandable, yet informal form that is usually not based
on the script language (which includes a lot of implementation details). This
desire is even more understandable if we have to use the XML-based, very
verbose transformation language XSLT. However, this book focuses less on
the specific formulation of the code generation but rather on the concepts of
transformations, which is why an abstract representation for transformations
is selected.

4.4.2 Representation of Script Transformations

The effect of a script used for code generation is based on transforming
UML/P concepts into the target programming language Java. As this type
of script also handles borderline and special cases, checks usage conditions,
and uses a number of auxiliary functions to do so, it is practicable to repre-
sent the effect of such a script in compact form and to discuss special cases
only informally so that they are understandable for the user. The template
in Table 4.11 is proposed for this purpose. In addition to specifying the ac-
tual transformation and context conditions, it can be used to give a general
description and to discuss potential alternatives. This description should be
seen neither as complete nor as formal, although it is subject to some restric-
tions as described below. Instead, the template represents an abstract illus-
tration for describing transformations.

Name of the transformation

Explanation Motivation and purpose of the transformation
Trans-
formation
rule

There is usually a primary transformation rule which is repre-
sented in the following form:

Origin
⇓
Target

• The origin and target can each be represented in text
form or via a diagram.

• The origin introduces the elements of the syntax class di-
agrams and EBNF products that are transformed. The con-
text is also listed. Template diagrams and text blocks are
used for this.

(continued on the next page)
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(continues Table 4.11.: Name of the transformation)

• The italic names represent schema variables that are assigned
real language elements when the transformation is ap-
plied.

• Explanatory texts describe the types of schema variables
and which parts are optional or can occur multiple times,
etc.

• The contents of the schema variables themselves can be
subject to certain transformations. For example, the schema
variable attr can be used to construct a method name
setAttr composed of the constant part set and the cap-
italized form of the attribute name.

Further
trans-
formations

The main transformations usually give rise to additionally re-
quired transformations that are represented in the same way.
These transformations refer, for example, to elements of the
API discussed in Section 4.2.2 that must also be transformed.

Noteworthy This section rounds off the description with additional consid-
erations, notes, and the discussion of potential problems.

Table 4.11.Name of the transformation

The rule mechanism used is based on formal rule calculuses in the fol-
lowing form:

Origin
⇓
Target

Usage
conditions

In addition to the origin and target, these calculuses contain a precise
specification of the usage conditions in a formal notation. The origin contains
schema variables (placeholders, [BBB+85]) that are assigned real language
elements when the transformation is applied. Each schema variable belongs
to to a certain nonterminal and is therefore typed.

Below is a sample application for a standard transformation which exe-
cutes the example code generation shown in Fig. 4.8.14

As already discussed in Section 4.2.2, the transformation represented here
is just one of many options that can be chosen, for example, by applying
suitable stereotypes and tags to the attribute, the class, or the class diagram,
but also by specifying certain scripts.

14 However, without the use of leading underscores for attributes propagated in
some coding standards.
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Attribute1: Standard transformation of attributes

Explanation The standard form for the transformation of attributes with
encapsulation and access via explicit access functions.
It does not contain type-specific or project-specific functional-
ities.

Attribute
definition

⇓
Javaclass Class { ...

private Type attr = value;
tags’ synchronized Type getAttr() {

return attr;
}
tags” synchronized Type setAttr(Type a) {

return attr=a;
}

}

• The optional assignment with =value is used only if it is
specified in the diagram.

• The visibility specified in tags is adoptedwith the exception
of readonly. readonly is transformed into public for
getAttr (i.e., in tags’) and into protected for tags”.

• return makes sense within setAttr, as the assignment
with = has the same value.

• The multiplicity of the transformed attribute is either not
specified and therefore “1”, or is “0..1”.

Attribute
access

attr
⇓
getAttr()

quali.attr
⇓
quali.getAttr()

• The type of expression quali conforms to class Class.

(continued on the next page)
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(continues Table 4.12.: Attribute1: Standard transformation of attributes)

Attribute
assignment

attr=expr
⇓
setAttr(expr)

quali.attr=expr
⇓
quali.setAttr(expr)

• The type of expression quali conforms to class Class.
• The type of expression expr conforms to the attribute type
Type.

Noteworthy Type-specific constructs such as attr++ can either be trans-
formed efficiently via additional functionality or transformed
into setAttr(getAttr()+1).
Tags and stereotypes are not considered in this standard trans-
formation.
In UML, attributes can be given amultiplicity. Multiplicity “*”
enforces a transformation similar to associations.

Table 4.12. Attribute1: Standard transformation of attributes
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Transformations for Code Generation

If you have clear concepts,
you know how to give orders.

Johann Wolfgang von Goethe

This chapter adds specific techniques and transformations to the basic idea
of code generation as introduced in Chapter 4. Sections 5.1 to 5.5 explain
the approach for transforming class diagrams and object diagrams, gener-
ating code from OCL, executing Statecharts, and generating tests from se-
quence diagrams in Java. For class diagrams this chapter discusses known
concepts and some alternatives in a compact transformational form. Section
5.1 demonstrates how we can systematically represent transformation rules
for code generation from class diagrams.

The chapter also discusses alternatives for generation of code from State-
charts in great detail. For all other notations, this chapter primarily focusses
on the basic principles of transformation allowing users to develop forms of
transformations tailored to their target language or target environment or to
perform transformations manually in the absence of a suitable tool.

5.1 Transformations for Class Diagrams . . . . . . . . . . . . . . . . . . 100
5.2 Transformations for Object Diagrams . . . . . . . . . . . . . . . . . 123
5.3 Code Generation from OCL . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Executing Statecharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5 Transformations for Sequence Diagrams . . . . . . . . . . . . . . 155
5.6 Summary of Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 158

© Springer International Publishing AG 2017
B. Rumpe, Agile Modeling with UML,
DOI 10.1007/978-3-319-58862-9_5

99



100 5 Transformations for Code Generation

5.1 Transformations for Class Diagrams

Using a collection of transformation rules, this section describes how to
transform class diagram and some related language constructs into Java as a
more complex example of a transformation. These transformation rules also
indicate the options for describing alternatives and compositions. However,
the transformation described here does not consider Java frameworks or in-
frastructure concepts such as JavaBeans or middleware components; neither
does it consider database connections. Each of these cases requires special
generators and cannot be discussed here in the general form intended.

5.1.1 Attributes

For normal and static attributes of classes, the transformation rule Attribute1
on page 96 already specifies a rule for transforming these attributes. In prin-
ciple, we can also use this rule for derived attributes, although it does ignore
a significant feature of this type of attribute: for a derived attribute, there
is usually a calculation rule formulated as an invariant. Alternatively, there
may already be a side-effect-free method formulated in the target language
for calculating the attribute. According to our naming convention, such a
method is called calcAttr.

Attribute2eager : Derived attributes—eager version

Explanation For a derived attribute /attr there is a calculation rule as an
OCL invariant in the form attr=expr or a method calcAttr.
Attributes used for calculation are only rarely subject to
change; in comparison, derived attributes are frequently
queried. Therefore, the derived attribute is recalculated and
stored immediately after each query.

Attribute
definition

⇓
Javaclass Class { ...

private Type attr;
tags’ synchronized Type getAttr() {

return attr;
}
private synchronized void calcAttr() {

attr = expr’;
}

}
(continued on the next page)
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(continues Table 5.1.: Attribute2eager : Derived attributes—eager version)

• The attribute definition and getAttr are transformed in
the same way as for the standard rule Attribute1. However,
there is no setAttrmethod.

• If we specify the calculation rule as a nonrecursive OCL
constraint in the form attr=expr, it is transformed
into the Java code expr’ and embedded in the method
calcAttr. Alternatively, this method may already exist or
be specified in the given form by a postcondition.

Attribute
access

attr
⇓
getAttr()

quali.attr
⇓
quali.getAttr()

• As in the transformation rule Attribute1.

Attribute
assignment

Not possible.

Assignments
to a source
attribute

The source attributes for the calculation can be determined by
analyzing the OCL expression or the existing calcAttr im-
plementation. The attribute attr is derived from these source
attributes. For each source attribute source, the set method is
extended:

⇓
Java

class Class { ...
tags’ synchronized Type’ setSource(Type’ a) {

source=a;
calcAttr();
return a;

}
}

• This shows only the (simple) case in which the source and
derived attributes are localized in the same object. If this
is not the case, we must ensure that there is a bidirectional
connection between the involved objects. This connection
should not be affected by the current modifications.1

(continued on the next page)

1 A bidirectional association is necessary because the calculation does not follow
the control flow; instead, it realizes a form of change propagation (publisher-
subscriber pattern) and thus inverts the calculation order. A data flow analysis
can check whether this pattern has to be integrated, with all of its infrastructure,
or whether a bidirectional association is present.
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(continues Table 5.1.: Attribute2eager : Derived attributes—eager version)

Noteworthy Modifying an attribute automatically modifies all attributes
derived from this attribute. This can lead to cascaded recal-
culations of derived attributes and can be inefficient if there
are more modifications than queries executed.
Furthermore, circular dependencies lead to nonterminating
recalculations and are therefore forbidden for this realization.

Table 5.1. Attribute2eager : Derived attributes—eager version

The “eager” version of the transformation formulated above can be con-
trasted with a “lazy” version which calculates the attribute value only when
it is required. Due to the similarities with the previous transformation rule,
the rule is given in Table 5.2 in an abbreviated form.

Attribute2lazy : Derived attributes—lazy version

Explanation For a derived attribute /attr there is a calculation rule as an
OCL invariant in the form attr=expr or a method calcAttr.
The frequency of changes to the attributes used for the cal-
culation is high compared to the frequency of queries for the
derived attribute. Therefore, the derived attribute is only cal-
culated when required and is not stored.

Attribute
definition

⇓
Javaclass Class { ...

tags’ synchronized Type getAttr() {
return calcAttr();

}
private synchronized Type calcAttr() {

return expr’;
}

}
• See the comments for Attribute2eager .

(continued on the next page)



5.1 Transformations for Class Diagrams 103

(continues Table 5.2.: Attribute2lazy : Derived attributes—lazy version)

Attributes • The attribute access is the same as for Attribute2eager .
• In the same way as for Attribute2eager , direct assignment of
values to attributes is not possible.

• The assignment of a value to a source attribute (that this
derived attribute is dependent on) does not have to be
adapted.

Noteworthy The advantage compared to the Attribute2eager version is that
the control flow was not inverted and therefore no bidirec-
tional associations or other infrastructure are necessary. How-
ever, repeated calculation of the attribute can lead to ineffi-
ciency.
Here again, circular dependencies lead to nonterminating re-
calculations and are therefore forbidden for this realization.

Table 5.2. Attribute2lazy : Derived attributes—lazy version

One form of the model-view-controller pattern applied occasionally for
graphic interfaces uses advantages of both approaches: it merely notes the
change propagation in a boolean status variable and a recalculation is only
executed when required.

5.1.2 Methods

There are multiple strategies for implementing methods depending on the
initial situation:

1. The method body has already been formulated in another artifact and
only has to be inserted into the method. When this happens, the required
transformations—for example, those of attribute accesses—are executed.

2. The method is described by a precondition/postcondition pair, whereby
the postcondition, as discussed in Section 4.1, is formulated as an algo-
rithm and can be transformed into code directly.

3. The method is described by a precondition/postcondition pair, whereby
the pair cannot be transformed using an algorithm and is therefore suit-
able only for tests.

4. There is no implementation or specification for this method yet.

A separate approach is required for each of these cases. The first case
requires only the integration of the method body with the signature and the
transformation, for example, of the attribute accesses in the method body.
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Method1impl: Methods with a given implementation

Explanation A method methwith a given method body code is transformed
into Java.

Method
definition

• The method body code consists of a sequence of statements.
This sequence is transformed into code’ in accordance with
the valid transformation for statements, in order, for exam-
ple, to handle access to attributes and the assignment of
values to attributes or the transformation of assertions.

• If visibilities, parameter names, parameter types, and the
return type are partly given in the text and in the diagram,
they may complement but must not contradict each other.

Table 5.3.Method1impl:Methods with a given implementation

Tools that are currently available offer several approaches for providing
the method body. One option is to define the body as a piece of text attached
to the method signature in the diagram (for example, as a comment) and to
make it accessible in the editor when the method is selected. However, this
is not practical for large systems with a lot of methods. The “roundtrip en-
gineering” technique reads the method bodies directly from the source code
and, subsequently, overwrites them.2 This book proposes a further alterna-
tive that combines some of the advantages of aspect-oriented programming
(AOP) with a compact denotation. The basic idea is to group method imple-
mentations according to functional criteria as well as according to the classes
to which they belong. For example, the protocolmethods of all classes, the
methods for the iteration of a hierarchy of objects, or the serialization meth-

2 “Roundtrip engineering” allows modifications in both the abstract diagram view
and in the implementation, with the modifications then being imported in the re-
spective other view. This approach is fragile, however, as according to the current
state of technology, the connection between the two views is maintained using
comments.
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ods of multiple classes can each be grouped in one file respectively, which
contains this aspect of the program.

We can use OCL specifications of methods in the form of pairs of precon-
ditions and postconditions in addition to or instead of Java implementations.
Section 3.4.3, Volume 1 discusses the integration of several method specifica-
tions for the same method. We can therefore assume a single pair here. If the
specification has an algorithmic form as discussed in Section 4.1.2, we can
generate code from it directly.3

As the transformation of a method specified in this way is based essen-
tially on the transformation of OCL into Java code as discussed in Section
5.3, the transformation rule is not formulated explicitly here.

In the third case listed abovewe have both an implementation from some-
where and a separate OCL method specification. Therefore, the specifica-
tion should be used for checking the condition during runtime. The gen-
erator knows whether it should generate efficient product code or code in-
strumented with these checks. For example, Eiffel and Java compilers only
optionally encode assertions.

In principle only the precondition needs to be tested before the start of
the method and the postcondition after the end of the method. Under some
circumstances, however, variables defined locally with the let construct and
any initial states of attributes used in the postcondition have to be stored.
This may be a complex issue if the attributes used are located in other objects
and the access paths themselves may have been changed. [RG02], for exam-
ple, contains a more detailed discussion of this issue that goes beyond the
one given in Section 3.4.3, Volume 1.

Finally, let us discuss the case in when there is no implementation and
no algorithmically executable specification for a method. In this case, the
method cannot be implemented automatically. However, for simulations and
tests that affect this method perhaps only marginally, it is both possible and
useful to generate appropriate dummy implementations.

• If the method is not relevant for the tests to be executed, an error call or
the return of a default value can be generated into the method and the
code is compilable.

• If the method has not been realized yet, we can use an interactive input
field during simulation runs to allow users to determine the result them-
selves based on the current parameters.

• Results for a finite set of inputs can be stored in a table. These results may,
for example, have been recorded from earlier interactive simulation runs.

3 The executability lies primarily in the fact that the postconditions consist of a con-
junction of equations in which the left-hand sides represent modifiable attributes
or the result, and the right-hand sides use these attributes only in restricted form.
For example, there must be no circular dependencies between attributes as this
would prevent a direct sequential calculation. Each equation may also have a con-
dition.
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On the one hand, interactive input for individual methods in automated
test runs is not an option; on the other hand, this approach does allow user
decisions to be fed back into the system immediately while examining a run-
ning prototype. These user decisions can be logged and used later as test
data, for example. This interactive form of obtaining insights is certainly lim-
ited but in some circumstances can lead to more effective communication
with users.

In UML/P, it is not common to show auxiliary methods such as getAttr
explicitly in class diagrams. This ensures that the model remains more com-
pact and clear. We also do not have to use these functions explicitly in code
bodies that are transformed during the generation. It is sufficient to add func-
tionality for access to the attributes and their modification. A code generator
transforms all assignments into method calls as described in the transforma-
tion rules. However, direct use of these methods should be allowed. Further-
more, under some circumstances, it is useful to anticipate the generation of
such a method by specifying a manual implementation. This allows any pos-
sible optimizations to be executed or additional functionalities to be realized.

5.1.3 Associations

By default, a unidirectional association is transformed into an attribute, with
the role name used as the attribute name. If the required role name ismissing,
an attribute name is created from the association name or the role name of
the opposite class, according to the navigation rules given in Section 3.3.8,
Volume 1.

Multiplicities are taken into account accordingly: “0..1” results in a sim-
ple attribute that can take the value null; “1” results in a simple attribute
that always has a value; and an association with multiplicity “*” is set-
valued. Set or list implementations are available dependent on additional
tags such as {ordered}. For qualified associations, a mapping (Map) is pro-
vided accordingly.

Bidirectional associations are realized by attributes on both sides which
are kept consistent by means of a suitable set of methods. If no navigation
direction is specified, a suitable navigation direction is determined from the
context and, if applicable, both directions are realized.

To ensure that bidirectional associations are actually consistent, access to
the association is managed via generated methods. The form of these gener-
ated methods (i.e., the API that can be used for an association) depends on
the properties and tags of the association.

For the tags {addOnly} and {frozen}, for example, corresponding
functions for modification are restricted. Derived associations are handled
with the same principles as derived attributes. This means that only query
methods are provided and these are implemented via calculations.

The following transformation is an example for bidirectional associations
with a multiplicity “*” in both directions.
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Association∗,∗,bidir: Bidirectional association

Explanation Associations are transformed into the state space of at least
one of the classes involved. This is done by generating corre-
sponding attributes and access functions.
This transformation rule is suitable for bidirectional associa-
tions with a multiplicity “*” in both directions. The associa-
tion is not derived and is not a composition.

Definition
of the
association

• The following explanations apply for ClassB correspond-
ingly, as the situation is symmetrical.

• Access to the association are modeled by access to
the attribute roleB. This attribute has the signature of
Collection<ClassB> introduced in Section 3.3.5, Volume
1.

• The attribute name roleB is extracted from the role name,
the name of the association (assocname), or if both of these
are missing, from the name of the associated class (classB).
However, the name must be unambiguous (see Section
3.3.8, Volume 1).

• The transformation of the constructs used is rela-
tively schematic. However, modifying operations such as
addRoleB or removeRoleB are adapted accordingly to en-
sure the consistency of the bidirectional association.

(continued on the next page)
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(continues Table 5.4.: Association∗,∗,bidir : Bidirectional association)

Access
functions

roleB.isEmpty()
⇓
roleB.isEmpty()

roleB.contains(obj)
⇓
roleB.contains(obj)

roleB.size⇓
roleB.size()

roleB.iterator()
⇓
getIteratorRoleB()

etc.
• Read access is generally retained. The transformation
corresponds to the standard transformation of the OCL
collection interface to Java.

• The iterator can also be used to delete links (analog to
remove).

Modification roleB.add(obj)
⇓
addRoleB(obj)

quali.roleB.add(obj)
⇓
quali.addRoleB(obj)

roleB.remove(obj)
⇓
removeRoleB(obj)

quali.roleB.remove(obj)
⇓
quali.removeRoleB(obj)

etc.
• Modifying access is mapped to specially generated meth-
ods.

• Further modifying access, such as roleB.clear(), is also
mapped accordingly.

OCL
navigation

roleB⇓
getRoleB()

quali.roleB
⇓
quali.getRoleB()

• The result of getRoleB is an unmodifiable set.4

(continued on the next page)

4 The method unmodifiableSet of the class java.util.Collections pro-
duces an unmodifiable set from an arbitrary set, without, however, modifying the
signature.
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(continues Table 5.4.: Association∗,∗,bidir : Bidirectional association)

Additional
methods ⇓

Java

class ClassA { ...
public synchronized Set<ClassB> getRoleB() {

return Collections.unmodifiableSet(roleB);
}
public synchronized void addRoleB(ClassB b) {

roleB.add(b);
b.addLocalRoleA(this);

}
public synchronized void

addLocalRoleB(ClassB b) {
roleB.add(b);

}
}

• Auxiliary functions such as addLocalRoleB or
removeLocalRoleBmust not be used outside the protocol
even though they need to be generated as public. They
are therefore not available to the developer.5

• Further modifiers such as removeRoleB or clearRoleB are
generated in a similar form. However, in bidirectional as-
sociations, clearRoleB requires, for example, the removal
of all links on the opposite side, and therefore has linear
complexity.

• If we specify the tag {addOnly}, remove operations are
not available.

• If we specify the tag {ordered}, a list implementation is
selected and the corresponding functionality is offered in
addition.

Noteworthy The consistency between two ends of a bidirectional associa-
tion, which is ensured by a protocol, usually involves only a
constant additional effort and is therefore acceptable. If an as-
sociation is only unidirectional, this effort can, however, dis-
appear.

Table 5.4. Association∗,∗,bidir: Bidirectional association

The transformation of associations into Java code shows the extent of the
variation options for code generation. It is not only the API of an association

5 This can be achieved either with suitable context checks for the code bodies or by
the use of method names not known outside the generator.
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(i.e., which functions are available in UML/P for access and for manipula-
tion) that is variably dependent on the properties of the association but also
the data structure used internally. As the selection of the data structure has
an effect on at least the runtime behavior of the implementation, we can use
suitable control mechanisms such as the tag {HashMap} or a suitable adap-
tation of the scripts to select the best implementation.

Furthermore, for associations with limited multiplicities, we must clarify
how an attempted violation of the multiplicity is handled. There are vari-
ous possibilities for doing this—for example, from permitting it robustly but
logging a warning, right up to throwing an exception which then has to be
handled by the calling object.

In addition to the form of implementation of an association proposed
above, there are proposals to realize the links with independent additional
objects or to use an external data structure managed globally. The goal of all
of these extensions is to offer additional functionality that is made accessible
via the API to the modeler, or to optimize behavior or security properties.
A globally static data structure in the form of a mapping of source object to
target object is interesting, for instance, if the association is very sparse and
the storage shall be efficient. This should remain hidden to the users of the
API as it is a detail of the realization.

The Java code that has to ensure consistency of the association shows that
it is important for the code generator to have complete control over all parts
of the generated code, including method bodies. This way we can ensure, for
example, the consistency condition valid for the bidirectional associations:

OCLcontext ClassA a, ClassB b inv:
a.roleB.contains(b) <=> b.roleA.contains(a)

Roundtrip engineering processes cannot ensure this as they give the de-
veloper the opportunity to intervene arbitrarily in generated data structures.
In that case, this consistency condition would have to be checked at run-
time. If the method bodies are transformed by the code generator, the access
and modification attempts for an association can be extended by consistency
checks or transformations to prevent, e.g., the method addLocalRoleB being
available to the developer for programming.6

5.1.4 Qualified Associations

Compared to the normal association, a qualified association offers an adapted
API that allows qualified selection andmanipulation but also prohibits some
of the operations for unqualified associations. Therefore, a separate set of
transformations needs to be defined for qualified associations. This list also
describes the API.
6 Normally, the generated methods should be given a different and hard to read
name, only internally known, thus preventing an incidental name match. It may
also be different in each generation run
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Associationquali: Qualified association

Explanation A qualified association is transformed similarly to a normal
association but offers some adapted and additional function-
ality for qualified access.
This transformation rule is suitable for unidirectional quali-
fied associations with the multiplicity “1”.7 The association is
not derived and is not a composition.
The specified qualifier called qualifier is an attribute of the as-
sociated class. The value of the qualifier is therefore identical
to the attribute value.

Definition
of the
association

• Access functions to the association are derived from access
functions to the attribute roleB, which has a signature of the
form Map<QualiType,ClassB>.

• Additional methods of the unqualified associations, such
as addRoleB defined below, are possible because the target
object contains the qualifier.

(continued on the next page)

7 As described in Section 2.3.7, Volume 1, the multiplicity “1” means that qualified
access delivers exactly one object.
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(continues Table 5.5.: Associationquali : Qualified association)

Access
functions

roleB.get(key)
⇓
roleB.get(key)

roleB.isEmpty
⇓
roleB.isEmpty()

roleB.containsValue(obj)
⇓
roleB.containsValue(obj)

roleB.keySet()
⇓
roleB.keySet()

roleB.containsKey(obj)
⇓
roleB.containsKey(obj)

roleB.values()
⇓
roleB.values()

roleB.size⇓
roleB.size()

• Read accesses are generally retained.

Modification roleB.clear()
⇓
roleB.clear()

roleB.put(key,obj)
⇓
putRoleB(key,obj)

roleB.removeValue(obj)
⇓
roleB.remove(obj.qualifier)

roleB.removeKey(obj)
⇓
roleB.remove(obj)

roleB.add(obj)
⇓
roleB.put(obj.qualifier,obj)

etc.

• Further modifying accesses, such as roleB.putAll, are
mapped accordingly.

• The method remove(obj) for unqualified associations is
not offered for this form of qualified association because
a method for Maps with the same name fulfills a different
functionality (it removes key values). Instead, two opera-
tions with separate names respectively are offered.

• If the tag {addOnly} is set, the remove operations are not
available.

OCL
navigation

roleB
⇓
roleB.values()

roleB[key]
⇓
roleB.get(key)

• Qualified and unqualified navigation is possible.

(continued on the next page)
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(continues Table 5.5.: Associationquali : Qualified association)

Additional
methods ⇓

Java

class ClassA { ...
public synchronized Collection<ClassB>

getRoleB() {
return Collections.unmodifiableCollection(

roleB.values());
}
public synchronized void putRoleB

(QualiType q, ClassB b) {
if(q==b.qualifier) {

// Object types use equals()
roleB.put(q,b);

} else {
// Exception, warning, or
// robust implementation

}
}

}

• The method putRoleB is used to ensure that the value of
the qualifier (key) and the value of the attribute qualifier
are identical.

Noteworthy Depending on the purpose of the code (test, simulation,
production), we can use different strategies—from an er-
ror message through a notification in a log up to a robust
implementation—to handle the error case.
The access to the attribute roleB used here must also be trans-
formed in accordance with a valid transformation for this at-
tribute.

Table 5.5. Associationquali: Qualified association

The transformation of the qualified association uses the composability
of transformation rules, because here an association is initially transformed
into an attribute that is encapsulated. In a further transformation step access
methods are added. Please note that the method getroleB has to fulfill two
different tasks. For qualified associations, we must differentiate between (1)
the set of all objects reachable via the links, and (2) the contents of the at-
tribute. The two meaning variants are only identical for normal associations.
The method getroleB realizes variant (1). For variant (2), a method with the
name getroleBAttribute is introduced where necessary. Here it returns a
Map object. However, thanks to the numerous qualified access options, there
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exists no necessity for the modeler to access the realizing Map data structure
directly.

5.1.5 Compositions

As discussed in Section 2.3.4, Volume 1, there is a correlation between the
life cycles of a composite and its dependent objects. However, the correla-
tion can have significant differences in its interpretation. From a structural
perspective, a composition is treated like a normal association; however, the
creation or removal of links from a composition is subject to the respective
interpretation. Accordingly, some operations of the association API are not
offered or are subject to restrictions.

One interpretation of a composite, which is relatively widespread, is pre-
sented below.

Compositionfrozen: Fixed composition

Explanation The fixed form of the composition is used if the dependent ob-
ject has the same lifespan as the composite, is created during
the initialization phase of the composite, and the link between
the two objects cannot be modified.
This transformation rule is suitable for unidirectional compo-
sitions with multiplicity “1”.

Composition
definition

• The structure corresponds to an association with the same
multiplicity.

• Access functions to the association are derived from access
functions of the attribute roleB, which has a simple object
type.

(continued on the next page)
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(continues Table 5.6.: Compositionfrozen : Fixed composition)

• The attribute name roleB is extracted from the role name,
the name of the association (assocname), or if both of these
aremissing (which is often the case for compositions), from
the name of the associated class (classB). However, there
must be a guarantee that the name is unambiguous (see
Section 3.3.8, Volume 1).

Access
function

roleB⇓
roleB

• Read accesses to the attribute are transformed using a
downstream transformation rule (usually in getRoleB()).

Modification A value may only be assigned to the attribute roleB in the con-
structor, i.e., during the initialization phase.8 To achieve this,
we use either a factory or a new command:
roleB=factory.newClassB(arguments)
roleB=new ClassB(arguments)

Static analysis ensures that the unique assignment of a value
to the attribute always takes place.
• In a bidirectional composition, we also set the correspond-
ing link in the dependent object using a method described
in the transformation association∗,∗,bidir. To do this, we re-
place the assignment roleB= shown above with a method
call setRoleB.

OCL
navigation

Similar to preceding transformation rules

Noteworthy The restriction that the dependent object is only created in the
constructor of the composite ensures that dependent objects
are not used more than once.9

A less strict transformation would allow, for example, that de-
pendent objects are given to the constructor as parameters.
However, if that were the case, it would no longer be possi-
ble to determine whether the object was created as new and
thus definitely satisfies the composition relationship.

Table 5.6. Compositionfrozen: Fixed composition

8 For certain classes, for example Applets, the initialization is outsourced to a
method init()which then counts for the initialization phase.

9 The assumption is that a factory actually creates new objects.
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5.1.6 Classes

The transformation of a class, alongwith its attributes, methods, associations,
compositions, and the later discussed inheritance relationships, is relatively
schematic as the canonical approach is to map the UML class to the Java class
directly. However, the transformation of classes is strongly driven by stereo-
types and tags. They control which additional functionality and which vari-
ants of the attribute transformation are executed. No stereotypes are taken
into account in this core transformation.

Classes: Transformation of a class

Explanation A normal class is used directly in its existing form. Depending
on the stereotypes and tags added to the class, as well as gen-
eral transformation specifications, additional functionality is
generated for the class and is then available to the developers.

Class
definition

• Inheritance and interface implementations are adopted in
their existing form.

• Attributes and associations are transformed into code ac-
cording to the respectively valid rules.

• Stereotypes and tags control both the transformation of the
explicitly given modeling elements and the generation of
additional functionality.

Comparison
function ⇓

Java

class Class { ...
public boolean equals(Object obj) {

// Comparison of attributes
}

}
(continued on the next page)
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(continues Table 5.7.: Classes: Transformation of a class)

• The method equals compares the newly defined at-
tributes and uses the method of the superclass with the
same name.

• Associations and derived attributes are not usually used
in a comparison whereas compositions, in which the class
represents the composite, are included.

• The tag {Equals=list} allows an explicit listing of the at-
tributes and associations included in the comparison. For
an abbreviated form, we can use the tag Equals+ to spec-
ify a list of additional associations or the tag Equals- to
specify a list of attributes to be removed.

• If we have already specified an equals method explicitly
for the class, this is adopted in its existing form and does
not have to be generated.

Hash
function ⇓

Javaclass Class { ...
public int hashCode() {

// Appropriate calculation from the attributes
}

}
• The hash function is implemented appropriately.
• We can use the tags {Hash=List}, {Hash+}, and {Hash-}
analog to the comparison function to control which at-
tributes are used.

• If we have already specified a hash method explicitly for
the class, then this is adopted in its existing form.

String
conversion ⇓

Javaclass Class { ...
public String toString() {

// for attributes and associations
}

}
• The method toString delivers a simple transformation
into a string that contains the involved attributes. This
form of output is used primarily for tests and simulations
and should not normally be used in the product system.

• Associations stored in the state space of the class, derived
attributes, and compositions can also be included.

(continued on the next page)
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(continues Table 5.7.: Classes: Transformation of a class)

• We can use the tags {ToString=list}, {ToString+}, and
{ToString-} to control which class elements are consid-
ered as output.

• We can use the tag {ToStringVerbosity=number} to
control the verbosity—0: no output; 1: class name; 2: at-
tribute contents very compact (with no reachable and de-
pendent objects); and 6: verbose output of every attribute
and every association in the form attribute name=attribute
value, which encompasses all reachable objects.

• If a toString method is already specified explicitly for
the class, then this is kept in its existing form.

Constructors ⇓
Javaclass Class { ...

public Class() {
// Assignment of default values to the attributes

}
public Class(AttributeList) {

setAttribute(attribute); ...
}

}
• Constructors are created according to the generation strat-
egy.

• Unless explicitly excluded, as standard, the empty con-
structor and a constructor for assigning values to all at-
tributes are included.

• Because we can use the tag {new(AttributeList)} multiple
times, we can create any number of constructors. Alterna-
tively, we can also specify constructors directly, as this al-
lows us to realize additional functionality in the construc-
tor.

Log output ⇓
Java

class Class { ...
public String stringForProtocol() {

// Writes attributes and some of the associations
}

}
(continued on the next page)
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(continues Table 5.7.: Classes: Transformation of a class)

• This method works similarly to toString but is used for
output in logs. We can parameterize it in the same way or
implement it manually.

Noteworthy In addition to stringForProtocol, there are a number of
other functions that are realized, but that have not been men-
tioned here. Some are derived from the class Object (e.g.,
clone), others are from interfaces that have to be imple-
mented (e.g., compareTo from the interface Comparable),
and others are the result of implementation specifications for
the code generator. These include functionalities for log out-
put as described above, storage, error handling, or additional
functions useful for processing tests.

Table 5.7. Classes: Transformation of a class

In particular, when we use a class in test environments, under some cir-
cumstances a number of other methods and data structures have to be gen-
erated for this class. A code generator can provide valuable assistance for
generating such uniform methods for implementation and tests.

However, let us briefly consider one of the few and very rarely selected al-
ternatives to the mapping described here: instead of using the type system of
the target language Java, this alternative approach stores attributes as a map-
ping of the attribute name to the valuewith the HashMap<String,Object>.
In principle, it is then sufficient to implement a single Java class in the form
represented in Fig. 5.8—this form offers a certain amount of additional flexi-
bility although it is also less efficient and more error prone to wrong modifi-
cations. A similar form is used, for instance, to manage parameters.

5.1.7 Object Instantiation

A final interesting point in the context of code generation for classes is the
management of their objects. This includes, for instance, the creation of ob-
jects, management of and efficient access to individual objects, or the stor-
age in and loading from databases. Management activities are often imple-
mented in “management objects” which, in addition to collecting the ob-
jects located in the memory, allow a transaction-controlled mapping to the
database and an efficient access to loaded objects. Of all of these activities,
below we will look only at the object instantiation in Java, as it must, e.g., be
instrumentable for tests.

The form of new Class(...) used in the code bodies can be trans-
formed during code creation by calling suitable factory methods. This in-
creases the flexibility during the code creation considerably, as it allows us to
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Javaclass Chameleon { ...
// Carrier of all attributes
HashMap<String,Object> attributes;

public Object get(String attributeName) {
return attributes.get(attributeName);

}

// Type check: determine whether certain attributes are present
public boolean isInstanceOf(Set<String> attributeNames) {

return attributes.keySet().containsAll(attributeNames);
}

}

Fig. 5.8. Dynamic management of attributes

use subclasses or insert mocks in automated tests.10 This approach is based
on the design pattern Abstract Factory from [GHJV94].

Object instantiation: Creating objects with a factory

Explanation In the source code, we create the objects with the new con-
struct. In contrast, the generated code contains factory calls. A
standard factory is generated and we can adapt it to specific
situations by creating subclasses.

Object
instantiation

new Class(Arguments)
⇓
Factory.newClass(Arguments)

• The generated class Factory has a static method newClass
that creates the new object.

• Attribute f holds a standard value after the system initial-
ization but may be overwritten using a subclass.

• Redefining createClass allows us to create objects from
subclasses and singletons, to manage object sets, andmuch
more.

(continued on the next page)

10 Mocks (also called dummies) simulate an object without actually implementing
the functionality. This is just as suitable for simulating an interaction with the sys-
tem environment as it is for component interfaces.
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(continues Table 5.9.: Object instantiation: Creating objects with a factory)

Class
Factory ⇓

Javapublic class Factory { ...
public static initFactory() {

f = new Factory();
}

// For each class Class
public static Class newClass(Arguments) {

return f.createClass(Arguments);
}

// Allows the static methods above to be redefined
protected static Factory f;

protected Class createClass(Arguments) {
return new Class(Arguments);

}
}

• Corresponding factory methods are generated for each
class of the system.

• Multiple factory methods with different parameter sets are
created for the same class if there are corresponding con-
structors.

• We can subdivide the factory into multiple classes, for ex-
ample, in accordance with a subsystem structure, but this
must then be controlled by the generator script.

Alternative Instead of a single attribute f, we can use a separate attribute
for multiple groups of classes to be created or even for each
class so that we can adapt the generation of objects individu-
ally:

(continued on the next page)
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(continues Table 5.9.: Object instantiation: Creating objects with a factory)

Java

public class Factory { ...
public static initFactory() {

fClass = new Factory(); ... // For each class
}

// For each class Class
public static Class newClass(Arguments) {

return fClass.createClass(Arguments);
}

protected static Factory fClass; ... // For each class

protected Class createClass(Arguments) {
return new Class(Arguments);

}
}

Whereby calls are transformed again as follows:

new Class(Arguments)
⇓
Factory.newClass(Arguments)

Table 5.9.Object instantiation: Creating objects with a factory

Multilevel Transformation

The variants for transforming class diagrams discussed above using exam-
ples show the wide variety of possible forms of generation. As already dis-
cussed, this means that the code generation requires a high level of flexibility
to fulfill the required tasks. One way of increasing the flexibility is the option
of selecting from multiple templates or scripts. Furthermore, the templates
use each other: for example, associations are first transformed into attributes
and these are then encapsulated by access methods. The rules for transform-
ing concepts of class diagrams into Java code shown in this section are there-
fore not independent of one another. Fig. 5.10 shows the dependencies of the
transformation rules.

Only the explicitly defined rules are described here. However, to enable a
suitable infrastructure, there should be further transformation rules defined
by further templates. The selection of the respective alternatives is sometimes
stipulated by the context or the properties of the transformed language con-
cept (e.g., as for the associations here) or can be controlled via generator set-
tings (e.g., as for the derived attributes here).



5.2 Transformations for Object Diagrams 123

Fig. 5.10. Dependencies of the transformation rules discussed for generating code
from class diagrams

5.2 Transformations for Object Diagrams

Describing the generation of code from UML/P completely is beyond the
scope of this book. Therefore, the following sections explain some of the in-
teresting aspects of the transformation of further types of models into Java
code without discussing all of the details.

We can use object diagrams in two ways. On the one hand, we can use
them in a constructive form to create object structures conforming to the ob-
ject diagram. We can use this functionality both in the product system and
to represent object structures that have to be used for automated tests. On
the other hand, we can use object diagrams as predicates to check whether a
certain object structure is present. Section 4.4, Volume 1 looks at these types
of use from a methodological perspective. Therefore, this section discusses
aspects of code generation from object diagrams. The possible integration of
object diagrams and OCL discussed in Chapter 4, Volume 1 is thereby ig-
nored.

5.2.1 Object Diagrams Used For Constructive Code

The transformation of an object diagram into functionality that construc-
tively creates the objects as described in the diagram can be controlled by
a script or by tags that we add to the object diagram. For this form of code
generation, some parameters can be identified:
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1. The class that contains the code for creating the object structure. If there
is a principal object identifiable in the diagram, we may by default take
the class of this object.

2. The name of the method to be created: If this name is unique, a suitable
default is setupDiagramName.

3. The objects of the diagram, which already exist and are given to that
method as parameters: this is usually none (the object structure is com-
pletely created), the principal object (from which the rest is created) or
some objects that have already been created earlier (and only the rest
needs to be newly created).

4. If the object diagram contains free variables, they are also interpreted as
parameters for the generated method that need to be filled on execution.

As the situations in which the already existing objects are can vary, it can
be useful to generate multiple methods from one object diagram. We can
differentiate the methods using the signature or, if this is not unique, the
method name.

The use of free variables and attributes with no value assigned as param-
eters of the generated function allows object diagrams to be interpreted as
patterns with prototypical objects that allow multiple instantiations with dif-
ferent contents, as discussed in Section 4.2.2, Volume 1.

There are several aspects that we have to consider when generating these
setup methods. To create an object we need a constructor. It is relatively
simple, if a constructor without parameters is available, creating only the
empty object. If no such constructor is available, it can be generated, poten-
tially only for the test system. In the product system, however, we have to
use an existing constructor that has been labeled accordingly.

Furthermore, attributes need values to be the assigned to like described
in the object diagram. For this purpose, suitable auxiliary functions should
be available or the attributes should be accessed directly. The set methods
discussed in Section 5.1.1 are only partially suitable here because they might
contain additional functionality.

In principle, constructors with parameters can also be used if the con-
structor contains only assignments of the parameters to attributes.11

An object diagram can generally be incomplete it the class of an object is
not specified or some attributes have no value. On the one hand, attributes
with no value assignment can be understood as free variables and can be
included in the generated method as parameters. If this is not desired, de-
pending on the type of use, we can identify different strategies for handling
attributes with no value assigned in the test system, for simulation, or in the
product system. In the test system, we use a specific failure strategy: unas-
signed attributes should be irrelevant for the system run under test and ac-
cess to such an attribute should result in an immediate test failure. We can
11 This is the case, for example, if the constructor was also generated, as described in

Section 5.1.
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integrate corresponding behavior in the get functions. For simulation, the
approach discussed in Section 5.1.2 is useful. In this approach, missing at-
tribute values are queried interactively during the simulation run or default
values are used as an alternative. Finally, to generate code for the product
system, a complete definition of the objects in the object diagram is a pre-
requisite. This prevents carelessness in the definition of object diagrams and
thus gives the developer confidence in the reliability of the modeled system.

Not all details that can be formulated in an object diagram are used for
constructive or predicative (this will be discussed later on) code generation.
Visibilities, the information about the compositionality of a link, tags such
as {frozen}, and so on do not require transformation into the code and are
not discussed here. Instead they are compared with the information in class
diagrams or are used in tests.

An alternative approach for using object diagrams constructively is dis-
cussed in Section 4.4.7, Volume 1. This approach is associated with method
specifications. It uses an object diagram in the postcondition of a constructor
or an initialization method that can be transformed into constructive code
according to the same principles as those described here.

5.2.2 Example of a Constructive Code Generation

Instead of discussing the transformation rules for each model element of the
object diagram, we will discuss them using the object diagram shown in Fig.
5.11. This diagram describes an excerpt of the initial object structure of the
applet in the auction system and is embedded in an OCL method specifi-
cation for the initialization function init(). Fig. 5.12 shows the generated
code, whereby here and in the following examples, we assume for the sake of
simplicity that the direct access to the attributes still has to be transformed.

From the related class diagram, which is not shown here, the system can
derive that the links are realized by the attributes loginPanel and http-
ServerProxy in the class WebBidding. For the classesHttpServerProxy
and LoginPanel, a suitably parameterized constructor is used and assigns
values to the specified attributes.12 The links are assigned by set methods
that also ensure the correct setting of the return direction.

5.2.3 Object Diagram Used as Predicate

An object diagram can bemapped to a Boolean predicate that checkswhether
a set of objects conforms to the object diagram and that the values specified
in the diagram match to the attributes in the objects. Such a method for ex-
ample helps to understand, whether a good (or bad) situation is achieved, an
assertion holds, etc. Similarly to the discussion above, multiple parameters
control the code to be created:
12 If no suitable constructor exists, a code generator can generate one.
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OCLcontext WebBidding.init()
let String language = getParameter("language");

String login = getParameter("login")
post: OD.WBinit

Fig. 5.11. Object diagram for initializing a structure

Javaclass WebBidding { ...
public void init() {

// From the let construct
String language = getParameter("language");
String login = getParameter("login");
// From the object this
status = AppStatus.INITIAL;
person = null;
auction = null;
auctionChooserPanel = null;
multibiddingPanel = null;
appletLanguage = language==null ? "English" : language;

// From the object :LoginPanel
setLoginPanel(new LoginPanel(login==null ? "":login,""));

// From the object :HttpServerProxy
setHttpServerProxy(

new HttpServerProxy(
"https://"+getCodeBase().getHost()+":443/"));

}
}

Fig. 5.12. init() function generated from the object diagram

1. The class that contains the Booleanmethodmay be the class of a uniquely
identifiable principal object in the diagram, for example by the name
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this:Classname. Alternatively, the method can be static and/or de-
fined within a test class.

2. The name of the method to be created: if the name is not given, then
isStructuredAsDiagramName is used per default.

3. If some objects in the system have already been identified, these ob-
jects become parameters of the method. Usually there is a single object
that acts as a kind of master for the object structure and potentially the
method is part of this object’s class.

4. If the object diagram contains free variables, these are usually not consid-
ered further. However, if these variables are to take certain values, they
also become parameters for the generated method in order to describe
desired values that then can be matched against the real object attribute
values.

In contrast to the constructive variant of an object diagram, a diagram
used predicatively can be incomplete in several respects. Attributes and at-
tribute values can be just as equally omitted as the classes of the objects.
Properties with a temporal implication, such as the tag {frozen} for links,
cannot be checked in a predicate via a state either. To check these properties
in a predicate, additional infrastructure is required that either ensures this
property constructively, by not offering anymethods for modifying a link, or
performs a check at runtime.

Section 4.3, Volume 1 discussed the meaning of an object diagram as a
predicate in the context of the integration with OCL constraints in detail.
There we established that we can generally represent an object diagram as
an OCL constraint. Those predicative object diagrams are transformed into
corresponding Boolean methods labeled with the stereotype �query� intro-
duced in Section 3.4.1, Volume 1. These generated methods can be used in
Statecharts and also in Java bodies of the product code.

When the methods are used in product code, however, we have to take
the efficiency of the generated code into account. As discussed in Section 4.3,
Volume 1, anonymous objects of the object diagram are regarded as existen-
tially quantified. Named objects that are not parameters of the Boolean pred-
icate are handled in the same way. The predicate searches for these objects
itself by checking the corresponding associations. Values are assigned to the
free objects in a form analog to the structure matching of graph grammars
[Roz99, EEKR99].

For set-valued associations, this type of search can be complex and should
be avoided. Options for improving the situation include using a qualifier for
the association or explicitly transferring intended objects as parameters if
they can be determined efficiently from the context.

The transformation into a predicate is illustrated using the object diagram
presented in Fig. 5.13 which comes from the auction system. The code gen-
erated for the use in a test system is represented in Fig. 5.14.
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Fig. 5.13. Object diagram determined for a predicate

After a phase of assigning real objects to the diagram names all attributes
are checked. Expressions for attribute values may use other attributes as
long as usage is acyclic. If real subclasses are specified instead of the types
specified in the class diagram (not shown here), the generated code checks
whether the corresponding object actually belongs to this subclass.

From the length of the code shown in Fig. 5.14, it is obvious that a rep-
resentation in an object diagram is more compact and clearer, giving the
modeler an advantage, particularly for gaining a quick overview and when
searching for individual values.

A further method called isExactlyStructuredAsDiagramName can
be generated during the code generation as an extension or alternative. This
method can also ensure that the object structure contains only the objects
specified in the diagram. This is particularly interesting for multivalued and
optional associations as well as for object diagrams, which can be controlled
with a suitable stereotype �complete�. Table 5.15 gives a brief introduction
to this stereotype.

Stereotype �complete�

Model
element

Object diagram

Motivation The meaning of an object diagram as a predicate is normally
defined such that the properties specified explicitly must hold.
Further objects not specified in the diagram can exist.

(continued on the next page)
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(continues Table 5.15.: Stereotype �complete�)

Usage
condition

In an object diagram labeled �complete�, all attributes and
links must be specified. Ordered associations must be repre-
sented completely.

Effect The stereotype �complete� requires that no further objects ex-
ist in the specified object structure. The object diagram speci-
fied is therefore a complete representation of the object struc-
ture.
Thus method isExactlyStructuredAsDiagramName is to
be generated; it checks the completeness of the object diagram
and whether these properties are satisfied.

Table 5.15. Stereotype �complete�

5.2.4 An Object Diagram Describes a Structure Modification

Another interesting form of use of object diagrams results from the combi-
nation of both forms of use: an existing object structure is checked for the
presence of the objects described in the object diagram, the missing objects
are generated, and the attributes with wrong content are modified. These
types of methods have the name adaptToDiagramName. We can use them
to restructure an existing object structure dependent on the state currently
desired. We can therefore use object diagrams as state invariants in a State-
chart or to adapt the respective object structure in the entry action of states.
If the object diagram shown in Fig. 5.11 is used in this form (without being
embedded in the OCL constraint that exists there), the method represented
in Fig. 5.16 is created.

If an object is missing or has the incorrect type, it is created. If the object
already exists, its attributes are modified in the desired form. Therefore, both
constructors, which already contain attribute values as parameters in this
example, as well as setmethods are used to assign values to attributes.

Objects to be identified along a link, such as the anonymous object
:LoginPanel, are potentially ambiguous for associations with multiplicity
“*” or “1..*”. For set-valued associations, a comparison with all existing
objects must be performed and must include the attributes of the associa-
tion. If the object structure does not contain any object that corresponds to
the prototypical object specified in the diagram, none of the existing objects
are adapted and a new object is created instead. The size of the set of links
increases accordingly. The disadvantage of this method, however, is that we
cannot represent the deletion of undesired objects. This method can also be
inefficient if, for example, one hundred persons are created individually with
the object diagram (without the OCL constraint) given in Fig. 3.28 and the
method generated from this object diagram and represented in Fig. 5.17.
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Java

class Auction { ...
public static boolean isStructedAsCopper(Auction copper912,

int status, boolean isInExtension) {
// Define the name (can be optimized)
BiddingPolicy bidPol = copper912.bidPol;
TimingPolicy timePol = copper912.timePol;
Money min = bidPol.min;
Money max = bidPol.max;
Time start = timePol.start;
Time finish = timePol.finish;

return
// Main object
copper912.auctionIdent == 912 &&
copper912.title.equals("420t copper") &&
copper912.numberOfBids == 0 &&

// BiddingPolicy
bidPol instanceof DownwardBiddingPolicy &&
bidPol.kind == BiddingPolicy.DOWNWARD &&
bidPol.bidCountMax == BiddingPolicy.UNLIMITED &&

// Money objects
min.amount == 52290000 &&
min.decimalplaces == 2 &&
min.currency.equals("$US") &&
min.full.equals("522,900.00 $US") &&
max.full.equals("720,000.00 $US") &&

// TimingPolicy
timePol instanceof ConstantTimingPolicy &&
timePol.status == status &&
timePol.isInExtension == isInExtension &&
timePol.extensionTimeSecs == 180 &&

// Times
start.timeSec == 953640000 &&
start.time.equals("13:00:00") &&
start.date.equals("21 February 2000") &&
finish.timeSec == start.timeSec + 2*60*60 &&
finish.time.equals("15:00:00") &&
finish.date.equals("21 February 2000") ;

}
}

Fig. 5.14. Predicate generated from an object diagram
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Javaclass WebBidding {

public void adaptToWBinit(String language, String login) {
// From the object this
status = AppStatus.INITIAL;
person = null;
auction = null;
auctionChooserPanel = null;
multibiddingPanel = null;
appletLanguage = language==null ? "English" : language;

// From the object :LoginPanel
if(loginPanel != null &&

loginPanel instanceof LoginPanel) {
loginPanel.loginField = (login==null) ? "" : login;
loginPanel.passwordField = "";

} else {
setLoginPanel(new LoginPanel(

login==null ? "" : login, ""));
}

// From the object :HttpServerProxy
if(httpServerProxy != null &&

httpServerProxy instanceof HttpServerProxy) {
httpServerProxy.secureURL =

"https://"+getCodeBase().getHost()+":443/";
httpServerProxy.connectStatus =

HttpServerProxy.NOT CONNECTED;
httpServerProxy.lastConnectionTime = Time.now();

} else {
setHttpServerProxy(

new HttpServerProxy(
"https://"+getCodeBase().getHost()+":443/"));

}
}}

Fig. 5.16. Adaptation method generated from an object diagram

5.2.5 Object Diagrams and OCL

An important mechanism for increasing the expressiveness of object dia-
grams is the integration with OCL from Section 4.3, Volume 1. The transfor-
mation of an object diagram extendedwith OCL constraints into constructive
code or into a predicate depends on the extent to which the OCL constraints
can be transformed. The transformation and the executability of OCL con-
straints were discussed in Section 4.1.2.
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Java/Pclass Auction { ...

public void adaptToNPersons(Auction test32, int x) {
// Set object test32
test32.auctionIdent = 32;
test32.title = "TestAuction";

// Is p:Person present?
Person p = null;
for(Iterator<Person> ip = participants.iterator();

ip.hasNext() && p==null; ) {
Person pit = ip.next();
if(pit.personIdent == 1000+x &&

pit.login == "log" +x &&
pit.name == "Tester " +x &&
pit.isActive == (x%2 == 0)) {

p = pit;
}

}
// Create p:Person
if(p == null) {

p = new Person(); // Default constructor
p.personIdent = 1000+x;
p.login = "log" +x;
p.name = "Tester " +x;
p.isActive = (x }

}
}

Fig. 5.17. Adaptation method with search in * association

Note, however, that the linear search complexity for existentially quanti-
fied objects discussed previously can increase polynomially if navigation via
a chain of set-valued associations occurs and the reachable objects are linked
via an OCL constraint.

5.3 Code Generation from OCL

Based on the options described so far for using OCL as the specification lan-
guage for UML/P programs, we can use OCL, for instance, to model invari-
ants in database systems [DH99] or to describe the business logic [DHL01].
In essence, the underlying semantics of OCL is identical to the previously
discussed meaning of OCL, but the form of use and the mapping of OCL
to executable code is significantly different. Instead of classes and objects,
relational databases offer entities and rows that are used to interpret OCL ex-
pressions.
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Several, partially prototypical tools offer realizations for OCL code gener-
ators. [HDF00] presents a modular architecture for OCL that is suitable as the
basis for an integration with other UML tools [BS01a, BBWL01]. A language
related to OCL, “Java Interface Specification Language” (JISL), is presented
in [MMPH99] for method specification, with a discussion of how the specifi-
cation can be executed by means of a transformation to Java.

As there are a number of concepts that can be uniquely transformed to
Java from OCL/P due to the syntactic and semantic similarity between the
two languages, we will discuss primarily the interesting OCL constructs be-
low. These include the transformation of the following: context definition,
OCL logic, comprehension, navigation, quantifiers, and some special opera-
tors.

Many but not all of the pieces of code described below can be encap-
sulated in reusable methods. The encapsulation is not discussed here, as it
merely increases the size (number of lines) of code. However, if these pieces
of code are used manually (as a type of design pattern), encapsulation is rec-
ommended.

5.3.1 An OCL Expression as a Predicate

Even though, as described in Section 4.1.2, OCL constraints can be trans-
formed into implementation code in a very restricted form, because an OCL
expression has a natural meaning as a predicate. Therefore, OCL expressions
such as the following are transformed into boolean methods:

OCLcontext Auction a inv Bidders1:
a.activeParticipants <= a.bidder.size

There are two variants. The interpretation as an invariant produces the
following:

Java/Ppublic static boolean invariantBidders1() {
boolean res = true;
Set<Auction> auctions = Auction.getAllInstances();
for(Iterator<Auction> ia = auctions.iterator();

ia.hasNext() && res; ) {
Auction a = ia.next();
res &= a.activeParticipants <= a.bidder.size;

}
return res;

}
The generated method checks the invariant Bidders1 for all objects

of the class Auction. This requires an infrastructure for managing the set
of all auction objects and this is, for instance, provided by the method
getAllInstances.

Using the OCL constraint in the form described above is not actually suit-
able for practical applications. In a live system, relatively few auction objects
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will usually have been modified since the last check of the invariant. In some
circumstances it is worth investing in additional infrastructure for an effi-
cient invariant check. This can be achieved by requiring the invariant check
explicitly at certain points. In that case, only certain auction objects would
have to be tested rather than all of them. The method suitable for this is:

Javapublic static boolean checkBidders1(Auction a) {
return a.activeParticipants <= a.bidder.size();

}

In particular, the variant in encoded class Auction is relevant:

Javaclass Auction ... {
public boolean checkBidders1() {

return this.activeParticipants <= this.bidder.size();
}

All of these forms are suitable for use in tests in which the invariant check
can be explicitly required. Note that, according to convention, the complete
invariant has the prefix invariant, while check is used for checking in-
dividual cases. The explicit transfer of the context of an OCL expression in
the form of the objects to be checked is normally executed by means of the
keyword import. Therefore, the last two methods are also created from the
following condition:

OCLimport Auction a inv Bidders1:
a.activeParticipants <= a.bidder.size

As, in practice, a closed context with the keyword context often has to be
applied to individual objects as well, a closed method is created from it as
well as additional parameterized methods. If the context specification con-
sists of multiple objects, they are all used as parameters. Table 5.18 below
describes the transformation:

OCL context: Transformation of the context of a condition

Explanation In OCL, the context is specified explicitly in the form of ob-
jects. These objects act as parameters for the Boolean methods
generated from the context.

(continued on the next page)
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(continues Table 5.18.: OCL context: Transformation of the context of a condition)

Context OCLcontext Classcontext inv Name:
Body

⇓
Java/P

public static boolean invariantName() {
boolean res = true;
// Iteration represented only once
Set<Class> s = Class.getAllInstances();
for(Iterator<Class> it = s.iterator();

it.hasNext() && res; ) {
Class ob = it.next();
res &= Body’;

}
return res;

}
public static boolean checkName(Classcontext) {

Body’
}

• The iteration is repeated nested for each element Class ob
of the context. This results accordingly in polynomial com-
plexities during the check of the complete invariant.

• The generated code is stored in a static method within a
suitable class. If the context consists of only one object, a
nonstatic method can also be generated in the class of the
object.

• The method getAllInstances is described below.
• The alternative keyword import generates only the pa-
rameterized forms.

• The body of the condition Body is transformed into Body’
using further rules.

Table 5.18.OCL context: Transformation of the context of a condition

5.3.2 OCL Logic

As discussed in Section 3.2.2, Volume 1, the OCL logic is a two-valued logic
and uses an implicit Lifting operator to interpret undefined results as false.
Due to its property ↑undef==false, the lifting operator, denoted with ↑,
cannot be implemented completely. However, there is a transformation of
this operator to Java, discussed in Section 3.2.2, Volume 1, which catches ex-
ceptions and thus can recognize only terminating calculations. The lifting
operator can be found implicitly in all Boolean operations of OCL, meaning
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that the transformations of the Boolean operations &&, ||, !, implies, and
<=> each require the use of the lifting.

OCL logic: Logical operators

Explanation The two-valued logic is transformed to false via lifting of
the undefined pseudo value undef.

Negation ... !a ...⇓
Javaboolean res;

try {
res = a;

} catch(Exception e) {
res = false;

}
... !res ...

• The embedding of the evaluation of the Boolean expres-
sion a in a catch statement requires a deconstruction of
the context of a. The subexpression a is calculated in ad-
vance and buffered in the result variable res. The reorga-
nization of the calculation is permitted because side effects
do not occur in OCL expressions.

• A nontermination of the evaluation of a is not recognized.

Equivalence ... a <=> b ...⇓
Javaboolean resa, resb;

try {
resa = a;

} catch(Exception e) {
resa = false;

}
try {

resb = b;
} catch(Exception e) {

resb = false;
}
... (resa==resb) ...

Further
operators

Transformed in the same way. Implication a implies b is
mapped to !a || b; conjunction and disjunction aremapped
to the respective Java operators.

Table 5.19.OCL logic: Logical operators
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The corresponding Java control statements can be used to transform
the OCL control structures. The let construct introduces local variables and
catches any exceptions that occur during the calculation of the variable val-
ues.

5.3.3 OCL Types

The OCL/P primitive data types match those from Java, which means that a
transformation is not necessary. The comparison of the primitive data types
== and the arithmetic operations are also adopted without modification.

The containers Set<X>, List<X>, and Collection<X>, which OCL of-
fers, represent a subset of the containers from Java. Therefore, the OCL con-
tainers can be transferred to Java almost unmodified. The explicit enumera-
tion is essentially mapped to a constructor and element-wise addition. The
generator specifies which specific set or list implementation is used.

The use of containers for primitive data types requires special treat-
ment. In contrast to OCL, Java cannot store int values directly in container
structures. Instead, the objectified form “Integer” must be used. The type
Set<int> is therefore transformed into Set<Integer>. The boxing of val-
ues into their objectified versions available in Java allows application points
to remain unchanged, however.

As it is not the object identity but the comparison of the content that is in-
teresting for containers, the comparison == is transformed into a separately
generated method that interprets equality on containers as described in Sec-
tion 3.3.3, Volume 1.

The transformation of OCL/P’s comprehension constructs is explained
in Table 5.20 below.

OCL comprehension: Transformation of the comprehension

Explanation In Java, the forms of comprehension used for sets and lists are
supplemented by additional infrastructure.

Itemization OCL

Set{ a..b }
⇓

Java/PSet<Integer> res = ...
for(int i = a; i <= b; i++)

res.add(i);
}
// Reuse of res

(continued on the next page)
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(continues Table 5.20.: OCL comprehension: Transformation of the comprehension)

• The enumeration is realized with a loop.
• The variable res allows the reuse for the construction of a
set from multiple enumerations, for example, in the form
Set{a,b..c,d..e}.

• resmust be assigned a new HashSet().

Compre-
hension
with
generator

OCL

Set{ expr | var in expr2 }
⇓

Java/P

Set<Class> res = new HashSet<Class>;
for(Iterator<Class2> it = expr2’.iterator();

it.hasNext(); ) {
Class2 var = it.next();
res.add(expr’);

}
// Reuse of res

• The calculation of the OCL expression is broken up into
multiple statements with intermediate results res. A reor-
ganization of the calculation is permitted because OCL and
the transformation of OCL have no side effects.

• The expressions expr and expr2 are also transformed.
• expr has the type Class.
• expr2 has the type Set<Class2>.

Compre-
hension
with
filter

OCL

Set{ expr | var in expr2, boolexpr }
⇓

Java/P

Set<Class> res = new HashSet<Class>;
for(Iterator<Class2> it = expr2’.iterator();

it.hasNext(); ) {
Class2 var = it.next();
if(boolexpr)

res.add(expr’);
}
// Reuse of res

• As described in Section 3.3.2, Volume 1, a filter boolexpr re-
moves elements from the set.

• The filter obtains its expressiveness in combination with
the already formulated generator. Therefore, the transfor-
mation is represented with an added generator.

(continued on the next page)
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(continues Table 5.20.: OCL comprehension: Transformation of the comprehension)

Local
variables

OCL

Set{ expr | var in expr2, Type x = expr3 }
⇓

Java/P

Set<Class> res = new HashSet<Class>;
for(Iterator<Class2> it = expr2’.iterator();

it.hasNext(); ) {
Class2 var = it.next();
Type x = expr3;
res.add(expr’);

}
// Reuse of res

• A local variable definition acts like a let construct.

Combi-
nation

Arbitrary combination of generators, local variable defini-
tions, and filters within comprehensions are possible. How-
ever, if there are multiple generators, the computational com-
plexity quickly increases.

Table 5.20.OCL comprehension: Transformation of the comprehension

The comprehension is related to SQL statements but is significantly more
expressive. A transformation of OCL into a database query can at least partly
rely on the efficiency of database queries.

5.3.4 A Type as an Extension

OCL allows the use of type expressions such as Auction as an extension that
simultaneously describes the set of objects of this type that currently exists.
For instance, the following can be formulated:

OCLforall a in Auction: a.person.size < 500

In order to allow a check of this condition at runtime, access to all objects
of the type Auction that exist at a point in time is required. Therefore, a
corresponding infrastructure must be provided for managing the extensions
of the class, i.e. the set of all instantiated objects. This can be realized based
on WeakHashMaps that cooperate with the garbage collection.

A Boolean variable OCL.oclmode describes whether the system is cur-
rently evaluating an OCL constraint and therefore whether any new objects
created should not be added to the extension13.

To evaluate the possible constructs Class@pre and new(.), which are
used in method specifications discussed below, additional infrastructure
13 See Section 3.4.1, Volume 1 regarding object instantiation in queries.
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to manage this information about the past is necessary in the system. As
method calls can be nested, the call stack is replicated when old values of
object instances are stored. This enables any postcondition to access the re-
spective state for the precondition. Here, an efficient management and opti-
mization dependent on the actually required values is important.

5.3.5 Navigation and Flattening

For the various variants of the collections, the flatten operator flatten is
realized in the form described in Section 3.3.6, Volume 1 and applied when
flattening navigation results.

The OCL navigation is set-valued. Because Java does not have a naviga-
tion based on set-valued and list-valued structures, these have to be trans-
formed accordingly. Table 5.21 shows an efficient transformation of the nav-
igation.

Navigation: Set-valued and list-valued navigation

Explanation In Java, navigation based on container structures must be re-
alized with iterators.

Simple
navigation

a.role⇓
a.role

• Expression a describes a single object. The navigation along
the desired association is enabled by role.

• A further transformation using rules for associations
should be applied afterwards. For example, a can be en-
capsulated by access methods.

• The navigation can have a set-valued result or can be qual-
ified. This may require an adaptation of the container form.

Navigation
over a set

sa.role⇓
Java/P

Set<Class> res = new HashSet<Class>;
for(Iterator<Class2> it = sa’.iterator();

it.hasNext(); ) {
Class2 a = it.next();
if(a.role != null)

res.add(a.role);
}
// Reuse of res

(continued on the next page)
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(continues Table 5.21.: Navigation: Set-valued and list-valued navigation)

• The expression sa describes a set of objects. The navigation
along the desired association is enabled by role. The multi-
plicity is “1” or “0..1”.

• See also expressions for simple navigation.
• Class is the type of the class reached by the association.
• Class2 is the type of the initial class.

Set-valued
navigation
over a set

sa.role⇓
Java/P

Set<Class> res = new HashSet<Class>;
for(Iterator<Class2> it = sa’.iterator();

it.hasNext(); ) {
Class2 a = it.next();
res.addAll(a.role);

}
// Reuse of res

• In contrast to the above-mentioned case, the multiplicity is
now “*”, i.e., a.role is set-valued.

• Otherwise, explanations from the previous transformation
apply.

Table 5.21.Navigation: Set-valued and list-valued navigation

5.3.6 Quantifiers and Special Operators

Infinite quantifiers, that are, quantifiers for the primitive data types such
as int and for container structures such as List<Auction> are not sup-
ported. However, all object-valued quantifiers are finite and can therefore be
transformed into Java. A corresponding realization in the form of an iterator
was shown in the initial example in this section. Operators such as any or
iterate can be transformed in similar form. The transformation of object
diagrams into OCL is also easy. An object diagram acts as a predicate and
can therefore be transformed into a Boolean method which is used in the
generated code. The typeif construct provided by OCL/P for the type-safe
transformation of objects is realized by a query with instanceof and a cast.

5.3.7 Method Specifications

The following method specification describes how, after the receipt of a new
bid, a new time is defined for the end of the auction. Certain time-based
dependencies must be ensured:
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OCLcontext Time ConstantTimingPolicy.newCurrentClosingTime(
Auction a, Bid b)

let long old = a.closingTime.timeSec;
long now = b.time.timeSec

pre: status==RUNNING && isInExtension && now <= old
post: result.timeSec ==

min(now + extensionTimeSecs,a.finishTime.timeSec)

The precondition acts as an ocl statement formulated at the beginning
of the method and the variables defined with the let construct available in
OCL are understood as local variables. This specification is transformed into
extended Java in Fig. 5.22 omitting the actual method body.

Java/P

class ConstantTimingPolicy {
public Time newCurrentClosingTime(Auction a, Bid b) {

let long old = a.closingTime.timeSec;
let long now = b.time.timeSec;
let boolean precond = (status==RUNNING && isInExtension

&& now <= old);

// Body of the Java function (with no return statement)
Time result = // Expression of the return statement
ocl !precond || (result.timeSec

== OCL.min(now + extensionTimeSecs,
a.finishTime.timeSec));

return result;
}

}

Fig. 5.22. An extended Java method derived from its OCL specification

As described in Appendix B, Volume 1, this method from Fig. 5.22 can be
transformed into normal Java. According to the meaning of method specifi-
cations described in Section 3.4.3, Volume 1, the postcondition only has to be
satisfied if the precondition applies. Therefore, the precondition is evaluated
and the result stored in the variable precond so that it can be checked in the
postcondition. This form of transformation allows us to test multiple method
specifications defined or inherited independently of one another simultane-
ously. Therefore, an integration as described in Section 3.4.3, Volume 1 is not
necessary for this purpose.

Depending on the generator settings, ocl and let statements may be
transformed or omitted for efficiency. If an error is detected, an exception
is raised, a warning is noted in the log, and, if necessary, an excerpt of the
current object is printed. As expected, the let construct for the definition
of auxiliary variables in Java, which do not belong to the product code, is
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realized with local variable definitions. The code shown in Fig. 5.23 arises,
with the catching of exceptions omitted for the sake of simplicity.

Javaclass ConstantTimingPolicy {
public Time newCurrentClosingTime(Auction a, Bid b) {

long old = a.closingTime.timeSec;
long now = b.time.timeSec;
boolean precond =

(status==RUNNING && isInExtension && now <= old);
// Body of the Java function (with no return statement)
Time result = // Expression of the return statement
if(precond && !(result.timeSec

== OCL.min(now + extensionTimeSecs,
a.finishTime.timeSec))

alert(...);
return result;

}
}

Fig. 5.23. OCL transformed into standard Java

This relatively simple transformation is contrasted with a substantially
complex transformation of method specifications if the postcondition ac-
cesses the original values of the variables at the beginning of the method
call. Transforming such accesses requires an infrastructure for the generation
that determines which values from the beginning of the method execution
may be required and places them in a suitable intermediate storage. As de-
scribed below, this can involve a considerable amount of effort. Let us look
at the following example adapted from Section 3.4.3, Volume 1 which de-
scribes the effect of a person changing companies under the assumption that
the company is already in the system:

OCLcontext Person.changeCompany(String name)
pre: exists Company co: co.name == name
post: company.name == name &&

company.employees == company.employees@pre +1 &&
company@pre.employees == company@pre.employees@pre -1

In the postcondition, company@pre is used to access the previous com-
pany of the person changing companies and company.employees@pre is
used to access the number of previous employees of the new company. The
code generator can easily identify the expression company@pre and store its
content. This has the same effect as the creation of an internal auxiliary vari-
able. The same applies for the expression company@pre.employees@pre:
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OCLcontext Person.changeCompany(String name)
let Company companyPre = company;

int employeesPre = company.employees
pre: exists Company co: co.name == name
post: company.name == name &&

company.employees == company.employees@pre +1 &&
companyPre.employees == employeesPre -1

However, company.employees@pre creates difficulties because the ear-
lier state of the new company is accessed. It is actually impossible for a
code generator to generate code that, at the beginning of the execution of
a method, guesses for all cases which object will be the new company object
and then saves the former state of this object. This problem becomes even
clearer with the expression ad.auction@pre[id], which can be used in
the class AllData to select an auction with the identifier id. As id is only
evaluated when the method has been executed, it is not clear which auction
of the original state will be selected by ad.auction. There are three strate-
gies for handling this:

1. The old states of all Company objects are stored. However, even for small
test data structures this results in a significant loss in efficiency and can-
not be implemented for testing of product systems with large data sets.

2. For tests, an infrastructure that performs an internal logging of all at-
tribute changes, including the original values, is generated. This also re-
quires a suitable infrastructure but under some circumstances, has the
advantage that the change history of a failed test can be analyzed.

3. The code generator warns of the inefficiency of the specification or even
rejects the specification with an instruction to find amore efficient formu-
lation. In most cases, the developer has a good idea of which object states
actually have to be saved and stores these explicitly in let statements.

If an increase in efficiency through a manual transformation is desired, in
the example, the relevant company object can be “guessed” from the precon-
dition and thus the precondition is simplified:

OCLcontext Person.changeCompany(String name)
let Company newCo = AllData.ad.company[name]
pre: newCo != null
post: company.name == name &&

company.employees == newCo.employees@pre +1 &&
company@pre.employees == company@pre.employees@pre -1

To ensure that the new company actually matches the company defined
in the let statement, company==newCo can also be included in the postcon-
dition. This form requires only minimal additional storage space but is al-
ready so detailed and implementation-related that sometimes, a direct im-
plementation may be preferable.



5.3 Code Generation from OCL 145

5.3.8 Inheritance of Method Specifications

As described in Section 3.4.3, Volume 1, the stereotype �not-inherited� de-
termines whether a method specification applies for the implementations of
the subclasses. Thus, in general we also have to test the inherited precon-
ditions and postconditions. For a non-redundant implementation, the con-
ditions to be checked are not formulated directly as assertions and are in-
stead outsourced to stand alone methods that are available in suitable form
in subclasses. This technique is called “percolation” [Bin99] and results in the
implementation represented in Fig. 5.24.

Javaclass ConstantTimingPolicy {
// Precondition without/with predefined parameters
boolean preNewCurrentClosingTime(Auction a, Bid b) {

long old = a.closingTime.timeSec;
long now = b.time.timeSec;
return preNewCurrentClosingTime(a,b,old,now);

}
boolean preNewCurrentClosingTime(Auction a, Bid b,

long old, long now){
return status==RUNNING && isInExtension && now <= old;

}

// Postcondition
boolean postNewCurrentClosingTime(Time result,

Auction a, Bid b, long old, long now) {
return result.timeSec

== OCL.min(now +
extensionTimeSecs,a.finishTime.timeSec);

}

// Actual function
public Time newCurrentClosingTime(Auction a, Bid b) {

long old = a.closingTime.timeSec;
long now = b.time.timeSec;
boolean precond = preNewCurrentClosingTime(a,b,old,now);
// Body of the Java function (with no return statement)
Time result = // Expression of the return statement
if(precond &&

!postNewCurrentClosingTime(result,a,b,old,now))
alert(...);

return result;
}

}

Fig. 5.24. OCL constraints transformed into Java predicates
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An advantage of this approach is that a test driver can also check whether
the precondition of themethod specification is satisfied by checking it against
the given test data in advance. This prevents a test being evaluated as a suc-
cess because the test data was set up incorrectly such that it does not satisfy
the precondition.

We can use the approach represented in Fig. 5.24 in the same way for
invariants so that these are also available in the subclasses for tests.

5.4 Executing Statecharts

As David Harel, the inventor of Statecharts likes to comment: “Buildings are
there to be, but software is there to do”. Statecharts can naturally be used
to describe behavior completely, and therefore the aspect of code generation,
that is, the execution of Statecharts, is particularly interesting. This section
addresses realization strategies for Statecharts but without describing com-
plete transformation algorithms. The goal of this section is also to describe
the relationship between syntactic concepts of the Statechart and Java code
elements. Thus, it gives the reader the opportunity to transform Statecharts
into code manually. This description will also help the reader to understand
Statecharts and their use during code generation. These aspects are equally
important. The transformation of Statecharts into Java is used as both, the
definition of semantics and for improving the intuitive access to Statecharts.
The realization strategies discussed below show alternative but semantically
equivalent options for transforming Statecharts into Java. The selection of a
suitable transformation strategy for a project is therefore dependent on the
desired flexibility and efficiency.

Generating code from Statecharts is not as widespread as generating code
from class diagrams. However, the use of Statecharts for implementation is
continually increasing. Embedded systems are the trailblazers here: “... au-
tomatically generated code can and is being used today in a variety of hard
real-time and embedded systems.” [Dou99, p. 156].

The variants for transformation discussed below are in no way complete
and represent merely some of the transformation options. The stereotypes
already introduced (�statedefining�, �completion:ignore�, etc.) can be used
to choose between these variants. However, not everything can be described
with stereotypes, which is why templates and scripts are used for generating
code from Statecharts.

5.4.1 Method Statecharts

The states of a Statechart can be interpreted in different ways. In a method
Statechart, such as the one represented in Fig. 5.25, the diagram states repre-
sent intermediate states within a method sequence. The diagram states are
therefore differentiated by the program counter. They can be split in two
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classes. On the one hand, there are diagram states that correspond to points
between statements that are continued by means of spontaneous ε transi-
tions. On the other hand, there are states in which the result of a method call
started in an incoming transition is awaited. Source states of spontaneous
transitions are used primarily to model the control flow, which also allows
to describe branching. Source states of transitions labeled with the stimulus
return represent real interruptions in the execution of a method.

A method Statechart is transformed canonically to the described method
and its body.

Fig. 5.25. Representation of intermediate states of a method

The handling of ε loops within a Statechart is particularly interesting. The
existence of a ε loop means that the control flow within a method Statechart
has a loop. The Statechart itself is therefore no longer completely capable of
describing the behavior of the method. The initialization, the body, and the
termination condition of the loop must each be described by actions. There is
no guarantee that the loop will definitely terminate, but we can assume that
modeled behavior terminates in principle. This assumption is useful when
in an appropriate development approach, loops are generally checked with
tests such that a nonterminating loop would be detected.

5.4.2 The Transformation of States

The Statecharts that are not used to represent a method sequence do not con-
tain any control states and therefore no spontaneous transitions either. The
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states of such a Statechart therefore correspond to the data states of the ob-
ject. This means that it must be possible to reconstruct the diagram state of
the Statechart from the data state of the object. This was discussed with the
transformation into simplified Statecharts in Section 5.6.3, Volume 1 and a
technique for implementing diagram states was shown.

Lightweight: Using State Invariants

The strategy of using the pairs of disjoint state invariants of the simplified
Statechart to calculate the diagram state from an object is regarded as par-
ticularly simple. Fig. 5.26 shows an example of this type of transformation.
Here, the left-hand transition is given priority over the middle transition
as its precondition is evaluated first. If the two preconditions overlap, that
is, precon1&&precon2 is not equivalent to false, then a design decision was
taken that selects a special implementation from the set of possible imple-
mentations.

Fig. 5.26. Transformation using state invariants

The advantage of this transformation is that no additional attribute is re-
quired to save the diagram state in the object. In contrast, in the worst case,
the state invariants of all states have to be evaluated, which can lead to a
significant loss of efficiency. Therefore, this transformation is only useful for
state invariants that can be evaluated efficiently. In most cases, there are a
number of possibilities for optimization because state invariants of “related”
states often have common subconditions that only have to be evaluated once.
The same applies for the evaluation of the preconditions of transitions with
the same source state. If, for example, precon1<=>!precon2, the internal if
query in Fig. 5.26 can be simplified to true.
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Optimizations for the code generation such as those described above can-
not generally be recognized automatically. However, we can justifiably hope
that the tools for generating code from models will integrate similar opti-
mization algorithms in the near future. Today this is already the case for
compilers for textual programming languages. Until then, we must expect
that the increased developer efficiency from using abstract models will lead
to certain efficiency disadvantages for the realized code. Under some circum-
stances, similar to manufacturers of embedded systems, we can see that after
completion of the models for simulation and validation purposes, an addi-
tional manual step is useful to optimize the result. We can use refactoring
techniques at the level of the target language, just as well as additional con-
trol mechanisms during the generation of the code. For example, optimiza-
tions can be proposed to the code generator by adding priorities or asserting
the disjunction of preconditions.

States as Predicates

A variation of the transformation shown is presented in Fig. 5.27. Here, the
evaluation of individual state invariants and actions was outsourced to sepa-
rate methods. The auxiliary methods for transforming actions can be reused,
if applicable and if various transitions have the same action. The outsourcing
of the evaluation of state invariants to separate predicates also has the advan-
tage that the diagram state of the Statechart can be determined at arbitrary
points in the code. This is particularly helpful for methods whose behavior
is not specified in the Statechart but is still dependent on the states modeled
in the Statechart.

Fig. 5.27. Predicates evaluate state invariants
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Itemization Attribute as Repository for the State

If the evaluation of the state invariants is too inefficient, the standard tech-
nique generally used today is to store the diagram state explicitly in the state
space of the object in the form of an enumeration attribute. Checking the
status attribute is sufficient to determine the diagram state. Fig. 5.28 shows
the code generation that can be used.

Fig. 5.28. Diagram state is stored in the attribute

Complete Statecharts

Using an attribute to store the diagram state improves the runtime efficiency
but does not mean that preconditions of alternative transitions do not have
to be checked. However, we can use the last respective precondition and the
state invariant in an assert statement to be used for test purposes instead
of in the constructive part of the implementation.14 Fig. 5.29 shows a corre-
spondingly modified transformation.

If the Statechartwas not completed explicitly as described in Section 5.6.3,
Volume 1, this completion can also be performed during the code generation
dependent on the selected semantics. Here, we can use the default state-
ment, which can catch all situations not covered by explicit transitions. We
can also introduce and adopt a further value in the enumeration of the states
in the form ERROR==-1 in such situations.
14 To obtain meaningful test results, using the test framework discussed in Section

6.2.3 instead of the assert statement provided by Java is recommended.



5.4 Executing Statecharts 151

Fig. 5.29. Use of state invariants as assertions

We can use a comprehensive try-catch statement to catch exceptions
caused due to the stereotype �exception�. However, depending on the se-
lected transformation strategy, we have to use multiple such statements in
various methods or case alternatives.

Heavyweight: State Design Pattern

A further option for transforming the state concept is, for example, the use
of the state design pattern, which is described in [GHJV94]. This design pat-
tern is classified as heavyweight because it leads to a number of additional
classes. The state of the object actually modeled is outsourced to a separate
state class. This class has multiple subclasses each corresponding to one state
of the object actually modeled. The current state of the object is stored as
a reference to the currently active state object. The behavior is not imple-
mented directly in the modeled method but delegated to this currently active
state object. This means that the behavior, which is distributed among the
transitions in the Statechart, is not aggregated within a single method but is
instead grouped according to the states in different classes. This offers the
flexibility of modifying the behavior on a source state by forming additional
subclasses or rewiring the transitions. However, the notational and operative
effort involved in the state design pattern is huge. The state objects have to
be managed by either creating such objects dynamically or saving them in
a pool of objects. Fig. 5.30 therefore shows only a small excerpt of the trans-
formation in a state design pattern. The code parts invariantA’ and action1’
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have to be adapted correspondingly as the attributes and method calls have
to access the source object k instead of self.

Fig. 5.30. Heavyweight: state design pattern

Using the state design pattern is mainly recommended if the created flex-
ibility can justify the additional effort for the generation. As the transforma-
tion of a Statechart into Java code is usually automated, a manual interven-
tion in the generated code is generally not useful and the state design pattern
will, hence, be less appropriate.

5.4.3 The Transformation of Transitions

Stimuli

As shown in Fig. 3.37, we differentiate between three types of stimuli. Spon-
taneous transitions and the receipt of return results only occur withinmethod
Statecharts. There is no differentiation between the transmission of asyn-
chronous messages and the method call in the Statechart. The differentia-
tion between a method call and the use of message objects for asynchronous
transmission is, however, relevant for the transformation into code.

If the stimuli are objectified, events are typically transformed in the form
of a class hierarchy with an abstract superclass Eventwhose subclasses cor-
respond to individual message types. Messages are created by calling the
corresponding constructor and are executed after transmission and through
a scheduling mechanism on the target object. A number of frameworks and
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middleware components, such as CORBA [OH98], are available for trans-
porting these messages. Further variants are, for instance, the serialization
of the message objects with XML [W3C00] or the transmission by means of
a self-defined, typically more efficient protocol. Due to the high number of
solutions available, we will not examine this technical aspect of the com-
munication in greater depth here. For the transformation of Statecharts, the
only important thing is that the message object is transferred to the object
to be processed by calling a suitable method. Fig. 5.31 illustrates a possible
realization based on a double switch statement. By defining methods for
each specific message object, or by delegating the processing of a method to
dependent objects, we can apply the previously discussed variants for code
generation.

Fig. 5.31. Use of event objects as stimuli

An advantage of the use of asynchronously communicated messages is
the avoidance of recursive object calls. A message object is always processed
with exclusive access to the object state. Parallel processing of multiple mes-
sages is excluded. In order to guarantee this, we use suitable synchroniza-
tion mechanisms of the programming language Java. In a Statechart, the pro-
cessing of messages and method calls can also be mixed. For the Statechart,
it is ultimately irrelevant whether the stimulus is processed by the special
method receive for message processing or by a normal method call. We
must merely ensure that within an action of the Statechart, there are no fur-
ther method calls to the same object that have a state-modifying effect on the
Statechart. This condition, referred to as recursion-freedom, was discussed
in detail in Section 5.1, Volume 1.
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Actions

The action descriptions of a Statechart consist of two possible components.
Once we have adapted attribute accesses etc., we can include actions formu-
lated procedurally in the generated code as described in Section 5.1. If we
introduce an additional attribute to store the diagram state, an additional
assignment of the new state is necessary at the end of each action. The trans-
formation shown in Fig. 5.28 illustrates this.

If we used additionally or exclusively OCL postconditions for the actions,
then no operational code can usually be generated from them. Therefore, we
cannot use this type of Statechart for programming. These types of postcon-
ditions are therefore typically used only for abstract specification of behavior,
which is manually transformed into executable code for an implementation
and then can be used for tests. The postconditions can therefore only be trans-
formed into code using ocl statements.

Existing Forms of Code Generation for Statecharts

Of course, the form of transformation of Statecharts into code described
above is not the very first. Various tools, such as Statemate or Rhapsody
[HN96], as well as some of the newer UML-based tools and approaches such
as [SZ01], [BS01a], and [BLP01] transform their version of Statecharts into
productive code. In some cases, concepts such as parallel states, a history
mechanism, pseudo states, or real parallelism are also transformed into the
code. These concepts are not defined here—due, amongst other things, to the
previously predominant use of Statecharts for modeling distributed and em-
bedded systems which usually have a greater share of control than business
systems with the focus on a heavy data load [Dou98, Dou99].

Statecharts were introduced in [Har87]. [vdB94] compared the variety of
semantics that had arisen by then. The comparison [vdB01] also includes
the UML semantics of the Statecharts. An interesting feature of these differ-
ent semantics is that they sometimes describe different behavior and there-
fore result in different implementations of the Statechart. In other cases, they
merely use differentmechanisms to assign the essentially identical semantics
to the Statecharts.

Particular attention is given to the handling of the prioritization and un-
interruptibility of transitions of different hierarchy levels and the closely re-
lated “run to completion” problem for Statecharts. While the outer transi-
tions (seen from the source state) are preferred for embedded systems, in
[HG97], for example, this prioritization is reversed for object-oriented State-
charts and preference given to inner transitions. This approach allows the
modeler to decide by using stereotypes, which leads to greater flexibility. In
the UML/P Statecharts, “run to completion” is irrelevant—due to the under-
lying machine model based on Java, the assumption is that the exceptions,
which occur as stimuli, are caused by the Statechart itself or by a method
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called from an action of the Statechart, and therefore continuing the transi-
tion to a natural end has only limited use. The possibility of parallel process-
ing of transitions in the same object is excluded by Java´s synchronization
mechanism.

5.5 Transformations for Sequence Diagrams

A sequence diagram is by nature exemplary. It shows one single possible se-
quence of a system run that typically allows alternative sequences depend-
ing on the current object structure, the contents of the attributes, and the
system environment. Describing an exemplary sequence is not really suit-
able for constructive code generation. From a single diagram, complete code
can only be generated if a method does’t contain branches or iterations in its
control flow. Test drivers and test observations typically have such a simple
structure.

Therefore, sequence diagrams are used primarily for modeling tests and
code generation is useful for performing and checking test runs.

5.5.1 A Sequence Diagram as a Test Driver

Fig. 5.32 contains a typical sequence diagram from which a method is to be
generated for the object t. The method executes the calls labeled with the
stereotype �trigger�.

Fig. 5.32. Sequence diagram with driver

The method to be generated requires a name which can be extracted from
the diagram name. In combination with the prefix runSD defined as stan-
dard, this results in the method name runSDDriver generated in the class
Class.

Similar to the constructive transformation of object diagrams, the signa-
ture of the resulting method is characterized by the free variables of the se-
quence diagram. In the example in Fig. 5.32, therefore, at least the two other
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objects a and b are needed as parameters. Free variables that appear the first
time as arguments of a �trigger� call are also included as parameters. In
contrast, free variables that are used for the first time in returns are matched
to this return value. Calls and returns between other objects of the sequence
diagram as well as calls to driver objects do not contribute to the generated
method. The result is the code shown in Fig. 5.33.

Javaclass Class { ...
public void runSDDriver(A a, B b, Type2 args2) {

Type value = a.m1();
a.m2(args2);
b.m3();

}
}

Fig. 5.33. Driver generated from a sequence diagram

Whereas they are not obvious from the sequence diagram itself, the types
of the variables specified in the sequence diagram can be determined from
the context—for example, from the signature of the classes A and B.

We can also use the technique for the constructive transformation of parts
of a sequence diagram if we specify the method call of the generated method
in the sequence diagram itself. Fig. 5.34 describes a dummy object that re-
quires a simple implementation of the method foo(). This is generated us-
ing the same technique and is thus available for the test specified in Fig.
5.34. The target object b of the method to be called by foo() is defined as
an attribute in the class Dummy. Values are typically assigned to the object
structure by an object diagram.

Fig. 5.34. Sequence diagram with driver and dummy
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5.5.2 A Sequence Diagram as a Predicate

Just like an object diagram, a sequence diagram describes an exemplary
property of the system. In contrast to an object diagram, however, this prop-
erty cannot be checked from a snapshot of a system and instead, has to be
checked during a system run. In order to be able to check interactions that
occur during such a run, a corresponding instrumentation of the code is re-
quired. At the beginning and end of each method observed, there must be a
notification about the call or the termination of this method. The abnormal
termination by an exception must be logged. This can take place within the
instrumented method but also using the adapter design pattern [GHJV94].
We can form this type of adapter, for example, by redefining the method in
a subclass. The principle for the class A from Fig. 5.34 is represented in Fig.
5.35.

Javaclass Ainstrumented extends A { ...
public Type method() {

// Log method call (object, method, empty argument list)
SDlog.call(this, "method", new Object[] {});
Type result;
try{

// Actual call
result = super.method();

catch (Exception ex) {
// Log exception
SDlog.exceptionReturn(this, "method", ex);
throw ex;

}
// Log return + result
SDlog.normalReturn(this, "method", result);
return result;

}
}

Fig. 5.35. Adapter for code instrumentation

In practice, however, it is useful to retrieve this information from the
call stack via the virtual machine instead of transferring it to a global object
SDlog.

The algorithm for recognizing a sequence diagram interprets a sequence
diagram as a regular expression as specified in Fig. 6.14, Volume 1. The reg-
ular expression is initially realized in a nondeterministic finite automaton15

15 The automaton is used to recognize input sequences; it has nothing to do with the
Statechart described in Chapter 5, Volume 1.
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which allows this regular expression to be recognized. Fig. 5.36 demonstrates
this in an example.

A sequence diagram can contain prototypical objects for which there is
initially no assignment to real objects. This assignment takes place during
the first interaction with a suitable object. Therefore, the states of the nonde-
terministic automaton are extended with the configuration of these objects
and further free variables. An automaton can therefore be in the same state
multiple times with different object configurations.

After each interaction, any subsequent OCL constraints in the sequence
diagram are checked and the configurations that do not satisfy the constraint
are removed. In the automaton, we can represent this with an additional tran-
sition that does not process any interactions but has a precondition. Starting
with a configuration in the initial state, in some circumstances an empty set
of valid configurations is reached.

A sequence diagram is satisfied if, after the execution of the test, the
reached configurations contain the final state. As a byproduct of the check,
the free variables and the prototypical objects contain concrete values.

The different semantics for sequence diagrams that can be selected via
the stereotype �match� are transformed by the restriction of interactions
described in Fig. 6.14, Volume 1. This allows us to ignore certain forms of
interactions.

The mapping can be illustrated using the sequence diagram shown in
Fig. 5.36. The illustration ignores specific values of the parameters. These
can be handled in the same way as the OCL constraints, i.e., they can also be
checked. Fig. 5.36 also contains the automaton that is used to recognize the
sequence diagram.

The well-known construction for making the automaton deterministic
and minimizing it [HU90] usually cannot be used due to the configurations
which influence the enabledness of further transitions and the evaluation of
the OCL constraints. The automaton could be made deterministic, for exam-
ple, if the objects represented in the sequence diagram could be assigned to
real objects in advance. On the other hand, an automaton that arises from a
sequence diagram labeled with the stereotype �match:complete� does not
have any loops and is therefore already deterministic.

A sequence diagram that has already been used in part for the construc-
tive generation of drivers can also be used for a check. The fact that the test
driver is also instrumented creates only minimal additional effort but it is
necessary to be able to check the order of the messages appearing and the
OCL constraints.

5.6 Summary of Code Generation

Chapter 4 and this chapter discuss basics for code generation, beginning with
the expressiveness of UML/P up to a useful architecture of a code genera-
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Fig. 5.36. Recognizing automaton from a sequence diagram

tor that has the required flexibility and parameterization to satisfy various
target platforms and different areas of application of UML/P. Instead of an
actual representation of the scripts and templates, transformations were ex-
plained in abstract form or motivated by examples. This chapter described
the transformation of the individual UML/P notations into code based on
these transformation rules.

Outlook for Code Generation

The first generation of CASE tools show that when code generation is used,
some disadvantages have to be taken into account alongside the advantages
described in this chapter. The maintainability of a system developed with
code generation is dependent on whether the code generator is available dur-
ing the period of use of the product system. If this is not the case, the only
solution is to modify the generated code further manually. If, for example,
the technical platform is migrated, then developers with the ability to adapt
(“program”) the generator must also be available.

If a code generator is developed in an independent project, then it should
be written in its simplest form and it must be possible to reconstruct its
use for maintenance and evolution of the system when required. However,
the complexity of today’s source languages, such as UML, stands contrary
to this desire. Therefore, as a reasonable alternative, an externally devel-
oped, product-mature code generator was discussed. Such a generator must
demonstrate sufficient stability to be available for a longer time. In order to
prevent or at least minimize incompatibilities in the event of version changes,
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here, a standardization similar to the standardization of compilers and the
semantics of the underlying languages is needed. The current discussions
on the standardization of UML contain no standardization that would be
sufficiently detailed for this purpose. Nevertheless, the forthcoming interop-
erability of today’s UML tools could have a certain standardizing effect on
code generation.
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Principles of Testing with Models

Quality is never an accident;
it is always the result of intelligent effort.

John Ruskin

Testing is an important part of managing the quality of all parts of the prod-
uct system. Testing the implementation for robustness, conformity with the
specification, and correct implementation of the requirements must therefore
be an essential part of any quality-oriented and model-driven software de-
velopment method. This chapter explains the basic principles of testing that
are necessary to achieve this.
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A system that successfully supports the user must be free of errors or at least
should have as few as possible. As software systems are usually very com-
plex, wemust assume that any system practically relevant will never be com-
pletely free of errors. Therefore, when developing a system, it is important
that we minimize the number of errors and the malicious effects of those er-
rors as far as possible given the time and personnel resources available. Fur-
thermore, we need to achieve the level of quality required for the application
domain. Testing the software system is an important means of detecting er-
rors. It is generally accepted that testing can make up approximately 40–50%
of the total software development effort [Kru03, Mye01].

Tests are recognized as an essential activity for quality management in
both traditional and agile approaches. Therefore, the techniques discussed in
this chapter are not limited to agile methods; they have actually been in use
in various forms for a long time. However, the intensive integration of testing
in development methods, the desire to define tests as easily and effectively as
possible, and the consistent use of UML for generating tests and code mean
that existing approaches for defining tests need to be adapted and extended.

The extensive amount of literature available on the subject of testing in
general, and on testing object-oriented systems in particular, shows that there
are a lot of different approaches and techniques for developing tests. Repro-
ducing all of the knowledge about developing and managing tests that this
literature contains would go far beyond the capacity of this chapter. Instead,
there are references included to relevant, more extensive literature. As far as
terminology is concerned, the contents of this chapter is based primarily on
[Bin99], [Mye01], [Bal98], and [Lig90].

This chapter does not provide a general introduction to test procedures
and technologies; instead, it provides a compact definition of the terminol-
ogy involved in testing and discusses relevant basic technical principles.
Chapter 7 then implements these basic principles using UML/P.

For additional approaches for developing tests, see [LF02] for a pragmatic
look at the “test-first” approach, the extensive collection of testing techniques
in [Bei04] and [Bei95], the comprehensive book [Bin99] on object-oriented
tests, [RBGW10] for model-based tests, and [Bal98] for a compact overview
of the theory of testing. The basic principles of [Mye79] still apply. Books
about testing in individual domains are also useful—for example, [Vig10]
for embedded systems or [Sax08] for the automotive industry.

6.1 An Introduction to the Challenges of Testing

There are a number of approaches for ensuring or improving the quality of
software. We can use these approaches in one individual software develop-
ment project or across all projects. “Quality” is a term that is widely used but
difficult to define. [Lig90] specifies a number of quality properties—some of
which we can check using tests—including properties important for using
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the product, such as functional correctness and robustness. We can use statis-
tical tests to check further quality properties, such as runtime and memory
efficiency, at least to a limited extent.

6.1.1 Terminology for Testing

Fig. 6.1 contains several definitions of the terms “test” and “testing” that can
be found in literature.

The literature available on the subject of testing contains a number of different defi-
nitions for the widely used terms test and testing:

• “Testing is the process of executing a program with the intention of finding er-
rors.” [Mye01]

• According to [Som10] is testing the execution of a software implementation on
test data and the examination of the results and the operational behavior in order
to check, whether the software behaves as required.

• The application of test, analysis, and verification procedures serves primarily to
check the quality properties of functional correctness and robustness (according
to [Lig90]).

• [Bin99] provides a detailed explanation pointing out that a test is the design and
implementation of a special form of software system. It examines another soft-
ware system in order to find errors. Tests have to be designed such that they
cooperate with the system under test based on its physical interfaces, the run-
time environment and structure of the system under test. Manual tests still have
their role, but testing mainly means development of automatic tests.

[AM01] emphasises the distinction between (1) unit tests and (2) acceptance tests.
Developers write unit tests parallel to the code and users write acceptance tests
after the use cases are designed.

• [PKS02] puts emphasis on the process of testing, consisting of planning, prepa-
ration, and measurement with the goal of determining the features of an IT sys-
tem and demonstrating the difference between the current state and the required
state.

Fig. 6.1. Terminology definitions for “test” and “testing”

It is typical for Extreme Programming that it lacks a property-oriented
definition of the term “test”. Instead, the approach gives an operative de-
scription which simultaneously defines who is responsible for developing
tests. The description is also limited to two simple types of tests [AM01].

The definition from [Bin99] is particularly suitable as a basis for this book.
From this definition, we can derive the characteristics for tests summarized
in Fig. 6.2 which we use as the basis for the testing activities described in
this book. However, there are a number of exceptions to this characterization
which are also referred to as tests. Some exceptions are manual, interactive
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tests performed by the user during the acceptance test. Another alternative
is symbolic testing, which involves symbolic calculations—that is, the system
being tested does not actually “run”. Load tests in real distributed systems do
not always produce the same results; instead, the repeated execution of such
tests determines average values. This book does not cover any of these types
of tests.

1. A test—in contrast to a static analysis—executes the system being tested.

2. Tests are automated: since manual tests are very time-consuming for large sys-
tems, the quality of tests would otherwise suffer or project teammembers would
only perform tests and do nothing else.

3. An automated test sets up the test object, all necessary test data, and potentially
necessary context. Then it executes the test and checks the test results automati-
cally. The success or failure of the test is recognized and reported by the test run.

4. A test suite is a software system itself that runs together with the system being
tested.

5. A test is an example: it works on a set of input data—the test data.

6. A test can be repeated and is determined: it always produces the same results for
the system being tested.

7. A test is goal-oriented: it either demonstrates the presence and effects of an error
or alternatively, shows that the system has the required functionality for the test
case and is robust with regard to the test data.

8. Where a system has been modified, a test can prove that it demonstrates the
same behavior as the original system and can thus help to avoid errors during
further development.

Fig. 6.2. Characterization of tests

In recent years, it has become increasingly important to define fully au-
tomated tests. [FG99], for example, describes good arguments for doing
so. It also provides a detailed differentiation between such tests and semi-
automated or manual approaches.

It is also important to differentiate between the activity of testing, with
the goal of finding errors, and bug fixing or correcting errors, which takes place
after testing. Further measures for quality management include a code inspec-
tion (in which the source code written by developers is examined for poten-
tial errors) and verification (which cannot usually be performed for industry-
relevant systems—or rather, it cannot usually be performed yet). In contrast
to a test, however, verification could prove that an implementation is com-
pletely correctwith regard to a specification.

Table 6.3 classifies test terminology according to the type of system ele-
ment to be tested and indicates who is normally responsible for defining and
performing these tests. Depending on the development process used, the re-
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sponsibility for developing tests lies either with a separate test team or with
the developers themselves.

Table 6.3. Tests at various levels in the system

6.1.2 The Goals of Testing Activities

Tests are very important in the portfolio of quality management measures.
This is because we can create and execute automated tests systematically for
a specific purpose with an acceptable level of effort. Test code usually ex-
ceeds the size of the code to be tested but has a much simpler structure. In
contrast to the product code, it is much less important for the test code to
be elegant and non-redundant. It is acceptable, therefore, to develop tests
using copy and paste [Den91, Fow99], although it is also helpful to iden-
tify reusable abstractions and separate those into reusable methods. As our
auction system works with large sums of money and is subject to strict time-
based conditions, the required system quality in terms of the software being
error-free was rated particularly highly. Accordingly, 63% of the total code
developed is part of the test system.1 Nevertheless, developing and main-
taining the test cases made up approximately only 20% of the overall effort,
which is comparatively low.

The additional costs involved in developing and maintaining an au-
tomated test suite are therefore acceptable. A study in [KFN93] estimates
that the break-even point between the costs and benefits of automated tests
is comparable with approximately ten manual test cycles. Where systems
evolve dynamically and are subject to change even after installation, the
number of ten manual test cycles is quickly reached. Thanks to tools and

1 Measured in Java-LOC = lines of code, including comments.
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frameworks that are now available, such as JUnit [JUn11, BG98, BG99], the
process of defining test cases is also becoming more efficient, meaning that
the break-even point should reduce even further. The advantages of auto-
mated tests are:

• Errors in the program logic, errors in border cases, and incorrect coding
are detected early and almost always eliminated on occurrence.

• The confidence of the developers in their own code and the code of col-
leagues is significantly higher than usual due to the tests.

• The self-confidence of a developer to adapt code that he has not devel-
oped himself in order to meet modified requirements increases due to the
automated, repeatable tests and the knowledge about the system func-
tionality embedded in those tests.

• An extensive test suite can be understood as a second model for the sys-
tem alongside the actual system specification. This model contains only
example descriptions of the system which are concealed very implicitly
in the test case; however, the model has the invaluable advantage of exe-
cutability.

• A failed test can be viewed as an error description that documents the
symptoms of the error. Users of an interface can thus demonstrate errors
to those implementing the interface and can check very easily that the
error has been corrected.

• Automated tests are indispensable for repeatedly checking the behavior
of a system that is evolving. In this situation, interactive regression tests
would increase the repeated test effort to such an extent that a lot of per-
sonnel resources would be tied up with the tests over the course of the
project.

• According to [Fow99] and the author’s own experience, it is helpful to
approach unknown and in particular, untested code by checking the ex-
pected behavior of the system (the details of which may not yet be clear)
in the form of new test cases based on a code review. The understanding
of the code that arises as a result is more intensive and a side effect is that
(further) tests exist afterwards.

• Ultimately, an extensive test suite is also documentation for customers—
theymay not normally have the capacity or the knowledge to understand
the test cases but can understand the success reports from the tests. This
allows other developers to subsequently improve and extend the system.

Tests are developed based on goals. Tests for individual methods, classes,
and small subsystems serve primarily to detect errors and to eliminate and
thus document those errors. In contrast, the goal of integration tests and sys-
tem tests is primarily to demonstrate that errors are (largely) absent and that
the behavior of the implemented system matches the predefined descrip-
tions/specifications.
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6.1.3 Error Categories

We can differentiate between a number of error categories in a software sys-
tem. Fig. 6.4 gives definitions for the most important categories.

Failure: is the manifested inability of a system or component to perform a required
function within specified limits.

Fault: is missing or incorrect code.
Error: is a human action that produces a software fault.
Omission: is a required capability that is not present in an implementation.
Surprise: is code that does not support any required capability.

Fig. 6.4. Terminology definitions for errors according to [Bin99]

A fault in the software is expressed by the fact that executing the faulty
code can lead to a failure of the software system. Performing a test allows us
to detect the failure of the software in the test situation and to conclude that
there is a fault in the software. A failure can be the result of a combination
of faults; one fault can also lead to different forms of failures. This means
that some detective work may be necessary to localize the fault after a failure
is identified. One way of doing this is to perform debugging with manual
tracking of individual steps in the system. A better solution, however, is to
define tests at every level of the system so that a fault is detected with even
the smallest possible system configuration. We can then define further tests
to localize a fault specifically.

The term bug is often used as a generic term for failures and errors2,3. In
this book the term error is used as a synonym for bug and generally refers
to the failure of the system caused by a user action, an interaction with the
system environment, or a test.

Omissions and surprises cannot be detected by automated tests. Detecting
omissions requires formal or informal descriptions of the required function-
ality that are then used for a static analysis or a comparative review. For ex-
ample, omissions are discovered in form of noncompilable programs or by
acceptance tests. In contrast, surprises are less problematic. Although they
lead to unnecessary additional effort during system development, they do
not disrupt the essential functionality. Static analyses can detect unreachable
code in a method, for example.

2 The term bug originates from [Hop81], which describes how a moth was trapped
in a relay, and this resulted in the search for errors being identified with the search
for bugs.

3 Although the term bug is widely used, it is slang; in this book, therefore, the term
error is used.
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6.1.4 Terminology Definitions for Test Procedures

In the context of testing, there are a number of further terms that have al-
ready been used in this chapter and that require further explanation. Fig. 6.5
describes the main terms in brief.

Validation: Used to check whether the system fulfills the user’s requirements (ac-
cording to [Boe81]). This is done, for example, by means of prototyping during
the project and acceptance tests at the end of the project.

Verification: Used to prove that the implemented system fulfills the formal specifi-
cation and is therefore correct (according to [Boe81]).

System being tested: Also referred to as system under test and test object.
Test procedure: An approach for creating and executing tests. The theory of testing

provides a larger variety of test procedures, differing, e.g., in the identification
of appropriate sets of test data.

Test data: The test data consists of a specific set of values for a test that also contains
the object structure including the objects to be tested.

Expected test result: The expected result of a test. This can be given explicitly by a
dataset or implicitly by a test predicate—for example, as a comparison with the
result of a test oracle.

Test case: Consists of a description of the state of the system to be tested and the
environment before the test, the test data, and the expected test result.

Test suite: A set of test cases.
Test run: The execution of a test including the actual test results. A test driver orga-

nizes the execution, from the construction of the test data to the check of the test
success.

Test success: A test is successful if the actual result matches the expected result.
Otherwise, the test has failed.

Test result/verdict: A binary result indicating whether the test was successful or
failed.

Fig. 6.5. Terminology definitions for tests

[Bin99] uses the term “test point” for a set of test data, and this captures the
exemplary, selective nature of a test very well. The TTCN standard [ISO92]
differentiates between further test results. In addition to the test success
(“pass”), there are two types of failure (“failure”, “error”) and the alterna-
tives “inconclusive” and “none”, indicating that the test goal could not be
tested. In the TTCN standard, the test result is also referred to as the “ver-
dict”. In Java, the test result “error” can be interpreted as the termination of
a test object by an exception, for example.

The fact that a test failure means that the test and implementation are
not conform or that an unexpected exception occurred during the test is ex-
tremely important. The test or the implementation is thus faulty and this
must be clarified. [Mye79] points out that a failed test in this sense has fulfilled
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its purpose, namely the detection of errors, and can therefore be evaluated as
a success for the test activity.

6.1.5 Finding Suitable Test Data

One of the main problems associated with testing is the efficient develop-
ment of a systematic test suite that covers all important situations. If test data
is given for a test case, the expected result has usually been derived from
the specification or defined by the developer or user. Specifying an expected
result can involve a lot of effort and is prone to error. However, the product
system and the test suite test each other, meaning that errors in the test cases
can also be detected and eliminated.

Therefore, the main difficulty with testing lies in identifying suitable test
data and defining how many test cases are sufficient for an adequate test
suite.

[Mye79] described heuristics and procedures for developing sets of test
data. These heuristics and procedures are discussed in more detail in [Lig90]
and [Bei04]. They include procedures based on the control flow of the im-
plementation which cover all statements, branches, condition variations, or
paths within a method according to certain criteria. Other testing procedures
additionally identify equivalence classes of test data as well as border cases.

Data flow-oriented test procedures use access to attributes and variables to
develop test data. The prerequisite for both control flow-oriented and data
flow-oriented procedures is that the implementation of the system must be
known. Another factor these procedures have in common is that the test
cases are created based on the analysis of the implementation.

This contrasts with the class of functional or specification-based tests; these
tests are based on the specification. They check the functional properties of
a system. The tests therefore detect conformance errors in the system and
demonstrate whether the system matches the specified functionality.

We use metrics to determine the quality of a test suite. The metrics mea-
sure test coverage according to different criteria. However, even test coverage
that is complete according to these metrics does not guarantee that the sys-
tem is correct. In practice, testing is often based on experience and usually
described by test patterns, [Bin99], checklists [PKS02], and best practices. We
can see from the pragmatic test patterns that elements of test theory are still
retained but without a dogmatic 100% compliance requirement. For exam-
ple, the Extreme Programming approach intends statement coverage as a
minimum goal and, where possible, a minimum path coverage is desired.

6.1.6 Language-Specific Sources for Errors

A system can be robust even if there is no specification that it does conform to.
Robust implementations avoid abnormal crashes (exceptions), for example,
as a result of uninitialized attributes, references to objects that do not exist,
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and other similar problems. A typical source for problems with robustness
are language-specific deficiencies.

C++ is a prime example of a language that contains an extraordinary
number of error sources. This is due to the high number of unsecured C++
constructs. Memory management (which is the responsibility of the devel-
oper), pointer arithmetics, and unchecked accesses to fields are just some of
the possible error sources.

Although syntactically similar to C++, Java is significantly more robust
concerning these types of errors. In Java, many error sources have been elim-
inated with restrictive context conditions in the language and thus are de-
tected by static analyses. For example, a sophisticated data flow analysis
[GJSB05] can check whether values have been assigned to variables before
the variables are used. The extension of ESC/Java [RLNS00] with assertions
allows an even more extensive static analysis but requires, however, a more
detailed description of assertions in the Java code. Nevertheless, this can re-
duce errors even further.

Other kinds of errors are in Java detected by runtime checks and reported
as exceptions. These include the exceeding of array limits, division by 0, or
illegal casts. It is therefore relatively easy to design a robust program in Java.
However, the use of exceptions should be limited as far as possible, as excep-
tion processing has characteristics of the goto statement and can easily lead
to complex code. In general, only external error sources—such as a missing
file, a database that cannot be reached, or a broken Internet connection—
should be handed with exceptions. Internal error sources, such as division
by 0 or incorrect array limits, should be avoided by explicit handling.

Regardless of the technique to detect such errors, a robust treatment of
the error and corresponding tests are necessary to demonstrate that the error
is being handled correctly. This is also why the call hierarchy should not
contain to many exceptions to be followed.

Although Java was designed to be much more safe than C++, it does
still contain a number of error sources. We can prevent many of these error
sources with restrictive programming. In Java, for example, an attribute of
the superclass should not be hidden by the subclass containing an attribute
of the same name.

Object-oriented programs have a much higher degree of complexity than
procedural languages had. This is due to their high level of dynamics, the
inheritance hierarchy, and the dynamic binding of methods. Object-oriented
methods are usually much smaller compared to traditional procedures and
they interact more intensely with other methods. This gives rise, for exam-
ple, to the flexibility which is so important in frameworks: the flexibility is
created by the adaptation of methods in subclasses [FPR01, FSJ99]. However,
this possibility to redefine methods requires additional effort in the test. In
particular, in this situation it is no longer sufficient to test all possible control
flows within one method only; instead, all potential constellations of collab-
oration between methods in all subclasses must be checked. The size of the
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task multiplies with the number of collaborating objects (each of which can
originate from one of multiple subclasses). It is therefore often no longer pos-
sible to develop tests that cover all combinations of method calls and object
structures.

As UML/P uses Java as a target language, the problems that exist in Java
can generally also be found in UML/P. One exception is the afore-mentioned
hiding of attributes that cannot be represented in UML due to its context
conditions. Therefore, this problem does not arise when code is generated
according to Java.

Where UML diagrams are used constructively to generate code, there are
a number of ways in which the resulting program can violate the given spec-
ification. Depending on the form of the generation and the concepts imple-
mented, certain errors of the underlying language Java are avoided or new
problems are introduced. For example, according to the transformation spec-
ified in Section 5.1.3, restrictivemultiplicities of associations are not normally
implemented constructively. This can lead to a violation of the invariants
which can only be prevented by the environment of the association respect-
ing the invariant. We have to check this in tests. Similarly, state invariants
and postconditions in Statecharts are not necessarily ensured constructively
and must therefore be tested. On the other hand, as shown in Section 5.1.3,
generating suitable functionality can ensure, for example, that a bidirectional
association is always consistent and tests are then no longer necessary.

The definition of language-specific tests that can detect errors in robust-
ness is therefore essentially dependent on the form of the code generated.
Since it must be possible to parameterize the main elements of the code gen-
erator, it is difficult to predict which language-specific tests are necessary for
UML/P. For points at which a generator does not prevent the violation of in-
variants, it is therefore helpful to define suitable test cases for checking these
invariants.

6.1.7 UML/P as the Test and Implementation Language

As discussed in Section 4.1, UML/P can adopt numerous roles in the soft-
ware development process. It is suitable as both the implementation lan-
guage and as a language for defining tests. It thus takes over similar tasks to
those performed by the respective programming language used in Extreme
Programming projects. In these projects, the tests and implementation are
also formulated in the same language. Furthermore, experiences with UML
as the language for modeling tests show that it improves the efficiency of
the developers [BMJ01, BPR04]. Nevertheless, it is important to use UML in
a form in which it can be tested [BL01, Rum03]. Testability generally means
the ability to derive tests from the model or—ideally—to generate them au-
tomatically.

If we use UML/P as the implementation language and want to develop
tests systematically, we have to know which language-specific and typical
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object-oriented problems UML/P and the used generator solves and which
they cause. A typical problem of implementing bidirectional associations is
ensuring the consistency between the attributes on both sides that store the
association. If code is generated from a class diagram that may no longer be
modified manually, this consistency can be ensured constructively by the code
described in Section 5.1.3. This means that we no longer have to check the
consistency by means of tests.

On the other hand, using an attribute of the referenced object as a qual-
ifier in a qualified association introduces redundancy which can lead to in-
consistency when the attribute value is changed. A static analysis of the code
can determine whether this attribute is actually changed. However, if it is
changed, dynamic tests are necessary to determine whether this change vio-
lates the consistency for a qualified association.

Therefore, to check the robustness of implementations formulated in
UML/P, we have to examine the notations of UML/P and how they are used
for code generation and analyze them critically for possible error sources.
Note that UML/P consists not only of multiple types of diagrams and OCL,
but also allows Java code explicitly as method bodies and as procedural ac-
tions in Statecharts. As already mentioned, this means that many of the typ-
ical error sources for Java are retained. However, the potential error sources
of the implementation language UML/P depend primarily on the specific
implementation by the parameterized code generator and therefore cannot
be discussed in general terms.

As shown in the associations example above, UML/P needs to be exam-
ined for potential errors. We have five main strategies:

1. A static analysis of UML/P models can clarify whether a generated ele-
ment or instances of this element can be manipulated in a way that is
not permitted. Such manipulation can either be forbidden in the form of
a context condition or communicated by means of warnings. In UML/P
this applies, for example, for manipulations of attributes or associations
labeled with �frozen�.

2. The code generator adds a runtime check which, does not prevent an at-
tempted forbidden manipulation, but detects such a manipulation and,
for example, issues an exception. Java does this in the event of illegal ar-
ray accesses. UML/P can adopt this concept for qualified associations,
for example. However, these exceptions must be communicated to the
developer as part of the API discussed in Section 4.2.2.

3. The code generator designs not only the code for implementing a UML/P
construct but also test code which checks at runtime, whether a property
is respected. For example, the restricted association multiplicity can be
ensured by checking an invariant. This checking the invariant is similar to
the runtime check described above. However, it only exists only in in-
strumented product code and it does not throw an exception if violated,
but instead reports the failure of a test into a log.
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4. The code generator uses a model as specification of the expected behav-
ior and from this model, extracts test cases according to a coverage crite-
rion. Certain forms of Statecharts, for example, are suitable for generating
test cases that cover states, transitions, or paths.

5. The developer designs further tests himself to test properties of the code
generated from a UML/P construct.

The last point is not actually necessary if the code generator works cor-
rectly. However, a code generator is parameterized, as described in Chapter
4. Thus scripts can control code generation flexibly. This may result in the
generation of code which, for example, does not ensure the consistency of
the bidirectional association with suitable measures. This means that tests
for such properties typically check the code generator and its scripts for cor-
rectness and are therefore justified.

Therefore, we have to decide for each individual project which parts of
the system should be tested and how intensive the testing should be. The
project goals, the level of quality to be achieved, and the form of use of the
product of course also influence the decision.

Section 4.1.2 discusses, from the point of view of code generation, which
parts of UML/P can be used constructively or for tests. However, object dia-
grams that cannot be transformed directly into constructive code, OCL con-
straints, and Statecharts do not necessarily form test models that the code gen-
erator can use to perform tests.4 If the afore-mentioned diagrams are initially
used in the development process only for communication between develop-
ers or for abstract representation, they normally have to be enriched with
more details so that they can be used as test models suitable for generating
tests. Chapters 4 and 5 discussed the transformation of individual diagrams
and OCL constraints into test code in detail. Therefore, we discuss in the fol-
lowing the methodological use of combinations of UML/P artifacts to create
test cases for conformance tests.

Fig. 4.3 illustrates the typical use of UML/P diagrams for tests and imple-
mentation. While the product code represents a complete, independent sys-
tem, the test code can only be executed in combinationwith the product code.
The product code is furthermore instrumented for use in tests. This means that
additional pieces of code are injected into the product code so that the test
code can also access all necessary information during the test process. These
additional pieces of code include, for example, special functions for assign-
ing values to and reading encapsulated attributes if the corresponding get
and set functions are not available or have additional effects such as, for ex-
ample, for maintaining the consistency between multiple attributes. We also

4 The term “test model” was introduced in Fig. 4.1. Due to the aspect of generation
fromUMLmodels, in that diagram it is definedmore narrowly than in the Rational
Unified Process [Kru03], for example—there, a manual conversion into scripts and
test drivers is proposed, with the scripts and test drivers also counting as part of
the test model.
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insert code that checks invariants and OCL method specifications at runtime
and code that enables the logging of method calls for comparison with pre-
defined orders of calls. When programming in conventional Java, we have
to develop test monitors or adapters for such tasks [Wil01], although these
have only limited access to the test objects.

The instrumentation must not affect the functional behavior of the prod-
uct code, which is why the use of modifying methods in OCL constraints is
forbidden. This is the only way to guarantee that the product code that is
approved for release but is not instrumented has the same behavior as the
code that has been tested.

It may be necessary to instrument the same product code differently for
different tests. For example, the order of calls is irrelevant for only some tests.
Testing all OCL invariants in all tests can also be very inefficient: tests become
impractical if it takes too long to execute them. Therefore, the instrumenta-
tion must either be individualized dependent on the test currently being ex-
ecuted or parameterized through Boolean flags at runtime. The latter has the
disadvantage that the instrumented code can become very large; however, it
has the advantage that no repeated code generation and transformation of
the generated code is necessary. The test driver can set the flags directly or
they can be set by stereotypes in the test description. Due to the constantly
increasing power of computers and the efficiency of good compilers, we can
assume that the code instrumentation for test purposes and the simulation
of the environment and distribution that are needed for efficient testing, as
well as the dynamic check of invariants, preconditions, and postconditions
in the product code are practicably realizable.

The instrumented product code and the test code test each other. If a test
case has failed, the test object or even the test case itself may be faulty. In
practice, and as observed in the auction project, it is much more frequently
the case that the test cases are faulty, but the product is ok—for example,
because a change in the functionality of a method was not implemented ap-
propriately in the test case. The situation becomes awkward if both the test
object and the test case are consistently faulty and a test success is wrongly
reported. This problem occurs in particular when a developer designs both
the product code and the test and in doing so, repeats an error in his logical
considerations. In the Extreme Programming approach, this is countered, for
example, by two developers working on the code together at the same time.
In addition, tests of the layers above or the integration levels should still be
able to detect such an error.

6.1.8 A Notation for Defining Test Cases

There also exist languages used specifically for the specification of tests. For
example, the telecommunications industry uses TTCN [ISO92, GS02] in com-
bination with MSCs [IT11, Krü00] and SDL [IT07b]. In this domain the use
of a special test notation is regarded as an advantage compared to the use of
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a general purpose programming language for defining test drivers, because
it allows more abstract and thus clearer test specifications. With the JUnit
framework [JUn11] support by a well-designed library of auxiliary functions
is available and can relatively easily be extended. For an abstract test notation
some investment is necessary to develop a test tool for interpreting the test
notation to drive software and hardware components as well as to train the
developers in that notation. Thus, both approaches have their merits. How-
ever, using the same programming language for tests and implementation
has more advantages compared to using a separate test notation:

• The effort involved in learning a test notation should not be overlooked,
but only applies if the test language is different from the realization lan-
guage.

• The expressiveness of test notations is typically limited. This results in
an inability to formulate certain tests or the test notation being extended
ad hoc. The latter is not possible, for example, if the tool used cannot be
modified. If it is possible, it involves an enormous amount of additional
effort that is usually significantly lower if a corresponding framework is
extended instead.

• The best situation for integration between a test notation and an imple-
mentation language is given when both are identical or the test language
builds on the other. Otherwise, the concepts of the implementation lan-
guage (for example, attributes or method calls) must be made available
in a suitable way in the test notation so that they are accessible in tests.

It is not surprising, therefore, that inmany software development projects,
and in particular those that use agile methods, the same notation is used for
realizing tests and for programming. In projects that use UML/P—that is, a
combination of modeling techniques from UML and from Java—it is there-
fore an advantage to also use UML/P to model tests:

• UML/P provides an abstract notation for modeling tests.
• The combination of UMLwith Java allows us to still describe special cases

of tests that cannot be formulated directly in UML within an integrated
framework.

• The afore-mentioned effort involved in learning a new test notation does
not arise or is reduced to understanding how UML/P, which is already
used for system development, can also be used to model tests.

• The mental obstacle to developing tests in a new notation does not apply.
• There is no conceptual breach between the test notation and the modeling

or implementation language.
• No additional notational or technical knowledge is required to model

tests, meaning that developers are generally capable of defining tests
themselves.

UML/P therefore combines the advantages of an abstract notation for test
cases with the good integration of the test and implementation language.
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This integrated use of UML/P means that it is actually realistic to create a
sufficient test suite in a short time parallel to the system development. It is
therefore not surprising that Java is being used increasingly in parallel to test
notations. This is the case not only for the development of business software,
but also for the development of embedded systems, such as telecommunica-
tions systems.5

As a test usually consists of multiple UML diagrams, some additional
syntax is necessary to define tests compactly. The proposal presented here
is restricted to the referencing of UML diagrams, OCL constraints, and the
integration of Java code in order to formulate parts of the test. Fig. 6.6 shows
the complete pattern for defining tests. Any unused parts can be omitted.

Test

test Test object, e.g., method or class e.g., Auction.bid {
name: Generation target for the test, e.g., AuctionTest.testBid
testdata: Object diagrams prepare the set of test data
tune: Java code allows individual, additional adjustment of the

test data
driver: Java method call(s) | sequence diagram
methodspec: OCL method specifications are checked for a method test
interaction: Sequence diagrams are checked as sequence descriptions
oracle: Java method call | Statechart produces comparable oracle results
comparator: Java code | OCL code compares test results with oracle results

The default is a match for structure and attribute contents
statechart: Statechart for object name from initial state

to { final states }
The test has to trigger transitions in the specified object,
from the initial state to one of the final states

assert: Object diagrams | OCL constraints | Java test code
Boolean conditions for the test result

cleanup: Java code cleans up resources used
}

Fig. 6.6. Template for defining a test

The individual components are discussed later on in this chapter. The
discussion uses a table-like variant of this pattern that is suitable for defining
multiple tests clearly.

5 For example, Ericsson used Java to model function tests in the mobile communi-
cations sector and TTCN [ISO92] for protocol validation only already in 2004.
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6.2 Defining Test Cases

6.2.1 Implementing a Test Case Operatively

According to the definition, a test case consists of a set of test data, a descrip-
tion of the initial state of the test object and its environment, and the expected
result of the test. In order to implement a test case operatively, we have to
realize an executable test driver. The task of a test driver is to set up the test
object, including the test data, and to insert it in a test environment so that
the test object can run as if it were in the product system. At the same time,
the data of the actual result that is relevant for the comparison with the ex-
pected result is stored. To do this, the test driver uses an instrumentation of
the test object that gives it the required access to the data of the test object and
the dummy objects described in Section 8.1 in order to simulate the environ-
ment of the test object. Side effects, such as database access, screen output, or
external communication are captured in dummies and logged if necessary.

Fig. 6.7 demonstrates a typical approach for simple test drivers. This ap-
proach is refined in Section 7.4: a method sequence is executed instead of just
one method and the order of the internal sequences is observed.

Fig. 6.7. Structure of a simple test driver

Fig. 6.7 shows an object structure with four objects that is handed over
to the called method as a set of test data. The called method itself is usually
attached to one of these objects (for example o1). The other objects, o2 to o4,
are necessary because the calledmethod access these objects andmay change
them. Further objects (u1, u2, and u3) are necessary to allow access to the
environment. The environment is replaced by a simulation with the dummies
discussed in Section 8.1. The test object and the simulated test environment
are distinguished differently depending on the test goal. In a method test, the
test object actually consists only of the called method. Therefore, the direct
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environment can be replaced with dummies and, if necessary, simulate other
methods of the same class. In class tests, the objects of the environment are
also typically replaced by dummies. In contrast, for integration and system
tests, as little as possible is replaced, often only the real system boundary.

Implementing a test case operatively requires a test driver that is nor-
mally realized in a test method. A test driver consists of three main phases:

1. The object structure required for the test, including the dummies for the
environment, is set up.

2. The test object is executed. Often, only one single method is called.
3. The actual result obtained is compared with the expected result. The ac-

tual result consists, as shown in Fig. 6.7, of the resulting object structure,
any access logs to the simulated environment found in the dummies, and
a return value for the method tested.

If a file or an Internet connection has to be opened for a test case, or a
database has to be adapted, etc., at the end of the test these have to be cleaned
up. In C++ this includes, for example, releasing any object structures created.

The Java framework JUnit [JUn11, BG98, BG99, HL02], which is now
available for a large number of programming languages, offers excellent
support for defining tests. JUnit offers an infrastructure and methodological
guidelines for defining test data and for executing tests in the form shown in
Fig. 6.7.

In addition to internal test drivers, there are approaches for defining test
drivers as scripts outside the actual system. In that situation, the test data
and results are typically stored in files. The comparison of the expected and
actual results is reduced to a file comparison. Based on today’s technology,
the use of external test data and test drivers primarily for file-based systems,
such as compilers, generators, or XML transformers, is a good supplement
for internal test cases but is only suitable for system tests. [Den91] proposes
a variant for a test system that only stores the results in files or a database
externally and compares them there, while the test drivers are defined in the
system programming language.

6.2.2 Comparing Test Results

Design Patterns for Comparison

Creating test data is a rather complex process, quite like the comparison of
expected and actual results. Providing the developer with adequate support
for analyzing the actual result of a test by means of comparison with an ex-
plicitly given expected result, verification of an invariant, or similar tech-
niques has a significant effect on the efficiency of developing tests. On the
one hand, it must be possible to formulate this comparison as quickly and
compactly as possible; on the other hand, it is equally important that the
comparison has a certain level of resilience against changes to elements of
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the system that are used in the test but are not actually part of the test. We
can use equivalence comparisons or abstractions here. Therefore, specific de-
sign patterns are useful for selecting the correct form of comparison in each
case.We call them in short comparison patterns. Fig. 6.8 classifies possible com-
parisons with mathematical means. These techniques, which are similar in
theory, have very different effects in the practical implementation discussed
below.

We assume thatA andB are the sets of object structures handled (one object structure
generally contains multiple objects). A method f is understood as function f : A →
B. P represents a predicate. For simplification, A and B contain method parameters
and results as well as read and modified attributes and objects.
We can identify the following comparison patterns and thus represent the expected
result explicitly or implicitly, whereby in some cases, a pattern specializes its prede-
cessor. Let us assume x ∈ A:

Difference comparison P (x, f(x)): The before/after comparison describes the
comparison between the source structure x and the actual test result f(x) based
on a comparison predicate P .

Property check P (f(x)): Checks a property that is not directly dependent on the
source structure. This includes invariants but also specific tests of individual
attributes and attribute combinations of the actual result.

Equivalence comparison f(x) ≡ y with explicitly predefined y ∈ B and an equiva-
lence≡ that compares only relevant aspects. An equivalence that can be realized
by simple means is the structural and value-based equality.

Comparison after abstraction Ab(f(x)) = Ab(y) or Ab(f(x)) = z is a variant of
the equivalence test with an explicitly represented abstraction Ab : B → Z
and z ∈ Z. A simple example of an abstraction is the selective comparison of
attributes of an object that is occasionally implemented in the method equal,
for example.

Identity check f−1(f(x)) = x, whereby it must be possible to invert f in order to
restore the original state.

Check with oracle function g(x) = f(x), in which a second realization g exists and
is independent of f , but implements the same functionality.

These comparison techniques can be combined. If, for example, an oracle function
produces only an equivalent but not an identical result, a comparison in the form
g(x) ≡ f(x)with a suitable equivalence is useful.

Fig. 6.8. Design patterns for comparison in a test

Advantages and Disadvantages of Comparison Patterns

The difference comparison P (x, f(x)) can check desired modifications and de-
tect undesiredmodifications. Due to the parameterization of P , we can apply
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the comparison to various initial datasets x in which f should exhibit the de-
sired behavior. One example is checking whether a counter was increased.
OCL method specifications are a suitable means for describing such compar-
isons.

The property check determines, for example, whether invariants have been
respected or whether certain values have been assigned to certain attributes.
In most cases, the actual result is checked only selectively and thus an ab-
straction is performed. This has the advantage that if the system is changed
at a point that is not relevant for the test case, the test case is still success-
ful. As a special case of the property check, the equivalence comparison uses
an explicit representation y of the expected result. In a comparison, we can
use an appropriate equivalence and thus, for example, omit the check of ir-
relevant attributes or ignore the order in a container. Using an abstraction is
mathematically equivalent but is implemented differently.6

The identity check is only possible in very limited circumstances if (a) the
function can be inverted and (b) the inverse function f−1 can be realizedwith
a reasonable level of effort. Ideally, the inverse function f−1 is also present
in the system to be tested and has already been checked through other test
cases.

An alternative implementation—also referred to as the oracle function—is
useful, for example, if we want to replace an existing implementation with
an improved version in a refactoring. This, for example, works nicely when
replacing a sorting algorithm. Another option is to use an executable spec-
ification as an oracle provided the specification has not already been used
for the implementation. Statecharts are suitable in this case, for example. If
the result received using the oracle function deviates from the test result in
irrelevant details, we can specify an explicit comparison function that checks
for an equivalence instead of equality.

Requirements for Operative Implementation

From the mathematical characterization of the comparison patterns shown
in Fig. 6.8, we can derive information about which functionality a frame-
work should provide to support an operative implementation. The frame-
work functionality is understood as part of the UML runtime environment
according to Fig. 4.6.

For the difference comparison P (x, f(x)), after the test execution the source
structure x and the actual result f(x) must be provided simultaneously.
Therefore, we have to create a clone of the initial data before executing f .
If a comparison fails, a useful output of the actual result f(x) is required to be
able to analyze the error. Both the cloning functionality and the output must
access the underlying object network.

6 An abstraction Ab defines an equivalence through x ≡ y ⇔ Ab(x) = Ab(y).
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The equivalence comparison f(x) ≡ y requires an implementation of the
comparison operator. We cannot always use the comparison operators ==
and equals() provided by Java. For objects, the operator == compares only
the object identity and therefore we cannot use it for content comparisons.
The developer can redefine equals() for each class but this operator is al-
ready used in the product system—some of the container structures use the
equals() operator, for example. Therefore, the functionality of this opera-
tor desired in the product system can be incompatible with the behavior in
a test comparison. Furthermore, different individual comparisons ≡ may be
necessary for different tests. For example, it may be necessary to compare
vector objects as realizations of sequences or sets, that is, with or without
respecting the order; alternatively, only a subset of the attributes may be rel-
evant for a comparison of objects in an application class. Therefore, support
for a flexible definition of comparisons for object structures is desirable, with
these comparisons being able to compare recursive object structures or object
structures subject to cycles. If the test fails, the recursive output of the actual
result f(x) should also be marked with the differences to the expected result
y.

Abstractions in the form Ab(f(x)) = Ab(y) and Ab(f(x)) = z used before
the comparison include, for example, the selection of individual attributes,
an individual object, or a substructure. The definition of a comparison oper-
ation described above allows us to perform the abstraction implicitly without
calculating the abstracted data structure explicitly. It is therefore an efficient
way of coding an abstraction intended for a comparison. In some cases, it
is useful instead to delete attribute values and links that are not to be com-
pared, or to calculate a transformation into a normal form. This allows us, for
example, to first sort two sequences that are to be interpreted as sets and then
compare them element by element.

The last two variants, the identity check f−1(f(x)) = x and the check us-
ing an oracle function g(x) = f(x), are based on the existence of correspond-
ing functionality. The function g represents a form of oracle. Oracles are dis-
cussed in more detail in [Bin99], which states, correctly, that a perfect oracle
is not possible. At the same time, however, it provides some patterns for re-
alizing oracles.

6.2.3 The JUnit tool

From the previous discussion in this section, we can see that it is important
to provide suitable functionality to support the definition of tests. This func-
tionality can be provided by tools such as generators or analyzers or by a
framework. Ideally, it is provided by a combination of both: a generator gen-
erates test code that works together with the framework. The framework can
then be regarded as a component of the UML/P runtime environment. The
JUnit [JUn11, BG98, BG99, HL02] framework described below has a lot of
the functionality required for this purpose.
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Fig. 6.9 shows an excerpt of a test of the method bid of the class Auction
formulated in Java and performed with JUnit.

Javapublic class AuctionTest {
@Test
public void testBidSimple() {

// (1) Setup of the object structure
Auction auction = new Auction(...);
Person person = new Person(...);
Time time = new Time("14:42:22", "Feb 21 2000");
Money money = new Money("552000", "$US", 2);
// Further objects are required to complete the structure

// (2) Execution of the test
boolean result = auction.bid(person,time,money);

// (3) Check of results
// result==true: Bid was successful
assertTrue(result);

// The bid submitted is currently the best bid
assertEquals(money, auction.getBestBid());

// The end of the auction was defined as time + extensiontime
Time expectedClosingTime =

new Time("14:45:22", "Feb 21 2000");
assertEquals(expectedClosingTime,

auction.getCurrentClosingTime());
}
... // E.g. constructor

}

Fig. 6.9. Test driver for the method bid in JUnit

In a setup phase (1), all objects required for the test are created. These
can be complex object structures (as is the case with Auction and Person)
that are also connected to one another. Therefore, this first phase is often
outsourced to a separate method with the name setUp. In this example, the
number of objects required is already relatively high. To achieve the greatest
possible efficiency in the test run, according to [LF02] small object structures
should be used as far as possible.

The execution of the test (2) consists of a simple method call. The results
are then compared (3), whereby the methods assertX can be used to define
and to report the success or failure7 of the test. These methods are available
7 JUnit uses the term “failure” for the failure of a test and “error” for an abnormal
termination of the test execution by an exception.
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as static methods from the JUnit framework or alternatively inherited from a
given class TestCase.

Some of the strengths of JUnit lie in the management and combination
of test suites. This is because JUnit provides simple mechanisms for creating
test suites and for executing such suites individually. JUnit is a cleverly imple-
mented framework that is demonstrated only incompletely in this example.
It has only a few classes and a small API that the user has to understand. It
can thus be used to define test cases effectively through clever formation of
subclasses and interface implementation. JUnit is easy to handle because the
implementation language and the language for defining test cases are iden-
tical. Therefore, the same development environment can be used. JUnit is a
successful example of a development tool that is realized as a framework in
the implementation language itself and therefore easily and elegantly creates
a close connection between the tool and the implementation.
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Model-Based Tests

Testing is an extremely creative
and intellectually challenging task.

Glenford J. Myers, [Mye01]

Building on Chapter 6, this chapter focuses on practical issues associated
with implementing tests with UML. It demonstrates how we can define test
cases efficiently using UML/P and which types of diagrams are suitable for
doing so.
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First, the terminology and typical problems are discussed. Then, this
chapter addresses several specific techniques for using UML/P notations to
define and develop test cases.

The process of defining test cases in UML/P is based on the transfor-
mation of diagrams and OCL into pieces of code as described in Chapter 5.
These pieces of code are then put together to create test cases and consis-
tency checks. On this basis, the various sections in this chapter use exam-
ples to demonstrate how to model test cases with the following elements:
object diagrams, Section 7.1; OCL invariants, Section 7.2; method specifica-
tions, Section 7.3; sequence diagrams, Section 7.4; and Statecharts, Section
7.5.

7.1 Test Data and Expected Results using Object Diagrams

Fig. 7.1 shows the use of two object diagrams to represent the test data and
the expected result that is based on Fig. 6.7. To enable an object diagram to
be used for multiple test cases, small adjustments in specific situations ma be
necessary. Therefore, it is possible to add some adjusting Java code once the
relevant object structure has been built up.

Fig. 7.1. Standard form of the test with object diagrams, OCL, and Java test driver

Once the test object has been executed, the actual resulting data structure
is available. Afterwards, it is compared to the expected data structure speci-
fied by the second object diagram. Additional properties can be checked via
OCL constraints. These can be OCL invariants that are generally valid and
should always be checked, but can also be constraints specific to the test.

One of the typical sets of test data used in the auction system consists
of the following: one object of the class AllData, several auctions with all
dependent objects, several persons in different situations logged in, and a
series of bids and other messages sent to some open and some completed
auctions. In our project we needed just a handful of data records from these
basic structures because by adapting themwith additional Java code, we can
reuse them for lots of different test cases.
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Fig. 7.2. Set of test data as an object diagram

With the set of test data represented in Fig. 7.2, the expected result (here
an excerpt) in Fig. 7.3 describes the effect of the method for opening an auc-
tion (start()).

OCLcontext Auction a inv NoBidYet:
{ m in a1213.message | m instanceof BidMessage }

== Set{}

Fig. 7.3. Expected results as an object diagram

In addition to the OCL constraint, specified as NoBidYet, which states
that no bid has been submitted since the auction was opened, there are addi-
tional invariants that have to be respected. Bidders1, for example, is valid
for auctions generally:

OCLcontext Auction a inv Bidders1:
a.activeParticipants <= a.bidder.size

It must therefore also apply once an auction has been opened. If the dia-
grams described are based on code generation in accordance with Chapter 5,
we can formulate a test with the Java/P extension described in Appendix B,
Volume 1 as follows:

Java/PtestStart() {
Auction a1213 = setupYetClosed(); // Create test data
a1213.start(); // Execute test
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ocl isStructuredAsRunning(a1213); // Expected result satisfied?
ocl checkNoBidYet(a1213); // Property NoBidYet
ocl checkBidders1(a1213); // Invariant Bidders1
ocl checkTime1(a1213); // Further invariant Time1

}

UML/P offers a separate type of document that we can use to formulate
these tests more compactly:

Testtest Auction.start() {
testdata: OD YetClosed;
driver: a1213.start();
assert: OD Running; inv NoBidYet; inv Bidders1; inv Time1;

}

For a good use of the JUnit framework capabilities, an adapted code gen-
erator for the Boolean query isStructuredAs, which is based on the ob-
ject diagrams and check-implementations for all OCL constraints, is helpful.
This method results not only in a Boolean value but, when an error occurs,
also a description of the reason and the actual result like it is common for
JUnit. This description ideally describes the name of the OCL constraint vio-
lated or the name and content of the objects and attributes that deviate from
the expected result.

Fig. 7.3 presents the expected result in just as much detail as the test data.
This does not always have to be the case. The object diagram used for the
test data requires a certain level of completeness to create object structures
constructively. In contrast the expected result only has to present the part of
the object structure that is of interest for the test case. Individual attributes
can be omitted but derived attributes can also be used. If a substructure of the
objects is missing from the expected result, this does not mean (in terms of
the semantics of an object diagram) that this substructure needs to be deleted
in the actual result; it merely means that the current form of the substructure
is of no interest.

Adding the stereotype �complete� from Table 5.15 indicates that the ob-
ject diagram should be understood as a complete description of an object
structure including all links. In this case, the comparison is significantly more
restrictive, as described in Section 5.2. However, in this object diagram, all at-
tribute values also have to be specified.

We can use the ability to combine object diagrams controlled by OCL
logical operators, as discussed in Section 4.3, Volume 1, as an aid for mod-
ularization when modeling test data and expected results. According to the
procedure discussed in Section 5.2, we can combine object diagrams and thus
put the entire structure of the test data together from several individual dia-
grams. We can use the flexible ability to combine object diagrams using OCL
operators, as discussed in Chapter 4, Volume 1, to define the expected re-
sult. For example, we can use negated object diagrams to check that a certain
situation does not occur.
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The procedure for modeling test cases with UML proposed here is also
found in approaches such as [CCD02], where object diagrams are also used to
model test data. There, multiple stereotypes are available allowing to remark
the purpose in the object diagram directly. However, this reduces the ability
to reuse the diagram for different purposes.

The use of object diagrams is demonstrated in more detail in Chapter 8
using test patterns.

7.2 Invariants as Code Instrumentations

One of the disadvantages of modeling test cases according to the style shown
in Fig. 6.7 is the lack of opportunity to check invariants during the test run. If,
for example, a complex algorithm is processed, it can be useful to formulate
and check intermediate properties that apply instead of checking only the
result and having to draw conclusions about internal intermediate states. For
this purpose, Appendix B, Volume 1 introduced the already frequently used
ocl statement with an OCL constraint as an assertion to be checked. This
is supplemented by a let statement for defining local variables that can be
used in later OCL invariants in order to access earlier states.1

The example in Fig. 7.4 demonstrates the use of ocl and let statements
based on a method of the class Auction for sending messages.

Java/Pclass Auction {
addMessage(Message m) {

ocl !this.message.contains(m);

let oldMessageSize = message.size;
message.add(m);
ocl message.size == oldMessageSize +1;

for(Iterator<Person> ip = bidder.iterator();
ip.hasNext(); ) {

Person p = ip.next();
p.addMessage(m);
ocl MessagesDelivered(this,p);

}
}}

Fig. 7.4. Assertions as ocl statements

1 With the assert statement, available since version 1.4, Java offers a similar form
for assertions. However, there is no analogy for the let statement that allows the
introduction of local variables for test purposes only.
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As shown in Fig. 7.4, an ocl statement comes with an OCL constraint,
but could also ne a name of a named OCL invariant. The example refers to
the following OCL invariant that describes the relation between an auction
and the person receiving a message:

OCLimport Auction a, Person p inv MessagesDelivered:
p in a.bidder implies

forall m in a.message: m in p.message

According to Section 4.4, Volume 1, object diagrams are excellently suited
for describing a state via a predicate. It follows, therefore, that we can also use
object diagrams and the combination of object diagrams and OCL described
in Section 4.3, Volume 1 as assertions.

We can also define local variables within loops. Although the variables
introduced with let are not modifiable, they have the same visibility range
as normal local Java variables and new values are therefore assigned to them
with each iteration of the loop. This allows us, for example, to check the ter-
mination of the (not entirely trivial) loop given in Fig. 7.5.

Java/Pint n = ...;
while( n>0 ) {

let nOld = n;
if( n % 1 == 0 ) n = n/2; else n = n-1;
// Use of n . . .
ocl nOld > n; // Decreasing values
ocl nOld > 0; // Limitation by 0

}
ocl n<=0; // Applicable after the loop

Fig. 7.5. Assertions that show the termination

To terminate the loop in Fig. 7.5, we use the constantly decreasing vari-
able n, which has a lower limit of 0. The old value of this variable is buffered
in nOld.

The addition of the two statements to Java is very much based on as-
sertion logic that uses the same techniques to prove statements about pro-
grams. In fact, these technics allow us to do much more than merely support
exemplary tests. A suitable verification calculus for Java, as discussed for
example in [vO01] and [RWH01], can thus verify that invariants are always
valid. However, in an object-oriented system, developing a sufficiently com-
plete set of assertions in code to allow a verification tool to check correctness
involves a great deal of effort. Nevertheless, such an approach can be inter-
esting for specific tasks, such as complex algorithms, logs, or core elements
of the security architecture.

It must be possible for the compiler to handle the instrumentation of the
product code with checks for invariants flexibly: in live operation the instru-
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mentation should not take place; in trial operation, an instrumentation invis-
ible to the user but with an output in the background (log) must be possible;
and in a test system, an instrumentation suitable for test cases, with output
and error display via JUnit, should take place.

7.3 Method Specifications

One of the main application domains of OCL is describing the behavior of
individual methods abstractly by specifying a precondition and a postcondi-
tion for the method. A method specification can act as a code instrumenta-
tion, as part of a test case, and as the starting point for deriving sets of test
data.

7.3.1 Method Specification for Code Instrumentation

The pair CC2pre/CC2post is a typical example of a method specification.
It is taken from Section 3.4.3, Volume 1 and its context is already described
there:

OCLcontext Person.changeCompany(String name)
pre CC2pre: company.name != name &&

exists Company co: co.name == name
post CC2post:

company.name == name &&
company.employees == company.employees@pre +1 &&
company@pre.employees == company@pre.employees@pre -1

A typical transformation of this method specification is the instrumenta-
tion of the product code analog to the use of assertions described in Section
7.2. Fig. 7.6 shows a method body of the method changeCompany for one
of the three cases discussed below. Here, the method body has been supple-
mented with ocl statements.

As discussed in Section 7.2, the ocl statements and their OCL arguments
are transformed into JUnit-capable runtime checks. Instead of the existence
quantification in the OCL constraint, which is a problem for the execution
time, we can provide a more efficient version by redefining the method spec-
ification. Instead of using the existence quantification with the let construct,
the Company object is defined directly.

7.3.2 Method Specifications for Determining Test Cases

Although the transformation described above uses the method specification
to instrument the product code, it does not give rise to a test case or the
operative transformation of a test case into a test driver. Developing tests
from a pair consisting of a precondition and a postcondition is not generally
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Java/Pclass Person {
changeCompany(String name) {

// pre CC2pre:
ocl company.name != name &&

exists Company co: co.name == name;

// Method implementation
Company oldCo = company;
Company newCo = AllData.instance().getCompany(name);
if(newCo==null) ... // Company does not exist

company = newCo;
newCo.employees++;
oldCo.employees--;

// post CC2post:
ocl company.name == name &&

company.employees == company.employees@pre +1 &&
company@pre.employees == company@pre.employees@pre-1;

}}

Fig. 7.6. Instrumentation with precondition/postcondition

easy. However, for certain forms of methods, we can derive suitable sets of
tests data from the structure of the specification.

Starting from the disjunctive normal form of the precondition, we can
perform a partitioning that requires the definition of a test case for each
satisfiable clause of the normal form. In [BW02a] and [BW02b], this was
done for an example by means of transformation according to Isabelle/HOL
[NPW02] in order to detect and eliminate unsatisfiable parts with a verifica-
tion tool at least partially automatically. The example changeCompany, with
its three specification parts (see Section 3.4.3, Volume 1), can also be under-
stood as a disjunction. This method is described by three pairs of precondi-
tions/postconditions that define three equivalence classes of inputs CC1pre,
CC2pre, and CC3pre:

OCL// List of preconditions as OCL parts
context Person.changeCompany(String name)

pre CC1pre: !exists Company co: co.name == name

pre CC2pre: company.name != name &&
exists Company co: co.name == name

pre CC3pre: company.name == name

These equivalence classes are pairwise disjoint and partition the entire
possible input range. The disjunction of the three conditions produces:
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OCLCC1pre || CC2pre || CC3pre <=> true

Therefore, at least one test case should be provided for each of these three
equivalence classes. Identifying equivalence classes for test data is a signifi-
cant step towards developing tests systematically. Interesting test cases can
be determined based on a manual or tool-supported analysis of the specifi-
cation. Unfortunately, we have to accept that it is not easy to automate the
generation of sets of test data (in this example, object structures in each of
which one of the specified conditions is valid). For example, the constructive
transformation of the existential quantifier exists x: P, (that is, the gen-
eration of code that creates an object x that satisfies the condition P) can only
be resolved for special cases of P. Nevertheless, when analyzing a given test
suite, it is helpful to receive corresponding information if one of the equiva-
lence classes specified is not covered by tests.

As described in [Mye01], [Lig90], and [Bal98], we can refine the partition-
ing of the space for test data by analyzing the postconditions. This takes the
following specification into account:

OCLcontext int abs(int val)
pre: true
post: if (val>=0) then result==val else result==-val

As the precondition is true, it cannot be used to partition the space for
test data. In this case, however, an analysis of the postcondition can help as
it allows us to easily identify two equivalence classes: val>=0 and val<0.

A further possibility for defining test cases is the standard formation of
equivalence classes and the consideration of borderline cases. This option
is particularly suitable for the data types offered by the programming lan-
guage. For integers, for example, test data from

OCLSet{-n,-10,-2,-1,0,1,2,3,4,10,11,n+1}
for a large n within the value range can be used, as critical special cases

are often found around 0. We can define similar standards for container data
structures, Boolean values, and floating-point numbers.

These standard cases are derived from the realization that these data
types contain special values for which the implementation takes a different
path compared to the neighboring values. The boundary value analysis pro-
cedure [Mye01, Bal98] explicitly restricts such value ranges and covers them
with sets of test data on both sides of the boundary. The mathematical abs
function has 0 as boundary and requires, e.g., -1, 0, +1 as test data. In most
cases, however, defining the boundary values is more complex, as condi-
tional expressions can place the parameters in relation.

In addition to developing black box tests from the specification, we
should not forget to derive white box tests from a given implementation.
Additional cases that may not be recognizable in the specification only be-
come obvious when we analyze the implementation, in this case the Java
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code bodies and transition actions in particular. Here we have to use classic
techniques for test coverage [Bei95, Bal98].

In some cases, we cannot predict the set and type of test cases required
from a specification because there are several different implementations.
These include, for example, different sorting variants, such as merge sort,
quick sort, or bubble sort, which each have very different functions and
therefore require different sets of test data. In particular, tests for combina-
tions require a lot of effort, especially, when bubble sort is used to presort
small strings before merge sort is applied.

In general, however, it is important to develop solely test cases based on a
code analysis and on the specification. This is because solely code-based tests
are suitable primarily for ensuring robustness, while specification-based
tests check that the implemented and the specified behavior match—that is
done by checking conformity to the specification. If, for example, a specifica-
tion case has been forgotten in the implementation (an omission), it cannot be
discovered by code-based test cases.

However, we must be careful when using metrics schematically for test
case coverage. On the one hand, important cases could be overlooked and on
the other hand, a lot of potentially unnecessary additional effort might arise.
Therefore, the optimal situation is a combination of different approaches for
defining test cases that is adapted to the complexity of the test object and to
the required level of system quality.

7.3.3 Defining Test Cases using Method Specifications

A method specification on its own does not represent a complete test case—
it also needs a set of test data. The table in Fig. 7.7 represents a test suite
consisting of five test cases that can be used to generate a test suite for JUnit
automatically.

The same object diagram can be used as a set of test data for the first three
cases, as all three cases can be varied through the call parameter. For cases
(4) and (5), additional Java code is used. This additional code is executed
after the construction of the object diagram but before the test itself. Both
cases represent variants of existing cases. They primarily check that number
of employees has been changed correctly. This appears to be necessary as
otherwise an implementation could have a constant number of employees
without this being detected.

The possibility of specifying additional OCL constraints or invariants (by
name) allows us to check further properties. Thus, case (3) requires that the
new company is also registered in the singleton ad. Case (5) describes how
the company “KPLV”, which is not involved, retains the number of employ-
ees registered on the system. Both cases could also be expressed by object
diagrams.

The specified object diagram BeforeChange is used constructively to
generate the test data. Therefore, the object diagram specifies the complete
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OCLcontext Person.changeCompany(String name)
pre CCpre: true
post CCpost: company.name == name &&

(company@pre.name != name implies
company@pre.employees == company@pre.employees@pre -1 &&
(company.employees == company.employees@pre +1

|| (isnew(company) && company.employees == 1)))

Fig. 7.7. Definition of a test suite

environment; there are no further Person and Company objects. The value
specified in the attribute employees thus violates invariants which must
therefore not be checked in this test.

7.4 Sequence Diagrams

A test sequence is a series of inputs for the test object that this object processes
during a test. For systems that are difficult to adapt for testing, there is a lot of
effort involved in understanding how to design test cases to establish certain
situations and test the behavior of the system in those situations. In contrast,
object orientation allows to create the test data directly before the test execu-
tion instead of specifying a path from an initial state up to this dataset. There
are several reasons for this. Firstly, due to more modern coding standards,
in the object-oriented approach methods are typically much smaller than the
procedures in the ancient imperative world. Secondly, dynamic binding and
building of subclasses simplify the control andmanipulation of the test object
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by offering it dummies instead of the real implementation at critical points.
Thirdly, it is now recognized that the code must be designed or redesigned
such that it can be tested easily. For example, in the approach presented in
Chapter 8, the creation of new objects is outsourced to a factory that can be
replaced by a factory dummy. These measures mean that there is no need
for a series of calls to establish a certain situation in the system: we can set
it up directly as a set of test data. Therefore, we can control a majority of the
test cases with a simple method call once we have created an adequate set of
test data. This approach bears the risk, however, that the set of test data used
may not appear at all in the real system.

Breaking the functionality down into a number of object-oriented meth-
ods gives rise to more complex call hierarchies. The objects thus form more
complex interaction patterns that often cannot be recorded adequately using
the precondition and postcondition of a method. To understand the inter-
action between different objects or system parts, these interaction patterns
can be modeled as sequence diagrams. A sequence diagram is an exemplary
representation of a possible sequence of interactions. It is therefore ideally
suited for describing the internal sequence of a test. [PJH+01], for example,
discusses the use of an MSC dialect based on UML for the conformance tests
for telecommunication protocols.

The section below uses examples to demonstrate how we can use se-
quence diagrams to model test cases.

7.4.1 Triggers

The example shown in Fig. 7.8 uses the stereotype �trigger� defined in Sec-
tion 6.1, Volume 1 to identify the first method call as the trigger. This means
that the other method calls and returns specified have to take place for the
test described to be successful. We can specify additional OCL constraints
within the sequence diagram in order to check intermediate states and to
perform a final check of the result. The sequence diagram does not show all
of themethod calls that take place. It abstracts, for example, from interactions
between the auction object and other persons taking part who also receive a
notification. This aspect is therefore not tested by the specified sequence dia-
gram.

To complete the test, the execution requires a set of test data in addition
to the sequence diagram. We can describe this set of test data using an ob-
ject diagram, for example. Using an object diagram allows us to arrange the
objects specified in the sequence diagram in a link structure that cannot be
represented in the sequence diagram. Due to the complexity of the structure,
which has to be modeled constructively and therefore completely, in this ex-
ample it is advisable to describe this structure with two object diagrams. The
example assumes that a completed version of the object diagram from Fig.
5.13 is available under the name copper912 and can therefore be used to



7.4 Sequence Diagrams 197

Fig. 7.8. Sequence diagram as a test case description

generate test data constructively. Fig. 7.9 thus contains the complete descrip-
tion of the test based on the sequence diagram HandleBid.

Fig. 7.9. Test that uses the sequence diagram HandleBid

As a sequence diagram allows us to specify OCL constraints at various
points in the system sequence, we do not have to use an additional method
specification although we can specify some for the test.

To allow checking of the specified interactions and the OCL constraints
when a sequence diagram is processed, the code must be suitably instru-
mented. Therefore, as described in Section 5.5, each method call and each
return statement has to be logged. In addition, the OCL constraints have
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to be checked. The check, the construction of the test data, and the execu-
tion of the test are localized in the test driver, which is stored in the class
AuctionTest as a method that can be called by JUnit.

7.4.2 Completeness and Matching

According to Section 6.3, Volume 1, there are several ways of interpreting a
sequence diagram. For example, the stereotype �match:complete� defines
that all interactions of the object in the described period are shown in the
sequence diagram. This strong constraint, which is usually impracticable for
specifications, is justifiable in a test because the objects tested were created
exclusively for the purpose of the test and are used neither before nor after
the test.

The stereotype �match:visible� has weaker effects. It requires only that
all interactions between the objects specified in the diagram are shown, but
further method calls to other objects are possible. This stereotype is therefore
also a useful interpretation of sequence diagrams for tests.

The use of the stereotype �match:initial� grants further freedom for the
classes tested, as the sequence diagram requires only the interactions spec-
ified after the trigger but still permits others. The interpretation with the
stereotype �match:free� is not really suitable for tests if the stereotype is
applied to the complete sequence diagram. However, the combined use of
stereotypes, as shown in Fig. 7.10, offers an interesting technique.

Fig. 7.10. Combined use of stereotypes

When a new person logs into an auction, all of the messages that occur
are sent to the person object in succession by the method sendMessage.
In this case, sendMessage is called multiple times. The sequence diagram
now requires that there is a call that satisfies the properties specified before
the higher level loginmethod is finished.
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7.4.3 Noncausal Sequence Diagrams

As described in Section 6.4, Volume 1, a sequence diagram can be incomplete
and therefore noncausal. For example, we either omitted an object involved
in the execution or a method call, that initiated further but observed method
calls. These types of sequence diagrams are suitable for tests, as the example
in Fig. 7.11 shows.

Fig. 7.11. Noncausal sequence diagram as test sequence description

The chronological order of the method calls is defined solely by their
order along the time axis and this can therefore be verified. However, the
causality cannot be nullified arbitrarily. Naturally, return arrows can only
be specified if the related method call is specified.

7.4.4 Multiple Sequence Diagrams in a Single Test

As a sequence diagram describes an observation, we can use multiple se-
quence diagrams for different partial sequences within one test. The two
diagrams from Fig. 7.8 and 7.11 therefore complement each other. The se-
quence diagrams are checked independently of one another as if no other
sequence diagram were present. The method calls that appear in both se-
quence diagrams—in our example handleBid—are therefore satisfied by
the same method call in the test run. A sequential or alternative composition
or iteration of sequence diagrams, as permitted by MSCs [IT11], the UML
standard [OMG10], or YAMS [Krü00], would be a possible extension but, as
explained in Chapter 6, Volume 1, is not part of UML/P. Instead, the interpre-
tation of multiple sequence diagrams is subject to a loose form of “merging”
that can identify identical method calls and thus uses the sequence diagrams
independently of one another.
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7.4.5 Multiple Triggers in a Sequence Diagram

In accordance with the coding standards common in JUnit, test classes have
the suffix “test” or, as proposed in Section 2.5.2, Volume 1, are labeled with
a stereotype such as �Testclass�. Because the method calls at the start of the
test can only be executed by the test driver, but conversely, each method call
(starting from the test class) is to be understood as a trigger, just one of the
stereotypes �trigger� or �Testclass� is sufficient when defining test cases.

As Fig. 7.12 shows, a sequence diagram can also contain multiple method
calls labeled with the stereotype �trigger�. This type of sequence diagram
describes a test driver that performs multiple method calls in succession.

Fig. 7.12. Sequence diagram with successive triggers

7.4.6 Interaction Patterns

Using a sequence diagram to define a test case has the significant advantage
that the sequence diagram explicitly represents the interaction pattern tested.
By means of a comparison with an existing implementation, it is relatively
easy to analyze whether and how well a given set of such test cases covers
the various possible sequences in the test object.

In most cases, however, a complete coverage of all possible sequences of
a test object is not possible. This is because, similarly to the path coverage
test of a procedure [Bal98, Mye01], loops and recursions lead to an unlimited
number of variants of possible sequences. Therefore, for practical purposes,
we have to define a finite set of sequences that is as representative as possible.
This set of sequences is then implemented in test cases. In the auction project,
for example, these are auctions with different sets of bids (0, 1, 2, 3, 5, and a
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lot) that have been tested in test cases. Such tests, which test the sequence
of a sub-phase or even the entire auction, go beyond the individual method
test and therefore represent a first step towards integrating different system
parts. Sequence diagrams are therefore also suitable for modeling integration
tests. In such cases, integration tests primarily rely on the interfaces between
the system parts and respect the encapsulation of the system parts. Sequence
diagrams with stereotypes such as �match:free� are suitable here.

Further problems in covering the interaction patterns result from the
ever-increasing number of possible object structures that are the basis for
the sequences:

• Set-valued associations generally allow an infinite number of different
object structures that also require loops for processing and therefore in
turn, lead to an infinite number of possible sequence structures.

• The dynamic binding of methods that results from inheritance requires
that, for a given object of a class, all subclasses must be tested as well. If
there are multiple objects in the set of test data, this leads to an explosion
in the number of test cases.

• The modifiability of object structures through their parameters also al-
lows to adapt the behavior of a test object when used in a test run. For
example, a parameter can determine how many objects are created in a
data structure or how these objects are connected by links.

For practical purposes it is unrealistic to expect a complete coverage of
all possible sequences with test cases based on sequence diagrams. As the
following example shows, there is also no guarantee that the statements of
the methods tested are covered:

Javavoid method(int i) {
if(i >= 1)

foo(i);
else {

attribute = i;
foo(i+1);

}
}

All sequence diagrams for testing method show the same sequence struc-
ture. It is incorrect, therefore, to assume that two sequence diagramswith the
same sequence structure test the same sequences of the implementation.

Defining integration tests with sequence diagrams is therefore just one of
several instruments for modeling test cases. We can use it together with the
test cases from method specifications and the checking of invariants already
discussed.
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7.5 Statecharts

The Statecharts defined in Chapter 5, Volume 1 have the following principle
application domains:

1. Executable Statecharts are transformed into code constructively and are
used in the product system or as an oracle function.

2. Statecharts that can be used for tests are used to verify the correct execution
of a test.

3. Statecharts act as generally valid behavior specifications and are used for
manual or automated derivation of test cases.

4. Abstract Statecharts serve as documentation but are too abstract or too
informal for tests and code generation.2

If we add detail to the information contained in an abstract, informal
Statechart and this increase it details, we can transform the Statechart into
a Statechart that can be executed or is suitable for tests. We can use con-
structive elements (such as actions) and descriptive elements (such as OCL
postconditions) in a Statechart simultaneously in a combined form. We can
therefore use a constructive part of a Statechart to generate methods and use
state conditions and postconditions in parallel, for example, to support tests
and generate invariants.

7.5.1 Executable Statecharts

An executable Statechart is used as a constructive model and, as described
in Section 5.4, it is transformed into code directly. Executable Statecharts typ-
ically have procedural actions in the form of Java code. The Java code that
arises from the transformation can be extended by state invariants entered in
the Statechart. These state invariants are checked in the code at runtime dur-
ing the test phase of the system. However, constructive Statecharts are not
suitable as a test description since the effect of a procedural action cannot be
tested; the action can only be executed.

In principle, we can also use Statecharts as test drivers. However, it is
a principle of the definition of test drivers that they must be developed as
simply as possible and thus essentially without any branched control struc-
ture. However, the linear structure of a test driver allows us to break down
a Statechart into a linear form that can also be represented by a sequence
diagram.

Using a constructive Statechart as an oracle function for the test result
is interesting. This is recommended, for example, if the code g that can be
generated by a Statechart is too slow for the product system and therefore an
alternative implementation f was realized. In a test, the set of test data x is
copied, the respective function is applied to the two sets of test data, and the

2 In [Wil01], these Statecharts are referred to as “sketches” and not real models.
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result is compared accordingly. As shown in Fig. 6.6, we can also define the
comparison form explicitly by specifying a comparator entry as there are a
number of comparison options, for example, depending on whether orders
are important in lists.

A black box comparison of the results f(x)=g(x) has the advantage that
the internal realization of a method can deviate significantly from the de-
scription by the Statechart and can thus be subject to a refactoring without
loosing the Statechart as an oracle. In this approach, however, the OCL con-
straints specified in the Statechart are not checked during the sequence. To
achieve such an approach, a simultaneous use of the constructive parts of
the Statechart to generate product code and the descriptive parts to generate
checks in tests is necessary.

When a Statechart is used as a test driver or as an oracle, nondetermin-
ism in the Statechart is critical. Nondeterministic Statecharts, i.e., those with
overlapping firing conditions, are mainly useful if the Statechart is used as a
sequence description in the test. In this situation, the nondeterminism acts as
an underspecification and is replaced by the actual implementation.

Fig. 7.13 illustrates three of the strategies of the auction system which,
according to the description in Section D.2, Volume 1, cause different (delta)
extensions when a bid is submitted depending on the time of each current
bid respectively.

Fig. 7.13. Extension strategies for bids in the auction

The calculation structure for the new end of the auction after submission
of a bid is described by the method Statechart in Fig. 7.14.3 The structure
shows the calculation for a constant extension, no extension, and a linearly
decreasing extension with a minimum lower limit.4

In the actual auction system, the calculation has been distributed over
several subclasses of TimingPolicy. The original modeling of the function-
ality shown in Fig. 7.14 is therefore not suitable as a constructive implemen-

3 For the sake of simplicity, in this example all Time objects were replaced by long
values.

4 A Statechart developed in this way is typically the first draft and can generally be
simplified, as has been done here. In this case, a tabular representation instead of
a diagram is also useful.
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Fig. 7.14. Statechart calculates new end of auction

tation. However, due to the fact that the content of the model is correct and
the model can be executed, the model can be used as an oracle function.5

Therefore, the modeled functionality can be used as an oracle in tests, as
shown in Fig. 7.15.

Fig. 7.15. Test with a method Statechart as an oracle function

5 Parallel to the refactoring of the functionality of newCurrentClosingTimewith
the shift to the TimingPolicy classes, the attributes used must also be adapted.
However, these adaptations are not shown in the example.
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7.5.2 Using Statecharts to Describe Sequences

We can use a Statechart that models a life cycle, similarly to a sequence dia-
gram, to check the accuracy of a system execution. In this situation, the State-
chart is understood as a predicate for a test case that begins in a specified
state and whose interactions are monitored by the Statechart. This means
that in a test, a Statechart can also be used as a predicate that the test needs
to fulfill. However, the Statechart itself does not represent a complete test
case, as both the test data and the test driver are missing.

We typically describe a test sequence with a sequence diagram andmodel
the objects involved with an object structure. We can now attach Statecharts,
whose validity must be checked, to one or more of these objects. However,
the objects do not have to be in an initial state specified by the Statechart or
reach a final state during the test run. For each object, therefore, we also spec-
ify the relevant state at the beginning of the test and the permitted states at
the end of the test. These states are set or checked dependent on the transfor-
mation of the states with an enumeration attribute or predicates as described
in Section 5.4. As a Statechart represents a variety of paths, Statecharts can
easily be reused for multiple test cases.

Fig. 7.16 shows a suitable Statechart and an associated test driver which
could alternatively be represented as a sequence diagram. Further test cases
can start in other states or take other paths by considering bids (bid calls),
for example.

Fig. 7.16. Statechart as a life cycle description in a test

To compare the test sequence with the transitions and states of the State-
chart, we need an instrumentation of the test object in a similar form to that
for a sequence diagram. This means that at the beginning and end of every
method, a suitable instrumentation is built in, for example, to allow us to
check states, state invariants, and transition enabledness. However, not all of
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the properties that can be formulated in a Statechart can be used for testing.
For example, procedural actions are not suitable as test specifications and
must therefore be ignored (if specified).6

Furthermore, the control states (stereotype �controlstate�) of a method
Statechart cannot be checked as they cannot be automatically connected to
program points in the code. The descriptive part can only be used as as-
sertions in the generated method if the implementation is created from the
procedural part of a method Statechart constructively.

For the piecewise composed actions (stereotype �action:sequential�) dis-
cussed in Section 5.5.2, Volume 1, it is also only possible to check the condi-
tions that have become valid in between if the Statechart has been trans-
formed constructively.

7.5.3 Statecharts used in Testing

As Statecharts describe a potentially infinite set of execution paths for an ob-
ject, rather than just one single sequence, a Statechart is an excellent starting
point for developing tests and for measuring the coverage of the behavior
parts modeled in the Statechart. In contrast to earlier forms of model usage
in test cases, in this case, a number of test cases can be derived from one
diagram rather than one diagram being used for one test case.

If a Statechart is used constructively, i.e., the Statechart represents the im-
plementation, the assertions generated from the predicative part (OCL con-
straints) are understood as white box tests. However, if there is an imple-
mentation that has arisen independently, the Statechart is compared with the
implementation as a specification. In that case, the tests are black box tests.

A topic currently being researched is the generation of collections of sets
of test data that are as compact as possible but complete, and that, from
given Statechart specifications, achieve a coverage in accordance with speci-
fied coverage metrics. Procedures have already been developed for different
variants of flat automata [PYvB96, RDT95]. Section 7.5.6 discusses further
approaches.

As already described, it is not generally possible to decide whether an
OCL constraint can be satisfied. If an unsatisfiable OCL constraint is used
as the precondition for a transition, no path can be found that contains that
transition. It is therefore not possible to cover all transitions. Due to these un-
decidability problems, for the Statecharts defined in UML/P, and for many
other variants of automata, there is no automatic procedure that generally
creates a complete test suite according to a certain criterion.

A further problem arises from the possible nondeterminism in a descrip-
tive Statechart—as a result of overlapping firing conditions, for example. If

6 It is possible to use procedural actions as an oracle function g for tests of the form
f(x) = g(x) of the effect of each individual transition. However, this has limited
efficiency as the respective current structure has to be copied for each transition.
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a Statechart has two transitions with identical firing conditions but different
final states, as shown in Fig. 3.38(a), for example, it is possible that an im-
plementation will always select the same alternative. The second transition
is therefore not selected and cannot be covered by tests. The overlapping
of firing conditions and the preference of one transition over another in an
implementation also cannot generally be recognized automatically. In this
situation, a tool is useful that, based on existing tests, measures the degree to
which a Statechart was covered and indicates deficits (where applicable).

What both forms of Statecharts have in common is that the transition
paths they describe represent a certain abstraction of the complete imple-
mentation:

• A complex statement, including loops and case-statements, can be em-
bedded in an action.

• An individual diagram state can correspond to a set of object states.
• An OCL constraint can consist of several alternatively satisfiable clauses

grouped in one disjunction.

These conceptual requirements should be taken into account for detailed
tests. We can achieve it by combining coverage metrics for these elements
with the procedure described below for Statecharts (similarly to [GH99]).
This means that once we have developed the tests based on the Statechart
structure, we refine them to the extent that the individual components of
conditions and actions in the Statechart are also covered. An alternative is to
measure the coverage based not on the Statechart but on the code generated
from the Statechart.

A further aspect is the integration of the execution sequences in the called
methods of the same or sub-objects. In particular, if there is a composition re-
lationship to sub-objects, as it is the case in the auction example between the
Auction object and its Policy objects, then the behavior of the dependent
objects is integrated in the tests of the composite. However, this causes the
number of required tests to increase significantly, as different configurations
of object structures and the composed state models including all objects,
must be considered. An estimate should help to quickly indicate whether
an attempt at coverage can be executed from a practical perspective. There-
fore, the subsystem to be tested and the desired coverage criteria must be
selected appropriately. Furthermore, we have to select test cases intelligently
and, therefore, manually. [Mye79] already notes that experienced testers can
achieve good results without explicitly applying a systematic approach by
“error guessing”, that is, guessing potential error sources. [PKS02], however,
demands that for many applications, or at least critical system parts, “error
guessing” should be seen as an additional technique to more systematic ap-
proaches.
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7.5.4 Coverage Metrics

When we at first sight ignore the complexities discussed above for actions
and OCL constraints, we can identify the following metrics for the coverage
of a Statechart provided by a test suite. They are already identified as control
flow-based metrics in [FHNS02] and [Bal98]:

State coverage requires a test case for each state that can be reached in the
diagram. Here, a test case defines a sequence of inputs that leads from an
initial state to this state.

Transition coverage requires a test case for each enabled transition. The se-
quence of inputs describes the path from an initial state up to the execu-
tion of the transition.

Path coverage requires a test for each possible path from an initial state to
a final state. This form of coverage subsumes the two previous forms.
However, if there are loops in the automaton, the set of paths is infinite
and thus, from a practical perspective, path coverage is not possible.

Minimal loop coverage is a reduced form of path coverage. Here, loops are
not processed multiple times. However, each loop that appears in the
Statechart must be processed at least once.

According to [Bal98], path coverage has no practical relevance because
when loops are present, it becomes an infinite and thus no longer executable
task. In contrast, the minimal loop coverage is a strong yet practicable crite-
rion that should be used for high-quality software. For Statecharts without
loops, however, both metrics are equivalent. Both metrics may count paths
that are recognizable in a Statechart, but can actually not be executed in an
implementation. If the precondition of a transition can never be satisfied be-
cause of its invariant, this transition cannot be executed. This is also true if
the object modeled by a Statechart is embedded in a test object consisting
of multiple objects and is therefore not directly accessible. In this situation,
the environment can also prevent a required input sequence from occurring.
Therefore, we have to select the test environment appropriately in each case.

To determine the coverage metrics for a test suite, the test executions are
logged by an instrumented version of the code.

We can also apply the original coverage metrics developed for flat au-
tomata to Statecharts with a hierarchical state concept in this form. However,
due to the transformations to Statecharts discussed in Section 5.6.2, Volume
1, we can also perform the tests based on the expanded hierarchy. This re-
fines the required test coverage because, for example, when a transition to
a hierarchical state is triggered, this transition is multiplied. The expansion
can therefore be used to get a more detailed test coverage.

Using the Statechart from Fig. 7.14, the four metrics referred to above
are shown in Fig. 7.17. The illustration uses structurally identical, iconified
forms of the initial Statechart to illustrate the progression of the test through
the Statechart. The three paths of the state coverage are not sufficient for the



7.5 Statecharts 209

transition coverage. A fourth sequencemust be added and two of the existing
sequences must be modified so that the transitions that occur at the end are
also covered.

Fig. 7.17. Test case paths to satisfy the metrics

The path coverage requires 18 test cases. As the Statechart to be tested
is a method Statechart, the input consists of only one method call. Where
applicable, there may also be further interactions with the environment, with
methods of the environment being called and further control of the transition
progression enabled through return values. In this example, however, the
progression of the test case is dependent exclusively on the initial input and
the value assignment in the initial object structure. To achieve a 100% path
coverage, therefore,we have to find 18 different assignments for the variables
used in the Statechart. Consider the following invariant:

OCLcontext Auction a inv:
MIN DELTA <= a.extensionTime

This invariant requires, for example, that the extensionTime of an auc-
tion is always greater than the minimum extension time of MIN DELTA (5
seconds). Therefore, the three paths marked cannot be executed. Suitable test
data can be found for the other 15 paths. Borderline cases such as the arrival
of a bid at exactly the time the auction ends or just afterwards should also be
covered.We can identify further borderline cases by analyzing the triggering
conditions of transitions and thus derive further tests.



210 7 Model-Based Tests

A second example demonstrates the metrics using the Statechart repre-
sented in Fig. 7.16. There, each transition must be controlled by a method
call, such that the input is a sequence of calls.

Fig. 7.18. Test cases for satisfying the metrics

The possibility of giving Statecharts different semantics with respects to
completion and error situations by using different stereotypesmeans that we
have to take these stereotypes into account when defining tests. The follow-
ing situations and strategies are possible:

1. The Statechart is complete in that, for example, an error state was intro-
duced. This means that there are implicit transitions that lead to the error
state and whose firing conditions cover everything that is not covered by
explicit transitions. These transitions can be included in the coverage. As
Statecharts can have a second error state for handling exceptions that oc-
cur, the situation that arises here is the same. Again, we have to decide
whether the processing of exceptions has to be tested and if so, to what
level of detail.

2. The Statechart was completed with �completion:ignore�. This gives rise
to transition loops that can be tested for transition and path coverage.

3. A Statechart labeled with �completion:chaos� is based on the assump-
tion that the Statechart defines only part of the behavior. It describes the
behavior of the object up to the first time a situation occurs in which the
Statechart is not enabled and the test object can take on any arbitrary
behavior. This type of completion does not have to be tested.

Completion with �completion:ignore� makes it particularly obvious that
testing these additional transitions is not very important for the behavior of
the object described with the Statechart as these transitions are generated
uniformly. Therefore, it is usually more interesting to test calling objects of
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the environment to find out whether they can cope with a method call being
ignored or an error state occurring. If we assume that, through its incom-
pleteness, a Statechart describes all permitted calling sequences of an object,
this gives rise to significant restrictions on the environment that must also be
checked at least with tests. We can implement this, for example, with a com-
pletion transformation in which the test is reported as having failed when
the error state is reached.

7.5.5 Transition Tests instead of Test Sequences

With the test sequences discussed so far, we have generally assumed that the
object described is in an initial state. Therefore, to test a transition, we first
have to find a path that leads to the source state of this transition.

The basic structure of test cases characterized with Fig. 6.7 shows that
a test case can start from any arbitrary set of test data. This means that we
can also test a transition of a Statechart by finding test data that corresponds
to the source state of the transition and enables this transition. This applies
above all to the life cycle of an object in which a method call corresponds to
a single transition and can thus be executed in isolation. Therefore, instead
of requiring a test sequence that begins with an initial state, it is sufficient to
execute a simple method call to test a transition.

Even though tests are generated automatically, defining test data that cor-
responds to a source state of a transition circumvents the problem discussed
in Section 7.4 of having to find a test sequence that leads to a certain state
or to a transition. Instead, we only have to find an object structure in which
the test object corresponds to a Statechart state. It is therefore essential to
characterize diagram states in sufficient detail with OCL constraints. Other-
wise, with this approach, it happens too often that object states that cannot
be reached in the product system are used as test data. When searching for
object states that correspond to a diagram state, we also have to consider the
globally valid invariants.

Thus, the search for test data for transitions from Statecharts is rather
equivalent to the search for test data discussed in Section 7.3.2, in which the
test data has to satisfy the precondition of anOCLmethod specification. If we
use a procedure for identifying test data that satisfies an OCL precondition,
then due to the transformation of Statecharts into OCL presented in Section
5.6.2, Volume 1, we can also apply this procedure on transitions in life cycle
Statecharts.

An advantage of the transition-based approach outlined here is the ease
with which we can test each transition, which means that tests run more
efficiently. The disadvantage is that it is not possible to recognize whether
a state can actually be reached. Transitions starting from such states do not
have to be tested as they do not contribute to system behavior.

The approach outlined is equivalent to transition coverage but ignores the
paths from the initial state to the source state of the transition to be executed.
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7.5.6 Further Approaches

As already stated, determining test cases from automaton-like description
techniques with various procedures is an ongoing area of research. By way
of example, the following approaches briefly outline some progress in this
field.

For more simple variants of state-based systems, [GH99], for example,
outlines a procedure for generating automated tests from executable au-
tomata by means of model checking. These tests check an implementation
against the automata used as an oracle function. However, these automata
have no state hierarchy, no nondeterminism, and, compared with the State-
charts presented here, a limited form of transition markings. The procedure
achieves transition coverage for the automaton. Model checking is used pri-
marily to find call sequences for the automata that satisfy preconditions of
the respective transition to be tested. This procedure can e.g. be refined in
two ways: on the one hand, existing preconditions are deconstructed from
disjunctions and thus the transitions implicitly divided in order to achieve
coverage of all clauses of a disjunction. On the other hand, a simple bound-
ary value analysis is performed by deconstructing boundary comparisons
such as a>=b into two cases a>b and a==b.

[FHNS02] describes an approach for reducing the state space from a state
automaton by means of projection. This simplifies the coverage of the au-
tomata obtained as a projection according to the criteria of state and tran-
sition coverage. However, the paths through the system that are actually
tested and the errors discovered depend on the selection of the projection,
because paths and errors may be distributed over several of the projected
automata. This procedure is helpful in situations in which we have an object
with many states. In object-oriented systems, it is advisable (although not al-
ways possible) to use this projection in the design phase by outsourcing sub-
functionality. This results in multiple objects whose state spaces can each
correspond to a projection. The projection technique from [FHNS02] does,
however, offer additional flexibility, as it allows overlapping projections and
thus permits overlapping views for tests.

Similarly, the approach in [CCD02] discusses the use of a restricted form
of the UML Statechart to obtain tests. Object diagrams are also used for the
test data. However, the authors of this work, explain the architecture of a tool
coupling based on XML rather than the approach of generating test cases
from the hierarchical Statecharts.

7.6 Summary and Open Issues Regarding Testing

Summary

Quality management is not possible without developing tests systematically
and in a disciplined way. However, defining test cases requires a lot of effort,
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particularly as business-critical systems require good coverage by test cases.
Therefore, it is very important to develop and represent test cases efficiently.
The techniques of this book based on UML/P allow a compact and clear
representation of tests by means of the combination of various diagrams for
representing the test data, the test driver, and the expected result as well as
invariants of the system. These diagrams and specifications can be developed
independently of one another, are more compact and easier to understand
than test code, and therefore simplify reuse.

In a test-first approach, we can use sequence diagrams initially to specify
behavior patterns which we can then use, with additions where applicable,
as test case descriptions before starting an implementation. This approach is
thus an extension of the classic approach of using sequence diagrams during
the early gathering of requirements only.

After an implementation, it is useful to define further test cases to test
borderline and special cases. The intensity of the testing depends on the de-
sired quality and the underlying methodology. In an agile approach, metrics
for analyzing the test quality are used primarily at particularly critical and
complex points but otherwise we can put some trust in the experience of the
test developers.

A UML/Pmodel can be the object of the test if we use the model construc-
tively to describe the system. However, we can also use a model as a testable
specification if there is already an implementation. As the procedures for code
generation in Chapter 4 and Chapter 5 have shown, some concepts of the
model can also be used constructively or as test code depending on the gen-
eration approach.

After introducing the terminology for test procedures and briefly describ-
ing two significant tools for testing, this chapter demonstrates how we can
use UML/P diagrams to model tests.

Despite the available literature on conformance testing for code generated
from graphically denoted implementation models, there are a number of
open issues and possibilities for improvement, some of which are discussed
below. This book also does not examine load tests, quality management mea-
sures such as inspections and model reviews, or the approaches for interac-
tive tests with user participation for acceptance purposes.

Development Potential for the Generation of Test Cases

The use of UML/P diagrams and in particular OCL specifications for gener-
ating automated test cases offers great development potential. As described
in Section 7.3, using an OCL method specification to generate a set of test
cases that is as effective but also as small as possible, and that covers the
code sufficiently, would be helpful for developing test cases more efficiently.
The same applies for the Statecharts discussed in Section 7.5.

In the context of UML and OCL, there is not much known work on the
topic of agile testing. One reason for this is that for a long time, the assump-
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tion was that the test procedures, which had all generally been developed for
procedural programming [Bei04, Lig90], simply need to be applied to object
orientation. However, inheritance and the dynamic binding of methods give
rise to new problems.

Another source of problems is the decoupling of the language UML and
the many, to some extent very varied process models based on UML [BL02]
which use models with very different levels of detail that therefore have to
be tested very differently.

Nevertheless, there is now an increasing volume of work available on
applying the various test procedures to UML without, however, already ex-
hausting the potential for generating code and tests. For example, [PJH+01]
addresses applying sequence diagrams for modeling test cases which we
know from TTCN [ISO92]. [BL02] describes the systematic and partially au-
tomated development of test cases from UML analysis documents such as
use case diagrams, sequence diagrams, communication diagrams, and the
class diagramswhich represent the domain model. [BB00] takes a similar ap-
proach which also uses a form of sequence diagrams to describe interactions
between objects and combines this with a known procedure for category par-
titioning [OB88].

[PLP01] describes the application of constraint reasoning techniques for a
graphical modeling language suitable for distributed systems but not based
on UML to generate a set of test cases (referred to there as “test sequences”)
from an abstract test case specification. However, the systems examined there
are static and, therefore, the transfer of algorithms to dynamic object-oriented
systems is not canonical.

The publications [DN84] and [HT90] describe how the random genera-
tion of test data produces results that are equally good as those for partition-
based test procedures for developing confidence in the accuracy of the im-
plementation. If these results prove to be true for today’s languages and test
procedures as well, it indicates that random generation of tests can be an
important help for test procedures. In particular, Statecharts and OCL post-
conditions are then helpful as an oracle for this type of generated test. If the
generated tests are to be stored, object diagrams and sequence diagrams can
be used. As noted in [HT90], for an effective test activity we must further
replace the manual creation of test cases—which is very work-intensive—to
automated test generation.

This chapter has discussed only a small part of the testing concepts, tech-
niques, and approaches. Therefore, references were given to relevant liter-
ature at various points. In general, we can state that supporting the devel-
opment of test cases effectively requires not only good and parameterized
generators for UML, but support must also be offered for test patterns and
for frameworks and components that are to be integrated.

In object-oriented and in particular, agile process models, there is a trend
towards explicitly structuring the product system in such a way that simpli-
fies testing. This means that we no longer have to define a test sequence that
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tests a certain transition, statement, or method starting from an initial state.
Instead, we can specify an object structure that allows us to start the test di-
rectly in the desired object state. Thus object structures are much easier to
find and the test is executed more efficiently.

Symbolic Testing

One example for the potential evolution of test procedures is based on the
interpretation of symbolic instead of real values. Thus, the use of abstract
elements represented by symbols in object diagrams, as discussed in Section
4.2.2, Volume 1, can be a basis for an interesting extension of the use of these
diagrams and this is illustrated as an outlook here. Symbolic values can be
used to generalize test cases: in this approach, a symbolic value is specified in
a precondition. This value changes within the method being tested or is used
to calculate other attributes. The expression is not evaluated and is instead
stored unevaluated as a term. In the postcondition, instead of checking a
specific value, we can then check whether the term used for the calculation
corresponds to the desired intention. The most simple form of comparison is
syntactic equality. However, using a suitable algebraic reformulation, we can
also specify a semantically equivalent term. One example is the following
calculation, which produces the maximum of both arguments in a circuitous
way:

Javaint foo(x,y) {
int a = x;
int b = y;
a = a-b;
if(x < y) b = b-a;
return a+b;

}

Instead of using specific values, the calculation uses the symbolic values
x and y. With the additional assumption x<y, the test result for the function
value y is predefined. The symbolic interpretation can be described with the
following annotation:

Javaint foo(x,y) { // Value a= b=
int a = x; // x
int b = y; // x y
a = a-b; // x-y y
if(x < y) b = b-a; // x-y y-(x-y)
return a+b; // Result: (x-y)+(y-(x-y))

}

The result (x-y)+(y-(x-y)) is actually equivalent to y. We can “test”
the negation of the condition !(x<y) symbolically in the sameway.With this
form of interpretation, the calculation is based at least in part on symbolic
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values. This allows exemplary test cases to be generalized to form equiva-
lence classes of test cases. In the example above, there are only two equiva-
lence classes, described by x<y and !(x<y), meaning that complete test cov-
erage is possible. Symbolic testing can therefore be a mechanism for design-
ing a finite set of generalized tests that represents coverage of the entire sys-
tem functionality. This creates a bridge between exemplary test procedures
and general verification techniques [Lig90]. However, in an object-oriented
programming style that is laden with side effects, such procedures involve
a lot of effort. When loops are involved we get infinitely many equivalence
classes, such that the test coverage remains incomplete. Today, unevaluated
data structures are rarely used for testing and instead, are used successfully
primarily in implementations for logical programming languages such as
Prolog [Llo87], functional programming languages with a “lazy” evaluation
such as Gofer [Jon96], mathematical, algebraic systems such asMaple [Viv01]
or Mathematica [Wol99], term rewriting systems such as OBJ [GWM+92], or
verification systems with term rewriting [NPW02, Pau94]. They are also used
for more complex tasks, such as verification.

Statistical, Application-Based Tests

A special form of test development can be found in the cleanroom approach
[PTLP98] to software development, for example. This approach uses statisti-
cal Markov models to describe the probabilities of use cases. As cleanroom
works primarily with input and output sequences described by state tran-
sition models, the statistical model weights the potential input sequences
according to probabilities. This enables more intensive testing of the most
probable applications. In the context of UML, this procedure can be applied
to Statecharts. For this, the transitions areweighted according to the expected
frequency of occurrence. This means that we develop a model of the class be-
ing tested. Themodel describes which method calls andmessages occur with
what probability. The test paths for the Statechart are then selected based on
this weighting.

Alternatively, weighting the states according to the expected frequency
of occurrence would also be interesting, although this technique is not prop-
agated in the cleanroom approach itself. Furthermore, the same procedure
could also be applied profitably for class diagrams to achieve a weighting of
object structures to be used as sets of test data.

In the cleanroom approach, the use of statistical procedures allows us
to predict average error frequencies dependent on the number of tests per-
formed and the errors found in those tests. In particular, this allows us to
develop a precise criterion for the end of the test dependent on the desired
quality (error frequency). One of the main basic prerequisites for this, how-
ever, is the gathering of a meaningful set of data that indicates how well the
tests developed in this way actually discover errors. Such data is dependent
on the programming language used and can only be collected in suitable
field trials.
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The two grand tyrants of the earth:
time and chance.

Johann Gottfried von Herder

To supplement the description of the theory of and the general approach for
developing tests, this chapter demonstrates how to use UML/P based test
patterns. We here use these patterns to illustrate how to define test dummies
and how to design functional tests for concurrent and distributed systems,
for example.
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The collection of design patterns [GHJV94] is one of the first works to
show that proven structures and techniques can be developed, documented,
and thus reused in software development projects. For test purposes, we can
also identify patterns that are valid generally or for specific topics. This sec-
tion describes some example test patterns to show how we can use UML/P
to implement such test patterns. The test patterns covered in this section con-
centrate on the following topics:

• Dummies1

• Designing programs that can be tested in terms of the use of static vari-
ables, object instantiation, and the use of predefined frameworks

• Simulating time
• Concurrency
• Distribution and communication

The test patterns described here are used primarily to prepare the test
object and its necessary environment so that we can test the functionality
effectively. We use dummies, for example, to simulate the environment of
the test object and catch side effects or provide predefined returns.

We can also inject the concepts covered by the test patterns retrospectively
into existing software. Embedding these test patterns in corresponding rules
for refactoring models, as discussed in Chapter 10, is a suitable way of inject-
ing the test patterns.

[Bin99] contains a recommended collection of test patterns which dis-
cusses tests that cover the full range from single methods up to complete
systems. It discusses, for example, test strategies for covering control flows,
integration tests, or regression tests. [LF02] complements this discussion by
examining technology-specific topics such as persistence using databases,
communication with CORBA [OH98], the use of frameworks such as Enter-
prise JavaBeans [MH00], or technologies such as Java Server Pages [FK00].
[PKS02] is dedicated to improving the test process and uses checklists to op-
timize the test process on a project-specific basis, for example.

In analogy to the design patterns in [GHJV94], a test pattern is a generic
description of a recurring design problem that specifically supports the abil-
ity to test the system. A test pattern addresses the form how to define the
tests, the structural changes required to get testable code, and the strategy
for executing the tests. However, because this strategy is driven primarily
by the test-first approach (see Section 2.3.2 and [Rum04]) in the sense of an
agile methodology, in contrast to [Bin99], the test patterns discussed here fo-
cus primarily on supporting the execution of efficient tests. This requires a
system architecture that is suitable for tests. The focus is also on the imple-
mentation of these tests using predefined frameworks and components. The
idea that a system should be designed such that it can be controlled and its
internals observed for tests has meanwhile been accepted [Bin94, HBG01].

1 The term “mock” is also commonly used for “dummy”.
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A part of this chapter is dedicated to functional testing of distributed sys-
tems that communicate internally andwith the environment asynchronously
or have multiple concurrent threads. The chapter thus supplements the col-
lections of test patterns mentioned above. Distributed systems are typically
nondeterministic. For example, to enable a better responsiveness, the pro-
cessing of user inputs from the interface is handled with different threads.
Internet queries are also processed concurrently and thus concurrency oc-
curs in almost every system today. The auction system in our examples is
also distributed across a number of clients and servers via the Internet but
also has multiple threads within each of these system parts.

Nondeterministic effects are generally critical for automated tests as they
make it more difficult to evaluate or repeat the results. In principle, we can
handle nondeterministic results in test executions by using OCL constraints
that allow to specify a range of outputs as test success. However, this does
mean that a significant criterion for automated tests, namely repeatability, is
lost. It is often difficult for the developer to identify errors when a test fails
only sporadically.

For functional tests, therefore, nondeterministic effects should be com-
pletely suppressed.We can do this via clever use of dummies and by explicitly
defining parallel executions with a controlled scheduling. This is explained
in the following sections.

The schema for presenting patterns, as introduced in [GHJV94] and con-
tinued for many types of patterns since, can also be used for test patterns.
This section uses only a subset of the schema from [Bin99], as we use it pri-
marily for a summary at the end of a discussion.

Section 8.1 discusses the introduction of dummies to define the environ-
ment of a test object. Section 8.2 describes general problems that arise from
the underlying language during testing of object-oriented systems and pro-
vides guidelines for structuring the product system so that it is more easily
accessible for tests. This includes, for example, encapsulating static variables
and making object instantiation dynamic via the factory design pattern. Sec-
tion 8.3 discusses the simulation of time in a functional, repeatable test that
is thus designed in a deterministic form. Sections 8.4 and 8.5 discuss con-
currency, distribution, and communication aspects that also increase the dif-
ficulty to define functional tests beyond the boundaries of individual pro-
cesses. These sections introduce several test patterns that significantly im-
prove or even enable testing of the functional properties of such systems.

8.1 Dummies

A dummy is an object that simulates part of the environment of the test ob-
ject and thus provides the test object with an environment in which its be-
havior can be tested. Object-oriented programming has made it much easier
to use dummies. This is because inheritance and the dynamic redefinition of
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methods, as well as the implementation of interfaces, make it relatively easy
to inject dummy objects into the system without making the product code
dependent on these objects as a result of syntactic (for example, import) re-
lationships. Fig. 8.1 shows how dummy classes are typically modelled. By
convention, these classes receive the suffix “dummy” but can also be labeled
with a suitable stereotype �dummy� and are available only in the test sys-
tem.

Fig. 8.1. Dummy classes overwrite methods

This allows us to set up test cases for the class Auction, for example.
Fig. 8.2 shows an excerpt of an object diagram that is used to set up such test
cases.

Fig. 8.2. Test situation for an Auction object

In the dummy classes, methods used during the test can be suitably over-
written. A simple dummy method returns a predefined, constant result or
reads results from a list in order. In the auction project, for example, the
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dummy from Fig. 8.3, which is special for a certain test, is used to simulate
requests of the current time.

Java/Pclass TimingPolicyDummy implements TimingPolicy {
Time[] timelist = new Time[] {

new Time("14:42:22", "Feb 21 2000"),
new Time("14:42:23", "Feb 21 2000"),
new Time("14:44:18", "Feb 21 2000"),
new Time("14:59:59", "Feb 21 2000") };

int count = 0;

public Time newCurrentClosingTime(Auction a, Bid b) {
ocl count < timelist.length;
return timelist[count++];

}}

Fig. 8.3. Dummy with results for four calls

Dummies are typically not necessary for testing simple classes with little
functionality. For other classes, multiple different dummiesmay be necessary
depending on the purpose of the test. Multiple classes or one parameterized
dummy class are realized accordingly. For example, TimingPolicyDummy
can offer a constructor with the list of time objects as a parameter, or alter-
natively, can have stored internally multiple lists, one of which is selected.

8.1.1 Dummies for Layers of the Architecture

Depending on the goal of the test, we can test groups of objects instead of
individual objects. For example, we can test the functionality of the server by
having both the policy and the person objects coming from the product sys-
tem and only their environment, such as persistence mechanisms, logging,
and Internet connection, replaced by dummies. We can generally group tests
for different environments. [Bin99] Thus proposes tests for individual layers
of an architecture according to the pattern shown in Fig. 8.4. In each case,
one layer is tested and the underlying layer is replaced by dummies (a),
(b). For more extensive integration tests (c), we can also couple layers. As
a layer itself consists of a group of objects, conversely, we can deconstruct
these groups and, as already shown, test individual objects using class and
method tests.

If the method to be tested calls other methods of the same object, it can be
useful to form a subclass of the class with the test object and in this subclass,
replace the methods called with dummy methods. The test object and the
dummy are then the same object.
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Fig. 8.4. Test environments in the layer architecture

8.1.2 Dummies with a Memory

We can refine the test environment by having it log the form in which it is
used by the test object and, where applicable, use this memory to calculate
the return results. In the Extreme Programming approach [MFC01], these
dummies are also called mock objects, and in approaches similar to those
for telecommunications, they are called stubs. A simple example is shown
in Fig. 8.3. We can use the dummy object after completion of the test to check
how often the method newCurrentClosingTime was called. To do this,
the counter status is read.

Java/Pclass ProtocolDummy {
writeToLog(String text) {

logCount++;
logLastLine = text;

}
}

Fig. 8.5. ProtocolDummy allows the capture of side effects

A further example of a dummy with a retrospective query function is a
log object that is used to log significant events in the auction system. These in-
clude, for example, notifications of the submission of new bids. Therefore, in
addition to the actual test data, a dummy object of the class ProtocolDummy
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is realized. Fig. 8.5 shows the class diagram for a simplified form of the log-
ging. When using the class ProtocolDummy, the log can also be tested. To
do so, for example, the object diagram ProtBefore from Fig. 8.6 can be
used to set the test data and ProtAfter for the expected result.2

The dummy presented here stores only the last line and the total number
of messages that have occurred. In some cases, it can be useful to store all
messages in a list or to store messages selectively according to certain pat-
terns in a string.

Fig. 8.6. The ProtocolDummy object describes the expected result

8.1.3 Using a Sequence Diagram instead of Memory

To enable us to draw conclusions about the interactions performed during
the test run based on the data stored, ProtocolDummy requires a memory.
Because sequence diagrams are suitable for specifying interactions, we can
use them as a replacement for dummies that store data. Fig. 8.7 describes the
log aspect of the test execution from Fig. 7.12 by specifying how often and
with which arguments the method writeToLog is called.

The method writeToLog in the dummy for class Protocol does not
need to store anything. It is sufficient to use an empty body to ensure that
no side effects occur. To do this, we use the automatically generated class
ProtocolSimpleDummy.

Because of the changes that frequently occur when texts are produced,
it is often better to require only certain properties instead of a complete
specification of the log text. The method call can thus be modeled with
writeToLog(s) and the string s can be checked whether it contains the
desired text: s.indexOf("552,000.00 $US")>=0.
2 In practice, an expansion of the class Protocol to differentiate between warnings,
errors, and notifications as well as the configurability of the output verbosity and
the debug level is useful.
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Fig. 8.7. Sequence diagram checks log behavior

In addition to the driver object, the example in Fig. 8.7 contains a dummy.
This shows that we can use dummies like normal objects in sequence dia-
grams and we can thus model the entire interaction in the test run. This does
mean, however, that dummies also have to be instrumented by the generator
to enable an observation.

8.1.4 Catching Side Effects

The procedure applied in the previous section demonstrates how a test ob-
ject can be embedded in a test environment from “above” by the test driver
and from “below” by dummies. In both cases, the data and interactions rele-
vant for checking the test success are available on all sides. In particular, this
allows us to prevent all side effects of the test object that interact with the
system environment. Preventing side effects is an essential prerequisite for
fast and efficient tests.

However, we also have to test the log class itself. In general, to test the
last layer above a file system, a database, or a communication layer, we have
to invest a certain amount of effort to ensure a defined initial situation of
the environment, to enable access to the test results after the end of the test,
and for cleaning up. For example, we have to set up log files or the database
accordingly. [LF02] contains detailed descriptions of this scenario. Section
8.5 of this book covers only simulating distributed communication without
actually performing the distribution.

8.2 Designing Testable Programs

One of the advantages of object-oriented systems is their improved testa-
bility. This is based on forming subclasses of the environment of the tested
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objects and by redefining their dynamic methods. Nevertheless, there are
still some problems with object-oriented systems that make it more difficult
or even impossible to define test environments, to perform tests, or to de-
termine the test success. These problems are generally the result of the use
of static attributes and methods, object instantiation, and the use of prede-
fined frameworks or components. We will discuss these problems and how
to eliminate them below. To do so, we will use further test patterns with
UML diagrams. Interestingly, although polymorphic and dynamic binding
increase test complexity, due to the flexibility they provide, they are also im-
portant elements for defining test cases.

The following sections propose a number of structural modifications for
making a system testable. These modifications either enable or at least sim-
plify simulation of a system environment. In addition, the test object is in-
strumented for the test execution. Both types of modifications change the
system. The proposed structural modifications are permanent and therefore
require acceptance by the developers. Object-oriented methods tend to sup-
port this approach much more than earlier paradigms did. Furthermore, in
an agile approach, it is an advantage that the tests are developed before the
system is completed and can therefore influence the system structure a priori.

In contrast, the instrumentation of the tests objects is not permanent and
therefore requires a great deal of caution, as it must not change the function-
ality of the test objects. Instrumentations performed correctly by the code
generator modify the runtimes at least slightly and thus potentially falsify
runtime measurements but not functional tests.

8.2.1 Static Variables and Methods

A frequently recurring problem is the use of static variables andmethods. As
far as possible, such static elements should not be used.When static elements
cannot be avoided, an object that encapsulates the actual variable should be
used instead of direct variable access. As an example in the auction project,
the singleton object AllData shown in Fig. 3.7 was used to obtain access
to all auctions, persons, and further data structures. In the UML model, this
object is specified to be accessible via the static attribute AllData.adwhich
has the access right readonly. During the code generation, a suitable access
method is created from this attribute, although it is not a method for mod-
ifying the attribute value itself. This means that the singleton is accessible
from outside but protected against being replaced. Nevertheless, below we
will introduce a pattern that fully encapsulates static variables and allow to
access static methods during tests.

The singleton object for logging is stored in the attribute prot of the class
Protocol. As Fig. 8.8 shows, the attribute is also encapsulated in a static
method. A message can then be created in the log with:

JavaProtocol.writeToLog("message")
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Java/Pclass Protocol {
static public writeToLog(String text) {

// Ensure that the object exists
if(prot==null) {

prot = new Protocol();
// Alternative would be: Factory.getProtocolObject();

}
// Delegation
prot.doWriteToLog(text);

}
protected doWriteToLog(String text) {

// The actual output is produced here . . .
}

}
class ProtocolDummy {

setAsProtocol() {
prot = this;

}
public doWriteToLog(String text) {

// Redefinition
logList.add(text);

}
}

Fig. 8.8. Global log object with replacement option

To ensure that an initial value is assigned to the attribute prot, the
method checks the static attribute and assigns a value where necessary but
then executes only a delegation to this object.

It is now easy to replace the Protocol object with a dummy. Themethod
doWriteToLog is overwritten in the dummy and the dummy object be-
comes the log recipient when we set it by using setAsProtocol().

This procedure is summarized in Table 8.9 as a pattern. Furthermore, Sec-
tion 10.1.5 specifies a refactoring rule that introduces this test pattern into an
existing model of the structure of a system.
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Pattern: Singleton behind static methods

Intention On the one hand, the pattern enables compact access to a sin-
gleton object which for tests, can be replaced by a dummy; but
on the other hand, it avoids a publicly accessible static variable
for this object.

Motivation See the previous discussion on the testability of code with
static variables. Examples are objects that realize log outputs,
time queries, or a factory mechanism.

Application It is useful to apply this pattern in the following cases:
• There is only one singleton of a class but this is used in
many places

• A compact access in the form Singleton.method() is
desired

• The variable storing the singleton should remain hidden
• The singleton is to be replaced by a dummy in tests

Structure

Singleton
implemen-
tation

Java/Pclass Singleton {
static initialize() {

initialize(new Singleton( ... )); }
static initialize(Singleton s) { singleton=s; }

static method(Arguments) {
// Separate initialization if necessary
if(singleton==null) initialize();
// Delegation:
return singleton.doMethod(Arguments);

}

doMethod(Arguments) {
// Work is performed here . . .

}
}

(continued on the next page)
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(continues Table 8.9.: Pattern: Singleton behind static methods)

Dummy
implemen-
tation

Java/Pclass SingletonDummy {
setAsSingleton() { initialize(this); }
doMethod(Arguments) {

// Work is simulated here . . .
}

}

Access Access to the singleton is via the expression
Singleton.method(Arguments). A prior initialization
is not necessary.

Noteworthy The problem of incomplete initialization is eliminated by an
object of the class itself being created by default. A more re-
strictive form could create an error message here, as experi-
ence shows that for tests in particular, adequate assignment of
values to the singleton is often overlooked.

Table 8.9. Pattern: Singleton behind static methods

8.2.2 Side Effects in Constructors

One of the main problems with the procedure shown is that Java requires for
objects from subclasses to call a constructor of the superclass. If this construc-
tor causes side effects—in the example it opens the log file—it is no longer
possible to define dummies for this class without any side effects. This is why
constructors should contain relatively little functionality and, where applica-
ble, additional functions that perform such initializations should be offered.
They can be called from the constructors but overwritten in dummy sub-
classes.

8.2.3 Object Instantiation

A similar problem is the instantiation of new objects. A command in the form
new Class() in a test object precisely defines the class of the object that is
created. In this case, we cannot use a suitable dummy in test runs instead of
the object specified. This leads to code that is difficult to test. We can elim-
inate this problem by using a factory [GHJV94] or a builder in the product
code.

As described in Section 5.1.7, we can create a factory from the given UML
model by creating corresponding methods of the factory for all constructors
that occur. In the same way, the generator replaces all constructor calls in the
Java code bodies with factory calls. The factory is itself a singleton that is typ-
ically stored in a static variable. We can therefore make it dynamic with the
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pattern already used for logs and prepare it for tests with a FactoryDummy
object. Fig. 8.10 shows an approach that goes even further. The factory that
this approach specifies is a dummy object that provides multiple prepared
dummy objects for the actual test run.

Java/Pclass FactoryDummy {
Class getNewClass(Arguments) {

ocl indexClass < class.size;
// It is also possible to specify an ocl assertion for arguments
// or to use these arguments to set attributes
// of the objects transferred
return class[indexClass++];

}
}

Fig. 8.10. Factory prepares objects of the test run that are to be created

The objects required in the test run are therefore no longer generated dur-
ing the test and are instead created in advance and then merely transferred.
The factory can therefore be initialized by an object diagram as shown in Fig.
8.11, for example. This allows us to determine exactly which classes are used
and, if it is useful, which default values should be assigned to the attributes.

Fig. 8.11. Factory object prepares objects of the test run that are to be created
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8.2.4 Predefined Frameworks and Components

Unfortunately, we cannot apply the transformations described in the previ-
ous sections to use predefined frameworks, class libraries, or components,
because these cannot be modified. The goal of a test here is not the prede-
fined frameworks themselves, but rather the classes developed whose func-
tionality builds on the frameworks and therefore requires parts of the frame-
work in the test environment. For example, according to [LF02], it is difficult
to integrate Enterprise JavaBeans (EJB) [MH00] in tests. There are generally
several potential reasons for this:

• The control flow can be defined by the framework. The “Don’t call us,
we’ll call you” principle [FPR01], which is common in frameworks, only
allows the test to take over control with a great deal of effort.

• The creation of new objects is already fixed in the framework; injection of
a factory is not possible.

• Static variables, particularly if they are encapsulated, cannot be controlled
sufficiently in a test and cannot be assigned suitable values.

• Encapsulated object states do not allow access for evaluating the test suc-
cess.

• No subclasses of the classes available can be formed, and therefore no
dummies, because (1) the class or a method it contains is declared as
final, (2) there is no public constructor, (3) constructors have undesir-
able side effects, or (4) the internal control flow is unknown.

• The classes cannot be instrumented, which means, for example, that the
information required for testing invariants and sequence diagrams is not
accessible.

In order to still be able to test software despite all of the issues listed
above, the application logic must be separated from such frameworks or
components. We can generally use the adapter design pattern [GHJV94] to do
this. [SD00] describes this separation as important to allow the application
logic to be reused independently from the technical code, but also for im-
proving maintainability. A further positive effect of this separation is the im-
proved testability. Fig. 8.12 shows an adapter for Java Server Pages (JSP). The
class diagram describes a separation of the processing of datasets entered via
the web and the actual storage in HttpServletRequest objects provided
by the JSP [FK00]. These request objects contain the data entered by the user
via a web form and can be queried, for example, via the list of parameters
using getParameterNames and the reading out of individual parameter
values using getParameter. Further methods, such as getSession, de-
liver the context of the session to which the web form belongs, for example.

The interaction mechanism, which JSP needs to read the input data, for
example, makes the complex adaptation necessary. Where applicable, pa-
rameters and results have to be repacked and unpacked again respectively.
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Java/Pclass OwnServletRequest {
OwnServletRequest() { // Nothing to do

httpServletRequest = null;
}
OwnServletRequest(HttpServletRequest hsr) {

httpServletRequest = hsr;
}
getParameterNames() {

ocl httpServletRequest != null;
httpServletRequest.getParameterNames();

}
OwnSession getSession() {

ocl httpServletRequest != null;
return new OwnSession(httpServletRequest.getSession());

} ...
}

class OwnServletRequestDummy {
OwnServletRequestDummy(Map(String,String) p) {

super(); // Call the empty constructor
parameter = p;

}
Enumeration getParameterNames() {

return parameter.keys();
}
OwnSession getSession() {

return new OwnSessionDummy( ... );
} ...

}

Fig. 8.12. Adapter for Request objects

In the auction system, this mechanism was used to separate the JSP interface
from the application core.3

3 Information about whether an OwnSession object has already been assigned to a
Session object is also stored. This is necessary to ensure that a session is unam-
biguous in the application.
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There are two primary variants for separating the developed code from
used frameworks and components. Firstly, we can offer a complete collection
of adapters for all classes of the framework. Or secondly, we can create a
minimal version of the classes currently required and the methods of these
classes used.

The minimal version corresponds to the idea that as little effort as pos-
sible should be invested in such technical definitions; however, it does have
the disadvantage that due to the necessity for further methods, the adapter
layer has to be expanded iteratively. On the other hand, this restriction also
has the advantage of making it easier to adapt a software system that uses
this framework to a new version of the framework and to migrate it to an-
other framework.

In contrast, a complete adapter layer has the advantage of greater reusabil-
ity. Unfortunately, as the method getSession shows, this adapter layer
cannot be generated fully automatically. It is therefore an advantage if the
framework itself already has such adapters or is encapsulated by interfaces
and factory objects such that dummy objects can be used directly. Ideally,
the framework will also have a number of dummy classes in an additional
package which can be used for various test purposes. This would simplify
developing tests in framework-dependent projects.

Conversely, when publishing a component or a framework, it is useful to
also publish a test suite that demonstrates that the component or the frame-
work behaves in accordance with a given specification. This also increases
the confidence of anyone using the component and explains the application
to the users with examples.

8.3 Handling of Time

In distributed real-time systems, the continuous progression of time is impor-
tant. In the auction system, for example, the current time is used to decide
the state to which an auction should proceed, whether a bid is received or
rejected, and whether notifications are sent to the bidders.

In Java, we can use System.currentTimeMillis() to determine the
current time in milliseconds. Using this within a test, times and time differ-
ences vary, which influences the test result and makes it dependent on the
execution time of the test. For example, the log output differs depending on
the period in which a test is executed.

Including the current time means that the determinism of the test run
required in Chapter 6 is lost. We therefore have to define the test driver to
control the time prevailing during the test run. As a very helpful side effect,
tests that extend over several hours in a real time execution, such as an entire
auction, can be executed effectively in a few milliseconds.
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8.3.1 Simulating Time in a Dummy

Due to the afore-mentioned considerations, we locate the method call re-
questing the current time in a separate class and control it via a dummy
object that can be preconfigured. Fig. 8.13 describes this construction with
excerpts from the dummy class. In the auction project, the pattern for single-
tons behind static methods from Table 8.9 was also applied.

Javaclass Time ... {
Time() { ... }
long now() { // Obtains the current system time

return System.currentTimeMillis();
}

}

class TimeDummy extends Time {
TimeDummy(long time) {

storedTime = time;
}
long now() { // Returns the stored time instead

return storedTime; // of the real time
}
void setTime(long time) {

storedTime = time; // Allows the time to be changed
}
void incTime() {

storedTime++; // Increase by 1 msec
}

}

Fig. 8.13. Simulation of time with TimeDummy

The function setTime allows test drivers to set the time arbitrarily. The
time remains constant during the execution of a test, however. This corre-
sponds to an idealizing assumption that no time actually passes during the
calculation of a reaction. This assumption is applied in languages for embed-
ded systems such as Esterel [Hal93], for example. In fact, the proposed test
pattern requires some restrictions on the code with regards to the use of the
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requested time. Ideally, only one time query that is then used as the refer-
ence time during the calculation should take place. If it is necessary for time
to progress within the body of a method, a progression can be simulated by
calling incTime() for each query of now().

8.3.2 A Variable Time Setting in a Sequence Diagram

In parallel to the use of the time simulation, we can use a sequence diagram
to adjust the clock each time the test object is called. For example, we can
extend the sequence diagram from Fig. 7.12 such that the time is set explicitly
in each case. This produces the sequence diagram shown in Fig. 8.14.

Fig. 8.14. Assignment of the time for each call of the test object

We can use tags for method calls to model these time specifications more
compactly. In a test system, these time-based tags are interpreted construc-
tively: they are not measured, and are instead used as a specification for the
respectively valid system time. This allows us to represent a form of the auc-
tion run annotated with system times as shown in Fig. 8.15.

At the same time, the instrumentation of the test object for observing
method calls and returns allows the respective current time to be adapted.
Table 8.16 describes the application of the tag {time} and its additive form
{time+}.
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Fig. 8.15. Annotation as time specification

Tag {time}
Model
element

Interactions in a sequence diagram.

Motivation In a sequence diagram, the tag {time} specifies at which time
the call of a method or a return happens. This allows the sys-
tem time to be simulated.

Usage
condition

To implement the time specification, the sequence diagram
must be used as a test driver in an environment with simu-
lated time.
The times must increase as the timeline descends.
In a constructive sequence diagram in the interpretation with
the stereotype �match:free�, the specification of times is pro-
hibited.

Effect The instrumented product code sets the respective specified
time when the corresponding call or return takes place. As de-
fined in the pattern in Table 8.17 for simulating time, this time
remains constant until the next tag.

(continued on the next page)
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(continues Table 8.16.: Tag {time})

The tag {time} allows different date and time formats as ar-
guments that apply for the description of the time to be set.
If the date is missing, the tag that is already valid is retained.
It is possible to not only specify constant values, but also to
include variable and attribute values in calculations.
The variant {time+} allows relative time specifications that
can also be given in different formats.

Example Fig. 8.15 uses these tags.

Table 8.16. Tag {time}

8.3.3 Patterns for Simulating Time

The pattern discussed for handling the time problem is summarized in Table
8.17.

Pattern: Simulation of time

Intention To ensure deterministic results for tests of time-dependent be-
havior, the time is simulated. The driver can manipulate the
time during the test run.

Motivation Time-dependent behavior can thus be simulated and is repeat-
ably deterministic.

Application It is useful to apply this pattern if the system behavior is de-
pendent on the current time, as is the case, for example, when
logging operations or for tests of interaction patterns that have
timeouts.

Structure See Fig. 8.13. To apply the pattern, sequence diagrams such as
those shown in Fig. 8.15 are available, for example. They use
tags to define the current time.

Implemen-
tation

See Fig. 8.13. This is typically combined with the pattern de-
scribed in Table 8.9 for encapsulating a singleton behind static
methods so that Time.now() can be used as a call.

Noteworthy An implementation must not assume that the time progresses
during its activity. In particular, no waiting loops in the form
t=Time.now(); while(Time.now()<t+1000); may be
used.

Table 8.17. Pattern: Simulation of time

A refinement of this concept was used in the auction project: in test runs,
several clients and the server run together in a single process space. As clients
have different system times, and signal delays in the Internet should not be
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underestimated, for each client a separate time was simulated by exchanging
the Time objects each time the activity switched between clients. The pattern
8.25 discussed in Section 8.5 was used to do this.

This allows us to model relativistic phenomena and to test, for example,
phenomena of the software in the case of (often occurring) insufficient time
synchronization between clients and the server. We need to do this because
one of the critical problems in the Internet results from the significant and,
to some extent, very different signal runtimes. These become significant in a
real-time application, such as the auction system.

8.3.4 Timers

Monitoring of timeouts is closely related to querying the current time. Both
can generally be realized with the same techniques. Typically, new timers
are created for each task, which is why a timer factory is realized as a global
singleton. Timeouts can thus be produced or prevented as desired and trans-
mitted by timers or directly by the test driver.

8.4 Concurrency with Threads

Concurrency always occurs when system parts that act independent of each
another can perform activities at the same time [Bro98]. For example, mul-
tiple threads within a system can execute different tasks. Typically, external
events such as user input, TCP/IP communication, and printing and load-
ing operations are handled in separate threads. Thus in the Abstract Win-
dow Toolkit (AWT), events are processed in a separate thread. This does nor-
mally not increase the overall speed of the system but does use waiting times
caused by the environment efficiently and improves the response behavior
of the graphical user interface. Threads are lightweight processes that all run
in the same memory space. In contrast, there are heavyweight processes that
the operating system manages and that do not use any common memory.
Thirdly, processes can be distributed over different processors via the Inter-
net, for example.

Concurrency occurs in all of these cases and can lead to nondeterministic
results and thus also to sporadic errors. It is therefore important for confor-
mance tests to suppress this form of nondeterminism and execute tests in all
variations of interactions. In the following, we will discuss a concept that al-
lows us to control the nondeterminism arising from threads within a process
space.

The principle behind this approach for testing distributed systems can be
characterized as follows: the basic functionality is initially tested using a de-
terministic test run to ensure that the methods do work together correctly.
The test run brings all of the activities required for the test into a determin-
istic order suitable for the test. This now acts as initial proof of existence of
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correct test runs. Naturally, it does not allow a statement that is valid for
all tests. Therefore, alternative orders are checked in further tests. This in-
terleaving at method level creates further security about the correctness of the
concurrent interaction. The tests, however, do not ensure absence of unde-
sired interactions between threads on shared data; this is ensured instead by the
adequate use of synchronization mechanisms. In high-level languages such
as Java, the intensive use of synchronization means that the problems com-
ing from concurrency are significantly less than in hardware-based, embed-
ded systems, for example, where interleaving occurs at machine instruction
level.

The technique proposed in [LF02], for example, of allowing nondetermin-
istic test cases to run several times to test different variants of executions can
be seen as a supplement. [Bin99] also offers a test pattern for integrating dis-
tributed systems. However, this test pattern does not contain any functional
simulation within a process space and should therefore also be seen as a sup-
plement.

8.4.1 Separate Scheduling

Deterministic test results can generally only be achieved if the concurrency
is fully controlled by the test driver. To do this, a test driver must be able
to either intervene in the scheduler of the Java virtual machine or switch off
its scheduling. As both the product code and the test code should be able
to function on several platforms or at least with different versions of Java
implementations, an adaptation of the Java virtual machine is only useful to
a limited extent.

However, a relatively elegant and stable solution is to model the schedul-
ing in a simple form directly in the test driver. As a test driver is formulated
for only one test run, it is relatively easy to describe under the following as-
sumptions:

1. Each thread consists of one or more regularly recurring activities which
each require relatively little time.

2. The parallel execution of individual activities has no interferences that
are explicitly required for the program execution.4

3. Thread security and deadlock freedom are already tested with other test
and inspection procedures.

According to 1., a thread therefore has a form similar to that shown in
Fig. 8.18.

The use of other mechanisms, such as Java´s TimerTask and the asso-
ciated possibility of defining an explicit scheduling for method calls, does

4 For example, a data exchange from threads via common variables or busy-wait
loops would be problematic.
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Javaclass OwnThread extends Thread {
protected Workingclass client;
public OwnThread(Workingclass client) {

this.client = client;
// The thread is not started directly when the thread is created,
// but afterwards by the object creating it!

}
public void run() {

// Constant repetition:
while (true) {

client.workingmethod(arguments);
try {

sleep(sleepPeriod);
} catch (SomeException e) { }

}
}

}

Fig. 8.18. Typical appearance of a testable thread

not change this principle. Instead, the use of this mechanism actually also re-
quires the separation of thread management and application functionality. If
necessary, the product code must be refactored by, for example, outsourcing
the functionality hidden in the method run into a separatemethod. If the cal-
culation of a termination condition for the while loop or the sleepPeriod
is more complex, these two calculations are also outsourced to separatemeth-
ods. This allows us to test these individual functionalities and the basic func-
tionality of the thread is simple and therefore straightforward.

This principle can also be achieved if the actual thread is hidden in an ex-
ternal component or in a framework and only callbacks, that is, calls from the
framework to the own code developed take place. In some circumstances,
however, the arguments transferred have to be packed in adapters. This en-
sures that there are no dependencies between the application code and the
framework that prevent the application code being embedded in a test sys-
tem. This is demonstrated in Section 8.2 using the example of the Request
classes from JSP.

Another set of problems results from the fact that there are threads that
can be structured according to Fig. 8.18 but themethods regularly called have
to perform blocking calls themselves. For example, the communication via
Socket classes in Java retrieves incoming data using a blocking read()
call. A Socket dummy that already has a set of input data can be used to
bypass this blockade.
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8.4.2 Sequence Diagrams as SchedulingModels

Based on the thread structured according to Fig. 8.18, it is feasible to model
a test scheduling with a sequence diagram. Fig. 8.19 describes a test driver
that executes multiple methods whose calls to the auction system take place
in different threads.

Fig. 8.19. Scheduling at the level of individual functions

The three objects of the classes ClockDisplay, WebBidding, and Bid-
dingPanel belong to three different threads. The first is responsible for up-
dating the time display in the Client GUI; the second is responsible for reg-
ularly requesting new information from the server for the auctions currently
being observed; and the third is part of the graphical interface that waits
for user actions. The object :BiddingPanel is therefore addressed by call-
backs from the AWT framework. The example tests a large part of the client
system as it integrates not only the application core, but also the processing
of the graphical interface and the communication with the server. Dummies
are therefore required at multiple points to simulate the effects of the envi-
ronment used. In particular, using AWT classes to transfer events is critical
for the reasons described in Section 8.2. It is therefore advisable to test one
layer lower or to place an adapter layer between the AWT and the applica-
tion code. In the example, pressing the return key in the input field for bids
is interpreted as a bid submission and leads to bid(String inputtext)
being called. This method can also be called up directly and therefore inde-
pendently of the AWT framework. Fig. 8.20 shows one of multiple scenarios
used in the auction system to test the application core in the client, whereby
again there is no complete definition of the underlying object structure.
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Fig. 8.20. Scheduling solely in the application core

8.4.3 Handling Threads

The previous modeling of concurrency assumes that the respective threads
already exist and act independently of one another.

However, there are several situations in which threads influence each
other mutually. For example, a new thread can be created at any time. As
the test driver has to take over the scheduling of the threads completely, the
creation of a new threadmust be simulated by applying a factory for creating
new objects and a dummy thread that does not lead to a new thread actually
starting. However, the simulation of a forced termination or interruption of
another thread is then also not a problem. Therefore, in a dummy class for
threads, methods such as start(), interrupt(), or destroy() can be
replaced by empty methods.

If the method join() is used, however, the scheduling procedure used
must be extended such that the join() continues to call methods of other
threads until the threads there can be deemed finished. Like other methods,
the method join() also cannot be redefined in the class Thread. Therefore,
an adapter is required. A class OwnThread can be formed according to the
pattern in Section 8.2.4. ThreadDummy is the subclass from this pattern that
is used for the test.

Using a suitable code generator, from the sequence diagram in Fig. 8.21,
we can generate a test case that partially integrates the functionality of the
test driver in the class ThreadDummy.

Methods such as sleep() should be redefined in a test to simulate time
in the thread dummy without actually waiting.

8.4.4 A Pattern for Handling Threads

The discussion for handling threads can be summarized with the pattern
presented in Table 8.22.
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Fig. 8.21. Thread dummy takes over scheduling tasks

Pattern:Handling threads

Intention Threads can generally cause nondeterministic system execu-
tions and must therefore be suitably adapted for tests.

Motivation The processing of threads and therefore of concurrency within
a processmust be simulatedwith a distinct scheduler that pro-
duces determined test results.

Application It is useful to apply this pattern in the following cases:
• Multiple threads run in parallel within one process.
• There are interactions between the threads that need to be
tested.

• The threads are defined according to the structure de-
scribed in Fig. 8.18 or can be restructured accordingly;
this involves a thread performing regularly recurring, rela-
tively short activities.

Structure The pattern consists of two parts. A ThreadDummy is
used if threads are controlled explicitly in the test object.
ThreadDummy is the subclass of an adapter for the class
Thread. In the product system the adapter is used. Threads
that run in parallel and that are assumed to be initialized are
tested via a scheduler formulated for the test run. This sched-
uler calls the individual activities of the different threads in
order and allows each of these activities to run to completion
before the next activity is executed. A type of cooperative mul-
titasking is thus implemented.

Implementa-
tion

We canmodel this type of scheduler using a sequence diagram
such as the one shown in Fig. 8.19. If this pattern is used in
combination with the simulation of time from Table 8.17, we
can use the tag {time} to model the advancing time.

(continued on the next page)
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(continues Table 8.22.: Pattern: Handling threads)

Noteworthy If a method called by the scheduling uses special functions
such as yield(), sleep(), etc., these must be redefined suit-
ably in a ThreadDummy.

Table 8.22. Pattern:Handling threads

This pattern describes a first part that has to be generated and a struc-
tural, reusable second part. The latter belongs to the runtime environment of
UML/Pwhich provides adapter OwnThread and its subclass ThreadDummy
as a standard. As described, the subclass ignores all method calls. Separate
subclasses can be defined from this class that perform the scheduling de-
scribed in Fig. 8.21, for example.

A generator that is suitable for thread scheduling can generate test drivers
(from sequence diagrams) that take over the scheduling as subclasses of
ThreadDummy.

8.4.5 The Problems of Forcing Sequential Tests

We remember that the method described here for scheduling tests does not
test the concurrency but rather excludes it explicitly in order to run sequen-
tialized conformance tests. The test results do therefore not reflect all situa-
tions in a concurrent product system. These test runs are only some possi-
ble executions. However, if each critical method is synchronized, as required
in the Java coding standard, then at least fine grained concurrency can be
prevented. This simplifies the development of tests as well as to cover all
potential behavior with these tests.

The following piece of code belongs to a program that is difficult to test
and that permits “race conditions”:

Javaclass X {
int a = 0;
int loopa() {

for(int i=0; i<100000; i++) a = (a+1) % 99;
}
int setAndReada() {

a = 0;
return a;

}
}

With a scheduling that calls the methods in a random order but one after
the other, the following OCL constraint is always tested successfully:

OCLcontext X.setAndReada()
pre: true
post SetAndReadA: result==0
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The reason for this is that setAndReada() runs with the exclusion of
true parallelism. However, if real concurrency occurs in a product system,
the result of setAndReada() is not determined. There are two ways of ad-
dressing this: (1) The constraint SetAndReadA is defined too narrowly. Thus
0<=result && result<99must be used instead. (2) The methods are im-
plemented incorrectly; they should be protected against such surprises by
means of synchronization.

Simulating the unprotected functionswith the proposed proceduremeans
that we have to reorganize the parallel functions to allow a more detailed
scheduling. For example, we can split the method setAndReada() into
two parts (one modifying method and one query) and move the body of
loopa() to a separate method. This results in the methods that, provided
a test driver in the form seta(); loopaBody(); reada();, immediately
cause a recognizable violation of the invariant:

Javaclass X {
int a = 0;
int loopa() {

for(int i=0; i<100000; i++) loopaBody();
}
int loopaBody() { a = (a+1) % 99; }
void seta() { a = 0; }
int reada() { return a; }

}

An alternative approach could use a scheduling in which running func-
tions interrupt themselves with an appropriate method call.5 However, this
does require a greater level of effort to manage the scheduling.

The biggest problem is still that the number of quasi-parallel executions
increases significantly with this very detailed scheduling. Developers have
to anticipate the potential sources of danger accordingly so that these can be
anticipated through specific tests. On the other hand, this does allow to test
unclear or suspectedly erroneous situations.

The literature available on the topic of testing contains various proposals
for testing concurrent programs. It is a best practice tomake programs thread-
safe and establishing a type of pseudo-determinism [LF02] by making concur-
rent program parts as independent as possible. Another option is to run as
many automated test runs as possible with the real threads to thus capture
at least sporadically occurring errors [LF02]. However, the confidence in the
robustness of the system remains limited even with this method, especially,
if the product system has a different hardware, operating system, compiler
version, system load, etc. as the test system.

5 The first implementations of the Java virtual machine required this, for example,
through calls of yield(), as they only realized a cooperative multitasking. A sim-
ilar principle would have to be applied here.
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8.5 Distribution and Communication

Truly distributed programs differ from only concurrent programs by a spa-
tial or at least conceptional distribution of their subsystems. This results in
separate storage that prevent more than one process working on the same
object and that enforce explicit communication forms [Bro98, Bog99].

Systems, which are distributed in the Internet, such as the auction sys-
tem, can communicate in various ways. Several frameworks and technolo-
gies, such as RMI, Rest, or CORBA, offer different levels of support. Increas-
ingly many frameworks even allow to use synchronous method calls that are
then encoded as asynchronous communication via the Internet.

8.5.1 Simulating the Distribution

Distributed systems are also concurrent systems and are therefore inherently
nondeterministic, unless a fully deterministic communication and schedul-
ing is explicitly added. Furthermore, in contrast to the usual thread program-
ming, a communication partner can fail relatively often because, for example,
WLAN is fragile, the computer is turned off, or the client was terminated.
State-based communication, such as protocols, where the state of the com-
munication is remembered by the partners, tests must therefore also integrate
spontaneous state transitions to mimic protocol resets.

The principle that can generally be used for testing distributed systems
is based on the scheduling of concurrent threads. The pattern for simulating
concurrency from Table 8.22 is therefore also generally suitable for simulat-
ing distributed systems. However, some additional problems must be con-
sidered.

Threads that are designed for different process spaces can interact in an
undesired way in a test within one joint process space, for example, because
all threads suddenly share the same static variables in a test run. This prob-
lem can be overcome by exchanging values of the static variables on each
change of the thread context. It is even better to encapsulate static access
in an interface that allows internal redirection. The singleton pattern from
Table 8.9 is ideally suited to this purpose. In this pattern, the realization of
the do. . .method delegates to the object that resembles the currently active
context. This concept is similar to the use of Session objects in JSP [FK00],
which define the context of a thread that is currently active. However, in the
approach presented here, the use is not visible to a user due to the additional
encapsulation in a static method.

Fig. 8.23 shows a simple scheduler that stores a message on a server and
then triggers two clients to retrieve the message.

This sequence diagram does not contain the actual communication. This
is dealt with later below. The objects involved in the test are parameterized
with the tag {location} introduced in Table 8.24. The value of the tag de-
scribes the respective process space. Before the respective method call is exe-
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Fig. 8.23. Simulation of a distributed system

cuted, the process context is switched such that each activity triggered finds
its natural environment.

The implementation of location specifications is a very pragmatic form of
the use of locations for modeling systems. Locations are also used in the am-
bient calculus [CG98] for modeling dynamic systems. In the UML standard,
the deployment diagrams, which are not examined in detail in this book, can
also be used to describe similar effects.

Tag {location}
Model
element

Objects in an object diagram and a sequence diagram.

Motivation Describes the physical or conceptual distribution of the
marked objects in different process spaces.

Glossary The position specification described with the tag is called loca-
tion.

Usage
condition

As process spaces are distributed physically or conceptually,
links and calls between objects in different process spaces are
usually not possible. However, an exception is made for test
drivers and communication elements.
Objects that are created as a result of a sequence diagram be-
long to the same process space as the creating object.

(continued on the next page)
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(continues Table 8.24.: Tag {location})

Effect The physical distribution can be simulated in a test case. Each
location has access to a separate environment that prevents,
for example, the use of static variables leading to undesired
interactions.
The argument for the tag {location} is an identifier of the
type Stringwhich represents the name of the process space.

Example(s) The sequence diagram in Fig. 8.23 uses these tags.

Table 8.24. Tag {location}

8.5.2 Simulating a Singleton

Simulating a distributed real-time system usually requires the use of differ-
ent system times for each individual location. For this purpose, the pattern
in Table 8.17 for simulating time can be extended using the same technique
as for other singletons. The pattern in Table 8.25 describes how a singleton
can be managed individually for each location.

Pattern: Individual singleton for each location

Intention If distribution is simulated in the test system, this pattern en-
ables a separate singleton to be assigned to each location.
The pattern builds on the singleton pattern from Table 8.9.

Application When this pattern is applied, the fact that a distribution is only
simulated remains hidden to the product code. From a virtual
perspective, each location has its own static variables.

Singleton
implemen-
tation

Java/Pclass Singleton {
static String location = "";
static Map(String,Singleton) singletonMap

= new HashMap();

static public void setLocation(String l)
{ location = l; }

static public void initialize(Singleton s) {
singletonMap.put(location,s);

}
static public void initialize() {

initialize(new Singleton(...));
}

(continued on the next page)
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(continues Table 8.25.: Pattern: Individual singleton for each location)

Java/Pstatic method(Arguments) {
// Selection of the singleton
Singleton singleton

= singletonMap.get(location);
// Separate initialization if necessary
if(singleton==null) {

initialize();
singleton = singletonMap.get(location);

}
// Delegation:
return singleton.doMethod(Arguments);

}
doMethod(Arguments) {

// Work is performed here . . .
}

}

For the simulation, only the class Singleton is adapted us-
ing subclasses like SingletonDummy, which are defined pre-
cisely as they are described in Table 8.9.

Noteworthy • As multiple “singletons” are used in the same process
space of the test, we can only refer to virtual singletons. In
fact, multiple instances exist simultaneously.

• It is therefore important for the simulation that the single-
ton encapsulated by this technique also only accesses its
static attributes using the mechanism presented here.

Table 8.25. Pattern: Individual singleton for each location

8.5.3 OCL Constraints across Several Locations

As a result of the combination of multiple virtual process spaces used in the
test, the singleton is only unique within its location. As a result, for exam-
ple, the auction identifier auctionIdent is not unique across multiple lo-
cations. Therefore, when simulating distribution, OCL invariants have to be
interpreted differently to the form of Chapter 3, Volume 1. In principle, ex-
pressions such as the following are valid for each location but not for the
entire test case:

OCLcontext AllData ad inv AllDataIsSingleton:
AllData == {ad}
or

OCLcontext Auction a, Auction b inv AuctionIdentIsUnique:
a.auctionIdent == b.auctionIdent implies a == b
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Such expressions are not valid for the entire test case because they implic-
itly use quantifiers over the set of all available objects.6 Therefore, the OCL
constraints used in such test cases have to be interpreted locally on all ob-
jects of a class. On the one hand, in tests the management of the extension
of a class, which is created by the code generation, requires an additional
differentiation according to the locations to which these objects reside.

On the other hand, as the OCL constraints in Fig. 8.23 show, when sim-
ulating distributed processes, it is interesting to evaluate constraints that are
formulated across process boundaries. This allows us to formulate global
properties: for example, that after the messages present on the server have
been retrieved, the value of the last bid b is present on the client as the low-
est bid. The Money objects compared in this process belong to different loca-
tions.

If it is not obvious that an OCL constraint is to be interpreted globally,
the use of a tag in the form {global} is proposed for OCL invariants. In
the same way, we can restrict the validity of an OCL invariant at each of the
locations individually using the tag {local} and at a specific location only
by naming these explicitly:

OCL{location=server}
context Auction a, Auction b inv AuctionIdentIsUnique:

a.auctionIdent == b.auctionIdent implies a == b

8.5.4 Communication Simulates Distributed Processes

There are several communication mechanisms available that distributed pro-
cesses in product systems can use. In a test run with simulated distribution,
real communication via a network is not necessary. Therefore, the objects
used for communication must be replaced by dummies which transfer the
information to be transmitted in another way.

In the auction system, the communication is realized via multiple self-
designed layers based on direct HTTP queries. This has led to a very effi-
cient and configurable system which can easily switch encryption and the
management of communication statuses in “sessions” on and off as well as
handle different types of firewalls and cache systems. The basic structure of
the communication is represented in Fig. 8.26 with abstraction of details such
as sessions and encryptions. It describes only that part of the communication
that is used for submitting bids.

In the client, the call hierarchy corresponds to the layering, hence asp
calls mhpwhich uses an existing connection or creates a new one, transforms
the data into an encrypted string, and then transfers it. On the server, the
activity starts from a set of existing threads that is not shown here. At the
socket, this set of threads checks whether a query is present and, if this is

6 context Auction a is a universal quantification over all objects of the class
Auction.
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Fig. 8.26. Communication layers in the auction system

the case, allows the query to be processed in separate instances of the class
HttpConnection respectively. Therefore, on the server, the activity starts
from the class HttpConnection.

As discussed in Section 8.1, in distributed systems we can also test indi-
vidual layers or combinations of layers. To enable this, in each case we have
to design a suitable configuration using dummies and factories. We can rep-
resent the configuration of simulated distributed systems with an object dia-
gram. For example, we can achieve a very simple configuration that hides all
communication aspects using the object diagram shown in Fig. 8.27. In this
case, we use a dummy for delegation so that a copy of the transferred objects
can be created and no common objects are used in different locations.

Fig. 8.27. Connection in the uppermost layer

The configuration shown in Fig. 8.28 also allows us to check whether the
transferred bids have been correctly converted into strings (“marshalling”).
The layers have each been designed such that the original can be inserted
instead of the proxy. The shown configuration does not even require to build
copies for a transfer between the locations since strings are unmodifiable ob-
jects.
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Fig. 8.28. Connecting the handler in the second layer

Further configurations are possible by replacing the Socket and URL-
Connection objects with dummies or, as shown in Fig. 8.29, replacing the
reader and writer with a pipe.

Fig. 8.29. Connecting the handler in the third layer

In some cases, we can reuse test drivers for different configurations but
we may have to adapt them in some circumstances. Thus, in the configura-
tion in Fig. 8.29, we must ensure that the data stored in the pipe is retrieved
again. This means that HttpConnectionmust be activated with an appro-
priate frequency. In the configuration shown in Fig. 8.27, this additional effort
for the driver is not necessary.

8.5.5 Pattern for Distribution and Communication

The simulation of distribution and the resulting effort for static variables and
communication can be summarized in the pattern given in Table 8.30.
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Pattern: Distribution and communication

Intention Real distribution is very difficult to test and distributed test
runs are time-consuming. For reasons of efficiency distribu-
tion should be simulated in one process space.

Application It is useful to apply this pattern in the following cases:
• Distributed systems are tested; and
• Global system states have to be tested across distributed
subsystems; or

• The communication or partial aspects of the communica-
tion, such as encryption or communication states, are to be
tested.

Structure Locations (Table 8.24) model the physical distribution.
Static variables and factories are individualized for the loca-
tions using the pattern from Fig. 8.25. In the implementation,
information about the currently active location is hidden.
The communication is set up according to the class structure
below. Different configurations allow flexible use in the prod-
uct system and in test cases.

Dummy
implemen-
tation

The dummy delegates directly to the server. Under some cir-
cumstances, object structures specified as arguments have to
be copied or the duplicates that already exist in the respective
location have to be used.
The dummy acts as an interface between different locations.
It is responsible for switching the process context when the
server is called and returned.

Noteworthy The server does not necessarily have to realize the same inter-
face as the proxy. If it does not, the effort for implementation
in the dummy is correspondingly greater.

Table 8.30. Pattern: Distribution and communication
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8.6 Summary

This chapter discussed how we can use UML/P models in a practical way to
model test cases. It also described test patterns suitable for testing functional
properties of a distributed or concurrent system. We can thus prepare the test
object and test environment for functional, automated tests. While the use of
dummies is proposed as standard in the literature available on the topic of
testing [Bin99, LF02], the patterns for simulating time, communication, and
distribution for functional tests are new. A discussion of the problems of us-
ing frameworks and components is also rarely found, with the exception of
[SD00]. Frameworks and components are not systematically replaced by sim-
ulations with adapters anywhere else. One clear consequence of this chapter
is to realize testability of the system already in the architectural design phase.
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Refactoring as a Model Transformation

All the forces in the world are not so powerful
as an idea whose time has come.

Victor Hugo

Refactoring means applying systematic and controllable transformation rules to
improve the system design while retaining the externally observable behavior. This
chapter first discusses the method of applying refactoring rules and the con-
cepts of model transformations. On this basis, the chapter then develops a no-
tion of observationwhich is based on UML/P test cases and practically usable.
Building on this, the following chapter then discusses a collection of refac-
toring rules for UML/P.
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The requirements for a software system in use change due to changes in
the business model as well as due to the increasing demands of the users in
terms of the software functionality. The technological basis of an application,
such as the underlying operating system, frameworks used, or neighboring
systems, is constantly evolving.

During a project, users may come up with new requirements and we
have to introduce these requirements into the project flexibly. Furthermore,
in most cases, software today is so complex that it is not possible to develop
a system architecture that meets all potential requirements from the very be-
ginning.

Therefore, we have to learn techniques for developing software further
and for adapting software to changing requirements and a new technical en-
vironment. One technique that we can use is the refactoring of existing soft-
ware [Fow99, Opd92]. This technique consists of a collection of targeted and
systematically applicable transformations that we can use to significantly
and consistently improve a system architecture. This improvement is then
the basis for extending the system.

Refactoring techniques [MT04] are increasing in popularity. This is why
there are now adaptations for special languages such as Ruby [FHFB09],
HTML [Har08], or UML [SPTJ01, Dob10]; refactoring is also being applied
to large and complex software systems [RL04, Mar09]; it is also being used
to introduce design patterns [Ker04], or for certain tasks in software devel-
opment, such as software reorganization [Küb09].

The goal of this chapter is to sketch a refactoring approach by using ex-
amples. The chapter then focuses on embedding refactoring techniques in
the world of model transformations. As a first step, Section 9.1 presents some
examples of different types of refactoring applications. Section 9.2 classifies
the refactoring techniques in the software development process methodolog-
ically. Section 9.3 then explains the concepts of model transformation, of
which refactoring is a special case. The section increases the precision of the
semantics of transformation rules and defines a suitable notion of observa-
tion for the approach presented in [Rum16].

9.1 Introductory Examples for Transformations

This section demonstrates the types of refactoring steps available by apply-
ing them on some examples. As already discussed in [Fow99], the principle
of refactoring can be demonstratedwith very small examples, although these
small examples do not exhibit the reasons for a refactoring. [Fow99] therefore
uses a larger example covering 50 pages to show that we can control com-
plexity in evolution using refactoring techniques. The small examples below
therefore show only the possible uses of refactoring rather than explaining
the necessity for using refactoring.
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Fig. 9.1 contains terminology definitions from literature sufficient for the
subsequent examples. Building on this basis, Fig. 10.2 in the following chap-
ter contains a more detailed definition of terminology.

Definitions of the term “refactoring” from literature

• “Refactoring” can be characterized as an operation for restructuring a program
that supports the design, evolution, and the reuse of object-oriented frameworks.
[Opd92]

The work that is most quoted on the topic of refactoring offers the following defini-
tions:

• “Refactoring (noun): A change to the internal structure of a software to make
it easier to understand and change without changing its observed behavior.”
[Fow99]

• “Refactoring (verb): to restructure software by applying a series of refactorings
without changing its observable behavior.” [Fow99]

Fig. 9.1. Terminology definitions for “refactoring”

[Opd92] also refers to refactoring steps as software reorganization plans
that permit modifications at a “mid-size” level. In [Opd92], modifications to
individual code lines are referred to as “low-level” modifications; adapting
entire functionalities visible for the user is referred to as a “high-level” mod-
ification. [Opd92] sees refactoring primarily as a technique for developing
frameworks further. The use of refactoring to evolve architecture within a
project was first proposed in [Fow99] and is used, for example, in the Ex-
treme Programming approach (see Section 2.2).

In this book refactoring is defined as a transformation that transforms a
given model and the parts of code it contains into a new equivalent model
according to a suitable notion of observation by applying one or more steps.

Algebraic Transformations

The simplest form of refactoring is given by the well known algebraic trans-
formations of expressions. It uses the mathematical equations that can be
applied, for example, to simplify mathematical expressions. One example of
this type of rule is as follows:

This rule can be applied to math as well as to Java expressions and to
OCL. It uses the schema variables introduced in Chapter 4 as a placeholder for
other expressions. It is important that a represents arbitrary expressions of
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the base language and not only variables. Although this rule appears to be
very simple, when used in Java it has context conditions. Here, the expres-
sion inserted for a must not have any side effects. For example, after the ap-
plication of the transformation to (i++)+(i++), the variable iwould have
a different content and a different result would be produced.

a must also be deterministic. It would not be suitable, for example, to
query the time with the static query Time.now() for a. This would be par-
ticularly noticeable if the following rule were to be applied:

Further effects can occur with algebraic transformations and these must
be noted. For example, swapping an addition according to the rule

can lead to an arithmetic overflow that only occurs in the new calculation
if a and c are very large and b is negative. Conversely, we can use an alge-
braic transformation to increase robustness of the system against arithmetic
exceptions. We can also influence the accuracy of the result with suitable
transformations of numerical calculations.

However, algebraic transformations are in no way limited to numerical
calculations; we can also apply them to other primitive data types and con-
tainers. These include simplifications of Boolean calculations, transforma-
tions for strings, the utilization of commutativity and other laws for sets, etc.
Note, however, that often side effects are forbidden and the existing identity
of, for example, containers, must be observed.

The substitution of equal expressions also familiar from mathematics can be
formulated as follows:

We can apply the following rule to replace a method call with another,
more general call (0 can also be a different constant), for example:
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This allows us to introduce a new, more general method bar and to elim-
inate the old method foo. In its context conditions, this rule also requires an
OCL invariant to be valid.

Algebraic transformations are familiar from mathematics and algebraic
specification techniques [BFG+93, EM85] but are not seen as a core of the
refactoring techniques developed for object-oriented languages. They are,
however, a basis for performing the transformations of code bodies and in-
variants are often required.

ExpandingMethods

Another example of refactoring is the expansion of a method:

Sometimes more complex method bodies require modifications of the ex-
panded method body:

These rule applications use the same principle that is executed by opti-
mizing compilers for “inlining” methods, for example. However, a general-
ized formulation of the expansion rules has a lot of context conditions be-
cause, for example, variables are expanded into a different binding area and
inadvertent identical names are not permitted. When such a rule is used for
refactoring, the goal is often to use expansion to perform a subsequent al-
gebraic simplification or to refactor the resulting piece of code again with a
different method call.

We can also use the expansion rules outlined above in the reverse direc-
tion as extraction rules1 in order to factor out subfunctionality. This simplifies
reuse of subfunctionality and it can be tested separately. It also simplifies re-
definition of the subfunctionality in subclasses.

The application of the expansion rule is also subject to context condi-
tions and usually also requires additional modifications for adapting the ex-
panded code. If the expandedmethod is from a different class, then a context
condition must require that no attribute of this class is used, for example. We
can achieve this with a preparatory transformation by encapsulating all at-
tributes used with method calls.
1 In other transformation approaches, the rule for extraction is known as “folding”.
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A result of the expansion is that the dynamic binding of the method is
lost. Therefore, the expanded method must not have any redefinition in any
subclass. Alternatively, we could use data flow analyses to ensure that the
object in a is actually precisely from class A.

The context conditions for factoring a piece of code into a submethod are
typically complex. However, we can verify most of these context conditions
with syntactic analyses, meaning that the correctness of this type of rule can be
checked automatically, quite like in the expansion case. Relatively often we
can replace undecidable context conditions by using (somewhat stricter) syn-
tactic conditions that are relatively easy to check to ensure decidability. One
example is ensuring that the private method foo is only applied to its own
object self: while this is undecidable in a.foo() for arbitrary expressions
a, the restriction to self.foo()makes it trivial.

Restructuring the Class Hierarchy

Other refactoring techniques modify the system structure specified by class
diagrams. We can factor out new abstractions as new superclasses or shift
attributes and methods along the class hierarchy. Fig. 9.2 demonstrates the
introduction of a new class in the middle of the class hierarchy. This class
receives the common implementation of the method validateBid() ex-
tracted from the subclasses. To enable this, class-specific differences are fac-
tored in separatemethods. For example, the newmethod setNewBestBid()
contains the comparison, specific for the subclasses, of whether a bid quali-
fies as a new best bid.

The refactoring shown has already been specialized for the application
to be processed and shows several steps simultaneously. Using the schema
variables introduced in Section 4.4.2,we can represent the introduction of the
new class more generally by using placeholders that can be filled out instead
of specific class and method names.2

We can shift attributes and methods along associations if the correspond-
ing association and the classes involved in it satisfy certain conditions. For
example, we can usually no longer modify an established link of such an as-
sociation in order to keep the access to an outsourced attribute. However, a
static analysis is usually not able to recognize these time-based context con-
ditions; instead, the conditions require additional measures, such as the use
of suitable invariants and tests.

Signature Modification

Refactoring steps can cause internal modifications or modifications to the
signature of system parts. For example, the removal of a local variable that is
2 We can also use schema variables as placeholders for lists of attributes or sub-
classes but this requires an intuitive graphical representation that is not addressed
in this book.



9.2 The Methodology of Refactoring 261

Fig. 9.2. Introduction of a new superclass

no longer required is not critical. The removal of a method is problematic if
this method has been published in the signature of the class or the subsystem
and it is possible that other developers are using the method intended for
deletion. Therefore, it is often necessary to process the system in its entirety
as far as possible instead of applying refactoring to locally restricted, open
subsystems.

The modification of signatures also shows that the notion of observation
is very important here. Beyond the behavioral equivalence of the entire sys-
tem that is required in Fig. 9.1, interfaces within the system and to other
system parts offer additional observation points that we have to take into
account when applying refactoring techniques.

9.2 The Methodology of Refactoring

9.2.1 Technical and Methodological Prerequisites for Refactoring

Like many other elements in the portfolio of an agile methodology, refac-
toring is particularly successful in combination with other techniques and
concepts:

• Object orientation, in particular inheritance and polymorphism
• Automated tests
• Common model and code ownership



262 9 Refactoring as a Model Transformation

• No or hardly any additional documentation
• Modeling and coding standards

Object-oriented concepts were already seen as helpful for reusing software
components as early as [Mey97]. In particular, the formation of subclasses,
the dynamic configurability of object structures, the dynamic binding of
methods, and the resulting possibility to partially redefine behavior are rec-
ognized as factors which allow better reuse. The test patterns presented in
Chapter 8 show that object-oriented concepts can also be used beneficially to
define tests.

However, automated tests are a significant cornerstone for the success
of refactoring techniques. Automated tests allow us to efficiently verify
whether the functionality not directly affected by a refactoring still fulfills its
tasks when the refactoring is performed. If no tests are available for system
parts that are to be subjected to a refactoring, it is advisable to first develop
suitable tests. Furthermore, as discussed in Section 9.3.3, the acceptance tests
specified by the users of the system being developed define a notion of ob-
servation for refactoring steps.

If each artifact is owned by a developer and this user is the only person
permitted to modify it, refactoring is rather doomed to fail. The coordina-
tion effort required between the developers to modify multiple artifacts in
parallel (and, due to many small iterations, almost simultaneously) cannot
be realized practically. Furthermore, owners of an artifact refuse the addi-
tional workload if a refactoring is not an advantage for them but only for the
other developers. In such cases, the result is often not the best solution, but
rather the solution that involves the least effort for the winner of a discussion.
Common model ownership allows individual developers to perform refactoring
across and beyond interfaces and artifacts efficiently and to commit only the
modified and completely executable system into the repository. If automated
tests are available, the coordination effort between the developers becomes a
“coordination effort” between the developer (or pair of developers) and the
automated tests.

Refactoring modifies the structure of a system. If the structure is de-
scribed not only by the models used for code generation but also by further
documentation, additional effort has to be invested in updating these docu-
ments. Unfortunately, this effort can easily reach and exceed the workload of
the intended refactoring. The effort involved in finding the places that have
to be changed in a document is often rather high. When refactoring an im-
plementation, the according documents need to be kept synchronized. Oth-
erwise, developers cannot be confident that the documents are up to date,
which makes the documents rather worthless. Therefore, refactoring can be
used most effectively if no additional, detailed documentation exists. How-
ever, this requires adherence to precise modeling standards to simplify de-
veloper access to the models. Approaches such as “literate programming”,
with an intensive interweaving of the model and the documentation, are
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also not particularly suitable because the informal documentation cannot be
adapted automatically.

9.2.2 The Quality of the Design

As outlined in Fig. 9.3, refactoring is orthogonal to the development of new
functionality. In normal development, new functionality is added and the
fact that the quality of the design is thus reduced is accepted; with refac-
toring, the functionality is retained and the quality of the design is usually
improved.

Fig. 9.3. Refactoring and development supplement each other

There are ways of measuring the functionality of a system, such as the
Function Point Method [AG83], or the object-oriented adaptation of this
method [Sne96]. In the simplest case, the proportion of requirements already
implemented can be used as a unit of measure for the implemented function-
ality.

In contrast, there is currently no generally recognized procedure for mea-
suring the quality of a design objectively. Criteria developed for program-
ming languages to measure the “optimality” of a design are dependent on
the programming language and the experience of the developers. For exam-
ple, different criteria are proposed for object-oriented languages than were
discussed for procedural languages 10-20 years ago. Important points in-
clude keeping the coupling of classes relatively low, not making individual
classes too large or too small, limiting the depth of an inheritance hierarchy, etc.
Deficits are referred to as “bad smells” in [Fow99], for example, where 22
deficits are listed.

However, it is not only refactoring steps to improve the design in terms
of given metrics that are useful; above all, refactoring should be used to sim-
plify addition of new functionality in a subsequent step. Goal-oriented refac-
toring may therefore initially make a design worse in order to later add new
functionality or to perform further refactoring steps. A typical example is the



264 9 Refactoring as a Model Transformation

splitting of one class into two classes connected by a 1-to-1 association and
the subsequent generalization of the association in the form 1-to-*.

Here, for example, it is helpful to use metrics to identify deficits. A pro-
posal for eliminating these deficits with suitable refactoring steps is also use-
ful. However, it is the user who is familiar with the design and the underly-
ing motivation who has to decide whether a refactoring proposal is applied.

Some typical measured metrics on programming languages (such as the
inheritance hierarchy or the coupling of classes) can largely be taken over un-
modified. On the other hand, the fact that UML is much more compact than
Java allows a greater density of functionality within a class and therefore a
reduction in the number of classes required. After all, a part of the standard
functionality (such as get and set methods for attributes, factories, techni-
cal methods for saving etc.) is added by the code generator and is therefore
no longer visible in the model for the developer.

In parallel, further criteria for good design can be specified for the UML/P
notations. For example, an object diagram that contains a lot of objects should
be split into multiple object diagrams. These individual object diagrams are
then combined using the logic for object diagrams introduced in Section 4.3,
Volume 1. The size and form of Statecharts, sequence and class diagrams,
and OCL constraints can also be subject to suitable metrics which have to
be grounded on empirical studies, however. For example, the rule familiar
from other domains, that an observer can only capture up to 5 ± 2 elements
simultaneously, can be used here.

9.2.3 Refactoring, Evolution, and Reuse

A refactoring of the internal structures of a system does not directly lead to
any visible improvement in the system´s functionality for the users and cus-
tomers. Therefore, there must be good reasons for performing a refactoring.

From an economic perspective, refactoring is useful if the goal justifies
the workload involved. As discussed in Fig. 9.3, the system created does not
need to be optimally designed. However, during the entire development pro-
cess, the design must be good enough to enable adding more and more func-
tionality. In order to achieve this, the quality of the design should also be
good at the end of the project.

Therefore, the benefits of refactoring must always be weighed up against
the efforts required. In particular, for large modifications that modify the
technical or application architecture of the system by, for example, replac-
ing the communication infrastructure (middleware) or modifying core parts
of the data structure, the effort involvedmust be evaluated in advance. Based
on previous practical experience, we can state that refactoring steps are ap-
plied consistently—even through the relatively restricted support provided
by the search and replacement functionality of a development environment
and the existence of a test suite—progress is significantly faster than is often
estimated.
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We can use refactoring steps not only within a software development
project, but also for the purpose originally intended in [Opd92]: the evolu-
tion and reuse of frameworks in different projects.

A framework is normally developed further as a stand-alone artifact: in
each application, new functionality is added to the framework and any nec-
essary restructuring is performed. Special attention is given to preserving the
compatibility of the framework with the original applications so that they
can also be developed further. In an agile project, these considerations are
irrelevant when the principle of simplicity is applied. Extreme Programming
is therefore not directly suitable for developing frameworks, but could be
adapted for this purpose. To increase the reuse of frameworks, we have to
take additional methodological precautions to allow the framework to be
shielded against arbitrary modifications. In this case, we have to combine
agile and framework-based methods, as outlined in [FPR01], for example.

9.3 Model Transformations

This section analyzes the concepts for the definition of refactoring shown
in Fig. 9.1 in more detail. It discusses the nature of model transformations,
a notion of observation, a transformation calculus, and the interaction with
the semantics of the modeling language.

9.3.1 Forms of Model Transformations

In principle, a model transformation is a mapping starting from a syntacti-
cally well-formed expression of the source language UML/P. In contrast to
code generation, it is not Java that is used for the target language but again,
the UML/P. In principle, however, the meaning, that is, the semantics of a
model transformation, remains the same. Building on Fig. 4.9, Fig. 9.4 de-
scribes the basic pattern of a parameterizable model transformation.

Because model transformations are mathematical functions, we can in-
vestigate their functional properties. A function can be only partially defined
because the prerequisites for the applicability of the transformation are not
satisfied or the new model created is not well-defined. For example, a sub-
class can only be added if the superclass exists. On the other hand, if we add
a class that already exists, this results in a model that is not well-defined.
Just like in these two examples, many of these prerequisites can be checked
automatically. However, this is not the case with all prerequisites.

A model transformation can be injective. An interesting situation also
arises when a model transformation is not injective, as it is obvious then
that different models are initially mapped to the same new model and
information-bearing details are lost. Such transformations typically have the
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The following definitions are used to formalize the concept of model transforma-
tion:

• The modeling language (UML/P) defines a setUML of syntactically well-formed
expressions, and

• Accordingly, a model transformation is a mapping T : UML → UML.

• If the model transformation is parameterized with a script, this corresponds to a
mapping Tp : S × UML → UML.

Tp is thus a type of interpreter of the script language S for model transformations.
Based on the lifted but mathematically equivalent version T ′

p : S → UML → UML,
for a script s ∈ S, each transformation is of the form T ′

p(s).

Fig. 9.4. The principle of a model transformation

character of an abstraction and do not necessarily preserve semantics in all de-
tails. One example is the removal of all attributes from a class diagram. This
results in a more abstract representation with less detail information.

Model transformations are normally not surjective, meaning that not ev-
ery model can be created by using transformations. For a calculus, however,
it is worth investigating whether the entirety of the model transformations
and their combination is surjective. This would allow us to derive eachmodel
from a generic start—for example, an “empty” model—using transformation
steps. In the delta modeling approach [CHS10, HKR+11a, HKR+11b], for ex-
ample, chains of transformations are used to set up product variabilities from
an initial small model.

9.3.2 The Semantics of a Model Transformation

The Principle of defining Semantics for a Transformation

The use of a functional mapping instead of a relation to explain model
transformations indicates the constructive nature of the transformation. A
relation—for example, an abstraction3 or a refinement relation—can be used
when defining semantics. Based on Fig. 9.4, Fig. 9.5 discusses the principle
for defining the semantics of a model transformation.

The semantics of a model transformation as described in Fig. 9.5 can be
understood such that for any transformation, the graphically represented
commutativity must be proven. In practice, however, and in particular for

3 An abstract superclass represents an abstraction within the model. This must be
differentiated from a model transformation which performs an abstraction between
models. The introduction of a new superclass in a class diagram is not a model
abstraction in this sense; rather, it adds new information to the model. However,
this generally does not lead to different behavior being observable externally and
therefore is a refactoring.
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To define the semantics of a model transformation, building on Fig. 9.4, the follow-
ing definitions are required:

• A suitable formal target language with the vocabulary Z

• A formal semantics Sem : UML → P(Z) which maps each element u ∈ UML a
set Sem(u) of elements of the target language

• Relations R ⊆ P(Z) × P(Z) which represent relationships such as abstraction,
change of signature, refinements, etc. between elements of the target language

A model transformation satisfies such a relation R for model u ∈ UML if, for the trans-
formed model u, the following applies:

(Sem(u), Sem(T (u))) ∈ R

This condition can be illustrated graphically with a commutative diagram:

If this relationship applies for all models u ∈ UML for which the transformedmodel
is well-defined (that is, u satisfies the context conditions of the transformation T and
T (u) ∈ UML), then the model transformation satisfies the relation R or is an operative
implementation of R.
Typically, there are a lot of different model transformations that satisfy the same
relation. If the transformation is described by a script s ∈ S, then a script satisfies a
relation R if the transformation T ′

p(s) satisfies the relation R.

Fig. 9.5. Model transformation and model semantics

larger transformations, this cannot be achieved easily. Instead, in larger
transformations, an explicit discussion of special cases is necessary and test
suites checking invariants provide an informal justification for the transfor-
mation. A formal proof of correctness, however, is left to the person perform-
ing the concrete transformation (where applicable). With the level of granu-
larity of, for example, the refactoring rules from [Fow99] discussed in Section
10.1.2, and with the rules shown here, for the purposes of formalization, we
would first have to define the context conditions and the special cases much
more detailed.We can then think about proving the correctness of refactoring
rules based on the resulting more precise descriptions.
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Examples for Semantics and Relations

An essential element for the semantics of a model transformation in Fig. 9.5
is the presence of relations R on the target language Z . Relations with differ-
ent levels of strength are available depending on how well the theory under
the target language used for the semantics is set up. An example of a mature
theory are the streams in Focus [BS01b], which offer a wide variety of differ-
ent types of abstractions and refinement relations, from a signature relation
to an interaction and time refinement for distributed systems.

A further example of a mature theory are the finite state machines (au-
tomata) introduced in Section 5.2, Volume 1, with semantics in the form of
sets of recognized words over the input alphabet. If we assume the recog-
nized sets of words to be an observation, then, for example, we can under-
stand the transformations (familiar from automata theory [HU90, Bra84]) for
calculating a deterministic automaton variant or for minimization as refac-
torings. Most of the transformation rules for Statecharts from Section 5.6.2,
Volume 1 also modify only the structure of a Statechart; they do not affect the
behavior of the Statechart that is visible externally.

For an automaton, the replacement of an input character corresponds to a
transformation to rename the signature. An abstraction at signature level is when,
for example, a group of input characters is replaced by a single character. Fig.
9.6 shows the effect of an abstraction on a recognizing automaton.

A (real) abstraction looses information from the detailed initial model.
One feature of an abstraction is therefore that it maps multiple initial models
to the same target model. Abstractions are therefore not normally surjective.
Accordingly, they are also not suitable for developing a system further. How-
ever, they are suitable for analysis purposes or for defining tests that can be
derived more easily from the more abstract model.

It is also worth noting that abstraction on a syntactic level means that el-
ements or information details are removed from the model and the model
thus becomes “smaller”. In contrast, due to the form of the definition of
semantics Sem, which, as discussed in Section 4.1.1, can also be referred
to as loose semantics, the set of possible implementations increases in size.
The abstraction relation is thus represented as a set inclusion (formally:
R = {(X,Y )|X ⊆ Y }).

The inverse relation is called a refinement. It enables us to get from an
abstract model to a more specific, more detailed, and thus more complete
model by adding information.

As discussed below, the purpose of the refactoring techniques is to pre-
serve semantics. Hence they are neither abstractions nor refinements of the
initial models; instead, they merely represent a restructuring that cannot be
observed from outside. The associated relation will therefore be an equiva-
lence which acts as an identity based on the notion of observation introduced
later.
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Assume that L(Ai) is the set of words recognized by the automaton Ai. Automa-
ton A1 describes a number format that does not permit 0 as the last digit after the
decimal point.
In an abstraction, the individual numbers are replaced by a character #. On the al-
phabet, the abstraction relation is:

φ = {(n,’#’) | n ∈ [’0’, . . . , ’9’]}
This is extended to words on a pointwise basis. Example: (’17.33’,’##.##’) ∈ φ.
A replacement of the figures in automaton A1 according to φ leads to automaton A2.
For every word w1 recognized by A1, the abstraction w2 is recognized accordingly
by A2:

∀w1, w2 : w1 ∈ L(A1) ∧ (w1, w2) ∈ φ ⇒ w2 ∈ L(A2)

The inverse situation does not apply, however, as the example ’17.30’ shows.
As is often the casewith abstractions, information is lost. For example, the transitions
labeled only with the figure 0 can no longer be represented in sufficient detail. A
representation which is underspecified compared to the original automaton arises; it
still contains important information but no longer has as much detail.

Fig. 9.6. Abstraction using an example of a recognizing automaton

The examples shown here originate from the relatively simple and well-
understood theory of finite automata as this is the easiest way to explain the
principle. The same principle applies for Statecharts, which are much more
syntactically comprehensive; however, the usage conditions that have to be
complied with are much more complex. For Statecharts, it is also important
that they have an output which can be observed in addition to the input.
The resulting semantics-preserving transformations for Statecharts were dis-
cussed in Section 5.6.2, Volume 1.

Categories of Semantics Relations

The examples shown present three semantics relations. Categorizing them
shows that due to the semantics selected, only a few relations are necessary.
We can identify the following categories:
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1. Abstraction, which abstracts from details. The resulting model has a su-
perset of the initial model as semantics.

2. Refinement, in which details are added. Refinement is therefore the oppo-
site of abstraction.

3. Refactoring, as a semantics-preserving transformation with regard to a
predefined observation. Refactoring can equally be seen as a special case
of refinement and at the same time abstraction (with regard to the obser-
vation).

4. The change of signature by renaming syntactic elements that are visible in
interfaces.

We can transfer the categorization of semantics relations directly into a
categorization of transformation rules. There are therefore transformation
rules for abstraction, refinement, refactoring, and change of signature, whereby
these categories are not disjoint. For example, a change of signature can be
recorded as a refactoring when based on an observation that does not use
that signature.

The replacement of numbers with the character ’#’ in the example in Fig.
9.6 is an abstraction. Other forms of abstraction include removing classes
from a class diagram, objects from an object diagram, etc. In each case, the
resulting model is less expressive. Conversely, in a refinement new classes
can be added. However, whether a refinement is a real refinement depends
on the notion of observation discussed below.

Transformations to Sets of Artifacts

In Section 1.4.4, Volume 1, we defined that the term “model” includes both
an individual artifact—for example, a class diagram or a Statechart—and a
collection of these artifacts for describing several aspects. Therefore, in Fig.
9.7, model transformations are expanded to sets of processed artifacts and a
form parameterizedwith scripts can be defined in the same way. This means,
for example, that we can rename a method consistently wherever it is used.

The motivation for the definition of semantics used in Fig. 9.7 is that
a model u1 can be seen as a specification constraint for a system that has
to be satisfied. There is therefore a set Sem(u1) of systems that satisfies
the constraint specified. If a second model u2 is defined as an additional
constraint, the set of systems that now are realizations is Sem({u1, u2}) =
Sem(u1) ∩ Sem(u2), that is, precisely those systems that satisfy both con-
straints.

Open and Closed System Specifications

A common form of applying of model transformations today, for both CASE
tools for DSL or UMLmodels and for development environments with refac-
toring support, is the assumption of a closed system specification.
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The expansion of the model transformations to sets is defined based on Fig. 9.5.
A model transformation is extended to a mapping T : P(UML) → P(UML) to sets in
which each artifact of the setM ⊆ UML is transformed individually:

T (M) = {T (u)|u ∈ M}
The semantics definition is extended to Sem : P(UML) → P(Z) as follows: for sets
of modelsM ⊆ UML, as is common for loose semantics, the following is defined:

Sem(M) =
⋂

u∈M

Sem(u)

Fig. 9.7. Model transformation to sets of artifacts

A model is called open if it models an open system, that is, has explicit in-
terfaces to the system environment whose signature is given. Furthermore,
the model expects certain behavior of the system environment. This envi-
ronment includes neighboring systems modified by colleagues, predefined
frameworks, the operating system, or middleware components. A model is
closed if there are no such interfaces.

A closed model typically arises if the model explicitly contains the sys-
tem environment. Closed models are easier to modify and adapt than open
models because in an open model, the assertions of the system promised to
the environment must be ensured. Interfaces and interaction patterns must
not be modified in relation to the environment.

Although today’s systems almost always contain interfaces to the envi-
ronment due to the existence of frameworks, for example, developers gen-
erally work as far as possible as though the system is described in a closed
form. The approach propagated in [SD00] and used in Chapter 8 for separat-
ing the application core from external components with adapters gives rise
to a closed form as a side effect because interfaces to the environment are en-
capsulated. The adapters are then treated as part of the system and the effect
of a closed system that can be controlled and manipulated arises.

The common ownership of models for developers that stems from the
methodological approach of this book and that is discussed in Section 9.2 has
the same effect. Boundaries between the artifacts created by a developer and
those of team colleagues are thus removed. The environment of the domain
primarily developed by one developer is thus accessible to and modifiable
by other developers, as in a closed system.

A SystemModel as a Semantic Domain

Fig. 9.4 and 9.5 introduced the abstract sets UML and Z for the syntax and
the semantic domain. While the syntactic form of UML/P was discussed in
detail in Volume 1 and is represented in Appendix C, Volume 1 by EBNF
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productions and syntax class diagrams, we have not yet characterized the
domain for formalizing the semantics further.

For semantic domains, there are a number of proposals that are used to
formalize parts of UML. [HR00] and [HR04] contain an overview of these
proposals. In particular, different logics and mathematical formalisms are
used and in most cases, are extended by specific constructs. This includes,
for example, [BHH+97], which discusses a formalization of larger parts of
UML based on a distributed, asynchronously communicating formalism, or
[FELR98b], in which UML is transformed into the formal language Z [Spi88].

This book, which aims to provide a methodological application of UML,
does not cover the formal definition of a semantic domain and a mapping of
semantics based on that definition. Nevertheless, this section discusses the
basic appearance of such a semantic domain in order to improve precision of
the notion of observation in the next section.

In order to be able to give a set of different UML diagrams precise seman-
tics, all essential aspects of a system must be represented in the semantics.
It is not enough to model individual aspects such as the input/output be-
havior or the contents of individual objects in the semantic domain. A closed
form of a system and explicit representation of the structure and time in that
system is preferable. The form of representation of distribution, concurrency,
and asynchronous communication influences the semantic domain signifi-
cantly. In the approach discussed in this book, such aspects are covered only
marginally. The tests for distributed systems and parallel threads defined in
Chapter 8 also replace real concurrency with simulated scheduling and thus
a sequential, deterministic execution.

[Huß97] and [Rum96] describe the basic structure of this type of semantic
domain. The structure is also referred to as a system model, that is, an abstract
representation of the structure and the behavior of systems. A system model
for UML is described in detail in [BCGR09a] and [BCGR09b]. In principle,
from a content perspective, this type of mathematically formal representa-
tion is very similar to the definition of a virtual machine, as discussed in Sec-
tion 4.2 for UML. However, a constructive, operational description is given
for the definition of a virtual machine, while a system model can generally
be defined more compactly as a form of denotational semantics.

A system model that is adequate for UML/P describes a system via a
set of system sequences which on their part characterize interactions, snap-
shots, and the objects contained therein. As a simplification of [BCGR09a] and
[BCGR09b], Fig. 9.8 characterizes essential elements, whereby for simplifica-
tion purposes, infinite sequences are omitted and the stacks actually assigned
to the threads are distributed to the objects.

9.3.3 The Concept of Observation

According to the characterization of a refactoring rule, the observation of the
behavior to be obtained is fundamental. However, the two most respected
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The system model describes a set of executions of a system. The following defi-
nitions are introduced for this purpose, whereby basic elements such as the set of
attribute names VarName or the values Value are not defined in further detail.

• An object o = (ident, attr, stack) is defined by a unique identifier ident, at each
point in its lifetime an assignment attr : VarName → Value , and the part as-
signed to it from the stack. Obj is assumed as the set of objects.

• A snapshot sn ⊆ Obj is a collection of objects that exists at a certain point in
time. The links between objects are represented by the unique identifiers in the
snapshot. SN is assumed as the set of snapshots.

• The set of actions Act describes method calls, returns, attribute assignments, etc.

• A snapshot knows which object is currently active and thus which action will
be executed next. The program counter can therefore be reconstructed from the
stack of objects. This defines the next action of a snapshot that will take place:
act : SN → Act .

• An execution run ∈ SN ∗ is a series of chronologically sequential snapshots.

• The system model SM ⊆ SN ∗ consists of a set of executions.

A number of additional conditions is necessary in order to restrict SM to the execu-
tions that can actually occur. For example, the control flow must be preserved and
only attributes that exist in the object must be assigned values.
In Fig. 9.5, Z was introduced as an abstract target language for a definition of seman-
tics. We can now set Z = SM . Each UML artifact u ∈ UML then receives its seman-
tics in the form of a subset of system executions from SM that satisfy the properties
described.

Fig. 9.8. Principle of a system model as a semantic domain

works on the subject of refactoring [Fow99, Opd92] do not define the no-
tion of observation precisely. In [Opd92, p. 28], the notion of observation is
reduced to the relation between input and output without considering inter-
actions. [Fow99] appeals to the intuitive image of observation by the user.
In XP projects, observation is understood primarily as the behavior that can
be observed at the user interface. However, under some circumstances, the
interfaces to other systems, databases, frameworks, etc. are also part of the
“externally observable behavior”.

Although there is no precise definition of the notion of observation in
the XP approach, we can define observations to check the correctness of a
refactoring of a system. To do so, the XP approach uses test case definitions
formulated in Java that are largely limited to checking the result in the form
of a postcondition.

The tests discussed in Chapters 6 and 8, and in particular their descrip-
tive components, such as oracle functions, invariants, interaction patterns,
and postconditions, are an ideal mechanism for representing observations.
Therefore, observations for refactorings are formulated in UML/P test cases.
From the list of potential forms of observations, it is obvious that an obser-
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vation formulated with UML/P does not have to be restricted to interfaces;
it can also “observe” internal interaction patterns, intermediate states, and
the final state of the test object. Fig. 9.9 illustrates this based on a system
sequence that consists of a sequence of snapshots.

Fig. 9.9. Test as observation of a system sequence

The ability to circumvent any encapsulation of a test object in a test bears
significant advantages when modeling tests: the state of the test object is di-
rectly accessible and we do not have to draw conclusions about the state of
the test object based on the output behavior. Modeling interaction patterns
within a subcomponent that consists of multiple objects also circumvents the
encapsulation of the component. The disadvantage of such tests is, however,
that they also register small changes to the test object, either because the tests
can then no longer be compiled (for example, in the event of a signature
change), or they indicate a failure of the test run (for example, in the event of
a change to the interaction pattern). This means additional effort is required
for refactoring, as these tests also have to be adapted.

Therefore, when defining tests, we have to carefully weigh up whether
to use internal elements of the test object or a more abstract programming
interface such as public methods. In practice, we can roughly identify two
classes of tests. The unit tests for individual methods and classes will nor-
mally access internal elements and have to be modified together with the
code. In contrast, automated tests, formulated by the user and realized with
help from developers, are part of the observation by a user. This type of test
should not be impaired by refactorings. This means, however, that such a test
is defined against an abstract interface as far as possible, with the interface
then being retained if internal parts of the system are modified. In detail, this
means that for acceptance tests, it is better, as far as possible:
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• To use query methods instead of direct attribute accesses
• To use OCL properties that allow certain freedom of formulation instead

of specifying attribute values precisely
• To ignore uninteresting objects and attributes in the expected result and

to concentrate on the significant results
• To observe only significant interactions

In this way, observations defined by the tests are abstractions and thus
allow different sequences for satisfying the tests. We can therefore modify
the system, or rather its model, within certain limits without changing the
abstract observation. This can be illustrated as shown in Fig. 9.10.

Fig. 9.10. Refactoring allows system executions to stay invariant under observation

However, a side effect of the use of abstraction during the observation
of a test execution is that a test does not check all aspects of the test ob-
ject. Thus, a piece of code may have been executed but its effect ignored by
the test. The consequence of this is that the power of expression of coverage
metrics for tests based on code that has run through a check is potentially
restricted. Here, mutation tests [Voa95, KCM00, Moo01] are helpful—they
check whether an existing test suite recognizes modified behavior as a result
of a modification of the code. This measures the extent to which the abstract-
ing observations of a test suite capture the observable behavior.

After the discussion on the practical representation of observations, which
are illustrated graphically, in Fig. 9.11 we will now add a notion of observa-
tion to the more detailed definition ofmodel transformations. This figure also
introduces a context for transformations. The context consists of models that
the transformed model builds on, for example, by using the types defined
in it, but without changing the models themselves. One example is a class
diagram that is the basis for an object diagram that is to be transformed.

The third point of the definition in Table 9.11 expresses that an observa-
tion in the form of a test forces the test object into certain system executions
and only checks test conformity there. Sem(u) ∩ Sem(b) represents these se-
quences, which can be executed by both models, accordingly. Correspond-
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An observation considers only some aspects of a system execution. An observation
is therefore an abstraction:

• An observation consists of one or more artifacts of UML/P.

• The semantics of an observation is the subset of the executions of the system Z
allowed by the observation and thus also defined by Sem : UML → P(Z).

• We assume that u ∈ UML is a model which is used for constructive code gener-
ation and is observed by a property model b ∈ UML. The observation of u refers
then only to the common executions represented by Sem(u) ∩ Sem(b).

• Amodel transformation T (u) on themodel u ∈ UML is observation-invariantwith
repects to an observation b ∈ UML if the observed subset is identical:

Sem(u) ∩ Sem(b) = Sem(T (u))∩ Sem(b)

• If the model transformation is applied to multiple artifacts A ⊆ UML and in the
context of other modelsK ⊆ UML, the observation invariance of a set of observa-
tions B ∈ UML holds if the following is true:

Sem(A) ∩ Sem(K) ∩ Sem(B) = Sem(T (A))∩ Sem(K) ∩ Sem(B)

In the same way, the refinement discussed in Section 9.3.1 can be defined precisely in
a context and relative to an observation:

Sem(A) ∩ Sem(K) ∩ Sem(B) ⊇ Sem(T (A))∩ Sem(K) ∩ Sem(B)

For an abstraction T , the inverse relation⊆ is used.

Fig. 9.11. The concept of observation

ingly, the observation invariance is only necessary for the sequences described
by Sem(b). This gives the transformation the freedom for unobserved (that
is, typically internal) modifications.

Alternatively, the semantics of observations can also be described by the
introduction of a semantic domain B and an abstraction function β : Z → B.
An observation is then represented by b ∈ B and characterizes an equiv-
alence class of sequences {z ∈ Z|β(z) = b}. Therefore, if a refactoring
changes an execution z to z′, the observable part must still remain the same:
β(z′) = β(z). A disadvantage of this approach is the necessity of defining an
adequate set of observations B.

As the last point in Fig. 9.11 shows, there is no formal difference between
the context and the observations. This type of context can consist, for exam-
ple, of unmodifiable interfaces to the GUI, databases, etc. However, it can
also contain the models not affected by the current modifications.

An example for an observation is a method specification formulated in
OCL. Its semantics is a predicate for the descriptions over system executions
SM from Fig. 9.8. An execution satisfies the method specification precisely
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when the postcondition applies at the end of every method call for which
the precondition was satisfied at the beginning.4

A complete test, consisting of a set of test data, test drivers, etc. also repre-
sents a predicate over a system execution. A system execution satisfies a test
precisely when the test was performed successfully. This means that in the
execution, there is a snapshot that corresponds to the initial set of test data,
then the test object is executed, and the required conditions and interactions
are satisfied during or after the test.

9.3.4 Transformation Rules

In theory, a transformation rule is explained as a mapping UML → UML
which, when necessary, can be extended to sets of UML artifacts for a simul-
taneous semantics and syntactic correctness preserving application. In prac-
tice, however, a wide variety of forms of mappings can exist. The number of
possible rules depends on the syntactic richness of the underlying language.
UML/P has considerably fewer language concepts than the UML standard
[OMG10] but it is still a rather large modeling language. Based on experi-
ences with transformation calculi for other languages, we can expect that the
number of possible and useful rules will grow more than linearly with the
size of the language. One reason for this is that many rules deal with the
interaction of several language concepts. From a practical perspective, it is
therefore impossible to identify a complete rule calculus for UML/P. This is
not necessary for practical use, however. It is more important that an appli-
cable set of compact and simple rules is available.

In many cases, the number and specific form of transformation rules
depends on the form of the underlying language. However, there are also
general principles for transformation rules that can be applied to many lan-
guages. These include, for example, the expansion of methods or the migra-
tion of attributes that can also be applied to functions and struct entries
for procedural languages such as C. However, the applications of the rules
differ in technical details. In the case of method expansion, in Java, special
cases for abstract methods, dynamic binding, static methods, or constructors
have to be taken into account or exceptions have to be handled separately.

The rules should be as simple and general as possible to ensuremaximum
applicability. The expressiveness of a rule calculus consists to a large extent
of the composability of rules as they are applied in succession. Using goal-
oriented tactics, we can compose complex transformations from simple rules.
This allows us, for example, to explain the introduction of a design pattern
from [GHJV94] as a series of simple transformation rules [TB01].

Here, it is essential that tool support is available for the basic transfor-
mation rules—support that also checks the context conditions and ensures

4 For a precise description of the semantics of a method specification, see Section
3.4.3, Volume 1.
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that the result is well-formed. Goal-oriented tactics can be realized as scripts
analog to the form discussed for code generation in Section 4.2.3.

There are also a number of transformation rules that can only be applied
when certain stereotypes are present. Volume 1 demonstrates, for example,
how we can prioritize transitions with overlapping firing conditions and
thus apply different transformation rules for code synthesis. However, be-
cause the stereotypes available in UML/P can be freely extended with the
mechanism described in Section 2.5.3, Volume 1, we have to define corre-
sponding transformation rules and scripts that allow a specialized handling
of models with specific stereotypes.

9.3.5 The Correctness of Transformation Rules

As illustrated with examples in the previous sections, a transformation rule
usually has context conditions that have to be satisfied to ensure that a trans-
formation is correct. These context conditions can take various forms, which
is whywe now classify transformation rules based on the types of the context
conditions.

The context conditions range from simple and, in most cases, syntacti-
cally verifiable restrictions up to complex invariants that can no longer be
decided automatically.

1. In the most simple case, a transformation does not have any context con-
ditions.

2. Simple syntactical conditions—for example, that an expression to be re-
placed does not use a variable—can be automated via corresponding
checks. This form of context condition occurs frequently and can be
checked efficiently with good tool support using the syntax tree.

3. More complex context conditions such as the type correctness can also be
decided based on the syntax but require considerably more effort. Fur-
ther examples of such conditions are control flow analyses—for example,
to identify that states in a Statechart or statements in a method body can-
not be reached—or data flow analyses to ensure that values are assigned to
variables before they are used, which is a typical part of modern compil-
ers, for example.

4. Conditions that cannot be verified automatically are usually more com-
plex relationships between modelling elements. For example, multiple
attributes of a class can be in an internal relationship (e.g. b==2*a) that
can be formulated with an OCL constraint. Based on this relationship,
where applicable, an attribute b can be replaced by an expression over
another attribute a. However, normally it is not possible to verify auto-
matically that OCL constraints are correct; instead, specific tests or inter-
active verification are required.

In compiler construction, the category of syntactically verifiable context
conditions is typically divided into the subcategories of (simple, context-free)
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syntactical and (more complex, performed later) semantic analysis. How-
ever, both forms are performed based on the syntax and are executed au-
tomatically.

For some context conditions, there is only a semi-decidable procedure in
which under some circumstances, the validity of the context condition can-
not be decided. In this case, the context condition is rejected if it cannot be
decided positively. This regularly happens when decidability has an expo-
nential complexity or a property is indeed undecidable.

There are several frequently occurring usage conditions that are already
familiar from other approaches for transformational software development:

Termination: A context condition can require that the calculation of an ex-
pression always terminates. Here an exception is also count as termina-
tion. As discussed in Chapter 3, Volume 1, the termination can be veri-
fied relatively easily by tests, particularly with given loop invariants and
termination conditions, even though it is undecidable in principle. How-
ever, for transformations that are relevant from a practical perspective,
we can assume that each expression terminates or the tests available dis-
cover a nontermination.

Definedness: A calculation is defined if it always terminates and produces a
normal result—that is, not an exception.

Determinism: A calculation is determined if it always terminates and pro-
duces the same unique result. This result can be an exception. It is im-
portant that no random element occurs during the calculation or at least
has no effect on the result. This condition can be violated by the integra-
tion of time queries, for example. As discussed in Section 3.3.4, Volume 1
with the conversion of sets into lists with the OCL operator asList, the
result of this operator may well be unique but the result is not known to
the developer a priori. The advantage of this definition is that on the one
hand, an expression of the form set.asList is determined; but on the
other hand, the specific implementation is the responsibility of an OCL
interpreter.

Side effect-freedom: A side effect of a calculation is a permanent change of
the state of an existing object structure as a result of a change to a local
variable, an attribute, or a link. As discussed in Section 3.4.1, Volume 1,
the creation of new objects is only a side effect if these objects are acces-
sible from the original object structure.

Context conditions that contain semantic equivalences are often undecid-
able. For example, when one expression is replaced by another, as in the ex-
ample rule in Section 9.1, the equality of the two expressions cannot be tested
automatically. This type of property is represented by OCL constraints, for
example. Therefore, we can only use these conditions for tests or for verifica-
tion. Although tests do not provide full certainty about the correctness of an
OCL constraint, they can be executedmore efficiently than a real verification.
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To verify this type of invariant, in most cases we have to augment the
code with further invariants and, similar to the Hoare logic, verify all indi-
vidual steps (a Java variant can be found in [vO01], for example). For systems
of the highest quality or particularly critical areas, this can be useful particu-
larly in combination with tests. The tests first detect and eliminate any errors
that are present. Verification techniques are then used to prove the complete
correctness and any residual risk of a defective invariant is eliminated. By
applying tests first, we can save verification effort for a lot of the incorrect
conditions and thus progress more efficiently.

However, for many systems, the use of tests will be sufficient. As shown
in Section 10.2 using an approach for changing a data structure, we can use
tests not only as an indicator that a system is correct, but also to indicate that
a transformation is correct.

9.3.6 Transformational Software Development Approaches

[Pep84, Chapter 5] contains some transformational software development
approaches as well as an interesting discussion about their effects. Amongst
other things, it discusses the semantics, the benefits of top-down represen-
tations of a software development, and the language independence of trans-
formation techniques.

Transformational Software Development

In theoretical information technology in particular, a number of transfor-
mational approaches based on refinement concepts have already been pre-
sented. These include, for example, work fromDijkstra [Dij76],Wirth [Wir71],
Bauer [BW82], Back [BvW98], and Hoare [HHJ+87]. CIP-L [BBB+85], for ex-
ample, is a language that combines an algebraic specification style with func-
tional, algorithmic, and procedural programming styles and, via numerous
transformational steps, can go from one language style to the next. The ba-
sic methodology of this top-down transformation approach is that firstly, we
first model in an abstract specification language; this is then transformed into
a functional language; finally, it is optimized towards amapping into a proce-
dural implementation language. Elements of this transformational software
development approach can also be found in today’s refactoring, which is part
of many incremental, iterative development approaches. This includes, for
example, the concept of optimizing the code as late as possible only after the
correctness has been clarified and the stability of the functionality ensured.
In [BBB+85], as in related approaches, verification was used as a mechanism
for ensuring that a transformation is correct. In the approach proposed here,
verification is replaced by tests that require less effort.

The approach for specifying and transforming programs given in [Par90]
also contains a detailed collection of rules for transformational software de-
velopment for abstract data types defined by algebraic laws, functional and
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imperative programs, and data structures. This work discusses, for example,
the removal of superfluous assignments and variables, the reorganization
of statements, the handling of control structures, or different variants of the
composition of functions that can be found to some extent in direct corre-
lation in [Fow99]. Furthermore, [Par90] and [BBB+85] offer techniques for
refining and transforming a specification incrementally towards an opera-
tional implementation.

Algebraic Specification

In the world of algebraic specification techniques, one important step was
to introduce the definition of explicit observations. By hiding types, OBJ
[FGJM85], for example, offers a mechanism for encapsulating details of an
algebraically specified abstract data type and providing an explicitly usable
and observable interface. Further algebraic approaches [ST87, BHW95, GR99,
BFG+93] demonstrate that it is possible to define externally visible behavior ex-
plicitly and to apply rigorous methods of proof to this behavior. [BBK91]
contains a general overview of the approaches for defining observability in
algebraic specifications.

As already discussed, a disadvantage of the test approach used here, even
though it is very flexible, is that the observation and thus also the observed
interface are defined only implicitly by the test and are therefore defined
differently for each test. The test developer must be very disciplined, par-
ticularly in acceptance tests, and access only stable and, as for the algebraic
specifications, explicitly “published” interfaces as far as possible.

Refactoring and Verification

In [Sou01], refactoring and verification are combined: in a first step, a collec-
tion of proofs is used to ensure that a system behaves correctly. Developing
the system further using small, systematic steps then leads to adapting the
proofs accordingly. This ensures the system as well as the proofs are still cor-
rect and can automatically and repeatedly be checked. With adequate tool
support, as offered, for example, by Isabelle [NPW02] and their proof tactics,
which are very strong in some cases, we can perform this type of evolution-
ary development by reusing verification parts.

Transformation of Graphical Specifications

A number of works show that transformational techniques can also be de-
veloped for graphical specifications, regardless of whether they represent
structure views, behavior views, or interaction views of a system. The Fo-
cus approach described in [BS01b] demonstrates how we can combine for-
mal, text-based specification techniques with a graphical representation of
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the distributed interaction of components. This approach contains precise
techniques for the decomposition of components and channels and for the
refinement of behavior and interfaces. The effects of these techniques can be
designed and studied on graphical models.

In this context, [PR97] and [PR99] presented a technique for a glass box
transformation of the internal structure of a distributed system whose ob-
servable behavior at the interface remains equivalent or is refined during the
transformation. One part of this transformation technique is based on the
behavior refinement of internal components which, for example, can be de-
scribed with state automata [Rum96].

[RT98] shows that these forms of transformation are suitable for more
than massively distributed or hardware-like systems by optimizing business
processes with structural transformations.

Summary

To summarize, we can observe that the semantics-preserving refactoring is
based on a notion of observation that is based on a test suite. Two general-
izations of the transformation of models—abstraction, and in particular the
refinement—could be used not only to restructure the existing system descrip-
tion but also for the purposes of transformational development. Approaches
such as those described in Section 9.3.6 [BBB+85, Par90] have shown this.
From a practical perspective, transformational development steps can also
be applied when enough automated tests exist to check the behavioral iden-
tity of an evolving system.

9.3.7 Transformation Languages

In order to be able to use the types of transformations mentioned flexibly, we
need a separate language to define transformations. This is the only way to
define transformations explicitly.

In mathematics, replacement rules are defined in the form of equations.
We can therefore use the equation language ofmathematics to define replace-
ments. In the formal methods, one use of replacement rules is to specify typ-
ing rules in the form of a calculus (as is the case in CIP [BBB+85, BEH+87]) to
define algebraic transformations of textual programming and specification
languages. Alternatively, (as is the case in Isabelle [NPW02, Pau94]) replace-
ment rules can be used to specify theorems as applicable transformations
using application conditions. In mathematics, the replacement rules are part
of the “mathematical language” itself. In contrast the calculus languages of
Isabelle/HOL or CIP are separate sublanguages that fit harmoniously with
the basis language that is to be transformed.

In analogy to textual grammars, graph grammars [Nag79, NS91] allow us
to define graph structures and are particularly suitable for saving the struc-
ture of UML models typically defined as graphs (in the mathematical sense)
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in tools. On this basis, we can define transformations for graphs, for exam-
ple, using graph replacement systems [Sch88, Sch91, LMB+01], algebraic ap-
proaches [EEPT06, Tae04], or a notation for controlling the transformations
by means of Fujaba’s “Story Diagrams” [FNTZ00]. The graph replacement
system PROGRES [Sch91, Zün96] contains not only graph-matching tech-
niques but also a complex control mechanism for executing and for back-
tracking replacement rules. The concept of the triple graph grammars [Sch94]
also allows graphs to be transformed between different structures, thus also
allowing a transformation between models of different languages (such as
from automata to Java).

Most modern approaches for defining transformations on models use
metamodels in the form of object structures. Here, class diagrams are used
similarly to the description in Chapter C, Volume 1 to define the abstract
syntax. We can then define transformations on the abstract syntax respec-
tively on the object structures and thus circumventing the specific represen-
tation of the models. Transformation languages such as ATL [JK05], MOLA
[KCS05], BOTL [MB03], or Epsilon Transformation Language [KRP11] use
this approach which is frequently based on EMF [SBPM08]. [CH06] contains
a good classification of these types of transformation languages. Under the
name “Query View Transformation (MOF QVT)”, OMG has defined a spec-
ification for such transformation languages [OMG08]. Graph replacement
systems such as MOFLON [AKRS06, WKS10] now build on this specifica-
tion. It is generally accepted in the software language engineering commu-
nity [CFJ+16] that transformations are an essential technique to deal with
languages.

Whilemetamodel techniques and some graph transformation approaches
[LKAS09] rely primarily on the generic, language-independent definition of
transformations in an analogy to mathematics, other techniques try to de-
velop a transformation language that is aligned as closely as possible with
the underlying modeling language [BW06, Grø09, RW11, HRW15]. The ad-
vantage of a transformation language based on the specific syntax is that
it is more comprehensible for the user. Hence, users prefer such a specific
transformation language rather than using a transformation language that
is completely unknown or requires to deal with the abstract syntax of the
modeling languages.

Selecting a suitable transformation language and related tools for defin-
ing refactoring steps is necessary in order to define the transformations cov-
ered in Chapter 10.
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Refactoring of Models

Human actions sustain in their impacts.

according to Gottfried Wilhelm von Leibniz

Based on the core principles for model transformations and the specializa-
tion of these transformations as refactoring rules, this chapter discusses pos-
sible forms of refactoring rules for UML/P, the transfer of rules from other
languages to UML/P, and a superimposition approach for transforming larger
data structures.
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Similarly tomathematical theories, there exists an unlimited number of refac-
toring rules. Therefore, in addition to an available set of basic rules and a se-
lection of more complex rules for specific problems, it is worthwhile know-
ing mechanisms that allow us to reuse existing refactoring rules from other
languages as well as combine rules or adapt them for special purposes.

This chapter first investigates refactoring rules existing in other lan-
guages and how they can be transferred to UML/P. It then uses examples
to discuss more complex refactorings based on this initial investigation. In
the same way as for test patterns, the discussion explains the advantage of
independent adaptability compared to a detailed list of rules.

Section 10.1 discusses mechanisms for creating refactoring rules and for
transferring existing refactoring rules to UML/P. Suitable sources of refactor-
ing rules include Java as the underlying programming language for UML/P,
the automata theory for Statecharts, and verification techniques for OCL.

Building on this discussion, Section 10.2 presents an approach for chang-
ing data structures modeled with class diagrams. This approach is based
on OCL invariants and allows us to develop and execute larger refactoring
processes. To do this, it takes ideas from verification by establishing predi-
cates as explicitly formulated relationships between the data structures to be
adapted. Furthermore, it uses automated tests to check that the relationships
are correct.

10.1 Sources for UML/P Refactoring Rules

The previous chapter discussed model transformations and their theoretical
aspects in general. We will now apply these considerations to specific ex-
amples. We will primarily discuss mechanisms and sources for transferring
refactoring rules to UML/P from known approaches.

Refactoring steps executed on UML/P generally affect multiple sublan-
guages. For example, when shifting a method in a class diagram, parts of the
Java/P code, the sequence diagrams, and even Statecharts may be affected.
Therefore, we cannot discuss refactoring techniques for UML/P for individ-
ual notations in complete isolation.

We have to select the granularity of a refactoring such that the transfor-
mation steps remain manageable and the automated tests can be executed
regularly. Steps that are too large or that are not sufficiently supported by
tests lead to a big bang syndrome involving a lot of effort for identification
of errors. This means that, as far as necessary, we should break large refac-
torings down into small steps and create a plan for their application. Never-
theless, there are a lot of necessarily larger refactorings that cover very specific
problems.

In comparison to Java programs, UML/P is relatively compact. This is be-
cause UML/P allows a separation between technical code and application-
specific code, generates auxiliarymethods automatically, and, due to the sep-
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aration into different views, gives developers a better overview. This com-
pactness of UML/P allows us to control larger refactoring steps than possible
with Java. For example, a class diagram supports the planning of the refactor-
ing and the use of OCL invariants allows us to model and check assumptions
made for a refactoring. This leads to the approach discussed in Section 10.2
for performing larger changes of the data structure using refactoring—in that
approach, several UML/P notations are in use.

While collections of smaller and medium-sized refactorings are already
available for object-oriented programming languages such as Java or Small-
talk (for example, with [Fow99]), this type of refactoring steps is only just
being set up for modeling languages such as UML/P. [Dob10] gives an
overview of techniques for refactoring UML models which concentrate pri-
marily on class diagrams and executable variants of UML.

The most elaborate transformations are those applied to class diagrams
[SPTJ01, Ast02, GSMD03]. [Ast02], for example, describes an approach that
uses UML class diagrams to support refactoring of Java programs. In this
approach, class diagrams are extracted from existing code in order to identify
code deficits.

Graph grammars [Nag79] and tools based on graph grammars offer an
excellent basis for transformation approaches. Early approaches of this type
for the graphical modeling language UML are described in [EH00b] and
[EHHS00]. In [EHHS00], these transformations are even used to describe dy-
namic system runs and their execution steps.

In current literature, UML diagrams are still rarely discussed with the
primary goal of refactoring. However, the application of refactoring in par-
ticular to constructive description techniques, such as class diagrams, State-
charts, and OCL is interesting. In contrast, adapting exemplary descriptions,
such as object and sequence diagrams, is comparatively easy. As these dia-
grams are used primarily for defining tests, we usually have to adapt them,
especially if a test fails after a refactoring. In such cases, it can be useful to
develop several new tests from a failed test. For example, if a single method
call was replaced by a series of connected method calls then various forms of
allowed call orderings should be tested.

The transformations of Statecharts that do not affect the observable be-
havior were discussed in detail in Section 5.6.2, Volume 1. A collection of
goal-oriented rules were presented that allow us to simplify Statecharts, for
example, by flattening hierarchical states. Many of these rules can also be
applied in the reverse direction. Some rules, however, such as the reduction
of nondeterminism in Statecharts, are a true refinement in the sense defined
in Section 9.3.2. Based on the economic aspects described in Section 9.2, we
should apply refactoring techniques for Statecharts in particular for systems
or system parts with complex state spaces and a high level of criticality. These
include, for example, avionics systems, safety protocols, or complex transac-
tion logics in bank systems.



288 10 Refactoring of Models

The goal of this section is to discuss how sets of rules for the model-
ing language UML/P from other refactoring approaches can be adopted and
which refactorings already exist. It is not the goal of this section to develop
a complete catalog. Instead, this section uses selected examples to demon-
strate how to define refactoring rules for UML/P and what effects can be
achieved. It thus provides a technique for developing refactoring rules inde-
pendently, rather than a predefined catalog of refactorings. In particular, this
technique includes the approach discussed in the next section for refactor-
ing data structures—an approach that can be used to extract new refactoring
rules from specific applications.

10.1.1 Defining and Representing Refactoring Rules

Similarly to a transformation for code generation, we can describe a refactor-
ing in two ways. A technical, detailed, and precise description is particularly
suitable for implementation in tools. As the basic prerequisite, this imple-
mentation requires the abstract syntax as well as context conditions that are
defined precisely on this abstract syntax.

A second form of representation that is introduced in this section is de-
noted as methodical guideline. The second form is often using a relatively
general example that does not always cover all cases. Context conditions are
then discussedmore informally (although precisely) and special cases are ex-
plained. As usual for patterns, specific examples are given. For larger refac-
torings in particular, it is useful to discuss the consequences, advantages, and
disadvantages. Finally, references to related refactorings as well as reversing
refactoring are given.

The format for representing a refactoring is therefore based on the format
for code generation from Table 4.11 and is presented as a template in Table
10.1.

In [Fow99], refactoring rules are universally represented as a triple: mo-
tivation, mechanics, and example. The mechanics section describes an operative
list of individual steps that are useful for performing the refactoring. Special
cases are also discussed.

Template for representing refactoring rules

Problem What is the problem that we want to eliminate with this rule?
Goal If not already clear from the motivation and problem descrip-

tion, the goals of the refactoring are described again here.
Motivation When will the refactoring rule be used and why? What im-

provements are achieved for the software development?
(continued on the next page)
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(continues Table 10.1.: Template for representing refactoring rules)

Refactoring There is usually a primary transformation rule for the refac-
toring which is represented in the following form:

Origin
⇓
Result

• The representation of a refactoring transformation is ana-
log to the representation of generation transformations de-
scribed in Table 4.11. Origin and Result are explained
there.

• Explanatory texts describe context conditions, special
cases, and how these are handled.

• If the refactoring is split into multiple individual steps,
these are described here. These individual steps are also
referred to as the “mechanics”.

Further
refactorings

To be able to apply the primary transformation, there are usu-
ally additional required transformations that are represented
in the same way.

Implemen-
tation

Technical details such as the modification of method bodies
are presented and explained here.

Examples Examples can be used to explain the principle and to discuss
special cases.

Noteworthy With additional considerations, notes, and the discussion of
potential problems, this section completes the description. In
particular, it refers to the consequences, advantages, and dis-
advantages of the refactoring described.

Table 10.1. Template for representing refactoring rules

Now that we have clarified the reasons for and the background of refac-
toring and the appearance of refactoring rules, Fig. 10.2 provides additional
terminology based on Fig. 9.1.

10.1.2 Refactoring in Java/P

In terms of syntax, there are only minimal differences between the Java/P
programming language embedded in UML and defined in Appendix B, Vol-
ume 1 and the official Java standard. The most significant difference is that in
accordance with the code generation described in Chapter 4 and Chapter 5,
the code bodies from Java/P are subject to transformations. For example, at-
tribute access is converted into get and set methods. Attributes are there-
fore always encapsulated and some of the refactorings defined in [Fow99]
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The basic definitions for refactoring:

Refactoring: A technique for transforming models based on rules that preserves
the externally observable behavior. A refactoring can be split up into a series of
individual steps.

Refactoring rule: A goal-based rule for performing refactoring. It contains a series
of observation-invariant model transformations formulated with schema vari-
ables that are to be applied to the initial model, reasons for doing so, and a
discussion of the effects.

Refactoring step: The application of a refactoring rule at a specific point.

Observation: A test consisting of multiple models that describe the properties re-
quired by the system.

External observation: An observation that must not be changed without requiring
project-external consultations. External observations are defined by acceptance
tests and tests of interfaces to neighboring systems, fixed frameworks, etc.

Fig. 10.2. Terminology definitions for refactoring

are unnecessary in Java/P. For example, the refactoring rule “Encapsulate
Field” [Fow99, p. 206] is performed automatically by a code generator. This
has the advantage that, although the encapsulation is ensured, the encapsu-
lation methods remain hidden to the developer while modeling.

Other refactoring rules can be adopted from [Opd92] and [Fow99]. The-
sis [Opd92] defines 26 low-level refactorings for C++—three of these are in-
tended for creating and deleting program elements (classes, functions, at-
tributes), fifteen for adapting existing program elements, and two for mov-
ing program elements. Three further refactorings are compositions of previ-
ous transformations. Three additional refactorings are used to generalize and
specialize the class hierarchy and to handle aggregation and thus have an ef-
fect beyond individual classes. [Fow99] contains corresponding analogies for
Java. The transferability of the individual refactoring rules from [Fow99] to
Java/P or to UML/P diagrams is discussed below.

Refactorings in [Fow99]

[Fow99] contains 72 refactoring rules that are referred to as an initial and in-
complete refactoring catalog suitable for extension. The catalog has indeed
been extended occasionally, e.g., in discussion forums. The number of com-
posite and complex refactorings based on Java has thus grown. It is not sur-
prising, however, that the number of basic refactorings has barely changed
in recent years. This is because a basic refactoring handles only a very small
number of language concepts. Accordingly, the number of basic transforma-
tions applied to a language is limited and [Fow99] remains the main source
for refactorings.
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Therefore, in the following, we will look at 68 of the refactoring rules pub-
lished in [Fow99] in a compact way. The analysis discussed here assumes that
the reader is familiar with [Fow99]. The four rules not presented are referred
to as “big refactorings” in [Fow99]. They deal with separating complex in-
heritance hierarchies or modifying procedural code in object structures, for
example.

We classify the rules according to two criteria: (1) Which elements does
the rule affect? (2) What impact does the rule have on those elements? The
six columns correspond to the Java language elements code bodies, methods
including constructors, attributes, class signatures including interfaces, inheritance
relationships, and associations. The effects noted in the corresponding columns
aremove (m), introduce (∗), delete (†), and change (ch).

The table reflects the changes caused by the primary refactoring rule. Fur-
ther changes to other language elements may occur in special cases.

Classification of the refactoring rules from [Fow99]

Name of the refactoring rule C
od

e

M
et
hd

.

A
tt
ri
b.

C
l.s
ig
.

In
he

r.

A
ss
oc
.

Add Parameter ch ch ch
Change Bidirectional Association to Unidirectional
(simplified in UML/P by the generator)

ch † ch

Change Reference to Value ch ch
Change Unidirectional Association to Bidirectional
(simplified in UML/P by the generator)

ch ∗ ch

Change Value to Reference ch ch
Collapse Hierarchy m m † † m
Consolidate Conditional Expression ch ∗
Consolidate Duplicate Conditional Fragments ch
Decompose Conditional ch ∗
Duplicate Observed Data ch ∗ ∗ ∗ ∗ ∗
Encapsulate Collection ch ∗
Encapsulate Downcast ch ch
Encapsulate Field
(unnecessary if the generator does that)

ch ∗ ch

Extract Class m m ∗ ∗
Extract Interface ∗ ∗
Extract Method m ∗
Extract Subclass m m ∗ ∗
Extract Superclass m m ∗ ∗
Form Template Method ch ∗ ch
Hide Delegate ch ∗ ch †
Hide Method ch ch

Continued on the next page
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(Continuation of table 10.3.: Classification of the refactoring rules from [Fow99])

Name of the refactoring rule C
od

e
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Inline Class m m † †
Inline Method m †
Inline Temp ch
Introduce Assertion
(in UML/P there are further options)

ch

Introduce Explaining Variable ch
Introduce Foreign Method ch ∗
Introduce Local Extension
(uses an adapter or a subclass)

∗ ∗ ∗ ∗

Introduce Null Object ch ∗ ∗ ∗
Introduce Parameter Object ch ch ∗
Move Field ch m
Move Method ch m ch
Parameterize Method ch ch ch
Preserve Whole Object ch ch ch
Pull Up Constructor Body m ∗
Pull Up Field m
Pull Up Method m
Push Down Field m
Push Down Method m
Remove Assignments to Parameters ch
Remove Control Flag ch
Remove Middle Man ch † ch ∗
Remove Parameter ch ch ch
Remove Setting Method † ch
Rename Method ch ch
Replace Array with Object ch ∗
Replace Conditional with Polymorphism ch ∗ ∗
Replace Constructor with Factory Method
(unnecessary if the generator does that)

ch ∗ ch

Replace Data Value with Object ch ch ∗ ∗
Replace Delegation with Inheritance ch † ch ∗ †
Replace Error Code with Exception ch ch
Replace Exception with Test ch
Replace Inheritance with Delegation ch ∗ ch † ∗
Replace Magic Number with Symbolic Constant ch ∗
Replace Method with Method Object ch ∗ ∗ ∗ ∗
Replace Nested Conditional with Guard Clauses ch
Replace Parameter with Explicit Methods ch ∗ ch
Replace Parameter with Method ch ch ch

Continued on the next page
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(Continuation of table 10.3.: Classification of the refactoring rules from [Fow99])

Name of the refactoring rule C
od

e

M
et
hd

.

A
tt
ri
b.

C
l.s
ig
.

In
he

r.

A
ss
oc
.

Replace Record with Data Class
(not relevant for UML/P)

∗

Replace Subclass with Fields ch ch † †
Replace Temp with Query m ∗
Replace Type Code with Class ch † ∗
Replace Type Code with State/Strategy
(a Statechart would also be useful)

ch † ∗ ∗ ∗

Replace Type Code with Subclasses ch † ∗ ∗
Self Encapsulate Field
(unnecessary if the generator does that)

ch ∗

Separate Query from Modifier ch ∗ ch
Split Temporary Variable ch
Substitute Algorithm ch

Table 10.3.: Classification of the refactoring rules from [Fow99]

In almost all refactoring rules, the class that contains the elements modi-
fied, introduced, or deleted is affected. Therefore, the corresponding column
is only labeled if a part of the methods known externally (public) is subject
to a modification.

In contrast to all other rules, the refactoring rule “Encapsulate Collection”
describes how to handle container classes and is therefore dependent on the
Java class library. This example shows that refactoring rules that operate on
the class libraries as well as on the language are necessary.

As we can see from the table, many of the refactorings in [Fow99] com-
prise several steps. Thus, if we expand a method with “Inline Method”,
[Fow99] proposes deleting this method. This transformation is only appli-
cable when the expanded method is not used anywhere else. Alternatively,
the transformation could have been split into two independent refactorings.

The level of detail of many of the rules—such as “Form Template Method”
for extracting a method into a superclass that is realized in similar form in
multiple subclasses—contains a goal oriented approach for improving the
structure how methods call each other. These types of rules often use other
rules such as the moving of methods in the class hierarchy. Thus the refactor-
ing techniques described in [Fow99] are often not atomic, but a combination
of several transformations into a goal-oriented larger transformation is nec-
essary. Furthermore, formal algebraic transformations often are required to
simplify the code, but are also not discussed very explicitly and in detail.
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Transferring the Refactorings to UML/P

We can identify several approaches for creating transformation rules. For ex-
ample, we can create transformation rules based on the theory presented in
Fig. 9.5. This theory investigates the existing language and identifies equiva-
lent or more refined representations of program expressions. In contrast, we
can create transformation rules for a new language by adapting rules of a
known language. To do this, we can apply the approach presented in Fig.
10.4.

Fig. 10.4. Refactoring rules can be transferred

With this approach the refactorings for Java contained in [Fow99] can be
transferred to UML/P. The basis for this is the code generation discussed
in Chapter 4 as the connection between UML/P and Java. We can use this
code generation to convert the refactoring rules that exist for Java to UML/P.
However, some of the rules can then become obsolete, as indicated in Table
10.3. Other rules can be transferred inmultiple forms. The greater the concep-
tual difference between Java and UML/P, the more complex the backward
propagation of the transformation rules to UML/P becomes. For class dia-
grams and Java, the difference is very small and the backward propagation
is therefore largely canonical. However, the conceptual difference between
Statecharts and Java is so large that completely separate transformation rules
for Statecharts are necessary.

OCL and Java have many common language concepts. Therefore, a num-
ber of the refactoring rules described in [Fow99] can be transferred to OCL.
In OCL, for example, temporary variables are defined with the let construct.
We can also expand or transform these variables. In OCL, we extract new
methods by defining queries in the underlying class diagram. For example,
we can describe the rule “Inline Temp”, which expands a variable used tem-
porarily with the following rule:
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With this rule, every occurrence of the variable temp in the expression
expr2 is replaced by the subexpression expr. In OCL, many of the context
conditions that are necessary in Java are automatically satisfied due to the
lack of side effects and the determinism.

Other rules from [Fow99] modify the structure or the signature of classes
or add new classes. These rules can therefore also be applied adequately to
class diagrams (and the dependent Java/P code bodies). Again, the set of
rules is in no way complete. For example, “HideMethod” is a rule for convert-
ing a public method into a private method but the inverse transformation is
so simple that it is not covered by a rule. Other rules cover converting a class
into an interface or modifying attached stereotypes, for example.

Rules which change the signature of a method or an attribute also have
an impact on places in tests, Statecharts, or sequence diagrams where these
elements are used. For example, we have to adapt a test used for a se-
quence diagram if the internal call structure changes and stereotypes such
as �match:complete� require this in a sequence diagram (see Section 6.3,
Volume 1).

10.1.3 Refactoring Class Diagrams

In Section 10.1.2, in the context of Java/P we identified a number of refactor-
ing rules that modify classes and thus also have an effect on class diagrams.
However, there are further refactoring rules for class diagrams. The rules for
transforming class diagrams can be divided into the following categories:

Small refactorings are used to handle single elements of a class diagram—
these include deleting or adding an attribute, for example.

Goal-oriented, medium-sized refactorings are transformation steps that in-
clude a motivation and a goal. We discussed this form of refactoring step
for Java in Section 10.1.2. In most cases, it affects several model elements
including some outside an individual model. However, the impact of
these rules is locally limited.

Improving the representation allows developers to access information bet-
ter without changing the content. It includes, for example, reorganizing
class diagrams.

Abstract class diagrams can be used to describe interfaces and components.
This type of class diagram contains only that part of the data structure
and methods that was published explicitly and is thus available in a sta-
bilized form. We can obtain this type of class diagram from the internal
structure using abstraction steps.

Wewill now discuss these categories of transformation rules individually.
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Small Refactorings

Many transformation rules only consist of the transformation of one, single
syntactical element. The syntax of class diagrams is described in Appendix
C, Volume 1 and consists of 19 nonterminals. For each nonterminal, we can
introduce a new element, delete an existing element, or modify parts of an
existing element. This includes, for example, renaming an attribute, an as-
sociation, or a role, refining a cardinality, modifying a visibility, changing
a navigation direction, introducing or eliminating a qualifier, and replacing
the type of a variable. Because these modifications—which focus on one syn-
tactical element—are relatively small and can be applied canonically, these
refactorings are not listed here. However, some of these modifications have
context conditions or require further transformations before they are used.

Medium-sized and large refactorings are goal-oriented and are defined
based on practical experience. In most cases, they modify several elements
and in some circumstances, they even modify a significant part of an appli-
cation.

Goal-Oriented Refactorings

As Table 10.3 shows, the rules described in [Fow99] affect several elements
in most cases and combine goal-oriented strategies for improving the design.
In principle, for example, we could break down the migration of an attribute
into the following individual steps: (1) Introduce new attribute, (2) Modify
the points that use the attribute, and (3) Delete the old attribute. However,
we only create a strategy with a goal by combining these individual steps.

Nevertheless, the rule for migrating attributes in [Fow99] has a deficit
when applied which we can eliminate by using invariants, for example. TWe
have to ensure that there is a unique navigation path between the old and the
new class of the attribute which is not subject to any temporal changes.

The migration of an attribute between two classes demonstrated below is
a simple example for the interaction of multiple UML/P notations which can
be coordinated by using a class diagram.

Simple special cases of this migration are that the new class acts as the
superclass or the attribute is static and therefore exists only once. In most
cases, however, there are two classes whose objects are connected to one an-
other via a potentially complex navigation path. Starting from the situation
represented in Fig. 10.5(a), the specified attribute is to be moved from A to B.

On the one hand, we must ensure that there is a suitable relationship be-
tween the objects of both classes. In most cases, we can represent this with
an expression a.exp for each object a:A which leads uniquely to the ob-
jects of class B. This expression can contain complex navigation paths and
method calls but has no side effects. As a result of the derived association
connection shown in Fig. 10.5(b) and the OCL constraint Connect, this
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OCLcontext A a inv Connect:
a.connection == a.exp

OCLcontext A a1, A a2 inv Unique:
a1 != a2 implies a1.connection != a2.connection

Fig. 10.5. Moving an attribute between classes

expression is included in the structure of the class diagram and is thus ac-
cessible for easier handling. In particular, it is now sufficient to apply the
tag {frozen} to the derived association to ensure that the objects of class B
are not replaced, as this would otherwise mean that the outsourced attribute
would implicitly change its content.

On the other hand, wemust ensure that each A object still has its own out-
sourced attribute value. Accordingly, the OCL constraint Unique requires
that each A object is linked to a separate B object.

The conditions compiled act as context conditions for transferring an at-
tribute to another class. The result is summarized in the refactoring rule
given in Table 10.6.

As demonstrated in the refactoring rule, invariants can be omitted at the
end of the refactoring or in a subsequent evolution step of the system. This
is necessary, for example, if the goal of the refactoring is to realize the re-
placement of the attribute content attribute in the future by reassigning B
objects.

Refactoring: Migration of an attribute

Problem An attribute belongs to the wrong class. The attribute value is
individual for each object of the class and the classes are not
in an inheritance relationship.

Goal The attribute will be moved to the new class.

Motivation The attribute is much more used by the other class, it is useful
to move the attribute there.

(continued on the next page)
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(continues Table 10.6.: Refactoring: Migration of an attribute)

Refactoring

• First, the navigation path a.exp is identified.
• This path has to satisfy two conditions described by the
derived association and the invariants and can thus, e.g.,
be tested.

• If the attribute is declared as private, access methods
must be introduced where applicable.

• When the attribute is moved, all access paths are adjusted
at the same time. Algebraic simplifications of expressions
become possible here.

Special cases If the attribute is static or is moved upwards in the inheritance
hierarchy, the additional association is not necessary.

Noteworthy Generalizations are possible if, for example, multiple A objects
with the same attribute content share a common B object.

Table 10.6. Refactoring:Migration of an attribute

The temporary definition of a navigation path from class A to class B is
often omitted in literature; in Java itself, representing this requires a great
deal of effort. Due to its language richness, UML/P is much more suitable
here.

Improving the Form of Representation through Refactoring

As already discussed in Section 2.4, Volume 1, there are many facets to the
relationship between amodel and an implementation. For example, syntacti-
cally differentmodels can be semantically identical and when converted into
code, lead to the same system. Therefore, the differences in these models re-
late only to their representation, and not to their implementation. [MRR11e]
describes suitable algorithms for recognizing semantically equivalent mod-
els and for representing their semantic differences.
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A standard example for equivalent models is the merging of class dia-
grams discussed in Section 2.4, Volume 1: from two or more subdiagrams,
we develop an overall model that contains the same information.

The migration of information from one class diagram into another or the
splitting of class diagrams are similar steps that are sometimes applied during
development. Splitting is suitable, for example, if a class diagram becomes
overloaded due to the repeated addition of functionality and structure in
the form of new classes, methods, and attributes. Splitting is also interesting
if the system snapshot represented in the diagram can be divided into two
relatively independent subsystems which, in the further course of the project,
are to be processed by separate developer teams.

Migrating classes between diagrams also helps to improve the represen-
tation of the model. Detailed information about individual classes, such as
attributes or methods, can be migrated between diagrams if the diagrams
have overlapping parts.

Fig. 10.7. Migration of detailed information in class diagrams

In this situation, it is important to differentiate between migrating an at-
tribute or a method from one class to another and migrating information
between class diagrams. In our example, the attributes and methods remain
in the same class and are merely represented in a different place.

Another form of editing of class diagrams is the expansion of the detailed
information of classes. For example, information available from other dia-
grams can also (redundantly) be represented in a diagramwithout this infor-
mation being removed at another point.

The examples discussed demonstrate that we can use refactoring not only
to improve the system structure but also to represent the structures of a sys-
tem in a different way. We can also observe this phenomenon in some of the
refactorings discussed in [Fow99] if, for example, the proposal is to change
the name of a method so that the name is a better reflection of the content
of the task of the method. However, in [Fow99], refactorings often affect pre-
sentation and structure simultaneously. Splitting a class thus improves the
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presentation of the class to the developer but also modifies the structure of
the system.

The syntactical richness of UML/P is one of the reasons for the increased
demand for an improvement in the representation of models. In the pro-
gramming language Java, the variability of the source code is limited to
the order of the methods and attributes represented, insertions, algebraically
equivalent transformations of expressions, and so on; in UML/P, however,
there are more variants for representing the same information. One reason
for this is that the definition points for attributes andmethods are not defined
uniquely—instead, they can be located in various different class diagrams.
There are generally also a number of semantically equivalent forms of rep-
resentation for OCL constraints. For example, the hierarchy, transitions, and
states in Statecharts can be manipulated by the rules introduced in Section
5.6.2, Volume 1.

Using Abstract Class Diagrams to Define Interfaces

On the one hand, the syntactical richness of UML/P offers the advantage
that we can select the appropriate, compact form of representation for each
situation; on the other hand, it leads to the problem that it is more difficult,
for example, to find the point of definition for an attribute and therefore suf-
ficient tool support is necessary. This problem must be regulated by a good
modeling standard. It has shown to be helpful, for example, to use a de-
tailed class diagram for each subsystem that is not divided further and that
lists all attributes and methods with their signatures. Further class diagrams
are used to represent connections between subsystems. These contain only
a subset of the existing classes and associations and mostly ignore detailed
information. As discussed in [HRR98], we can also use a class diagram as
an interface for the parts of a component that are accessible from outside.
This type of class diagram then also represents an abstraction of the actual
model of the component and is sufficient to allow the developer to use the
component.

The different forms of class diagrams can be derived from one another
via systematic transformations, which can also be called refactoring steps.
Thus, we can use techniques for merging diagrams, migrating or expanding
detailed information, and in the opposite direction, removing redundantly
available information. What is important, however, is that for class diagrams
in particular, the form of usemust be explicated through suitable stereotypes.
The representation indicators “ c©” and “. . . ” are suitable, for example, for in-
dicating whether the detailed information represented is complete or incom-
plete.

For pragmatic reasons, however, we should try to keep the redundancy
between different representations of the same information as low as possi-
ble. Redundancy often leads to inconsistencies if we modify a part of the
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system, for example, with refactoring steps and cannot use a tool to en-
sure this consistency automatically. In that case, redundancy increases the
amount of work involved in implementing changes. On the other hand, re-
dundancy used cleverly is an important means for executing consistency
tests and checks. This includes the redundancy between a test model and the
implementation, but also, for example, a (“published”) class diagram dis-
closed as an interface of a component that represents an abstraction of the
implementation and has to be consistent with this implementation.

10.1.4 Refactoring in OCL

Because OCL has no side effects and is determined, there is a wide range
of transformations available that we can apply to OCL expressions. These
include examples from Section 9.1 or rules for handling containers, such as:

In addition to the algebraic transformations, it is primarily the rules of
logic that are important for modifying OCL expressions. Typical rules are
those of Boolean logic such as commutativity:

Because OCL is embedded in a UML context, many expressions can only
be formulated using elements from the underlying models. Let us assume
that there is a specification stating that there is exactly one object of the class
AllData and that this class is accessible with AllData.ad. In this context
the following transformation is possible:

As already discussed in Section 9.3.6, mathematics has a long tradition
in transforming expressions correctly. These transformation techniques have
been made more precise and further refined by means of logic calculi and
algebraic systems. Today, there are a number of tools that allow a precise
manipulation of formulas. These include, for example, the theorem prover
based onHOL [NPW02] or the KIV system [Rei99]. EmbeddingOCL inHOL,
as discussed in [BW02a] and [BW02b], allows us to transform OCL expres-
sions into HOL and to apply the verification apparatus available there to
OCL.
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The refactoring rules on OCL indeed form a logic calculus for OCL. The
precision of the context conditions, which is common for a logic, is very
helpful if the application of the rules is to be supported with automated
tools. Context conditions on the syntax that can be tested automatically can
be adopted accordingly by a tool. For the context conditions that cannot be
tested automatically, we can use various strategies:

• The context conditions are checked informally for plausibility. This does not
ensure that the transformation is correct. However, the conditions are
generally invariants which can be used in tests. This means there is a pos-
sibility that an invariant which has been transformed incorrectly will be
recognized by a defective test. The probability of this occurring, however,
is relatively low, as there is generally no “coverage” of the different alter-
natives of an invariant by tests. Nevertheless, this pragmatic approach is
sufficient for various types of projects.

• The situation is significantly improved when we use additional tests to
check that a context condition is correct. This means that the context con-
dition of a transformation formulated in OCL is itself seen as an invariant
and temporarily inserted in the code during some of the transformation
steps. It is easier to check the plausibility of context conditions if a good
test suite is available or further tests are defined. As the tests themselves
run automatically and can therefore be used efficiently, the additional ef-
fort for the approach is rather low and should be used at least for context
conditions which are critical or not entirely clear.

• Verification of the context conditions offers security in terms of the cor-
rectness of the transformation but usually cannot be executed or requires
pretty much effort.

Section 10.2 discusses and expands on the proposed procedure of check-
ing context conditions by means of tests and demonstrates this by changing
the data structure.

OCL is designed as a specification language in the context of other UML
diagrams. This is another reason why OCL offers little support for verifica-
tion techniques. In practice, therefore, the first two approaches are preferred.

10.1.5 Introducing Test Patterns as Refactoring

Chapter 8 describes several refactoring patterns that increase possibilities for
defining tests. These patterns were presented mainly by describing the re-
sulting structure. However, the system under test often exists in a different
suboptimal form and we have to adapt it accordingly in order to be able
to define tests effectively. Therefore, we have to transform the system with
refactoring techniques to inject the structure proposed by the test pattern.

For example, the following refactoring rule introduces the system struc-
ture discussed in Table 8.9. It allows the test environment to adapt a static
method by encapsulating it in a singleton.
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Refactoring: Making static methods adaptable for tests

Problem Static methods are inaccessible for tests as they cannot be over-
written with dummies.

Goal The goal is to delegate the functionality of a static method to
an instantiated object which, for tests, can be replaced by a
dummy, while avoiding a publicly accessible static variable
for this object.

Motivation See Table 8.9 for a description of the test pattern.

Refactoring
part 1

• The class Singleton is introduced as described in the di-
agram.

• The initialization of the class Singleton is ensured.

• doFoo contains the same functionality as foo from
OldOwner. Where applicable, note the attributes used (see
also refactoring for migrating a method).

• OldOwner.foo now delegates to doFoo.

Refactoring
part 2

(continued on the next page)
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(continues Table 10.8.: Refactoring: Making static methods adaptable for tests)

• To encapsulate the singleton, static method foo is mi-
grated into the singleton.

• Before deleting themethod in OldOwner, we have to adapt
all calls to new method foo.

• We can now also delete the method getSingleton and
the singleton object is no longer publicly accessible.

Implemen-
tations

The implementations of the individual methods can be found
in Table 8.9.

Examples This transformation was used in the auction system to encap-
sulate the database connection and the logging, for example
(see also Fig. 8.8).

Noteworthy The rule was divided into two parts as the first part can be
used independently. This is recommended if the singleton is
to remain publicly accessible.
If the class OldOwner has no further tasks, we can use it di-
rectly instead of the new Singleton class introduced.
The encapsulation of static variables and the definition of
methods for accessing and manipulating these variables are
related to this refactoring rule.

Table 10.8. Refactoring:Making static methods adaptable for tests

The other test patterns defined in Chapter 8 can be represented similarly
to the refactoring rule above. This is demonstrated, for example, for the rule
in Table 10.9 that decouples the application of frameworks discussed in Sec-
tion 8.2.4.

Refactoring: Decoupling the application from frameworks used

Problem,
goal, and
motivation

As described in Section 8.2.4, a framework usually cannot be
adapted, not even for tests. To improve testability of the ap-
plication testable, we separate the application and the frame-
work that it uses by an adapter layer. Further advantages of
this technique are described in [SD00].

(continued on the next page)
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(continues Table 10.9.: Refactoring: Decoupling the application from frameworks used)

Refactoring

• For each of the framework classes used, we introduce an
adapter and a corresponding dummy. The normal adapter
delegates its calls. The dummy is used for tests, without
any contact to the framework.

• The creation of objects of the framework is outsourced to a
factory.

• In the application core, all references to framework objects
are replaced by references to the corresponding adapter.
This includes object instantiation and attributes as well as
arguments and results of the method calls. Only the fac-
tory and the adapter are thus syntactically dependent on
the framework.

Adapter
management

As shown in Fig. 8.12, migrating the signatures of adapters
can lead to difficulties:
• If a framework object is returned as the result of a method
call, it must be encapsulated accordingly in an adapter.

• If the same object can be returned multiple times, the same
adapter must be used for the encapsulation in each case.
A mapping of the type WeakHashMap can store this as-
signment and allows the factory to manage the adapters
accordingly.

Examples Particularly recommended for frameworks with their own
control flow, such as JSP. Section 8.2.4 discusses an example
of this.

Noteworthy See the discussion in Section 8.2.4.

Table 10.9. Refactoring: Decoupling the application from frameworks used
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10.2 A Superimposition Method for Changing Data
Structures

Refactoring steps are relatively small and systematic. This is to ensure that
the application of the rule is manageable and any errors that occur can be
recognized and eliminated efficiently. In this section, we will discuss a tech-
nique that simplifies the management of complex refactoring steps without
breaking them down into many individual steps. This technique is particu-
larly suitable if we want to change data structures modeled with class dia-
grams. It is based on the idea—developed in the auction project and applied
successfully in several cases—of using the old and new data structure in pa-
rallel during the transformation and placing them in a relationship with one
another using suitable invariants. Because the first step in this approach is
the addition of the new data structure without removing the old one, the ap-
proach is referred to as superimposition. The sections below first present the
approach and then demonstrate it and discuss it in detail using two exam-
ples.

10.2.1 Approach for Changing the Data Structure

Refactoring steps are suitable for changing a data structure while ensuring
the correctness of the modification with tests as far as possible. In more for-
mal approaches, such as [BBB+85], ensuring the context conditions for this
transformation with verification techniques is well-understood. Based on the
concepts developed in [BBB+85], Table 10.10 proposes a pragmatic approach
for changing a data structure. Here, the use of invariants to define the rela-
tionships between the old and the new data structure is a significant element
for a correct transformation.

Changing the data structure using superimposition

Problem,
goal, and
motivation

It is not always easy to break a change of data structure down
into a number of small refactorings, although the larger num-
ber of steps bears the increased risk of introducing an error.
The goal is to use invariants that relate the old and the new
data structure to thus control larger refactoring steps and to
obtain confidence in their correct application.

(continued on the next page)
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(continues Table 10.10.: Changing the data structure using superimposition)

Approach Changing a data structure with refactoring techniques con-
sists of the following steps:
1. Identification of the old data structure to be replaced.
2. Development of the new data structure, the related meth-

ods, and required tests which are added to the existing,
old data structure. The existing system is not changed; its
functionality is retained. This is checked bymeans of tests.

3. Definition of invariants that place both data structures in
a relationship.

4. At all points at which the old data structure is changed or
values are assigned to it, the new data structure is now also
modified or gets values assigned. After each of these mod-
ification points, the corresponding invariants are inserted
in order to check them. This integrates the new data struc-
ture into the system executions without involving it in the
behavior of the system. This is checked by the tests.

5. All points that use the old data structure are now con-
verted to the new data structure. This is again checked by
the tests.

6. In most cases, the modification means that some program
parts can be transformed and thus simplified algebraically.
The result is checked by the tests.

7. At the end, the old data structure that is no longer used is
removed. The system runs as usual. This is checked by the
tests.

Examples Sections 10.2.2 and 10.2.3 demonstrate the approach using two
examples from the auction system.

Noteworthy • Steps 5 and 6 are usually performed together.
• If individual steps are complex, it is advisable to perform
additional intermediate tests.

• Tests are often affected by the changeovers and can also be
transformed in step 5. Tests can also become obsolete, or it
may be necessary to define additional tests.

Table 10.10. Changing the data structure using superimposition

In contrast to a verification approach, the trick in this approach is to use
the invariants in tests. Assuming that there is a sufficiently good test suite for
the system, we can ensure that the transformation is correct with a high de-
gree of probability. As the tests required for checking the change of the data
structure in the approach proposed in this book already exist, the change of
data structure can be performed efficiently. Actually, this principle was used
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at several occasions in the auction project with extraordinary success; the ef-
fort required formore complex changes to the data structure wasmuch lower
than estimated because the approach was systematic, there were few errors,
and these errors were identified, localized, and eliminated very quickly.

If there is still insufficient confidence in the correctness of the transfor-
mation after the testing activity as discussed in Section 10.1.4, an additional
verification is possible, for example, based on the Hoare logic.

The approach outlined in Table 10.10 for changing a data structure has to
be suitably adapted based on the actual complexity and form of the data
structure. If, for example, elements of the old data structure are used as
method parameters, we have to add the new data structure in parallel by
extending the method parameters (step 2). This allows us to use the precon-
ditions of such methods to check that the two data structures match (step 3).
In a further refactoring step at the end of the process, the method parameters
of the old data structure that are no longer required are removed (step 7).

In addition to the removal of the old data structure in step 7, the advan-
tages of the new data structure usually become evident in the simplification
of the programs in step 6. Of course, steps 5 and 6 can also be performed
together. In order to be able to describe the relationships between both data
structures effectively, it can be useful to temporarily use additional methods
for transformation between the data structures and also remove these at the
end.

Although we can use this approach for almost all refactoring rules, such
as moving an attribute or splitting a class, the technique is primarily suitable
for larger refactorings. The section below uses two examples from the auction
project to show how we can apply this approach.

10.2.2 Example: Representing a Bag of Money

In a first version of the auction system, money was represented by a num-
ber of the data type long. For the purposes of internationalization, the sys-
tem had to be converted to explicit Money objects because different curren-
cies should be processed within an auction. The following steps change data
structures in a simplified way.1

Step 1: As shown in Fig. 10.11, the initial data structure is identified.
Step 2: The new data structure is shown in Fig. 10.12. Furthermore, suit-

able tests are developed for the new class Money. These tests test the func-
tions offered by the class to a sufficient level.

Step 3: Invariants between the two data structures are easy to identify.
Using the query valueInCent, the following can be defined as an invariant:

OCLcontext Auction a inv BestBidEqualsCurrentBid:
currentBidInCent == bestBid.valueInCent()

1 The auction system actually considers different currencies, quantity-based prices
such as “Euro/kg”, decimal places, and slots of varying sizes.
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Fig. 10.11. Original data structure for representing sums of money

Fig. 10.12. Extended data structure for representing bid values

According to the two-valued logic for OCL used in UML/P and the han-
dling of undefined values, the invariant is satisfied precisely when associa-
tion bestBid is a link to a Money object that has the appropriate content.

Step 4: The new data structure is introduced but is not used yet. In this
step, therefore, it is modified or values are assigned to it at all points where
the same is done to the old data structure. Fig. 10.13 shows an extract from
the method that accepts a bid and calculates the new best bid.

Fig. 10.13. Assignment of values to the new data structure

Because the method shown receives the current bid as an argument, a
second argument is introduced for the new representation of the bid. The first
OCL constraint is derived from the invariant BestBidEqualsCurrentBid
and ensures that the arguments are correct. The other two OCL constraints
test the invariant at the beginning of the method and after the money object
has been changed.
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Step 5:Values are now assigned to the new data structure but the old data
structure is still in use. Therefore, all program elements that use the old data
structure are now replaced. In many cases, the invariants can be used to do
this. In this case, the invariant BestBidEqualsCurrentBid formulated in
step 3 can be understood directly as a replacement instruction. The left-hand
side of the equation

OCLcurrentBidInCent == bestBid.valueInCent()

can be replaced by the right-hand side of the equation at all places that
use the equation. Fig. 10.14 shows this for the result of step 4 (Fig. 10.13).

Fig. 10.14. Using the new data structure in Java code

This transformation is also useful for the OCL constraints. For example,
the specification of the method setNewBestBid in accordance with Fig.
10.15(a) can in a first step be expanded to the form shown in (b) and then
transformed into the version in (c). In these transformations, however, we
must ensure that the invariants used to represent the relationship between
the old and the new data structure are not coincidentally replaced as well.

Fig. 10.15. Using the new data structure in OCL constraints
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This example also shows that the transformation cannot always be exe-
cuted fully automatic. In our example, an attribute is replaced by a method
call and the operator @pre can no longer be applied, for example. Therefore,
the corresponding value is buffered in a let variable.

Step 6: The simplification of the resulting pieces of code and in particu-
lar, of the expressions, is a significant step towards keeping the code created
readable and elegant. Steps 5 and 6 are often performed together. For large
changes of data structure, however, step 6 can be split up into several small
steps. The following replacement applies, for example:

Calculations can also be simplified, as shown in the following transfor-
mation, provided that the old bid1 object is not known at another point:

What is important here, just like for all the other steps, is that the auto-
mated tests are executed after each step. If there are insufficient tests avail-
able, we have to develop additional tests.

Step 7: In the last step, we can now remove the old data structure along
with all invariants and conditions that place the old and the new data struc-
tures in a relationship. The result is shown in Fig. 10.16.

Fig. 10.16. Result of changing the data structure

For the simple example shown, the method used is relatively complex
and time-consuming. The very detailed method proposed here is only rec-
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ommended if the change is more complex and thus more prone to errors.
However, the data structures involved do not necessarily have to be com-
plex. It is also helpful to apply this technique if a lot of attributes of the type
long are to be replaced by Money objects and the complexity thus arises
from the number of elements to be replaced.

10.2.3 Example: Introducing the Chair in the Auction System

The superimposition method was used in the auction system at this level
of detail for the first time when the following requirements appeared: (1) A
bidder can take part in multiple auctions simultaneously, and (2) a colleague
who is observing an auction does not have to be employed by the same com-
pany as the bidder.

In fact, requirement (1) was known from the very beginning but was not
implemented immediately. This was because auctions are by nature of short
duration and a situation with multiple parallel auctions for the same bidder
was initially improbable. This changed as auctions of similar goods synchro-
nized in terms of time were desired in order to boost competition.

Step 1: Identification of the Old Data Structure

From the very beginning, the auction systemwas designed to offer customers
further roles for observation (described in Appendix D, Volume 1) in addi-
tion to the active bidders and the auctioneer. Multiple variants of external
observers were permitted. Bidder colleagues receive the same information as
the actual bidder but cannot submit bids. The recognition of colleagues was
realized via a common Company object. Requirement (2) originates from the
finding that large companies have different locations and subsidiaries, en-
gage external consultants as bidders, etc., and therefore flexibilization was
required.

The example described was implemented very efficiently and without
any errors using the approach outlined in this section. This is even more
surprising as, due to the central importance of the changed system structure,
not only the application core but also the database, the system for setting
up auctions, and the graphical interface right up to the password-protected
login procedure based on employment with the company had to be adapted.
A secondary factor was also that a number of unit and acceptance tests had
to be changed.

Fig. 10.17 shows a simplified excerpt of the initial situation for changing
the application core.

The last OCL constraint SameInfos shows that a bidder’s current own
bid, the symbol used for representation etc. are identical for persons of the
same company.
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OCL// Only one bidder per company
context Person p1,p2 inv OneBidderOnly:

p1.company==p2.company implies
!p1.isBiddingAllowed || !p2.isBiddingAllowed

OCL// Persons from the same company are in the same auction
context Person p1,p2 inv SameAuction:

p1.company==p2.company implies p1.auction==p2.auction

OCL// Persons from the same company have the same symbol and own bid
context Person p1,p2 inv SameInfos:

p1.company==p2.company implies
p1.graphSymbol==p2.graphSymbol

&& p1.ownBid==p2.ownBid

Fig. 10.17. Initial situation with invariants

Step 2: Development of the New Data Structure

The situation in Fig. 10.18 was identified as the desired data structure. In this
situation, the roles are defined by subclasses rather than a flag. Furthermore,
the abstraction Chairwas introduced as ametaphor for the chair of a person
in a classic auction.

The original conditions OneBidderOnly and SameInfos no longer ap-
ply. Invariant SameAuction becomes ChairSameAuction. The new in-
variants ChairAssoc1 and ChairAssoc2 were introduced. These invari-
ants demonstrate the role of the class Chair with respects to the association
between Person and Auction. Together with the introduction of the Chair
classes, a number of new tests were developed for the new data structure but
these are not represented here.

Step 3: Definition of the Invariants

The two class diagrams in Fig. 10.17 and 10.18 show only parts of the im-
plementation, but overlap in some classes and an association. The class di-
agrams now together describe the implementation. For the code generation
the two diagrams aremerged, as described in Section 2.4, Volume 1. Building
on this, we can now identify the required invariants between the old and the
new data structure. Initially, we continue to assume that persons take part in
only one auction, as the tests are designed for the old data structure:
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Java/Pclass BidderChair {
isBiddingAllowed() {return true;}
getSymbol() {return graphSymbol;}

}
class FellowChair {

// No bid submission, otherwise delegation
isBiddingAllowed() {return false;}
getSymbol() {return bidderChair.getSymbol();}

}
class Guest {

isBiddingAllowed() {return false;}
getSymbol() {return Symbol.GUEST WITHOUT OWN BIDS;}

}
OCL// FellowChair and BidderChair are in the same auction

context FellowChair cc inv ChairSameAuction:
cc.auction == cc.bidderChair.auction

OCL// Association Auction - Person - Chair is correct
context Auction a inv ChairAssoc1:

forall p in a.person:
p.chair[a].auction==a

context Person p inv ChairAssoc2:
forall a in p.chair.keySet():

p.chair[a].auction==a

Fig. 10.18. Target structure with invariants

OCLcontext Person p inv:
// Initially only one chair for each person
p.chair.size==1;

Accordingly, any p.chair is the unique Chair object reached from
Person p. This allows us to identify some invariants that affect the transfer
of information from the Person object to the Chair object.
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OCLcontext Person p inv PersonChairInvs:
let Chair c = any p.chair in

// Bidder has BidderChair
( p.role==IS SUPPLIER && p.isBiddingAllowed <=>

c instanceof BidderChair ) &&

// Bidder colleague has FellowChair
( p.role==IS SUPPLIER && !p.isBiddingAllowed <=>

c instanceof FellowChair ) &&

// isBiddingAllowed is the same
p.isBiddingAllowed == c.isBiddingAllowed() &&

// Symbol is the same
p.graphSymbol == c.getSymbol()

The following properties also apply but are represented separately so that
they can get individual names:

OCLcontext Person p inv BidderChairInv:
let Chair c = any p.chair in

// Bid is the same as for bidder
typeif c instanceof BidderChair

then p.ownBid == c.ownBid
else true

OCLcontext Person p inv FellowChairInv:
let Chair c = any p.chair in

// Bid is the same as for bidder colleague
typeif c instanceof FellowChair

then p.ownBid == c.bidderChair.ownBid
else true

The connection between the bidder colleague and the related bidder is
organized via a link. If person p1 is allowed to bid and person p2 represents
a bidder colleague from the same Company, the link must be set accordingly:

OCLcontext Person p1, Person p2 inv:
let BidderChair c1 = (BidderChair) any p1.chair;

FellowChair c2 = (FellowChair) any p2.chair in
defined(c1) && defined(c2) && p1.company==p2.company

implies c2.bidderChair==c1

The new data structure is complex enough to almost certainly introduce
errors during the development of the new data structure and their invari-
ants. At least, we can check the models permanently with our syntax checks
and automated tests. Due to the redundancy that we introduce we have the
following possibilities to identify errors:
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1. In the automated tests
2. In the old data structure (which is assumed to be initially correct)
3. In the new data structure
4. Via invariants that connect the old and new data structures

Step 4: Assignment of Values to the New Data Structure

In the next step, the code for assigning values to the new data structure is
integrated at all necessary points. In doing so, these invariants are used to
check that the new code is correct. As the invariants already exist, we can use
them as guiding specifications which describe how the implementation has
to be adapted. For example, the implementation for getSymbol() can be ex-
tracted from p.graphSymbol==c.getSymbol(). This means that the con-
siderations for the definition of the invariants are reused and this increases
the efficiency of the development. However, if the invariants are used to de-
rive the implementation, defective invariants are not recognized and in con-
trast, result in a defective implementation. Therefore, we have to decide for
each case individually whether to define the implementation independently
of the invariants because there are tests for the old data structure that will
subsequently be converted to the new data structure and then check that the
new data structure is correct.

The assignment of values to the new data structure is demonstrated in
Fig. 10.19 by an example based on the method for storing a bid for a person.
The form of the bids used here is described in Appendix D, Volume 1.

Steps 5 and 6: Integration of the New Data Structure and Optimization

In combination with step 6, step 5 allows us to modify and optimize the
system in stages. A conservative approach is to first continue to provide
all previous methods to thus allow the existing interfaces to remain avail-
able to the environment of the modified data structure. However, it should
also be checked where optimizations—for example, through the expansion
of methods—are applicable.

The conservative approach can be demonstrated with the simple example
of the get and set methods. Sections 4.2.2 and 5.1 describe how to gener-
ate these get/set methods from an attribute of the class diagram. If the
attribute is moved, the related methods are no longer generated. However,
if these methods have been used in some places, a manual definition of the
methods can be made available. For example, the following is a suitable re-
placement that is based on the new data structure:

Java/Pclass Person {
Money getOwnBid(Auction a) {

return this.chair.get(a).getOwnBid();
}}



10.2 A Superimposition Method for Changing Data Structures 317

Fig. 10.19. Assignment of values to the new structure added

We can also use the explicit definition of this method to overwrite the
method that is otherwise generated as standard. Therefore, we can use such
explicit definitions of get/set methods easily and elegantly to divert the
access to attributes in the old data structure to the new data structure. This
conservative implementation is suitable for checking that the transformation
is correct with the existing tests.

Fig. 10.20. Simplification and removal of the old data structure

Step 7: Removal of the Old Data Structure

The old data structure—along with all unnecessary invariants—is now re-
moved. Fig. 10.20 shows the result for the method receiveBid.



318 10 Refactoring of Models

Adapting the Tests to the New Data Structure

It is quite common that after a refactoring step some tests are no longer cor-
rect. The transformation of a test sometimes fails because the called methods
or observed attributes are no longer present. In step 5, we can use the dupli-
cate representation of the data structures that exists after step 4 to migrate
the existing tests. However, tests that are programmed against abstract inter-
faces may require only simple transformations or no transformation at all. In
contrast to the product code/model, it is usually not necessary to optimize
tests in step 6. It is sufficient to keep the tests executable and meaningful.
Superfluous tests can be removed.

A test consists of different types of UML diagrams. Object diagrams are
used, for example, to represent the set of test data and the expected result.
As a consequence of the superimposition approach, we also have to extend
object diagrams. The object diagram in Fig. 10.21, for example, shows an ex-
cerpt of a set of test data to which the new data structures have already been
added.

Fig. 10.21. Modified object structure as a set of test data

Object diagrams used constructively must contain a complete representa-
tion of the test data and are therefore almost always affected by a change of
the data structure. In contrast, in an additive approach, object diagrams used
as predicates are relatively stable because they are often not affected by the
new part added.
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We can modify sequence diagrams systematically in an additive ap-
proach in similar fashion. We add the new interactions to a sequence dia-
gram provided they are to be observed by the test described. If a relatively
free interpretation of the observation was selected in the sequence diagram,
for example, by using the stereotype �match:free�, we do not have to add
these new interactions to the diagram and we can continue to use the dia-
gram unchanged. Fig. 10.22 shows the observation of the interaction of the
auction with the persons involved when distributing the message for the
new bid. This observation takes the interaction with the new Chair objects
into account.

Fig. 10.22. Sequence diagram checks the modified system run

Summary of the Refactoring with Superimposition

In summary, we can state the following for the examples demonstrated here
as an excerpt and the underlying superimposition method for performing
refactoring:

• The confidence that the refactoring is correct is partly established through
the existing tests based on the old structure and transferred to the new
structure. However, as a result of the invariants used, the old and new
data structures are placed in a relationship and this further increases the
confidence that the transformation is correct.

• The additional effort involved in developing these invariants and inte-
grating them temporarily is offset by the advantage that, as a result of
this approach, larger transformations can be executed as one unit. There-
fore, we do not have to break the change of data structure performed in
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the last example down into a number of smaller refactoring steps. Al-
ternatively, we would have to execute individual steps to first introduce
the class Chair, migrate the individual attributes, replace the different
Chair variants represented by flags with subclasses, and, finally, estab-
lish the relationship between FellowChair and BidderChair before
being able to remove the Company class at the end.

• As illustrated by the examples in Fig. 10.21 and 10.22, this approach also
supports the migration of tests by allowing a separation between the ad-
dition of the new and the removal of the old data elements and interac-
tions in two steps.

Overall, when changes of data structure are needed, the superimposition
method qualifies as an effective alternative or supplement to the refactoring
rules described in [Fow99].

This allows us to create additional, more general refactoring rules for
UML/P, which we can reuse in other, similar situations. The principle is sim-
ilar to that for creating frameworks and design patterns. Reusable parts are
extracted from a special application and generalized to create a general rule.
Special cases and alternative situations can be recognized when the rule is
used for other applications and then integrated in the rule.

10.3 Summary of Refactoring Techniques

Chapter 9 and this chapter looked at the foundational principles for transfor-
mational software development based on UML/P. The chapters also com-
bined these principles with the methodology for performing refactoring
steps. Instead of listing individual rules, the chapters discussed how we
can use existing sets of rules—such as those for Java—to transfer refactoring
rules for UML/P. A pragmatic extension, based primarily on invariants, was
given with the description of a superimposition approach for changing data
structures. The practical usability of this approach was demonstrated with
examples. We have seen that, together with the approaches for defining tests
discussed in Chapters 6, 7, and 8, UML/P is an excellent language for the
evolutionary development of the product system and the test cases.

Refactoring is a technique that has become increasingly popular since
[Fow99]. Its roots in evolutionary developmentwere documented in [Opd92].
In fact, the idea of a transformational software development which is per-
formed similarly to the mathematical derivation of expressions goes back
much further [BBB+85, Dij76, PR03]. It was only through [Fow99] that this
approach for transforming existing systems, which was initially presented in
a very formal way, was made accessible for wider usage through practical
descriptions based on the design patterns from [GHJV94]. One of the main
success factors was the replacement of the verification approaches for ensur-
ing the correctness of a transformation by means of automated tests. Although
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these tests do not ensure that the transformation is correct, practical experi-
ence shows that they offer good protection against introducing errors during
the transformation. The use of automated tests to define the required notion of
observation in a refactoring is a significant accomplishment that results from
this.

In the last years new refactoring rules have been developed and it is not
clear how many rules a portfolio should provide for practical purposes. We
do know general principles—such as “divide et impera” or the “generalisa-
tion” of methods often through extending parameters—fromwhich rules can
be derived. [TDDN00], for example, discusses the language independence of
refactoring rules by extracting common features between Java and Smalltalk
rules. There are also language-specific refactoring rules, such as the handling
of exceptions in Java or Statecharts in UML/P. A third class of refactoring
techniques results from the handling of framework-specific or component-
specific situations. In Java, for example, a Vector can be replaced by a Set
structure if the order and number of the elements contained therein are irrel-
evant.

Refactoring techniques will enjoy permanent success above all when tool
support continues to mature. Development environments already allow effi-
cient identification and handling of all points where a method or an attribute
occurs. However, concrete support for refactoring steps up to the proposal
of algebraic simplifications will still require a lot of effort from tool manufac-
turers in the future.

The set of rules specifically for Java is currently being steadily extended
and questions are arising regarding the transfer of rules between languages
and a better foundation for the correctness of refactoring rules. The rules
must therefore be made more precise so that they can be implemented au-
tomatically as tactics and are understood in all implications (context condi-
tions). While the refactoring rules in [Fow99] are very helpful for manual
application, their context conditions, special cases, etc. are currently too in-
formal to be accessible for a formal examination of correctness.
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Summary, Further Reading and Outlook

The essence of knowledge is,
having it, to apply it.

Confucius

Finally, we give a summary and an in detail outlook on further readings and
publications in the context of the UML/P.
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While the UML has become more stable in its evolution it became clear
that there are many more forms of models relevant for software develop-
ment. Models used in the various domains of software and systems devel-
opment share similarities, but also need different domain-specific adapta-
tions. Therefore, this final chapter we do not only summarize the current
state of UML/P and give an outlook on the modeling future, but in particular
give hints to further readings and publications that report on modeling tech-
niques, modelling languages, semantics and related topics that were mostly
built on the UML/P and the results gained from its development. Because
the author developed the UML/P already at the TUM—Munich University
of Technology—and then started a group specifically for modelling issues
in 2003 at the TU Braunschweig and moved in 2009 to the RWTH Aachen
University these further reading suggestions starting with Section 11.3 are
mainly publications from this group.

11.1 Summary

Volume 1 [Rum16] and this book, Volume 2 [Rum17], introduced a number
of model-based concepts and techniques for the rapidly evolving Software
Engineering portfolio. Based on practical experience and well-founded analyt-
ical concepts, these books form a double bridge. On the one hand, they use
UML to develop theoretical approaches for practice and thus increase indus-
trial applicability of these approaches. On the other hand, the books apply
concepts from agile methods to the UML.

Until now, UML has been used primarily in plan-based methods for
defining milestones and development phases. Using the concepts discussed
in this book, we can combine the values system, principles and development
practices of agile methods with UML.

The main product of Volume 1 was the definition of a precise language
profile of UML/P that we can use for many types of applications. This lan-
guage profile (1) ignores less important concepts, (2) offers a precise expla-
nation of the meaning of all used constructs, and (3), thanks to additional
concepts, is tailored to be used as a programming language, modeling lan-
guage, and a language for defining test cases.

The main technical concepts of agile methods that are directly affected by
the language used are code generation, the ability to define automated tests,
the testability of the code generated, and the evolution of the models that are
necessary because of changing requirements or a software architecture that
has potential for improvement.

Therefore these techniques were applied to UML/P in both books. We
also discussed how to use UML/P models to define automated tests and
how to apply refactoring techniques to UML/Pmodels. The books provided
a number of test patterns specifically designed to improve the testability of
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object-oriented software and for testing the functions of distributed and con-
current systems. These tests allowed us to define a precise notion of the con-
cept “observation” that serves as a basis for our refactoring steps.

The UML/P language profile presented in this book and the techniques
based on this language profile form the basis for efficient development. They
enable us to optimize the flexibility, efficiency, and costs of the process, the
quality and maintainability of the product, time-to-market, and, ultimately,
customer satisfaction. They do so by enabling us to select the process with
its associated development-appropriate practices. A further optimizing con-
tribution is the tailoring of our notations to agile development approaches.

The techniques presented for generating code and test cases and for the
transformational refactoring of UML models are an excellent basis for the
Model-Driven Architecture” (MDA). MDA implies a heavily model-driven
approach in which different layers of models are developed in succession
and are ideally generated automatically from each other. The concepts avail-
able in UML/P—such as the explicit labeling of incompleteness “...”, or
stereotypes such as �match:initial� for labeling the precision of an observa-
tion given by sequence diagrams—allow us to design very elegant models at
different levels of abstraction and to convert them into one another by means
of transformations.

UML/P and the transformations described in this volume therefore sup-
port MDA and even extend it significantly. MDA primarily supports “top-
down” transformations of abstract, platform-independent models into de-
tailed, platform-specificmodels and code. In contrast, the refactoring ofmod-
els tends to be “horizontal”: refactoring techniques improve the architecture
of a system without necessarily leaving the abstraction level.

In this book, the interaction of vertical and horizontal transformations
is described by the combination of code generation and refactoring. For an
efficient use this requires code generation that is as automated as possible.
Although this is now state of the art, it is often not possible to realize the
automation adequately with the current tools available and this is therefore
a differentiating feature in tool selection.

11.2 Outlook

With the process model and the underlying notation outlined in Volume 1,
any reader can now gather further practical experience. Even without a ma-
ture tool, we can see that the use of UML/P and the concepts for tests and
refactoring based on UML/P have positive effects on the system architecture
and system quality. Transforming test models manually at least improves
the understanding and the effectiveness of the development and increases
the quality of any resulting tests.

However, tool developers must continue to work intensively on offer-
ing functionality for generating code and tests beyond class diagrams. We
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also need general generation procedures as well as the possibility to address
frameworks and component architectures when generating for specialized
domains. Due to the effort involved in creating comfortable graphical soft-
ware development tools, it is often better to create the tool as an extension
(plug-in), for example, for an existing open source IDE. This also applies to
coverage metrics for tests, generating test cases, or connecting verification
tools for refactoring rules.

At the time of the original publication of both books, UMLwas published
in version 2.3. Some concepts of the UML/P language profile are better sup-
ported in the current UML version but in general, UML 2, with its many new
features, still needs more consolidation. This is precisely why the elegance,
simplicity, and clarity of UML/P—which are also reflected in the compara-
tively short description of the abstract syntax in the appendix of [Rum16]—
are a significant advantage compared to the language standard itself which
suffers under the weight of too many political influences.

The consolidation provided by UML/P has created a basis for a num-
ber of extensions and investigations of usability. These include the empiri-
cal analyses of the quality and effectiveness of the known test procedures
for which previously data based primarily on procedural languages existed.
However, the development language used has a significant influence on the
test characteristics. The number and form of practical refactoring rules and
the measurement of the quality of a software structure require empirical
studies that still need to be collected for a UML/P-based approach.

We can use UML/P to develop very good domain-specific language
adaptations. For example, the property-oriented modeling language OCL is
well suited for defining business rules for dynamic configuration and load-
balancing for cloud systems which, when satisfied or violated, each trigger
certain required actions. Today, complex systems such as SAP R/3 offer a
number of parameters that reflect the business logic of the system. There-
fore, instead of transforming OCL and other UML/P models directly into
code, the system can interpret the artifacts. This enables a dynamic modifia-
bility during system runtime, as is the case in an energy monitoring system,
for example [FKP+10].

For the modelling of components and their interfaces it is advisable to use
a class diagram or object diagrams. Statecharts can be used for an abstract
state model of the component that the context should know about; these are
often called protocol state machines. OCL method specifications describe the
usage conditions for method calls to a component and sequence diagrams
define the permitted interaction patterns. For tests, a component dummy can
be created partially automatically. Conversely, we can test a component for
conformity with the assured properties from outside via its interface. The
use of components then becomes more interesting because automated tests
can significantly increase confidence in the correctness of a component pur-
chased from a third-party.
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The Future of Modeling

It is difficult to predict howmodeling techniques will be used in the software
development process in the future. On the one hand, a larger part of the com-
munity beliefs that modeling still has a lot of potential for improvement in
terms of both the languages and the related tools. However, it is difficult to
optimize the tool landscape because tools typically cannot be used in isola-
tion and instead, have to be an integrated part of a complex tool landscape.

Furthermore, we are seeing an increasingly more specific form of devel-
opment approaches for software in the different domains. Depending on the
factors that influence complexity and the risks that prevail in each domain,
very different development processes are used and often, these are subject to
very detailed standards. Moreover, after the wave of integration of modeling
languages which reaches its peak in the UML language standard, there is a
noticeable trend towards domain-specific languages (DSLs) which, although
they each have to be defined separately, are comfortable to use when applied
thanks to their compactness and simplicity.

In future, it should be possible to classify projects roughly into the fol-
lowing groups: (1) UML-based, (2) DSL-based, and (3) agile, modeling-free
projects. However, the three approaches can be mixed, for example, if UML
models are used for agile generation and a DSL is used for runtime configu-
ration.

To use UML in an agile way, however, we need a much improved and
more efficient tool infrastructure. Firstly, there are no good tools for version-
ing, for creating variants, for effective refactoring, for tracing requirements,
no comfortable editors, etc.

Also important is the possibility for a lightweight use of models, as de-
scribed in these books, for example to generate code. This includes, for ex-
ample, that generated code does not have to be modified manually and that
it does not even have to be read or understood. Unfortunately it is still often
necessary today to fill code frames from class diagrams or at least to un-
derstand what functions we can program against. Models requiremodularity
and explicit interfaces so that we can hide internal details that are encapsu-
lated and thus elevate the success of the modularization from programming
languages to models.

In addition to code generation, mature analysis and synthesis techniques
are required that ensure syntactic consistency and that allow us to detect
interesting properties of the system at an early stage. In particular, the tech-
niques include automated analysis procedures that allow us to detect the
violation of invariants and create examples of this. They also include synthe-
sis procedureswhich calculate complete (internal) models from incompletely
defined views and use these models for animation or code generation. Today,
for example, it is comparatively easy to enter an OCL contract and a specific
set of input data in a SAT solver which then calculates a solution that can be
understood as the output of the specified method call. However, it is still not
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yet possible to derive a constructive algorithm automatically from an OCL
contract specification.

For heterogeneous languages such as UML in particular, the modularity
of the models already mentioned also raises the question of how languages
can be defined in a modular form. This is discussed in [Völ11], for example,
but has not yet been applied to UML. A suitable modularization of the lan-
guage UML for independent analyses and synthesis procedures also appears
to be intrinsically difficult because UML was defined largely as a monolith
respectively without any encapsulation mechanisms for sublanguages.

Thus, the use of a modeling language for various purposes is mentioned
at various points in these books but as yet, UML has no mechanisms that
would support such diversity of use. For example, depending on the form
of use, Statecharts can be represented very differently in code (this is under-
stood) but therefore also have different consistency conditions in the context
of class, sequence, or activity diagrams (and that is not reflected adequately
in UML).

Even though UML has certain deficits, it is currently still the best gen-
erally used modeling language in the field of software development. Many
successful projects show that on the one hand, it is rather easy to use; on the
other hand, current research—including research on the above-mentioned
topics—shows where further improvements will be necessary.

11.3 Agile Model Based Software Engineering

Agility and modeling in the same project? Today, too many developers and
project managers think that the use of models in software development leads
to a heavy-weight, tedious development process. They believe that sooner or
later, the models are usually outdated, are not being co-evolved, are buggy
and no longer helpful. On the contrary, agility means to concentrate on the
program as a core artifact without much extra documentation. Agility en-
ables efficient evolution, correction and extension. As such, it seems to con-
flict with modeling.

One of our research hypotheses was initiated in [Rum04] and can be
phrased like this: “Using an executable, yet abstract and multi-view mod-
eling language for modeling, designing and programming still allows to use
an agile development process.”

Fig. 11.1 illustrates that one or more domain specific modeling languages
(DSML) are used as a central notation in the development process. DSMLs or
the UML serve as a central notation for the software development. A DSML
can be used for programming, testing and modeling.

We found that modeling will be used in development projects muchmore
intensively, when the benefits become evident early. This means construc-
tive generation or synthesis of code from the models needs to be among the
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first steps of a model-based development process. All other interesting tech-
niques, such as test synthesis or high level analysis techniques seem to come
second. As a consequence, executability of modeling languages is an inter-
esting future research direction.

Fig. 11.1. What domain specific models can do for us

Execution of UML and DSLs

The question, whether UML should be executable, is discussed in [Rum02].
We found this a promising approach for larger subsets of the UML language,
but also identified a number of challenges. We therefore started our research
agenda to solve these challenges in order to make MBSE truly successful in
the agile software development. We explored in detail, how UML fits for
that purpose. Not only the deficiencies of existing UML tools but also the
UML language itself need to be adapted to fit the needs of an agile software
development process.

In [Rum03] we discussed how modeling of tests helps to increase reuse
and efficiency. In [GKRS06], for example, we concentrate on the integration
of models and ordinary programming code.

In [Rum16] and this book [Rum17] (German versions available under
[Rum11, Rum12]), the UML/P, a variant of the UML especially designed for
programming, refactoring and evolution, is defined. The UML/P embodies
class, object, sequence diagrams, Statecharts and OCL in combination with
Java to model code as well as tests as sketched in Fig. 11.2.

Forms of language integration, e.g., using object diagrams in the OCL to
describe desired or unwanted object structures, are presented there as well.

In the last decade, we implemented a language workbench called Mon-
tiCore1 which is initially described in [GKR+06]. On top of that, we realized
1 see www.monticore.de
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Fig. 11.2. Generation of code and tests and model analysis

most of the language components of the UML/P in [Sch12]. This includes a
precise definition of the textual languages, type checks, checks for other con-
text conditions within and between UML sub-languages and a framework
for the implementation of code generators.

Specific Concepts assisting Agile Development

Agile development processes require quite a lot of specific activities, tech-
niques and concepts that differ fromdocumentation-based development. Re-
search on this, e.g., includes a general discussion of how to manage and
evolve models [LRSS10] or a precise definition for model composition as
well as model languages [HKR+09]. Compositionality is particularly impor-
tant and must be designed carefully as it allows the tools to analyze and
generate incrementally, thus being much more agile than today’s modeling
tools. We also discussed in detail what refactoring means and how refactor-
ing looks like in the various modeling and programming languages [PR03].
The UML/P is implemented in such a way that models can be specified free
of redundancies even in different levels of abstraction, which enhances refac-
toring and evolution techniques onmodels. To better understand the effect of
an evolved design, we discuss the need for semantic differencing in [MRR10].

When models are the central notation, model quality becomes an im-
portant issue. Therefore, we have described a set of general requirements
for model quality in [FHR08]. We distinguished between internal and ex-
ternal quality. External quality refers to the correctness and completeness of
a model with respect to the original that it describes, while internal qual-
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ity refers to the model presentation and thus plays the same role as coding
guidelines for programming languages.

We also know that, evenwhen using the UML/P, there is additional effort
necessary to adapt the tooling infrastructure to the project specific needs.
This becomes more pressing, when a domain specific language is specifically
designed for a project. [KRV06] discusses the additional roles and activities
necessary in a DSL-based software development project.

We assume that the use of models at runtime will become a pretty ag-
ile and efficient development technique. It allows developers to delay design
decisions to runtime adaptation and configuration of systems. However, reli-
ability then becomes an issue. In [CEG+14] we have therefore discussed how
to improve reliability while retaining adaptivity.

11.4 Generative Software Engineering

In Section 11.3 we clarified that generating software is an important capabil-
ity for a tooling infrastructure that successfully assists modeling in the de-
velopment process. We believe that modeling will only become an integral
part of the process in many industrial projects, if automatic derivation of ex-
ecutable code and smooth integration with handwritten code is a standard
feature of its tooling.

We therefore examined various aspects of generation. E.g. in [Rum16] and
this book, we define the language family UML/P (a simplified and semanti-
cally sound derivative of the UML)which is designed specifically for product
and test code generation from class diagrams, object diagrams, Statecharts
and sequence diagrams as shown in Fig. 11.2.

[Sch12] developed a flexible, modular and reusable generator for the
UML/P based on the MontiCore language workbench ([KRV10, GKR+06]).
With MontiCore we are able to easily define extensions of languages as well
as new combinations and thus are able to reuse the defined UML/P sublan-
guages and generation techniques in various applied projects.

Our architectural analysis and design language (AADL) MontiArc is also
based on this generation technology. As described in [HRR12] it can be used
for the cloud as well as Cyber-Physical Systems, such as cars or robotics.

Tooling and especially generators will only be successful in practical
projects, if they have an appropriate impact on the development process, i.e.
development processes need to be adapted or completely reshaped accord-
ing to the availability of a generator. In [KRV06], we discussed additional
roles necessary in a model-based software development project (while other
roles either vanish or their workload can greatly be reduced).

The generation gap problem is addressed in [GKRS06]. There, we discuss
mechanisms to keep generated and handwritten code separated, while inte-
grating them in the product and enabling the repetitive generation (which is
much more valuable than one-shot generation).
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For various purposes, including preparation of a model for generation,
it is helpful to define model transformations. We are able to create trans-
formation languages in concrete syntax, that reuse the underlying language
concepts. In [Wei12] we show how this looks like. Even more important we
describe how to systematically derive a transformation language in concrete
syntax. Since then we have applied this technique successfully for several
UML sublanguages and DSMLs.

Sometimes executability can be a disadvantageous characteristics for a
modeling language, especially when people start modeling concrete algo-
rithms instead of abstract properties. We therefore discuss needs and advan-
tages of executable modeling with UML in agile projects in [Rum04], how
to apply UML for testing in [Rum03] as well as the advantages and perils of
using modeling languages for programming in [Rum02].

11.5 Unified Modeling Language (UML)

Many of our contributions build on UML/P are described in the two books
[Rum16, Rum17] and implemented in [Sch12].

UML’s semantic variation points are discussed in [GR11]. We discuss for-
mal semantics for UML [BHP+98] and describe UML semantics using the
“system model” [BCGR09a, BCGR09b, BCR07b, BCR07a]. They have e.g.
been applied to define class diagram semantics [CGR08] and activity dia-
gram semantics [GRR10].

Precisely defined semantics for variations is applied, when checking vari-
ants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the con-
sistency of both kinds of diagrams [MRR11e]. We also apply these concepts
to activity diagrams [MRR11b] which allows us to check for semantic dif-
ferences for ADs [MRR11a]. The basic semantics for ADs and their semantic
variation points is given in [GRR10].

We also discuss how to ensure and identify model quality [FHR08], how
models, views and the system under development correlate to each other
[BGH+98] and how to use modeling in agile development projects [Rum04,
Rum02]

The question, how to adapt and extend the UML led to [PFR02] on
product line annotations for UML and to more general discussions and in-
sights on how to use meta-modeling for defining and adapting the UML
[EFLR99, FELR98c, SRVK10].

A very early discussion on the challenges for the UML discussed by the
pUML group can be found at [KER99].

11.6 Domain Specific Languages (DSLs)

People are modeling everywhere. Both science and philosophy use models
to understand and describe the concepts and phenomena in their fields. En-
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gineering disciplines use models to describe the systems they want to de-
sign. We all use models, but only computer science defines and studies the
set valid of models, namely the modeling language explicitly. This is made
necessary because computer scientists use models not only to communicate
among each other, but also with computers.

Computer science, therefore, investigates very much into languages. We
use universally applicable modeling languages to describe problems and
problem contexts. We employ general-purpose programming languages to
implement solutions. We specify properties, architect and design solutions.
And we define tests, as well as an increasing number of application specific
languages and domain specific languages (DSLs) tailored for a concrete tar-
get area.

A DSL is always constructed with a particular domain in mind. Examples
include HTML for websites, Matlab for numerical computation, or SQL for
relational database management. In each instance the DSL trades some of
the expressiveness of GPLs in order to allow for more concise models in the
target domain.

As software systems have become essential components of nearly all in-
novative products, increasingly many non-ICT experts now find themselves
working with these systems.

Furthermore, complexity of software-based systems is increasing. While
modeling languages such as the UML provide a high level of abstraction to
deal with complexity, these languages are usually still too technical (hence
UML profiles are useful, as discussed in [GHK+07, PFR02]). DSLs address
both of these problems. Non-ICT experts benefit from DSLs by being able
to transfer already familiar language concepts to the new application. Expe-
rienced users benefit by having a smaller mental gap between the software
system and the associated real world models.

The main drawback of domain specific languages currently is still their
challenging creation process. Not only does the creation of a computer lan-
guage necessitate the fundamentals, such as a carefully defined grammar
and corresponding translation programs. Productive usage of a language
also requires extensive tool support. Generative Software Engineering tech-
niques (see Section 11.4) are at the center of attention for attempts to meet
these challenges. In [SRVK10] we discuss the state of the art and current ef-
forts to develop languages through meta modeling.

Fig. 11.3 depicts the role of DSLs in a model-based Software Engineering
process. DSLs and the models expressed with them are becoming first-class
elements of the Software Engineering process. In order to support this devel-
opment, research needs to be focused on new, effective, and efficient ways of
creating DSLs and corresponding tool support.
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Fig. 11.3. Tool support for defining and using a DSL

DSL Language Definition

DSLs have to be designed carefully to meet their respective requirements. A
core design of a DSL consists of a desired concrete and abstract syntax. We
examine the relations between concrete and abstract syntax and propose a
language definition format in [KRV07b, KRV10], which allows the combined
definition of concrete and abstract syntax.

In [FHR08] we discuss metrics and potential guidelines, that help to
achieve high quality models and extend this into a collection of design guide-
lines for DSLs in [KKP+09]. Our experience shows that these guidelines
tremendously improve the quality of DSLs. They target and enable suitabil-
ity, reuse, conciseness, and usability.

How to define the semantics of DSLs is discussed in Section 11.10. The
aspect of variability in syntax and semantics for DSLs in general and UML
in particular has been discussed in [GR11].

Composition of DSLs

Modularity is a key concept in software development and the enabler for
efficient reuse. We investigated the application of modularity to the develop-
ment of DSLs in [GKR+07, KRV08, Völ11]. Modularity has been successfully
applied in various areas of the DSL development process, such as concrete
and abstract syntax, context conditions, and symbol table structures and has
been implemented in our language workbench MontiCore.

We can compose independently developed languages into integrated
families of DSLs, which allows us to describe a system from various view-
points using these different DSLs. The language family UML/P, defined in
[Sch12], serves as an example of this technique.
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As described in [KRV08] we can inherit from existing languages and
adapt certain language concepts. An often used example is to extend an ac-
tion language by new forms of actions.

We can reuse existing languages by embedding them as sub-languages.
E.g. Java’s expression language can be used for various purposes within a
modeling DSL. This waywe have integrated Java statements and expressions
into UML/P. We are further investigating the decomposition of generators
and modular composition of generated code.

These concrete techniques are summarized in the broader discussion on
the so called “global” integration of domain specific modelling languages
and techniques in a conceptual model [CBCR15], which is published in
[CCF+15].

DSL Tooling

As previously mentioned, the usability of a language depends on the avail-
ability of powerful tooling. We have implemented the MontiCore DSL work-
bench as a realization of all the aforementioned concepts regarding DSLs. It
is available as a stand alone tool as well as a collection of Eclipse plugins. It
also creates stand alone tools as well as tailored Eclipse-based plugins for the
defined DSLs [KRV07a]. We generate editors with syntax highlighting, syn-
tactic and semantic content assist and auto completion, graphical outlines,
error reporting, hyperlinks etc., just from the DSL definition.

In [LRSS10] we discuss the need for evolution and management of mod-
els. We especially identify the need for comfortable transformation lan-
guages. Therefore, [Wei12] presents a tool that creates an infrastructure for
transformations that are specifically dedicated to an underlying DSL. The
generated transformation language is quite understandable for domain ex-
perts and comes with an engine dedicated to transform models of this DSL.

MontiCore

More details about theMontiCore DSLworkbench can be found in [GKR+06,
KRV08, KRV10] as well as the MontiCore website2.

11.7 Software Language Engineering (SLE)

Identifying or engineering appropriate languages for the various activities
in software and systems development is one of the most important issues
in Software Engineering. Even programming languages are still subject of
improvement. For many other activities, such as architectural design, behav-
ioral modeling, and data structure specifications, we use the general purpose

2 see www.monticore.de
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UML. But UML and its tooling still are much less elaborate and hence subject
to extensive syntactic, semantic, and methodic improvement.

In various domains, however, it is more appropriate to employ Domain
Specific Languages (DSLs) (see Section 11.6) to enable non-software devel-
opers specifying properties, configuring their systems, etc. in terms of es-
tablished domain concepts and corresponding language elements. With the
upcoming age of digitalization, we thus expect a growth in domain specific
languages (DSLs) and increasing efforts in their efficient engineering, inte-
gration, and composition.

Design of a domain specific language is a complex task, because, on the
one hand, it needs to be precise enough for being processed by a computer
and, on the other hand, comprehensible by humans. Monolithic design of
a language can already benefit from methods for language engineering in
the small including design guidelines and tooling. The MontiCore language
workbench is such a tool to assist development of languages. It, for exam-
ple, provides techniques for an integrated definition of concrete and abstract
syntax of a language [KRV07b, Kra10], but is much more a framework for
compositional language design [KRV10].

Language Engineering in The Large

To efficiently engineer languages in the large, we need all the help that we
can get. As software languages are software too, it is not surprising that the
following techniques help:

1. Elaborate tooling to assist language development.
2. Reuse of tools, e.g. for parsing and for parameterizable pretty printing.
3. Reuse of language components.
4. Decomposition of the language to be designed in smaller components.
5. Refinement and adaptation of existing languages.
6. Automatic derivation of new languages from existing ones.

To improve understanding of language engineering, we have defined the
terms language and language components in [CBCR15] and how to capi-
talize on this in [CCF+15]. In [SRVK10], we discuss the possibilities and
the challenges using metamodels for language definition, identifying, for in-
stance, the need for metamodel merging and inferencing, as well as assis-
tance for their evolution.

Language and Tool Composition

“Divide et Impera” is the core concept of managing large and complex tasks.
Language design therefore needs to be decomposed along several dimen-
sions: First, we want to decompose the language in language components.
Some of these components, for example the basic language for full qualified
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names, constants, (Boolean) expressions, or imperative statements, should be
designed in a reusable form.

In a second dimension, we want to decompose the tooling along the ac-
tivities (frontend: model processing, context conditions, internal transforma-
tions, backend: printing) and decompose each of these activities along the
individual language components. MontiCore 3, e.g., is able to decompose
the frontend language processing along the decomposition of the language
itself [KRV10, Völ11, KRV08, HMSNRW16]. MontiCore also assists modular
decomposition of the backend code generation based on different targets and
different sublanguages [RRRW15].

Language Derivation

Language derivation is, to our believe, a promising technique to develop new
languages for a specific purpose that are relying on existing basic languages.
Formally, a language derivation is a mapping D, that maps a base language
B into another language D(B). This mapping produces new languages, not
models. To automatically derive such new languagesD(B) or, at least, assist
such derivation with tools, the base language B itself has to be modeled ex-
plicitly, for instance as a metamodel or as a grammar together with its well-
formedness rules in a reasonably explicit form. Thus, language derivation
can be partially understood as model transformation on a metalanguage. We
so far successfully conceived three language derivation techniques.

Transformation languages in concrete syntax

Instead of using a fully generic transformation language that is applicable to
a base languageB, we automatically derive a transformation language T (B)
that merges elements of the concrete syntax of B with generic—and thus
reusable—elements for defining transformations onB models. The result is a
comprehensible and easy applicable transformation language that modelers
find familiar, because it systematically reuses the syntax of the base language
B. Automatic derivation of such transformation languages using concrete
syntax of the base language is described in [HRW15, Wei12].

Because the language derivation operator T is applicable to any language,
we have successfully applied it to class diagrams, object diagrams,MontiArc,
automata, and more. The operator T not only derives the new languages
T (B), but the tool infrastructure behind T also generates the transformation
engine necessary to execute transformations defined in T (B) (which finally
transform models of the base language B).

Tagging languages

A tagging model is used in the context of a base model M and adds addi-
tional information in form of tags to the elements defined in M . This, for ex-
ample, can be used to add technology-specific information or advice on how
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code generation, model merging and other algorithmic transformations have
to handle the tagged elements. Tags can, for example, instruct a persistence
generator, whose data model classes are mapped into single transportable
DAOs or add security restrictions to data objects. For activity diagrams, tags
can describe, where to find the appropriate activity implementation, etc.

Tagging models share the idea of UML’s stereotypes, but are not part
of the base model. Instead the separate tagging model references the base
model. This has the advantages (1) that the basemodel can be reusedwithout
technology specific pollution, (2) several different tagmodels are possible for
the same base model in different technological spaces (e.g., iPhone, Android
or Windows clients), and (3) a tag model can also be reused for different base
models.

A tagging language is the language of the tagging models and thus is
highly dependent on the base language that it tags (i.e., it must be aware
of the modeling elements of the base language). [GLRR15] describes how to
systematically derive tagging languages from a base language and how code
for processing tagging models can be generated automatically.

This also rests on the concept of a tag definition language, which allows
defining the possible form and values that tags may have, as well as which
kind of model elements they can be applied to and therefore acts as type
definitions for tags.

Delta languages

Another way of deriving new languages from existing languages is de-
scribed in [HHK+15a, HHK+13], where a base language B is used to derive
a delta language Delta(B). The delta language Delta(B) enables to explicitly
describe differences between a base model of B and the model variant (also
of B). This helps to define system variability in a bottom-up fashion. A delta
model describes which model elements are added, modified, or deleted on
the base model. Thus the delta approach is popular for the management of
variability and Software Product Lines (SPL) as discussed in 11.9.

Delta language techniques are specifically suited for architectural lan-
guages, such as MontiArc (see Section 11.8) to add and modify components
as well as channels, but also have been applied to Simulink in an industrial
context.

Again the delta operator transforms a base language B into a language
Delta(B) allowing to describe delta models. Each delta model can be applied
individually and therefore n deltas amount to 2n variants (modulo applica-
tion dependencies and orders).
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11.8 Modeling Software Architecture and the MontiArc Tool

Distributed interactive systems have become more and more important in
the last decades. It is becoming the standard case that a system is distributed.
Typically such systems consist of subsystems and components like

• sensors, control units, and actuators in cyber-physical machines,
• high performance computing nodes,
• big data storage nodes,
• messages transmitted between web services in cloud computing applica-

tions, or
• interaction between mobile humans.

The main paradigm for communication in distributed systems is asyn-
chronous message passing between actors. The logical or physical architec-
ture of a hierarchically decomposed system can be modeled like the excerpt
of a car locking device in Fig. 11.4.

Fig. 11.4. Hierarchic architecture model e.g. used in the automotive domain

Messages can be

• event signals, e.g., messages on a bus,
• values measured by sensors and discrete event signals,
• streams of telephone or video data,
• method invocation, or
• complex data structures passed between software services.
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Semantically our approach is formally sound and well-defined using
streams, state machines, components, as well as expressive forms of com-
position and refinement (see Section 11.10). A challenge in the design and
implementation of these systems is the development of an appropriate archi-
tectural decomposition of the system and fitting component interfaces suit-
able for property analysis, effective realization, and reuse of components un-
der variability considerations. We have made a number of contributions to
this field from more theoretical considerations up to a concrete tooling in-
frastructure called MontiArc.

Theoretical foundation of Software Architecture Modeling

A theoretical foundation of a model-based development in terms of an inte-
grated, homogeneous, but modular construction kit for architectural models
is described in [BR07]. Mathematical foundations are given for modeling of
interfaces, building architectures through composition and decomposition,
layering architectures as well as hierarchical decomposition, and implemen-
tation of components using state machines. Especially the refinement (see
also [PR99]) of hierarchy, interfaces, and behavior is discussed as well as
abstraction mechanisms for the integration of abstract viewpoints. The pre-
sented theory consists of a set of theorems and provides a basis for architec-
tural modeling without sticking to a concrete syntax of a modeling language.

MontiArc - Architecture Modeling and Architectural Programming

The architectural design language MontiArc has been developed for mod-
eling distributed interactive systems. It captures active components (agents,
actors) of a logical or physical distribution, their interfaces (ports), the com-
munication infrastructure between the components, and a hierarchic decom-
position. MontiArc is a full ADL, although we have omitted some uninter-
esting concepts from the AADL standard and could then optimize others.

MontiArc is described in [HRR12] in detail. MontiArc is a textual lan-
guage and comes with an eclipse-integrated editor. It provides a simulation
framework that can execute behavior implemented in Java and attached to
MontiArc models in a declarative way so that analysis on MontiArc models
becomes possible.

Because the language MontiArc is designed for extensibility, several sub-
languages for behavior may be embedded directly within component def-
initions. MontiArc is e.g. extended with automata to MontiArcAutomaton
[RRW13, RRW14]. In [HRR10], an extension of MontiArc with Java is pre-
sented, which becomes a full programming language that exhibits architec-
ture, data structure and behavior. [RRRW15] describes how the language is
composed of individual sublanguages. With this approach, a smooth inte-
gration of architectural design and programming is achieved. We call this
architectural programming.
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Architectural Variability

Section 11.9 discusses our contributions in more detail, but it is worth to
mention that much variability research was applied to and experimentally
verified using MontiArc.

Variability of a system has to be considered and modeled by appropriate
means during all phases of the development but especially in the architec-
tural design. MontiArc has thus been extended in two different ways, hierar-
chical variability modeling and delta modeling, in order to explore ways to
enable architectural modeling of variants defined in a product line.

In [HRR+11], we explored a variability mechanism based on MontiArc
that allows specifying component variants fully integrated at any level of
the component hierarchy. Here variation points may have hierarchical de-
pendencies. Associated variants define how this variability can be realized
in component configurations. As a general drawback of this approach, sys-
tems are restricted to the set of predefined variations and cannot be extended.
This approach is not additive.

We thus explored delta modeling as an additive approach to variability
design. This will allow a company to immediately start to develop and think
in terms of product lines, even years before the full variability model is ex-
tracted (reengineered) from former and ongoing projects. The main idea is
to represent any system by a core system and a set of deltas that specifies
modifications. In [HRRS11] we describe Delta-MontiArc (also Δ-MontiArc),
which applies this concept successfully to MontiArc. The core is a Mon-
tiArc model. A delta language is defined describing how to add, remove, or
modify architectural elements. The concrete realization ofΔ-MontiArc using
MontiCore 3 is described in [HKR+11a]. The developed language allows the
modular modeling of variable software architectures and supports proactive,
reactive as well as extractive product line development. As a next step, we
explored in [HRRS12] how to evolve a complete delta-based product line,
e.g. by merging or splitting deltas.

Requirements, Evolution, Dynamics of Architecture

A methodological approach to close the gap between the requirements ar-
chitecture and the logical architecture of a distributed system realized in a
function net is described in [GHK+07, GHK+08]. It supports the tracing of
requirements to the logical software architecture by modeling the logical re-
alization of a feature that is given in a requirement in a dedicated feature
view. This allows us to break down complexity into manageable tasks and
to reuse features and their modular realization in the next product genera-
tion. [GKPR08] extends this modeling approach to model variants of an ar-
chitecture. These concepts are now successfully integrated into automotive
development processes.
3 see www.monticore.de
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We also defined a precise verification technique that allows developers to
decompose logical architectures into smaller pieces of functionality, e.g. in-
dividual features in [MRR13, Rin14], and to verify their consistency against
a complete architecture in [MRR14]. Our hypothesis is that with this tech-
nique, developers will be able to decompose requirements into features and
compose their implementation late in the development process. That will
definitely increase reusability of features.

An overview and a detailed discussion on the challenges of co-evolution
of architectural system descriptions and the system implementation is given
in [MMR10]. Architectural descriptions of a system deal with multiple views
of a system including both its functional and nonfunctional aspects. Espe-
cially, critical aspects of a system should be reflected in its architecture. The
descriptionmust also be accurately and traceably linked to the software’s im-
plementation so that any change of the architecture is reflected directly in the
implementation, and vice versa. Otherwise, the architecture description will
rapidly become obsolete as the software evolves to accommodate changes.

While many architecture styles assume static structures, we explored a
modeling technique to describe dynamic architectures in [HRR98]. It allows
developers to express dynamically extensible interfaces of components with
so-called Component Interface Diagrams (CID).

11.9 Variability and Software Product Lines (SPL)

Most products, like cars, printers, mobile phones, etc., exist in various vari-
ants. Software for product variants is quite similar, but typically differs in
new or additional features that sometimes deeply affect the software’s ar-
chitecture. Software variants are managed as a Software Product Line (SPL)
that captures the commonalities as well as the differences. Software Product
Lines have many benefits, they:

• decrease development time of new product variants,
• decrease time to market,
• lead to better software quality,
• improve reuse, and
• reduce bug fix time.

Variability is to a larger extent related to evolution. We discuss our ap-
proaches to evolution understanding in Section 11.12.

Feature diagrams and Views

Feature diagrams describe variability in a top down fashion in the problem
space. We studied the application of this top down approach e.g. in the auto-
motive domain in [GKPR08].
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Feature diagrams suffer from the need to first decompose the problem
space and understand possible features in order to build the feature dia-
gram before being able to apply it. In [GHK+08, GKPR08] we also speak of a
150%model. This normally enforces a product line definition phase in which
the requirements and features need to be collected which creates additional
costs. Among others we discuss decreasing these costs in [GRJA12].

Delta Modeling

We discuss delta modeling as a bottom up SPL modeling technique in
[HRR+11]. Deltas can both be used as substitute and as extension to tradi-
tional feature based development. Deltas allow us to build a product line
incrementally starting with a base variant when the need for a new feature
arises. Starting with a core version, each delta describes the changes neces-
sary to derive a new variant. Deltas allow to add, replace, modify and delete
components of a model resp. implementation and is thus rather general.

Each set of valid deltas configures a product variant.We have successfully
applied delta modeling to the architectural analysis and design language
(ADL) MontiArc by creating Delta-MontiArc [HRR+11, HRRS12] as well as
applied it to Simulink creating Delta-Simulink [HKM+13]. Deltas can not
only describe spacial variability but also temporal variability which allows
using them for Software Product Line evolution [HRRS12]. In [HHK+15a]
we have generalized this approach to the general question, how to synthe-
size a delta modeling language based on a given modeling language. Thus
deltas can generally be applied to other languages too.

Variability in Language Definitions

On a related line of research, we also have studied variability of modeling
languages, which allows us to define and reason about syntactic and seman-
tic variation points, which is e.g. in the UML a big topic as it seems the UML
standard will otherwise not be able to accommodate all stakeholder require-
ments.

For this purpose we defined a systematic way to define variants of model-
ing languages [CGR09]. We applied this research e.g. in the form of semantic
language refinement on state charts in [GR11]. In [PFR02] we discussed how
to apply annotation to the UML to describe product variation points.

SPL and Delta Modeling in Industry

We have introduced SPL and delta modeling in several companies and are
proud of successfully helping companies to manage their variants. We also
learnt, that industrial success means that each company needs a tailored pro-
cess that fits the company culture, used tool chains, size of products and the
desired agility of variant construction. SPL does not come free of initial cost.
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A typical SPL introduction process consists of three stages: (1) Under-
standing the current situation in the company. Current process? Size of
projects? Number of existing and planned variants? How similar are those?
Current costs of evolution for individual products? Available and desired
tool chain? (2) Derivation of a long list of potential technical, process and
organizational measures for an SPL based future with efficient development
of high quality systems. Categorization and prioritization. (3) Implementing
the most promising steps and understand the effects.

11.10 Semantics of Modeling Languages

Over the years we have explored analysis, synthesis, evolution, definition
of views, and abstraction based on models in deep detail. For all these pur-
poses, we need a sound semantical foundation of the meaning of the models.

We also need a proper semantics when applying a given language to new
domains, such as monitoring energy consumption or modeling flight safety
rules for the European air traffic [ZPK+11]. We do this regularly with our
tool workbench MontiCore [KRV10].

The Meaning of Semantics and its Principles

Over the years we have developed a clear understanding of what the se-
mantics of a model and a modeling language is. For example in [HR04] we
discussed different forms of semantics and what they can be used for. We in
particular distinguish between “meaning” that can be attached to any kind
of modeling language and an often used narrow interpretation, that uses “se-
mantics” synonymously to behavior of a programm.

Each modeling language, let it be UML or a DSL deserves a semantics,
even if the language itself is for modeling structure, such as Class Diagrams
or Architecture Description Languages. Furthermore, modeling languages
are not necessarily executable and as their main purpose is abstraction from
implementation details, they are usually not fully determined, but exhibit
forms of underspecification. We discuss a very general framework for se-
mantics definition in [HR04]. At the core, we use a denotational semantics,
which is basically a mapping M from source language L (syntax) into a tar-
get language respectively a target domain S (semantic domain). Here we see
a combination of functions, where the first simplifies the syntax language by
mapping redundant concepts to their simplest form (less concepts used, but
usually more complex models) as shown in Fig. 11.5.

While many attempts of defining semantics only give examples on how
the mapping M looks like, we advocate an explicit and precise definition of
M to be able to analyze or compare the semantics of models. E.g. refinement
and evolution of models rely on such explicit denotational semantics.
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Fig. 11.5. Denotational semantics for a language defined in several steps

SystemModel as Semantic Domain

To define a semantic domain we use a mathematical theory, that allows us to
explicitly specify the desired properties of the target system, we are aiming
at. We call the developed theory system model. Its first version is explicitly
defined in [RKB95, BHP+98] (including [GKR96, KRB96]).

The system model for the full UML however became a rather large math-
ematical theory, that captures object-oriented communication (method calls,
dynamic lookup, inheritance, object identity) as well as distributed systems
at various levels as states and statemachines. We therefore developed the
full system model for the UML in [BCGR09b] and discuss the rationale for
it in [BCGR09a]. See also [BCR07a, BCR07b] for more detailed versions and
[CGR08] for an application on class diagrams. In Fig. 11.6 we see the hierar-
chy of the mathematical model.

Fig. 11.6. System model as foundation for semantics
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The system model and its variants are used for a variety of tool embed-
dings of the semantic domain. [MRR10] explains the case for semantic model
differencing as opposed to syntactic comparison. For example in [MRR11a]
(based on [MRR11b]) we encoded a part of the semantics, big enough to
handle differences of activity diagrams based on their semantics, and in
[MRR11e] we compare class and object diagrams based on their semantics.

In [BR07] we have defined a much simpler mathematical model for dis-
tributed systems based on black-box behaviors of components, hierarchical
decomposition, but also the soundmathematical theory of streams for refine-
ment and composition. While this semantic model is useful for distributed
real-time systems, such as cloud, Internet or Cyber-Physical Systems, it does
not exhibit concepts of objects and classes.

We also discussed a meta-modeling approach [EFLR99]. As nothing is as
mighty and comfortable as mathematical theories, one needs to carefully de-
sign the semantics in particular if a concept of the language does not have
a direct representation in the semantics domain. Using a meta-model to de-
scribe the semantics is appealing, because the syntactic domain L is meta-
modeled anyway, but also demanding, because both the semantic domain
S and the mapping M need to be encoded using meta-modeling instead of
mathematical concepts. We learnt, that meta-modeling is limited, e.g. in its
expressibility as well as due to finiteness.

Semantics of UML and Object-Orientation

In the early days, when modeling technology was still in its infancy is was
of interest to precisely understand objects, classes, inheritance, their inter-
actions and also how modeling technologies, like the upcoming UML, de-
scribe those. [BGH+97] discusses potential modeling languages for the de-
scription of an exemplaric object interaction, today called sequence diagram,
and a complete description of object interactions, which obviously needs ad-
ditional mechanisms e.g. a sequential, parallel or iterative composition of
sequence diagrams.

[BGH+98] discusses the relationships between system, a view and a com-
plete model in the context of the UML.

Abstraction, Underspecification and Executability

A modeling language is only a good language, if it allows to abstract away
from certain implementation details. Abstraction however often means that
its models are not fully determining the original, but exhibit underspecifi-
cation. Underspecification is regarded as freedom of the developer or even
of the implementation to choose the best solution with respect to the given
constraining specification. It is an intrinsic property of a good modeling lan-
guage to allow underspecification.
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As a consequence a semantic mapping of an (underspecified) model into
a single running programm cannot be correct or useful (to capture the seman-
tics adequate). To tackle underspecificationwe use a set-basedmapping. This
means a single model is mapped to a set of possible implementations all of
which fulfill the constraints given by the model. This approach has important
advantages:

1. Each element in the semantics can be an executable implementation, we
just do not know, which of them will be the final implementation.

2. Given two models, the semantics of composition is defined as intersec-
tion: these are exactly the systems that implement both models. This ap-
proach is based on “loose semantics”, where an implementation is al-
lowed to do everything that has not explicitly been forbidden by the
specification.

3. A model is consistent exactly when it has a nonempty semantics.
4. Refinement of a model on the syntactic level maps to set inclusion on the

semantics.

Using sets of executable systems in the semantic mapping combines the
denotational approach with an operational approach that is perfectly suited
for semantics for modeling languages.

Semantic Variation Points

In the standardization of the UML the contributors had some challenges to
agree on themeaning of quite a fewmodeling concepts. To some extent this is
due to political reasons (tool vendors try to push their already implemented
solution), but to a large extent this is also due to the attempt of the UML
to describe phenomena in various real world and application domains as
well as software/technical domains. As it is a bad idea to capture different
phenomena with the same syntactical concept, the UML Standard introduces
the semantic variation point without describing precisely what it means and
how to describe it.

In [GR11, CGR09] we have discussed the general requirements for a
framework to describe semantic and syntactic variations of a modeling lan-
guage. We also introduced a mechanism to describe variations (1) of the syn-
tax, (2) of the semantic domain, and (3) of the semantic mapping using fea-
ture trees for class diagrams and for object diagrams in [MRR11e] as well
as activity diagrams in [GRR10]. Feature trees are a perfect concept to cap-
ture variation points and denotational semantics based on a system model
allowing to explicitly describe the effect of the variant.

In this book we have embodied the semantics in a variety of code and
test case generation, refactoring and evolution techniques to make UML se-
mantics amenable to developers without exposing the formalism behind. In
[LRSS10] we have discussed evolution and related issues in greater detail.
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Streams and Automata as Semantic Foundation

Just as a short notice, we have used the mathematical concept of streams (e.g.
Broy/Stolen [BS01b]) and various extensions including automata [Rum96] as
semantic basis for the kind of systems, we have in focus: distributed, asyn-
chronously communicating agents, which can be regarded as active objects.

11.11 Compositionality and Modularity of Models and
Languages

“Divide and conquer” as well as “abstraction” are the most fundamental
strategies to deal with complexity. Complex (software) systems becomeman-
ageable when divided into modules (horizontally, vertically and/or hierar-
chically). Modules encapsulate internal details and give us an abstract inter-
face for their usage. Composing these modules as “black boxes” allows us to
construct complex systems.

Model-Based Software Engineering (MBSE) uses models to reduce com-
plexity of the system under development. MBSE however has reached a
point, where models themselves are becoming rather complex. This clearly
rises the need for suitable mechanisms for modularity within and between
models. In [BR07] we have described such a set of compositional modeling
concepts, perfectly suited for modular development of interacting systems.

A modular approach for MBSE cannot only help us mastering complex-
ity, but is also a key enabler for model based engineering of heterogeneous
software systems as discussed in [HKR+09].

A compositional approach has to take into account several levels of the
entire MBSE process, starting with the respective modeling language in use,
the models themselves and, eventually, any generated software components.
We have examined various aspects of model composition in [HKR+07], de-
scribing a mathematical view on what model composition should be. It de-
fines the mechanisms of encapsulation, and referencing through externally
visible interfaces.

[KRV10, KRV08] examine modularity and composition for the definition
of Domain Specific Languages (DSLs) or Domain Specific Modeling Lan-
guages (DSMLs). Since DSLs are becoming more and more popular, reuse
of DSL fragments (i.e. language components) is vital to achieve an efficient
development process. But aside from the language definition, the accompa-
nying infrastructure needs to be modular as well (as described in [KRV07a]).
Infrastructure such as validation or editor functionality should be reusable
if parts of the underlying DSL are reused, e.g. as part of another language.
[Völ11] provides the underlying technology for compositional language de-
velopment, which we e.g. applied to robotics control [RRRW15].

Based on the experiences in language design, we have defined a set of
guidelines to derive a good quality of a DSL in [KKP+09].
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We have summarized our approach to composition and the challenges
that need to be solved in [CBCR15], in form of a conceptualmodel of the com-
positional, so called “globalized” use of domain specific languages, which
we published together with related topics in [CCF+15].

As a new form of decomposition of model information we have devel-
oped the concept of tagging languages in [GLRR15]. It allows to describe
additional, e.g. technical information for model elements in extra documents
and thus facilitates reuse of the original model in different contexts with in-
dividual tag sets, but also of tags on different models. It furthermore allows
to type the tags.

11.12 Evolution and Transformation of Models

Models are central artifacts in model-driven software development (MDD).
However, software changes over time and so do models. Many of the new
requirements imposed by stakeholders, technology adaptations, or bug and
performance improvements do not only affect the implementation, but also
require an evolution, refinement or refactoring of the models describing the
system. When models play a central role in the development process, it is
therefore necessary to provide a well-founded, methodologically sound and
tool-based assistance for evolving models according to changing needs.

Evolution

Agile methods, such as XP or Scrum, to a large extent rely on the ability
to evolve the system due to changing requirements, architectural improve-
ments and incremental functional extensions. While agile methods use code
as their central artifacts, a model-driven method concentrates on modeling
artifacts. In [Rum04] and Chapter 2 of this book we describe an agile model-
based method that relies on iterated and fully automatic generation of larger
parts of the code as well as tests from models, which in turn enables us to
apply evolutionary techniques directly on the various kinds of models, e.g.
the UML. We argue that combining automatic and repeatable code genera-
tion with tool-assistance for model transformation allows to combine agile
and model-based development concepts for a new and effective kind of de-
velopment process.

An overview on current technologies for evolving models within a lan-
guage and across languages is given in [LRSS10]. We refined this with a focus
on evolving architecture descriptions for critical software-intensive systems
[MMR10].

Refinement

Refinement is a specialized form of transformation of models that adds in-
formation, while all conclusions a developer could derive from the abstract
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model still hold. Stepwise refinement is therefore an important development
technique as it prevents unwanted surprises when abstract models are im-
plemented.

In [PR94] we developed a precise understanding of automaton refine-
ment that is especially useful for software development, as it uses a loose se-
mantics approach, where no implicit assumptions are made that need to be
invalidated in the refinement steps. In [KPR97] we applied this refinement
concept to feature specifications.

Finally, we developed a powerful set of refinement rules for pipe-and-
filter architectures in [PR99]. Its rules allow us to refactor the internal struc-
ture of an architecture, while retaining respectively refining the externally
promised behavior. We speak of “glass box” refinement as opposed to “black
box” refinement, where only the external visible behavior is taken to con-
sideration, and “hierarchical decomposition”, where a black box behavior is
decomposed into an (forthwith immutable) architecture.

Refactoring of models

Refactoring aims to improve the internal structure while preserving its ob-
servable behavior and became prominent with agile development.

In [PR01] we traced back refactoring of programs to related techniques
e.g. known from math or theorem provers. In [PR03] we have discussed, the
existing refactoring techniques for specifications and models. We, e.g., found
a number of well defined refactoring techniques for state machines, logic
formula, or data models that come from formal methods, but have not yet
found their application in software development. In Chapter 9 we therefore
discuss refactoring techniques for various UML diagrams in detail.

If a model refactoring is actually a refinement, then dependent artifacts
are not affected at all. However, it may be that a refactoring does have effect
on related artifacts. In [MRR11a] we discuss a technique to identify semantic
differences for UML’s activity diagrams. It can be used to understand the
effects of a refactoring resp. evolutionary change.

In [MRR11c] we provide the mapping of UML’s class diagrams to Alloy
allowing to understand semantic differences between refactoring steps on
data structures by exhibiting concrete data sets (object structures) as witness
of semantic differences.

Understandingmodel differences

While syntactic differences of models are relatively easy to understand, it is
an interesting question that given two models, e.g. where one evolved from
the other, and a clear semantics (see Section 11.10), what are the semantic
differences between those models? In [MRR10] we discussed the necessity
for this and since then have defined a number of semantic based approaches
for this.
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We also applied compatibility checking of evolved models on Simulink,
e.g. in [RSW+15].

Delta transformations to describe software variability

Software product line engineering is most effective, if planned already on
the modeling level. For this purpose, we developed the delta approach for
modeling. Each delta describes a coherent set of changes on a model. A set
of deltas applicable to a base model thus describes a model variant (see also
Section 11.9).

We applied delta modeling on software architectures in [HRRS11] and ex-
tended this into a hierarchical approach in [HRR+11]. Second, we discussed
in [HRRS12], how to evolve a complete product line architecture, by merg-
ing deltas, or extracting sub-deltas etc., which allows us to keep a product
line up to date and free of undesired waste. Third, based on the experience
we gained from applying the delta approach to one particular language, we
developed an approach to systematically derive delta languages from any
modeling language in [HHK+13, HRW15].

Model transformation language development

Aswe do deal with transformations on models in various forms, we are very
much interested in defining these transformations in an effective and easily
understandable form. Today’s approaches are concentrated on the abstract
syntax of a modeling language, which a typical developer should not be
aware of at all. We heavily demand better transformation languages.

In [Wei12] we present a technique that derives a transformation language
from a given base language. Such a transformation language reuses larger
parts of the concrete syntax of the base language and enriches it by patterns
and control structures for transformations. We have successfully applied this
engine on several UML sublanguages and DSMLs.

11.13 State Based Modeling (Automata)

Today we see that many computer science theories are based on state ma-
chines in various forms including Petri nets or temporal logics. Software
engineering is particularly interested in using state machines for modeling
systems.

As an aside, we believe that a sound and precise integration of the digital
theory (automata) of computer science with control theory (calculus) used by
almost all other engineering and science disciplines is one of the most inter-
esting challenges that we experience at the moment. Cyber-Physical Systems
urgently require such an integrated theory.

Our contributions to state basedmodeling can currently be split into three
parts:
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• understanding how to model object-oriented and distributed software
using state machines resp. Statecharts,

• understanding refinement and composition on state machines, and
• applying state machines for modeling of systems.

State Machines as Semantics for Object-Oriented Distributed Software

A practically useable language for state based modeling is quite different
from a pure theory, because a concrete modeling notation, for example, al-
lows us to denote finitely many (typically very few) states while the imple-
mentation normally has an infinite state space.

In early papers like [GKR96], we have discussed how a system model
can describe object-oriented systems. Built on this experience, a complete
semantic model has been created for object-oriented systems in [BCR07b].
Objects, inheritance, states, method calls, stack, distribution, time as well as
synchronous and asynchronous communication are completely defined and
encoded into state machines. The theory is, therefore, suitable as semantic
model for any kind of discrete systems. [BCGR09b] describes a condensed
version of this systemmodel and [BCGR09a] discusses design decisions, how
to use the systemmodel for denotational semantics, and taming the complex-
ity of the system model.

Refinement and Refactoring of Statemachines

Starting with [PR94], we want to know, how to use state machines to describe
abstract behavior of superclasses and refine it in subclasses. While [PR94]
was rather informal, we have formalized the refinement relation in [RK96]
by mapping a state machine to a set of possible component behaviors based
on Focus’s streams. In the Ph.D. thesis [Rum96] constructive transformation
rules for refining automata behavior are given and proven correct. This the-
ory is applied to features in [KPR97], where a feature is a sub-automaton that
adapts the original behavior in a refining form, precisely clarifying where
feature interaction is allowed or harmful.

It became apparent that a state machine either serves as an implementa-
tion, where the described behavior is partial and can only be extended but
not adapted, or that a state machine describes a specification, where the be-
havior is constrained to a possible, underspecified set of reactions, promised
to the external users of a state machine. Here, refinement always means re-
duction of underspecification, telling more behavioral details to the external
user. This is constructively achieved, e.g., by removing transitions that have
alternatives or adding new behavior (transitions), if previously no transition
was given at all.

Specification languages are particularly strong, if only explicitly given
statements and no implicit additional assumptions hold (such as: implicit ig-
noring of messages, if they cannot be processed by a transition). See [Rum96,
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Rum16] for details. The concept of chaos completion should be used to de-
fine semantics of incomplete state machines. This is much better for behav-
ioral refinements than the concept of ignoring messages or error handling in
cases where no explicit transition is given. The main disadvantage of “im-
plicit ignoring” is that you never know whether the specifier intended this
as desired behavior or just did not care (which is a big difference when we
want to refine the specifier´s model!).

Our State Machine Formalism: I/Oω Automata

[Rum96] describes an I/Oω-automaton as (S,Min,Mout, δ, I) consisting of:

• states S
• input messages Min

• output messages Mout

• transition relation δ ⊆ S ×Min × S ×Mω
out

• initial states I

whereMω
out = M∗

out∪M∞
out is the set of all finite and infinite words overMout.

Transition relation δ is nondeterministic and incomplete. Each transition
has one single input message fromMin but an arbitrary long sequence of out-
put messages from Mout. Nondeterminism is handled as underspecification
allowing the implementation (or the developer) to choose. Incompleteness
is also understood as underspecification allowing arbitrary (chaotic) behav-
ior, assuming that a later implementation or code generator will choose a
meaningful implementation, but a specifier does not have to decide upfront.
Fairness of choice for transitions is not assumed (but possible), as it is coun-
terproductive to refinement by deciding on one alternative during the imple-
mentation process.

Most interestingly, describing transitions in δ with input and correspond-
ing output leads to a much more abstract form of state machines, which can
actually be used in the modeling process. First there are no (explicit) inter-
mediate states necessary that would distribute a sequence of output mes-
sages in individual transitions (which is the case in classic Lynch/Tuttle I/O-
automata, where a transition has exactly one input or output message). Sec-
ond our I/Oω automata preserve the causal relation between input and out-
put on the transitions (whereas I/O automata distribute this over many tran-
sitions). We believe I/Oω automata are therefore suited as a humanmodeling
language and are thus used in a syntactically enriched, comfortable form as
Statecharts in [Rum16].

Composition of State Machines

One state machine describes one component. In a distributed system, many
statemachines are necessary to describe collaborating components. The over-
all behavior of the component collaboration must then be derivable from the
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knowledge about the form of composition (architecture describing commu-
nication channels) and the specified behavior (state machines) of the compo-
nents. [GR95] describes how timed state machines are composed.

This technique is embedded into the composition and behavioral spec-
ifications concepts of Focus using streams and state machines in a nice
overview article [BR07]. Most important, refinement of a component behav-
ior by definition leads to a refinement of the composed system. This is a very
important property, which is unfortunately not present in many other ap-
proaches, where system integration is a nightmarewhen components evolve.

Unfortunately, the untimed, event driven version of state machines that is
very well suited for refinement and abstract specification has no composition
in general. Further investigation is necessary.

Usage of Automata-based Specification

All our knowledge about state machines is being embedded in the model-
based development method for the UML in [Rum16]. Furthermore it is ap-
plied for robots in MontiArcAutomaton [RRW14], a modeling language com-
bining statemachines and an architectural description language in [THR+13]
as well as in building management systems in [FLP+11].

11.14 Modelling Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) are software controlled, collaborating physical
machines.

In [KRS12] we discuss that this new term arises mainly due to the in-
creased ability of computers to sense their environment and to interact with
their contexts in various ways. As consequence, CPS are usually designed as
distributed networks of interacting nodes and physical devices (machines)
that carry out certain tasks. Often some of these devices are mobile (robots or
autonomous cars, but also smartphones, airplanes and drones) and interac-
tion with humans is essential. CPS are therefore complex in several dimen-
sions: they embody characteristics of physical, networked, computational-
intensive, and of human-interactive systems. Furthermore, they typically
cannot be developed as monolithic systems, but need to be developed as
open, composable, evolving, and scalable architectures.

Nowadays, CPS are found in many domains, including aerospace, au-
tomotive, energy, healthcare, manufacturing, and robotics. Many distributed
CPS use a virtual communication networkmapped to the Internet or telecom-
munication infrastructure.

At the heart of CPS engineering has to deal with the challenge that control
theory, built on integration and differentiation calculus used by almost any
engineering discipline, and the digital theory of state machines are not very
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well integrated and thus do not allow us to describe CPS in an integrated
way. Many attempts have beenmade, but a good standard yet has to emerge.

The complexity and heterogeneity of CPS introduces a wide conceptual
gap between problem and solution domains. Model-driven engineering of
such systems can decrease this gap by using models as abstractions and thus
facilitate a more efficient development of robust CPS.

For the aviation domain, a modeling language [ZPK+11] allows to spec-
ify flight conditions including trajectories, status of the airplanes and their
devices, weather conditions, and pilot capabilities. This modeling language
allows EuroControl to operationalize correct flight behavior as well as spec-
ify and detect “interesting events”. As long term interest, we intensively
do research on how to improve the engineering for distributed automo-
tive systems as well. For example [HRR12] outlines our proposal for an
architecture centric development approach, which we apply to robotics in
[RRW13, RRW14].

CPS, automotive, robots and energy management is discussed separately
in Sections 11.16, 11.17, 11.18 and 11.19.

11.15 Applications in Cloud Computing and Data-Intensive
Systems

As web-based application and service architectures are continuing to grow
in complexity, criticality and into new application domains, their develop-
ment, integration, evolution, operation and migration poses ever more and
ever larger challenges to Software Engineering. In [KRR14] we discuss in de-
tail the paradigm of cloud computing that is arising out of a convergence of
existing and new technologies. It promises to enable new business models,
to lower the barrier for web-based innovations and to increase the efficiency
and cost-effectiveness of web development.

Cloud-based systems pose a multitude of different challenges. The de-
mand for seamless scalability with system load leads to highly distributed
infrastructures and software architectures that can grow and shrink at run-
time. The lack of standards, complemented by the variety of proprietary
infrastructure and service providers, leads to a high degree of technolog-
ical heterogeneity. High availability and connectivity with a multitude of
clients leads to complex evolution and maintenance processes. These chal-
lenges come coupled with distinct requirements posed by the individual ap-
plication domain. Application classes like Internet of Things as described
in [HHK+14], Cyber-Physical Systems described in [KRS12], big data, app
and service ecosystems bring attention to aspects like responsiveness, pri-
vacy and open platforms. Regardless of the application domain, developers
of such systems are in need for robust methods and efficient, easy-to-use lan-
guages and tools. For example in [HHK+14, HHK+15b] we discuss how to
handle privacy in the cloud.
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In our research we tackle these challenges by perusing a model-based,
generative approach. The core of this approach are several modeling lan-
guages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure mod-
els describe the system and its physical distribution on a large scale. UML/P
models, and class diagrams in particular, describe several other aspects of the
system, such as its domain and data models, its interfaces and interactions,
and its monitoring and scaling capabilities. Among other tools, code genera-
tors most prominently take these models as input and generate application-
specific frameworks that implement big parts of the system’s technical as-
pects and provide technology-agnostic, ease-to-use interfaces for the cloud-
based application’s actual business logic.

We have applied these technologies to various cloud systems, cars, build-
ings, smart phones and smart pads and various other kinds of sensors. We
built a rather successful and technologically sound framework for web based
software portals [HKR12] that we offer under sselab.de for general use. An-
other set of cloud systems helps to deal with energy management and is
described in [FPPR12, KPR12]. It continuously monitors building operation
systems to derive operational data and compare these to the building spec-
ification. We use cloud technologies to maintain data, dynamically execute
calculations and host management services enabling reduction of building
energy costs.

11.16 Modelling for Energy Management

In the past years it became more and more evident that saving energy and
reducing CO2 emissions is an important challenge. Today housing, offices,
shops and other buildings are responsible for 40% of the overall energy con-
sumption and 36% of the EU CO2 emissions.

The EU 2020 Climate and Energy package sets three key objectives: (1)
20% reduction in EU greenhouse gas emissions, (2) Raising the share of EU
energy consumption produced from renewable resources to 20%, and (3) 20%
improvement in the EU’s energy efficiency compared to 1990.

Thus the management of energy in buildings as well as in neighbour-
hoods becomes equally important to efficiently use the generated energy.
Improvements in this field can be found at multiple scales: smart grids,
demand-response systems, energy efficient neighbourhoods, energy efficient
buildings, user awareness, micro- and mini renewable energy sources, to
name a few. While there has been a lot of research on increasing the effi-
ciency of single devices and also of single buildings there is a huge need
for ICT based approaches within this field to integrate and combine the het-
erogeneous approaches. By such an integrated solution the efficiency can be
raised even more.
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Within several research projects we developed methodologies and solu-
tions for integrating heterogeneous systems at different scales. Starting with
single buildings we developed in collaboration with the Synavision GmbH
and the Braunschweig University of Technology the ICT tool Energy Navi-
gator.

The Energy Navigator´s Active Functional Specification (AFS) [FPPR12,
KPR12] is used for technical specification of building services already during
the design phase. Resulting from a lack of process integration the AFS can
close the loop between modelling the structure and behavior of the building
and its facilities, measuring operational data from sensors, matching model
and operational data during analysis and reporting of the results. The results
can be reused to adapt the model or to find faults in the implementation.

Within the Energy Navigator a DSL is used to enable the domain expert
to express his specific domain knowledge via first class language concepts.
These concepts include rules, functions, characteristics, metrics, time rou-
tines and states. Proposed by the DIN EN ISO 16484 a state based approach
should be used to describe the functional behavior of facilities. We adapted
the well known concept of state machines to be able to describe different
states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation ap-
proach to compare sensor data can be applied [KLPR12] in a screenshot in
Fig. 11.7, which is taken from a commercial tool developed by the Synavi-
sion GmbH.

Fig. 11.7. Application of models to a building energy management system

Moving up the scale we investigated several existing approaches for en-
ergy efficient neighbourhoods that aim at moving from a local, building spe-
cific optimum to a more global optimum. By efficiently using results of sim-
ulation and optimization calculated optimal set points for local consumption
and generation can be utilized. Therefore, information from several hetero-
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geneous data sources, such as single sensor data, structural data, data on in-
stalled devices, geospatial data or weather data is needed. Based on existing
approaches we developed a Neighbourhood Information Model that follows
a meta-model based approached and utilized code generation techniques to
automatically generate adapters between heterogeneous data models. Fol-
lowing this approach we are able to fully integrate the data sources on an
abstract level and are still extensible at runtime.

11.17 Modelling Robotics

We consider modern robotics as a special field of Cyber-Physical Systems
which is defined by an inherent heterogeneity of involved domains, rele-
vant platforms, and real world challenges. The engineering of robotics ap-
plications requires composition and interaction of many software modules.
This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers broad propagation of
robotics applications.

Our research in model-driven Software Engineering for robotics on the
one hand focuses on software architectures to structure reusable units of be-
havior. On the other hand, we concentrate on modeling languages (DSLs)
for robotic product assembly tasks in industrial contexts as well as planned
and unplanned logistic tasks. We apply this to indoor robots interacting with
humans as well as to industrial robots as well as to autonomously driving
cars.

Modeling Robotic Application Architectures and Behavior

Describing a robot’s software architecture and its behavior in integrated
models, yields many advantages to copewith this complexity: themodels are
platform independent, can be decomposed to be developed independently
by experts of the respective fields, are highly reusable and may be subjected
to formal analysis.

In [RRW12] we have introduced the architecture and behavior model-
ing language and framework MontiArcAutomaton which provides an in-
tegrated, platform independent structure and behavior modeling language
family with an extensible code generation framework. MontiArcAutoma-
ton’s central concept is encapsulation and decomposition known from com-
ponent and connector architecture description languages (ADLs). This con-
cept applied to the modeling language, the code generation process and the
target runtime to bridge the gap of platform specific and independent imple-
mentations along well designed interfaces. This facilitates the reuse of robot
applications and makes their development more efficient.

MontiArcAutomaton extends the ADL MontiArc and integrates various
component behavior modeling languages implemented using MontiCore.
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The integration of automata and tables to model component behavior are
described in [RRW13]. The integration capabilities of MontiArc have been ex-
tended and generalized in [RRRW15]. If interested, the MontiArcAutomaton
website4 provides further information on the MontiArcAutomaton frame-
work.

In several projects, we modeled logistics services with Festo Robotino
Robots, ROS, and Python.

LightRocks: Modeling Robotic Assembly Tasks

The importance of flexible automatized manufacturing grows continuously
as products become increasingly individualized. Flexible assembly processes
with compliant robot arms are still hard to be developed due to many uncer-
tainties caused—among others—by object tolerances, position uncertainties
and tolerances from external and internal sensors. Thus, only domain experts
are able to program such compliant robot arms. The reusability of these pro-
grams depends on each individual expert and tools allowing to reuse and
the compose models at different levels of detail are missing.

In cooperation with the DLR Institute on Robotics and Mechatronics
we have introduced the LightRocks (Light Weight Robot Coding for Skills)
framework in [THR+13] which allows robotics experts and laymen to model
robotic assembly tasks on different levels of abstraction, namely: assem-
bly tasks, skills, and elemental actions. Robotics experts provide a domain
model of the assembly environment and elemental actions which reference
this model. Factory floor workers combine these to skills and task to imple-
ment assembly processes provided by experts. This allows a separation of
concerns, increases reuse and enables flexible production.

The framework is implemented based onMontiCore language profiles for
UML/P Statecharts and UML/P class diagrams, which allows to reuse much
of the UML/P framework for modeling, model validation, code generation,
and editor generation.

11.18 Automotive Software

Development of software for automotive systems has become increasingly
complex in the past years. Sophisticated driver assistance, infotainment and
car2X-communication systems aswell as advanced active and passive safety-
systems result in complex embedded systems. As these feature-driven sub-
systems may be arbitrarily combined by the customer, a huge amount of dis-
tinct variants needs to be managed, developed and tested. While we are car-
rying out in numerous projects in the automotive domain, here we concen-
trate on three aspects: autonomic driving, modeling of functional and log-
ical architectures and on variability. To understand all these features we in
4 see www.monticore.de
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[GRJA12] describe a requirements management that connects with features
in all phases of the development process, helps to handle complex develop-
ment tasks and thus stabilizes the development of automotive systems.

Modeling logical architecture: function nets

The conceptual gap between requirements and the logical architecture of a
car is closed in [GHK+07, GHK+08]. Here, feature views modeled as a func-
tion net are used to implement the mapping between feature-related require-
ments and the complete logical architecture of a car.

Variability of car software

Automotive functions that may be derived from a feature view are often
developed in Matlab/Simulink. As variability needs also to be handled in
development artifacts, we extended Matlab/Simulink with delta modeling
techniques (see also Section 11.9). A core Simulink model represents the base
variant that is transformed to another variant by applying deltas to it. A
delta contains modifications that add, remove or modify existing model ele-
ments. This way, features of an automotive system may be developed mod-
ularly without mixing up variability and functionality in development arti-
facts [HKM+13]. New delta models that derive new variants may be added
bottom-up without the need for a fully elaborated feature model.

In practice, product lines often origin from a single variant that is copied
and altered to derive a new variant. In [HRRW12], we provide means to ex-
tract a well defined Software Product Line from a set of copy and paste vari-
ants. This way, further variant development is alleviated, as new variants
directly reuse common elements of the product line.

[RSW+15] describes an approach to use logical and model checking tech-
niques to identify commonalities and differences of two Simulink models
describing the same control device in different variants and thus allows to
understand incompatibilities.

11.19 Autonomic Driving and Driver Intelligence

From the viewpoint of Software Engineering, intelligent driver assistance
and, in particular, autonomic driving is an interesting and demanding chal-
lenge because it includes the development of complex software embedded
within a distributed, life-critical system (car) and the connection of heteroge-
neous, autonomic mobile devices (other cars, infrastructure, etc.) in one big
distributed system.

We are involved in a number of projects with major European car manu-
facturers in which we transfer modern software development techniques to
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the car domain. This transfer is necessary as, with its increasing complexity,
software becomes a demanding driver of the overall systems development
process and not just an add-on.

In the Carolo project, we built Caroline—a completely autonomous car -
and participated in the Darpa Urban Challenge, where our car was driving
autonomously in an urban area for hours. We successfully achieved the best
place as newcomers (and best non-Americans). This resulted from a number
of facts, including the rigorous application of agile development methods,
such as XP and Scrum and a simulation for driving scenarios. In [BR12b] we
describe the process driven by story cards as a form of use cases, a continu-
ously integrated and running software up to a rigorous test, and simulation
infrastructure, called Hesperia.

Fig. 11.8. Autonomous car “Caroline” finishing the Urban Grand Challenge in 2007

In particular, we have developed a rigorous test infrastructure for intel-
ligent, sensor-based functions through fully-automatic simulation (not only
visualization!) of the car within its surrounding: the city, pedestrians and es-
pecially other cars [BBR07]. Our simulator is capable of running automatic
back-to-back tests on the complete software system with no real hardware
involved by producing sensor input from the simulation and acting accord-
ing to the steering output of the autonomic driving software. Every night
and, when necessary for every version change, the tests are automatically
executed.

This technique allows us a dramatic speedup in development and evolu-
tion of autonomous car functionality, and thus, enables us to develop soft-
ware in an agile way [BR12a]. We have successfully shown that agile devel-
opment of high-quality software is possible and very effective in the auto-
motive domain. However, it remains a challenge to combine this innovative
modern way of agile, iterative systems development with the current devel-
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Fig. 11.9. How Caroline sees and interprets the world

opment standards, such as ISO 26262, in order to allow the OEMs to benefit
both from efficiency and quality on the one hand and legal issues on the other
hand.

In [MMR10] we gave an overview of the current state-of-the-art in devel-
opment and evolution on a more general level by considering any kind of
critical system that relies on architectural descriptions.

As tooling infrastructure, we mainly used an IDE such as Eclipse and, in
particular the SSElab storage, versioning andmanagement services [HKR12].
Without those agile development would not have been possible.
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M. Schmidt, and W. Schwerin. Exemplary and Complete Object In-
teraction Descriptions. InObject-oriented Behavioral Semantics Workshop
(OOPSLA’97), Technical Report TUM-I9737, Germany, 1997. TU Mu-
nich.



References 365

[BGH+98] R. Breu, R. Grosu, F. Huber, B. Rumpe, and W. Schwerin. Systems,
Views and Models of UML. In Proceedings of the Unified Modeling Lan-
guage, Technical Aspects and Applications, pages 93–109. Physica Verlag,
Heidelberg, Germany, 1998.

[BHH+97] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and
V. Thurner. Towards a Formalization of the Unified Modeling Lan-
guage. In M. Aksit and S. Matsuoka, editors, ECOOP’97 – Object
Oriented Programming. 11th European Conference, Proceedings. Springer-
Verlag, LNCS 1241, 1997.

[BHP+98] M. Broy, F. Huber, B. Paech, B. Rumpe, and K. Spies. Software and
System Modeling Based on a Unified Formal Semantics. In Workshop
on Requirements Targeting Software and Systems Engineering (RTSE’97),
LNCS 1526, pages 43–68. Springer, 1998.

[BHW95] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and Abstractor
Specifications. Science of Computer Programming, 25(2):149–186, 1995.

[Bin94] R. Binder. Design for Testability in Object-Oriented Systems. Commu-
nications of the ACM, 37(9):87–101, 1994.

[Bin99] R. Binder. Testing Object-Oriented Systems. Models, Patterns, and Tools.
Addison-Wesley, 1999.
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[CGR08] M. Cengarle, H. Grönniger, and B. Rumpe. SystemModel Semantics of
Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Ger-
many, 2008.
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[GRR10] H. Grönniger, D. Reiß, and B. Rumpe. Towards a Semantics of Activ-

ity Diagrams with Semantic Variation Points. In Conference on Model
Driven Engineering Languages and Systems (MODELS’10), LNCS 6394,
pages 331–345. Springer, 2010.

[GS02] J. Grabowski and M. Schmitt. TTCN-3 – Eine Sprache für die Spez-
ifikation und Implementierung von Testfällen. at – Automatisierung-
stechnik, 50(3):A5–A8, März 2002.

[GSMD03] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards Automat-
ing Source-Consistent UML Refactorings. In Proceedings of the Interna-
tional Conference on UML 2003 - The Unified Modeling Language. Model-
ing Languages and Applications, pages 144–158. Springer-Verlag, 2003.

[GWM+92] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. Technical Report CSL-92-03, Computer Science Lab-
oratory, SRI, March 1992.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[Han10] E. Hanser. Agile Prozesse: Von XP über Scrum bis MAP. eXamen.press.
Springer-Verlag, 2010.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci.
Comput. Programming, 8:231–274, 1987.

[Har08] E. R. Harold. Refactoring HTML: Improving the Design of Existing Web
Applications. Addison-Wesley, 2008.

[HBG01] M. Holcombe, K. Bogdanov, and M. Gheorghe. Functional Test Gener-
ation for Extreme Programming. In M. Marchesi and G. Succi, editors,
Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2001), May 2001.

[HDF00] H. Hußmann, B. Demuth, and F. Finger. Modular Architecture for
a Toolset Supporting OCL. In A. Evans, S. Kent, and B. Selic, edi-
tors, �UML�2000 – The Unified Modeling Language, 3th Intl. Conference,
pages 278–293, LNCS 1939. Springer, 2000.

[Hes01] W.Hesse. RUP: A ProcessModel forWorkingwith UML? In K. Sia and
T. Halpin, editors, Unified Modeling Language: System Analysis, Design
and Development Issues, pages 61–74. Idea Group Publishing Hershey,
2001.

[HG97] D. Harel and E. Gery. Executable Object Modellingwith Statecharts. In
Proceedings of the 18th International Conference on Software Engineering.
IEEE Computer Society Press, 1997.
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[Küb09] S. Kübeck. Software-Sanierung:Weiterentwicklung, Testen und Refactoring
bestehender Software. mitp Verlag, 2009.

[KW02] D. König and H. Wegener. Geniestreich oder Mogelpackung. Extreme
Programming: Pro und Contra. iX Journal, 1/2002:94–99, 2002.

[Leh07] J. Lehmbach. Vorgehensmodelle im Spannungsfeld traditioneller, agiler und
Open-Source-Softwareentwicklung. ibidem-Verlag, 2007.
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teme? Überlegungen zur Standardarchitektur. Informatik Spektrum,
8/2000:247–257, 2000.
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