
Digital Image
Processing

 D. Sundararajan

A Signal Processing
and Algorithmic Approach

Digital Image Processing

D. Sundararajan

Digital Image Processing
A Signal Processing and Algorithmic
Approach

123

D. Sundararajan
Formerly at Concordia University
Montreal
Canada

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-981-10-6112-7 ISBN 978-981-10-6113-4 (eBook)
DOI 10.1007/978-981-10-6113-4

Library of Congress Control Number: 2017950001

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Vision is one of our strongest senses. The amount of information conveyed through
pictures over the Internet and other media is enormous. Therefore, the field of
image processing is of great interest and rapidly growing. Availability of fast digital
computers and numerical algorithms accelerates this growth. In this book, the
basics of Digital Image Processing is presented, using a signal processing and
algorithmic approach. The image is a two-dimensional signal, and most processing
requires algorithms. Plenty of examples, figures, tables, programs, and physical
explanations make it easy for the reader to get a good grounding in the basics of the
subject, able to progress to higher levels, and solve practical problems.

The application of image processing is important in several areas of science and
engineering. Therefore, Digital Image Processing is a field of study for engineers
and computer science professionals. This book includes mathematical theory, basic
algorithms, and numerical examples. Thereby, engineers and professionals can
quickly develop algorithms and find solutions to image processing problems
of their interest using computers. In general, there is no formula for solving prac-
tical problems. Invariably, an algorithm has to be developed and used to find the
solution. While every solution is a combination of the basic principles, several
combinations are possible for solving the same problem. Out of these possibilities,
one has to come with the right solution. This requires some trial-and-error process.
A good understanding of the basic principles, knowledge of the characteristics
of the image data involved, and practical experience are likely to lead to an efficient
solution.

This book is intended to be a textbook for senior undergraduate- and
graduate-level Digital Image Processing courses in engineering and computer
science departments and a supplementary textbook for application courses such as
remote sensing, machine vision, and medical analysis. For image processing pro-
fessionals, this book will be useful for self-study. In addition, this book will be a
reference for anyone, student or professional, specializing in image processing. The
prerequisite for reading this book is a good knowledge of calculus, linear algebra,
one-dimensional digital signal processing, and programming at the undergraduate
level.

v

Programming is an important component in learning and practicing this subject.
A set of MATLAB® programs are available at the Web site of the book. While the
use of a software package is inevitable in most applications, it is better to use the
software in addition to self-developed programs. The effective use of a software
package or to develop own programs requires a good grounding in the basic
principles of the subject. Answers to selected exercises marked � are given at the
end of the book. A Solutions Manual and slides are available for instructors at the
Web site of the book.

I assume the responsibility for all the errors in this book and would very
much appreciate receiving readers’ suggestions and pointing out any errors
(email:d_sundararajan@yahoo.com). I am grateful to my Editor and the rest of the
team at Springer for their help and encouragement in completing this project.
I thank my family for their support during this endeavor.

D. Sundararajan

vi Preface

About the Book

This book “Digital Image Processing—A Signal Processing and Algorithmic
Approach” deals with the fundamentals of Digital Image Processing, a topic of
great interest in science and engineering. Digital Image Processing is processing of
images using digital devices after they are converted to a 2-D matrix of numbers.
While the basic principles of the subject are those of signal processing, the appli-
cations require extensive use of algorithms. In order to meet these requirements, the
book presents the mathematical theory along with numerical examples with 4 � 4
and 8 � 8 subimages. The presentation of the mathematical aspects has been greatly
simplified with sufficient detail. Emphasis is given for physical explanation of the
mathematical concepts, which will result in deeper understanding and easier
comprehension of the subject. Further, the corresponding MATLAB codes are
given as supplementary material. The book is primarily intended as a textbook for
an introductory Digital Image Processing course at senior undergraduate and
graduate levels in engineering and computer science departments. Further, it can be
used as a reference by students and practitioners of Digital Image Processing.

vii

Contents

1 Introduction . 1
1.1 Image Acquisition. 2
1.2 Digital Image . 3

1.2.1 Representation in the Spatial Domain 3
1.2.2 Representation in the Frequency Domain 6

1.3 Quantization and Sampling . 7
1.3.1 Quantization . 8
1.3.2 Spatial Resolution . 11
1.3.3 Sampling and Aliasing . 12
1.3.4 Image Reconstruction and the Moiré Effect 15

1.4 Applications of Digital Image Processing 16
1.5 The Organization of This Book . 16
1.6 Summary . 18
Exercises . 19

2 Image Enhancement in the Spatial Domain 23
2.1 Point Operations . 23

2.1.1 Image Complement . 24
2.1.2 Gamma Correction . 24

2.2 Histogram Processing . 26
2.2.1 Contrast Stretching . 27
2.2.2 Histogram Equalization . 29
2.2.3 Histogram Specification. 32

2.3 Thresholding. 37
2.4 Neighborhood Operations . 40

2.4.1 Linear Filtering . 42
2.4.2 Median Filtering . 55

2.5 Summary . 58
Exercises . 58

ix

3 Fourier Analysis . 65
3.1 The 1-D Discrete Fourier Transform. 66
3.2 The 2-D Discrete Fourier Transform. 75
3.3 DFT Representation of Images . 76
3.4 Computation of the 2-D DFT . 82
3.5 Properties of the 2-D DFT . 87
3.6 The 1-D Fourier Transform . 101
3.7 The 2-D Fourier Transform . 102
3.8 Summary . 103
Exercises . 104

4 Image Enhancement in the Frequency Domain. 109
4.1 1-D Linear Convolution Using the DFT 110
4.2 2-D Linear Convolution Using the DFT 111
4.3 Lowpass Filtering . 112

4.3.1 The Averaging Lowpass Filter 112
4.3.2 The Gaussian Lowpass Filter. 117

4.4 The Laplacian Filter . 123
4.4.1 Amplitude and Phase Distortions. 124

4.5 Frequency-Domain Filters. 126
4.5.1 Ideal Filters . 126
4.5.2 The Butterworth Lowpass Filter 129
4.5.3 The Butterworth Highpass Filter 132
4.5.4 The Gaussian Lowpass Filter. 134
4.5.5 The Gaussian Highpass Filter . 134
4.5.6 Bandpass and Bandreject Filtering. 134

4.6 Homomorphic Filtering. 136
4.7 Summary . 138
Exercises . 138

5 Image Restoration . 143
5.1 The Image Restoration Process . 143
5.2 Inverse Filtering . 144
5.3 Wiener Filter. 145

5.3.1 The 2-D Wiener Filter . 150
5.4 Image Degradation Model . 151
5.5 Characterization of the Noise and Its Reduction 154

5.5.1 Uniform Noise. 154
5.5.2 Gaussian Noise . 154
5.5.3 Periodic Noise . 155
5.5.4 Noise Reduction . 155

5.6 Summary . 158
Exercises . 159

x Contents

6 Geometric Transformations and Image Registration 163
6.1 Interpolation . 163

6.1.1 Nearest-Neighbor Interpolation 164
6.1.2 Bilinear Interpolation. 164

6.2 Affine Transform . 167
6.2.1 Scaling . 167
6.2.2 Shear . 169
6.2.3 Translation. 172
6.2.4 Rotation. 173

6.3 Correlation . 179
6.3.1 1-D Correlation . 179
6.3.2 2-D Correlation . 180

6.4 Image Registration . 182
6.5 Summary . 184
Exercises . 185

7 Image Reconstruction from Projections . 189
7.1 The Normal Form of a Line . 190
7.2 The Radon Transform. 193

7.2.1 Properties of the Radon Transform 196
7.2.2 The Discrete Approximation of the Radon

Transform . 198
7.2.3 The Fourier-Slice Theorem . 202
7.2.4 Reconstruction with Filtered Back-projections. 206

7.3 Hough Transform . 209
7.4 Summary . 213
Exercises . 214

8 Morphological Image Processing . 217
8.1 Binary Morphological Operations . 218

8.1.1 Dilation . 218
8.1.2 Erosion . 220
8.1.3 Opening and Closing. 223
8.1.4 Hit-and-Miss Transformation . 229
8.1.5 Morphological Filtering . 231

8.2 Binary Morphological Algorithms . 233
8.2.1 Thinning . 233
8.2.2 Thickening. 236
8.2.3 Noise Removal . 237
8.2.4 Skeletons . 239
8.2.5 Fill. 240
8.2.6 Boundary Extraction . 241
8.2.7 Region Filling . 243
8.2.8 Extraction of Connected Components 244

Contents xi

8.2.9 Convex Hull . 244
8.2.10 Pruning . 245

8.3 Grayscale Morphology . 246
8.3.1 Dilation . 247
8.3.2 Erosion . 248
8.3.3 Opening and Closing. 248
8.3.4 Top-Hat and Bottom-Hat Transformations. 249
8.3.5 Morphological Gradient. 250

8.4 Summary . 250
Exercises . 251

9 Edge Detection. 257
9.1 Edge Detection . 257

9.1.1 Edge Detection by Compass Gradient Operators 264
9.2 Canny Edge Detection Algorithm . 266
9.3 Laplacian of Gaussian. 273
9.4 Summary . 278
Exercises . 278

10 Segmentation . 281
10.1 Edge-Based Segmentation. 282

10.1.1 Point Detection . 282
10.1.2 Line Detection . 282

10.2 Threshold-Based Segmentation . 284
10.2.1 Thresholding by Otsu’s Method 286

10.3 Region-Based Segmentation . 290
10.3.1 Region Growing . 290
10.3.2 Region Splitting and Merging . 293

10.4 Watershed Algorithm . 295
10.4.1 The Distance Transform . 295
10.4.2 The Watershed Algorithm . 300

10.5 Summary . 303
Exercises . 303

11 Object Description . 309
11.1 Boundary Descriptors . 310

11.1.1 Chain Codes . 310
11.1.2 Signatures . 311
11.1.3 Fourier Descriptors . 312

11.2 Regional Descriptors. 317
11.2.1 Geometrical Features . 317
11.2.2 Moments . 319
11.2.3 Textural Features . 321

xii Contents

11.3 Principal Component Analysis . 334
11.4 Summary . 339
Exercises . 339

12 Object Classification . 345
12.1 The k-Nearest Neighbors Classifier. 345
12.2 The Minimum-Distance-to-Mean Classifier. 347

12.2.1 Decision-Theoretic Methods . 349
12.3 Decision Tree Classification . 350
12.4 Bayesian Classification . 352
12.5 k-Means Clustering . 356
12.6 Summary . 358
Exercises . 359

13 Image Compression . 363
13.1 Lossless Compression . 365

13.1.1 Huffman Coding . 365
13.1.2 Run-Length Encoding . 368
13.1.3 Lossless Predictive Coding . 369
13.1.4 Arithmetic Coding . 371

13.2 Transform-Domain Compression . 382
13.2.1 The Discrete Wavelet Transform 383
13.2.2 Haar 2-D DWT . 387
13.2.3 Image Compression with Haar Filters 389

13.3 Image Compression with Biorthogonal Filters 391
13.3.1 CDF 9/7 Filter . 391

13.4 Summary . 401
Exercises . 403

14 Color Image Processing . 407
14.1 Color Models . 408

14.1.1 The RGB Model . 408
14.1.2 The XYZ Color Model . 412
14.1.3 The CMY and CMYK Color Models 412
14.1.4 The HSI Color Model . 414
14.1.5 The NTSC Color Model . 419
14.1.6 The YCbCr Color Model. 420

14.2 Pseudocoloring . 422
14.2.1 Intensity Slicing. 422

14.3 Color Image Processing . 424
14.3.1 Image Complement . 424
14.3.2 Contrast Enhancement . 426
14.3.3 Lowpass Filtering . 427
14.3.4 Highpass Filtering . 428
14.3.5 Median Filtering . 429

Contents xiii

14.3.6 Edge Detection . 429
14.3.7 Segmentation . 432

14.4 Summary . 434
Exercises . 434

Appendix A: Computation of the DFT . 439

Bibliography . 449

Answers to Selected Exercises . 451

Index . 465

xiv Contents

About the Author

D. Sundararajan is a full-time author in signal processing and related areas. In
addition, he conducts workshops on image processing, MATLAB, and LATEX. He
was formerly associated with Concordia University, Montreal, Canada, and other
universities and colleges in India and Singapore. He holds a M.Tech. degree in
Electrical Engineering from Indian Institute of Technology, Chennai, India, and a
Ph.D. degree in Electrical Engineering from Concordia university, Montreal,
Canada. His specialization is in signal and image processing. He holds a US, a
Canadian, and a British Patent related to discrete Fourier transform algorithms. He
has written four books, the latest being “Discrete wavelet transform, a signal pro-
cessing approach” published by John Wiley (2015). He has published papers in
IEEE transactions and conferences. He has also worked in research laboratories in
India, Singapore, and Canada.

xv

Abbreviations

1-D One-dimensional
2-D Two-dimensional
3-D Three-dimensional
bpp Bits per pixel
DC Sinusoid with frequency zero, constant
DFT Discrete Fourier transform
DWT Discrete wavelet transform
FIR Finite impulse response
FT Fourier transform
IDFT Inverse discrete Fourier transform
IDWT Inverse discrete wavelet transform
IFT Inverse Fourier transform
LoG Laplacian of Gaussian
LSB Least significant bit
MSB Most significant bit
PCA Principal component analysis
SNR Signal-to-noise ratio

xvii

Chapter 1
Introduction

Abstract The image of a scene or object is inherently a continuous two-dimensional
signal. Due to the advantages of digital systems, this type of image has to be con-
verted into a discrete signal. This change in form requires sampling and quantization.
The characteristics of a digital image and its spatial- and frequency-domain repre-
sentations are introduced. The sampling and quantization operations are described.

Most of the information received by humans is visual. A picture is a 2-D visual
representation of a 3-D scene. A picture is worth a thousand words. That is, a certain
amount of information can be quickly and effectively conveyed by a picture. It is
obvious from the popularity of the filmmedium, Internet, and digital cameras. Digital
image processing is the processing of images using digital computers and is used in
many applications of science and engineering. It is implied that natural images are
converted to digital form prior to processing.

While an image is a 2-D signal, a considerable amount of its processing is carried
out in one dimension (row by row and column by column). Therefore, we start with 1-
D signals. An example of a one-dimensional (1-D) signal is x(t) = sin(t). x(t) is the
amplitude of the signal at t , the independent variable. Variable t is usually associated
with continuous time. As most of the practical signals are of continuous type and
digital signal processing is advantageous, the signal is sampled and quantized. A
1-D discrete signal is usually specified as x(n), where the independent variable n
is an integer. The sampling interval Ts is usually suppressed. A discrete image is
a two-dimensional (2-D) signal, x(m, n), where m and n are the two independent
variables. The amplitude of the image x(m, n) at each point is called the pixel value.
Pixel stands for picture element. The three major goals of digital image processing
are: (i) to improve the quality of the image for human perception, (ii) to improve the
quality and represent the image suitable for automatic machine perception, and (iii)
to compress the image so that the storage and transmission requirements are reduced.
The requirements for human andmachine perceptions are, in general, different. These
tasks are carried out by computers after the picture is represented in a numeric form.
The use of digital cameras, which directly produce digital images, is in prevalent
use. Scanners are available to digitize analog photographs. With some exceptions,
the processing of an image, which is a 2-D signal, is a straightforward extension of

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_1

1

2 1 Introduction

Table 1.1 Electromagnetic spectrum

Cosmic
rays

Gamma
rays

X-rays Ultra
violet

Visible
spectrum

Infra-red Microwaves TV Radio

that of 1-D signals. For example, with a good knowledge of important operations
such as sampling, convolution, and Fourier analysis of 1-D signals, one can easily
adapt to their extension for 2-D signals.

An image is some form of a picture giving a visual representation of a scene or
an object for human or machine perception. Light is an electromagnetic radiation
that can produce visual sensation. Photon is a quantum of electromagnetic radiation.
Photons travel at the speed of light. The wavelength of the electromagnetic spectrum
varies from λ = 10−12 to 103 m. Components of the electromagnetic spectrum are
shown in Table1.1. Frequency f in Hz and wavelength λ in meters are related by
the expression

f = (2.998)108

λ

High-frequency photons carry more energy than the low-frequency photons. That
small part of the spectrum from λ = (0.43)10−6 to (0.79)10−6 m, which is visible
for human beings, is called the visible spectrum.

The invisible part of the spectrum is also of interest in image processing, since it
canbe sensedbymachines (e.g.,X-ray is important in themedical field).As in the case
of most naturally occurring signals, an image is also a continuous signal inherently.
This signal has to be sampled and quantized to make it a digital image. Except
that there are two frequency components in two directions to be considered, the
sampling is governed by the 1-D sampling theorem. Both sampling and quantization
are constrained by the two contradicting criteria, accuracy and processing time.

Each point in an image corresponds to a small part of the scene making the
image. The brightness of the light received by an observer from a scene varies as
the reflectivity of the objects composing the scene and the illumination vary. This
type, which is most common, is called a reflection image. Another type, called the
emission image, is obtained from self-luminous objects such as stars or lights. A third
type, called the absorption image, is the result of radiation passing through objects.
The variation of the attenuation of the intensity of radiation (such as X-ray) recorded
by a film is the image. While camera produces most of the images, images are also
formed by other sensors such as infrared and ultrasonic. Irrespective of the source,
the processing of images involves the same basic principles.

1.1 Image Acquisition

The visual information is a function of two independent variables. It is a 2-D signal.
Nowadays, digital cameras produce digital images. These cameras use some type of
array of photosensitive devices to produce electrical signals proportional to the scene

1.1 Image Acquisition 3

brightness over small patches of a scene. The incident light on these devices create
charge carriers (holes and electrons), and a voltage applied across the device causes
the conduction of current. The potential difference across a resistor in the path of this
current is proportional to the average intensity of the light received by the device. The
resulting voltages of the array represent the scene being captured as an image. The
set of analog signals is converted to a digital image by an interface, called the frame
grabber. This interface is a constituent part of digital cameras, and the digital image
is delivered in a standard format through an interface to the computer. Of course, it
is understood that the sampling and quantization resolutions are set as required, at
the time of taking the picture. Invariably, the digital image requires some processing
either to enhance it with respect to some criteria and/or to extract useful information
for various applications. That is digital image processing. In this chapter, we study
the form and characteristics of the digital image.

1.2 Digital Image

While a scene is typically three dimensional, it is represented in two dimensions in
the image. In digital image processing, an image is represented as a 2-D matrix of
numbers. A M × N image with M rows and N columns is given by

x(m, n) =

n →
m
↓

⎡
⎢⎢⎢⎣

x(0, 0) x(0, 1) x(0, 2) . . . x(0, N − 1)
x(1, 0) x(1, 1) x(1, 2) . . . x(1, N − 1)

...

x(M − 1, 0) x(M − 1, 1) x(M − 1, 2) . . . x(M − 1, N − 1)

⎤
⎥⎥⎥⎦

With reference to the image, the pixel (picture element) located at (m, n) is with
value x(m, n). The image coordinates are m and n, and x(m, n) is proportional to
the brightness of the scene about that point. This domain of representation is called
the spatial domain, similar to the representation of a 1-D discrete signal in the time
domain. While the top-left corner is the origin in most cases, sometimes we also use
the bottom-left corner as the origin.

1.2.1 Representation in the Spatial Domain

An image is usually represented in the spatial domain by three forms. A 1-D signal,
such as the sine waveform y(t) = sin(t), is a curve, and we are familiar with
its representation in a figure with t represented by the x-axis and y(t) = sin(t)
represented by the y-axis. The independent variable is t and y(t) is the dependent
variable because the values of y(t) depend on the values of t . While a 1-D signal is a

4 1 Introduction

(a)
m

n
50 100 150 200 250

50

100

150

200

250

0
100

200

0

100

200

0

255

n

(b)

m

x(
m
,n
)

Fig. 1.1 a A 256 × 256 image with 256 gray levels; b its amplitude profile

(b)

m

n
50 100 150 200 250

50

100

150

200

250

(a)

m

n
50 100 150 200 250

50

100

150

200

250

Fig. 1.2 a A 256 × 256 image with its intensity values increasing, for each row, from 0 to 255; b
A 256 × 256 synthetic image with 256 gray levels

curve, a 2-D signal is a surface. Therefore, an image x(m, n) can be represented as a
surface with the m- and n-axes fixing the two coordinates and a third axis fixing its
amplitude. Figure1.1a shows a 256× 256 image with 256 gray levels and (b) shows
its amplitude profile. While the amplitude profile is mostly used to represent 1-D
signals, images are mostly represented using the intensity of its pixels.

Figure1.1a is the representation of an image by the intensity (gray level) values
of its pixels. In a monochromatic or gray-level image, typically, a byte of storage is
used to represent the pixel value. With 8 bits, the pixel values are integers from 0 to
255. Figure1.2a shows a 256 × 256 image in which the intensity values, for each
row, are increasing from 0 to 255. The value of all the pixels in the first row is 0,
those of the second row is 1, and so on. The value of all the pixels in the bottom

1.2 Digital Image 5

Table 1.2 Pixel values of a 8 × 8 subimage

173 185 189 186 199 195 195 192

177 187 189 192 197 195 189 177

188 190 196 197 199 193 171 124

191 192 197 198 192 158 111 110

196 199 99 189 149 108 110 113

202 200 182 130 100 98 108 114

204 178 117 85 100 96 104 108

173 100 85 87 95 98 96 100

row is 255. Starting from black in the top, the image gradually becomes white at the
bottom. Typically, zero is black and the maximum value is white. The value of all the
white pixels is set to 255, and the value of the black ones is set to zero. The values
between zero and the maximum value are shades of gray (a color between white and
black).

A simple image is shown in Fig. 1.2b, which is composed of three squares, with
various gray levels, in a black background. This is a synthetic image. This type of
images is useful for algorithm design, development, debugging, and verification,
since their values and the output of the algorithms are easily predictable. The image
has 256 rows of pixels, and each row is made up of 256 pixels with the gray level
varying from 0 to 255. The gray-level values of the three squares, from top to bottom,
are 84, 168, and 255, respectively.

Another representation of an image is by the numerical values of its intensity, as
shown in Table1.2. While it is impossible to represent a large image in this form,
it is, in addition to synthetic images, extremely useful in algorithm development,
debugging, and verification (which is a major task in image processing applications)
with subimages typically of sizes 4 × 4 and 8 × 8.

In a color image, each pixel is vector-valued. Typically, a color pixel requires
24 bits of storage. A color image is a combination of images with basis colors. For
example, a color image is composed of its red, green, and blue components. If each
component is represented with 8 bits, then a color pixel requires 24 bits. While most
of the natural images are color images, the processing of gray-level images is given
importance because its processing can be easily extended to color images in most
cases and gray-level images contain essential information of the image. In a binary
image, a pixel value is stored in a bit, 0 or 1. Typical binary images contain text,
architectural plans, and fingerprints.

When operations, such as transforms, are carried out on images, the resulting
images may have widely varying amplitude range and precision. In such cases,
quantization is required. More often, images are square and typical sizes vary from
256× 256 to 4096× 4096. The numbers are usually a power of 2. Image processing
operations are easier with these numbers. For example, in order to reduce the size of

6 1 Introduction

an image to one-half, we simply discard alternate pixels. The all-important Fourier
analysis is carried out, in practice, with these numbers.

Some examples of the requirement of storage for images are:

(i) 512 × 512 binary image,

512 × 512 × 1 = 262144 bits = 32768 bytes

(ii) 512 × 512 8-bit gray-level image,

512 × 512 × 1 = 262144 bytes

(iii) 512 × 512 color image, with a byte of storage for each of the three color
components of a pixel,

512 × 512 × 3 = 786432 bytes

While the picture quality improves with increasing the size, the execution time of
algorithms also increases at a fast rate. Therefore, the minimum size that satisfies
the application requirements should be selected. The selection of fast algorithms is
also equally critical. Even with the modern computers, processing of images could
be slow depending on the size of the image and the complexity of the algorithm
being executed. Therefore, the minimum size, the simplest type (binary, gray-level,
or color image), and an appropriate algorithm must be carefully chosen for efficient
and economical image processing for any application.

1.2.2 Representation in the Frequency Domain

One of the major tasks in image processing is to find suitable representations of
images in other domains, in addition to the spatial domain, so that the processing
becomes easier and efficient, as is the case in 1-D signal processing. The suitable
representation invariably requires taking the transform of the image. Transforms
approximate practical images, which usually have arbitrary amplitude profiles, as a
weighted sum of a finite set of well-defined basis functions with adequate accuracy.
There are many transforms used in image processing, and each one has a different
set of basis functions and is suitable for some tasks. The most important of all the
transforms is the Fourier transform. Sinusoidal curves are the Fourier basis func-
tions for 1-D signals, and sinusoidal surfaces, such as that shown in Fig. 1.3, are the
Fourier basis functions for 2-D signals (images). In a transformed form, important
characteristics of the images, such as their frequency content, can be estimated. The
interpretation of operations, such as filtering of images, becomes easier. Further, the
computational complexity of operations and storage requirements are also reduced
in most cases.

1.3 Quantization and Sampling 7

Fig. 1.3 A 64 × 64
sinusoidal surface, which is a
typical basis function in the
2-D Fourier transform
representation of images

0
20

40
60

0
20

40
60

−200

0

200

nm
x(
m
,n
)

1.3 Quantization and Sampling

Sampling is required due to limited spatial and temporal resolutions (number of
pixels) of a digital image. Quantization is required due to limited intensity resolution
(wordlength). A pixel value, typically, is the integral of the image intensity over a
finite area.Asmost practical signals are continuous functions of continuous variables,
both sampling and quantization are required to get a digital signal so that they can
be processed by a digital computer. Sampling is converting a continuous function
into a discrete one. The values of a sampled function are known only at the discrete
values of its independent variable. Quantization is converting a continuous variable
into a discrete one. The values of a quantized variable are fixed at discrete intervals.

Consider one period of the continuous sinusoidal signal

x(t) = cos

(
2π

16
t + π

6

)

shown in Fig. 1.4. The signal is sampled with a sampling interval of 1 s. Therefore,
starting with t = 0, we get 16 samples

x(n) ={0.8660, 0.6088, 0.2588,−0.1305,−0.5000,−0.7934,−0.9659,−0.9914,

− 0.8660,−0.6088,−0.2588, 0.1305, 0.5000, 0.7934, 0.9659, 0.9914}

These samples are further quantized with a quantization step of 0.2. That is, each
sample value is restricted to one of the finite set of values

{1, 0.8, 0.6, 0.4, 0.2, 0,−0.2,−0.4,−0.6,−0.8,−1}

8 1 Introduction

Fig. 1.4 Sampling and
quantizing a 1-D signal

0 4 8 12
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

x(
t)

t

quantized
actual

Each sample is assigned to the nearest allowed value. The samples of the sampled
and quantized signal are

xq(n) ={0.8, 0.6, 0.2,−0.2,−0.6,−0.8,−1.0,−1.0,−0.8,−0.6,

− 0.2, 0.2, 0.6, 0.8, 1.0, 1.0}

shown by dots in Fig. 1.4. The actual sample values are shown by crosses. Maximum
error is one-half of the quantization step. Both sampling and quantization operations
introduce errors in the representation of a signal. According to the sampling theorem,
the sampling frequencyhas to bemore than twice that of the highest frequency content
of the signal. The quantization step should be selected so that the quantization noise
is within acceptable limit.

1.3.1 Quantization

Quantization is the process of mapping the amplitude of a continuous variable into a
set of finite discrete values. For a digital representation, the pixel values of an image
have to be quantized to some finite levels so that the image can be stored using a
finite number of bits. Typically, 8 bits are used to represent a pixel value. Figure1.5
shows the effect of quantization of the pixel values, using 8, 7, 6, 5, 4, 3, 2, and 1 bits.
Reducing the number of bits reduces the number of gray levels and, in turn, reduces
the contrast of the image. The deterioration in quality is not noticeable upto 6 bits of
representation. From 5 bits onward, grayscale contouring effect is noticeable. False
edges appear when the gradually changing pixel values in a region of the image are
replaced by a single value. Due to the lower quantization levels, edges are created
between adjacent regions. As the use of 6 or 7 bits does not save much and the
8-bit (byte) wordlength is in popular use in the computer architectures, the 8-bit
representation is most often used.

1.3 Quantization and Sampling 9

Fig. 1.5 Representations of
an image using 8, 7, 6, 5, 4,
3, 2, and 1 bits

12

34

56

78

10 1 Introduction

Fig. 1.6 Bit-plane
representations of an image

bit−plane 0:LSBbit−plane 1

bit−plane 2bit−plane 3

bit−plane 4bit−plane 5

bit−plane 6bit−plane 7:MSB

1.3 Quantization and Sampling 11

The relative influence of the various bits in the formation of the image is shown in
Fig. 1.6. A gray-level image can be decomposed into a set of binary images, which
is useful in applications such as compression. The last image corresponds to the
least significant bit. It looks like an image generated by a set of random numbers,
and it is difficult to relate it to the original image. Higher-order bits carry more
information. As expected, the most significant bit carries most information and the
corresponding image (the first) resembles like its original. The bit-plane images can
be isolated from the grayscale images by repeatedly dividing the image matrix by
successive powers of 2 and taking the remainder of dividing the truncated quotient by
2. For example, let x = {0, 1, 2, 3, 4, 5}. Dividing x by 2 and taking the remainders,
we get x0 = {0, 1, 0, 1, 0, 1}. Dividing x by 2 and taking the truncated quotients,
we get x2q = {0, 0, 1, 1, 2, 2}. Dividing x2q by 2 and taking the remainders, we
get x1 = {0, 0, 1, 1, 0, 0}. Dividing x by 4 and taking the truncated quotients, we
get x4q = {0, 0, 0, 0, 1, 1}. Dividing x4q by 2 and taking the remainders, we get
x2 = {0, 0, 0, 0, 1, 1}. Note that 20x0 + 21x1 + 22x2 = x . The 4 × 4 4-bit image
x(m, n) and its bit-plane components from MSB to LSB are

⎡
⎢⎢⎣
8 1 7 3
1 11 15 12
0 11 7 13
2 10 9 6

⎤
⎥⎥⎦ = 23

⎡
⎢⎢⎣
1 0 0 0
0 1 1 1
0 1 0 1
0 1 1 0

⎤
⎥⎥⎦ + 22

⎡
⎢⎢⎣
0 0 1 0
0 0 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ + 2

⎡
⎢⎢⎣
0 0 1 1
0 1 1 0
0 1 1 0
1 1 0 1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 1 1 1
1 1 1 0
0 1 1 1
0 0 1 0

⎤
⎥⎥⎦

Quantization levels with equal intervals is called linear quantization. In nonlinear
quantization, the range of the frequently occurring pixels is quantized usingmore bits
and vice versa. The average error due to quantization is reduced without increasing
the number of bits. This type of quantization is often used in image compression.
It should be noted that, while sampling and quantization are necessary to get the
advantages of digital image processing, the image is corrupted to some extent due
to the quantization noise and the aliasing effect. It should be ensured that image
quality is within acceptable limits by proper selection of the sampling interval and
the quantization levels. In general, a rapidly varying scene requires a higher sampling
rate and fewer quantization levels and vice versa. A 256 × 256 image with 64 gray
levels is typically the minimum for most practical purposes.

1.3.2 Spatial Resolution

An image represents an object of a certain area. The spatial resolution is the physical
area of the object represented by a pixel. The resolution varies from nanometers in
microscopic images to kilometers in satellite images. The number of independent
pixel values per unit distance (pixel density) indicates the spatial resolution. A higher
number of pixels improves the ability to see finer details of an object in the image. For
example, the resolution of a digital image of size 512 × 512 formed from an analog
image of size 32×32 cm is 512/32 = 16 pixels per centimeter. Figure1.7a–d shows,

12 1 Introduction

(a)

(c) (d)

64 128 192

64

128

192

(b)

 32 64 96

 32

 64

 96

 16 32 48

 16

 32

 48

 8 16 24

 8

 16

 24

Fig. 1.7 Effects of reducing the spatial resolution. aResolution 256×256; b resolution 128×128;
c resolution 64 × 64; d resolution 32 × 32

respectively, an image with resolutions 256× 256, 128× 128, 64× 64, and 32× 32.
Reducing the spatial resolution results in blockiness of the image. The blockiness
is just noticeable in the image in (b) and clearly seen in the image in (c), while the
image in (d) becomes unrecognizable.

1.3.3 Sampling and Aliasing

When sampling a signal, the sampling frequency must be greater than twice that of
its highest frequency component in order to reconstruct the signal perfectly from
its samples. In the case of an image, there are two frequency components (horizon-
tal and vertical) to be considered. Aliasing effect is the impersonation of a higher

1.3 Quantization and Sampling 13

frequency sinusoid as a lower frequency sinusoid due to insufficient number of sam-
ples. An arbitrary sinusoid with frequency f Hz requires more than 2 f samples for
its unambiguous representation by its samples. Aliasing can be eliminated by suitable
lowpass filtering of the image and then sampling so that the bandwidth is less than
half of that of the sampling frequency. The price that is paid for eliminating aliasing
is the blurring of the image, since high-frequency components, which provide the
details, are removed in lowpass filtering.

The aliasing effect is characterized by the following formulas.

x(n) = cos

(
2π

N
(k + lN)n + φ

)
= cos

(
2π

N
kn + φ

)
, k = 0, 1, . . . ,

N

2
− 1

x(n) = cos

(
2π

N
(lN − k)n + φ

)
= cos

(
2π

N
kn − φ

)
, k = 1, 2, . . . ,

N

2
− 1

where the number of samples N and index l are positive integers.With N even, oscil-
lations increase only upto k = N

2 , decrease afterward, and cease at k = N , and this
pattern repeats indefinitely. With frequency indices higher than N

2 , frequency fold-
ing occurs. Therefore, sinusoids with frequency index upto N

2 can only be uniquely
identified with N samples. Frequency with index N

2 is called the folding frequency.
The implication is that, with the number of samples fixed, only a limited number of
sinusoidal components can be distinctly identified. For example, with 256 samples,
the uniquely identifiable frequency components are

x(n) = cos

(
2π

256
kn + φ

)
, k = 0, 1, . . . , 127

Figure1.8a shows a 32 × 32 sinusoidal surface

x(m, n) = cos

(
2π

32
2m + 2π

32
1n + π

2

)

with frequencies 2/32 and 1/32 cycles per sample along them andn axes, respectively.
The bottom peak of the sinusoidal surface is black, and the top peak is white. It is
clear that the surface makes 2 cycles along the m axis and one along the n axis.
Consider a 32 × 32 sinusoidal surface

x(m, n) = cos

(
2π

32
30m + 2π

32
31n − π

2

)

with frequencies 30/32 and 31/32 cycles per sample along the m and n axes, respec-
tively. Frequency with index N

2 = 32
2 = 16 is called the folding frequency. The

apparent frequencies are (32 − 30)/32 = 2/32 and (32 − 31)/32 = 1/32 cycles
per sample, respectively. This sinusoidal surface also produces oscillations with the
same frequency as in Fig. 1.8a.

14 1 Introduction

m

n

(a)

0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

m

n

(b)

0 4 8 12 16 20 24 28

0

4

8

12

16

20

24

28

Fig. 1.8 Aliasing effect. a x(m, n) = cos(2π32 2m + 2π
32 1n + π

2) = cos(2π32 30m + 2π
32 31n − π

2); b
x(m, n) = cos(2π32 4m + 2π

32 7n + π) = cos(2π32 28m + 2π
32 25n − π)

x(m, n) = cos

(
2π

32
30m + 2π

32
31n − π

2

)

= cos

(
2π

32
(32 − 2)m + 2π

32
(32 − 1)n − π

2

)
= cos

(
2π

32
2m + 2π

32
1n + π

2

)

Figure1.8b shows a 32 × 32 sinusoidal surface

x(m, n) = cos

(
2π

32
4m + 2π

32
7n + π

)

with frequencies 4/32 and 7/32 cycles per sample along them andn axes, respectively.
It is clear that the surface makes 4 cycles along the m axis and 7 along the n axis.
Consider the sinusoidal surface

x(m, n) = cos

(
2π

32
28m + 2π

32
25n − π

)

= cos

(
2π

32
(32 − 4)m + 2π

32
(32 − 7)n − π

)
= cos

(
2π

32
4m + 2π

32
7n + π

)

This sinusoidal surface also produces oscillations with the same frequency as in
Fig. 1.8b. If we double the number of samples, then aliasing is avoided in these
cases.

To fix the sampling frequency for a class of real-valued images, find the Fourier
spectra of typical images using the 2-D DFT for increasing sampling frequencies.
The appropriate sampling frequency in each of the two directions is that which
yields negligible spectral magnitude values in the vicinity of one-half of the sampling
frequency.

1.3 Quantization and Sampling 15

(a) (b)

Fig. 1.9 a 256 × 256 flat image and b the image with Moiré effect

1.3.4 Image Reconstruction and the Moiré Effect

Moiré effect is the appearance of beat patterns in the reconstructed images. This
problem is created due to the extension of the passband of the frequency response
of practical reconstruction filters beyond half the sampling frequencies. To recon-
struct a signal from its samples, we have to cut off everything except one period of
the periodic spectrum. Practical filters are not ideal. This phenomenon occurs only
when the difference between the two frequencies is small compared with either one.
This type of periodic components typically occurs in images due to aliasing or the
characteristics of practical reconstruction filters. The cutoff frequency of such filters
extends beyond that of the ideal lowpass filters. When the image contains periodic
components with frequencies close to that of the half the sampling frequency, due to
the periodicity of the spectrum and improper reconstruction filter response, a pair of
periodic components that could produce this effect can occur.

In the case that the image is flat with uniform gray levels (DC frequency compo-
nent only) and the reconstruction filters pass the component with half the sampling
frequency, then stripes will occur in the displayed images, as shown in Fig. 1.9a, b,
respectively.

The Moiré effect may occur in images with strong periodic components such
as streets in photos taken from high altitudes, photos of ocean waves, patterns in
sand, and plowed fields. Therefore, as most of the practical images do not contain
strong periodic components, we have to just ensure their existence by examining
the Fourier spectra of the image. The Moiré effect can be mitigated with a higher
sampling frequency or using a compensation filter in the reconstruction process.

16 1 Introduction

1.4 Applications of Digital Image Processing

Digital image processing is widely used in entertainment, business, science, and
engineering applications. Some applications are:

1. Image sharpening and restoration. Images taken by cameras often require
processes, such as zooming, sharpening, blurring, and gray scale to color conver-
sion, to make the input image more suitable for the intended purpose.

2. Medical Applications. X-ray and CT scan images are routinely used in the treat-
ment of patients in hospitals.

3. Remote sensing. In the area of remote sensing, satellites scan the earth and take
pictures to study the crop patterns and climatic changes.

4. Image compression and transmission. Live broadcasts are available of any event
anywhere on earth through television, Internet, and other media.

5. Robots. Computer vision is a key component in robots.
6. Automatic inspection of components in industries. For example, printed circuit

boards are inspected to check that all components are present and the quality of
soldering is acceptable.

7. Security.Monitoring even homes, apart fromoffices, is commonly used by closed-
circuit television-based security monitoring systems. Finger print analysis is used
for identification. Number plate recognition is used for checking over speed and
automated toll systems.

1.5 The Organization of This Book

This book emphasizes both the signal processing and algorithmic aspects of digital
image processing. Both are indispensable for a good understanding of the subject
and its practical use. For this purpose, most of the algorithms are explained with 4×4
or 8 × 8 subimages, although practical images are much larger. Only with a good
understanding of the fundamentals, effective solutions to practical image processing
problems can be obtained.

In this chapter, the characteristics of a digital image and its spatial- and frequency-
domain representations are presented. While most practical images occur in contin-
uous form, they are converted into digital form, processed, and stored for efficiency.
Therefore, sampling and quantization are described next. Although the transform-
domain processing is essential, as the images naturally occur in the spatial domain,
image enhancement in the spatial domain is presented in Chap.2. Point operations,
histogram processing, and neighborhood operations are presented. The convolution
operation, along with the Fourier analysis, is essential for any form of signal process-
ing. Therefore, the 1-D and 2-D convolution operations are introduced. Fourier analy-
sis is presented in Chap.3. Transforms provide an alternate representation of images,
which usually facilitates easier interpretation of operations and fast processing. The
most important of all the transforms, the Fourier transform, decomposes an image in

http://dx.doi.org/10.1007/978-981-10-6113-4_2
http://dx.doi.org/10.1007/978-981-10-6113-4_3

1.5 The Organization of This Book 17

terms of sinusoidal surfaces. This transform is of fundamental importance to image
processing, as is the case in almost all areas of science and engineering. As in the case
of the convolution operation, both the 1-D and 2-D versions are described. Although
the image is a 2-D signal, some of the important operations are decomposable and
can be carried out in one dimension with reduced execution time. Another advan-
tage is that understanding of the 1-D version is simpler. Definition, properties, and
examples of the transforms are presented. In Chap.4, filtering operations, presented
in Chap.3, are described in the frequency domain. Depending on the problem, either
the spatial-domain or frequency-domain processing is preferred.

In the filtering operations presented so far, it is assumed that no knowledge of
the source of degradation of the image is available. In Chap.5, the restoration of
the images is presented. This is a filtering operation in which prior knowledge of
the source of degradation of the image is known. Interpolation of an image is often
required to change its size and in operations such as rotation. InChap. 6, the interpola-
tion of images is described first. Next, geometric transformations such as translation,
scaling, rotation, and shearing are presented. Correlation operation is a similarity
measure between two images. It can detect and locate the position of an object in
an image, if present. The registration of images of the same scene, taken at different
times and conditions, is also presented. In Chap.7, the Radon transform is presented,
which is important in computer tomography in medical and industrial applications.
This transform enables to produce the image of an object, without intrusion, using
its projections at various directions. In processing the color and grayscale images,
which occur mostly, their binary version is often used. In Chap.8, morphological
processing of images is presented. The structure and shape of the objects are ana-
lyzed so that they can be identified. The basic operation in this processing is binary
convolution that is based on logical operations rather than arithmetic operations.

Edge detection is an important step in the segmentation of the image and leads
to object recognition. Edge detection in images is presented in Chap.9. In Chap.10,
segmentation of an image is presented. Various segmentation methods are described.
The objects of a segmented image are represented by various ways, and their features
are extracted to enable object recognition. Object description and representation are
described in Chap.11. Each object, based on their description, is classified appropri-
ately, as described in Chap.12.

Image compression is as essential as its processing, since images require large
amounts of memory, and in their original form, it is difficult to transmit and store
them. Chapter 13 presents variousmethods of image compression. Emphasis is given
to using theDWT, since it is a part of the current image compression standard. Human
vision is more sensitive to color than gray levels. Therefore, color image processing
is important, although it requires more memory to store and longer execution times
to process. Chapter 14 presents color image processing. Some of the processings
are based on those of gray-level images and some are exclusive to color images. In
the Appendix, an algorithm for fast computation of the discrete Fourier transform is
described. It is not an exaggeration to state that a single most important reason for
the existence and continuing growth of digital signal and image processing is due to
this algorithm.

http://dx.doi.org/10.1007/978-981-10-6113-4_4
http://dx.doi.org/10.1007/978-981-10-6113-4_3
http://dx.doi.org/10.1007/978-981-10-6113-4_5
http://dx.doi.org/10.1007/978-981-10-6113-4_6
http://dx.doi.org/10.1007/978-981-10-6113-4_7
http://dx.doi.org/10.1007/978-981-10-6113-4_8
http://dx.doi.org/10.1007/978-981-10-6113-4_9
http://dx.doi.org/10.1007/978-981-10-6113-4_10
http://dx.doi.org/10.1007/978-981-10-6113-4_11
http://dx.doi.org/10.1007/978-981-10-6113-4_12
http://dx.doi.org/10.1007/978-981-10-6113-4_13
http://dx.doi.org/10.1007/978-981-10-6113-4_14

18 1 Introduction

Basically, there are two important components in signal and image processing
theory and applications. One is the mathematics, and the other is algorithms and
programming. The programming language is individual’s choice depending on the
application requirements. But the basic mathematical and algorithmic principles are
common to everybody. In this book, an attempt has been made to present the basic
principles clearly and concisely with a large number of examples. With a good
knowledge of the basic principles, one can get a good expertise in image processing
that is directly proportional to the amount of hardware and software realization put
up. As usual, the basics can be learned in a finite amount of time but there is no end
to learning by practice.

1.6 Summary

• Humans get most information through vision.
• Digital image is a 2-D matrix representation of a 3-D scene.
• Digital image is obtained by recording the luminous intensity received from a
scene at discrete points.

• The light coming from an object may be due to reflection, emission, or absorption.
• Light is an electromagnetic radiation that can produce visual sensation.
• Light is transmitted at various frequencies, called the electromagnetic spectrum.
• That part of the electromagnetic spectrum, which humans can see, is called the
visible spectrum.

• The whole electromagnetic spectrum is of interest in image processing, since
machines can detect radiation at all frequencies.

• Sincemost naturally occurring images are in continuous form, sampling and quan-
tization are required to obtain a digital image.

• Digital image processing is composed of processing images to make it more suit-
able for human or machine vision. As images require large amounts of memory
to store, compression of images is an important part of image processing.

• Digital image is a 2-D signal, and its processing, for the most part, is an extension
of 1-D signal processing.

• Digital image is a 2-D matrix of numbers. Each number is called a pixel (picture
element). The numbers represent the intensity of the light at that point and usually
represented by 8 bits.

• As in the case of 1-D signal processing, transforms, in particular the Fourier
analysis, play a dominant role in image processing also.

• The representation of an image by a 2-D matrix should be sufficiently accurate in
terms of sampling, resolution, and quantization.

Exercises 19

Exercises

1.1 Find the memory required, in bytes, to store the following images.

(i) 64 × 64 binary image.
(ii) 128 × 128 8-bit gray-level image.
(iii) 64 × 64 24-bit full-color image.
(iv) 512 × 512 binary image.
(v) 1024 × 1024 8-bit gray-level image.
(vi) 4096 × 4096 24-bit full-color image.

1.2 Find the memory required, in bytes, to store the images given in Exercise (1.1)
after

(i) doubling the number of rows and columns and
(ii) reducing the number of rows and columns by a factor of 2.

1.3 Find the pixel values of the 8 × 8 8-bit gray-level image

{x(m, n),m = 0, 1, 2, . . . , 7 and n = 0, 1, 2, . . . , 7}

corresponding to the given 2-D function. (Round the real values of the image to the
nearest integer after necessary scaling.)

*(i)

x(m, n) = 1 + cos

(
2π

8
m + 2π

8
n − π

4

)

(ii)

x(m, n) = 1 + cos

(
2π

8
m + 2π

8
2n − π

6

)

(iii)

x(m, n) = 1 + cos

(
2π

8
0m + 2π

8
0n

)

(iv)

x(m, n) = 1 + cos

(
2π

8
4m + 2π

8
4n

)

(v)

x(m, n) = 1 + cos

(
2π

8
0m + 2π

8
n

)

(vi)

x(m, n) = 1 + cos

(
2π

8
2m + 2π

8
0n

)

20 1 Introduction

1.4 Find the pixel values of the 8 × 8 binary image by setting the gray-level values
between 0–127 to 0 and 128–255 to 1 for each of the 8-bit gray-level images

{x(m, n),m = 0, 1, 2, . . . , 7 and n = 0, 1, 2, . . . , 7}

obtained in Exercise (1.3).

1.5 Find the bit-plane components of the image and verify that the image can be
reconstructed from them.

(i) ⎡
⎢⎢⎣
8 3 7 3
4 11 15 12
0 10 11 1
2 10 3 6

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
2 1 7 3
1 1 15 12
0 13 5 13
2 10 4 6

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
8 1 7 8
5 11 15 12
0 6 7 13
2 10 7 6

⎤
⎥⎥⎦

(iv) ⎡
⎢⎢⎣
7 1 7 3
1 6 15 12
0 11 1 13
2 10 9 9

⎤
⎥⎥⎦

(v) ⎡
⎢⎢⎣
8 1 7 7
1 11 6 12
0 8 7 13
9 10 9 6

⎤
⎥⎥⎦

1.6

(i) Find the spatial resolution of an image if the scene of size 4m by 4m is repre-
sented by a 256 × 256 image.

(ii) Find the spatial resolution of an image if the scene of size 10km by 10km is
represented by a 4096 × 4096 image.

Exercises 21

(iii) Find the spatial resolution of an image if the scene of size 7mm by 7mm is
represented by a 1024 × 1024 image.

1.7 Let the sampling frequencies along both the directions be 32 cycles per sam-
ple. Is there aliasing or not in the image x(m, n)? If so, what are the impersonated
frequencies?

*(i)

x(m, n) = cos

(
2π

32
28m + 2π

32
30n − π

6

)

(ii)

x(m, n) = cos

(
2π

32
15m + 2π

32
14n + π

2

)

(iii)

x(m, n) = cos

(
2π

32
27m + 2π

32
22n − π

3

)

(iv)

x(m, n) = cos

(
2π

32
3m + 2π

32
3n + π

2

)

(v)

x(m, n) = cos

(
2π

32
32m + 2π

32
32n + π

4

)

(vi)

x(m, n) = cos

(
2π

32
17m + 2π

32
11n − π

3

)

Chapter 2
Image Enhancement in the Spatial Domain

Abstract Although the transform domain processing is essential, as the images
naturally occur in the spatial domain, image enhancement in the spatial domain is
presented first. Point operations, histogram processing, and neighborhood operations
are presented. The convolution operation, alongwith the Fourier analysis, is essential
for any form of signal processing. Therefore, the 1-D and 2-D convolution operations
are introduced. Linear and nonlinear filtering of images is described next.

An image is enhanced to increase the amount of information that can be interpreted
visually. Image enhancement improves the quality of an image for a specific purpose.
The process depends up on the characteristics of the image and whether it is required
for human perception or machine vision. Some features are enhanced to suit human
or machine vision. For example, the spot noise is reduced in median filtering so that
a better viewing of the original image is obtained. Edges are enhanced by highpass
filtering and the output image is a step in computer vision. In this chapter, we present
three types of operations. The simplest and yet very useful image enhancement
process is point operation. The output pixel is a function of the corresponding input
pixels of one or more images. Thresholding is an important operation in processing
images. Another type is intensity transformations to contrast enhancement, called
histogram processing. Linear and nonlinear filtering is a major type of processing in
which the output pixel is a function of the pixels in a small neighborhood of the input
pixel. An operation is linear, if the output to a linear combination of input signals is
the same linear combination of the outputs to the individual signals.

2.1 Point Operations

In point processing, the new value of a pixel is a function of the corresponding
values of one or more images. Let x(m, n) and y(m, n) be two images of the same
size. Then, pointwise arithmetic operations of corresponding pixel values of the two
images are given as

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_2

23

24 2 Image Enhancement in the Spatial Domain

z(m, n) = x(m, n) + y(m, n)

z(m, n) = x(m, n) − y(m, n)

z(m, n) = x(m, n) ∗ y(m, n)

z(m, n) = x(m, n)/y(m, n)

One of the operands in these operations can be a constant. For example, z(m, n) =
Cx(m, n) and z(m, n) = C + x(m, n), where C is a constant. Logical operations
AND (&), OR (|) and NOT (˜) are also used in a similar way on binary images.

2.1.1 Image Complement

The complement of an image is its photographic negative obtained by subtracting the
pixel values from their maximum range. In a 8-bit gray-level image, the complement,
x̃(m, n), of the image x(m, n) is given by

x̃(m, n) = 255 − x(m, n)

The new pixel value is obtained by subtracting the current value from 255. For
example,

x(m, n) =

⎡
⎢⎢⎣
101 104 110 134
96 103 100 126
98 99 106 98

100 93 107 90

⎤
⎥⎥⎦ x̃(m, n)

⎡
⎢⎢⎣
154 151 145 121
159 152 155 129
157 156 149 157
155 162 148 165

⎤
⎥⎥⎦

Figure2.1a, b show, respectively, a 256 × 256 8-bit gray level image and its
complement. The flower in the middle is white in (a) and it has become black in
(b), as expected. The dark areas have become white and vice versa. Sometimes, the
complement brings out certain features better. For a binary image, the complement
is given by

x̃(m, n) = 1 − x(m, n)

2.1.2 Gamma Correction

Image sensors and display devices often have nonlinear intensity characteristics.
Since the nonlinearity is characterized by a power law and γ is the symbol used
for the exponent, this operation is called gamma correction. To compensate such
nonlinearity, an inverse transformation has to be applied to individual pixels of the
image.

2.1 Point Operations 25

Fig. 2.1 a A 256 × 256 8-bit gray level image and b its complement

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

γ =1.6

(b)

in
ew

i

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

γ=0.6

(a)

in
ew

i

Fig. 2.2 Intensity transformation in γ correction a γ = 0.6; b γ = 1.6

In gamma correction, the new intensity value inew of a pixel is its present value
i raised to the power of γ.

inew = iγ (2.1)

Let the maximum intensity value be 255. Then, all the pixel values are first divided
by 255 to map the intensity values into the range 0–1. This step ensures that the pixel
values stay in the range 0–255. Then, Eq. (2.1) is applied. The resulting values are
multiplied by 255 and rounded to get the processed values.

Figure2.2a, b show, respectively, the intensity mapping for values of γ = 0.6 and
γ = 1.6. The pixel values are also tabulated in Table2.1. For γ < 1, the intensity
values are scaled up and the output image gets brighter. For γ > 1, the intensity
values are scaled down. Figure2.3a, b, show, respectively, the versions of the image
in Fig. 2.1a after gamma correction with γ = 0.8 and γ = 1.6, respectively. The
image is brighter in (a) and dimmer in (b). In addition to correcting nonlinearity of
devices, this transformation can also be used for contrast manipulation of images.

26 2 Image Enhancement in the Spatial Domain

Table 2.1 Gamma correction

i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i0.6 0 0.2512 0.3807 0.4856 0.5771 0.6598 0.7360 0.8073 0.8747 0.9387 1

i1.6 0 0.0251 0.0761 0.1457 0.2308 0.3299 0.4416 0.5651 0.6998 0.8449 1

Fig. 2.3 Versions of the image in Fig. 2.1a after gamma correction with γ = 0.8 (a) and γ = 1.6 (b)

2.2 Histogram Processing

The histogram, which is an important entity in image processing, depicts the number
of occurrences of each possible gray level in an image. Consider the 4× 4 8-bit gray
level image shown in Table2.2 (left). In order to find the histogram of the image,
the histogram vector is initialized to zero. Its length is 256 since the range of gray
levels is 0–255. All the pixel values of the image are scanned. Depending on the
pixel value, the corresponding element in the histogram vector is incremented by 1.
For example, the first pixel value is 249 and it occurs only once as indicated in the
last column of the middle row of the histogram, shown in Table2.3. The pixels with
zero occurrences are not shown in the table.

Table 2.2 Pixel values of a 4 × 4 8-bit image (left) and its contrast-stretched version (right)

2.2 Histogram Processing 27

Table 2.3 Histograms of the input image and its contrast-stretched version. Pixels with zero occur-
rences are not shown

Gray
level

10 85 87 95 96 98 100 104 108 110 113 114 249

Count 1 2 1 1 1 2 1 1 2 1 1 1 1

Gray
level

0 1 18 88 96 114 131 166 201 219 245 254 255

Two images can have the same histogram. By modifying the histogram suitably,
the image can be enhanced. While it is a simple process to construct a histogram of
an image, it is very useful in several image processing tasks such as enhancement and
segmentation. It is also a feature of an image. The distribution of the gray levels of an
image gives useful information. Then, the histogram is used as such or modified to
suit the requirements. Large number of pixels with values at the lower end of the gray
level range indicates that the image is dark. Large number of pixels with values at
the upper end indicates that the image is too bright. If most of the pixels have values
in the middle, then the image contrast will not be good. In all these cases, contrast
stretching or histogram equalization is possible for improving the image quality. The
point is that a well spread out histogram over most of the range gives a better image.
Contrast stretching increases the contrast, while histogram equalization enhances the
contrast. The shape of the histogram remains the same in contrast stretching and it
changes in histogram equalization. As in the case of any processing, the enhancement
ability of these processes varies depending on the characteristics of the histogram of
the input image.

2.2.1 Contrast Stretching

Let the range of gray levels before and after the transformation be the same, for
example 0–255. Contrast is the difference between the maximum and minimum of
the gray level range of the image. A higher difference results in a better contrast. Due
to the limited dynamic range of the image recording device or underexposure, the
gray levels of pixels may be concentrated only at some part of the allowable range.
In general, some gray levels will lie outside the range intended for stretching. Let i
and inew are the gray levels before and after contrast stretching. In this case, using
the transformation

inew =
⌊

(Imax − Imin − 2)

(M − L)
(i − L)

⌋
+ 1, L ≤ i ≤ M

inew = Imin, i < L

inew = Imax , i > M

28 2 Image Enhancement in the Spatial Domain

the contrast of the image can be enhanced, where Imin and Imax are the values of
the minimum and maximum of the allowable gray level range, and L and M are
the values of the minimum and maximum of the part of the gray level range to be
stretched. The gray levels outside the main range are given only single values.

Consider the 4× 4 8-bit image shown in Table2.2 (left). The histogram is shown
in Table2.3 (first 2 rows). The range of the gray levels is 0–255. With only 16 pixels
in the image, most of the entries in the histogram are zero and they are not shown in
the table. The point is that the histogram is concentrated in the range 85–114. Gray
levels 10 and 249 are extreme values. As only a small part of the range of gray levels
is used, the contrast of this type of images is poor. Contrast stretching is required to
enhance the quality of the image. Now, the scale factor is computed as

255 − 0 − 2

114 − 85
= 8.7241

For all those gray levels in the range 0–84, we assign the new gray level 0. For all
those gray levels in the range 115–255, we assign the new gray level 255. For those
gray levels in the range 85–114, the new value inew is computed from i as

inew = �8.7241(i − 85)� + 1

The computation involves the floor function which rounds the numbers to the nearest
integer towards minus infinity. For example, gray level 114 is mapped to

inew = �8.7241(114 − 85)� + 1 = 253 + 1 = 254

The contrast stretched image is shown in Table2.2 (right). The new histogram, which
is well spread out, is also shown in Table2.3 (last 2 rows).

While we have presented the basic procedure, the algorithm can be modified to
suit the specific requirements. For example, selection of the range to be stretched
and the handling of the other values have to be suitably decided.

Figure2.4a shows a 256 × 256 8-bit image and (b) shows its histogram. The
horizontal axis shows the gray levels and the vertical axis shows the count of the
occurrence of the corresponding gray levels. The distribution of pixels is very heavy
in the first half of the histogram. Therefore, the range of the histogram 0–104 is
stretched and the rest compressed. The resulting image is shown in Fig. 2.4c and
its histogram is shown in (d). While the dark areas got enhanced, the contrast of
the brighter areas got deteriorated. Ideally, the pixels outside the range of stretching
should have zero occurrences. Since it is unlikely in practical images, judgment is
required to select the part to be stretched.

2.2 Histogram Processing 29

(a)

0 100 200
0

500

1000

(b)

gray level

co
un

t

(c)

0 100 200
0

500

1000

(d)

gray level

co
un

t

Fig. 2.4 aA256×256 8-bit image;b its histogram; c the histogram-stretched image;d its histogram

2.2.2 Histogram Equalization

In both contrast stretching and histogram equalization, the objective is to spread the
gray levels over the entire allowable gray level range. While stretching is a linear
process and is reversible, equalization is a nonlinear process and is irreversible.
Histogram equalization tries to redistribute about the same number of pixels for each
gray level and it is automatic.

Consider the 4 × 4 4-bit image shown in Table2.4 (left). The gray levels are
in the range 0–15. The histogram of the image is shown in Table2.5 (second row,
count_in). It is more usually presented in a graphic form, as shown in Fig. 2.5a.

30 2 Image Enhancement in the Spatial Domain

Table 2.4 A 4 × 4 4-bit image (left) and its histogram-equalized version (right)

Table 2.5 Histogram of the image and its equalized version

Gray level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

count_in 0 1 2 1 0 1 0 0 1 1 1 0 0 2 2 4

count_eq 0 1 0 2 1 1 1 1 1 2 0 2 0 0 0 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4
(a)

co
un

t

 gray level
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4
(b)

co
un

t

 gray level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

(c)

cu
m
ul
at

iv
e

di
st

ri
bu

ti
on

 gray level
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

(d)

cu
m
ul
at

iv
e

di
st

ri
bu

ti
on

 gray level

Fig. 2.5 a The histogram of the image shown in Table2.4 (left); b the histogram of the histogram-
equalized image shown in Table2.4 (right); c the cumulative distribution of the image; d the cumu-
lative distribution of the histogram-equalized image

The sum of the number of occurrences of all the gray levels must be equal to the
number of pixels in the image. The histogram is normalized by dividing the number
of occurrences by the total number of pixels. The normalized histogram of the image
is obtained by dividing by 16 (the number of pixels in the image) as

{0, 0.0625, 0.125, 0.0625, 0, 0.0625, 0, 0, 0.0625, 0.0625, 0.0625, 0, 0, 0.125, 0.125, 0.25}

This is also the probability distribution of the gray levels. Often, the histograms
of images are not evenly spread over the entire intensity range. The contrast of
an image can be improved by making the histogram more uniformly spread. The
more the number of occurrence of a gray level, the wider the spread it gets in the

2.2 Histogram Processing 31

equalized histogram. For a N × N image with L gray levels {u = 0, 1, . . . , L − 1},
the probability of occurrence of the uth gray level is

p(u) = nu

N 2

where nu is the number of occurrences of the pixel with gray level u. The equalization
process for a gray level u of the input image is given by

v = (L − 1)
u∑

n=0

p(n), u = 0, 1, . . . , L − 1

where v is the corresponding gray level in the histogram equalized image. The jus-
tification for the process is as follows. The cumulative histogram value, up to gray
level u, in the histogram of the input image should be covered up to gray level v in
the histogram after equalization.

u∑
n=0

hist(n) =
v∑

n=0

hist_eq(n)

Since the new histogram is to be flat, for a N × N image with gray level values
0 − (L − 1), the number of pixels for each gray level range is

N 2

L − 1

The new cumulative histogram is

v
N 2

L − 1

Since

u∑
n=0

hist(n) = v
N 2

L − 1
, v = (L − 1)

∑u
n=0 hist(n)

N 2
= (L − 1)

u∑
n=0

p(n)

For the example image, the cumulative distribution of the pixel values are

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.375, 0.4375, 0.5, 0.5, 0.5, 0.625, 0.75, 1}

obtained by computing the cumulative sum of the probability distribution computed
earlier and it is shown in Fig. 2.5c. These values, multiplied by L − 1 = 15, are

32 2 Image Enhancement in the Spatial Domain

{0, 0.9375, 2.8125, 3.75, 3.75, 4.6875, 4.6875, 4.6875,
5.625, 6.5625, 7.5, 7.5, 7.5, 9.375, 11.25, 15}

The rounding of these values yields the equalized gray levels.

{0, 1, 3, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 9, 11, 15}

Mapping the input image, using these values, we get the histogram equalized image
shown in Table2.4 (right). The equalized histogram of the image is shown in Fig. 2.5b
and in Table2.5 (third row, count_eq). The cumulative distribution of the gray levels
of the image is shown in Fig. 2.5d. It is clear fromFig. 2.5c, d that the gray level values
are more evenly distributed in (d). In histogram equalization, the densely populated
areas of the histogram are stretched and the sparsely populated areas are compressed.
Overall, the contrast of the image is enhanced. So far, we considered the distribution
of the pixels over the whole image. Of course, histogram processing can also be
applied to sections of the image if it suits the purpose.

Figure2.6a shows a 256 × 256 8-bit image and (b) shows the histograms of the
image and its equalized version (c). Figure2.6d shows the corresponding cumulative
distributions of the gray levels. The cumulative distribution of the gray levels is a
straight line for the histogram-equalized image. It is clear that equalization results in
the even distribution of the gray levels. The histogram-equalized image looks better
than that of the histogram-stretched image, shown in Fig. 2.4c.

As always, the effectiveness of an algorithm to do the required processing for
the given data has to be checked out. Blind application of an algorithm for all data
types is not recommended. For example, histogram equalization may or may not be
effective for a certain image. If the number of pixels at either or both the ends of the
histogram is large, equalization may not enhance the image. In these cases, an algo-
rithm has to be modified or a new algorithm is used. The point is that the suitability
of the characteristics of the image for the effective application of an algorithm is an
important criterion in the selection of the algorithm.

2.2.3 Histogram Specification

In histogram equalization, the gray levels of the input image is redistributed in the
equalized image so that its histogram approximates a uniform distribution. The dis-
tribution can be other than uniform. In certain cases where equalization algorithm
is not effective, using a suitable distribution may become effective in enhancing the
image. The histogram a(n) of a reference image A is specified and the histogram b(n)

of the input image B is to be modified to produce an image C so that its distribution
of pixels (histogram c(n)) is as similar to that of image A as possible. This process
is useful in restoring an image from its modified version, if its original histogram is
known. The steps of the algorithms are:

2.2 Histogram Processing 33

(a)

0 100 200
0

500

1000

(b)

gray level

co
un

t

(c)

0 100 200
0

1(d)

gray level

cu
m
ul
at

iv
e

di
st

ri
bu

ti
on

Fig. 2.6 a A 256× 256 8-bit image; b the histograms of the image (dot) and its equalized version
(cross) (c); d the corresponding cumulative distributions of the gray levels

1. Compute the cumulative distribution, cum_a(n), of the reference image A.
2. Compute the cumulative distribution, cum_b(k), of the input image B.
3. For each value in cum_b(k), find the minimum value in cum_a(n) that is greater

than or equal to the current value in cum_b(k). That n is the new gray level in
the image C corresponding to k in image B.

Consider the 4×44-bit reference (left) and input (right) images shown inTable2.6.
The histogram of the reference and input images, respectively, are

34 2 Image Enhancement in the Spatial Domain

Table 2.6 4 × 4 4-bit reference (left) and input (right) images

{0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0} and

{16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

The cumulative distribution, cum_a(n), of the reference image and the cumulative
distribution, cum_b(k), of the input image, respectively, are

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1} and

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

All the values in cum_b(k) map to cum_a(8) and all the pixels in the input image
map to 8 in the output image. That is, the histograms of the reference and output
images are the same. Let us interchange the reference and input images. Then, all
the values in cum_b(k) map to cum_a(0) and all the pixels in the input image map
to 0 in the output image.

As this problem is a generalization of the histogram equalization problem, let us
do that example again following the 3 steps given above. In histogram equalization,
the reference cumulative distribution values are those of the uniform probability
distribution. Therefore, the values of cum_a(n) are

{0, 0.0667, 0.1333, 0.2, 0.2667, 0.3333, 0.4, 0.4667, 0.5333,
0.6, 0.6667, 0.7333, 0.8, 0.8667, 0.9333, 1}

From the equalization example, the values of cum_b(k) are

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.375, 0.4375, 0.5, 0.5, 0.5, 0.625, 0.75, 1}

The first value in cum_b(k) is zero. The minimum value greater than or equal to it
in cum_a(n) is 0 and gray level value 0 maps to 0. Carrying out this process for all
the values in cum_b(k), we get the equalized gray levels.

{0, 1, 3, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 10, 12, 15}

These are about the same values obtained by equalization algorithm. Using these
values the output image is created. Figure2.7a shows the cumulative distributions of

2.2 Histogram Processing 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1(b)

cu
m
ul
at

iv
e

 d
is

tr
ib
ut

io
n

 gray level
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.25

0.5

0.75

1(a)
cu
m
ul
at

iv
e

di
st

ri
bu

ti
on

 gray level

Fig. 2.7 a The cumulative distributions of the reference (∗) and input images (o); b The cumulative
distributions of the reference (∗) and output images (o)

Table 2.7 4 × 4 reference, input and output images, respectively, from left

the reference (∗) and input images (o). Figure2.7b shows the cumulative distributions
of the reference (∗) and output images (o). The cumulative distribution of the output
image is close to that of the uniform distribution.

Example images A, B and C are shown in Table2.7. The normalized histogram
of the reference image is

{0, 0.0625, 0.1250, 0.0625, 0, 0.0625, 0, 0, 0.0625,
0.0625, 0.0625, 0, 0, 0.1250, 0.1250, 0.25}

The normalized histogram of the input image is

{0.1875, 0.0625, 0.0625, 0, 0.0625, 0.0625, 0, 0.0625,
0, 0, 0, 0.1250, 0, 0.1250, 0, 0.25}

The cumulative distribution, cum_a(n), of the reference image is

{0, 0.0625, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125,
0.3750, 0.4375, 0.5, 0.5, 0.5, 0.6250, 0.75, 1}

The cumulative distribution, cum_b(k), of the input image is

36 2 Image Enhancement in the Spatial Domain

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1(b)

cu
m
ul
at

iv
e

 d
is

tr
ib
ut

io
n

 gray level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.25

0.5

0.75

1(a)
cu
m
ul
at

iv
e

 d
is

tr
ib
ut

io
n

 gray level

Fig. 2.8 a The cumulative distributions of the input (×) and reference (∗) images; b the cumulative
distributions of the output (o) and reference (∗) images

{0.1875, 0.25, 0.3125, 0.3125, 0.3750, 0.4375, 0.4375,
0.5, 0.5, 0.5, 0.5, 0.6250, 0.6250, 0.75, 0.75, 1}

The cumulative distributions of the reference and input images are shown in Fig. 2.8a.
Each value in cum_b(k) has to be mapped to the minimum value of cum_a(n) that
is greater than or equal to cum_b(k). For example, the first value of cum_b(k) is
0.1875. The corresponding value is cum_a(2). That is, gray level 0 is mapped to 2
in the output image. Gray level with value 1 is mapped to 3 and so on. In Fig. 2.8a,
the mappings are shown by dashed lines. Pixels of the input image in the range 0–15
are mapped to

{2, 3, 5, 5, 8, 9, 9, 10, 10, 10, 10, 13, 13, 14, 14, 15}

in the output image. Using these mappings, the output image is reconstructed (the
rightmost in Table2.7. The cumulative distribution of the output image is

{0, 0, 0.1875, 0.25, 0.25, 0.3125, 0.3125, 0.3125, 0.3750, 0.4375,
0.5, 0.5, 0.5, 0.6250, 0.75, 1}

The cumulative distributions of the reference and output images are almost the same,
as shown in Fig. 2.8b.

Figure2.9a, b show, respectively, a 256 × 256 8-bit image and its histogram.
Figure2.9c, d show, respectively, the restored image using histogram specification
algorithm and its histogram.

2.3 Thresholding 37

(a)

100 200
0

1000

2000

(b)

gray level

co
un

t

(c)

0 100 200
0

1000

2000

(d)

gray level

co
un

t

Fig. 2.9 a A 256 × 256 8-bit image and b its histogram; c the restored image using histogram
specification algorithm and d its histogram

2.3 Thresholding

Thresholding operation is frequently used in image processing. It is used in tasks such
as enhancement, segmentation and compression. A threshold indicates an intensity
level of some significance. There are several variations of thresholding used in image
processing. The first type is to threshold a gray level image to get a binary image.
A threshold T > 0 is specified and all the gray levels with magnitude less than or
equal to T are set to zero and the rest are set to 1.

38 2 Image Enhancement in the Spatial Domain

T
0 x

gb(x)
(a)

1

(b)

−2T 2T−T T

2T

−2T

x

T

−T

gh(x)
(c)

T−T−2T 2T

T

−T

x

gs(x)

Fig. 2.10 a Binary thresholding; b Hard thresholding; c Soft thresholding

gb(x) =
{
0 if x ≤ T
1, otherwise

This type of thresholding is shown in Fig. 2.10a.
In another type of thresholding, all the gray levels with magnitude less than or

equal to T are set to zero and the rest are unaltered or set to the difference between
the input values and the threshold. Hard thresholding, shown in Fig. 2.10b, is defined
as

gh(x) =
{
0 if |x | ≤ T
x, if |x | > T

In hard thresholding, the value of the function is retained, if its magnitude is greater
than a chosen threshold value. Otherwise, the value of the function is set to zero.
Typical application of this type of thresholding is in lossy image compression. A
higher threshold gets a higher compression ratio at the cost of image quality. Soft
thresholding, shown in Fig. 2.10c, is defined as

gs(x) =
⎧⎨
⎩

0, if |x | ≤ T
x − T, if x > T
x + T, if x < −T

The difference in soft thresholding is that the value of the function is made closer to
zero by adding or subtracting the chosen threshold value from it, if its magnitude is
greater than the threshold. A typical application of soft thresholding is in denoising.
Thresholding is easily extended to multiple levels.

Figure2.11a shows a damped sinusoid. Figure2.11b shows the damped sinusoid
hard thresholded with level T = 0.3. Values less than or equal to 0.3 have been
assigned the value zero. Figure2.11c shows the damped sinusoid soft thresholded
with level T = 0.3. Values less than or equal to 0.3 have been assigned the value
zero and values greater than 0.3 have been assigned values closer to zero by 0.3.
Figure2.11d shows the damped sinusoid binary thresholded with level T = 0.3.

2.3 Thresholding 39

0 8 16 24
−0.7997

0

0.3

1

n

(a)
y
(n
)

0 8 16 24
−0.7997

−0.3

0

0.3

1

n

(b)

y h
(n
)

0 8 16 24
0

0.3

1

n

(d)

y b
(n
)

0 8 16 24
−0.7

0

0.3

0.7

n

(c)

y s
(n
)

Fig. 2.11 a A damped sinusoid; b hard, c soft and d binary thresholding of the sinusoid with
T = 0.3

Values less than or equal to 0.3 have been assigned the value zero and values greater
than 0.3 have been assigned the value 1.

Consider the 8 × 8 8-bit gray level image shown by the left matrix.

117 170 130 54 84 209 164 148
135 151 137 96 56 157 225 189
136 152 174 146 64 84 146 90
123 139 182 133 51 71 56 74
119 137 172 146 119 67 65 70
90 123 166 184 203 101 49 64
85 102 162 194 164 80 38 56
73 84 155 185 147 163 87 57

0 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1
1 1 1 1 0 0 1 0
1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0

The result of binary thresholding with T = 120 is shown in the right matrix. The
results of hard and soft thresholding with T = 120 are shown in the left and right
matrices, respectively.

40 2 Image Enhancement in the Spatial Domain

(a) (b)

Fig. 2.12 a A 256 × 256 image and b its threshold version with T = 1

0 170 130 0 0 209 164 148
135 151 137 0 0 157 225 189
136 152 174 146 0 0 146 0
123 139 182 133 0 0 0 0
0 137 172 146 0 0 0 0
0 123 166 184 203 0 0 0
0 0 162 194 164 0 0 0
0 0 155 185 147 163 0 0

0 50 10 0 0 89 44 28
15 31 17 0 0 37 105 69
16 32 54 26 0 0 26 0
3 19 62 13 0 0 0 0
0 17 52 26 0 0 0 0
0 3 46 64 83 0 0 0
0 0 42 74 44 0 0 0
0 0 35 65 27 43 0 0

Figure2.12a shows a 256×256 image. The image is corrupted with noise and the
letters are not clear. The white pixels showing the letters have values varying from
2 to 255. Therefore, with the threshold T = 1, setting all the pixels greater than 1 to
255 with the rest set to 0 enhances the image, as shown in Fig. 2.12b.

2.4 Neighborhood Operations

In this type of processing, called neighborhood operation, each pixel value is replaced
by another, which is a linear or nonlinear function of the values of the pixels in its
neighborhood. The area of a square or rectangle or circle (sometimes of other shapes)
forming the neighborhood is called a window. Typical window sizes vary from 3×3
to 11×11. If the window size is 1×1 (the neighborhood consists of the pixel itself),
then the operation is called the point operation. The window is moved over the image
row by row and column by column and the same operation is carried out for each
pixel.

2.4 Neighborhood Operations 41

A 3 × 3 window of the pixel x(m, n) is

⎡
⎣

x(m − 1, n − 1) x(m − 1, n) x(m − 1, n + 1)
x(m, n − 1) x(m, n) x(m, n + 1)

x(m + 1, n − 1) x(m + 1, n) x(m + 1, n + 1)

⎤
⎦

The set of pixels (strong neighbors)

{x(m − 1, n), x(m, n + 1), x(m + 1, n), x(m, n − 1)

is called the 4-neighbors of x(m, n).

⎡
⎣

x(m − 1, n)

x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n)

⎤
⎦

The distance between these pixels and x(m, n) is 1. The other 4 pixels (weak neigh-
bors) are diagonal neighbors of x(m, n). All the neighbors in the window are called
the 8-neighbors of x(m, n).

Border Extension

If the complete window is to overlap the image pixels, then the output image after
a neighborhood operation will be smaller. This is due to the fact that the required
pixels are not defined at the borders. Then, we have to accept a smaller output image
or extend the input image at the borders suitably. For example, many operations
are based on convolving an image with the impulse response or coefficient matrix.
When trying to find the convolution output corresponding to the pixels located in the
vicinity of the borders, some of the required pixels are not available. Obviously, we
can assume that the values are zero. This method of border extension is called zero-
padding. Of course, when this method is not suitable, there are other possibilities.
Consider the 4 × 4 image

23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

Some of the commonly used image extensions are given below. Any other suitable
extension can also be used.

The symmetric extension of the image by 2 rows and 2 columns on all sides yields

42 2 Image Enhancement in the Spatial Domain

44 32 32 44 44 23 23 44
51 23 23 51 23 32 32 23

51 23 23 51 23 32 32 23
44 32 32 44 44 23 23 44
23 23 23 23 44 32 32 44
44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23
23 23 23 23 44 32 32 44

The extension is the mirror image of itself at the borders.
The replication method of extension of the image by 2 rows and 2 columns on all

sides yields
23 23 23 51 23 32 32 32
23 23 23 51 23 32 32 32

23 23 23 51 23 32 32 32
32 32 32 44 44 23 23 23
23 23 23 23 44 32 32 32
44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23
44 44 44 44 23 23 23 23

Border values are repeated.
The periodic extension of the image by 2 rows and 2 columns on all sides yields

44 32 23 23 44 32 23 23
23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51
44 23 32 44 44 23 32 44
44 32 23 23 44 32 23 23
23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51
44 23 32 44 44 23 32 44

This extension considers the image as one period of a 2-D periodic signal. The
top and bottom edges are considered adjacent and so are the right and left edges.

2.4.1 Linear Filtering

A filter, in general, is a device that passes the desirable part of its input. In the context
of image processing, a filter modifies the spectrum of an image in a specified man-
ner. This modification can be done either in the spatial domain or frequency domain.

2.4 Neighborhood Operations 43

The choice primarily depends of the size of the filter among other considerations.
A linear filter is characterized by its impulse response, which is its response for a
unit-impulse input with zero initial conditions. For enhancement purposes, a filter
is used to improve the quality of an image for human or machine perception. The
improvement in the quality of an image is evaluated subjectively. Two types of filters,
lowpass and highpass, are often used to improve the quality. A lowpass filter is essen-
tially an integrator, passing the low frequency components and suppressing the high
frequency components. For example, the integral of cos(ωt) is sin(ωt)/ω. The higher
the frequency, the higher is the attenuation of the frequency component after integra-
tion. A highpass filter is essentially a differentiator that suppresses the low frequency
components. The derivative of sin(ωt) is ω cos(ωt). The higher the frequency, the
higher is the amplification of the frequency component after differentiation.

In linear filtering, convolution operation is a convenient system model. It relates
the input and output of a system through its impulse response. Although the image
is a 2-D signal, its processing can often be carried out using the corresponding
1-D operations repeatedly over the rows and columns. Conceptually, 1-D operations
are easier to understand. Further, 2-D convolution is a straightforward extension of
that of the 1-D. Therefore, we present the 1-D convolution briefly. First, as it is so
important (along with Fourier analysis), we present a simple example to explain the
concept.

Consider the problem of finding the amount in our bank account for the deposits
on a yearly basis. We are familiar that, for compound interest, the amount of interest
paid increases from year to year. Let the annual interest rate be 10%. Then, an amount
of $1 will be $1 at the time of deposit, $1.1 after 1 year, $1.21 after 2 years and so
on, as shown in Fig. 2.13a. Let our current deposit be $200, $300 a year before and
$100 two years before, as shown in Fig. 2.13b. The problem is to find the current
balance in the account. From Fig. 2.13a, b, it is obvious that if we reverse the order
of numbers in (a), shift and multiply with the corresponding numbers in (b) and sum
the products, we get the current balance $651, as shown in Fig. 2.13c.

Of course, we could have reversed the order of the numbers in (b) either. For
longer sets of numbers, we can repeat the operation. This is convolution operation
and it is simple. It is basically a sum of products of two sequences, after either one
(not both) is time-reversed. In formal description, the set of interest rates is called as
the system impulse response. The set of deposits is called the input to the system.
The set of balances at different time periods is called the system output. Convolution
relates the input and the impulse response of a system to its output.

1-D Linear Convolution

The 1-D linear convolution of two aperiodic sequences x(n) and h(n) is defined as

y(n) =
∞∑

k=−∞
x(k)h(n − k) =

∞∑
k=−∞

h(k)x(n − k) = x(n) ∗ h(n) = h(n) ∗ x(n)

44 2 Image Enhancement in the Spatial Domain

Fig. 2.13 Basics of linear
convolution. a annual
interest rate; b deposits;
c computation of current
balance

1 1.1 1.21

0 1 2 years

100 300 200

−2 −1 0 years

(100)(1.21) +(300)(1.1) + (200)(1) = 651

−2 −1 0 years

(a)

(b)

(c)

The convolution operation relates the input x(n), the output y(n) and the impulse
response h(n) of a system. The impulse response, which characterizes the system in
the time-domain, is the response of a relaxed (initial conditions are zero) system for
the unit-impulse δ(n). A discrete unit-impulse signal is defined as

δ(n) =
{
1, for n = 0
0, for n �= 0

It is an all-zero sequence, except that its value is one when its argument n is equal to
zero. The input x(n) is decomposed into a sum of scaled and delayed unit-impulses.
The response to each impulse is found and the superposition summation of all the
responses is the system output. It can also be considered as the weighted average of
sections of the input with the weighting sequence being the impulse response.

Figure2.14 shows the convolution of the signal {x(0) = 4, x(1) = 3, x(2) =
1, x(3) = 2 and {h(0) = 1, h(1) = −2, h(2) = 1. The output y(0), from the
definition, is

y(0) = x(k)h(0 − k) = (4)(1) = 4,

where h(0− k) is the time-reversal of h(k). Shifting h(0− k) to the right, we get the
remaining outputs as

Fig. 2.14 1-D linear
convolution

0 1 2 3k
1 −2 1h(k)
4 3 1 2x(k)

1 −2 1h(0− k)
1 −2 1h(1− k)

1 −2 1h(2− k)
1 −2 1h(3− k)

1 −2 1h(4− k)
1 −2 1h(5− k)

0 1 2 3 4 5n
4 −5−1 3 −3 2y(n)

2.4 Neighborhood Operations 45

y(1) = x(k)h(1 − k) = (4)(−2) + (3)(1) = −5

y(2) = x(k)h(2 − k) = (4)(1) + (3)(−2) + (1)(1) = −1

y(3) = x(k)h(3 − k) = (3)(1) + (1)(−2) + (2)(1) = 3

y(4) = x(k)h(4 − k) = (1)(1) + (2)(−2) = −3

y(5) = x(k)h(5 − k) = (2)(1) = 2

Outside the defined values of x(n), we have assumed zero values. As mentioned
earlier, a suitable extension of the input, to get a convolution output of the same
length, should be made to suit the requirements of the problem. The six convolution
output values are called the full convolution output. Most of the times, the central
part of the output, of the same size as the input, is required. If the window is to be
confined inside the input data, the size of the output will be smaller than that of the
input.

2-D Linear Convolution

In the 2-D convolution, a 2-D window is moved over the image. The convolution of
images x(m, n) and h(m, n) is defined as

y(m, n) =
∞∑

k=−∞

∞∑
l=−∞

x(k, l)h(m − k, n − l)

=
∞∑

k=−∞

∞∑
l=−∞

h(k, l)x(m − k, n − l) = h(m, n) ∗ x(m, n)

Four operations, similar to those of the 1-D convolution, are repeatedly executed in
carrying out the 2-D convolution.

1. One of the images, say h(k, l), is rotated in the (k, l) plane by 180◦ about the
origin to get h(−k,−l). The same effect is achieved by folding the image about
the k axis to get h(k,−l) and then, folding the resulting image about the l axis.

2. The rotated image is shifted by (m, n) to get h(m − k, n − l).
3. The products x(k, l)h(m − k, n − l) of all the overlapping samples are found.
4. The sum of all the products yields the convolution output y(m, n) at (m, n).

Consider the convolution of the 3 × 3 image h(k, l) and the 4 × 4 image x(k, l)

h(k, l) =
⎡
⎣

−1 −2 −1
0 0 0
1 2 1

⎤
⎦ and x(k, l) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

shown in Fig. 2.15. Four examples of computing the convolution output are shown.
For example, with a shift of (0−k, 0− l), there is only one overlapping pair (1,−1).
The product of these numbers is the output y(0, 0) = −1. The process is repeated to

46 2 Image Enhancement in the Spatial Domain

−1 −2 −1
0 0 0
1 2 1

h(k, l)(0, 0)
−1 −2 −1
0 0 0
1 2 1

h(k,−l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

x(k, l)
−1 −1 −2 −7 −7 −2
−2 −5 −6 −9 −10 −4
0 0 1 6 9 4

−1 −2 −1 2 4 2
1 1 1 1 −2 −2
3 7 7 7 6 2

y(m,n)

1 2 1
0 0 0

−1 −2 −1

h(−k,−l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(0, 0) =
x(k, l)h(0− k, 0− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(0, 1) =
x(k, l)h(0− k, 1− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1
y(3, 2) = x(k, l)h(3− k, 2− l)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
0 0 0

−1 −2 −1

y(2, 1) = x(k, l)h(2− k, 1− l)

Fig. 2.15 2-D linear convolution

get the complete convolution output y(m, n) shown in the figure. We assumed that
the pixel values outside the defined region of the image are zero. This assumption
may or may not be suitable. Some other commonly used borer extensions are based
on periodicity, symmetry or replication, as presented earlier.

Lowpass Filtering

The output of convolution for a given input depends on the impulse response of the
system. In lowpass filtering, the frequency response corresponding to the impulse
response will be of lowpass nature. The system readily passes the low frequency
components of the signal and suppresses the high frequency components. Low fre-
quency components vary slowly compared with the bumpy nature of the high fre-
quency components. Lowpass filtering is typically used for deliberate blurring to
remove unwanted details of an image and reduce the noise content of the image. The
impulse response of the simplest and widely used 3 × 3 lowpass filter, called the
averaging filter, is

h(m, n) = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ , m = −1, 0, 1, n = −1, 0, 1

The origin of the filter is shown in boldface. All the coefficient values are the same.
Other filters produce weighted average outputs. This filter, when applied to an image,
replaces each pixel in the input by the average of the values of a set of its neighboring
pixels. Pixel x(m, n) is replaced by the value

2.4 Neighborhood Operations 47

y(m, n) = 1

9
(x(m − 1, n − 1) + x(m − 1, n) + x(m − 1, n + 1) + x(m, n − 1) + x(m, n)

+ x(m, n + 1) + x(m + 1, n − 1) + x(m + 1, n) + x(m + 1, n + 1))

The bumps are smoothed out due to averaging. Blurring will proportionally increase
with larger filters. This filter is separable.Multiplying the 3×1 column filter hc(m) =
{1, 1, 1}T /3 with the 1 × 3 row filter hr (n) = {1, 1, 1}/3, which is the transpose of
the column filter, we obtain the 3 × 3 averaging filter.

h(m, n) = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ = 1

3

⎡
⎣
1
1
1

⎤
⎦ 1

3

[
1 1 1

] = hc(m)hr (n)

This implies that the computational complexity is reduced by convolving each row
of the input image with the row filter first and then convolving each column of the
result with the column filter or vice versa. With the 2-D filter h(m, n) separable,
h(m, n) = hc(m)hr (n) and, with input x(m, n),

h(m, n) ∗ x(m, n) = (hc(m)hr (n)) ∗ x(m, n)

= (hc(m) ∗ x(m, n)) ∗ hr (n) = hc(m) ∗ (x(m, n) ∗ hr (n))

y(k, l) =
∑

m

hc(m)
∑

n

hr (n)x(k − m, l − n) =
∑

n

hr (n)
∑

m

hc(m)x(k − m, l − n)

Whenever a filter is separable, it is advantageous to decompose a 2-D operation into
a pair of 1-D operations.

Let the input be

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

Assuming zero-padding at the borders, the output of 1-D filtering of the rows of
the input and the output of 1-D filtering of the columns of the partial output are,
respectively,

yr(m, n) = 1

3

⎡
⎢⎢⎣
0 3 4 5
3 5 7 6
0 2 −1 0
4 6 5 4

⎤
⎥⎥⎦ y(m, n) = 1

9

⎡
⎢⎢⎣
3 8 11 11
3 10 10 11
7 13 11 10
4 8 4 4

⎤
⎥⎥⎦

Assuming replication at the borders, the extended input and the output are, respec-
tively,

48 2 Image Enhancement in the Spatial Domain

xe(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 −1 3 2 2
1 1 −1 3 2 2
2 2 1 2 4 4
1 1 −1 2 −2 −2
3 3 1 2 2 2
3 3 1 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

y(m, n) = 1

9

⎡
⎢⎢⎣

7 11 15 24
7 10 10 15
13 13 11 14
15 14 9 10

⎤
⎥⎥⎦

Only the output at the borders differ with different border extensions. The central
part of the output is the same.

Gaussian Lowpass Filter

The 2-D Gaussian function is a lowpass filter, with a bell-shaped impulse response
(frequency response) in the spatial domain (frequency domain). The Gaussian low-
pass filters are based on Gaussian probability distribution function. The impulse
response h(m, n) of the Gaussian N × N lowpass filter, with the standard deviation
σ, is given by

h(m, n) = e
− (m2+n2)

(2σ2)

K
, K =

(N−1)/2∑
m=−(N−1)/2

(N−1)/2∑
n=−(N−1)/2

e
− (m2+n2)

(2σ2)

assuming N is odd. The larger the value of the standard deviation σ, the flatter is
the filter impulse response. For very large value of σ, as it appears squared in the
denominator of the exponent of the exponential function of the defining equation,
it tends to the averaging filter in the limit. The impulse response of the Gaussian
lowpass filters with σ = 2, of size 11 × 11 and 12 × 12, are shown in Fig. 2.16a,
b, respectively. The impulse response of the Gaussian 3 × 3 lowpass filter, with
σ = 0.5, is

−5

0

5

−5

0

5

0.01

0.02

0.03

0.04

n

(a)

m

h
(m

,n
)

−2.5
0.5

2.5
−2.5

0.5
2.5

0.01

0.02

0.03

n

(b)

m

h
(m

,n
)

Fig. 2.16 The impulse response of the Gaussian lowpass filters with σ = 2. a 11× 11; b 12× 12

2.4 Neighborhood Operations 49

h(m, n) =
⎡
⎣
0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

⎤
⎦ , m = −1, 0, 1, n = −1, 0, 1

The origin of the filter is shown in boldface. For example, let m = n = 0 in the
defining equation for h(m, n). Then, the numerator is 1.

K = (e−2(1+1) + e−2(0+1) + e−2(1+1) + e−2(1+0) + e−2(0+0)

+ e−2(1+0) + e−2(1+1) + e−2(0+1) + e−2(1+1))

= e−4 + e−2 + e−4 + e−2 + 1 + e−2 + e−4 + e−2 + e−4

= 4e−4 + 4e−2 + 1 = 1.6146

The inverse of 1.6146 is 0.6193 = h(0, 0). This filter is also separable. Multiply-
ing the 3 × 1 column filter {0.1065, 0.7870, 0.1065}T with the 1 × 3 row filter
{0.1065, 0.7870, 0.1065}, which is the transpose of the column filter, we obtain the
3 × 3 Gaussian filter.

The Gaussian filter is widely used. The features of this filter include:

1. There is no directional bias, since it is symmetric.
2. By varying the value of the standard deviation σ, the conflicting requirement of

less blurring and more noise removal is controlled.
3. The filter is separable.
4. The coefficients fall off to negligible levels at the edges.
5. The Fourier transform of a Gaussian function is another Gaussian function.
6. The convolution of two Gaussian functions is another Gaussian function.

Let

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

Assuming zero-padding at the borders, the output of 1-D filtering of the rows of
the input and the output of 1-D filtering of the columns of the partial output are,
respectively,

⎡
⎢⎢⎣
0.6805 −0.3610 2.4675 1.8935
1.6805 1.2130 2.1065 3.3610
0.6805 −0.4675 1.2545 −1.3610
2.4675 1.3195 1.8935 1.7870

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣
0.7145 −0.1549 2.1663 1.8481
1.4675 0.8664 2.0542 2.7018
0.9773 −0.0982 1.4133 −0.5228
2.0144 0.9887 1.6238 1.2614

⎤
⎥⎥⎦

Assuming periodicity at the borders, the extended input and the output are, respec-
tively,

50 2 Image Enhancement in the Spatial Domain

Fig. 2.17 a A 256× 256 8-bit image; b filtered image with 5× 5 averaging filter; c filtered image
with 5 × 5 Gaussian filter with σ = 1; d filtered image with 11 × 11 averaging filter

xe(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 1 2 2 3
2 1 −1 3 2 1
4 2 1 2 4 2

−2 1 −1 2 −2 1
2 3 1 2 2 3
2 1 −1 3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎣
1.2130 −0.0143 2.3679 2.1790
1.8027 0.8664 2.0542 2.8921
0.8777 −0.0982 1.4133 −0.3822
2.2545 0.9502 1.8866 1.7372

⎤
⎥⎥⎦

Figure2.17a shows a 256 × 256 8-bit gray level image. Figure2.17b, d show the
filtered images with 5× 5 and 11× 11 averaging filters, respectively. Obviously, the
blurring of the image is more with the larger filter. Figure2.17c shows the filtered
image with 5 × 5 Gaussian filter with σ = 1. As the passband spectrum of the

2.4 Neighborhood Operations 51

averaging filter, due to sharp transition at the borders, is relatively narrow, the blurring
is more for the same size window. As the Gaussian filter is smooth, it has a relatively
wider spectrum and the blurring is less.

Highpass Filtering

Frequency, in image processing, is the rate of change of gray levels of an image
with respect to distance. A high frequency component is characterized by large
changes in gray levels over short distances and vice versa. Highpass filters pass high
frequency components and suppress low frequency components. This type of filters
are used for sharpening images and edge detection. Images often get blurred andmay
require sharpening. Blurring corresponds to integration and sharpening corresponds
to differentiation and they undo the effects of the other. High frequency components
may have to be enhanced by suppressing low frequency components.

Laplacian Highpass Filter

While the first-order derivative is also a highpass filter, the Laplacian filter is formed
using the second-order derivative. A peak is the indicator of an edge by the first-order
derivative and it is the zero-crossing by the second-order derivative. The Laplacian
operator of a function f (x, y)

∇2 f (x, y) = ∂2 f (x, y)

∂x2
+ ∂2 f (x, y)

∂y2

is an often used linear derivative operator. It is isotropic (invariant with respect to
direction). Consider the 4-neighborhood

⎡
⎣

x(m − 1, n)

x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n)

⎤
⎦

For discrete signals, differencing approximates differentiation. At the point x(m, n),
the first differences along the horizontal and vertical directions, �h(m, n) and
�v(m, n), are defined as

�h x(m, n) = x(m, n) − x(m, n − 1) and �vx(m, n) = x(m, n) − x(m − 1, n)

Using the first differences again, we get the second differences.

52 2 Image Enhancement in the Spatial Domain

�2
vx(m, n) = �vx(m + 1, n) − �vx(m, n)

= (x(m + 1, n) − x(m, n)) − (x(m, n) − x(m − 1, n))

= x(m + 1, n) + x(m − 1, n) − 2x(m, n)

�2
h x(m, n) = �h x(m, n + 1) − �h x(m, n)

= (x(m, n + 1) − x(m, n)) − (x(m, n) − x(m, n − 1))

= x(m, n + 1) + x(m, n − 1) − 2x(m, n)

Summing the two second differences, we get the discrete approximation of the Lapla-
cian as

∇2x(m, n) = �2
h x(m, n) + �2

vx(m, n)

= x(m, n + 1) + x(m, n − 1) + x(m + 1, n) + x(m − 1, n) − 4x(m, n)

The filter coefficients h(m, n) are

h(m, n) =
⎡
⎣
0 1 0
1 −4 1
0 1 0

⎤
⎦ (2.2)

By adding this mask by its 45◦ rotated version, we get the filter coefficients h(m, n)

for 8-neighborhood

h(m, n) =
⎡
⎣
1 1 1
1 −8 1
1 1 1

⎤
⎦ (2.3)

Let the input be the same used for lowpass filtering. With zero-padded and repli-
cated inputs, the outputs of applying the Laplacian mask (Eq.2.2) are, respectively,

y(m, n) =

⎡
⎢⎢⎣

−3 9 −9 −1
−5 −2 2 −14
0 9 −7 16

−10 0 −3 −8

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣

−1 8 −6 3
−3 −2 2 −10
1 9 −7 14

−4 1 −1 −4

⎤
⎥⎥⎦

The output has large number of negative values. For proper display of the output,
scaling is required. With 256 gray levels,

ys(m, n) = (y(m, n) − ymin)

(ymax − ymin)
255

Figure2.18a show a 256 × 256 8-bit image. Figure2.18b shows the image after
the application of the Laplacian filter (Eq. (2.2)). The low contrast of the image is

2.4 Neighborhood Operations 53

(a) (b)

0 128 255
0

4000

8000

(c)

co
un

t

gray level

(d)

Fig. 2.18 aA256×256 8-bit image; b the image after application of the Laplacian filter (Eq. (2.2));
c its scaled histogram; d the histogram equalized image

due to the concentration of the pixel values in the middle of the scaled histogram
(Fig. 2.18c). The histogram equalized image is shown in Fig. 2.18d.

Subtracting the Laplacian from the image sharpens the image. Using the first
mask,

x(m, n) − ∇2x(m, n) = 5x(m, n) − (x(m, n + 1) + x(m, n − 1) + x(m + 1, n) + x(m − 1, n))

= x(m, n) + 5(x(m, n)

−1

5
(x(m, n + 1) + x(m, n − 1) + x(m, n) + x(m + 1, n) + x(m − 1, n)))

The third line is a blurred and scaled version of the image x(m, n). The high frequency
components are suppressed. When the blurred version is subtracted from the input

54 2 Image Enhancement in the Spatial Domain

image (called unsharp masking), the resulting image is composed of strong high
frequency components and weak low frequency components. When this version is
multiplied by the factor 5 and added to the image, the high frequency components are
boosted (high-emphasis filtering) and the low frequency components remain about
the same. The corresponding Laplacian sharpening filter is deduced from the last
equation as

h(m, n) =
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦ (2.4)

Using this filter, with the same input used for lowpass filtering, the outputs with the
input zero-padded and replicated are, respectively,

y(m, n) =

⎡
⎢⎢⎣

4 −10 12 3
7 3 0 18
1 −10 9 −18
13 1 5 10

⎤
⎥⎥⎦ y(m, n) =

⎡
⎢⎢⎣
2 −9 9 −1
5 3 0 14
0 −10 9 −16
7 0 3 6

⎤
⎥⎥⎦

Figure2.19a shows the image in Fig. 2.18a after application of the Laplacian filter
(Eq. (2.3)). The edges at the diagonal directions are sharper compared with Fig.
2.18b. Figure2.19b shows the image in Fig. 2.18a after application of the Laplacian
sharpening filter (Eq. (2.4)). The edges are sharper compared with Fig. 2.18a.

Fig. 2.19 a Image in Fig. 2.18a after application of the Laplacian filter (Eq. (2.3)); b Image in Fig.
2.18a after application of the Laplacian sharpening filter (Eq. (2.4))

2.4 Neighborhood Operations 55

2.4.2 Median Filtering

Some measures of the distribution of the pixel values in an image are the mean, the
median, the standard deviation and the histogram. The mean, x̄ , of a M × N image
x(m, n) is given by

x̄ = 1

M N

M−1∑
m=0

N−1∑
n=0

x(m, n)

The median of a list of N numbers x(n)

{x(0), x(1), . . . , x(N − 1)}

is defined as the middle number of the sorted list of x(n), if N is odd. If N is even, the
median is defined as the mean of the two middle numbers of the sorted list. For 2-D
data, all the samples in the window are listed as 1-D data for median computation.
The mean and median gives an indication of the center of the data. The spread of the
data is given by the variance and the standard deviation. The variance is a measure of
the spread of each pixel from themean of an image. A variance value of zero indicates
that all the pixels are the same as the mean. A small variance value indicates that
pixel values are distributed close to the mean and close to themselves and vice versa.
It is a positive value. The variance σ2 of a M × N image x(m, n) is given by

σ2 = 1

(M)(N)

M−1∑
m=0

N−1∑
n=0

(x(m, n) − x̄)2

(Sometimes, the divisor ((M − 1)(N − 1)) is used in the definition of σ2.) The
variance is the mean of the squared differences between each value and the mean of
the data. The standard deviation σ is the square root of the variance. Consider the
4 × 4 image

23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

The mean, variance and standard deviation are 33, 102 and 10.0995, respectively.
Median filtering, which is nonlinear, replaces a pixel by themedian of awindow of

pixels in its neighborhood. It involves sorting the pixels in the window in ascending
or descending order and selecting the middle value, if the number of pixels is odd.
Otherwise, the average of the two middle values is the median. In this case, if the
input is integer-valued then the output can be of the same type by using truncation
or rounding. The window sizes used typically are 3 × 3, 5 × 5 and 7 × 7.

Consider the 4 × 4 image and its boundary replicated version

56 2 Image Enhancement in the Spatial Domain

23 51 23 32
32 44 44 23
23 23 44 32
44 44 23 23

23 23 51 23 32 32

23 23 51 23 32 32
32 32 44 44 23 23
23 23 23 44 32 32
44 44 44 23 23 23

44 44 44 23 23 23

The image after median filtering with a 3 × 3 window is

32 32 32 32
23 32 32 32
32 44 32 23
44 44 23 23

Medianfiltering is effective in reducing the spot (or impulse or salt-and-pepper) noise,
characterized by the random occurrence of black and white pixels. The probability
distribution of this noise is given by

p(x) =
⎧⎨
⎩

p1, for x = 1
p0, for x = 0
0, otherwise

Pixel value 1 indicates that it will be white and zero indicates that the pixel will be
black. If the probabilities of the occurrence of the black and white pixels are about
equal, then the effect of this noise is to look like flecks of salt and pepper spread all
over the image. Hence, it is called as salt-and-pepper noise.

A pixel with a value that is much larger than those of its neighbors is probably a
noise pixel. The image is enhanced if such pixels are replaced by the median in their
neighborhood. On the other hand, if the pixel value is valid then median filtering will
degrade the image quality. In any image processing, the most suitable operators with
respect to size and response, and algorithms should be used. This requires some trial
and error. While median filtering is commonly used, a pixel can be replaced by any
other pixel in the sorted list of its neighborhood, such as the maximum and minimum
values. Figure2.20a, b show a 256× 256 8-bit image and the image with spot noise,
respectively. Figure2.20c shows the median filtered image with a 3 × 3 window.
The noise has been removed. Figure2.20d shows the lowpass filtered image with a
3×3 window. Lowpass filtering is not effective to reduce the spot noise. Figure2.20e
shows the image with each pixel in the complement of input image replaced by the
maximum value in its 5 × 5 neighborhood. It highlights the brightest parts of the
image. The image has become brighter. Figure2.20f shows the image with each pixel
replaced by the minimum value in its 5 × 5 neighborhood. It highlights the darkest
parts of the image.

2.4 Neighborhood Operations 57

Fig. 2.20 a A 256 × 256 8-bit image and b the image with spot noise; c median filtered image
with a 3× 3 window; d lowpass filtered image with a 3× 3 window; e image with each pixel in the
complement of the input image replaced by the maximum value in its 5× 5 neighborhood; f image
with each pixel replaced by the minimum value in its 5 × 5 neighborhood

58 2 Image Enhancement in the Spatial Domain

2.5 Summary

• Image enhancement involves modifying the pixel values to improve the quality of
the image with some respect for human or machine vision.

• The simplest type is that in which each output pixel is a function of the input pixel
only. Typical operations include complementing and gamma correction. Pointwise
arithmetic and logical operations are carried out with corresponding pixels in two
or more images.

• Histogram is the count of the number of occurrences of each gray level in the
image. In addition to enhancement, histograms are useful for other operations
such as segmentation.

• In histogram stretching, a part of the range of gray levels is stretched to enhance
the image.

• In histogram equalization, the gray levels are redistributed uniformly over the gray
level range to enhance the image.

• In histogram specification, the gray levels are redistributed, according to the spec-
ified histogram, over the gray level range to restore the image, with a knowledge
of its original histogram.

• Thresholding is choosing a gray level of some significance and using it to do
processing such as segmentation, compression and denoising.

• In neighborhood operations, the output value of a pixel is a linear or nonlinear
function of a set of pixels in its neighborhood.

• In linear filtering, the spectrum of the image is modified in a desired way. This
includes operations such as lowpass and highpass filtering.

• Typical lowpass filters are averaging and Gaussian. Laplacian filter is of highpass
type.

• Filtering is implemented by the convolution operation in the spatial domain.
Although an image is a 2-D function, 1-D convolution is also used for filtering
with separable filters.

• In nonlinear filtering, the output value of a pixel is a nonlinear function of a set of
pixels in its neighborhood.

• Typical example of nonlinear filtering is median filtering, in which the output pixel
value corresponding to a pixel is the median of a set of pixels in its neighborhood.

Exercises

2.1 Find the complement of the 4 × 4 8-bit gray level image and verify that the
image can be restored by complementing the complemented image.

Exercises 59

(i) ⎡
⎢⎢⎣
112 148 72 153
120 125 30 99
95 120 89 33

170 99 109 40

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
164 127 117 59
154 122 104 83
129 136 100 60
117 128 80 48

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
46 48 46 45
42 49 46 45
64 73 60 43
94 69 63 37

⎤
⎥⎥⎦

2.2 Find the complement of the 4 × 4 binary image and verify that the image can
be restored by complementing the complemented image.

(i) ⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
1 1 0 0
1 0 0 0
1 1 1 1
1 1 0 0

⎤
⎥⎥⎦

2.3 For the list of gray levels, apply gamma correction and find the corresponding
new gray levels. Apply the inverse transformation to the new gray levels and verify
that the given gray levels are obtained.

{0, 25, 50, 100, 150, 200, 250, 255}

60 2 Image Enhancement in the Spatial Domain

(i) γ = 0.8.
(ii) γ = 1.1.
(iii) γ = 1.8.

2.4 Given a 4 × 4 4-bit image, find the histogram equalized version of it.

*(i) ⎡
⎢⎢⎣
4 4 3 3
4 4 4 3
5 4 4 4
4 4 4 4

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
1 1 0 1
1 1 0 3
1 0 0 2
1 0 0 2

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
3 5 5 3
4 4 4 3
4 2 3 4
4 2 2 3

⎤
⎥⎥⎦

2.5 Given 4×4 4-bit reference and input images, use histogram matching to restore
the input image.

*(i) The reference and input images, respectively, are

⎡
⎢⎢⎣
4 4 3 3
4 4 4 3
5 4 4 4
4 4 4 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
15 15 0 0
15 15 15 0
15 15 15 15
15 15 15 15

⎤
⎥⎥⎦

(ii) The reference and input images, respectively, are

⎡
⎢⎢⎣
3 3 3 3
3 3 3 3
3 2 2 3
2 2 2 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
15 15 15 15
15 15 15 15
15 0 0 15
0 0 0 0

⎤
⎥⎥⎦

(iii) The reference and input images, respectively, are

⎡
⎢⎢⎣
3 5 5 3
4 4 4 3
4 2 3 4
4 2 2 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 15 15 0
15 15 15 0
15 0 0 15
15 0 0 0

⎤
⎥⎥⎦

Exercises 61

2.6 Given a 8 × 8 8-bit image, find the binary, hard and soft thresholded versions
with the threshold T = 160.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

255 255 255 117 50 39 50 56
255 255 255 194 45 26 48 54
255 255 255 241 61 25 53 57
255 255 255 255 104 32 64 64
255 255 255 255 154 37 59 61
255 255 255 255 199 54 55 61
255 255 255 255 230 71 59 64
255 255 255 255 250 95 60 68

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.7 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
70 62 51 45
71 62 57 55
73 65 56 60
68 69 63 66

⎤
⎥⎥⎦

2.8 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
41 43 45 43
40 41 42 41
42 38 39 42
39 33 37 36

⎤
⎥⎥⎦

2.9 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
averaging filter with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
45 78 87 51
59 56 62 49
59 39 44 57
56 36 35 51

⎤
⎥⎥⎦

2.10 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders symmetrically extended.

x(m, n) =

⎡
⎢⎢⎣
202 195 192 191
216 211 200 209
224 212 215 227
224 205 227 230

⎤
⎥⎥⎦

62 2 Image Enhancement in the Spatial Domain

2.11 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
202 195 192 191
216 211 200 209
224 212 215 227
224 205 227 230

⎤
⎥⎥⎦

2.12 Given a 4 × 4 image, find the 4 × 4 lowpass filtered output using the 3 × 3
Gaussian filter (σ = 0.5) with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
95 82 54 33
84 78 56 64
73 71 53 60
73 73 54 36

⎤
⎥⎥⎦

2.13 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter

h(m, n) =
⎡
⎣
0 1 0
1 −4 1
0 1 0

⎤
⎦

with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
45 52 56 52
49 60 55 55
47 55 53 46
45 48 51 40

⎤
⎥⎥⎦

2.14 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter with the borders symmetrically extended.

x(m, n) =

⎡
⎢⎢⎣
64 62 62 68
68 66 58 64
75 70 60 58
72 69 59 60

⎤
⎥⎥⎦

2.15 Given a 4 × 4 image, find the 4 × 4 highpass filtered output using the 3 × 3
Laplacian filter with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
39 40 35 33
31 40 39 37
34 38 41 43
37 39 42 43

⎤
⎥⎥⎦

Exercises 63

*2.16 Given a 4×4 image, find the 4×4 enhanced output using the 3×3 Laplacian
sharpening filter

h(m, n) =
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦

with the borders replicated.

x(m, n) =

⎡
⎢⎢⎣
190 206 228 238
180 205 227 219
182 203 211 159
184 212 206 177

⎤
⎥⎥⎦

2.17 Given a 4× 4 image, find the 4× 4 enhanced output using the 3× 3 Laplacian
sharpening filter with the borders periodically extended.

x(m, n) =

⎡
⎢⎢⎣
138 163 162 177
148 157 167 175
153 165 160 178
157 162 164 188

⎤
⎥⎥⎦

2.18 Given a 4× 4 image, find the 4× 4 enhanced output using the 3× 3 Laplacian
sharpening filter with the borders zero-padded.

x(m, n) =

⎡
⎢⎢⎣
201 195 191 169
210 201 181 157
213 207 190 166
204 204 197 159

⎤
⎥⎥⎦

2.19 Given a 4 × 4 image, find the 4 × 4 median filtered output using the 3 × 3
window with the borders zero-padded.

(i)

x(m, n) =

⎡
⎢⎢⎣
201 195 191 169
210 201 181 157
213 207 190 166
204 204 197 159

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
138 163 162 177
148 157 167 175
153 165 160 178
157 162 164 188

⎤
⎥⎥⎦

64 2 Image Enhancement in the Spatial Domain

(iii)

x(m, n) =

⎡
⎢⎢⎣
190 206 228 238
180 205 227 219
182 203 211 159
184 212 206 177

⎤
⎥⎥⎦

Chapter 3
Fourier Analysis

Abstract Transforms provide an alternate representation of images, which usually
facilitates easier interpretation of operations and fast processing. The most important
of all the transforms, the Fourier transform, decomposes an image in terms of sinu-
soidal surfaces. This transform is of fundamental importance to image processing,
as is the case in almost all areas of science and engineering. As in the case of the
convolution operation, both the 1-D and 2-D versions are described. Although the
image is a 2-D signal, some of the important operations are decomposable and can be
carried out in one dimension with reduced execution time. Another advantage is that
understanding of the 1-D version is simpler. Definition, properties, and examples of
the transforms are presented.

Transform means change in form and, in general, transforms make the processing of
data easier. For example, themore difficultmultiplication operation becomes addition
when the two numbers, to bemultiplied, are represented in their logarithmic form. For
the most part, image processing is easier and efficient using a transformed version of
the image. A transform is of practical interest only if fast algorithms are available for
its computation. Fortunately, in most cases, the row–column method is applicable,
which requires the repeated use of 1-D transform algorithms. Fourier analysis and
convolution are the two fundamental concepts those are indispensable in signal and
system analysis. It is mandatory that these two concepts are well understood. With
a good understanding of the concepts, these tools can be easily and efficiently used
in applications. Fortunately, the concepts are simple. Convolution, in principle, is
nothing more than computing the balance in a bank account, as presented in an
earlier chapter.

In this chapter and in theAppendix,we present theDFTand its continuous version,
its properties and the fast algorithms to compute them. As an image is a 2-D signal,
the required transforms and processing are, in general, straightforward extensions
of those of 1-D signals. The 1-D versions of the transforms are also directly used
in image processing operations often and they are easier to understand. For these
reasons, the 1-D versions of the transforms are presented first, followed by their 2-D
versions.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_3

65

66 3 Fourier Analysis

Fourier analysis, in principle, is not more complex than finding the amount of a
bag of coins. A bag contains a large number of coins of various denominations. There
are two possible ways to find the amount of coins in the bag. One way is to arbitrarily
pick up a coin, find its value, and add it to a partial sum. Then, pick up another coin
and do the same. This process ends after the values of all the coins are added to
find the amount. Another way is to sort the coins into various denominations, count
the number of coins in each group, multiply by their respective values, and sum
them up. The second procedure is, obviously, more efficient when the number of
coins is relatively large. In addition, we know the relative number of coins in various
denominations.

In Fourier analysis, a time-domain waveform is decomposed into its sinusoidal
components of various frequencies. One advantage of the decomposition is that it
gives the strength of the various components, which is called the spectrum of the
signal. The spectrum is the starting point in most of the analysis. Another advantage
is that, as in the case of finding the amount of coins, it is more efficient to find the
system output using the sinusoidal components of the input signal. That is because
the convolution operation becomes themuch simplermultiplication operation, once a
waveform is decomposed. The sinusoidal (and itsmathematically equivalent complex
exponential) waveform is the only one that retains its shape from the input to the
output of a linear system. Then, using the linearity property of the linear systems
and decomposing an arbitrary waveform using Fourier analysis, the system output is
computed using multiplication and addition operations only. Further, the availability
of fast algorithms for computing the transformmakes the transformanalysis essential.

Another point is that, although the signal is mostly real-valued, wewould be using
complex numbers in the analysis. There is nothing complex about complex numbers.
They are ordered pairs of numbers (2-element vectors). The use of complex numbers
is required because a sinusoidal waveform, at a given frequency, is characterized
by its amplitude and phase and storing these two values in a vector is the most
efficient way to represent and manipulate sinusoids (which are the basis waveforms
in Fourier analysis). In summary, a good amount of practice (both paper-and-pencil
and computer programming) of Fourier analysis and convolution will make anyone
proficient in signal and system analysis.

3.1 The 1-D Discrete Fourier Transform

The DFT is the practically most often used version of the Fourier analysis. This
is due to the fact that the input and output of this transform are discrete and finite
and, therefore, it is inherently suitable for implementation on the digital computer.
Further, fast algorithms are available for its computation. In the DFT, a periodically
extended finite discrete signal is decomposed in terms of a finite number of discrete
sinusoidal waveforms.

3.1 The 1-D Discrete Fourier Transform 67

0 1 2 3
−2
−1

0
1
2
3

x
(n

)

n

(a)

0 1 2 3
−3

0

2

4

X
 (
k)

k

(b)

real
imaginary

0 1 2 3
−2

−1

0

1

2

x
(n

)

n

(c)

0.5 1 1.5
12

13

E

p

(d)

Fig. 3.1 a A periodic waveform, x(n) = 1+ 2 cos(2π4 n − π
3)+ cos(2 2π

4 n), with period 4 samples
and b its frequency-domain representation; c the frequency components of the waveform in (a); d
the square error in approximating the waveform in (a) using only the DC component with different
amplitudes

Consider the discrete periodic waveform,

x(n) = 1 + 2 cos

(
2π

4
n − π

3

)
+ cos

(
2
2π

4
n

)

with period 4 samples, shown in Fig. 3.1a. The independent variable n represents time
and the dependent variable x(n) is the amplitude. The 4 samples over one period are
obtained from the equation for n = 0, 1, 2, 3

{x(0) = 3, x(1) = √
3, x(2) = 1, x(3) = −√

3}.

For example, letting n = 1, we get

x(1) = 1 + 2 cos

(
2π

4
1 − π

3

)
+ cos

(
2
2π

4
1

)
= 1 + 2

√
3

2
− 1 = √

3.

Figure3.1b shows the frequency-domain representation of the waveform in (a)

{X (0) = 4, X (1) = 2 − j2
√
3, X (2) = 4, X (3) = 2 + j2

√
3}.

68 3 Fourier Analysis

It shows the complex amplitudes, multiplied by 4, of its constituent complex expo-
nentials. To find the real sinusoids, shown in Fig. 3.1c, those constitute the signal,
we add up the complex exponentials.

x(n) = 1

4

(
4e j0 2π

4 n + (2 − j2
√
3)e j 2π

4 n + 4e j2 2π
4 n + (2 + j2

√
3)e j3 2π

4 n
)

= 1

4

(
4e j0 2π

4 n + 4e j (2π4 n− π
3) + 4e j2 2π

4 n + 4e− j (2π4 n− π
3)

)

= 1 + 2 cos

(
2π

4
n − π

3

)
+ cos

(
2
2π

4
n

)

This example demonstrates the fact that Fourier analysis represents a signal as a
linear combination of sinusoids or, equivalently, complex exponentials with pure
imaginary exponents.

The Fourier reconstruction of a waveform is with respect to the least-squares error
criterion. That is, the sum of the squared magnitude of the error between the given
waveform and the corresponding Fourier reconstructed waveform is guaranteed to
be the minimum if part of the constituent sinusoids of a waveform is used in the
reconstruction and will be zero if all the constituent sinusoids are used. The reason
this criterion, based on signal energy or power, is used rather than aminimumuniform
deviation criterion is that: (i) it is acceptable for most applications and (ii) it leads
to closed-form formulas for the analytical determination of the Fourier coefficients.
Let xa(n) be an approximation to a given waveform x(n) of period N , using fewer
sinusoids than that is required. The error between x(n) and xa(n) is defined as

E =
N−1∑
n=0

|x(n) − xa(n)|2

For a given number of sinusoids, there is no better approximation for the signal than
that provided by the Fourier approximation when the least-squares error criterion is
applied. Assume that, we are constrained to use only the DC component to approx-
imate the waveform in Fig. 3.1a. Let the optimal value of the DC component be p.
To minimize the square error,

(3 − p)2 + (
√
3 − p)2 + (1 − p)2 + (−√

3 − p)2

must be minimum. Differentiating this expression with respect to p and equating it
to zero, we get

2(3 − p)(−1) + 2(
√
3 − p)(−1) + 2(1 − p)(−1) + 2(−√

3 − p)(−1) = 0.

Solving this equation, we get p = 1 as given by the Fourier analysis. The square
error, for various values of p, is shown in Fig. 3.1d.

3.1 The 1-D Discrete Fourier Transform 69

For two complex exponentials e j 2π
N ln and e j 2π

N kn over a period of N samples, the
orthogonality property is defined as

N−1∑
n=0

e j 2π
N (l−k)n =

{
N for l = k
0 for l �= k

where l, k = 0, 1, . . . , N − 1. If l = k, the summation is equal to N as e j 2π
N (l−k)n =

e0 = 1. Otherwise, by using the closed-form expression for the sum of a geometric
progression, we get

N−1∑
n=0

e j 2π
N (l−k)n = 1 − e j2π(l−k)

1 − e j 2π(l−k)
N

= 0, for l �= k

It is also obvious from the fact that the sum of the samples of the complex exponential
over an integral number of cycles is zero. That is, in order to find the coefficient, with
a scale factor N , of a complex exponential, we multiply the samples of a signal with
the corresponding samples of the complex conjugate of the complex exponential.
Using each complex exponential in turn, we get the frequency coefficients of all the
components of a signal as

X (k) =
N−1∑
n=0

x(n)W nk
N , k = 0, 1, . . . , N − 1 (3.1)

where WN = e− j 2π
N . This is the DFT equation analyzing a waveform with harmon-

ically related discrete complex sinusoids. X (k) is the coefficient, scaled by N , of
the complex sinusoid e j 2π

N kn with a specific frequency index k (frequency 2π
N k radi-

ans per sample). DFT computation is based on assumed periodicity. That is, the N
input values are considered as one period of a periodic waveform with period N .
The summation of the sample values of the N complex sinusoids multiplied by their
respective frequency coefficients X (k) is the IDFT operation. The N -point IDFT of
the frequency coefficients X (k) is defined as

x(n) = 1

N

N−1∑
k=0

X (k)W −nk
N , n = 0, 1, . . . , N − 1 (3.2)

The sum of the sample values is divided by N in Eq. (3.2) as the coefficients X (k)
have been scaled by the factor N in the DFT computation.

The DFT and IDFT definitions can be expressed in matrix form. Expanding the
DFT definition with N = 4, we get

70 3 Fourier Analysis

⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e− j 2π
4 (0)(0) e− j 2π

4 (0)(1) e− j 2π
4 (0)(2) e− j 2π

4 (0)(3)

e− j 2π
4 (1)(0) e− j 2π

4 (1)(1) e− j 2π
4 (1)(2) e− j 2π

4 (1)(3)

e− j 2π
4 (2)(0) e− j 2π

4 (2)(1) e− j 2π
4 (2)(2) e− j 2π

4 (2)(3)

e− j 2π
4 (3)(0) e− j 2π

4 (3)(1) e− j 2π
4 (3)(2) e− j 2π

4 (3)(3)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦

Using vector and matrix quantities, the DFT definition is given by

X = Wx

where x is the input vector, X is the coefficient vector, andW is the transformmatrix,
defined as

W =

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

Expanding the IDFT definition with N = 4, we get

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

e j 2π
4 (0)(0) e j 2π

4 (0)(1) e j 2π
4 (0)(2) e j 2π

4 (0)(3)

e j 2π
4 (1)(0) e j 2π

4 (1)(1) e j 2π
4 (1)(2) e j 2π

4 (1)(3)

e j 2π
4 (2)(0) e j 2π

4 (2)(1) e j 2π
4 (2)(2) e j 2π

4 (2)(3)

e j 2π
4 (3)(0) e j 2π

4 (3)(1) e j 2π
4 (3)(2) e j 2π

4 (3)(3)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦

= 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦

Concisely,

x = 1

4
W−1X = 1

4
(W∗)X

The inverse and forward transform matrices are orthogonal. That is,

1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

3.1 The 1-D Discrete Fourier Transform 71

The DFT is defined for sequences of any length. However, it is usually assumed that
the length N of a sequence

{x(0), x(1), x(2), . . . , x(N − 1)}

is a power of 2 inmost applications. The reason is that practically efficient algorithms
for the computation of the DFT are available only for these lengths. When necessary
to meet this constraint, the signal can be appended by sufficient number of zero-
valued samples.

Some examples of 4-point DFT computation are given below. The DFT of

{x(0) = 3, x(1) = √
3, x(2) = 1, x(3) = −√

3}

is computed as

⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3√
3
1

−√
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
2 − j2

√
3
4

2 + j2
√
3

⎤
⎥⎥⎦

The DFT spectrum, as shown in Fig. 3.1b, is {X (0) = 4, X (1) = 2− j2
√
3, X (2) =

4, X (3) = 2 + j2
√
3, }. Using the IDFT, we get back the input x(n).

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4
2 − j2

√
3
4

2 + j2
√
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3√
3
1

−√
3

⎤
⎥⎥⎦

The DFT of
{x(0) = 4, x(1) = 0, x(2) = 0, x(3) = 0}

is computed as ⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
4
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
4
4
4
4

⎤
⎥⎥⎦

The DFT spectrum is {X (0) = 4, X (1) = 4, X (2) = 4, X (3) = 4}. This is an
impulse 4δ(n) and its spectrum is uniform. All the frequency components exist with
equal amplitude and zero phase. Using the IDFT, we get back the input x(n).

72 3 Fourier Analysis

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
4
4
4
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
4
0
0
0

⎤
⎥⎥⎦

The DFT of
{x(0) = 2, x(1) = 2, x(2) = 2, x(3) = 2}

is computed as ⎡
⎢⎢⎣

X (0)
X (1)
X (2)
X (3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2
2
2
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
8
0
0
0

⎤
⎥⎥⎦

The DFT spectrum is {X (0) = 8, X (1) = 0, X (2) = 0, X (3) = 0}. This is the DC
signal and its spectrum is nonzero only at k = 0. Using the IDFT, we get back the
input x(n). ⎡

⎢⎢⎣
x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 − j
1 −1 1 −1
1 − j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
8
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2
2
2
2

⎤
⎥⎥⎦

Figure3.2 shows some standard signals and their DFT spectra. Figure3.2a, b
shows the unit-impulse signal δ(n) and its DFT spectrum. One of the reasons for the
importance of the impulse signal is that its transform is a constant. The DC signal
x(n) and its DFT spectrum, shown in Fig. 3.2c, d, are almost the reversal of those of
the impulse.

Figure3.2e, f shows the sinusoid 2 cos
(
22π

8 n − π
3

)
and its DFT spectrum. The

sinusoid

2 cos

(
2
2π

8
n − π

3

)
= cos

(
2
2π

8
n

)
+ √

3 sin

(
2
2π

8
n

)

Therefore, the real parts of the spectrum are {4, 4} at k = 2, 6 since the frequency
index is 2. The imaginary parts are

√
3{−4, 4} at k = 2, 6.

The most well-known and probably the first example of Fourier reconstruction
presented in teaching Fourier analysis is the square wave. Figure3.3a shows one
period of the square waveform with period 256 samples. Figure3.3a also shows
the reconstruction by the DC component alone. Figure3.3b shows its magnitude
spectrum loge(1 + |X (k|) (log scale). Whenever the dynamic range of a function
becomes large, it is usually presented in a logarithmic scale for a better display. As the
logarithm is undefined for zero, the constant 1 is added before taking the logarithm.
As the waveform has discontinuities, the rate of decay of the coefficients is slow
(of the order of 1/k). Discontinuities in the waveform is an extreme test for Fourier
reconstruction as the sinusoids are very smooth functions and infinitely differentiable,

3.1 The 1-D Discrete Fourier Transform 73

0 2 4 6
0

1

δ
(n

)

n

(a)

0 2 4 6
0

1

X
 (
k)

k

(b)

0 2 4 6
0

1

x
(n

)

n

(c)

0 2 4 6
0

8

X
 (
k)

k

(d)

0 2 4 6
−2

−1

0

1

2

x
(n

)

n

(e)

0 2 4 6
−7

0

4

7

X
 (
k)

k

(f)

real
imaginary

Fig. 3.2 a The unit-impulse signal δ(n) with 8 samples and b its DFT spectrum; c the DC signal
x(n) and d its DFT spectrum; e the sinusoid 2 cos

(
2 2π

8 n − π
3

)
and f its DFT spectrum

while a discontinuity has no derivative. In practice, such sharp discontinuities are
less likely and the rate of decay is likely to be much faster.

Figure3.3c–f shows the Fourier reconstruction of the square wave with 2, 4,
8, and 16 frequency components, respectively. As the number of components is
increased, the reconstructed waveform becomes more closer to the original. The
original waveform is reconstructed by constructive and destructive interference of
the frequency components. For example, the peak value in (c) at sample 128 is less
than 1 of that of the original waveform and it is higher at sample 64 than required.
Adding more components in the reconstruction process, constructive interference
occurs at sample 128 increasing the value and destructive interference occurs at
sample 64 decreasing the value. This process continues until all the components are
used.

74 3 Fourier Analysis

0 64 128 192 256
0

0.25

1

x
(n

)

n

(a)

0 64 128 192 256
0

4.1744

lo
g e(1

+|
X

(k
)|)

k

(b)

0 64 128 192 256
−0.2001

0

0.7001

xr
 (
n)

n

(c)

0 64 128 192 256
0

1.1684

xr
 (
n)

n

(d)

0 64 128 192 256
0

1.1169

xr
 (
n)

n

(e)

0 64 128 192 256

0

1.0998

xr
 (
n)

n

(f)

Fig. 3.3 aOne period of a periodic square waveform and its representation with the DC component
alone; b its magnitude spectrum loge(1+|X (k|) (log scale); the Fourier reconstruction of the square
waveform with (c–f) 2, 4, 8, and 16 frequency components, respectively

Fourier analysis, in theory, requires an infinite number of components to recon-
struct an arbitrary waveform accurately. But, in practice, the approximation by a
relatively small number of components is found to be adequate. This feature, along
with fast algorithms for its computation, makes the Fourier analysis essential in prac-
tical applications. This figure also brings out the basic fact that Fourier analysis is
generating a desired interference pattern using sinusoidal waveforms of various fre-
quencies. Practice with reconstruction graphs, such as this figure, is recommended
for a good understanding of Fourier analysis.

3.1 The 1-D Discrete Fourier Transform 75

Parseval’s Theorem

This theorem expresses the power of a signal in terms of its DFT spectrum. The
orthogonal transforms have the energy preservation property. Let x(n) ↔ X (k)with
sequence length N . The double-headed arrow indicates that X (k) is the representation
of x(n) in the transform domain. The sum of the squared magnitude of the samples
of a complex exponential with amplitude one, over the period N , is N . Remember
that these samples occur on the unit circle. The DFT decomposes a signal in terms of
complex exponentials with coefficients X (k)/N . Therefore, the power of a complex
exponential is |X (k)|2

N 2 N = |X (k)|2
N . The power of a signal is the sum of the powers of

its constituent complex exponentials and is given as

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X (k)|2

Example 3.1 Verify the Parseval’s theorem for the DFT pair

{4, 1, 2, 4} ↔ {11, 2 + j3, 1, 2 − j3}

Solution
The sum of the squared magnitude of the data sequence is 37 and that of the DFT
coefficients divided by 4 is also 37.

3.2 The 2-D Discrete Fourier Transform

In taking a transform, an image is expressed as a sum of the scaled basis signals of the
transform. For 1-D signals, the basis signals for Fourier analysis are the sinusoidal
waveforms. That is, an arbitrary curve is expressed as a linear combination of a set
of sinusoids. In the 2-D case, an image, usually with an arbitrary amplitude profile,
is expressed as a linear combination of sinusoidal surfaces (Fig. 1.3), which are
sinusoids with two frequency variables. The arbitrary amplitude profile of a practical
image is shown in Fig. 1.1b. A sinusoidal surface is a corrugation made of alternate
parallel ridges and grooves. The DFT is defined for any length. However, due to
the availability of practically efficient algorithms, the length of a signal is usually
assumed to be an integral power of 2. Further, we assume, for the most part, that the
two dimensions of an image are equal. As the 2-D DFT is separable, almost all the
computation required involves 1-D DFT algorithms. For ease of manipulation and
compactness, the mathematically equivalent complex sinusoid is mostly used in the
analysis instead of the real sinusoid. The two forms of the sinusoid are related by the
Euler’s formula.

http://dx.doi.org/10.1007/978-981-10-6113-4_1
http://dx.doi.org/10.1007/978-981-10-6113-4_1

76 3 Fourier Analysis

The 2-D DFT decomposes an image into its components (Fourier analysis) by
correlating the input image with each of the basis functions. The 2-D DFT of a
N × N image x(m, n) is defined as

X (k, l) =
N−1∑
m=0

N−1∑
n=0

x(m, n)e− j 2π
N (mk+nl), k, l = 0, 1, . . . , N − 1. (3.3)

The 2-D IDFT reconstructs the input image by summing the basis functions multi-
plied by the corresponding DFT coefficients (Fourier synthesis). The 2-D IDFT is
given by

x(m, n) = 1

N 2

N−1∑
k=0

N−1∑
l=0

X (k, l)e j 2π
N (mk+nl), m, n = 0, 1, . . . , N − 1. (3.4)

The DFT coefficients computed using Eq. (3.3) places the DC coefficient X (0, 0)
in the top-left-hand corner of the coefficient matrix. While that is the format used
for most of the computation, for visual purposes, it is often desirable to place the
coefficient X (0, 0) in the center of the display. The center-zero format of the 2-D
DFT, with N even, is defined as

X (k, l) =
N
2 −1∑

m=− N
2

N
2 −1∑

n=− N
2

x(m, n)e− j 2π
N (mk+nl), k, l = − N

2
,− N

2
+ 1, . . . ,

N

2
− 1

The corresponding 2-D IDFT is given by

x(m, n) = 1

N 2

N
2 −1∑

k=− N
2

N
2 −1∑

l=− N
2

X (k, l)e j 2π
N (mk+nl), m, n = − N

2
,− N

2
+ 1, . . . ,

N

2
− 1

By swapping of the quadrants of the image or the spectrum, the desired format can
be obtained from the other.

3.3 DFT Representation of Images

For real-valued images, the DFT coefficients always occur as real values or complex
conjugate pairs. Coefficients

X (0, 0), X

(
N

2
, 0

)
, X

(
0,

N

2

)
, X

(
N

2
,

N

2

)

3.3 DFT Representation of Images 77

are real-valued, as the basis functions are of the form 1 and (−1)n , and the rest are
complex conjugate pairs. For example,

2|X (k, l)| cos
(
2π

N
(mk + nl) + ∠(X (k, l))

)

= X (k, l)e j 2π
N (mk+nl) + X∗(k, l)e− j 2π

N (mk+nl)

= X (k, l)e j 2π
N (mk+nl) + X∗(k, l)e j 2π

N (m(N−k)+n(N−l))

With X (k, l) = Xr (k, l) + j Xi (k, l), the magnitude is

|X (k, l)| =
√

X2
r (k, l) + X2

i (k, l)

and the phase is

∠X (k, l) = tan−1 Xi (k, l)

Xr (k, l)

Using Eq. (3.4), with N even, the image can be expressed as a sum its constituent
sinusoidal surfaces.

x(m, n) = 1

N2

(
X (0, 0) + X

(
N

2
, 0

)
cos(πm) + X

(
0,

N

2

)
cos(πn) + X

(
N

2
,

N

2

)
cos(π(m + n))

+2

N
2 −1∑
k=1

(|X (k, 0)| cos
(
2π

N
mk + ∠(X (k, 0))

)

+2

N
2 −1∑
l=1

(|X (0, l)| cos
(
2π

N
nl + ∠(X (0, l))

)

+2

N
2 −1∑
l=1

(
|X

(
N

2
, l

)
| cos

(
2π

N

(
m

N

2
+ nl

)
+ ∠

(
X

(
N

2
, l

)))

+ 2

N
2 −1∑
k=1

N−1∑
l=1

(|X (k, l)| cos
(
2π

N
(mk + nl) + ∠(X (k, l)

)))
, m, n = 0, 1, . . . , N − 1 (3.5)

Therefore,
N 2

2
+ 2

different sinusoidal surfaces constitute a N × N real image.
In general, computing the transform coefficients is finding the correlation of a

signal with each of the basis functions. In finding the DFT coefficients of an image,
from Eq. (3.3), we multiply the image with the N 2 basis images. For each pair of

78 3 Fourier Analysis

coefficient indices (k, l), we can find out the corresponding basis image by varying
the indices m and n in

e j 2π
N (mk+nl)

Therefore, the computational complexity of computing the 2-D DFT from the def-
inition is O(N 4). The row–column method reduces this complexity to O(N 3). The
complexity is further reduced to O(N 2 log2 N) using fast 1-D DFT algorithms with
the length of the 1-D DFT being a power of 2.

Example 3.2 Find the 2-D DFT of the 4 × 4 2-D unit-impulse signal

x(m, n) = δ(m, n)

and its constituent sinusoidal surfaces.

Solution
The impulse (on the left) and its 2-D DFT are

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

↔
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

We assume that the top-left-hand corner of the image is the origin, with its coor-
dinates (0, 0). The row variable m increases downward and the column variable n
increases toward right. An impulse has a uniform spectrum. That is, the value of all
the coefficients is equal to 1. This DFT can be computed using the 2-D DFT defini-
tion. But it is more efficient to compute the 1-DDFT of the rows of the input followed
by 1-D DFT of the columns of the resulting output or vice versa. Computing the 1-D
DFT of the rows, we get

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

The 1-D DFT of the columns yields the 2-D DFT of the impulse.
A 4 × 4 real image is composed of 10 real sinusoidal surfaces.

δ(m, n) = 1

16

3∑
k=0

3∑
l=0

e j 2π4 (km+ln), m, n = 0, 1, 2, 3

= 1

16

(
1 + (−1)m + (−1)n + (−1)(m+n)

+ 2 cos

(
2π

4
m

)
+ 2 cos

(
2π

4
n

)
+ 2 cos

(
2π

4
(2m + n)

)

+ 2 cos

(
2π

4
(m + n)

)
+ 2 cos

(
2π

4
(m + 2n)

)
+ 2 cos

(
2π

4
(m + 3n)

))

3.3 DFT Representation of Images 79

We can find the 10 real sinusoidal surfaces that constitute the impulse signal using
this equation. Four individual frequency coefficients (4 surfaces) and six pairs (6
surfaces) form the constituent sinusoidal surfaces.

For X (0, 0) = 1,

x(m, n) = 1

16
e j 2π

4 (0m+0n) = 1

16
, m, n = 0, 1, 2, 3

1
16

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

↔
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

This is the DC component.
For X (2, 0) = 1,

x(m, n) = 1

16
e j 2π

4 (2m+0n) = 1

16
cos(πm) = 1

16
(−1)m, m, n = 0, 1, 2, 3

1
16

1 1 1 1
-1 -1 -1 -1
1 1 1 1
-1 -1 -1 -1

↔
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

Odd-indexed rows are negative-valued. Four cosine waves, with frequency index 2,
are stacked in the horizontal direction.
For X (0, 2) = 1,

x(m, n) = 1

16
e j 2π

4 (0m+2n) = 1

16
cos(πn) = 1

16
(−1)n, m, n = 0, 1, 2, 3

1
16

1 -1 1 -1
1 -1 1 -1
1 -1 1 -1
1 -1 1 -1

↔
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

Odd-indexed columns are negative-valued. Four cosine waves, with frequency index
2, are stacked in the vertical direction.
For X (2, 2) = 1,

x(m, n) = 1

16
e j 2π

4 (2m+2n) = 1

16
cos(π(m + n)) = 1

16
(−1)(m+n), m, n = 0, 1, 2, 3

1
16

1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

↔
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

80 3 Fourier Analysis

0
4

7

0

4
7

−1.5676

0

1.5676

n

(b)

m

x
(m

,n
)

0 1 7
0

7

k

l
(a)

X (1,0) = −7.7071−j50.163 X
 (7

,0
) =

 −
7.

70
71

+j
50

.1
63

Fig. 3.4 a A 8 × 8 2-D DFT spectrum; b the corresponding sinusoidal surface, x(m, n) =
1.586 cos(2π8 m − 98.7347◦)

The pixels with the sum of their coordinates odd are negative-valued. Four cosine
waves, with frequency index 2, are stacked in the vertical direction with a shift of
(πm) or vice versa.
For X (1, 1) = 1 and X (3, 3) = X (4 − 1, 4 − 1) = X (−1,−1) = 1,

x(m, n) = 1

16

(
e j 2π4 (m+n) + e− j 2π4 (m+n)

)
= 1

8
cos

(
2π

4
(m + n)

)
, m, n = 0, 1, 2, 3

1
8

1 0 -1 0
0 -1 0 1
-1 0 1 0
0 1 0 -1

↔
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

Four cosine waves, with frequency index 1, are stacked in the vertical direction with a
shift of (π/2)m in the horizontal direction or vice versa. The other sinusoidal surfaces
can be determined similarly.

Consider the 8× 8 sinusoidal surface shown in Fig. 3.4b and its 2-D DFT shown
in Fig. 3.4a. The coefficients X (1, 0) = (−7.7071 − j50.163) and X (7, 0) =
(−7.7071+ j50.163) represent a stack of sinusoids along the n-axis with frequency
1 and amplitude 1.586 and phase −98.7347◦.

x(m, n) = 1

64

(
(−7.7071 − j50.163)e j 2π

8 m + (−7.7071 + j50.163)e− j 2π
8 m

)

= 2

64
|(−7.7071 − j50.163)| cos

(
2π

8
m + ∠(−7.7071 − j50.163)

)

= 1.586 cos

(
2π

8
m − 98.7347◦

)

3.3 DFT Representation of Images 81

0
4

7

0

4
7

−1.4442

0

1.4442

n

(b)

m

x
(m

,n
)

0 1 7
0
1

7

k

l
(a)

X (1,1) = −23.1421+j42.2132

X (7,7) = −23.1421−j42.2132

Fig. 3.5 a A 8 × 8 2-D DFT spectrum; b the corresponding sinusoidal surface, x(m, n) =
1.5044 cos(2π8 (m + n) + 118.7324◦)

0
32

63

0
32

63
−1

0

1

n

(b)

m

x
(m

,n
)

0 63

0

63

k

l

(a)

X (1,2) = 1024+j1773.6

X (63,62) = 1024−j1773.6

Fig. 3.6 aA64×64 2-D spectrum; b the corresponding sinusoidal surface, x(m, n) = cos(2π64 (m+
2n) + π

3)

The sinusoidal surface shown in Fig. 3.5b and its DFT shown in Fig. 3.5a are a
DFT pair. With the coefficients X (1, 1) = (−23.1421 + j42.2132) and X (7, 7) =
(−23.1421 − j42.2132),

x(m, n) = 1

64

(
(−23.1421 + j42.2132)e j 2π

8 (m+n) + (−23.1421 − j42.2132)e− j 2π
8 (m+n)

)

= 2

64
|(−23.1421 + j42.2132)| cos

(
2π

8
(m + n) + ∠(−23.1421 + j42.2132)

)

= 1.5044 cos

(
2π

8
(m + n) + 118.7324◦

)

Consider the sinusoidal surface shown in Fig. 3.6b and its DFT shown in Fig. 3.6a.
With the coefficients X (1, 2) = 1024+ j1773.6 and X (63, 62) = 1024− j1773.6,

82 3 Fourier Analysis

x(m, n) = 1

4096

(
(1024 + j1773.6)e j 2π

64 (m+2n) + (1024 − j1773.6)e− j 2π
64 (m+2n)

)

= 1

(2)

(
e j (2π64 (m+2n)+ π

3) + e− j (2π64 (m+2n)+ π
3

)
= cos

(
2π

64
(m + 2n) + π

3

)

Figure3.7a shows a 256× 256 black and white rose image. Therefore, the image
has a sharp discontinuity between black and white parts of the image. In addition,
there is a small white dot in the center similar to an impulse function. These two
reasons make its spectrum, shown in Fig. 3.7b, rich in frequency components and
the convergence (rate of decay of the magnitude of the frequency coefficients) is
slow. Figure3.7c shows its reconstruction with the DC component alone, which is
a constant function, equal to the average value of the image. Figure3.7d shows its
reconstruction with its DC component and the first frequency components on the two
coordinate axes of the spectrum. The l-axis component and the k-axis component
are shown in Fig. 3.7e, f, respectively. These are sinusoidal surfaces in contrast to
sinusoidal curves in the 1-D Fourier analysis. Starting with image (d), the addition
of more frequency components makes the image more closer to the original by
constructive and destructive interference of the components. Figure3.8a–f shows the
reconstruction of the image with the first 2× 2, 4× 4, 8× 8, 16× 16, 32× 32, and
all DFT the coefficients.

3.4 Computation of the 2-D DFT

For computing each coefficient, the use of Eq. (3.3), as such, results in a computa-
tional complexity of O(N 2). Therefore, the computational complexity to compute
N 2 coefficients becomes O(N 4). The complex exponential basis functions are sep-
arable. That is,

e j 2π
N (km+ln) = e j 2π

N (ln)e j 2π
N (km)

Therefore,

X (k, l) =
N−1∑
n=0

N−1∑
m=0

x(m, n)e− j 2π
N nle− j 2π

N mk (3.6)

The 2-DFT can be obtained by computing the 1-D DFT of each column of the image
followed by the computation of the 1-D DFT of each row of the resulting data or vice
versa. This method is called the row–column method. The two decomposed forms
of Eq. (3.3) are

X (k, l) =
N−1∑
m=0

{
N−1∑
n=0

x(m, n)e− j 2π
N nl

}
e− j 2π

N mk (3.7)

3.4 Computation of the 2-D DFT 83

(a) (b)

(c) (d)

(e) (f)

Fig. 3.7 a A 256×256 black and white rose image; b its 2-D DFT magnitude (log scale) spectrum
loge(1 + |X (k, l)|); c reconstruction with its DC component alone; d reconstruction with its DC
component and the first frequency components on the k-axis and l-axis axis of the spectrum; e the
l-axis component; f the k-axis component

X (k, l) =
N−1∑
n=0

{
N−1∑
m=0

x(m, n)e− j 2π
N mk

}
e− j 2π

N nl (3.8)

The expression inside the braces is 1-D DFT of each row in Eq. (3.7) and of each
column in Eq. (3.8). The DFT of the N × N matrix x(m, n) can be computed in two
stages. For example, the 1-D DFT of each row of the input image results in

84 3 Fourier Analysis

Fig. 3.8 a–f Reconstruction of the image in Fig. 3.7a with the first 2 × 2, 4 × 4, 8 × 8, 16 × 16,
32 × 32 and all the DFT coefficients

X (m, l) =
N−1∑
n=0

x(m, n)e− j 2π
N nl , m, l = 0, 1, . . . , N − 1

Then, the 1-D DFT of each column of X (m, l) yields the 2-D DFT.

3.4 Computation of the 2-D DFT 85

X (k, l) =
N−1∑
m=0

X (m, l)e− j 2π
N mk, k, l = 0, 1, . . . , N − 1

The decomposition of a 2-D DFT into 2N 1-D DFTs reduces the computational
complexity to O(N 3).

Example 3.3 Compute the 2-D DFT of the following 4 × 4 image using the row–
column method.

n →
m
↓

⎡
⎢⎢⎣

1 2 3 1
−2 3 1 4
1 1 2 2
3 1 2 4

⎤
⎥⎥⎦

Reconstruct the image from the DFT coefficients using the IDFT.

Solution
As the 2-D DFT is decomposable, Eq. (3.3) can be written as the product of 3
matrices.

⎡
⎢⎢⎣
1 1 1 1

1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 3 1
−2 3 1 4
1 1 2 2
3 1 2 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

Premultiplying the image matrix by the left transform matrix is computing 1-D DFT
of the columns, and we get

⎡
⎢⎢⎣

3 7 8 11
j5 1 − j2 1 + j −1
1 −1 2 −5

− j5 1 + j2 1 − j1 −1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦

Postmultiplying the partially transformed imagematrix by the right transformmatrix
is computing 1-D DFT of the rows. The 2-D DFT of the image is

l →
k
↓

⎡
⎢⎢⎣

29 −5 + j4 −7 −5 − j4
1 + j4 −3 + j2 1 + j8 1 + j6

−3 −1 − j4 9 −1 + j4
1 − j4 1 − j6 1 − j8 −3 − j2

⎤
⎥⎥⎦ = X (k, l)

86 3 Fourier Analysis

The input image can be reconstructed by using 1-D IDFTs and the row–column
method. The DFT and IDFT transformmatrices are closely related. Therefore, the 2-
D IDFT can be computed using the DFT simply by swapping the real and imaginary
parts in reading the input and writing the output values. The DFT after swapping the
real and imaginary parts is given by

⎡
⎢⎢⎣

j29 4 − j5 − j7 −4 − j5
4 + j1 2 − j3 8 + j1 6 + j1

− j3 −4 − j1 j9 4 − j1
−4 + j1 −6 + j1 −8 + j1 −2 − j3

⎤
⎥⎥⎦

The result of computing the column DFTs yields

⎡
⎢⎢⎣

j28 −4 − j8 j4 4 − j8
j24 4 − j12 − j32 −4 − j12
j24 4 − j4 0 −4 − j4
j40 12 + j4 0 −12 + j4

⎤
⎥⎥⎦

The result of computing the row DFTs gives

j

⎡
⎢⎢⎣

16 32 48 16
−32 48 16 64
16 16 32 32
48 16 32 64

⎤
⎥⎥⎦

These values divided by N 2 = 16, and swapping the real and imaginary parts yields
the input image.

As stated for the 1-DFT, the displayof log10(1+|X (k, l)|) insteadof |X (k, l)|gives
a better contrast. For the example image, the magnitude of the spectrum, |X (k, l)|,
in the center-zero format, is

⎡
⎢⎢⎣
9.0000 4.1231 3.0000 4.1231
8.0623 3.6056 4.1231 6.0828
7.0000 6.4031 29.0000 6.4031
8.0623 6.0828 4.1231 3.6056

⎤
⎥⎥⎦

whereas log10(1 + |X (k, l)|) is
⎡
⎢⎢⎣
1.0000 0.7095 0.6021 0.7095
0.9572 0.6633 0.7095 0.8502
0.9031 0.8694 1.4771 0.8694
0.9572 0.8502 0.7095 0.6633

⎤
⎥⎥⎦

3.4 Computation of the 2-D DFT 87

Table 3.1 A 8 × 8 input image

−2 −2 −3 −3 −3 3 5 4

−1 −3 0 1 4 3 4 4

2 5 3 2 1 0 −1 2

1 2 3 3 2 2 −6 6

2 −1 1 2 2 1 −4 3

2 −1 −2 −2 1 −1 −1 −2

2 −2 −5 −3 −1 1 0 −2

2 −2 −6 −2 −1 2 0 1

Using the log scale, the ratio between the largest and smallest coefficient has been
reduced.

A 8× 8 example of the 2-D DFT computation is given. While the 4× 4 example
is suitable for manual computation, this example is meant for implementing on the
computer. The use of the row–column method along with fast 1-D DFT algorithms
(presented in Appendix) is the practical method for DFT computation. Sufficient
practice with this type of examples is recommended. The input image is shown in
Table3.1. The 1-D DFT of the rows of the input image is shown in Table3.2. By
computing the 1-D DFT of the columns of these values, the 2-D DFT, shown in
Table3.4, is obtained.

Alternately, the 1-D DFT of the columns of the input image can be computed
first, shown in Table3.3. By computing the 1-D DFT of the rows of these values, the
2-D DFT, shown in Table3.4, is obtained. The 2-D DFT of the input image, in the
center-zero format, is shown in Table3.5. The magnitude of the 2-D DFT |X (k, l)|
in the center-zero format is shown in Table3.6. The magnitude of the 2-D DFT in the
center-zero format and in the log scale, log10(1 + |X (k, l)|), is shown in Table3.7.

3.5 Properties of the 2-D DFT

Properties relate the effect of the characteristics and operations on images in one
domain into another. Further, the computation of the transforms becomes simpler.

Linearity

The 2-D DFT of a linear combination of a set of discrete images is equal to the
same linear combination of their individual DFTs. Let x1(m, n) ↔ X1(k, l) and
x2(m, n) ↔ X2(k, l). Then,

ax1(m, n) + bx2(m, n) ↔ aX1(k, l) + bX2(k, l)

88 3 Fourier Analysis

Ta
bl
e
3.
2

1-
D
D
FT

of
th
e
ro
w
s
of

th
e
in
pu
ti
m
ag
e

−1
.0
0

+
j0
.0
0

2.
41

+
j1
6.
49

−7
.0
0

+
j0
.0
0

−0
.4
1

+
j0
.4
9

−5
.0
0

+
j0
.0
0

−0
.4
1

−
j0
.4
9

−7
.0
0

+
j0
.0
0

2.
41

−
j1
6.
49

12
.0
0

+
j0
.0
0

−7
.1
2

+
j1
0.
36

−1
.0
0

+
j5
.0
0

−2
.8
8

+
j2
.3
6

2.
00

+
j0
.0
0

−2
.8
8

−
j2
.3
6

−1
.0
0

−
j5
.0
0

−7
.1
2

−
j1
0.
36

14
.0
0

+
j0
.0
0

4.
54

−
j7
.5
4

1.
00

−
j1
.0
0

−2
.5
4

+
j0
.4
6

−4
.0
0

+
j0
.0
0

−2
.5
4

−
j0
.4
6

1.
00

+
j1
.0
0

4.
54

+
j7
.5
4

13
.0
0

+
j0
.0
0

1.
12

−
j6
.8
8

6.
00

+
j5
.0
0

−3
.1
2

+
j1
1.
12

−1
3.
00

+
j0
.0
0

−3
.1
2

−
j1
1.
12

6.
00

−
j5
.0
0

1.
12

+
j6
.8
8

6.
00

+
j0
.0
0

−0
.7
1

−
j2
.8
8

7.
00

+
j5
.0
0

0.
71

+
j7
.1
2

−4
.0
0

+
j0
.0
0

0.
71

−
j7
.1
2

7.
00

−
j5
.0
0

−0
.7
1

+
j2
.8
8

−6
.0
0

+
j0
.0
0

1.
00

+
j1
.0
0

6.
00

−
j2
.0
0

1.
00

−
j1
.0
0

6.
00

+
j0
.0
0

1.
00

+
j1
.0
0

6.
00

+
j2
.0
0

1.
00

−
j1
.0
0

−1
0.
00

+
j0
.0
0

1.
59

+
j7
.8
3

6.
00

−
j4
.0
0

4.
41

−
j2
.1
7

2.
00

+
j0
.0
0

4.
41

+
j2
.1
7

6.
00

+
j4
.0
0

1.
59

−
j7
.8
3

−6
.0
0

+
j0
.0
0

2.
29

+
j1
0.
95

7.
00

−
j1
.0
0

3.
71

−
j1
.0
5

−4
.0
0

+
j0
.0
0

3.
71

+
j1
.0
5

7.
00

+
j1
.0
0

2.
29

−
j1
0.
95

3.5 Properties of the 2-D DFT 89

Ta
bl
e
3.
3

1-
D
D
FT

of
th
e
co
lu
m
ns

of
th
e
in
pu
ti
m
ag
e

8.
00

+
j0
.0
0

−4
.0
0

+
j0
.0
0

−9
.0
0

+
j0
.0
0

−2
.0
0

+
j0
.0
0

5.
00

+
j0
.0
0

11
.0
0

+
j0
.0
0

−3
.0
0

+
j0
.0
0

16
.0
0

+
j0
.0
0

−5
.4
1

+
j2
.8
3

−5
.2
4

−
j8
.4
1

−8
.9
5

−
j1
5.
78

−6
.4
1

−
j1
0.
66

−5
.0
0

−
j6
.2
4

4.
83

−
j1
.8
3

16
.7
8

+
j1
.7
1

1.
71

−
j1
1.
78

−4
.0
0

+
j2
.0
0

−6
.0
0

+
j4
.0
0

0.
00

−
j1
.0
0

0.
00

+
j2
.0
0

−1
.0
0

−
j4
.0
0

3.
00

+
j2
.0
0

2.
00

−
j9
.0
0

7.
00

+
j5
.0
0

−2
.5
9

+
j2
.8
3

3.
24

+
j5
.5
9

0.
95

+
j0
.2
2

−3
.5
9

−
j0
.6
6

−5
.0
0

−
j2
.2
4

−0
.8
3

−
j3
.8
3

1.
22

−
j0
.2
9

0.
29

−
j3
.7
8

0.
00

+
j0
.0
0

4.
00

+
j0
.0
0

1.
00

+
j0
.0
0

−2
.0
0

+
j0
.0
0

−7
.0
0

+
j0
.0
0

−1
.0
0

+
j0
.0
0

3.
00

+
j0
.0
0

−2
.0
0

+
j0
.0
0

−2
.5
9

−
j2
.8
3

3.
24

−
j5
.5
9

0.
95

−
j0
.2
2

−3
.5
9

+
j0
.6
6

−5
.0
0

+
j2
.2
4

−0
.8
3

+
j3
.8
3

1.
22

+
j0
.2
9

0.
29

+
j3
.7
8

−4
.0
0

−
j2
.0
0

−6
.0
0

−
j4
.0
0

0.
00

+
j1
.0
0

0.
00

−
j2
.0
0

−1
.0
0

+
j4
.0
0

3.
00

−
j2
.0
0

2.
00

+
j9
.0
0

7.
00

−
j5
.0
0

−5
.4
1

−
j2
.8
3

−5
.2
4

+
j8
.4
1

−8
.9
5

+
j1
5.
78

−6
.4
1

+
j1
0.
66

−5
.0
0

+
j6
.2
4

4.
83

+
j1
.8
3

16
.7
8

−
j1
.7
1

1.
71

+
j1
1.
78

90 3 Fourier Analysis

Ta
bl
e
3.
4

2-
D
D
FT

of
th
e
in
pu
ti
m
ag
e

22
.0
0

+
j0
.0
0

5.
12

+
j2
9.
33

25
.0
0

+
j7
.0
0

0.
88

+
j1
7.
33

−2
0.
00

+
j0
.0
0

0.
88

−
j1
7.
33

25
.0
0

−
j7
.0
0

5.
12

−
j2
9.
33

−7
.7
1

−
50

.1
6

−2
3.
14

+
j4
2.
21

−6
.0
5

+
j6
.3
6

14
.5
9

+
j1
.6
6

2.
54

+
j1
5.
19

−1
2.
66

+
j2
7.
38

−3
0.
44

+
j1
4.
95

19
.5
6

−
j3
4.
97

1.
00

+
j1
.0
0

2.
88

+
j2
2.
85

−8
.0
0

+
j1
8.
00

−1
0.
29

+
j1
1.
78

−7
.0
0

−
j2
5.
00

7.
12

−
j6
.8
5

−6
.0
0

−
j2
.0
0

−1
1.
71

−
j3
.7
8

−6
.2
9

−
j2
.1
6

17
.4
1

+
j9
.6
6

−3
.5
6

−
j5
.0
5

5.
14

+
j0
.2
1

−4
.5
4

+
j3
.1
9

−1
1.
56

+
j1
.0
3

−1
5.
95

+
j6
.3
6

−1
.3
4

+
j9
.3
8

−4
.0
0

+
j0
.0
0

10
.5
4

−
j1
.5
4

−1
1.
00

−
j7
.0
0

3.
46

−
j5
.5
4

−2
.0
0

+
j0
.0
0

3.
46

+
j5
.5
4

−1
1.
00

+
j7
.0
0

10
.5
4

+
j1
.5
4

−6
.2
9

+
j2
.1
6

−1
.3
4

−
j9
.3
8

−1
5.
95

−
j6
.3
6

−1
1.
56

−
j1
.0
3

−4
.5
4

−
j3
.1
9

5.
14

−
j0
.2
1

−3
.5
6

+
j5
.0
5

17
.4
1

−
j9
.6
6

1.
00

−
j1
.0
0

−1
1.
71

+
j3
.7
8

−6
.0
0

+
j2
.0
0

7.
12

+
j6
.8
5

−7
.0
0

+
j2
5.
00

−1
0.
29

−
j1
1.
78

−8
.0
0

−
j1
8.
00

2.
88

−
j2
2.
85

−7
.7
1

+
j5
0.
16

19
.5
6

+
j3
4.
97

−3
0.
44

−
j1
4.
95

−1
2.
66

−
j2
7.
38

2.
54

−
j1
5.
19

14
.5
9

−
j1
.6
6

−6
.0
5

−
j6
.3
6

−2
3.
14

−
j4
2.
21

3.5 Properties of the 2-D DFT 91

Ta
bl
e
3.
5

2-
D
D
FT

of
th
e
in
pu
ti
m
ag
e
in

th
e
ce
nt
er
-z
er
o
fo
rm

at

−2
.0
0

+
0.
00

3.
46

+
5.
54

−1
1.
00

+
7.
00

10
.5
4

+
1.
54

−4
.0
0

+
0.
00

10
.5
4

−
1.
54

−1
1.
00

−
7.
00

3.
46

−
5.
54

−4
.5
4

−
3.
19

5.
14

−
0.
21

−3
.5
6

+
5.
05

17
.4
1

−
9.
66

−6
.2
9

+
2.
16

−1
.3
4

−
9.
38

−1
5.
95

−
6.
36

−1
1.
56

−
1.
03

−7
.0
0

+
25
.0
0

−1
0.
29

−
11
.7
8

−8
.0
0

−
18
.0
0

2.
88

−
22

.8
5

1.
00

−
1.
00

−1
1.
71

+
3.
78

−6
.0
0

+
2.
00

7.
12

+
6.
85

2.
54

−
15
.1
9

14
.5
9

−
1.
66

−6
.0
5

−
6.
36

−2
3.
14

−
42

.2
1

−7
.7
1

+
50

.1
6

19
.5
6

+
34

.9
7

−3
0.
44

−
14

.9
5

−1
2.
66

−
27
.3
8

−2
0.
00

+
0.
00

0.
88

−
17
.3
3

25
.0
0

−
7.
00

5.
12

−
29
.3
3

22
.0
0

+
0.
00

5.
12

+
29
.3
3

25
.0
0

+
7.
00

0.
88

+
17
.3
3

2.
54

+
15
.1
9

−1
2.
66

+
27
.3
8

−3
0.
44

+
14

.9
5

19
.5
6

−
34

.9
7

−7
.7
1

−
50

.1
6

−2
3.
14

+
42

.2
1

−6
.0
5

+
6.
36

14
.5
9

+
1.
66

−7
.0
0

−
25
.0
0

7.
12

−
6.
85

−6
.0
0

−
2.
00

−1
1.
71

−
3.
78

1.
00

+
1.
00

2.
88

+
22

.8
5

−8
.0
0

+
18
.0
0

−1
0.
29

+
11
.7
8

−4
.5
4

+
3.
19

−1
1.
56

+
1.
03

−1
5.
95

+
6.
36

−1
.3
4

+
9.
38

−6
.2
9

−
2.
16

17
.4
1

+
9.
66

−3
.5
6

−
5.
05

5.
14

+
0.
21

92 3 Fourier Analysis

Table 3.6 The magnitude of the 2-D DFT, |X (k, l)|, of the input image in the center-zero format

2.00 6.53 13.04 10.65 4.00 10.65 13.04 6.53

5.55 5.15 6.18 19.91 6.65 9.48 17.17 11.60

25.96 15.64 19.70 23.03 1.41 12.30 6.32 9.88

15.40 14.68 8.78 48.14 50.75 40.07 33.91 30.17

20.00 17.36 25.96 29.78 22.00 29.78 25.96 17.36

15.40 30.17 33.91 40.07 50.75 48.14 8.78 14.68

25.96 9.88 6.32 12.30 1.41 23.03 19.70 15.64

5.55 11.60 17.17 9.48 6.65 19.91 6.18 5.15

Table 3.7 The magnitude of the 2-D DFT of the input image in the center-zero format and in the
log scale, log10(1 + |X (k, l)|)
0.48 0.88 1.15 1.07 0.70 1.07 1.15 0.88

0.82 0.79 0.86 1.32 0.88 1.02 1.26 1.10

1.43 1.22 1.32 1.38 0.38 1.12 0.86 1.04

1.21 1.20 0.99 1.69 1.71 1.61 1.54 1.49

1.32 1.26 1.43 1.49 1.36 1.49 1.43 1.26

1.21 1.49 1.54 1.61 1.71 1.69 0.99 1.20

1.43 1.04 0.86 1.12 0.38 1.38 1.32 1.22

0.82 1.10 1.26 1.02 0.88 1.32 0.86 0.79

where a and b are real or complex constants. Both the images must have the same
dimensions. Zero-padding can be used to meet this constraint, if necessary. Linearity
holds in both the spatial and frequency domains.

Example 3.4 Compute the DFT of x1(m, n) and x2(m, n). Using the linearity prop-
erty, deduce the DFT of x3(m, n) = 3x1(m, n) + 4x2(m, n) from those of x1(m, n)
and x2(m, n).

x1(m, n) =
[
1 2
3 1

]
, x2(m, n) =

[
1 1
4 3

]

Solution
The individual DFTs are

X1(k, l) =
[

7 1
−1 −3

]
, X2(k, l) =

[
9 1

−5 −1

]

The DFT of

x3(m, n) = 3x1(m, n) + 4x2(m, n) =
[

7 10
25 15

]

3.5 Properties of the 2-D DFT 93

is

X3(k, l) = 3X1(k, l) + 4X2(k, l) =
[

57 7
−23 −13

]

The DFT X3(k, l) can be verified by directly computing that of x3(m, n).

Periodicity

An image is periodic if it repeats its values over a period indefinitely, x(m + M, n +
N) = x(m, n) for all m, n. The smallest M, N satisfying the constraint are the
periods in the two directions. Although a practical image is of finite extent, as the
basis signals in Fourier analysis are the sinusoids (which are periodic), an image is
assumed to be periodic in both the spatial and frequency domains.

x(m, n) = x(m + aM, n + bN), for all m, n and

X (k, l) = X (k + aM, l + bN), for all k, l

where a and b are arbitrary integers. Remember that the useful information in a
periodic signal is contained in any one period. An example of periodic extension
is given in Chap.2. The top and bottom edges are considered adjacent and so are
the right and left edges. For example, the periodic extension of image x1(m, n) in
Example 3.4 is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

1 2 1 2 1 2
3 1 3 1 3 1

. . . 1 2 1 2 1 2 . . .

3 1 3 1 3 1
1 2 1 2 1 2
3 1 3 1 3 1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Circular shift of an image

A shift of a sinusoid results in changing its phase. Its magnitude is not affected. For
a N × N image,

x(m, n) ↔ X (k, l) → x(m − m0, n − n0) ↔ X (k, l)e− j 2π
N (km0+ln0)

The DFT of x(m − m0, n − n0) is

http://dx.doi.org/10.1007/978-981-10-6113-4_2

94 3 Fourier Analysis

=
N−1∑
m=0

N−1∑
n=0

x(m − m0, n − n0)e
− j 2π

N (mk+nl)

= e− j 2π
N (km0+ln0)

N−1∑
m=0

N−1∑
n=0

x(m − m0, n − n0)e
− j 2π

N ((m−m0)k+(n−n0)l)

= e− j 2π
N (km0+ln0)X (k, l)

Example 3.5 Find the 2-D DFT of the shifted version x(m − 1, n − 2) of the image
x(m, n) in Example 3.3 using the shift theorem and verify that by computing the
DFT of the shifted signal.
Solution
For a 4 × 4 image, a right shift by one sample interval contributes a phase of − j or
−90◦. Therefore, the 2-D DFT of the shifted image

x(m − 1, n − 2) =

⎡
⎢⎢⎣
2 4 3 1
3 1 1 2
1 4 −2 3
2 2 1 1

⎤
⎥⎥⎦

is

(− j)(k+2l)X (k, l) =

⎡
⎢⎢⎣

29 5 − j4 −7 5 + j4
4 − j1 −2 − j3 8 − j1 −6 + j1

3 −1 − j4 −9 −1 + j4
4 + j1 −6 − j1 8 + j1 −2 + j3

⎤
⎥⎥⎦ ,

k = 0, 1, 2, 3,
l = 0, 1, 2, 3

Circular shift of a spectrum

For a N × N image,

x(m, n) ↔ X (k, l) → x(m, n)e j 2π
N (k0m+l0n) ↔ X (k − k0, l − l0)

A specific use of this theorem is that the center-zero spectrum can be obtained with
N even and k0 = l0 = N

2 .

Example 3.6 By multiplying the image of Example 3.3 with (−1)(m+n), we get

(−1)(m+n)x(m, n) =

⎡
⎢⎢⎣

1 −2 3 −1
2 3 −1 4
1 −1 2 −2

−3 1 −2 4

⎤
⎥⎥⎦

3.5 Properties of the 2-D DFT 95

The DFT of this image yields the center-zero spectrum of x(m, n). The center-zero
spectrum is

X (k − 2, l − 2) =

⎡
⎢⎢⎣

9 −1 + j4 −3 −1 − j4
1 − j8 −3 − j2 1 − j4 1 − j6

−7 −5 − j4 29 −5 + j4
1 + j8 1 + j6 1 + j4 −3 + j2

⎤
⎥⎥⎦

Circular convolution in the spatial time domain

Let x(m, n) ↔ X (k, l) and h(m, n) ↔ H(k, l), m, n, k, l = 0, 1, . . . , N −1. Then,

x(m, n) ∗ h(m, n) ↔ X (k, l)H(k, l)

The circular convolution of x(m, n) and h(m, n) is given by

y(m, n) =
N−1∑
p=0

N−1∑
q=0

x(p, q)h(m − p, n − q), m, n = 0, 1, . . . , N − 1

Taking the 2-DFT of y(m, n), we get

Y (k, l) =
N−1∑
m=0

N−1∑
n=0

y(m, n)e− j 2π
N (km+ln)

=
N−1∑
m=0

N−1∑
n=0

⎛
⎝N−1∑

p=0

N−1∑
q=0

x(p, q)h(m − p, n − q)

⎞
⎠ e− j 2π

N (km+ln)

=
N−1∑
p=0

N−1∑
q=0

x(p, q)

(
N−1∑
m=0

N−1∑
n=0

h(m − p, n − q)

)
e− j 2π

N (km+ln)

=
N−1∑
p=0

N−1∑
q=0

x(p, q)
(

H(k, l)e− j 2π
N (kp+lq)

)
= X (k, l)H(k, l)

The spatial-shift property has been used in the derivation. Convolution of two images
in the spatial domain becomes multiplication of their transforms in the frequency
domain.
Convolve

x(m, n) =

⎡
⎢⎢⎣

1 2 3 1
−2 3 1 4
1 1 2 2
3 1 2 4

⎤
⎥⎥⎦ h(m, n) =

⎡
⎢⎢⎣
2 1 2 2
3 1 1 2
1 1 −3 2
0 1 2 3

⎤
⎥⎥⎦

96 3 Fourier Analysis

The DFT of x(m, n) is

X (k, l) =

⎡
⎢⎢⎣

29.00 + j0.00 −5.00 + j4.00 −7.00 + j0.00 −5.00 − j4.00
1.00 + j4.00 −3.00 + j2.00 1.00 + j8.00 1.00 + j6.00

−3.00 + j0.00 −1.00 − j4.00 9.00 + j0.00 −1.00 + j4.00
1.00 − j4.00 1.00 − j6.00 1.00 − j8.00 −3.00 − j2.00

⎤
⎥⎥⎦

The DFT of h(m, n) is

H(k, l) =

⎡
⎢⎢⎣

21.00 + j0.00 4.00 + j5.00 −5.00 + j0.00 4.00 − j5.00
6.00 − j1.00 −5.00 − j4.00 6.00 − j3.00 −3.00 − j4.00

−5.00 + j0.00 4.00 − j1.00 −3.00 + j0.00 4.00 + j1.00
6.00 + j1.00 −3.00 + j4.00 6.00 + j3.00 −5.00 + j4.00

⎤
⎥⎥⎦

The pointwise product Y (k, l) = X (k, l)H(k, l) is

Y (k, l) = X (k, l)H(k, l)

=

⎡
⎢⎢⎣
609.00 + j0.00 −40.00 − j9.00 35.00 + j0.00 −40.00 + j9.00
10.00 + j23.00 23.00 + j2.00 30.00 + j45.00 21.00 − j22.00
15.00 + j0.00 −8.00 − j15.00 −27.00 + j0.00 −8.00 + j15.00

10.00 − j23.00 21.00 + j22.00 30.00 − j45.00 23.00 − j2.00

⎤
⎥⎥⎦

The IDFT of Y (k, l) is the convolution output in the spatial domain.

y(m, n) =

⎡
⎢⎢⎣
44 36 45 36
31 35 34 37
23 47 46 35
43 30 56 31

⎤
⎥⎥⎦

Circular convolution in the frequency domain

x(m, n)h(m, n) ↔ 1

N 2

N−1∑
p=0

N−1∑
q=0

X (p, q)H(k − p, l − q)

Circular cross-correlation in the spatial domain

The circular cross-correlation of x(m, n) and h(m, n) is given by

rxh(m, n) =
N−1∑
p=0

N−1∑
q=0

x(p, q)h(p − m, q − n) ↔ H∗(k, l)X (k, l)

Since h(N − m, N − n) ↔ H∗(k, l), this operation can also be interpreted as the
convolution of x(m, n) and h(N − m, N − n).

3.5 Properties of the 2-D DFT 97

rhx(m, n) = rxh(N − m, N − n) = IDFT(X∗(k, l)H(k, l))

Cross-correlation of an image x(m, n) with itself is the autocorrelation operation.

rxx (m, n) = IDFT(|X (k, l)|2)

Sum and difference of sequences

X (0, 0) =
N−1∑
m=0

N−1∑
n=0

x(m, n)

With N even,

X

(
N

2
,

N

2

)
=

N−1∑
m=0

N−1∑
n=0

x(m, n)(−1)(m+n)

x(0, 0) = 1

N 2

N−1∑
k=0

N−1∑
l=0

X (k, l)

With N even,

x

(
N

2
,

N

2

)
= 1

N 2

N−1∑
k=0

N−1∑
l=0

X (k, l)(−1)(k+l)

For the image in Example 3.3,

{x(0, 0) = 1, x(2, 2) = 2, X (0, 0) = 29, X (2, 2) = 9}

These values can be separately computed and used to check the transform.
The difference

x(m, n) − x(m − 1, n) ↔ X (k, l)(1 − e− j 2π
N k)

x(m, n) − x(m, n − 1) ↔ X (k, l)(1 − e− j 2π
N l)

Reversal property

x(m, n) ↔ X (k, l) → x(N − m, N − n) ↔ X (N − k, N − l) = X∗(k, l)

Example 3.7 For the image in Example 3.3

x(4 − m, 4 − n) =

⎡
⎢⎢⎣

1 1 3 2
3 4 2 1
1 2 2 1

−2 4 1 3

⎤
⎥⎥⎦

98 3 Fourier Analysis

X (4 − k, 4 − l) =

⎡
⎢⎢⎣

29.00 + j0.00 −5.00 − j4.00 −7.00 + j0.00 −5.00 + j4.00
1.00 − j4.00 −3.00 − j2.00 1.00 − j8.00 1.00 − j6.00

−3.00 + j0.00 −1.00 + j4.00 9.00 + j0.00 −1.00 − j4.00
1.00 + j4.00 1.00 + j6.00 1.00 + j8.00 −3.00 + j2.00

⎤
⎥⎥⎦

Symmetry

The DFT of real-valued data is conjugate symmetric. As there are only N × N
independent real values in a real-valued N × N image, there can be only the same
number of independent values in the transform also. Redundancy is required to have
a complex-valued transform, but the storage and computation can be reduced in prac-
tical implementation. As has been already pointed out, complex-valued transform is
indispensable in Fourier analysis.

The DFT values at diametrically opposite points form complex conjugate pairs.

X∗(N − k, N − l) = X (k, l)

An equivalent form of the symmetry is

X

(
N

2
± k,

N

2
± l

)
= X∗

(
N

2
∓ k,

N

2
∓ l

)

Example 3.8 Underline the left-half of the nonredundant DFT values of the image
in Example 3.3.
Solution

l →
k
↓

⎡
⎢⎢⎣

29 −5 + j4 7 −5 − j4
1 + j4 −3 + j2 1 + j8 1 + j6

−3 −1 − j4 9 −1 + j4
1 − j4 1 − j6 1 − j8 −3 − j2

⎤
⎥⎥⎦

The storage of the 2-D DFT values of rows (columns) 1 to N
2 − 1 and the first

N
2 +1 values of the zeroth and the N

2 th rows (columns) is sufficient requiring the same
amount of storage as for the image matrix. The computation of the DFT requires the
computation of N +2 1-DDFT of real-valued data and the computation of N

2 −1 1-D
DFT of complex-valued data. Figure3.9 shows one of the two forms of the conjugate
symmetry of the 8 × 8 2-D DFT.

Image rotation

The rotation of an image by an angle θ, about its center, rotates its spectrum also by
the same angle. Rotations other than multiple of 90◦ require interpolation. Consider
the following image and its spectrum.

3.5 Properties of the 2-D DFT 99

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

X(0, 0) X(0, 1) X(0, 2) X(0, 3) X(0, 4) X∗(0, 3) X∗(0, 2) X∗(0, 1)

X(1, 0)

X(2, 0)

X(3, 0)

X(4, 0)

X∗(3, 0)

X∗(2, 0)

X∗(1, 0)

X(1, 1)

X(2, 1)

X(3, 1)

X(4, 1)

X(5, 1)

X(6, 1)

X(7, 1)

X(1, 2)

X(2, 2)

X(3, 2)

X(4, 2)

X(5, 2)

X(6, 2)

X(7, 2)

X(1, 3)

X(2, 3)

X(3, 3)

X(4, 3)

X(5, 3)

X(6, 3)

X(7, 3)

X(1, 4)

X(2, 4)

X(3, 4)

X(4, 4)

X∗(7, 1)

X∗(6, 1)

X∗(5, 1)

X∗(4, 1)

X∗(3, 1)

X∗(2, 1)

X∗(1, 1)

X∗(7, 2)

X∗(6, 2)

X∗(5, 2)

X∗(4, 2)

X∗(3, 2)

X∗(2, 2)

X∗(1, 2)

X∗(7, 3)

X∗(6, 3)

X∗(5, 3)

X∗(4, 3)

X∗(3, 3)

X∗(2, 3)

X∗(1, 3)

X∗(3, 4)

X∗(2, 4)

X∗(1, 4)

Fig. 3.9 Conjugate symmetry of the 8 × 8 2-D DFT

x(m, n) =

⎡
⎢⎢⎣

1 2 3 1
−2 3 1 4
1 1 2 2
3 1 2 4

⎤
⎥⎥⎦ X (k, l) =

⎡
⎢⎢⎣

29 −5 + j4 −7 −5 − j4
1 + j4 −3 + j2 1 + j8 1 + j6

−3 −1 − j4 9 −1 + j4
1 − j4 1 − j6 1 − j8 −3 − j2

⎤
⎥⎥⎦

The image and its spectrum rotated by an angle of 90◦ in the counterclockwise
direction are

x(m ′, n′) =

⎡
⎢⎢⎣
1 4 2 4
3 1 2 2
2 3 1 1
1 −2 1 3

⎤
⎥⎥⎦ X (k ′, l ′) =

⎡
⎢⎢⎣

−5 − j4 1 + j6 −1 + j4 −3 − j2
−7 1 + j8 9 1 − j8

−5 + j4 −3 + j2 −1 − j4 1 − j6
29 1 + j4 −3 1 − j4

⎤
⎥⎥⎦

For rotation other than about the center, translation operation can be used in addition.

Separable signals

The 2-D DFT is a separable function in the variables m and n. Therefore, the DFT
of a separable function x(m, n) = x(m)x(n) is also separable. The product of the
column vector with the row vector is equal to the 2-D function. That is,

x(m) ↔ X (k), x(n) ↔ X (l) → X (k, l) = X (k)X (l)

X (k, l) =
N−1∑
m=0

N−1∑
n=0

x(m, n)e− j 2π
N mke− j 2π

N nl =
N−1∑
m=0

N−1∑
n=0

x(m)x(n)e− j 2π
N mke− j 2π

N nl

=
{

N−1∑
m=0

x(m)e− j 2π
N mk

}{
N−1∑
n=0

x(n)e− j 2π
N nl

}
= X (k)X (l)

Example 3.9 Compute the DFT of x(m) = {1, 1, 1, 1} and x(n) = {1, 1, 1, 1}.
Using the separability theorem, verify that the product x(m, n) = x(m)x(n) of the

100 3 Fourier Analysis

column vector x(m) and the row vector x(n) in the time domain and the 2-D IDFT
of the product of their individual DFTs are the same.

Solution
The product x(m, n) = x(m)x(n) is

⎡
⎢⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎥⎦

[
1 1 1 1

] =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤
⎥⎥⎥⎥⎦

X (k) = {4, 0, 0, 0} and X (l) = {4, 0, 0, 0}.

X (k, l) = X (k)X (l) =

⎡
⎢⎢⎢⎢⎣

4

0

0

0

⎤
⎥⎥⎥⎥⎦

[
4 0 0 0

] =

⎡
⎢⎢⎢⎢⎣

16 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

The 2-D IDFT is

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤
⎥⎥⎥⎥⎦ = x(m, n) = x(m)x(n)

Parseval’s theorem

This theorem implies that the signal power can also be computed from the DFT
representation of the image. Let x(m, n) ↔ X (k, l) with the dimensions of the
image N × N . Since the magnitude of the samples of the complex sinusoidal surface

e j 2π
N (mk+nl), m = 0, 1, . . . , N − 1, n = 0, 1, . . . , N − 1

is one and the 2-D DFT coefficients are scaled by N 2, the power of a complex
sinusoidal surface is

(|X (k, l)|2
N 4

)
N 2 = |X (k, l)|2

N 2

Therefore, the sum of the powers of all the components of an image yields the power
of the image.

3.5 Properties of the 2-D DFT 101

N−1∑
m=0

N−1∑
n=0

|x(m, n)|2 = 1

N 2

N−1∑
k=0

N−1∑
l=0

|X (k, l)|2

For the image in Example 3.3, the power computed in both the domains is 85.
The generalized form of this theorem holds for two different images as given by

N−1∑
m=0

N−1∑
n=0

x(m, n)y∗(m, n) = 1

N 2

N−1∑
k=0

N−1∑
l=0

X (k, l)Y ∗(k, l)

3.6 The 1-D Fourier Transform

As always, the summation operation in discrete signal analysis corresponds to inte-
gration in continuous signal analysis. The FT is continuous in both the time and
frequency domains and is the most general version of the Fourier analysis. The FT
X (jω) of x(t) is defined as

X (jω) =
∫ ∞

−∞
x(t)e− jωt dt (3.9)

A sufficient condition for the existence of X (jω) is that x(t) is absolutely integrable.
The IFT x(t) of X (jω) is defined as

x(t) = 1

2π

∫ ∞

−∞
X (jω)e jωt dω (3.10)

The FT spectrum is composed of components of all frequencies (−∞ < ω < ∞).
The amplitude of any component is X (jω) dω/(2π), which is infinitesimal. The FT
is a relative amplitude spectrum.

Example 3.10 Find the FT of the rectangular pulse x(t) = u(t + p) − u(t − p),
where u(t) is the unit-step function.

Solution

X (jω) =
∫ p

−p
e− jωt dt = 2

∫ p

0
cos(ωt)dt = 2 sin(ω p)

ω

u(t + p) − u(t − p) ↔ 2 sin(ω p)

ω

The pulse and its FT are shown, respectively, in Fig. 3.10a, b with p = 0.2.

102 3 Fourier Analysis

−1 −0.2 0.2 1

0

1
x

(t
)

t

(a)

0

0.4

X
 (

jω
)

ω

(b)

−12π −8π −4π 4π 8π 12π0

Fig. 3.10 a The pulse x(t) = u(t + 0.2) − u(t − 0.2) and b its FT spectrum

3.7 The 2-D Fourier Transform

The 2-D FT is a straightforward extension of the 1-D FT. The FT X (ju, jv) of
x(p, q) is defined as

X (ju, jv) =
∫ ∞

−∞

∫ ∞

−∞
x(p, q)e− jupe− jvqdp dq

The IFT is given by

x(p, q) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
X (ju, jv)e jupe jvqdu dv

Example 3.11 Find the 2-D FT of x(p, q) analytically.

x(p, q) =
{
1 for 0 ≤ p < 2, 0 ≤ q < 3
0 elsewhere

Let the record lengths be P = 8, Q = 12 seconds and the number of samples be
32 in both the directions. Approximate the spectrum of the signal using the DFT.
Solution
As the signal is separable, we use the 1-D FT results to get

X (ju, jv) = 4
sin(u)

u

sin(1.5v)

v
e− jue− j1.5v, u, v �= 0

X (0, jv) = 4
sin(1.5v)

v
e− j1.5v, v �= 0,

X (ju, 0) = 6
sin(u)

u
e− ju, u �= 0, X (0, 0) = 6

3.7 The 2-D Fourier Transform 103

−10
0

10

−10
0

10

0

0.5

1

 n

(a)

 m

 x
 (
m

,n
)

−10
0

10

−10
0

10

0

3

6

 l

(b)

 k

 3
|X

(k
,l)

|/
32

Fig. 3.11 Approximation of a the 2-D pulse x(p, q) = u(p, q) − u(p − 2, q − 3) and b its FT
magnitude spectrum using the DFT

Fig. 3.11a shows the signal with 32 × 32 samples in the center-zero format. The
sample values along the border are set at 0.5 and those at the corners are set at 0.25,
the average values are at the discontinuities. The given signal is defined in a 2×3 area.
However, the signal appears square because we used a sampling interval of 8

32 = 1
4

seconds in the p direction and 12
32 = 3

8 seconds in the q direction. The scaled DFT
magnitude spectrum is shown in Fig. 3.11b in the center-zero format. The scaling
factor is the product of the sampling intervals, (1/4)(3/8) = (3/32). The frequency
increment in the k direction is 2π

8 radians per second and it is 2π
12 in the l direction.

3.8 Summary

• Transforms provide alternate representations of images and facilitates easier inter-
pretation of the characteristics of images and faster execution of operations.

• Transforms represent an image as linear combinations of a set of basis functions.
• Fourier analysis is indispensable in many areas of science and engineering, includ-
ing image processing.

• Fourier analysis represents an image as a linear combination of sinusoidal surfaces
(sinusoidal functions with two frequencies).

• Fourier analysis provides the spectrum of an image and the spectrum is the basis
for most of the analysis. The spectrum is an alternate representation of an image
that represents an image in the frequency domain, frequency versus amplitude in
contrast to spatial coordinates versus intensity in the spatial domain.

• The convolution operation, relating the input and output of a system, becomes
much simpler multiplication operation in the frequency domain.

• Although the image is a 2-D signal, for the most part, we are able to use the 1-
D transform and their algorithms due to the separability of the various filter and
transform matrices.

104 3 Fourier Analysis

• Properties of the transforms present the effect of the spatial domain characteristics
and operations on images in the transform domain and vice versa.

• The DFT version of the Fourier analysis is most often used in practice due to its
discrete and finite nature in both the spatial and frequency domains and, thereby,
its amenability to implementation on digital computers.

• It is the availability of fast algorithms for its computation and the property of the
sinusoidal waveforms to retain their shape from the input to the output of a linear
system that makes the Fourier analysis so important for the analysis of images.

• The Fourier transform version of the Fourier analysis, along with the DFT, is most
often used in image processing.

Exercises

3.1 The discrete periodic waveform x(n) is periodic with period 4 samples. Express
thewaveform in terms of complex exponentials and, thereby, find itsDFT coefficients
X (k). Find the 4 samples from both the expressions and check that they are the same.
Find the least-squares errors, if x(n) is represented by its DC component alone with
the values X (0), 0.9X (0), and 1.1X (0).

*(i)

x(n) = 1 + 3 cos

(
2π

4
n + π

3

)
+ 2 cos

(
2
2π

4
n

)

(ii)

x(n) = −2 + cos

(
2π

4
n − π

3

)
+ cos

(
2
2π

4
n

)

(iii)

x(n) = 2 + cos

(
2π

4
n + π

6

)
+ cos

(
2
2π

4
n

)

3.2 Find the DFT of the 4 samples using the matrix form of the DFT definition.
Reconstruct the input from the DFT coefficients using the IDFT and verify that they
are the same as the input. Verify Parseval’s theorem.

(i)
{x(0) = 2, x(1) = 1, x(2) = 3, x(3) = 2}

(ii)
{x(0) = 1, x(1) = 1, x(2) = 2, x(3) = −3}

(iii)
{x(0) = −1, x(1) = 0, x(2) = −3, x(3) = 2}

Exercises 105

3.3 The discrete periodic image x(m, n) is periodic with period 4 samples in both
the directions. Express the image in terms of complex exponentials and, thereby, find
its DFT coefficients X (k, l). Find the 4 × 4 samples from both the expressions and
check that they are the same. Find the least-squares errors, if x(m, n) is represented
by its DC component alone with the values X (0, 0), 0.9X (0, 0), and 1.1X (0, 0).

*(i)

x(m, n) = 1 + 2 cos

(
2π

4
(m + n) − π

3

)
+ cos

(
2
2π

4
(m + n)

)

(ii)

x(m, n) = 2 + 2 cos

(
2π

4
(m + 2n) + π

3

)
− cos

(
2
2π

4
(m + n)

)

(iii)

x(m, n) = −1 + 2 cos

(
2π

4
(2m + n) − π

6

)
+ 2 cos

(
2
2π

4
(m + n)

)

3.4 Find the DFT of the image x(m, n) using the row–column method. Reconstruct
the input from the DFT coefficients using the IDFT and verify that they are the
same as the input. Verify Parseval’s theorem. Express the magnitude of the DFT
coefficients in the center-zero format using the log scale, log10(1 + |X (k, l)|). The
origin is at the top-left corner.

*(i)

x(m, n) =

⎡
⎢⎢⎣
112 148 72 153
120 125 30 99
95 120 89 33

170 99 109 40

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
143 107 183 102
135 130 225 156
160 135 166 222
85 156 146 215

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
164 127 117 59
154 122 104 83
129 136 100 60
117 128 80 48

⎤
⎥⎥⎦

3.5 Find the DFT of the 4 × 4 impulse image x(m, n) using (i) the row–column
method and (ii) using the shift theorem.

106 3 Fourier Analysis

(i)

x(m, n) =

⎡
⎢⎢⎣
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

3.6 Using the DFT and IDFT, find: (a) the periodic convolution of x(m, n) and
h(m, n), (b) the periodic correlation of x(m, n) andh(m, n), andh(m, n) and x(m, n),
(c) the autocorrelation of x(m, n).

*(i)

x(m, n) =

⎡
⎢⎢⎣
2 1 3 3
1 0 1 2
4 1 0 1
2 0 1 2

⎤
⎥⎥⎦ h(m, n) =

⎡
⎢⎢⎣

−2 1 3 2
1 1 −1 −2
4 0 0 −1
1 0 2 2

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣

1 2 −2 1
−2 0 1 4
1 1 −1 2
0 1 2 4

⎤
⎥⎥⎦ h(m, n) =

⎡
⎢⎢⎣

0 −1 2 2
−3 1 1 −1
1 1 −3 0
0 1 1 2

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣

2 1 3 4
−2 0 1 4
1 1 3 2
3 1 0 4

⎤
⎥⎥⎦ h(m, n) =

⎡
⎢⎢⎣
3 1 2 4
0 1 −1 2
1 1 −2 2
0 1 2 1

⎤
⎥⎥⎦

3.7 Compute the DFT of the column vector x(m) = {1, 1,−1,−1} and the row
vector x(n) = {1, 1,−1,−1}. Using the separability theorem, verify that the product
of the vectors in the time domain and the 2-D IDFT of the product of their individual
DFTs are the same.

Exercises 107

3.8 Compute the DFT of the column vector x(m) = {0.2741, 0.4519, 0.2741} and
the row vector x(n) = {0.2741, 0.4519, 0.2741}. Using the separability theorem,
verify that the product of the vectors in the time domain and the 2-D IDFT of the
product of their individual DFTs are the same.

3.9 Compute theDFT of the column vector x(m) = {0, 1, 0,−1} and the row vector
x(n) = {1, 0,−1, 0}. Using the separability theorem, verify that the product of the
vectors in the time domain and the 2-D IDFT of the product of their individual DFTs
are the same.

Chapter 4
Image Enhancement in the Frequency
Domain

Abstract The frequency-domain representation of images is presented in the last
chapter. Depending on the problem, either the spatial-domain or frequency-domain
processing is advantageous. The interpretation of operations on images is often easier
in the frequency domain. For longer filter lengths, frequency-domain processing
provides faster processing. Linear filtering operations using a variety of filters are
described in the frequency domain.

Most images occur in analog form in the spatial domain. Due to the advantages of
digital processing, usually, they are digitized and processed. It turns out that still more
representations are found to be advantageous in image processing. While there are
several transforms to do the representation, the two most important representations
are obtained by decomposing arbitrary images into a linear combination of impulses
in the spatial domain and sinusoids in the frequency domain. The convolution opera-
tion, presented in Chap. 2, yields the processed image from the input and the system
impulse response. It is based on decomposing images into a linear combination of
impulses. Then, due to the linearity property of the linear systems, the output image
is found with the knowledge of the response of the system to a single impulse signal.

The system input and output can also be related in a similar manner by decompos-
ing an image into a linear combination of sinusoidal signals. System output can be
obtained faster, and interpretation of image characteristics and operations is also eas-
ier. For example, the convolution operation is commutative. This property is obvious
in the frequency-domain representation. While the impulse response characterizes
a system in the spatial domain, it is the frequency response that does the job in the
frequency domain. The representation of the image by its spectrum is all-important.
The spectrum reveals the characteristics of an image and enables to decide the type
of system required to process it. The conclusion is that certain properties of images
and systems are easier to recognize in one of the domains. Similarly, one of the
domains provides faster execution of certain operations. In this chapter, we study
how the filters are designed and how to implement the convolution operation faster.
Processing of images in the frequency domain consists of:

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_4

109

http://dx.doi.org/10.1007/978-981-10-6113-4_2

110 4 Image Enhancement in the Frequency Domain

1. Transformation of the input image and the system response from the spatial
domain to the frequency domain.

2. Processing the image in the frequency domain.
3. Transformation of the processed image back to the spatial domain.

Although it looks like a long route, processing of images in the frequency domain
provides several advantages. While we have enhanced images in the spatial domain,
enhancing images in the frequency domain reduces the execution time, particularly
for relatively large filters. This is due to the fact that convolution in the spatial domain
becomes much simpler multiplication operation in the frequency domain. Further,
the interpretation of the various filtering operations is easier.

4.1 1-D Linear Convolution Using the DFT

Periodicity of the finite input data is assumed in DFT computation, since the basis
functions are periodic. This implies that when carrying out operations such as con-
volution or approximating other versions of the Fourier analysis, the required output
is represented in one period with adequate accuracy. The linear convolution of two
sequences of length M and N yields a sequence of length M + N − 1. Therefore,
both the input sequences must be appended by sufficient number of zeros to make
the sequences of length M + N −1, at the least. Due to the availability of practically
efficient DFT algorithms only for sequence lengths of a power of 2, the sequences
are zero-padded so that the length is greater than or equal to M + N − 1 and is a
power of 2.

The linear convolution of the sequences {2, 3} and {4, 1} is {8, 14, 3}. The DFT of
the sequences are {5,−1} and {5, 3}, respectively. The pointwise product of theDFTs
is {25,−3}, and the IDFT of the product is {11, 14}. This is the periodic convolution
output. To get the linear convolution output, we pad the sequences with zeros to
get {2, 3, 0, 0} and {4, 1, 0, 0}. The DFT of the sequences are {5, 2 − j3,−1, 2 +
j3} and {5, 4 − j1, 3, 4 + j1}, respectively. The pointwise product of the DFTs is
{25, 5 − j14,−3, 5 + j14} and the IDFT of the product is {8, 14, 3, 0}. This is the
linear convolution output. A sequence length of 3 is enough to solve this problem.
We used a sequence length 4 so that the length is a power of 2.

The computational complexity of the 1-D convolution operation is O(N 2) in
the time domain, and it is O(N log2 N) in the frequency domain. This is due to the
convolution theorem and the fast DFT algorithms. Amajor reason for the widespread
use of digital signal and image processing is due to the availability of fast algorithms
for the computation of the DFT. It is understood that DFT is always computed using
the fast algorithms. The principle behind the algorithm is simple, and it is presented
in the Appendix.

4.2 2-D Linear Convolution Using the DFT 111

4.2 2-D Linear Convolution Using the DFT

Let xz(m, n) and hz(m, n) are the zero-padded versions of the image x(m, n) and the
filter h(m, n) to be linearly convolved. Let the 2-D DFT of xz(m, n) be X (k, l) and
that of hz(m, n) be H(k, l). We find the pointwise product Y (k, l) = X (k, l)H(k, l).
The 2-D IDFT of Y (k, l) yields the convolution output with some rows and columns
with zero values at the end. The block diagram of the 2-D linear convolution using
the 2-D DFT is shown in Fig. 4.1.

Two-dimensional filters, which can be decomposed into 1-D filters along the
coordinate axes, are called separable filters. When the 2-D filter is separable,
H(k, l) = H(k)H(l), the 2-D convolution relation using the DFT is given by

Y (k, l) = X (k, l)H(k, l) = X (k, l)H(k)H(l)

The pointwise product of X (k, l)H(k) can be first carried out and the result can
be multiplied by H(l). The order of computation can also be reversed. The block
diagram of the 2-D convolution using the 2-D DFT with separable filters is shown in
Fig. 4.2. It is more efficient to implement separable filters as shown in the diagram.
Note that, apart from the filtering operation, the 2-D DFT and the IDFT are also
computed using the row–column method with fast algorithms for 1-D DFT. While,
basically, transformation, processing, and inverse transformation are the basic steps
in frequency-domain processing, zero-padding of one or both of the images is also
required before the transformation. Further, the origin of the image is usually at the

xz(m,n)
2-D DFT

X(k, l) Y (k, l)
2-D IDFT

y(m,n)

2-D DFT

H(k, l)

hz(m,n)

Fig. 4.1 2-D linear convolution using the 2-D DFT

xz(m,n)
2-D DFT

X(k, l) Y (k, l)
2-D IDFT

y(m,n)

1-D DFT

H(l)

hz(n)
Decompose

hz(m,n)

1-D DFT

H(k)

hz(m)

P (k, l)

Fig. 4.2 2-D linear convolution using the 2-D DFT with separable filters

112 4 Image Enhancement in the Frequency Domain

top-left corner, and the filters are usually specified in the center-zero format. Both
must be represented in the same format. This requires changing the format of either
the image or the filter. Summarizing,

1. The DFT assumes periodicity of the finite input data. It has to be ensured that the
output is represented with adequate accuracy in one period.

2. To meet this constraint, sufficient zero-padding of the image and the filter is
required. Further, the dimensions of one period have to be a power of 2 in order
to use fast DFT algorithms.

3. It has to be ensured that both the image and the filter are in the same format with
their origins aligned.

4.3 Lowpass Filtering

In this section, we present frequency-domain filtering using the averaging and
Gaussian lowpass filters derived in the spatial domain in Chap.2. Various border
extensions are also taken into account.

4.3.1 The Averaging Lowpass Filter

Example 4.1 Convolve

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦ and h(m, n) =

⎡
⎣
1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎤
⎦

using the DFT. Assume zero-padding at the borders.

Solution
In the case of a 2-D signal, we have to zero-pads in two directions. Figure4.3 shows
the 8 × 8 image xz(m, n), which is the zero-padded version of the 4 × 4 image
x(m, n). The 3 × 3 filter h(m, n) is also shown. The convolution output is of size is
6× 6. But we use matrices of size 8× 8 so that the length is a power of 2 in both the
directions.

As we have already seen, the averaging filter is separable.

h(m, n) = 1

9

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ = 1

3

⎡
⎣
1
1
1

⎤
⎦ 1

3

[
1 1 1

] = h(m)h(n)

http://dx.doi.org/10.1007/978-981-10-6113-4_2

4.3 Lowpass Filtering 113

1 −1 3 2 0 0 0 0
2 1 2 4 0 0 0 0
1 −1 2 −2 0 0 0 0
3 1 2 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1/3 1/3 0 0 0 0 0 1/31/3
1/3
0
0
0
0
0
1/3

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

xz(m,n)

h(m,n)

hz(m) hz(n)

Fig. 4.3 Zero-padding of images for implementing the 2-D linear convolution using the 2-D DFT

Therefore, the convolution can be carried out using two 1-D filters, {h(−1) =
1, h(0) = 1, h(1) = 1}/3. Since xz(m, n) is of size 8 × 8, the zero-padded fil-
ter has to be of length 8 with h(0) in the beginning. The filter can be written as

{h(−1) = 1, h(0) = 1, h(1) = 1, h(2) = 0, h(3) = 0, h(4) = 0, h(5) = 0, h(6) = 0}/3

Circularly shifting left by one position, we get the zero-padded column filter with
the origin at the beginning.

hz(m) = 1

3
{1, 1, 0, 0, 0, 0, 0, 1}

Both the row and column filters, shown in Fig. 4.3, have the same coefficients. The
1-D DFT of this filter (division by 3 is deferred) is

H(k) = {3, 2.4142, 1,−0.4142,−1,−0.4142, 1, 2.4142}

The DFT is real-valued and even-symmetric, since the filter is also real-valued and
even-symmetric. The DFT of the row filter H(l) is the transpose of H(k). The 2-D
DFT, X (k, l), of xz(m, n) in Fig. 4.3 is shown in Table4.1. The partial convolu-
tion output, 3P(k, l) = X (k, l)H(k) shown in Table4.2, in the frequency domain
is obtained by pointwise multiplication of each column of X (k, l) by H(k). The
convolution output, 9Y (k, l) = 3P(k, l)H(l) shown in Table4.3, in the frequency
domain is obtained by pointwise multiplication of each row of 3P(k, l) by H(l).

Since the factor 1/3 was left out in the 1-D filters, the output, which is the same
as that obtained in Chap. 2, is the 2-D IDFT of 9Y (k, l) divided by 9.

y(m, n) = 1

9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 8 11 11 6 0 0 3
3 10 10 11 4 0 0 4
7 13 11 10 4 0 0 6
4 8 4 4 0 0 0 4
4 6 5 4 2 0 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3 4 5 2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The top left 4 × 4 of y(m, n) are the output values.

http://dx.doi.org/10.1007/978-981-10-6113-4_2

114 4 Image Enhancement in the Frequency Domain

Ta
bl
e
4.
1

T
he

2-
D
D
FT

,
X
(k
,
l)
,o
f

x
z(

m
,
n)

in
Fi
g.
4.
3

22
.0
0+

j0
.0
0

2.
76

−j
13
.2
4

−2
.0
0+

j6
.0
0

11
.2
4+

j4
.7
6

10
.0
0+

j0
.0
0

11
.2
4−

j4
.7
6

−2
.0
0−

j6
.0
0

2.
76

+j
13
.2
4

5.
71

−j
12
.0
2

−9
.5
4−

j7
.9
5

−0
.8
8+

j4
.7
1

6.
36

−j
4.
54

0.
88

−j
6.
71

0.
46

−j
7.
12

−4
.5
4−

j4
.1
2

3.
88

+j
1.
46

5.
00

−j
1.
00

−4
.2
4−

j1
.4
1

1.
00

+j
5.
00

1.
41

−j
2.
24

−3
.0
0+

j3
.0
0

4.
24

+j
1.
41

−3
.0
0−

j3
.0
0

−1
.4
1+

j6
.2
4

4.
29

−j
12
.0
2

−6
.3
6−

j2
.5
4

2.
54

−j
0.
12

−2
.4
6−

j1
.9
5

5.
12

+j
5.
29

8.
12

−j
8.
54

−5
.1
2−

j3
.2
9

7.
54

+j
2.
88

−1
2.
00

+j
0.
00

−1
.5
9+

j6
.0
7

−4
.0
0−

j2
.0
0

−4
.4
1+

j8
.0
7

8.
00

+j
0.
00

−4
.4
1−

j8
.0
7

−4
.0
0+

j2
.0
0

−1
.5
9−

j6
.0
7

4.
29

+j
12
.0
2

7.
54

−j
2.
88

−5
.1
2+

j3
.2
9

8.
12

+j
8.
54

5.
12

−j
5.
29

−2
.4
6+

j1
.9
5

2.
54

+j
0.
12

−6
.3
6+

j2
.5
4

5.
00

+j
1.
00

−1
.4
1−

j6
.2
4

−3
.0
0+

j3
.0
0

4.
24

−j
1.
41

−3
.0
0−

j3
.0
0

1.
41

+j
2.
24

1.
00

−j
5.
00

−4
.2
4+

j1
.4
1

5.
71

+j
12
.0
2

3.
88

−j
1.
46

−4
.5
4+

j4
.1
2

0.
46

+j
7.
12

0.
88

+j
6.
71

6.
36

+j
4.
54

−0
.8
8−

j4
.7
1

−9
.5
4+

j7
.9
5

4.3 Lowpass Filtering 115

Ta
bl
e
4.
2

T
he

pa
rt
ia
lc
on
vo
lu
tio

n
ou
tp
ut

3
P
(k
,
l)

=
X
(k
,
l)

H
(k
)
in

th
e
fr
eq
ue
nc
y
do
m
ai
n

66
.0
0+

j0
.0
0

8.
27

−j
39
.7
3

−6
.0
0+

j1
8.
00

33
.7
3+

j1
4.
27

30
.0
0+

j0
.0
0

33
.7
3−

j1
4.
27

−6
.0
0−

j1
8.
00

8.
27

+j
39
.7
3

13
.7
8−

j2
9.
02

−2
3.
02

−j
19
.1
9

−2
.1
2+

j1
1.
36

15
.3
6-
j1
0.
95

2.
12

−j
16
.1
9

1.
12

−j
17
.1
9

−1
0.
95

−j
9.
95

9.
36

+j
3.
54

5.
00

−j
1.
00

−4
.2
4−

j1
.4
1

1.
00

+j
5.
00

1.
41

−j
2.
24

−3
.0
0+

j3
.0
0

4.
24

+j
1.
41

−3
.0
0−

j3
.0
0

−1
.4
1+

j6
.2
4

−1
.7
8+

j4
.9
8

2.
64

+j
1.
05

−1
.0
5+

j0
.0
5

1.
02

+j
0.
81

−2
.1
2−

j2
.1
9

−3
.3
6+

j3
.5
4

2.
12

+j
1.
36

−3
.1
2−

j1
.1
9

12
.0
0+

j0
.0
0

1.
59

−j
6.
07

4.
00

+j
2.
00

4.
41

−j
8.
07

−8
.0
0+

j0
.0
0

4.
41

+j
8.
07

4.
00

−j
2.
00

1.
59

+j
6.
07

−1
.7
8−

j4
.9
8

−3
.1
2+

j1
.1
9

2.
12

−j
1.
36

−3
.3
6−

j3
.5
4

−2
.1
2+

j2
.1
9

1.
02

−j
0.
81

−1
.0
5−

j0
.0
5

2.
64

−j
1.
05

5.
00

+j
1.
00

−1
.4
1−

j6
.2
4

−3
.0
0+

j3
.0
0

4.
24

−j
1.
41

−3
.0
0−

j3
.0
0

1.
41

+j
2.
24

1.
00

−j
5.
00

−4
.2
4+

j1
.4
1

13
.7
8+

j2
9.
02

9.
36

−j
3.
54

−1
0.
95

+j
9.
95

1.
12

+j
17
.1
9

2.
12

+j
16
.1
9

15
.3
6+

j1
0.
95

−2
.1
2−

j1
1.
36

−2
3.
02

+j
19
.1
9

116 4 Image Enhancement in the Frequency Domain

Ta
bl
e
4.
3

T
he

co
nv
ol
ut
io
n
ou
tp
ut

9Y
(k
,
l)

=
3

P
(k
,
l)

H
(l
)
in

th
e
fr
eq
ue
nc
y
do
m
ai
n

19
8.
00

+j
0.
00

19
.9
7−

j9
5.
91

−6
.0
0+

j1
8.
00

−1
3.
97

−j
5.
91

−3
0.
00

+j
0.
00

−1
3.
97

+j
5.
91

−6
.0
0−

j1
8.
00

19
.9
7+

j9
5.
91

41
.3
3−

j8
7.
06

−5
5.
58

−j
46
.3
3

−2
.1
2+

j1
1.
36

−6
.3
6+

j4
.5
4

−2
.1
2+

j1
6.
19

−0
.4
6+

j7
.1
2

−1
0.
95

−j
9.
95

22
.6
1+

j8
.5
4

15
.0
0−

j3
.0
0

−1
0.
24

−j
3.
41

1.
00

+j
5.
00

−0
.5
9+

j0
.9
3

3.
00

−j
3.
00

−1
.7
6−

j0
.5
9

−3
.0
0−

j3
.0
0

−3
.4
1+

j1
5.
07

−5
.3
3+

j1
4.
94

6.
36

+j
2.
54

−1
.0
5+

j0
.0
5

−0
.4
2−

j0
.3
3

2.
12

+j
2.
19

1.
39

−j
1.
46

2.
12

+j
1.
36

−7
.5
4−

j2
.8
8

36
.0
0+

j0
.0
0

3.
83

−j
14
.6
6

4.
00

+j
2.
00

−1
.8
3+

j3
.3
4

8.
00

+j
0.
00

−1
.8
3−

j3
.3
4

4.
00

−j
2.
00

3.
83

+j
14
.6
6

−5
.3
3−

j1
4.
94

−7
.5
4+

j2
.8
8

2.
12

−j
1.
36

1.
39

+j
1.
46

2.
12

−j
2.
19

−0
.4
2+

j0
.3
3

−1
.0
5−

j0
.0
5

6.
36

−j
2.
54

15
.0
0+

j3
.0
0

−3
.4
1−

j1
5.
07

−3
.0
0+

j3
.0
0

−1
.7
6+

j0
.5
9

3.
00

+j
3.
00

−0
.5
9−

j0
.9
3

1.
00

−j
5.
00

−1
0.
24

+j
3.
41

41
.3
3+

j8
7.
06

22
.6
1−

j8
.5
4

−1
0.
95

+j
9.
95

−0
.4
6−

j7
.1
2

−2
.1
2−

j1
6.
19

−6
.3
6−

j4
.5
4

−2
.1
2−

j1
1.
36

−5
5.
58

+j
46
.3
3

4.3 Lowpass Filtering 117

4.3.2 The Gaussian Lowpass Filter

Example 4.2 Convolve

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

and a 3×3 Gaussian lowpass filter with σ = 0.5. Assume periodicity at the borders.

Solution
This filter is also separable with the same coefficients in both the directions,
{0.1065, 0.7870, 0.1065}, as shown in Chap.2. Zero-padding and circularly shift-
ing the column filter, we get

hz(m) = {0.7870, 0.1065, 0, 0.1065}

Only one zero is appended, since the convolution is periodic and the input is a 4× 4
image. The 1-D DFT of this filter is

H(k) = {1, 0.7870, 0.5740, 0.7870}

Both the row and column filters have the same coefficients. The 2-D DFT, X (k, l),
of x(m, n) is shown in Table4.4. Since the periodic extension at the borders is
assumed, no zero-padding of x(m, n) is required. Note that these values are the
same as the even-indexed values in the 8 × 8 zero-padded version of the input
in the previous example, due to a DFT property. The partial convolution output,
P(k, l) = X (k, l)H(k) shown in Table4.5, in the frequency domain is obtained by
pointwisemultiplication of each column of X (k, l) by H(k). The convolution output,

Table 4.4 The 2-D DFT, X (k, l), of x(m, n)

22.00+j0.00 −2.00+j6.00 10.00+j0.00 −2.00−j6.00

5.00−j1.00 1.00+j5.00 −3.00+j3.00 −3.00−j3.00

−12.00+j0.00 −4.00−j2.00 8.00+j0.00 −4.00+j2.00

5.00+j1.00 −3.00+j3.00 −3.00−j3.00 1.00−j5.00

Table 4.5 The partial convolution output P(k, l) = X (k, l)H(k) in the frequency domain

22.00+j0.00 −2.00+j6.00 10.00+j0.00 −2.00−j6.00

3.94−j0.79 0.79+j3.94 −2.36+j2.36 −2.36−j2.36

−6.89+j0.00 −2.30−j1.15 4.59+j0.00 −2.30+j1.15

3.94+j0.79 −2.36+j2.36 −2.36−j2.36 0.79−j3.94

http://dx.doi.org/10.1007/978-981-10-6113-4_2

118 4 Image Enhancement in the Frequency Domain

Table 4.6 The convolution output Y (k, l) = P(k, l)H(l) in the frequency domain

22.00+j0.00 −1.57+j4.72 5.74+j0.00 −1.57−j4.72

3.94−j0.79 0.62+j3.10 −1.36+j1.36 −1.86−j1.86

−6.89+j0.00 −1.81−j0.90 2.64+j0.00 −1.81+j0.90

3.94+j0.79 −1.86+j1.86 −1.36−j1.36 0.62−j3.10

Y (k, l) = P(k, l)H(l) shown in Table4.6, in the frequency domain is obtained by
pointwise multiplication of each row of P(k, l) by H(l). The output, which is the
same as that obtained in Chap.2, is the 2-D IDFT of Y (k, l).

y(m, n) =

⎡
⎢⎢⎣
1.2130 −0.0144 2.3679 2.1790
1.8028 0.8664 2.0542 2.8921
0.8777 −0.0982 1.4133 −0.3823
2.2545 0.9502 1.8866 1.7372

⎤
⎥⎥⎦

Example 4.3 Convolve

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

and a 3× 3 Gaussian lowpass filter with σ = 0.5. Assume replication at the borders.

Solution
The input with replication at the borders and zero-padded is

xz(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 3 2 2 0 0
1 1 −1 3 2 2 0 0
2 2 1 2 4 4 0 0
1 1 −1 2 −2 −2 0 0
3 3 1 2 2 2 0 0
3 3 1 2 2 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zero-padding and circularly shifting the row filter, we get

hz(m) = {0.7870, 0.1065, 0, 0, 0, 0, 0, 0.1065}

The 1-D DFT of this filter is

H(k) = {1, 0.9376, 0.7870, 0.6364, 0.5740, 0.6364, 0.7870, 0.9376}

http://dx.doi.org/10.1007/978-981-10-6113-4_2

4.3 Lowpass Filtering 119

Ta
bl
e
4.
7

T
he

2-
D
D
FT

,
X
(k
,
l)
,o
f

x
z(

m
,
n)

56
.0
0+

j0
.0
0

−8
.1
9−

j1
0.
61

21
.0
0−

j7
.0
0

10
.1
9−

j1
0.
61

−1
4.
00

+j
0.
00

10
.1
9+

j1
0.
61

21
.0
0+

j7
.0
0

−8
.1
9+

j1
0.
61

−7
.8
3−

j1
0.
76

−1
0.
54

+j
11
.5
4

0.
24

−j
2.
00

−4
.5
4−

j1
.5
4

−3
.0
0+

j5
.2
4

1.
71

−j
3.
54

−0
.2
4−

j8
.0
0

−8
.7
8−

j1
.2
9

6.
00

−j
22
.0
0

0.
29

+j
4.
71

−3
.0
0−

j7
.0
0

3.
71

−j
5.
78

−4
.0
0+

j2
.0
0

1.
71

+j
3.
29

9.
00

−j
9.
00

2.
29

+j
9.
78

−2
.1
7+

j1
9.
24

2.
54

−j
5.
54

8.
24

+j
8.
00

−3
.4
6−

j4
.4
6

−3
.0
0+

j3
.2
4

6.
78

+j
2.
71

−8
.2
4+

j2
.0
0

0.
29

−j
3.
54

16
.0
0+

j0
.0
0

−8
.5
4+

j1
.5
4

5.
00

−j
7.
00

−1
.4
6+

j5
.5
4

2.
00

+j
0.
00

−1
.4
6−

j5
.5
4

5.
00

+j
7.
00

−8
.5
4−

j1
.5
4

−2
.1
7−

j1
9.
24

0.
29

+j
3.
54

−8
.2
4−

j2
.0
0

6.
78

−j
2.
71

−3
.0
0−

j3
.2
4

−3
.4
6+

j4
.4
6

8.
24

−j
8.
00

2.
54

+j
5.
54

6.
00

+j
22
.0
0

2.
29

−j
9.
78

9.
00

+j
9.
00

1.
71

−j
3.
29

−4
.0
0−

j2
.0
0

3.
71

+j
5.
78

−3
.0
0+

j7
.0
0

0.
29

−j
4.
71

−7
.8
3+

j1
0.
76

−8
.7
8+

j1
.2
9

−0
.2
4+

j8
.0
0

1.
71

+j
3.
54

−3
.0
0−

j5
.2
4

−4
.5
4+

j1
.5
4

0.
24

+j
2.
00

−1
0.
54

−j
11
.5
4

120 4 Image Enhancement in the Frequency Domain

Ta
bl
e
4.
8

T
he

pa
rt
ia
lc
on
vo
lu
tio

n
ou
tp
ut

P
(k
,
l)

=
X
(k
,
l)

H
(k
)
in

th
e
fr
eq
ue
nc
y
do
m
ai
n

56
.0
0+

j0
.0
0

−8
.1
9−

j1
0.
61

21
.0
0−

j7
.0
0

10
.1
9−

j1
0.
61

−1
4.
00

+j
0.
00

10
.1
9+

j1
0.
61

21
.0
0+

j7
.0
0

−8
.1
9+

j1
0.
61

−7
.3
4−

j1
0.
09

−9
.8
8+

j1
0.
82

0.
23

−j
1.
88

−4
.2
5−

j1
.4
4

−2
.8
1+

j4
.9
2

1.
60

−j
3.
31

−0
.2
3−

j7
.5
0

−8
.2
3−

j1
.2
1

4.
72

−j
17
.3
1

0.
23

+j
3.
70

−2
.3
6−

j5
.5
1

2.
92

−j
4.
55

−3
.1
5+

j1
.5
7

1.
34

+j
2.
59

7.
08

−j
7.
08

1.
80

+j
7.
70

−1
.3
8+

j1
2.
25

1.
61

−j
3.
52

5.
25

+j
5.
09

−2
.2
0−

j2
.8
4

−1
.9
1+

j2
.0
6

4.
31

+j
1.
72

−5
.2
5+

j1
.2
7

0.
19

−j
2.
25

9.
18

+j
0.
00

−4
.9
0+

j0
.8
8

2.
87

−j
4.
02

−0
.8
4+

j3
.1
8

1.
15

+j
0.
00

−0
.8
4−

j3
.1
8

2.
87

+j
4.
02

−4
.9
0−

j0
.8
8

−1
.3
8−

j1
2.
25

0.
19

+j
2.
25

−5
.2
5−

j1
.2
7

4.
31

−j
1.
72

−1
.9
1−

j2
.0
6

−2
.2
0+

j2
.8
4

5.
25

−j
5.
09

1.
61

+j
3.
52

4.
72

+j
17
.3
1

1.
80

−j
7.
70

7.
08

+j
7.
08

1.
34

−j
2.
59

−3
.1
5−

j1
.5
7

2.
92

+j
4.
55

−2
.3
6+

j5
.5
1

0.
23

−j
3.
70

−7
.3
4+

j1
0.
09

−8
.2
3+

j1
.2
1

−0
.2
3+

j7
.5
0

1.
60

+j
3.
31

−2
.8
1−

j4
.9
2

−4
.2
5+

j1
.4
4

0.
23

+j
1.
88

−9
.8
8−

j1
0.
82

4.3 Lowpass Filtering 121

Ta
bl
e
4.
9

T
he

co
nv
ol
ut
io
n
ou
tp
ut

Y
(k
,
l)

=
P
(k
,
l)

H
(l
)
in

th
e
fr
eq
ue
nc
y
do
m
ai
n

56
.0
0+

j0
.0
0

−7
.6
8−

j9
.9
4

16
.5
3−

j5
.5
1

6.
49

−j
6.
75

−8
.0
4+

j0
.0
0

6.
49

+j
6.
75

16
.5
3+

j5
.5
1

−7
.6
8+

j9
.9
4

−7
.3
4−

j1
0.
09

−9
.2
6+

j1
0.
14

0.
18

−j
1.
48

−2
.7
1−

j0
.9
2

−1
.6
1+

j2
.8
2

1.
02

−j
2.
11

−0
.1
8−

j5
.9
0

−7
.7
2−

j1
.1
4

4.
72

−j
17
.3
1

0.
22

+j
3.
47

−1
.8
6−

j4
.3
4

1.
86

−j
2.
89

−1
.8
1+

j0
.9
0

0.
85

+j
1.
65

5.
57

−j
5.
57

1.
69

+j
7.
22

−1
.3
8+

j1
2.
25

1.
51

−j
3.
30

4.
13

+j
4.
01

−1
.4
0−

j1
.8
1

−1
.1
0+

j1
.1
8

2.
75

+j
1.
10

−4
.1
3+

j1
.0
0

0.
17

−j
2.
11

9.
18

+j
0.
00

−4
.5
9+

j0
.8
3

2.
26

−j
3.
16

−0
.5
3+

j2
.0
2

0.
66

+j
0.
00

−0
.5
3−

j2
.0
2

2.
26

+j
3.
16

−4
.5
9−

j0
.8
3

−1
.3
8−

j1
2.
25

0.
17

+j
2.
11

−4
.1
3−

j1
.0
0

2.
75

−j
1.
10

−1
.1
0−

j1
.1
8

−1
.4
0+

j1
.8
1

4.
13

−j
4.
01

1.
51

+j
3.
30

4.
72

+j
17
.3
1

1.
69

−j
7.
22

5.
57

+j
5.
57

0.
85

−j
1.
65

−1
.8
1−

j0
.9
0

1.
86

+j
2.
89

−1
.8
6+

j4
.3
4

0.
22

−j
3.
47

−7
.3
4+

j1
0.
09

−7
.7
2+

j1
.1
4

−0
.1
8+

j5
.9
0

1.
02

+j
2.
11

−1
.6
1−

j2
.8
2

−2
.7
1+

j0
.9
2

0.
18

+j
1.
48

−9
.2
6−

j1
0.
14

122 4 Image Enhancement in the Frequency Domain

Ta
bl
e
4.
10

T
he

2-
D
ID

FT
of

Y
(k
,
l)

0.
79
83

0.
70
32

−0
.3
22
6

2.
20
47

1.
88
22

1.
59
67

0.
19
03

0.
09
52

0.
98
87

0.
90
48

−0
.1
93
4

2.
42
91

2.
28
55

1.
97
73

0.
23
57

0.
11
78

1.
59
67

1.
65
78

0.
86
64

2.
05
42

3.
03
71

2.
81
27

0.
33
53

0.
19
03

1.
17
90

1.
11
78

−0
.0
98
2

1.
41
33

−0
.6
22
4

−0
.8
35
4

−0
.0
99
6

0.
14
05

2.
49
02

2.
57
40

1.
12
92

1.
82
54

1.
61
94

1.
40
64

0.
16
76

0.
29
68

2.
39
50

2.
49
02

1.
17
90

1.
69
18

1.
78
70

1.
59
67

0.
19
03

0.
28
55

0.
28
55

0.
29
68

0.
14
05

0.
20
17

0.
21
30

0.
19
03

0.
02
27

0.
03
40

0.
09
52

0.
08
38

−0
.0
38
4

0.
26
28

0.
22
43

0.
19
03

0.
02
27

0.
01
13

4.3 Lowpass Filtering 123

The 2-DDFT, X (k, l), of xz(m, n) is shown in Table4.7. The partial convolution out-
put, P(k, l) = X (k, l)H(k) shown in Table4.8, in the frequency domain is obtained
by pointwisemultiplication of each column of X (k, l) by H(k). The convolution out-
put, Y (k, l) = P(k, l)H(l) shown in Table4.9, in the frequency domain is obtained
by pointwise multiplication of each row of P(k, l) by H(l). The output is the 2-D
IDFT of Y (k, l). The 4 × 4 convolution output is shown in boldface in Table4.10.
The central part of the output is the same for both the border extensions, as it should
be.

4.4 The Laplacian Filter

In this section, we present frequency-domain filtering using the Laplacian filter
derived in the spatial domain in Chap.2.

Example 4.4 Convolve

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

and a 3 × 3 Laplacian enhancement filter.

h(m, n) =
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦

Assume zero-padding at the borders.

Solution
The Laplacian filter is inseparable. The zero-padding and shifting in two directions
results in

hz(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −1 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_2

124 4 Image Enhancement in the Frequency Domain

Table 4.11 The 2-D DFT, H(k, l), of zero-padded hz(m, n)

1.00 1.59 3.00 4.41 5.00 4.41 3.00 1.59

1.59 2.17 3.59 5.00 5.59 5.00 3.59 2.17

3.00 3.59 5.00 6.41 7.00 6.41 5.00 3.59

4.41 5.00 6.41 7.83 8.41 7.83 6.41 5.00

5.00 5.59 7.00 8.41 9.00 8.41 7.00 5.59

4.41 5.00 6.41 7.83 8.41 7.83 6.41 5.00

3.00 3.59 5.00 6.41 7.00 6.41 5.00 3.59

1.59 2.17 3.59 5.00 5.59 5.00 3.59 2.17

The 2-D DFT, H(k, l), of hz(m, n) is shown in Table4.11. The DFT is real-valued
and even-symmetric, since the filter is also real-valued and even-symmetric. The 2-D
DFT of the zero-padded input X (k, l) is the same as in Example 4.1. The convolution
output Y (k, l) = X (k, l)H(k, l) in the frequency domain is obtained by pointwise
multiplication, shown in Table4.12. The output, which is the same as that obtained
in Chap.2, is the top left 4 × 4 of the 8 × 8 2-D IDFT of Y (k, l)

y(m, n) =

⎡
⎢⎢⎣

4 −10 12 3
7 3 0 18
1 −10 9 −18
13 1 5 10

⎤
⎥⎥⎦

4.4.1 Amplitude and Phase Distortions

The human eye is relatively more tolerant for amplitude distortion than phase distor-
tion. The phase distortion results in shifting of the position of the pixels (smearing)
and even a small amount of phase distortion may distort the image beyond recog-
nition. Therefore, both the amplitude and phase characteristics of image process-
ing systems, such as filters, must be considered carefully in processing the images.
Figure4.4a shows a 256 × 256 gray level image. The 2-D DFT of the image is
computed in terms of its magnitude and phase spectra. Figure4.4b shows its recon-
struction using the square root of its magnitude spectrum and retaining the phase
spectrum. The image is still identifiable. Figure4.4c shows its reconstruction using
the magnitude spectrum alone with zero phase. Distortion is quite severe. Figure4.4d
shows its reconstruction using a constantmagnitude spectrum and retaining the phase
spectrum. Although it is faint, the features of the original image are still intact.

http://dx.doi.org/10.1007/978-981-10-6113-4_2

4.4 The Laplacian Filter 125

Ta
bl
e
4.
12

T
he

co
nv
ol
ut
io
n
ou
tp
ut

Y
(k
,
l)

=
X
(k
,
l)

H
(k
,
l)
in

th
e
fr
eq
ue
nc
y
do
m
ai
n

22
.0
0+

j0
.0
0

4.
37

−j
21
.0
0

−6
.0
0+

j1
8.
00

49
.6
3+

j2
1.
00

50
.0
0+

j0
.0
0

49
.6
3−

j2
1.
00

−6
.0
0−

j1
8.
00

4.
37

+j
21
.0
0

9.
05

−j
19
.0
6

−2
0.
71

−j
17
.2
6

−3
.1
5+

j1
6.
88

31
.8
2−

j2
2.
68

4.
91

−j
37
.4
6

2.
32

−j
35
.6
1

−1
6.
26

−j
14
.7
8

8.
42

+j
3.
18

15
.0
0−

j3
.0
0

−1
5.
21

−j
5.
07

5.
00

+j
25
.0
0

9.
07

−j
14
.3
8

−2
1.
00

+j
21
.0
0

27
.2
1+

j9
.0
7

−1
5.
00

−j
15
.0
0

−5
.0
7+

j2
2.
38

18
.9
5−

j5
3.
06

−3
1.
82

−j
12
.6
8

16
.2
6−

j0
.7
8

−1
9.
29

−j
15
.2
6

43
.0
9+

j4
4.
54

63
.5
8−

j6
6.
82

−3
2.
85

−j
21
.1
2

37
.6
8+

j1
4.
39

−6
0.
00

+j
0.
00

−8
.8
6+

j3
3.
91

−2
8.
00

−j
14
.0
0

−3
7.
14

+j
67
.9
1

72
.0
0+

j0
.0
0

−3
7.
14

−j
67
.9
1

−2
8.
00

+j
14
.0
0

−8
.8
6−

j3
3.
91

18
.9
5+

j5
3.
06

37
.6
8−

j1
4.
39

−3
2.
85

+j
21
.1
2

63
.5
8+

j6
6.
82

43
.0
9−

j4
4.
54

−1
9.
29

+j
15
.2
6

16
.2
6+

j0
.7
8

−3
1.
82

+j
12
.6
8

15
.0
0+

j3
.0
0

−5
.0
7−

j2
2.
38

−1
5.
00

+j
15
.0
0

27
.2
1−

j9
.0
7

−2
1.
00

−j
21
.0
0

9.
07

+j
14
.3
8

5.
00

−j
25
.0
0

−1
5.
21

+j
5.
07

9.
05

+j
19
.0
6

8.
42

−j
3.
18

−1
6.
26

+j
14
.7
8

2.
32

+j
35
.6
1

4.
91

+j
37
.4
6

31
.8
2+

j2
2.
68

−3
.1
5−

j1
6.
88

−2
0.
71

+j
17
.2
6

126 4 Image Enhancement in the Frequency Domain

Fig. 4.4 aA 256×256 gray-level image; b its reconstruction using the square root of its magnitude
spectrum and retaining the phase spectrum; c its reconstruction using the magnitude spectrum alone
with zero phase; d its reconstruction using a constant magnitude spectrum and retaining the phase
spectrum

4.5 Frequency-Domain Filters

4.5.1 Ideal Filters

As the frequency response is the Fourier transform of the impulse response, we found
the frequency-domain versions of the averaging, Laplacian and Gaussian filters by
computing the DFT of their impulse responses. Alternatively, filters can be directly

4.5 Frequency-Domain Filters 127

specified in the frequency domain itself. Consider the 1-D periodic waveform, pre-
sented in Chap.3.

x(n) = 1 + 2 cos(
2π

4
n − π

3
) + cos(2

2π

4
n)

Its samples are

{x(0) = 3, x(1) = √
3, x(2) = 1, x(3) = −√

3}

There are three real frequency components. Its Fourier representation is

x(n) = 1

4
(4e j0 2π

4 n + (2 − j2
√
3)e j 2π

4 n + 4e j2 2π
4 n + (2 + j2

√
3)e j3 2π

4 n)

The high-frequency components can be eliminated by making their DFT coefficients
zero. Then, we get the lowpass filtered version of the waveform

xl(n) = 1

4
(4e j0 2π

4 n) = {1, 1, 1, 1}

The low-frequency components can be eliminated by making their DFT coefficients
zero. Then, we get the highpass filtered version of the waveform

xh(n) = 1

4
(4e j2 2π

4 n) = cos(πn) = {1,−1, 1,−1}

The low- and high-frequency components can be eliminated by making their DFT
coefficients zero. Then, we get the bandpass filtered version of the waveform

xbp(n) = 1

4
((2− j2

√
3)e j 2π

4 n + (2+ j2
√
3)e j3 2π

4 n) = 2 cos(
2π

4
n − π

3
) = {1,√3,−1,−√

3}

The middle-frequency component can be eliminated by making its DFT coefficients
zero. Then, we get the bandreject filtered version of the waveform

xbr (n) = 1

4
(4e j0 2π

4 n + 4e j2 2π
4 n) = (1 + cos(πn)) = {2, 0, 2, 0}

Given the DFT coefficients of the waveform in the center-zero format,

{X (−2) = 4, X (−1) = 2 + j2
√
3, X (0) = 4, X (1) = 2 − j2

√
3}

we multiplied the set of coefficients, respectively, by the frequency responses

Hl(k) = {0, 0, 1, 0}, Hh(k) = {1, 0, 0, 0}, Hbp(k) = {0, 1, 0, 1}, Hbr (k) = {1, 0, 1, 0}

http://dx.doi.org/10.1007/978-981-10-6113-4_3

128 4 Image Enhancement in the Frequency Domain

to implement the different filters. For each of the complex spectral component, the
filtering operation is specified. As the complex coefficients are multiplied by 1 or
0, the phase of the filtered image is not distorted. They are called zero-phase filters.
The lowpass filter passes the frequency components those are close to the zero fre-
quency, while the highpass filter just does the opposite. The frequency response of
the highpass filter is related to that of the lowpass filter. The frequency responses of
the other two types of filters can be expressed as a linear combination of those of the
lowpass and highpass filters.

4.5.1.1 Lowpass Filter

Let the DFT of the image be in the center-zero format. That is, the DC coefficient is
located approximately in the center of the spectrum and the distance of a coefficient
from the center indicates its frequency. Since the low-frequency coefficients are
around the center, we can define a lowpass filter in the frequency domain as

H(k, l) =
{
1, for D(k, l) ≤ Dc

0, for D(k, l) > Dc

where D(k, l) = √
k2 + l2 is the distance between the spectral point (k, l) and the

center of the spectrum, and Dc is the cutoff radius. This spectrum H(k, l) of the filter
is multiplied by the spectrum of the image X (k, l) to filter the image. The frequency
components in the image, which are located inside a circle of radius Dc, are passed
(as they are multiplied by 1) and the rest are cut off (as they are multiplied by 0) to
produce the filtered image. A 4 × 4 distance matrix with the center at coordinates
(2, 2) is

D(k, l) =

⎡
⎢⎢⎣
2.8284 2.2361 2.0000 2.2361
2.2361 1.4142 1.0000 1.4142
2.0000 1.0000 0 1.0000
2.2361 1.4142 1.0000 1.4142

⎤
⎥⎥⎦

If we specify that the cutoff radius is 1.9, then the lowpass filter spectrum is

H(k, l) =

⎡
⎢⎢⎣
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎥⎥⎦

If we specify that the cutoff radius is 0.9, then only the DC component of the image
will be passed.

The ideal filters are ideal in defining the frequency response. However, they are
not useful in practice since the sharp cutoff produces the ringing effect. The unit-step
response is of ripply character, which is often undesirable. These filters are used to
classify the various types of filters and serve as a standard for practical filters to

4.5 Frequency-Domain Filters 129

attain. They have a passband and a stopband, but no transition band. For practical
filters, a transition band is a necessity and they approximate the frequency response
of the ideal filters to a required degree.

4.5.1.2 Highpass Filter

Highpass filters pass the high-frequency components of a signal readily while sup-
pressing the low-frequency components. It is used in image sharpening and edge
detection. A highpass filter in the frequency domain is defined as

H(k, l) =
{
0, for D(k, l) ≤ Dc

1, for D(k, l) > Dc

where D(k, l) = √
k2 + l2 is the distance between the spectral point (k, l) and the

center of the spectrum, and Dc is the cutoff radius. This spectrum H(k, l) of the filter
is multiplied by the spectrum of the image X (k, l) to filter the image. The frequency
components in the image, which are located outside a circle of radius Dc, are passed
(as they are multiplied by 1) and the rest are cut off (as they are multiplied by 0) to
produce the filtered image. A highpass filter is also defined, in terms of the spectrum
of the lowpass filter, as

Hh(k, l) = 1 − Hl(k, l)

where Hh(k, l) and Hl(k, l) are, respectively, the spectra of highpass and lowpass
filters. From the example given for the ideal lowpass filter, a highpass filter is given
by

Hh(k, l) =

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦

4.5.2 The Butterworth Lowpass Filter

The practical filters have a transition band and reduce the ringing effect. Various
functions define the filters. The spectrum of the lowpass Butterworth filter is defined
as

H(k, l) = 1

1 +
(

D(k,l)
Dc

)2n

where n is the order of the filter. The higher the order, the closer the spectrum
becomes to that of the ideal filter. Therefore, the transition band width is controllable

130 4 Image Enhancement in the Frequency Domain

127

0

−128

127

0

−128
0

0.5

1

n=1

D
c
=40

l

(a)

k

H
 (
k,

l)

n=2

D
c
=40

(b)

n=3

D
c
=40

(c)
n=4

D
c
=40

(d)

Fig. 4.5 The frequency response of the 256× 256 lowpass Butterworth filters with Dc = 40. The
amplitude of the response varies from 0 to 1. a Order n = 1; b order n = 2; c order n = 3; d order
n = 4

by the order n. At low orders, the Butterworth filter spectrum is similar to that of the
Gaussian filter. The attenuation is 0.5 at D(k, l) = Dc, for any order. Figure4.5a–d
shows the frequency responses of the 256×256 Butterworth lowpass filters with the
cutoff frequency Dc = 40. The order of the filters, respectively, are n = 1, n = 2,
n = 3, and n = 4. The amplitude of the response varies from 0 to 1. Figure4.6a
shows a 256× 256 gray-level image. Its magnitude spectrum, in log scale, is shown
in Fig. 4.6b. The image representation of a Butterworth lowpass filter with Dc = 10,
n = 3 and the corresponding filtered image are shown, respectively, in Fig. 4.6c and
d. The image representation of a Butterworth lowpass filter with Dc = 60, n = 3,
and the corresponding filtered image are shown, respectively, in Fig. 4.6e and f. As
the cutoff frequency is small, the filter attenuates most of the frequency components
and the image is considerably blurred in (d). As the cutoff frequency is high, the
filter passes most of the frequency components, and the image almost looks like the
original in (f). Figure4.7 shows the spectra of the image and its modified versions

4.5 Frequency-Domain Filters 131

Fig. 4.6 a A 256 × 256 8-bit gray-level image; b its magnitude spectrum in log scale, log10(1 +
|X (k, l)|) in the center-zero format; c the image representation of a Butterworth lowpass filter
with Dc = 10, n = 3 and d the corresponding filtered image; e a Butterworth lowpass filter with
Dc = 60, n = 3 and f the corresponding filtered image

due to lowpass filtering. The filtering process is quite clear. As the cutoff frequency
decreases from 60 in (d) to 30 in (c) and to 10 in (b), more and more frequency
components are cutoff compared with the spectrum of the input image shown in (a).
Therefore, the blurring of the image increases.

132 4 Image Enhancement in the Frequency Domain

(a) (b)

(c) (d)

Fig. 4.7 a The magnitude spectrum of the image in Fig. 4.6a in a mesh plot; b the spectrum of the
filtered image in Fig. 4.6d; c the spectrum of the filtered image with Dc = 30; d the spectrum of
the filtered image in Fig. 4.6f

4.5.3 The Butterworth Highpass Filter

The spectrum of the Butterworth highpass filter is defined as

H(k, l) = 1

1 +
(

Dc
D(k,l)

)2n

where Dc is the cutoff frequency and n is the order of the filter. The frequency-domain
highpass filter with the same cutoff frequency can also be obtained using the relation

Hh(k, l) = 1 − Hl(k, l)

4.5 Frequency-Domain Filters 133

(a) (b)

(c) (d)

(e) (f)

Fig. 4.8 a A butterworth highpass filter with Dc = 10, n = 3 and b the filtered image; c a
butterworth highpass filter with Dc = 20, n = 3 and d the filtered image; e the spectrum of the
image in (b); f the spectrum of the image in (d)

The N × N spectrum of the lowpass filter is subtracted from that of an all pass filter
(a N × N matrix of all 1s). The filtering actions of lowpass and highpass filters
are reciprocal. That is, the frequency components passed by the lowpass filter are
attenuated by the corresponding highpass filter and vice versa.

Figure4.8a and b shows, respectively, a Butterworth highpass filter with Dc = 10,
n = 3, and the filtered image. The input image and its spectrum are shown, respec-
tively, in Figs. 4.6a and 4.7a. Figure4.8c and d shows, respectively, a Butterworth

134 4 Image Enhancement in the Frequency Domain

highpass filter with Dc = 20, n = 3, and the filtered image. Figure4.8e and f shows,
respectively, the spectra of the highpass filtered images in Fig. 4.8b and d. The higher
the cutoff frequency, the more is the attenuation of the low-frequency components.

4.5.4 The Gaussian Lowpass Filter

Both the impulse and frequency responses of a Gaussian filter are real-valued
Gaussian functions. The spectrum of the lowpass Gaussian filter is defined as

H(k, l) = e
− D2(k,l)

2D2
c

The attenuation is e−0.5 = 0.6065 at D(k, l) = Dc = σ. Lower values of σ move the
cutoff frequency toward zero. Figure4.9a–d shows the frequency response H(k, l)
of the Gaussian 256 × 256 lowpass filter with σ = 10, σ = 20, σ = 40 and σ = 80,
respectively.

4.5.5 The Gaussian Highpass Filter

The Gaussian highpass filter is defined, in terms of the spectrum of that of its lowpass
filter, as

Hh(k, l) = 1 − Hl(k, l) = 1 − e
− D2(k,l)

2D2
c

where Hh(k, l) and Hl(k, l) are, respectively, the spectra of highpass and lowpass fil-
ters. Figure4.10a shows a Gaussian highpass filter with σ = 20. The corresponding
highpass filtered version, of the image in Fig. 4.6a, is shown in Fig. 4.10b. AGaussian
highpass filter with σ = 50 is shown in Fig. 4.10c. The corresponding filtered image
is shown in Fig. 4.10d. As the cutoff frequency increases, more low-frequency com-
ponents are attenuated.

4.5.6 Bandpass and Bandreject Filtering

Bandpass filters pass a band of frequencies in the middle of the spectrum of a signal.
Bandpass filters can be realized using two lowpass filters as

Hbp(k, l) = Hhc(k, l) − Hlc(k, l)

4.5 Frequency-Domain Filters 135

127

0

−128

127

0

−128

0

0.5

1

σ =10

l

(a)

k

H
 (
k,

l)

σ =20

(b)

σ =40(c) σ =80(d)

Fig. 4.9 The frequency response H(k, l) of the Gaussian 256 × 256 lowpass filter with a σ = 10,
b σ = 20, c σ = 40, d σ = 80

with filter Hhc(k, l) having a higher cutoff frequency. Gaussian bandpass filter:

Hbp(k, l) = e
− D2(k,l)

2Dh2c − e
− D2(k,l)

2Dl2c

Butterworth bandpass filter:

Hbp(k, l) = 1

1 +
(

D(k,l)
Dhc

)2n − 1

1 +
(

D(k,l)
Dlc

)2n

Bandreject filter:
Hbr (k, l) = 1 − Hbp(k, l)

Examples of filtering with these filters are given in Chap.5.

http://dx.doi.org/10.1007/978-981-10-6113-4_5

136 4 Image Enhancement in the Frequency Domain

0

128

0

128

0

0.5

1

σ =20

l

(a)

k

H
 (
k,

l)
(b)

σ =50

(c) (d)

Fig. 4.10 a AGaussian highpass filter with σ = 20 and b the filtered image; c a Gaussian highpass
filter with σ = 50 and d the filtered image

4.6 Homomorphic Filtering

The intensity of light decreases with the inverse of the square of the distance from
the source of the illumination. When the source is directed and strong, the image
is corrupted due to illumination interference. Homomorphic filtering can enhance
an image that is corrupted by multiplicative noise or interference. Let the corrupted
and uncorrupted images be y(m, n) and x(m, n), respectively. Let the illumination
interference be z(m, n). Then,

y(m, n) = x(m, n)z(m, n)

It is assumed that z(m, n) is constant. An image is modeled as the product of the
illumination and reflectance components.

As the filtering is a linear process, we need the noise to be additive. Taking the
natural logarithm, we get

4.6 Homomorphic Filtering 137

loge(y(m, n)) = loge(x(m, n)) + loge(z(m, n))

Now, linear filtering can be applied and the exponential of the filtered output is the
restored image. The low-frequency components dominate the illumination compo-
nent, while the high-frequency components dominate the reflectance component. A
homomorphic filter is similar to a highpass filter in that it passes high-frequency
components more readily than the low-frequency components. Therefore, the effect
of variable illumination on the image is reduced. The logarithmic version of the
input image can be subjected to linear filtering yielding the logarithmic version of
the filtered output image. Exponentiation, which is the inverse of logarithm, of this
output is the filtered image. Figure4.11a shows a 256× 256 8-bit gray-level image.

Fig. 4.11 a A 256 × 256 8-bit gray-level image; b the image with illumination interference; c
homomorphic filter; d the image after homomorphic filtering

138 4 Image Enhancement in the Frequency Domain

Figure4.11b shows the image with illumination interference. The homomorphic fil-
ter is shown in Fig. 4.11c. The restored image after homomorphic filtering is shown
in Fig. 4.11d

4.7 Summary

• In the frequency domain, images are expressed as a linear combination of their
constituent sinusoidal surfaces. In this form, convolution becomes multiplication
operation.

• The spectrum (the display of the amplitude of the frequency components versus
frequency) of an image depicts the spectral characteristics of the image and enables
the design of suitable image processing systems to process it.

• Filtering of an image is the alteration of its spectrum in a desired way. Suppressing
the high-frequency components of the image is lowpass filtering. Suppressing
the low-frequency components of the image is highpass filtering. Bandpass and
bandreject filters are a combination of lowpass and highpass filters.

• Using the frequency domain, filtering is achieved by finding the spectra of the
image and the filter, multiplying them, and finding the inverse transform.

• In using the DFT for implementing the linear convolution, it must be remembered
that the output is contained in one period of the DFT.

• As periodicity is assumed in the DFT computation, zero-padding is required to
implement the linear convolution in the frequency domain.

• Both the amplitude and phase distortion of the filters are important factors in
processing images.

• Often, the 2-D filters are decomposable into 1-D filters resulting in faster execution
of the filtering operation.

• Typical filters are averaging, Gaussian, Butterworth, and Laplacian.
• Filtering effect increases with the size of the filter. The size is an important factor
in determining to implement the filter in the spatial domain or frequency domain.

• Filters can be specified in the frequency domain itself.
• In homomorphicfiltering, the logarithmof the image is taken, and the antilogarithm
of the convolution of the logarithmic version of the image and the filter is the output
image. This type of filtering is effective to reduce multiplicative noise.

Exercises

4.1 Compute the linear convolution of x(n), n = 0, 1, . . . , and h(n), n = 0, 1, . . . ,
using the DFT and IDFT and verify your answer by directly computing the convo-
lution. Assume zero-padding at the ends.
(i) x(n) = {2, 1, 3} and h(n) = {1,−2}.
(ii) x(n) = {−1, 3} and h(n) = {1, 3,−2}.

Exercises 139

*(iii) x(n) = {4,−1} and h(n) = {−3, 1,−2}.
(iv) x(n) = {−1, 2, 3} and h(n) = {−2, 3}.
(v) x(n) = {2, 4} and h(n) = {4, 3,−2}.
4.2 Compute the linear convolution of x(m, n), m, n = 0, 1, 2, and h(m, n), m,

n = 0, 1 using the DFT and IDFT and verify your answer by directly computing the
convolution. Assume zero-padding at the borders.
*(i)

x(m, n) =
⎡
⎣
1 2 3
2 −3 1
1 2 1

⎤
⎦ and h(m, n) =

[
2 −1
1 2

]

(ii)

x(m, n) =
⎡
⎣
2 2 3
2 −3 −1
1 −2 1

⎤
⎦ and h(m, n) =

[−2 −1
1 3

]

(iii)

x(m, n) =
⎡
⎣

1 −4 3
−2 3 1
1 −3 1

⎤
⎦ and h(m, n) =

[
4 1

−1 2

]

(iv)

x(m, n) =
⎡
⎣
2 1 4
1 −3 2
3 2 1

⎤
⎦ and h(m, n) =

[
1 −3
2 2

]

(v)

x(m, n) =
⎡
⎣
1 1 1
2 −3 4
2 2 2

⎤
⎦ and h(m, n) =

[
3 1
1 −3

]

4.3 Using the DFT and IDFT, convolve x(m, n) and a 3×3 Gaussian lowpass filter
with σ = 1. Assume periodicity at the borders.
(i)

x(m, n) =

⎡
⎢⎢⎣
2 1 3 4
1 1 4 2
1 −1 2 −2
3 2 −2 1

⎤
⎥⎥⎦

*(ii)

x(m, n) =

⎡
⎢⎢⎣
1 2 3 4
2 1 1 4
1 −1 0 −2
0 2 −2 1

⎤
⎥⎥⎦

140 4 Image Enhancement in the Frequency Domain

(iii)

x(m, n) =

⎡
⎢⎢⎣
1 1 3 2
2 −1 −2 2
4 −1 2 −2
3 2 −2 3

⎤
⎥⎥⎦

4.4 Using the DFT and IDFT, convolve x(m, n) and a 3×3 averaging lowpass filter.
Assume periodicity at the borders.
(i)

x(m, n) =

⎡
⎢⎢⎣
1 −1 3 4
1 2 −4 2
1 −1 3 −2
1 −2 −2 1

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
1 3 −3 4
2 0 1 4
1 −1 0 −2
0 2 −2 3

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
2 0 3 −2
2 −1 2 2
4 −1 3 −2
1 0 −2 3

⎤
⎥⎥⎦

4.5 Using the DFT and IDFT, convolve x(m, n) and a 3×3 Laplacian enhancement
filter. Assume periodicity at the borders.

⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦

*(i) ⎡
⎢⎢⎣
7 7 5 1
4 4 4 1
0 8 4 3
5 0 2 1

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
1 2 5 1
4 1 0 1
0 0 3 3
5 0 2 4

⎤
⎥⎥⎦

Exercises 141

(iii) ⎡
⎢⎢⎣
2 3 1 1
4 0 −4 1
0 1 4 3
4 0 −2 1

⎤
⎥⎥⎦

4.6 Let an ideal 2-D lowpass filter H(k, l) is defined between the limits {−4,−3,
−2,−1, 0, 1, 2, 3} in both the directions. Find the filter coefficients for a given cutoff
radius r such that H(k, l) = 1 inside the circle defined by r and zero elsewhere.
(i) r = 1
(ii) r = 2
(iii) r = 3

4.7 Let an ideal 2-D highpass filter H(k, l) is defined between the limits {−4,−3,
−2,−1, 0, 1, 2, 3} in both the directions. Find the filter coefficients for a given cutoff
radius r such that H(k, l) = 1 outside the circle defined by r and zero elsewhere.
(i) r = 1
(ii) r = 2
(iii) r = 3

Chapter 5
Image Restoration

Abstract In the filtering operations presented in the last chapter, it is assumed that
no knowledge of the source of degradation of the image is available. In this chapter,
the restoration of the images is presented. This is a linear filtering operation in which
prior knowledge of the source of degradation of the image is known. A restoration
filter is designed based on the nature of the degradation process and the noise. The
convolution of this filter with the degraded image restores the image with respect to
least-squares error criterion.

Due to nonideal characteristics, resulting from physical limitations, of image for-
mation systems or incorrect operation of the image capturing systems, the captured
image is not identical to the scene being captured. Some specific reasons for degra-
dation are improper setting of the focus, motion of the object or the camera and faulty
equipment. For image sensors, the restoration process can be post-processing. For
image display devices, the restoration process has to be pre-processing. The goal
in image restoration is to find a best estimate of the input image from the degraded
image.

Another source of degradation of images is noise. Noise is an annoying signal that
does not carry information and usually unwanted. Invariably, a signal or image gets
corrupted by some type of noise during generation, transmission, and processing.
A good estimation of the image from its noisy version is possible, if the image and
noise characteristics are known.

5.1 The Image Restoration Process

In image restoration, a degraded image is restored. It is a linear space-invariant
filtering operation, but with some knowledge of the process of degradation. The
degradation process has to be modeled as accurately as possible by using test images

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_5

143

144 5 Image Restoration

x(m,n) Degradation filter
∗hd(m,n) +

s(m,n)

y(m,n) Restoration filter
∗hr(m,n)

x̂(m,n)

Fig. 5.1 The block diagram of the image restoration process

or otherwise. In addition, the noise is considered additive. The block diagram of the
image restoration process is shown in Fig. 5.1.

The N × N image x(m, n) is degraded by a process characterized by its impulse
response hd(m, n). Further, a noise component s(m, n) is also added, resulting in the
degraded image y(m, n). The task is to restore the image so that the least-squares
error between the input image and the restored image x̂(m, n)

E =
N−1∑

m=0

N−1∑

n=0

|x(m, n) − x̂(m, n)|2

is minimized. The degradation process is characterized by the 2-D linear convolution

y(m, n) =
∑

k

∑

l

x(k, l)hd(m − k, n − l) + s(m, n)

The problem is to design a restoration filter with impulse response hr (m, n) so that
the convolution of the degraded signal with this filter restores the input signal.

x̂(m, n) =
∑

k

∑

l

y(k, l)hr (m − k, n − l)

5.2 Inverse Filtering

Assuming that there is no noise component, the degradation process is given, in the
frequency domain, by

Y (k, l) = X (k, l)Hd(k, l)

where Y (k, l), X (k, l), and Hd(k, l) are the corresponding DFTs of the degraded
image, the input image, and the impulse response of the degradation process. Obvi-
ously, the image can be restored by the operation, called inverse filtering,

X (k, l) = Y (k, l)

Hd(k, l)

5.2 Inverse Filtering 145

This operation requires point-by-point division, which creates problem when the
values of Hd(k, l) are zero or very small. Further, the noise components, if present,
get more and more amplified at high frequencies. This is due to the fact that the
frequency response of the degradation process, typically, is of lowpass character
and the noise is usually broadband. Although modifications of the inverse filtering is
possible to alleviate the problem, the restored image does not satisfy the least-squares
error criterion in an optimum manner.

5.3 Wiener Filter

The Wiener filter restores the true signal quite well from the degraded signal, even
in the presence of noise. For the restoration procedure to be practically effective, the
minimization of the error between the input and degraded images should be based
on some criterion. Due to its mathematical tractability, the well-known least-squares
error criterion is used in the restoration problem formulation. The Wiener filter is
based on a statistical approach. It is assumed that the signal and noise (additive) are
wide-sense stationary and linear stochastic processes with known spectral densities;
the signal and the noise are uncorrelated and the mean of the noise or signal is zero.
The derivation of the Wiener filter, using the orthogonality of the image and the
noise, is similar to finding the Fourier coefficients in Chap.3. The expression for
the least-squares error is set up, differentiated with respect to the filter coefficients
and set equal to zero. Solving this equation yields the coefficients of the Wiener
restoration filter. For ease of understanding, we derive the 1-D Wiener filter first.

Let the true and restored signals be x(n) and x̂(n), respectively, of length N
and their DFT be X (k) and X̂(k). Then, the power spectrum of x(n) is |X (k)|2 =
X (k)X∗(k). The power spectrum of a signal, which is the DFT of its autocorrela-
tion, represents the distribution of the signal power with respect to frequency. The
spectrum is a representation of the complex amplitudes of a signal with respect to
frequency. When the spectrum is multiplied with its conjugate, it is the correlation of
the signal with itself (autocorrelation) in the time domain. The product of the com-
plex amplitude of a frequency component with its conjugate is the squaredmagnitude
and represents the power at that frequency. Let the degraded signal be y(n) and the
additive Gaussian noise be s(n) with its power spectrum |S(k)|2 = S(k)S∗(k). Let
the frequency responses of the degradation and Wiener filters hd(n) and hr (n) be
Hd(k) and Hr (k), respectively. The problem is to find the estimate, x̂(n), of x(n)
from y(n) such that the least-squares error, E , is

E =
N−1∑

n=0

(x(n) − x̂(n))2

minimized. Assuming that the estimated signal x̂(n) is given by

http://dx.doi.org/10.1007/978-981-10-6113-4_3

146 5 Image Restoration

x̂(n) =
∑

k

y(n − k)hr (k)

the task is to find the filter coefficients so that the least-squares error is minimized.
From Parseval’s theorem, we get, in the frequency domain,

E = 1

N

N−1∑

k=0

|(X (k) − X̂(k))|2

where
X̂(k) = Hr (k)Y (k) = Hr (k)Hd(k)X (k) + Hr (k)S(k)

and
X (k) − X̂(k) = (1 − Hr (k)Hd(k))X (k) − Hr (k)S(k)

Substituting for X (k) − X̂(k) in the previous expression for E , we get

E = 1

N

N−1∑

k=0

|(1 − Hr (k)Hd(k))X (k) − Hr (k, l)S(k)|2

= 1

N

N−1∑

k=0

|(1 − Hr (k)Hd(k))X (k)|2 + |Hr (k)S(k)|2

= 1

N

N−1∑

k=0

|(1 − Hr (k)Hd(k))|2|X (k)|2 + |Hr (k)|2|S(k)|2

since x(n) and s(n) are uncorrelated. The derivative of the product of a complex
function and its conjugate is equal to two times its conjugate. That is,

d|z|2
dz

= d(zz∗)
dz

= 2z∗

Setting the derivative of the last expression with respect to Hr (k) equal to zero, we
get

2(−(1 − H∗
r (k)H

∗
d (k))Hd(k)|X (k)|2 + H∗

r (k)|S(k)|2) = 0

H∗
r (k) = Hd(k)|X (k)|2

|Hd(k)|2|X (k)|2 + |S(k)|2

Hr (k) = H∗
d (k)

|Hd(k)|2 + |S(k)|2/|X (k)|2 (5.1)

The power spectra of the true signal, noise, and the frequency response of the degra-
dation filter determine the Wiener filter. Obviously, these parameters must be known

5.3 Wiener Filter 147

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5.2 The restoration process. a The degraded signal and b its DFT; c the impulse response of
the degradation process and d its DFT; e the noise signal and f its DFT; g the DFT of the Wiener
filter; h the DFT of the restored signal

or estimated with adequate accuracy. The IDFT of Hr (k) is the set of optimum filter
coefficients the degraded signal has to be passed to get the best estimate of the true
signal with respect to the least-squares error criterion.

Example 5.1 A sinusoidal signal x(n) = cos
(
2π
8 n

)
, with samples

x(n) = {1, 1√
2
, 0,− 1√

2
,−1,− 1√

2
, 0,

1√
2
}

shown in Fig. 5.3a and b by dots, has been blurred by a process with finite impulse
response {hd(0) = 0.5, hd(1) = 0.5}, shown in Fig. 5.2c, and corrupted by an
additive Gaussian noise s(n) with mean zero and standard deviation σ=0.1

s(n) = {0.0538, 0.1834,−0.2259, 0.0862, 0.0319,−0.1308,−0.0434, 0.0343}

148 5 Image Restoration

(a) (b)

Fig. 5.3 a True signal x(n) (dots) and the degraded signal y(n) (unfilled circles); b true signal x(n)
(dots) and the restored signal x̂(n) (unfilled circles)

shown in Fig. 5.2e. The samples of the degraded signal are

y(n) = {0.9073, 1.0369, 0.1277,−0.2673,−0.8217,−0.9843,−0.3969, 0.3878}

shown in Fig. 5.2a with dots and in Fig. 5.3a with unfilled circles. Restore the true
signal using the Wiener filter.

Solution
The circular convolution of x(n) and hd(n) is

{x(7) + x(0), x(0) + x(1), x(1) + x(2), x(2) + x(3), x(3) + x(4), x(4) + x(5),

x(5) + x(6), x(6) + x(7)}/2

The resulting values are

{0.8536, 0.8536, 0.3536,−0.3536,−0.8536,−0.8536,−0.3536, 0.3536}

This signal added with the noise is the degraded signal y(n). The DFT of the true
signal x(n) and its power spectrum are

X (k) = {0, 4, 0, 0, 0, 0, 0, 4} and |X (k)|2 = {0, 16, 0, 0, 0, 0, 0, 16}

The DFT of y(n)

Y (k) = {−0.0105, 3.6215 − j1.4906, 0.3549 + j0.0679,−0.1635 − j0.4414,

−0.3567,−0.1635 + j0.4414, 0.3549 − j0.0679, 3.6215 + j1.4906}

5.3 Wiener Filter 149

is shown in Fig. 5.2b. The DFT of hd(n)

Hd(k) = {1, 0.8536 − j0.3536, 0.5 − j0.5, 0.1464 − j0.3536, 0, 0.1464

+ j0.3536, 0.5 + j0.5, 0.8536 + j0.3536}

is shown in Fig. 5.2d. Its power spectrum is

|Hd(k)|2 = Hd(k)H
∗
d (k) = {1, 0.8536, 0.5000, 0.1464, 0, 0.1464, 0.5000, 0.8536}

The conjugate of Hd(k), H∗
d (k), is obtained by changing the sign of the imaginary

part of the values of Hd(k).
The DFT of s(n)

S(k) = {−0.0105, 0.2073 − j0.0764, 0.3549 + j0.0679,−0.1635 − j0.4414,

−0.3567,−0.1635 + j0.4414, 0.3549 − j0.0679, 0.2073 + j0.0764}
is shown in Fig. 5.2f. Its power spectrum is

|S(k)|2 = S(k)S∗(k) = {0.0001, 0.0488, 0.1305, 0.2216, 0.1272, 0.2216, 0.1305, 0.0488}

With all the required quantities in Eq. (5.1) available, the DFT of the Wiener filter
Hr (k) is found to be

Hr (k) = {0, 0.9964 + j0.4127, 0, 0, 0, 0, 0, 0.9964 − j0.4127}

and it is shown in Fig. 5.2g. Note that all multiplications and divisions are pointwise
operations. The product Hr (k)Y (k) yields the DFT of the restored signal, shown in
Fig. 5.2h.

Hr (k)Y (k) = X̂(k) = {0, 4.2238 + j0.0095, 0, 0, 0, 0, 0, 4.2238 − j0.0095}

The IDFT of these values yields the restored signal x̂(n), shown in Fig. 5.3b with
unfilled circles. Comparing Fig. 5.3a and b, the Wiener filter has restored the true
signal to a good extent.

The frequency index of the true signal is one. That is, it makes one cycle in
eight samples. Notice that the DFT of the Wiener filter is zero except at k = 1 and
k = 7. This implies that the noise components at other frequencies are eliminated.
In Fig. 5.2b, d, f, g, and h, the magnitude and angle in degrees of the DFT values
with index one are given. The degradation filter attenuates the input signal with its
magnitude 0.9239 and adds a phase of −22.5◦. By having a magnitude 1.0785, the
Wiener filter compensates the attenuation. Further, with a phase shift of 22.5◦, the
filter restores the true signal quite well. The only problem is that the noise component
with frequency index one is passed. The least-squares error between the degraded

150 5 Image Restoration

Fig. 5.4 The least-squares
error with the real and
imaginary parts of the DFT
of the Wiener filter
coefficients, Hr (k), varying
around the optimum point

0.9
1

1.1
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

reim
E

and true signals is 0.6952 and that between the restored and true signals is 0.0125.
The ratio of the errors is 55.616. The least-squares error with the real and imaginary
parts of the DFT of theWiener filter coefficients, Hr (k), varying around the optimum
point is shown in Fig. 5.4.

5.3.1 The 2-D Wiener Filter

The expression for the 2-D Wiener filter is readily obtained from that of the 1-D as

Hr (k, l) = H∗
d (k, l)

|Hd(k, l)|2 + |S(k, l)|2/|X (k, l)|2 (5.2)

where |Hd(k, l)|2 is the power spectrum of the degradation process, Hr (k, l) is the
DFT of the Wiener filter, |S(k, l)|2 and |X (k, l)|2 are the power spectral densities of
the noise and the true image, respectively. The restored image x̂(m, n) is obtained
from the degraded image y(m, n) as

x̂(m, n) = IDFT (Hr (k, l)Y (k, l))

The procedure is typical of frequency-domain filtering.

1. Find the DFT Y (k, l) of the degraded image y(m, n).
2. Derive the Wiener filter Hr (k, l).
3. Multiply pointwise Y (k, l) with the Wiener filter Hr (k, l).
4. Compute the IDFT Hr (k, l)Y (k, l) to get the restored image.

5.3 Wiener Filter 151

The second term in the denominator of the expression for theWiener filter, Eq. 5.2,

|S(k, l)|2/|X (k, l)|2

makes the filter effective for restoration. It represents the inverse of signal-to-noise
ratio. When the signal is relatively very strong (during the lower part of the spectrum
of the degraded signal), the term becomes negligible and

Hr (k, l) ≈ 1

Hd(k, l)

the Wiener filter becomes an approximation of the inverse filter. On the other hand,
when the noise is relatively very strong (during the upper part of the spectrum of the
degraded signal), the term dominates and

Hr (k, l) → 0

This behavior mitigates the noise amplification in the inverse filtering. In the case
where the mean of the image or noise is nonzero, modification of the filtering process
is required. As theWiener filter, in general, is not separable, the row–columnmethod
of processing is not applicable.With no blurring (Hd = 1), theWiener filter becomes
a smoothing filter having a lowpass frequency response.

Hr (k, l) = 1

1 + |S(k, l)|2/|X (k, l)|2

When the power spectra in the expression

|S(k, l)|2/|X (k, l)|2

are not available, the ratio can be substituted by a constant K (selected by trial and
error).

5.4 Image Degradation Model

It often happens that, during the acquisition of an image, there is a relative uniform
linear motion between the image and the sensor. Because of this, each pixel value is
replacedby an averageof somenumber of pixels in the neighborhood. InExample5.1,
the average of two values replaced the original value at each point of the signal. The
model for the degradation of an image by motion is averaging, just summation of
uniformly weighted pixel values of spatially shifted copies of an image. Let us find
the 1-D degradation model. Let the correct exposure time be one sampling interval.
With the sensor moving and two sampling intervals of exposure time, the sample

152 5 Image Restoration

value becomes the average of two samples and so on. Let the exposure time be M
sampling intervals, instead of one. Then, the degraded signal values y(n) of the true
signal x(n) are

y(n) =
M−1∑

m=0

x(n − m)

The division by M to get the average is left out in this expression. Let X (k) be the
DFT of x(n). From the DFT time-shift theorem, we get

x(n − m) ↔ e− j 2πN mk X (k)

where N is the length of the sequence x(n). Now, the DFT of y(n) is

Y (k) = X (k)
M−1∑

m=0

e− j 2πN mk = X (k)(1 + e− j 2πN k + e− j 2πN 2k + · · · + e− j 2πN (M−1)k)

= X (k)
1 − e− j 2πN Mk

1 − e− j 2πN k
= X (k)e− j π

N (M−1)k sin(
π
N Mk)

sin(π
N k)

= X (k)Hd(k)

Therefore, the DFT of the impulse response of the process due to motion is

Hd(k) = e− j π
N (M−1)k

(
sin(π

N Mk)

sin(π
N k)

)

This is just the DFT of M samples with value 1, the averaging filter,

hd(n) =
{
1 for n = 0, 1, . . . ,M − 1
0 for n = M,M + 1, . . . , N − 1

In Example5.1, M = 2 and N = 8. Then,

Hd(k) = e− j π
N (M−1)k

(
sin(π

N Mk)

sin(π
N k)

)
= e− j π

8 k

(
sin(π

4 k)

sin(π
8 k)

)

which is just twice that of Hd(k) in Example5.1.
Let x(m, n) be a N × N image and hd(m, n) be the P × Q impulse response

of the process due to motion and x(m, n) ↔ X (k, l). Then,

x(m − p, n − q) ↔ X (k, l)e− j 2πN (kp+lq)

y(m, n) =
P−1∑

p=0

Q−1∑

q=0

x(m − p, n − q)

5.4 Image Degradation Model 153

Fig. 5.5 a A noisy and blurred 256 × 256 image; b its restored version; c a noisy and blurred
256 × 256 image; d its restored version

Hd(k, l) =
P−1∑

p=0

Q−1∑

q=0

e− j 2πN pke− j 2πN qk =
P−1∑

p=0

e− j 2πN pk
Q−1∑

q=0

e− j 2πN qk

= e− j π
N (P−1)k

(
sin(π

N Pk)

sin(π
N k)

)
e− j π

N (Q−1)l

(
sin(π

N Ql)

sin(π
N l)

)

Figure5.5a shows a corrupted image. The original image got deblurred by vertical
motion andGaussian noise (variance 0.2). Figure5.5c shows a corrupted image due to
deblurring by horizontal motion and Gaussian noise (variance 0.2). Figure5.5b and d
show, respectively, the restored versions using theWiener filter. The degradation was
carried out by circular convolution. Considering the heavy degradation, the restored
quality of the images is good.

154 5 Image Restoration

5.5 Characterization of the Noise and Its Reduction

The future values of a random signal cannot be predicted. Noise is usually of random
nature, and it is characterized by its probability density function. A random variable
is characterized by two values, mean (center of gravity of the density), and variance
(measure of the spreadness). If the variance is small, it is highly probable that its
values are close to the mean and vice versa. Suppose the mean depth of a swimming
pool is 1m, it does not mean that a person without knowing swimming can jump
into any part of the pool and hope to come out alive. Only with a knowledge of the
spreadness of the depth, we can be sure. In image processing, the histograms of two
images can have the same mean but the spreadness may vary widely. If the variance
is small, then histogram equalization or stretching can enhance the image.

5.5.1 Uniform Noise

The distribution of the density between limits a and b is p(x) = 1/(b− a) and zero
otherwise. Themean is the center of the range of the interval, (a+b)/2. The variance
is

σ2 =
∫ b

a

(x − 0.5(a + b))2

(b − a)
dx = (b − a)2

12

Figure5.6 shows the uniform distribution with a = −2 and b = 16.

5.5.2 Gaussian Noise

Gaussian noise is the most commonly used noise model. One important prop-
erty of Gaussian (also called normal) noise is that the weighted sum of its values is
also Gaussian. That is, the output of any linear filter is also Gaussian for a Gaussian
input. The Fourier transform of a Gaussian function is also another Gaussian. It is

Fig. 5.6 Uniform
probability density function

−2 0 7 16
0

0.0556

p(
x)

x

σ2 = 27

5.5 Characterization of the Noise and Its Reduction 155

Fig. 5.7 Gaussian
probability density function

−2 −1 0 1 2

0.3989

0.7979

1.3298

p(
x)

x

σ = 0.3

σ = 0.5σ = 1

smooth and isotropic. For all these reasons, it is mathematically tractable. Further,
random variables occurring in practice can be approximated by this distribution. Its
probability density function is defined as

p(x) = 1

σ
√
2π

e−0.5(x−μ
σ)2

where μ is the mean and σ is the standard deviation of the distribution. Figure5.7
shows the Gaussian distribution with the mean μ = 0 and the standard deviation
σ = 0.3, σ = 0.5, and σ = 1. It is a bell-shaped curve and is symmetric with respect
to the mean. For nonzero values of μ, the curves get shifted. The smaller the value
of σ, the higher is the peak at the center and the steeper are the descents.

5.5.3 Periodic Noise

Periodic noise is the occurrence of unwanted sinusoidal components in the image,
typically due to the interferences from electrical machines or power and signal trans-
mission lines. It is effectively filtered in the frequency domain. The spectral values
of a sinusoid are a complex conjugate pair and, therefore, they are placed on a circle,
as shown in Fig. 5.9e.

5.5.4 Noise Reduction

The low-frequency components of a signal makes the smoother part of the signal, and
the high-frequency componentsmakes the jaggedpart. In the graphical representation

156 5 Image Restoration

Fig. 5.8 a A 256 × 256 8-bit image; b its corrupted version; c noise reduced version by averaging;
d noise reduced version by Wiener filtering

of the signal, a smooth curve through the samples represents the smoothed signal.
This suggests that the filter should average out the rapidly varying component of the
signal. The output of the simplest averaging filter, y(n) = 0.5x(n) + 0.5x(n − 1), is
the average of the present and preceding input samples. Here, the rapidly vary-
ing component of a signal is the disturbance and the slowly varying compo-
nent is desired. The opposite is the case with highpass filters, the simplest being
y(n) = 0.5x(n) − 0.5x(n − 1). This filter readily passes high-frequency compo-
nents and suppresses low-frequency components. For example, the output of this
filter is zero for a constant signal. Here, the rapidly varying component of a signal is
desired and the slowly varying component is the disturbance. Depending on the type
of noise and its characteristics, suitable filters have to be used for its mitigation.

One of the effective ways of reducing Gaussian noise is to average a set of cor-
rupted images of the same scene. For example, satellites periodically take the picture
of the same scene. As the noise is normally distributed with the mean zero, the aver-
age of a set of corrupted images should have a noise power close to zero. Figure5.8a
shows a 256 × 256 8-bit image. It is corrupted with Gaussian noise with mean zero
and standard deviation σ = 0.2, as shown in Fig. 5.8b. Figure5.8c shows the average

5.5 Characterization of the Noise and Its Reduction 157

Fig. 5.9 a A 256 × 256 8-bit image corrupted by periodic noise; b its DFT spectrum; c filtered
spectrum by a notch filter; d the filtered image; e filtered spectrum by a bandreject filter; f the
filtered image

of ten different images of the same object with the noise substantially reduced. If we
have only one image, then the averaging process, although very effective, is ruled
out.

An adaptive Wiener filter is defined, in a local neighborhood, as

158 5 Image Restoration

x̂(m, n) = y(m, n) − σ2
N

σ2
l

(y(m, n) − ȳl)

where x̂(m, n) is the restored signal, y(m, n) is the signal x(m, n) corrupted by noise
with variance σ2

N , σ2
l is the local variance, and ȳl is the local average. If the local

variance is relatively high, then the filter returns a value that is nearly the same as the
input. This is appropriate as a high variance indicates features such as edges, which
should be preserved. If the variances are about equal, a value close to the average is
appropriate. If σ2

N > σ2
l , then the ratio σ2

N/σ
2
l has to be set to 1 or allow negative

values and rescale the output for display. Figure5.8d shows the image filtered by the
Wiener lowpass filter with a 11 × 11 neighborhood. Considering that the degradation
is very severe, the restored image is reasonable.

A notch filter has notches (ideally nulls) at some frequencies. It is used to eliminate
specific frequency components of a signal. For example, power system frequency
60Hz and its harmonics are unwanted in signal transmission lines. A bandpass filter
has high gain at an intermediate band of frequencies only. It passes intermediate
frequency components and suppresses the rest. Figure5.9a and b shows, respectively,
a 256 × 256 8-bit image corrupted by periodic noise and its DFT spectrum. The
two spikes in (b), away from the center and located diagonally and the horizontal
and vertical lines originating from them, are the spectral components of the periodic
noise. Note that the noise is composed of several sinusoidal components. A notch
filter suppresses frequency components in a specified neighborhood. In Fig. 5.9c, the
spectrum of the filtered image is shown. The frequency components in some number
of rows and columns in the spectrum dominated by noise in (b) have been suppressed.
The filtered image, with reduced noise, is shown in Fig. 5.9d. A bandreject filter is a
ring of zeros and suppresses frequency components located in that ring. In Fig. 5.9e,
the spectrum of the filtered image is shown. The frequency components in a ring of
sufficient thickness encapsulating the spikes in the noisy spectrum in (b) have been
suppressed. The filtered image, with reduced noise, is shown in Fig. 5.9f.

5.6 Summary

• Image restoration is image enhancement in which a knowledge of the degradation
process is known.

• In restoration from degradation due to noise only, suitable filters can be used to
restore the degraded image.

• Gaussian, salt-and-pepper, speckle, and periodic are typical noise models.
• If the degradation is due to improper setting or characteristics of the devices at the
time of image formation or display, the degradation process can be characterized by
its impulse response. Then, inverse filtering or deconvolution restores the image.

• In case where noise is also present, the inverse filtering is ineffective, since the
degradation functions typically have spectrum that is similar to that of the lowpass

5.6 Summary 159

filter. Then, noise amplification at high frequencies occurs in inverse filtering,
making it ineffective.

• An effective solution, called Wiener filtering, is to formulate the restoration prob-
lem to minimize the least-squares error between the degraded and the restored
image.

• Wiener filtering requires the power spectra of the noise and the image before
degradation. It is assumed that noise is additive and has zeromean and uncorrelated
with the signal.

• As these spectra are not usually available, they have to be estimated in practice.
• The Wiener filter coefficients are derived using these power spectra.
• The restored signal is obtained by passing the degraded signal through the Wiener
filter.

Exercises

5.1 A signal with power spectral density

|X (k)|2 = {64, 0, 0, 0, 0, 0, 0, 0}

has been blurred by a process with finite impulse response

{hd(0) = 0.5, hd(1) = 0.5}

and corrupted by an additive Gaussian noise with power spectral density

{0.0002, 0.0071, 0.0273, 0.0121, 0.0220, 0.0121, 0.0273, 0.0071}

The samples of the degraded signal are

y(n) = {0.9898, 0.9759, 1.0319, 1.0313, 0.9135, 0.9970, 0.9835, 1.0628}

Restore the true signal using the Wiener filter.
*5.2 A signal with power spectral density

|X (k)|2 = {0, 16, 0, 0, 0, 0, 0, 16}

has been blurred by a process with finite impulse response

{hd(0) = 0.5, hd(1) = 0.5}

and corrupted by an additive Gaussian noise with power spectral density

160 5 Image Restoration

{0.0119, 0.0058, 0.0807, 0.0107, 0.1725, 0.0107, 0.0807, 0.0058}

The samples of the degraded signal are

y(n) = {−0.4305, 0.3907, 0.8310, 0.9653, 0.2446,−0.3503,−0.7983,−0.7435}

Restore the true signal using the Wiener filter.
5.3 A signal with power spectral density

|X (k)|2 = {0, 0, 16, 0, 0, 0, 16, 0}

has been blurred by a process with finite impulse response

{hd(0) = 0.5, hd(1) = 0.5}

and corrupted by an additive Gaussian noise with power spectral density

{0.0067, 0.1671, 0.1262, 0.1311, 0.1654, 0.1311, 0.1262, 0.1671}

The samples of the degraded signal are

y(n) = {0.6544, 0.5086,−0.6492,−0.5742, 0.3938, 0.7350,−0.5616,−0.4252}

Restore the true signal using the Wiener filter.
5.4 A signal with power spectral density

|X (k)|2 = {0, 0, 0, 16, 0, 16, 0, 0}

has been blurred by a process with finite impulse response

{hd(0) = 0.5, hd(1) = 0.5}

and corrupted by an additive Gaussian noise with power spectral density

{0.0772, 0.0694, 0.0930, 0.0001, 0.0545, 0.0001, 0.0930, 0.0694}

The samples of the degraded signal are

y(n) = {0.1272, 0.2353,−0.4300, 0.2133,−0.2887,−0.0976, 0.3358,−0.3732}

Restore the true signal using the Wiener filter.
5.5 A signal with power spectral density

|X (k)|2 = {0, 0, 16, 0, 0, 0, 16, 0}

Exercises 161

has been blurred by a process with finite impulse response

{hd(0) = 0.5, hd(1) = 0.5}

and corrupted by an additive Gaussian noise with power spectral density

{0.1584, 0.0055, 0.0030, 0.1719, 0.0047, 0.1719, 0.0030, 0.0055}

The samples of the degraded signal are

y(n) = {−0.3581, 0.5292, 0.5198,−0.3412,−0.5804, 0.5697, 0.5835,−0.5244}

Restore the true signal using the Wiener filter.

Chapter 6
Geometric Transformations and Image
Registration

Abstract Interpolation of an image is often required to change its size and in
operations such as rotation. The interpolation of images is described first. Next,
geometric transformations such as translation, scaling, rotation, and shearing are
presented. Correlation operation is a similarity measure between two images. It can
detect and locate the position of an object in an image, if present. The registration of
images of the same scene, taken at different times and conditions, is also presented.

In 1-D signal processing, operations, such as shifting, folding, and scaling, are often
used in addition to arithmetic operations. In this chapter, we study the 2-D extensions
of such operations. The image coordinates (m, n) are changed to (p, q) in geometric
transformations. As they are, usually, not integers, rounding is required to make
them integers. Therefore, interpolation is required to estimate the corresponding
pixel values.

The images of the same scene, taken by different cameras or at different times,
have to be aligned with a reference image, so that the change in the characteristics of
the images yields information about the changes in the behavior of the objects in the
scene. The alignment process usually requires operations such as rotation, scaling,
and shifting. In turn, operations such as rotation requires interpolation. Therefore,
we describe the interpolation operation first. Then, the geometric transformation is
described. Correlation and image registration are presented last.

6.1 Interpolation

Interpolation is a basic tool in digital signal processing, since, after processing a
signal in its digital form, interpolation is required to reconstruct the corresponding
continuous signal. Remember that most naturally occurring signals are continuous,
and the processed output is also required in that form, most of the times. For image
reconstruction or image operations such as rotation, the coordinates of the output
image are usually not the same of those of the input. Ideal interpolation requires

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_6

163

164 6 Geometric Transformations and Image Registration

Table 6.1 Pixel values of a 2 × 2 image (left). Pixel values after interpolation along the rows
(middle). Pixel values after nearest-neighbor interpolation (right)

2 1

3 4

2 1 1

3 4 4

2 1 1

3 4 4

3 4 4

reconstruction of the continuous signal from its samples and then resample the con-
tinuous signal, which is not practical. Appropriate interpolation methods, which
approximate ideal reconstruction, have to be used to find the pixel values at new
coordinates from the given ones. The known values are appropriately weighted and
summed to get the interpolated value at intermediate locations. The weight corre-
sponding to a pixel is a function of its distance from the interpolated pixel. The
shorter the distance the heavier is the weight.

6.1.1 Nearest-Neighbor Interpolation

In the nearest-neighbor interpolation method, the interpolated pixel value is that of
its nearest-neighbor. The index of the nearest- neighbor is found using the rounding
operation. In rounding a decimal number, the number is replaced by the next greater
integer if the fractional part is 0.5 or greater. Otherwise, it is replaced by the largest
integer not greater than itself. Let the input data be {x(1) = 7, x(2) = 8}. Then,

x(1.3) = x(round(1.3)) = x(1) = 7 and x(1.8) = x(round(1.8)) = x(2) = 8

Consider the 2 × 2 image shown in Table6.1 (left). Let us interpolate the mid-
dle values. Pixel values after interpolation along the rows are shown in the table
(middle). By interpolating these values along the columns, we get the nearest-
neighbor interpolated image, as shown in the table (right). While this method is
the simplest, the interpolated image is very blurry.

6.1.2 Bilinear Interpolation

In linear interpolation, it is assumed that a straight line is drawn between two neigh-
boring points, and the interpolated value is a linear combination of the distances of
the neighbors and their values. In bilinear interpolation, linear interpolation is car-
ried out in each of the two orthogonal coordinates of the image. As in the case of
computation of the 2-D DFT by the row–column method, linear interpolation is car-

6.1 Interpolation 165

Table 6.2 Pixel values of a 4 × 4 image (left). Pixel values after linear interpolation along the
rows (right)

2 1 4 2

3 1 2 1

1 2 1 4

4 1 2 3

2.00 1.50 1.00 2.50 4.00 3.00 2.00

3.00 2.00 1.00 1.50 2.00 1.50 1.00

1.00 1.50 2.00 1.50 1.00 2.50 4.00

4.00 2.50 1.00 1.50 2.00 2.50 3.00

ried out along any one of the two directions and the resulting partial result is linearly
interpolated in the other direction. Up to four nearest-neighbors are involved in the
interpolation. Consider the set of pixels

•x(m, n) •x(m, n + 1)
•x(m ′, n′)

•x(m + 1, n) •x(m + 1, n + 1)

The bilinear interpolated value x(m ′, n′) of a pixel at the location (m ′, n′) of an image
is given by the expression

x(m′, n′) = (1 − c)((1 − r)x(m, n) + (r)x(m + 1, n))

+ (c)((1 − r)x(m, n + 1) + (r)x(m + 1, n + 1)) (6.1)

where r = m ′ − m and c = n′ − n and the distance between pixel locations is one.
The 2-D interpolation can be decomposed into a 1-D row interpolation followed by
a 1-D column interpolation or vice versa. In Eq. (6.1), 1-D interpolation along the
columns is carried out first followed by 1-D row interpolation. While the two 1-D
interpolation operations are linear, their sequential application is nonlinear.

Consider the 4 × 4 image shown in Table6.2 (left). Let us interpolate along the
rows and find the values in the middle of the pixels. Then, r = 0 and c = 0.5.
Equation (6.1) reduces to

x(m, n′) = (1 − 0)((1 − 0.5)x(m, n) + (0.5)x(m, n + 1))

= 0.5(x(m, n) + x(m, n + 1))

which is just the average of the adjacent pixel values. For example, the first interpo-
lated value is (2 + 1)/2 = 1.5. The second interpolated value is (1 + 4)/2 = 2.5
and so on. The interpolated image along the rows is shown in Table6.2 (right). Car-
rying out the interpolation of these values along the columns yields the interpolated
image, shown in Table6.3. This method is often used in practice, and the interpolated
image is less blurry compared with the nearest-neighbor algorithm. Interpolation is
determining the values of a function inside the range of known values. Therefore,
we got 7 × 7 output for a 4 × 4 input. If we need a 8 × 8 output, extrapolation is

166 6 Geometric Transformations and Image Registration

Table 6.3 Pixel values after bilinear interpolation

2.00 1.50 1.00 2.50 4.00 3.00 2.00

2.50 1.75 1.00 2.00 3.00 2.25 1.50

3.00 2.00 1.00 1.50 2.00 1.50 1.00

2.00 1.75 1.50 1.50 1.50 2.00 2.50

1.00 1.50 2.00 1.50 1.00 2.50 4.00

2.50 2.00 1.50 1.50 1.50 2.50 3.50

4.00 2.50 1.00 1.50 2.00 2.50 3.00

Fig. 6.1 a A 64 × 64 8-bit gray level image; b nearest-neighbor interpolated 127 × 127 image;
c bilinear interpolated 127 × 127 image; d bilinear interpolated 253 × 253 image

required. Suitable border extensions (or extrapolation methods), such as that used
for neighborhood operations, can be used.

A 64×64 8-bit gray level image is shown in Fig. 6.1a. Let us interpolate the image
values at the middle and one-quarter values of the coordinates of the input image.
Due to low spatial resolution, the image quality is not good. Figure6.1b shows the
nearest-neighbor 127×127 interpolated image. Although the size is almost doubled,

6.1 Interpolation 167

the blockiness is still visible. The bilinear interpolated 127 × 127 image, shown in
Fig. 6.1c, looks smoother. Figure6.1d shows the bilinear interpolated 253 × 253
image, and the image quality is still better. A polynomial passing through a set of
neighboring points may give a more accurate interpolated values at an increased
computational cost.

6.2 Affine Transform

Geometric transformations are often required in processing images. The image
coordinates m and n of an image x(m, n) are mapped to m ′ and n′ such that
x ′(m ′, n′) = x(m, n). Typical transformations are translation, scaling, rotation,
reflection and shear. All these operations are represented by the affine transformation
characterized by

m ′ = am + bn + c

n′ = dm + en + f

[
m ′
n′

]
=

[
a b
d e

] [
m
n

]
+

[
c
f

]
(6.2)

The constants c and f effecting the translations or shifts can be merged to form a
single transformation matrix. This form of the affine transform, called homogenous
form, is ⎡

⎣m ′
n′
1

⎤
⎦ =

⎡
⎣ a b c
d e f
0 0 1

⎤
⎦

⎡
⎣m
n
1

⎤
⎦ (6.3)

Appropriate values of the transformation matrix are to be used for each type of trans-
formation.After the transformation of the coordinates, interpolationmay be required.
Affine transformation matrices for various transformations are shown in Table6.4.
The transforms can be combined using matrix multiplication. Some combinations
are commutative and some are not. As multiplying a matrix by the identity matrix
(with a = e = 1 and b = c = d = f = 0) leaves the matrix unchanged, an image
remains the same by such a transformation.

6.2.1 Scaling

With a and e taking any positive value and b = c = d = f = 0, the scaling matrix is
obtained, as shown in Table6.4. As a special case of scaling, with a = −1 or e = −1
and b = c = d = f = 0, the reflection matrix is obtained.

168 6 Geometric Transformations and Image Registration

Table 6.4 Affine transformation matrices

Type of transformation Matrix Coordinates relationship

Translation

⎡
⎢⎣
1 0 c

0 1 f

0 0 1

⎤
⎥⎦ m′ = m + c

n′ = n + f

Scaling

⎡
⎢⎣
a 0 0

0 e 0

0 0 1

⎤
⎥⎦ m′ = am

n′ = en

Shear (along m-axis)

⎡
⎢⎣
1 b 0

0 1 0

0 0 1

⎤
⎥⎦ m′ = m + bn

n′ = n

Shear (along n-axis)

⎡
⎢⎣
1 0 0

d 1 0

0 0 1

⎤
⎥⎦ m′ = m

n′ = dm + n

Rotation, counterclockwise

⎡
⎢⎣
cos(β) − sin(β) 0

sin(β) cos(β) 0

0 0 1

⎤
⎥⎦ m′ = m cos(β) − n sin(β)

n′ = m sin(β) + n cos(β)

Consider the 256 × 256 gray level image shown in Fig. 6.2a. Let

a = 3/4, e = 1/2 then m ′ = (3/4)m, n′ = (1/2)n

The coordinates are multiplied by the respective scale factors. The transformation
matrix and its inverse are

⎡
⎣3/4 0 0

0 1/2 0
0 0 1

⎤
⎦

⎡
⎣4/3 0 0

0 2 0
0 0 1

⎤
⎦

The scaled 192×128 image is shown in Fig. 6.2b. Bilinear interpolation is used. For
scaling factors less than 1, object size is reduced proportionally. For scaling factors
greater than 1, object size is increased. For the same scale factors, consider the 4× 4
image and its 3 × 2 scaled version using the nearest-neighbor interpolation.

⎡
⎢⎢⎣
2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1

⎤
⎥⎥⎦

⎡
⎣2 3
1 2
2 3

⎤
⎦

6.2 Affine Transform 169

n

m

60 120 180 240

60

120

180

240

n

m

60 127 240

60

120

191

240

(a) (b)

Fig. 6.2 a A 256 × 256 gray level image and b its 192 × 128 scaled version

The size of the output image will be (3/4)4 × (1/2)4 = 3 × 2. The coordinates are
shown in the left matrix shown below. There are two ways find the scaled image.
One is called the forward mapping and the other is called the backward mapping.
The first method is to find the corresponding address in the output matrix and find
the value of the image at that address. The second method, starting from the output
matrix, is to find the corresponding address in the input matrix and find the value of
the image at that address. The second method turns out to be the better of the two.

⎡
⎣(0, 0) (0, 1)(1, 0) (1, 1)
(2, 0) (2, 1)

⎤
⎦

⎡
⎣(0.0, 0) (0.0, 2)(1.3, 0) (1.3, 2)
(2.7, 0) (2.7, 2)

⎤
⎦

⎡
⎣(0, 0) (0, 2)(1, 0) (1, 2)
(3, 0) (3, 2)

⎤
⎦

Using the backward mapping (inverse of the transformation matrix), we get the
middle matrix of the coordinates from that of the output. Bilinear interpolation can
be used to find the corresponding values in the input matrix. Let us use the nearest-
neighbor interpolation. We simply round the coordinates of the middle matrix to get
the right matrix. The values corresponding to these coordinates in the input matrix
are the output values. For example, (2, 0) in the output matrix corresponds to (3, 0)
in the input matrix and the output value is 2.

6.2.2 Shear

In shearing, rows or columns are successively shifted uniformly with respect to
one another. The object gets distorted by moving one side relative to another. With
a = e = 1, c = d = f = 0, and b taking any value, shear occurs along the m-axis.

170 6 Geometric Transformations and Image Registration

With a = e = 1, c = b = f = 0, and d taking any value, shear occurs along the
n-axis.

Let
b = 0, d = 1 then m ′ = m, n′ = m + n

The transformation matrix and its inverse are
⎡
⎣ 1 0 0
1 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

−1 1 0
0 0 1

⎤
⎦

A 4 × 4 image and its sheared version using the nearest-neighbor interpolation are

⎡
⎢⎢⎣
2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2 1 3 4 0 0 0
0 1 1 2 3 0 0
0 0 4 2 1 3 0
0 0 0 2 2 3 1

⎤
⎥⎥⎦

The maximum value index n′ takes is 3 + 3 = 6. Therefore, the size of the output
image will be 4 × 7. The coordinates are as shown in the matrix.

⎡
⎢⎢⎣
(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

⎤
⎥⎥⎦

Using the backwardmapping (inverse of the transformationmatrix),we get thematrix

⎡
⎢⎢⎣

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
(1,−1) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)
(2,−2) (2,−1) (2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
(3,−3) (3,−2) (3,−1) (3, 0) (3, 1) (3, 2) (3, 3)

⎤
⎥⎥⎦

The values corresponding to these coordinates in the input matrix are the output val-
ues. For example, (2, 0) in the input matrix corresponds to (2, 2) in the output matrix
and the output value is 4. Only those coordinates with the corresponding backward
mapped coordinates located inside the input image have pixel values defined in the
sheared image. All other pixel values of the 4× 7 sheared image are undefined and,
usually, assigned the value zero.

Consider the 256 × 256 gray level image shown in Fig. 6.3a. Let

b = 0, d = 0.5 then m ′ = m, n′ = 0.5m + n

6.2 Affine Transform 171

(b)

n

m

120 240 360

60

120

180

240

(a)

n

m

60 120 180 240

60

120

180

240

Fig. 6.3 a A 256 × 256 gray level image and b its 256 × 384 sheared version, d = 0.5

The transformation matrix and its inverse are
⎡
⎣ 1 0 0
0.5 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

−0.5 1 0
0 0 1

⎤
⎦

The sheared version, with d = 0.5, of the image is shown in Fig. 6.3b.
Let

b = 0.3, d = 0 then m ′ = m + 0.3n, n′ = n

The transformation matrix and its inverse are
⎡
⎣ 1 0.3 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 −0.3 0
0 1 0
0 0 1

⎤
⎦

A 4 × 4 image and its sheared version using the nearest-neighbor interpolation are

⎡
⎢⎢⎣
2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

2 1 0 0
1 1 3 4
4 2 2 3
2 2 1 3
0 0 3 1

⎤
⎥⎥⎥⎥⎦

The maximum value index m ′ takes is 3 + 3(0.3) = 3.9. Therefore, the size of the
output image will be 5 × 4. The coordinates are as shown in the matrix.

172 6 Geometric Transformations and Image Registration

⎡
⎢⎢⎢⎢⎣

(0, 0) (0, 1) (0, 2) (0, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(3, 0) (3, 1) (3, 2) (3, 3)
(4, 0) (4, 1) (4, 2) (4, 3)

⎤
⎥⎥⎥⎥⎦

Using the backward mapping and then rounding, we get the matrices

⎡
⎢⎢⎢⎢⎣

(0, 0) (−0.3, 1) (−0.6, 2) (−0.9, 3)
(1, 0) (0.7, 1) (0.4, 2) (0.1, 3)
(2, 0) (1.7, 1) (1.4, 2) (1.1, 3)
(3, 0) (2.7, 1) (2.4, 2) (2.1, 3)
(4, 0) (3.7, 1) (3.4, 2) (3.1, 3)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

(0, 0) (0, 1) (−1, 2) (−1, 3)
(1, 0) (1, 1) (0, 2) (0, 3)
(2, 0) (2, 1) (1, 2) (1, 3)
(3, 0) (3, 1) (2, 2) (2, 3)
(4, 0) (4, 1) (3, 2) (3, 3)

⎤
⎥⎥⎥⎥⎦

The values corresponding to these coordinates in the input matrix are the output
values. For example, (3, 3) in the input matrix corresponds to (4, 3) in the output
matrix and the output value is 1.

Consider the 256×256 gray level image shown in Fig. 6.3a. Let the transformation
matrices be

⎡
⎣ 1 1 0
0 1 0
0 0 1

⎤
⎦ and

⎡
⎣ 1 0.5 0
0 1 0
0 0 1

⎤
⎦

The 512 × 256 sheared version, with b = 1, of the image is shown in Fig. 6.4a.
The 384 × 256 sheared version, with b = 0.5, of the image is shown in Fig. 6.4b.

6.2.3 Translation

With a = e = 1 and b = d = 0, and c and f taking any values is spatial shifting.
The image gets shifted. Figure6.5a, b shows a 256 × 256 gray level image and its
shifted version. The transformation matrix is

⎡
⎣ 1 0 30
0 1 20
0 0 1

⎤
⎦

The value of a pixel in the input image at coordinates (m, n) occurs at (m +30, n +
20) in the shifted image. For example, the value at (0, 0) in (a) occurs at (30, 20) in
(b). Shifting of an image is an often used operation. For example, shifting is required
in implementing the convolution operation.

6.2 Affine Transform 173

(a)

n

m

60 120 180 240

120

240

360

480

(b)

n

m
60 120 180 240

90

180

270

360

Fig. 6.4 a The 512×256 sheared version, b = 1, of the image in Fig. 6.3a, b the 384×256 sheared
version, b = 0.5

n

m

(a)

60 120 180 240

60

120

180

240

(b)

n

m

20 80 140 200 260

30

90

150

210

270

Fig. 6.5 a A 256 × 256 gray level image; b its shifted version

6.2.4 Rotation

In this operation, the input image is rotated by a specified angle about its center. The
size of the output image is usually larger than that of the input. Consider the rotation,
about the origin in the counterclockwise direction with the angle β > 0, of the vector
with the coordinates (m, n) of its vertex A, shown in Fig. 6.6. The angle between the
vector and the x-axis is θ. Coordinates (m, n) are given by

174 6 Geometric Transformations and Image Registration

Fig. 6.6 Rotation of a vector

0 1 2 3 4
0

1

2

3

4

y

x

(m’,n’)

(m,n)

β
θ

r

r

A

B

m = r cos(θ) and n = r sin(θ)

where r is the length of the vector (the distance between the origin and vertex A). Let
this vector be rotated by β in the counterclockwise rotation. Now, the coordinates
(m ′, n′) of its vertex B are given by

m ′ = r cos(θ + β), n′ = r sin(θ + β)

m ′ = r cos(θ) cos(β) − r sin(θ) sin(β) = m cos(β) − n sin(β)

n′ = r sin(θ) cos(β) + r cos(θ) sin(β) = m sin(β) + n cos(β)

In rotating the vector, its length r remains the same. Therefore, the equations gov-
erning counterclockwise rotation are

m ′ = m cos(β) − n sin(β) (6.4)

n′ = m sin(β) + n cos(β) (6.5)

In matrix notation, we get

[
m ′
n′

]
=

[
cos(β) − sin(β)
sin(β) cos(β)

] [
m
n

]

6.2 Affine Transform 175

For clockwise rotation, change the sign of the angle. That is, for transformation in
the reverse order, we get

m = m ′ cos(β) + n′ sin(β) (6.6)

n = −m ′ sin(β) + n′ cos(β) (6.7)

Consider rotating the following 4 × 4 image, about its center.

⎡
⎢⎢⎣
2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1

⎤
⎥⎥⎦

With β = 0, the equations reduce to m ′ = m and n′ = n, and there is no rotation.
With β = 180◦, the equations reduce to

m ′ = −m and n′ = −n

The rotated image is ⎡
⎢⎢⎣
1 3 2 2
3 1 2 4
3 2 1 1
4 3 1 2

⎤
⎥⎥⎦

which is just folding the input image about the y-axis and then folding the resulting
image about the x-axis or vice versa.

With β = 90◦, the equations reduce to

m ′ = −n and n′ = m

The rotated image is ⎡
⎢⎢⎣
4 3 3 1
3 2 1 3
1 1 2 2
2 1 4 2

⎤
⎥⎥⎦

which is just folding the input image about the y-axis and then taking the transpose
of the result.

When we rotate an image by an angle, which is an integer multiple of 90◦, the
new image coordinates are trivially related to the original coordinates. The size of the
image remains the same, and it is easy to find the rotated image. Rotation, by other
angles, requires interpolation. A straightforward method, called forward mapping,
is to use Eqs. (6.4) and (6.5) to compute the new coordinates and copy the pixel
values to the new locations. This method has too many problems and, therefore, is

176 6 Geometric Transformations and Image Registration

not practically useful. The second method, called backward mapping, is to select
a set of required integer coordinates for (m ′, n′), use Eqs. (6.4) and (6.5) to find
the corresponding (m, n) and copy the pixel values. However, coordinates (m, n)
are usually real-valued, and interpolation is required to find the appropriate pixel
values. For example, with β = 45◦, we get the reverse transformation by substituting
β = −45◦ in Eqs. (6.4) and (6.5) and solving.

m = 1√
2
(m ′ − n′) and n = 1√

2
(m ′ + n′) (6.8)

A 4 × 4 input image and its 5 × 5 rotated version (using the nearest-neighbor inter-
polation), respectively, are

⎡
⎢⎢⎣
9 1 3 7
6 8 0 4
5 4 6 1
2 7 3 5

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 7 0 0
0 1 0 1 0
9 8 4 6 5
0 5 4 7 0
0 0 2 0 0

⎤
⎥⎥⎥⎥⎦

Remember that the rotation is about the center of the image, and the center of the input
image is in the center of the square formed by the locations of the pixels {8, 0, 4, 6}.
The central pixel of the rotated image, 4, is shown in boldface.

Assuming either m ′ or n′ is equal to zero and the other variable assuming values
{0, 1, 2, 3}, from Eq. (6.8), we obtain integer multiples of ±1/

√
2. For example,

{(0, 1, 2, 3)/√2} = {0, 0.71, 1.41, 2.12}

As the maximum distance from the center of the 4 × 4 input image to its border is
1.5, the limit of the address is 1.41. We conclude that the coordinates of the rotated
image are restricted to the values {−2,−1, 0, 1, 2}, and the size of the rotated image
is 5 × 5. The corresponding output image coordinates are

⎡
⎢⎢⎢⎢⎣

(2,−2) (2,−1) (2, 0) (2, 1) (2, 2)
(1,−2) (1,−1) (1, 0) (1, 1) (1, 2)
(0,−2) (0,−1) (0, 0) (0, 1) (0, 2)

(−1,−2) (−1,−1) (−1, 0) (−1, 1) (−1, 2)
(−2,−2) (−2,−1) (−2, 0) (−2, 1) (−2, 2)

⎤
⎥⎥⎥⎥⎦

Using Eq. (6.8), with m ′ and n′ varying from −2 to 2 with increment 1, we get
the backward mapped coordinates, rounded to 2 digits after the decimal point, as

6.2 Affine Transform 177

−1.5 −0.5 0 0.5 1.5

−1.5

−0.5

0

0.5

1.5
m

n

(a) 9 1 3 7

6 8 0 4

5 4 6 1

2 7 3 5

−2 −1 0 1 2

−2

−1

0

1

2

m
’

n’

(b) 7

1 0 1

9 8 4 6 5

5 4 7

2

Fig. 6.7 Rotation of an image by 45◦ in the counterclockwise direction. a A 4 × 4 input image
with reverse coordinates shown by dots; b its 5 × 5 rotated version

⎡
⎢⎢⎢⎢⎣

(2.83, 0.00) (2.12, 0.71) (1.41, 1.41) (0.71, 2.12) (0.00, 2.83)
(2.12,−0.71) (1.41, 0.00) (0.71, 0.71) (0.00, 1.41) (−0.71, 2.12)
(1.41,−1.41) (0.71,−0.71) (0.00, 0.00) (−0.71, 0.71) (−1.41, 1.41)
(0.71,−2.12) (0.00,−1.41) (−0.71,−0.71) (−1.41, 0.00) (−2.12, 0.71)
(0.00,−2.83) (−0.71,−2.12) (−1.41,−1.41) (−2.12,−0.71) (−2.83, 0.00)

⎤
⎥⎥⎥⎥⎦

Only those coordinates with the corresponding backward mapped coordinates with
magnitude less than or equal to 1.5 have pixel values defined in the rotated image.
All other pixel values of the 5×5 rotated image are undefined and, usually, assigned
the value zero. The 4 × 4 input image, with the backward mapped coordinates
shown by dots, is shown in Fig. 6.7a. The 5 × 5 rotated image is shown in Fig. 6.7b.
The pixel value nearest to the backward mapped coordinates in the input image is
placed in the corresponding location in the rotated image. This method is called the
nearest-neighbor interpolation algorithm. The coordinates (2, 0) in the output image
backward map to (1.41, 1.41) in the input image. The nearest pixel value is 7 and
that value is placed at (2, 0). The values along the main diagonal {9, 8, 6, 5} of the
input image are placed on the horizontal axis through the origin. The values along
the other diagonal {7, 0, 4, 2} are placed on the vertical axis through the origin. At
coordinates (0, 0), the value 4 is chosen to be the nearest value.

In the bilinear interpolation algorithm, the 4 pixel values around the backward
mapped coordinates are used to find the pixel value in the corresponding location
in the rotated image. The coordinates (1, 0) in the output image backward map
to (0.7071, 0.7071) in the input image. The 4 neighbors are (0.5, 0.5), (1.5, 0.5),
(1.5, 1.5), and (0.5, 1.5) with pixel values 0, 3, 7, and 4, respectively. Interpolation
value due to 0 and 3 is 3(0.7071 − 0.5) = 3(0.2071) = 0.6213. Interpolation value
due to 4 and 7 is 4(1 − 0.2071) + 7(0.2071) = 4.6213. Interpolation value due to
0.6213 and 4.6213 is 0.6213(1 − 0.2071) + 4.6213(0.2071) = 1.4497. The input
image and the rotated images using nearest-neighbor and bilinear interpolation are,
respectively,

178 6 Geometric Transformations and Image Registration

θ = 0°

60 120 180 240

60

120

180

240

θ = 45°

60 120 180 240 300

60

120

180

240

300

θ = −60°

60 120 180 240 300

60

120

180

240

300

θ = 90°

60 120 180 240

60

120

180

240

Fig. 6.8 Rotation of a 256×256 image by 0◦, 45◦,−60◦, and 90◦ in the counterclockwise direction

⎡
⎢⎢⎣
9 1 3 7
6 8 0 4
5 4 6 1
2 7 3 5

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 7 0 0
0 1 0 1 0
9 8 4 6 5
0 5 4 7 0
0 0 2 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 6.4 0 0
0 2.17 1.45 2.54 0

8.13 6.56 4.50 4.64 4.54
0 5.54 4.57 5.00 0
0 0 2.64 0 0

⎤
⎥⎥⎥⎥⎦

Other interpolation algorithms can also be used. For rotation other than about the
center, translate the image to the origin, rotate and then translate back. Rotation of a
256 × 256 image by 0◦, 45◦, −60◦ and 90◦ is shown in Fig. 6.8.

6.2 Affine Transform 179

Some properties of the affine transform are: (i) straight lines are mapped to
straight lines, (ii) triangles are mapped to triangles, (iii) parallel lines remain parallel
after transformation, (iv) rectangles are mapped to parallelograms, and (v) ratios are
always preserved. For example, midpoints map to midpoints.

6.3 Correlation

Correlation operation is a similaritymeasure between two signals. It is a probabilistic
relationship. The number of accidents occurred due to a driver during a period is, on
the average, likely to be directly proportional to the amount of his consumption of
alcohol before he drives. Correlation between the number of accidents and his alcohol
consumption will be high if the number of accidents is high and vice versa. On the
other hand, there will be little or no correlation between the number of accidents
occurred due to a driver and the consumption of alcohol by another driver. While the
use of convolution and correlation is different, both are essentially sum of products
(with a small difference) and, therefore, their implementation is similar.

6.3.1 1-D Correlation

The cross-correlation of two signals x(n) and y(n) is defined as

rxy(m) =
∞∑

n=−∞
x(n)y(n − m), m = 0,±1,±2, . . .

(An alternate cross-correlation definition is

rxy(m) =
∞∑

n=−∞
x(n)y(n + m), m = 0,±1,±2, . . .

The outputs of the two definitions are time reversed version of each other). The
correlation of x(n) and y(n) is a function of the delay time. For example, our hungri-
ness is proportional to the delay time after our last meal. Therefore, the independent
variable in the correlation function is the time-lag or time-delay variable m, which
has the dimension of time (delay time). The independent time variable n indicates
the running time. If the two signals are similar, then the values of rxy(m) will be
large and vice versa. The correlation of {y(n), n = 0, 1} = {3,−2} and {x(n), n =
0, 1, 2, 3} = {2, 1, 3, 4} is shown in Fig. 6.9. The convolution operation without
time reversal is the correlation operation. The correlation of a signal by itself is the
autocorrelation. The autocorrelation of {3, 1, 2, 4} is {12, 10, 13, 30, 13, 10, 12}.

180 6 Geometric Transformations and Image Registration

0 1 2 3n
3 −2y(n)
2 1 3 4x(n)

3 −2y(n+ 1)
3 −2y(n)

3 −2y(n− 1)
3 −2y(n− 2)

3 −2y(n− 3)
−1 0 1 2 3m
−4 4 −3 1 12rxy(m)

Fig. 6.9 1-D linear correlation

6.3.2 2-D Correlation

In the 2-D correlation, a 2-D window or template is moved over the image. Template
is a pattern to be matched. The correlation of images x(m, n) and y(m, n) is defined
as

rxy(m, n) =
∞∑

k=−∞

∞∑
l=−∞

x(k, l)y(k − m, l − n)

Consider the 3 × 3 template image y(k, l) and the 4 × 4 image x(k, l) shown in
Fig. 6.10.

1 2 1
3 1 2
1 0 1

y(k, l)(0, 0) (0, 0)
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

x(k, l)
1 −1 4 1 3 2
4 0 12 9 13 10
6 4 16 17 19 12
7 5 17 7 16 0
7 6 15 10 6 4
3 7 7 7 6 2

rxy(m,n)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
3 1 2
1 0 1

rxy(−2,−2) =
x(k, l)y(k + 2, l + 2)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
3 1 2
1 0 1

rxy(−2,−1) =
x(k, l)y(k + 2, l + 1)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
3 1 2
1 0 1

rxy(1, 0) = x(k, l)y(k − 1, l + 0)

1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

1 2 1
3 1 2
1 0 1

rxy(0,−1) = x(k, l)y(k + 0, l + 1)

Fig. 6.10 2-D linear correlation

6.3 Correlation 181

y(k, l) =
⎡
⎣1 2 1
3 1 2
1 0 1

⎤
⎦ x(k, l) =

⎡
⎢⎢⎣
1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2

⎤
⎥⎥⎦

Three operations, similar to those of the convolution, are repeatedly executed in
carrying out the 2-D correlation.

1. Template y(k, l) is shifted by (m, n) to get y(k − m, l − n).
2. The products x(k, l)y(k − m, l − n) of all the overlapping samples are found.
3. The sum of all the products yields the correlation output rxy(m, n) at (m, n).

Four examples of computing the correlation output are shown. For example, with a
shift of (k + 2, l + 2), there is only one overlapping pair (1, 1). The product of these
numbers yields the output rxy(−2,−2) = 1. rxy(0, 0) = 16 is shown in boldface. The
process is repeated to get the complete correlation output rxy(m, n). It is assumed that
the pixel values outside the defined region of the image are zero. This assumptionmay
not be suitable. Usually, some suitable assumption, such as periodicity, symmetry or
replication at the borders of the image, is made in processing images.

The autocorrelation of x(k, l) is

x(k, l) =
⎡
⎣2 2 3
3 −1 2
1 2 1

⎤
⎦ rxx (m, n) =

⎡
⎢⎢⎢⎢⎣

2 6 9 8 3
7 7 13 6 11

13 9 37 9 13
11 6 13 7 7
3 8 9 6 2

⎤
⎥⎥⎥⎥⎦

The normalized cross-correlation (correlation coefficient) of images x(m, n) and
y(m, n) is defined as

rnxy(m, n) =
∑∞

k=−∞
∑∞

l=−∞(x(k, l) − x̄l)(y(k − m, l − n) − ȳ)√∑∞
k=−∞

∑∞
l=−∞(x(k, l) − x̄l)2

∑∞
k=−∞

∑∞
l=−∞(y(k − m, l − n) − ȳ)2

As the mean is subtracted, all the values of the template cannot be the same. If the
variance of the image over the overlapping portion with the template is zero, then the
correlation coefficient is assigned the value zero. The range of values vary from −1
to 1. A high value indicates a good match between the template and the image. The
major difference in this version of correlation is that the local image and template
values are the difference between the given values and their local mean x̄l and ȳ. That
is, the fluctuating part of the values of the operands are analyzed. The numerator is
cross-correlationwith themeans subtracted. The denominator is a normalizing factor.
It is the square root of the product of the variances of the overlapping samples of the
operands. For the same y(k, l) and x(k, l) as in the last example, let us compute the
rnxy(m, n). Subtracting the mean, 1.3333 from y(m, n), we get

182 6 Geometric Transformations and Image Registration

ym(m, n) =
⎡
⎣ 1 2 1
3 1 2
1 0 1

⎤
⎦ −

⎡
⎣ 1.3333 1.3333 1.3333
1.3333 1.3333 1.3333
1.3333 1.3333 1.3333

⎤
⎦ =

⎡
⎣ −0.3333 0.6667 −0.3333

1.6667 −0.3333 0.6667
−0.3333 −1.3333 −0.3333

⎤
⎦

The variance of ym(m, n) is 6.
Subtracting the mean, 1.1111 from part of x(m, n) for a neighborhood, we get

xm(m, n) =
⎡
⎣ 1 −1 3
2 1 2
1 −1 2

⎤
⎦ −

⎡
⎣ 1.1111 1.1111 1.1111
1.1111 1.1111 1.1111
1.1111 1.1111 1.1111

⎤
⎦ =

⎡
⎣ −0.1111 −2.1111 1.8889

0.8889 −0.1111 0.8889
−0.1111 −2.1111 0.8889

⎤
⎦

The variance of xm(m, n) is 14.8889. The sum of pointwise product of ym(m, n)
and xm(m, n) is 2.6667. Now, 2.6667/

√
(6)(14.8889) = 0.2821. Let us try another

neighborhood. Subtracting the mean, 1.2222 from part of x(m, n), we get

xm(m, n) =
⎡
⎣ 1 2 4

−1 2 −2
1 2 2

⎤
⎦ −

⎡
⎣ 1.2222 1.2222 1.2222
1.2222 1.2222 1.2222
1.2222 1.2222 1.2222

⎤
⎦ =

⎡
⎣ −0.2222 0.7778 2.7778

−2.2222 0.7778 −3.2222
−0.2222 0.7778 0.7778

⎤
⎦

The variance of xm(m, n) is 25.5556. The sum of pointwise product of ym(m, n) and
xm(m, n) is −7.6667. Now, −7.6667/

√
(6)(25.5556) = −0.6191. The complete

correlation coefficients, for the example, are

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.1443 −0.6170 −0.3203 −0.6121 −0.5052 −0.1443
0.0615 −0.5862 0.0969 −0.3479 −0.1310 0.2979
0.0569 −0.1826 0.2821 0.2610 0.2496 0.5533

−0.0700 −0.4811 −0.0426 −0.6191 0.1601 −0.2128
0.1837 0.1543 0.6056 0.6508 0.2887 0.7217

−0.1443 0.1837 −0.0700 0.0259 0.1091 −0.1443

⎤
⎥⎥⎥⎥⎥⎥⎦

Correlation coefficients are very effective in finding the location of a template in an
image. Figure6.11a shows a 256 × 256 8-bit image. We want to find the locations
of the four bolts near the center of the wheel. The enlarged 17 × 13 8-bit template
is shown in Fig. 6.11b. The four brightest points in Fig. 6.11c, which show the cor-
relation coefficients image between the image and the template, clearly indicate the
locations of the four bolts. Figure6.11d shows the un-normalized correlation output
between the image and the template, which does not point out the location of the
bolts.

6.4 Image Registration

Image registration is important in applications such as the study of satellite and
medical images. Different images of the same scene taken at different times and
settings or by different equipments are aligned and represented in the same coordinate

6.4 Image Registration 183

Fig. 6.11 a A 256 × 256 8-bit image; b an enlarged 17 × 13 8-bit template; c the correlation
coefficients image; d the un-normalized correlation output

system to study the changes in the behavior of the objects in the scene. For example,
the study of the growth of plants in remote sensing and tumor growth in medical
analysis is important.

Image registration consists of the following four basic steps.

Feature detection Features, such as lines and corners, are to be detected.
Feature matching The detected features are to be matched with those of the ref-

erence image.
Selection of geometric transformation Suitable geometrical transformations are

selected to align the images.
Application of the transformation The transformations are applied to obtain the

aligned images.

The extent the corresponding features match is the measure of good registration.
Figure6.12a shows a 256 × 256 8-bit image, which is a 60◦ counterclockwise

rotated version of that in Fig. 6.11a. The features to be matched are the four bolts.
The four brightest points in Fig. 6.12b, which show the correlation coefficients image
between the image and the template, clearly indicate the locations of the four bolts.

184 6 Geometric Transformations and Image Registration

Fig. 6.12 a A 256 × 256 8-bit image; b the correlation coefficients image

The locations of the bolts in Figs. 6.11c and 6.12b, however, are different. The dif-
ference has to analyzed and affine transformation for a 60◦ clockwise rotation has to
be selected and applied. Then, the images are aligned and a comparative study can
be made. In practice, a combination of transformations may be required to align the
images.

6.5 Summary

• Geometric operations, such as shifting and rotation, are required in image process-
ing, in addition to the arithmetic operations of the pixel values.

• Geometric operations change the coordinates of the image.
• Due to the constraint that the image coordinates have to be finite integer values,
geometric operations invariably require interpolation.

• Interpolation is estimating the values of a function inside the range of the given
values.

• Interpolation is required for reconstruction of images from its samples. In addition,
it is also required in operations such as image rotation, conversion of images from
polar representation to rectangular coordinates and vice versa.

• Two of the often used interpolation methods are the nearest-neighbor and the
bilinear.

• Operations such as translation, scaling, rotation, and shearing are often used in
image processing. These operations change the coordinates of the image, but the
pixel values are unaffected. They are geometrical transformations. Theymappoints
from one coordinate system into another.

• These operations, called the affine transformation, are formulated as matrix mul-
tiplication with suitable transformation matrices.

6.5 Summary 185

• Correlation operation, which is a similarity measure, is often used in processing
images.

• Correlation operation can detect the presence of an object in an image and, if
present, it gives the location of the object. From the implementation point of view,
it is the same thing as convolution without the time-reversal step.

• Image registration is the alignment of images of a scene taken at different times,
settings or with different equipments. Registration helps to study the behavior of
the objects in the scene at different times and settings.

• The selected features of an image are computed and compared with those of the
reference image and suitable geometrical transformations are used to align the
images.

Exercises

6.1 Using nearest-neighbor interpolation, find the 7 × 7 interpolated version of the
image x(m, n).
(i) ⎡

⎢⎢⎣
43 50 50 52
45 49 51 50
46 46 49 48
43 44 47 42

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
68 80 83 78
39 54 61 66
41 44 44 67
55 46 34 66

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
63 64 64 64
62 62 62 61
61 61 61 58
62 61 60 58

⎤
⎥⎥⎦

6.2 Using bilinear interpolation, find the 7 × 7 interpolated version of the image
x(m, n).
(i) ⎡

⎢⎢⎣
34 51 56 53
38 53 57 54
40 52 56 52
39 48 52 49

⎤
⎥⎥⎦

186 6 Geometric Transformations and Image Registration

*(ii) ⎡
⎢⎢⎣
53 42 39 58
51 46 44 49
54 52 58 46
63 57 63 52

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
82 84 86 97
80 80 85 103
79 77 90 114
80 84 102 118

⎤
⎥⎥⎦

6.3 Using nearest-neighbor interpolation, find the scaled version of the image
x(m, n).
(i) a = 0.5, e = 0.75 ⎡

⎢⎢⎣
52 61 57 66
58 64 69 64
45 60 74 61
56 63 74 63

⎤
⎥⎥⎦

*(ii) a = −0.5, e = −0.5 ⎡
⎢⎢⎣
71 56 47 92
66 51 47 108
64 55 70 122
73 57 81 127

⎤
⎥⎥⎦

(iii) a = 0.75, e = 0.25 ⎡
⎢⎢⎣
48 53 46 62
54 54 54 80
64 53 59 78
57 46 56 55

⎤
⎥⎥⎦

6.4 Using nearest-neighbor interpolation, find the sheared version of the image
x(m, n).
(i) b = 0, d = 1 ⎡

⎢⎢⎣
17 20 26 25
18 23 30 24
17 24 32 27
20 28 30 32

⎤
⎥⎥⎦

(ii) b = 0, d = 0.5 ⎡
⎢⎢⎣
63 49 51 54
66 60 52 56
57 62 62 57
57 56 64 61

⎤
⎥⎥⎦

Exercises 187

(iii) b = 0, d = 0.3 ⎡
⎢⎢⎣
179 178 179 184
177 178 179 189
176 177 180 193
174 175 184 190

⎤
⎥⎥⎦

6.5 Using nearest-neighbor interpolation, find the sheared version of the image
x(m, n).
(i) b = 1, d = 0 ⎡

⎢⎢⎣
41 36 123 151
27 10 79 136
17 17 33 91
17 30 17 70

⎤
⎥⎥⎦

(ii) b = 0.7, d = 0 ⎡
⎢⎢⎣
172 157 115 62
163 165 118 83
138 185 128 71
121 184 126 83

⎤
⎥⎥⎦

*(iii) b = 0.3, d = 0 ⎡
⎢⎢⎣
95 111 48 32
96 115 59 26
89 90 37 24
86 73 15 21

⎤
⎥⎥⎦

6.6 Using nearest-neighbor interpolation, find the rotated version of the image
x(m, n) in the counterclockwise direction. θ = 90◦, θ = 180◦ and θ = 45◦.
(i) ⎡

⎢⎢⎣
95 47 65 55
74 60 60 47
105 103 67 46
103 78 67 58

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
74 81 67 75
77 77 77 83
58 69 69 80
46 61 69 82

⎤
⎥⎥⎦

(iii) ⎡
⎢⎢⎣
66 77 79 64
56 68 61 69
43 51 49 66
39 45 43 55

⎤
⎥⎥⎦

188 6 Geometric Transformations and Image Registration

6.7 Find the cross-correlation and the correlation coefficients of x(m, n) and h(m, n).
Assume zero-padding at the borders.

h(m, n) =
⎡
⎣1 1 1
3 1 0
1 2 1

⎤
⎦

*(i)

x(m, n) =

⎡
⎢⎢⎣
2 1 3 2
3 2 1 0
1 2 1 2
1 3 0 2

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
3 1 1 2
0 2 1 2
1 1 1 2
1 2 0 2

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
1 2 3 0
0 2 1 0
2 2 1 2
1 1 0 2

⎤
⎥⎥⎦

6.8 Find the autocorrelation of x(m, n). Assume zero-padding at the borders.
(i)

x(m, n) =

⎡
⎢⎢⎣
2 1 3 2
2 1 1 0
1 0 1 2
1 1 0 2

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
3 1 1 2
0 3 1 2
1 2 1 0
1 2 0 2

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
3 2 1 0
0 2 1 0
2 0 1 2
3 1 0 2

⎤
⎥⎥⎦

Chapter 7
Image Reconstruction from Projections

Abstract The Radon transform is presented, which is important in computerized
tomography inmedical and industrial applications. This transform enables to produce
the image of an object, without intrusion, using its projections at various directions.
As this transform uses the normal form of a line, it is presented first. Then, the Radon
transform and its properties are described next. The Fourier-slice theorem and the
filtered back-projection of the images are presented. Finally, line detection using the
Hough transform is given. Examples are included to illustrate the various concepts.

In such medical applications as computerized axial tomography and nondestructive
testing of mechanical objects, the Radon transform, which is an advanced spectral
method, plays an important role. Computerized tomography is inwidespread use, and
even small hospitals are equipped with such systems. Axial tomography is forming
the image of the interior of an object, such as the human body, using the projections
of the object along several directions. Projections are obtained, for example, by
the absorption of the X-ray in passing through the object from the source to the
detector. The source and the detector assembly are rotated around the object to get
the projections at a finite set of angles. The advantage is that it facilitates nonintrusive
medical diagnosis.

In image processing, appropriate representation of an image that is suitable for
the specific task is important. While images occur mostly in the continuous form, we
convert them to digital form for processing convenience. Further, the image is often
represented in the transform domain. For example, in Fourier analysis, an image is
represented as a linear combination of sinusoidal surfaces. In the Radon transform,
an image is represented by its mappings with respect to a set of lines at various
angles represented by polar coordinates. The values at various polar coordinates are
the transform coefficients. An image can be represented using either the Cartesian
coordinates or polar. The higher the frequency content of the image, the more is
the number of samples required in either representation. In the limit, with infinite
samples, either representation is the same as the image. Of course, in practice, a
finite number of samples only can be used and it has to be ensured that the number
of samples taken represents an image with adequate accuracy. When an image is
represented in Radon transform form, we are able to form the image of the interior

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_7

189

190 7 Image Reconstruction from Projections

of an object with out intrusion. In its implementation, we use the 1-D DFT and
interpolation operations.

In this chapter, we study the formation of images using tomography. As projection
(representation of an object on a plane as it is seen from a particular direction) is the
basis of the Radon transform, we need to study the normal form of a line first. This
form of line is also used in Hough transform to detect lines in images.

7.1 The Normal Form of a Line

In mathematics, a line is an object which has length but no breadth. The slope of a
line is a measure of its steepness. We are quite familiar with the slope–intercept form
of a line given by

y = mx + c (7.1)

where m is the slope of the line, and c is its y-axis intercept. The equation is linear,
as the graph of any linear equation is a line. The y-axis intercept is the point where
the line intersects the y-axis and is obtained by setting x = 0 in Eq. (7.1). The x-axis
intercept is the point where the line intersects the x-axis and is obtained by setting
y = 0 in Eq. (7.1) and solving for x. The intercept form of a line is given by

x

b
+ y

c
= 1

where b and c are, respectively, the x-axis and y-axis intercepts of the line. Solving
for y, we get back the slope–intercept form

y = − c

b
x + c

where −c/b is the slope.
The polar coordinates are advantageous in some applications than the more com-

mon Cartesian coordinates. For example, complex number multiplication and divi-
sion is easier in the polar form. A point with Cartesian coordinates (x, y) can be
equivalently represented by its polar coordinates (s, θ). The angle between the pos-
itive side of the x-axis and the line joining the point with the origin is θ. The length
of the line is s. The relationships between the two coordinates are given by

x = s cos(θ), y = s sin(θ) and s =
√

x2 + y2, tan(θ) = y

x
, x �= 0

A line can also be represented using polar coordinates. The Radon and Hough
transforms use the normal form a line. In this form, a line is expressed in terms
of its perpendicular distance from the line to the origin and the angle subtended
between the perpendicular line and the x-axis. Let L be a line, as shown in Fig. 7.1.

7.1 The Normal Form of a Line 191

Fig. 7.1 The normal form of
a line

θ

•

•
•

x cos(θ) + y sin(θ) = s

P

Q

c

b
x

y

s D

O
L

The intercepts of the line with the x-axis and y-axis are b and c, respectively. Line
OD is perpendicular to line L with length s and at angle θ from the x-axis. That is,
∠ODP = 90◦.

Then,

b cos(θ) = s and c sin(θ) = s

Substituting b = s/ cos(θ) and c = s/ sin(θ) in the intercept form, the normal form
of a line is given by

x cos(θ) + y sin(θ) = s (7.2)

where s is always positive and 0 ≤ θ < 360◦. This form is preferred, since the lines
are evenly distributed in the parameter space. All the points of a line are transformed
to a single point in the (s, θ) plane. An alternate derivation of a line in the normal
form is as follows. The coordinates of point D are (s cos(θ), s sin(θ)). The slope of
the line OD is tan(θ) = sin(θ)/ cos(θ). The slope of the line perpendicular to OD is
− cos(θ)/ sin(θ). Therefore, the equation of the line L is

y − s sin(θ)

x − s cos(θ)
= −cos(θ)

sin(θ)

Simplifying the expression, we get Eq. (7.2).
Given a linear equation

√
3x + y + 2 = 0,

let us put it in the normal form of a line. Shift the constant term to the other side and
ensure that it is positive. We get

−√
3x − y = 2

192 7 Image Reconstruction from Projections

−1 0 1

−1

0

1

x,s

y,
n’

(a)

θ = 0°

s = −1 s = 0 s = 1

f(x,y)

−1 0 1

−1

0

1

x

y

(b)
θ = 45°

s = 0

s = −1

s = 1

sn’

f(x,y)

−1 0 1

−1

0

1

x,−n’

y,
s

(c)

θ = 90°

s = −1

s = 0

s = 1

f(x,y)

−1 0 1

−1

0

1

x

y
(d)

θ = 120°

s = 0

s = −1

s = 1

f(x,y)

Fig. 7.2 Lines with s varying from −1 to 1 and a θ = 0◦ ; b θ = 45◦ ; c θ = 90◦ ; and d θ = 120◦

Since x and y have to be associated with cos(θ) and sin(θ), respectively, and

cos2(θ) + sin2(θ) = 1,

the coefficients have to be normalized. Divide both sides by the square root of the sum

of the squares of the constants associatedwith x and y. Since
√
(−√

3)2 + (−1)2 = 2,
we get

−
√
3

2
x − 1

2
y = 2

2
= 1 or x cos(210◦) + y sin(210◦) = 1

with θ = 210◦ and s = 1.
To get used to this representation, let us look at the graphs of the lines with varying

values of s and θ. Figures7.2a, b, c, d show lines with s varying from −1 to 1, and
θ = 0◦, θ = 45◦, θ = 90◦, and θ = 120◦, respectively. The inside of the ellipse,
f (x, y), is the object whose projections along the lines are to be determined. The axis

7.1 The Normal Form of a Line 193

along which s varies and a perpendicular to it form the rotated coordinate system
(s, n′). The x-axis rotated by θ degrees in the counterclockwise direction is the s-axis.

7.2 The Radon Transform

The Radon transform gives the projection of an image along lines in the coordinate
plane of the image. The Radon transform R(s, θ) of a continuous image f (x, y) is
defined as

R(s, θ) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y)δ(x cos(θ) + y sin(θ) − s)dx dy − ∞ < s < ∞, 0 ≤ θ < π

(7.3)

The definition gives line integrals of f (x, y) along lines at various angles and distances
in the (x, y) plane. The strength of the impulse function in the integral is 1 only along
a line specified by the parameters s and θ. Elsewhere, the strength of the impulse is
zero. Along this line, the line integral of f (x, y) is determined. Remember that the
strength of the impulse function δ(x) is 1 when x = 0 and 0 otherwise. The plot
of R(s, θ) is called a sinogram. Similar to the Fourier spectrum, while the values of
the sinogram are real, the image can be reconstructed from its sinogram. Using the
coordinate transformation, the relations between the coordinate systems (x, y) and
(s, n′) (rotated) in Fig. 7.2 are given by

s = x cos(θ) + y sin(θ) (7.4)

n′ = −x sin(θ) + y cos(θ) (7.5)

and

x = s cos(θ) − n′ sin(θ) (7.6)

y = s sin(θ) + n′ cos(θ) (7.7)

In the rotated coordinate system (s, n′), Eq. (7.3) becomes

R(s, θ) =
∫ ∞

−∞
f (s cos(θ) − n′ sin(θ), s sin(θ) + n′ cos(θ)) dn′ (7.8)

In this form, the projection is easily determined as the projection direction coincides
with the n′-axis. The other axis coincides with the s-axis. The Radon transform
reduces to integration along the n′ direction.

194 7 Image Reconstruction from Projections

The back-projection (not the inverse Radon transform) of R(s, θ) is defined as

f̂ (x, y) =
∫ π

0
R(x cos(θ) + y sin(θ), θ) dθ (7.9)

where f̂ (x, y) is a blurred version of f (x, y). The back-projection at any point requires
projections from all angles.While it is possible to deblur f̂ (x, y), it is not implemented
in practice due to the availability of a better algorithm.

Example 7.1 Find the Radon transform of an object, which is a circular cylinder
with radius r and height 1 located at the origin. The object is characterized by

f (x, y) =
{
1 for x2 + y2 ≤ r2

0 otherwise

Solution
As the object is circular, its projection is same in all directions. Therefore, let us
compute the projection at θ = 0◦. Form the definition, we get

R(s, θ) =
∫ ∞

−∞
f (s, n′) dn′

The distance of the edge of the cylinder along a vertical line at distance s from the
origin is

n′ =
√

r2 − s2

Therefore, as the distances from the horizontal line to either edge of the cylinder are
equal,

R(s, θ) = 2
∫ √

r2−s2

0
f (s, n′) dn′ = 2

∫ √
r2−s2

0
1 dn′ =

{
2
√

r2 − s2 for |s| ≤ r
0 otherwise

Figure7.3a shows a 256 × 256 image and (b) shows its Radon transform. At the
center of the circle, the projection has the maximum value 2r = 240 as s = 0,
reduces away from the center and it is zero on its circumference. In the figure, the
transform changes from white to black, independent of the value of θ.

Example 7.2 Find the Radon transform of a 2-D delayed impulse f (x, y) = δ(x −
x0, y − y0).

Solution
From the definition of the Radon transform and the sifting property of the impulse,
we get

7.2 The Radon Transform 195

(a)

 n

 m

−120 0 120

−120

0

120

θ (degrees)

s

(b)

0 90 180

−120

0

120

Fig. 7.3 a A 256 × 256 image and b its Radon transform

R(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
δ(x − x0, y − y0)δ(x cos(θ) + y sin(θ) − s)dx dy

− ∞ < s < ∞, 0 ≤ θ < π = δ(x0 cos(θ) + y0 sin(θ) − s)

As the strength of the impulse is concentrated only when its argument becomes zero,
the Radon transform is given by

x0 cos(θ) + y0 sin(θ) − s = 0 or s = x0 cos(θ) + y0 sin(θ)

The point (x0, y0), where the impulse occurs in the spatial domain, can be described
in polar coordinates as

x0 = r cos(φ), y0 = r sin(φ) and r =
√

x20 + y20, tan(φ) = y0
x0
, x0 �= 0

The Radon transform, in terms of r and φ, is given by

s = r cos(φ) cos(θ) + r sin(φ) sin(θ) = r cos(φ − θ) = r cos(θ − φ)

which is a sinusoid. Therefore, the Radon transform of an impulse is a sinusoid.
Figure7.4a shows an image with impulses and (b) shows its Radon transform. The
horizontal and vertical axes are also superimposed in (a). In both the figures, we have
dilated the image for clear display of the points and curves. Actually, the points and
curves are 1-pixel wide. The Radon transforms of the four impulses

196 7 Image Reconstruction from Projections

x

y

−77 0 17

47

0

θ (degrees)
 s

0 90 180 225

137

77
47
17
0

(a) (b)

Fig. 7.4 a An image with 4 impulses and b its Radon transform

δ(x − 17, y), δ(x, y − 47), δ(x + 77, y), δ(x + 97, y + 97)

starting from the one in the east direction, with increasing r values, are

s = 17 cos(θ − 0◦), s = 47 cos(θ − 90◦), s = 77 cos(θ − 180◦), s = 137 cos(θ − 225◦)

The last sinusoid reaches its positive peak last at θ = 225◦.

7.2.1 Properties of the Radon Transform

As the impulse function is part of the Radon transform definition, the properties of
the Radon transform are mostly due to the properties of the impulse function.

R(s, θ) = R(−s, θ ± 180◦)

The Radon transform of f (x, y) at θ + 180◦ is, from the definition,

R(s, θ + 180◦) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y)δ(x cos(θ + 180◦) + y sin(θ + 180◦) − s)dx dy

=
∫ ∞
−∞

∫ ∞
−∞

f (x, y)δ(−x cos(θ) − y sin(θ) − s)dx dy

=
∫ ∞
−∞

∫ ∞
−∞

f (x, y)δ(−(x cos(θ) + y sin(θ) + s))dx dy = R(−s, θ)

as the impulse is an even-symmetric signal, δ(−t) = δ(t). The Radon transforms of
the impulse functions shown in Fig. 7.4b illustrate this property.

7.2 The Radon Transform 197

f (x, y) ↔ R(s, θ) → f (x − x0, y − y0) ↔ R(s − x0 cos(θ) − y0 sin(θ), θ)

The Radon transform of f (x − x0, y − y0) is, from the definition,

=
∫ ∞

−∞

∫ ∞

−∞
f (x − x0, y − y0)δ(x cos(θ) + y sin(θ) − s)dx dy

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)δ((x − x0) cos(θ) + (y − y0) sin(θ) − s)dx dy

= R(s − x0 cos(θ) − y0 sin(θ), θ)

due to the sifting property of the impulse function. Consider a line from (0, 0) to (0, 1).
Its transform isR(0, 0◦) = 1. Let the line gets shifted to coordinates (1, 0) to (1, 1). Its
transformR(1, 0◦) is, in terms of that of the original line,R(1−1, 0◦) = R(0, 0◦) = 1.

f (x, y) ↔ R(s, θ) → f (kx, ky) ↔ 1

|k|R(ks, θ), k �= 0

The Radon transform of f (kx, ky) is, from the definition,

=
∫ ∞

−∞

∫ ∞

−∞
f (kx, ky)δ(kx cos(θ) + ky sin(θ) − s)dx dy

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)

1

|k|δ(x cos(θ) + y sin(θ) − s

k
)dx dy

= 1

|k|R(ks, θ)

due to the scaling property of the impulse function. The transform of the scaled func-
tion is the scaled and compressed version of that of the original function. Consider
a rectangular image with vertices at (0, 0), (0, 1), (2, 1), and (2, 0). The transform at
angle zero degree is R(s, 0) = 1, s = 0 to 2. The compressed version of the rectan-
gle with k = 2 has its vertices at (0, 0), (0, 1/2), (1, 1/2), and (1, 0). The transform
at angle zero degree is R(s, 0) = 1/2, s = 0 to 1.

Further properties of the Radon transform are as follows:

1. The Radon transform is linear. That is, the transform of a linear combination of
a set of images is the same linear combinations of their individual transforms.

2. An impulse in the spatial domain corresponds to a sine wave in the transform
domain.

3. A line in the spatial domain corresponds to an impulse in the transform domain.
4. Rotation of an image by φ degrees shifts its transform by φ, R(s, θ + φ). The

transforms of two impulses located at right angles differ by a phase shift of 90◦
in Fig. 7.4b.

198 7 Image Reconstruction from Projections

5. The Radon transform is periodic with period 2π, R(s, θ) = R(s, θ + 2kπ) with k
an integer, as the sinusoids in the definition are periodic.

6. If f (x, y) = 0, |x| > K, |y| > K , then R(s, θ) = 0, |s| > √
2K .

7.2.2 The Discrete Approximation of the Radon Transform

In the discrete case, the lines are defined by

m cos(θ) + n sin(θ) = s

where θ is the angle between the m-axis and the perpendicular from the origin to
the line, and s ≥ 0 is the length of the perpendicular. The Radon transform is
approximated for a N × N image x(m, n) as

R(s, θ) =
N−1∑

m=0

N−1∑

n=0

x(m, n)δ(m cos(θ) + n sin(θ) − s) (7.10)

wherem, n, s, and θ are all discrete variables. The value of the impulse function in the
summation is 1 only along a line specified by the parameters s and θ. Along this line,
the pixel values are summed. Given a set of values for θ, the summation is carried
out for lines, at each value of θ, with various s values. Remembering that Eq. (7.3) is
a line integral, a numerical integration constant has to be taken into account in using
Eq. (7.10). The reason is that increased number of samples, with the assumption that
the sampling interval is one, will give different summation values for approximating
the same integral.

In the rotated coordinate system (s, n′), Eq. (7.10) becomes

R(s, θ) =
∑

n′
x(s cos(θ) − n′ sin(θ), s sin(θ) + n′ cos(θ)) (7.11)

We can verify the coordinate transformations using Fig. 7.2, with coordinates (x, y)
replaced by (m, n), for some specific values. When n′ = 0, clearly, m = s cos(θ)
and n = s sin(θ). When θ = 0, clearly, m = s and n = n′. When θ = 90, clearly,
m = −n′ and n = s. After rotating x(m, n) by a specified angle, the sum is evaluated
along the columns of the rotated image. The Radon transform transforms an image
in the spatial domain (m, n) to the (s, θ) domain. In the DFT, a transform coefficient
(a + jb) corresponds to a complex sinusoid in the time domain. Similarly, a Radon
transform coefficient R(s, θ) corresponds to the mapping of an image along a line in
the spatial domain.

The back-projection (not the inverse Radon transform) of R(s, θ) is defined as

7.2 The Radon Transform 199

x̂(m, n) =
∑

θ

R(m cos(θ) + n sin(θ), θ) (7.12)

where x̂(m, n) is a discrete and blurred version of x(m, n). The reconstructed image
is found corresponding to each of the angles θ, and the resulting images are summed
to get the final image.

Example 7.3 Find the Radon transform of the 2 × 2 image

x(m, n) =
[
1 4
2 5

]

Let the origin (0, 0) be at the bottom-left corner. Reconstruct the image by back-
projection using the transform coefficients.
Solution
With θ = 0◦, the sum of the columns yields

R(0, 0◦) = 3 and R(1, 0◦) = 9

The average (DC) value of the image is 3. This value has to be subtracted from the
image to find the transform at other angles except at any one angle. Making the
average value 0, we get

x(m, n) =
[
1 − 3 4 − 3
2 − 3 5 − 3

]
=

[−2 1
−1 2

]

With θ = 90◦, the sum of the rows yields

R(0, 90◦) = 1 and R(1, 90◦) = −1

Let us reconstruct the image using Eq. (7.12). With m = 0, n = 0, and θ = 0◦, we
get x(0, 0) = R(0, 0◦) = 3. Proceeding similarly, we get the reconstructed image
corresponding to θ = 0◦ as

x0(m, n) =
[
3 9
3 9

]

The reconstructed image corresponding to θ = 90◦ is

x90(m, n) =
[−1 −1

1 1

]

The sum of the partially reconstructed images is the final image given by

x(m, n) = x0(m, n) + x90(m, n) =
[
3 9
3 9

]
+

[−1 −1
1 1

]
=

[
2 8
4 10

]

200 7 Image Reconstruction from Projections

which is the same as the input image multiplied by 2. A factor of 2 appears because
we ignored the numerical integration constant 2. For example, the area under the
samples {1, 2}, with width 1, is (1 + 2)/2 but not (1 + 2) = 3. All the 4 Radon
transform values have to be divided by 2. That is,

{R(0, 0◦) = 3

2
, R(1, 0◦) = 9

2
, R(0, 90◦) = 1

2
, R(1, 90◦) = −1

2
}

In practical applications, a set of projections R(s, θ) is provided by the sensors.
The problem is the inversion of the transform to reconstruct the image. The DFT is
used, in practice, to find the reconstructed image. Let us find the relation between
the Radon transform and the 2-D DFT spectrum of an image. The 2-D DFT X(k, l)
of a N × N image x(m, n) is defined as

X(k, l) =
N−1∑

m=0

N−1∑

n=0

x(m, n)e−j 2πN (mk+nl), k, l = 0, 1, . . . ,N − 1.

Let the frequency index l be 0. Then,

X(k, 0) =
N−1∑

m=0

{
N−1∑

n=0

x(m, n)}e−j 2πN (mk), k = 0, 1, . . . ,N − 1.

The summation inside the braces is R(s, 0◦). Therefore,

NR(s, 0◦) ↔ X(k, 0) and similarly NR(s, 90◦) ↔ X(0, l).

Example 7.4 Using the 2-D DFT of the image, find the Radon transform of the 2×2
image

x(m, n) =
[
1 4
2 5

]

Let the origin (0, 0) be at the bottom-left corner.

Solution
Let us compute the 2-D DFT of x(m, n) using the row–column method. The 1-D row
DFT of the image and the column DFT of this partial transform are the 2-DFT and
they are [

5 −3
7 −3

] [
2 0
12 −6

]

The 2-D DFT is shown in Fig. 7.5. The 1-D IDFT of the first row coefficients
{12,−6} is {3, 9}. These are the R(0, 0◦) and R(1, 0◦) coefficients computed in
Example (7.3) with θ = 0◦. The 1-D IDFT of the first column coefficients {0, 2} is
{1,−1}. These are the R(0, 90◦) and R(1, 90◦) coefficients computed in Example7.3
with θ = 90◦. Remember that the DC coefficient X(0, 0) can be included only in

7.2 The Radon Transform 201

Fig. 7.5 The 2-DFT
spectrum of the image
X(k, l)

0 1

0

1

12 −6

2 0

X(k,l)

↑ θ = 90°

→
θ = 0°

l

k

one computation. As we computed the 1-D 2-point IDFT using the 2 × 2 2-D DFT
coefficients, we have to divide these coefficients by 2 to get the true Radon transform
coefficients.

The conclusion from Example (7.4) is that the 1-D DFT of the Radon transform
R(s, θk) in a certain direction is the 2-D DFT X(s, θk) of the image in the same
direction with a scale factor.

Example 7.5 Using the 2-D DFT of the image, find the Radon transform of the 8×8
image

x(m, n) = sin

(
2π

8
n

)

shown in Fig. 7.6a.

Solution
The image is a sinusoidal surface composed of a stack of 8 sine waves along the m-
axis. Its DFT is located on the imaginary axis with nonzero values X(0, 1) = −j32
and X(0,−1) = j32, as shown in Fig. 7.6b in the center-zero format. The 8-point
1-D DFT spectrum with θ = 90◦ is

{0,−j32, 0, 0, 0, 0, 0, j32}

in the normal format. The IDFT of this spectrum

8√
2
{0, 1,√2, 1, 0,−1,−√

2,−1}

202 7 Image Reconstruction from Projections

0

4

0

4

−1

0

1

n
m

x(
m

,n
)

0 1

−1

0

1
−j32

j32

X(k,l)↑ θ = 90°

→
θ = 0°l

k

(a) (b)

Fig. 7.6 a A 8 × 8 sinusoidal surface, x(m, n) = sin(2π8 n), and b its 2-D DFT spectrum, X(k, l),
in the center-zero format and the angle of the coefficients

is the set of Radon transform coefficients

{R(0, 90◦),R(1, 90◦),R(2, 90◦),R(3, 90◦),R(−4, 90◦),R(−3, 90◦),R(−2, 90◦),R(−1, 90◦)}

multiplied by 8. Let us reconstruct the image using Eq. (7.12), which reduces to
x̂(m, n) = R(n).

In the examples presented so far, the DFT coefficients are located in the spectrum
at angles θ = 0◦ and θ = 90◦. In these cases, the Cartesian and polar coordinates
coincide. With other angles, the two systems of coordinates do not coincide and we
need to interpolate the spectral values to find the spectrum in the polar coordinates.
Remember that the input image and its spectrum are in Cartesian coordinates and we
need the spectrum in polar coordinates to find the Radon transform at various angles.
A polar plot is composed of radial lines and concentric circles. Interpolation was
introduced in rotating an image in Chap. 6, and in this chapter, we use interpolation
to find the spectral values in a polar coordinate spectrum from those in a Cartesian
coordinate spectrum.

7.2.3 The Fourier-Slice Theorem

In the examples presented thus far, we computed the 2-D DFT of the image, found
the DFT spectral values along the required angle, and computed the 1-D IDFT of
these values to find the Radon transform at that angle. This is called the Fourier-slice
theorem. As the Radon transform is defined as a continuous function, we have to use
the Fourier transform (FT) version of the Fourier analysis in derivations. The results

http://dx.doi.org/10.1007/978-981-10-6113-4_6

7.2 The Radon Transform 203

are approximated in the practical implementation using the DFT with interpolation.
The theorem states that the 1-D FT of the Radon transform R(s, θ) with respect to s
of an image f (x, y) is equal to the slice of the 2-D FT of the image at the same angle
θ. This theorem relates the 1-D FT of the projections of an image to that of its 2-D
FT and is the basis for the effective reconstruction of the image from its projections.
The 1-D FT of a projection R(s, θ) with respect to s, for a given θ, is given by

R(jω, θ) =
∫ ∞

−∞
R(s, θ)e−jωsds (7.13)

Substituting for R(s, θ), we get

R(jω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (s cos(θ) − n′ sin(θ), s sin(θ) + n′ cos(θ))e−jωs ds dn′

=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−jω(x cos(θ)+y sin(θ))dx dy

The last step is obtained using the coordinate transformation from (s, n′) to (x, y).
Letting ω1 = ω cos(θ) and ω2 = ω sin(θ), we get

R(jω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−j(ω1x+ω2y)dx dy = F(jω1, jω2) |ω1=ω cos(θ),ω2=ω sin(θ)

While the theory is perfect for continuous signals, due to the necessity for inter-
polation, the reconstructed images are only approximate. As it is always the case, in
discrete signal analysis, sampling has to be adequate so that the error in processing
the signal is within acceptable limits. In the Radon transform, increasing the number
of values of the parameter s increases the number of samples. Increasing the number
of values of the parameter θ increases the number of partially reconstructed images.
These two parameters should be suitably selected for the given application.

We can get the spectral values on to a square grid from the polar values by
interpolation, the 2-D IDFT of which yields the reconstructed image. However, it is
difficult to interpolate the spectral values in the polar form. Another problem for the
degradation of the reconstructed image is that the distance between sample points
increases as the frequency increases from the origin along the radial lines, as shown
in Fig. 7.7. Ideally, the spectrum should be expressed as a sum of wedges. The high-
frequency components are not adequately represented, which results in blurring of
the image. That is, the values of the high-frequency components must be boosted to
reduce blurring. Therefore, this method of reconstruction is not practically used.

Example 7.6 Using the 2-D DFT of the image, find the Radon transform of the 8×8
image

204 7 Image Reconstruction from Projections

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5
−4
−3
−2
−1

0
1
2
3
4
5

R(jω,θ)

ω
2

ω1

Fig. 7.7 The FT of the Radon transform in polar coordinates

0

4

0

4

−1

0

1

n
m

x(
m

,n
)

−2 −1 0 1 2
−2

−1

0

1

2

16

10.9807

16

10.9807

32

32

s=2

s=1

X(k,l)
R(jω,θ)

θ = 45°

→
θ = 0°l

k

(a) (b)

Fig. 7.8 a A 8 × 8 sinusoidal surface, x(m, n) = cos
(2π

8 (m + n)
)
, and b its 2-D DFT spectrum

(dots), X(k, l), in the center-zero format, and in the polar form, X(s, θ) (asterisks)

x(m, n) = cos

(
2π

8
(m + n)

)

shown in Fig. 7.8a.

Solution The image is a sinusoidal surface composed of a stack of a cosine waves
along an axis with a shift in the other direction. The values of x(m, n) are

7.2 The Radon Transform 205

x(m, n) = 1√
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2 1 0 −1 −√

2 −1 0 1
1 0 −1 −√

2 −1 0 1
√
2

0 −1 −√
2 −1 0 1

√
2 1

−1 −√
2 −1 0 1

√
2 1 0

−√
2 −1 0 1

√
2 1 0 −1

−1 0 1
√
2 1 0 −1 −√

2
0 1

√
2 1 0 −1 −√

2 −1
1

√
2 1 0 −1 −√

2 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The DFT of the image in the standard and center-zero formats, respectively, is

X(k, l) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 32 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X(k, l) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 32 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 32 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

By swapping the quadrants of the spectrum, we get one format from the other.
The DFT of the image has nonzero values only on the diagonal with θ = 45◦, as

shown in Fig. 7.8b, in the center-zero format. The nonzero values are X(1, 1) = 32
and X(−1,−1) = 32. From these coefficients, we have to find the corresponding
polar spectral coefficients by interpolation. Using the linear interpolation formula
Eq. (6.1), with s = 1, the interpolated value is 32/(

√
2
√
2) = 16. With s = 2, the

interpolated value is 32(2 − √
2)(2 − √

2) = 10.9807, as shown in Fig. 7.8b. With
a 8× 8 image in the center-zero format, the farthest coordinates from the center are
(4, 4). In polar coordinates, the magnitude of the farthest coordinates is

4 cos(45◦) + 4 sin(45◦) = 8√
2

= 5.6569

With rounding, the value becomes 6. Therefore, the required s values for recon-
struction are s = −6,−5, . . . , 5, 6. The 13-point 1-D DFT spectrum with θ = 45◦
is

{0, 16, 10.9807, 0, 0, 0, 0, 0, 0, 0, 0, 10.9807, 16}

in the normal format. The IDFT of this spectrum, in the center-zero format,

{−0.8942,−1.6389,−2.1374,−1.3435, 0.7993, 3.1392, 4.1509, 3.1392,

0.7993,−1.3435,−2.1374,−1.6389,−0.8942}

http://dx.doi.org/10.1007/978-981-10-6113-4_6

206 7 Image Reconstruction from Projections

is the set of Radon transform coefficients

R(s, 45◦), s = −6,−5, . . . , 5, 6

multiplied by 64/13. The Radon coefficients are

{−0.1816,−0.3329,−0.4342,−0.2729, 0.1624, 0.6377, 0.8431,

0.6377, 0.1624,−0.2729,−0.4342,−0.3329,−0.1816}

The values of the image can be reconstructed from the Radon transform coefficients
using Eq. (7.12).

7.2.4 Reconstruction with Filtered Back-projections

The polar coordinate system is themainstay of theRadon transformdue to its inherent
nature. Therefore, it is more appropriate to find the reconstructed image using the
2-D IFT in polar form. The 2-D IFT of the FT, F(jω1, jω2), of an image f (x, y) is
given by

f (x, y) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
F(jω1, jω2)e

j(ω1x+ω2y)dω1 dω2

Letting ω1 = ω cos(θ), ω2 = ω sin(θ), the differentials dω1 dω2 become ωdω dθ.
Then, using the polar coordinates and the Fourier-slice theorem, we get

f (x, y) = 1

4π2

∫ 2π

0

∫ ∞

0
F(jω cos(θ), jω sin(θ))ejω(x cos(θ)+y sin(θ))ωdω dθ

= 1

4π2

∫ 2π

0

∫ ∞

0
R(jω, θ)ejω(x cos(θ)+y sin(θ))ωdω dθ

= 1

4π2

∫ π

0

∫ ∞

−∞
R(jω, θ)ejω(x cos(θ)+y sin(θ))|ω|dω dθ

= 1

4π2

∫ π

0

(∫ ∞

−∞
|ω|R(jω, θ)ejωsds

) ∣
∣
s=(x cos(θ)+y sin(θ))

Note that R(jω, θ) is symmetric.
The inverse Radon transform consists of two steps. The projection R(s, θ) is filtered
first, and then, the back-projection is carried out. The filtering operation can be
implemented in the spatial domain or frequency domain.

From Example (7.6), the ramp-filtered 13-point 1-D DFT spectrum with θ = 45◦
is

{0, 16, 21.9614, 0, 0, 0, 0, 0, 0, 0, 0, 21.9614, 16}

7.2 The Radon Transform 207

0

4

0

4

−1

0

1

n

(a)

m

x(
m

,n
)

0

4

0

4

−1

0

1

n

(b)

m

x̂
(m

,n
)

Fig. 7.9 a An image and b its filtered and back-projected reconstruction

in the normal format. The IDFT of this spectrum, multiplied by the scaling constant
13/64 and in the center-zero format, is

{0.1222,−0.2915,−0.6910,−0.6061, 0.0407, 0.8326, 1.1863,

0.8326, 0.0407,−0.6061,−0.6910,−0.2915, 0.1222}

is the set of filtered Radon transform coefficients

R(s, 45◦), s = −6,−5, . . . , 5, 6

The pixel values of the image can be reconstructed from the Radon transform coef-
ficients using Eq. (7.12). Figures7.9a, b show, respectively, a 8 × 8 image and its
filtered back-projected reconstruction. We started with an image, found its Radon
transform, and then reconstructed the given image. This process involved interpola-
tion of the DFT coefficients. We went through this procedure in order to understand
the Radon transform. If the image is available, then there is no necessity to use the
Radon transform. In practice, as mentioned earlier, the Radon transform is given
from practical measurements and the real problem is the reconstruction of the image
from the given projections.

Figure7.10 shows the block diagram of the inverse Radon transform with the
filtering carried out in the s-domain. The Radon transform R(s, θ) in each direction
is convolved with the impulse response of the filter and then back-projected.

R(s, θ) ∗h(n) R(s, θ)∗h(n) Back-projection f(x,y)

Fig. 7.10 The inverse Radon transform in the s-domain

208 7 Image Reconstruction from Projections

R(jω, θ)
h(jω)

IFT Back-projection f(x, y)

Fig. 7.11 The inverse Radon transform in the frequency domain

Figure7.11 shows the block diagram of the inverse Radon transform with the
filtering carried out in the frequency domain. As convolution becomes multiplication
in the frequency domain, filtering is carried out by multiplying the FT of R(s, θ),
R(jω, θ), with the frequency response of the filter. The IFT of the product is the
filtered Radon transform. Then, back-projection reconstructs the image.

Figure7.12a–d shows the filtered reconstruction of a cylinder using Radon trans-
form in 4, 8, 16, and 32 directions, respectively. As the number of directions is
increased, the reconstructed image becomes better. The process is very similar to the
reconstruction of a waveform in Fourier analysis with more and more components.
Remember the reconstruction of the square wave. In the Fourier analysis or Radon
transform, the desired object is created by the interference from the components.
At some part of the object, the interference is constructive and it is destructive at
other parts, such that the object is reconstructed better and better with increased
number of transform components. As in Fourier analysis, while infinite components
are required in theory, a finite number of components are used for reconstruction so
that the quality of the reconstructed image is adequate.

A procedure for computing the Radon transform is as follows.

1. Compute the 2-D DFT of the image.
2. Interpolate the spectral values to get the spectrum on polar coordinates, for all

angles of interest.
3. Compute the 1-D IDFT of the spectral values at all angles to get the Radon

transform.

A procedure for computing the inverse Radon transform is as follows.

1. Compute the 1-D DFT of each of the projections of the image.
2. Multiply each DFT by the ramp filter. Take into account the DC value of the

spectrum.
3. Compute the 1-D IDFT of the spectral values at all angles to get the filtered Radon

transform.
4. Obtain the filtered back-projected image using the back-projection definition,

Eq. (7.12), for each angle of projection.
5. Sum all the filtered back-projected images to reconstruct the image.

While there are other procedures for computing the Radon transform and its
inverse, the procedure given, using the DFT, is conceptually simpler to understand.
The alternative of using a windowed ramp filter reduces the ringing in the recon-
structed image, but results in blurring. While we computed the Radon transform

7.2 The Radon Transform 209

(a) (b)

(c) (d)

Fig. 7.12 (a-d) Reconstruction of a cylinder using Radon transform in 4, 8, 16, and 32 directions,
respectively

with 0, 45, and 90◦ for simplicity in the examples, typically, angles vary from 0 to
179 ◦ with an increment of 1. The range of the s values is proportional to the size of
image.

7.3 Hough Transform

In the normal form, a line is represented in the (s, θ) domain by a single point. In the
Hough transform, this representation is used to detect lines in the image. The more
the number of points in the image with a certain (s, θ), it is more likely that a line

210 7 Image Reconstruction from Projections

characterized by the vector lies in the image. Therefore, it is finding the number of
occurrences of all possible (s, θ) vectors and applying a threshold. This transform is
more efficient to detect a line than by template matching. Further, its performance
is better in the presence of noise and when a line is partially occluded. The Hough
transform is mostly used to detect lines in images, although it can be extended to
find curves of a specified shape.

Let the input be a N × N binary image. Let s(k) and θ(k) be the arrays containing
the discretized values of the parameters s and θ of the lines in the normal form. The
distance parameter s varies from 0 to

√
((N − 1)2 + (N − 1)2). The angle parameter

θ varies from 0 to π. The steps of the Hough transform algorithm are as follows:

1. Select a set of points for the parameters (s, θ).
2. For each value of θ, compute the corresponding value of s using Eq. (7.2) for all

nonzero pixels.
3. Create an accumulator matrix which accumulates the number of occurrences of

each pair of (s, θ), as all the pixels with value 1 in the input image are analyzed.
4. Find the accumulator values those are greater than a given threshold.

The output is a set of lines characterized by the thresholded values of the accu-
mulator matrix.

Example 7.7 Detect the line in the 4 × 4 binary image x(m, n). The origin is at the
top-left corner.

x(m, n) =

⎡

⎢
⎢
⎣

0 0 0 0

1 1 1 1
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

Solution
Variable s varies from 0 to

√
32 + 32, and the maximum distance from the origin is

s = √
18 = 4.2426. Let the discrete values of s be s = {0, 1, 2, 3, 4}. Let the discrete

values of θ be θ = {0, 45, 90, 135} degrees. These values are to be set to suit the
accuracy required. Initialize a 5× 4 acc matrix to hold the number of votes for each
parameter set. Compute

m cos(θ(k)) + n sin(θ(k)) = s

for all nonzero pixels in the image. Find s(k) that is nearest to s. Incrementacc(s, θ)by
one for each occurrence. The set of parameters (s, θ) corresponding to the selected
vote counts describe the lines. Each nonzero pixel is mapped into the following
parameter space.

7.3 Hough Transform 211

(s, θ) =

⎡

⎢
⎢
⎢
⎢
⎣

(0, 0) (0, 45) (0, 90) (0, 135)
(1, 0) (1, 45) (1, 90) (1, 135)
(2, 0) (2, 45) (2, 90) (2, 135)
(3, 0) (3, 45) (3, 90) (3, 135)
(4, 0) (4, 45) (4, 90) (4, 135)

⎤

⎥
⎥
⎥
⎥
⎦

The second row of the image only has nonzero pixels. For pixel x(1, 0), we get the
s values as

s = 1 cos(0) + 0 sin(0) = 1

s = 1 cos(45) + 0 sin(45) = 1√
2

≈ 1

s = 1 cos(90) + 0 sin(90) = 0

s = 1 cos(135) + 0 sin(135) = − 1√
2

Note that the negative value s = −1/
√
2 is ignored. For pixel x(1, 1), we get the s

values as

s = 1 cos(0) + 1 sin(0) = 1

s = 1 cos(45) + 1 sin(45) = √
2 ≈ 1

s = 1 cos(90) + 1 sin(90) = 1

s = 1 cos(135) + 1 sin(135) = 0

For pixel x(1, 2), we get the s values as

s = 1 cos(0) + 2 sin(0) = 1

s = 1 cos(45) + 2 sin(45) = 3√
2

≈ 2

s = 1 cos(90) + 2 sin(90) = 2

s = 1 cos(135) + 2 sin(135) = 1√
2

≈ 1

For pixel x(1, 3), we get the s values as

s = 1 cos(0) + 3 sin(0) = 1

s = 1 cos(45) + 3 sin(45) = 2
√
2 ≈ 3

s = 1 cos(90) + 3 sin(90) = 3

s = 1 cos(135) + 3 sin(135) = √
2 ≈ 1

The values of the acc matrix, after scanning all the pixels, are

212 7 Image Reconstruction from Projections

acc(m, n) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1
4 2 1 2
0 1 1 0
0 1 1 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

The values in the acc matrix are subjected to a suitable threshold. Let the threshold
be 3. Then, the entry acc(1, 0) = 4 in the acc matrix indicates a line at distance 1
from the top-left corner (origin) of the image at angle 0+90 = 90◦ from the m-axis.
That is a horizontal line in the second row of the image.

An image and the its acc matrix are

x(m, n) =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ acc(m, n) =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 2
1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Let the threshold be 2. Then, the entry acc(0, 3) = 2 in the acc matrix indicates a line
at distance 0 from the top-left corner (origin) of the image at angle 135+ 90 = 225◦
from the m-axis. That is a line along the main diagonal of the image. An image and
the its acc matrix are

x(m, n) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦ acc(m, n) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 1
1 0 1 0
1 0 1 0
0 2 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Let the threshold be 2. Then, the entry acc(4, 1) = 2 in the acc matrix indicates
a line at distance 4 from the top-left corner (origin) of the image at angle 45 + 90
= 135◦ from the m-axis. That is a line near the right bottom of the image. The end
points of a line and its exact position can be found by having another accumulator
that keeps track of the coordinates of the pixels for each entry in the acc matrix.

Typical applications of this transform include feature extraction, image recogni-
tion, and compression.This transformcan also be extended to detect curves.However,
the computational complexity also increases. Figure7.13a shows a 256 × 256 gray
level image.

The binary image showing the edge map is shown in Fig. 7.13b. The lines are
1-pixel wide. For a clear view, we have shown the dilated lines in (b). There are 4
horizontal and 4 vertical lines in the image. Using values s = 0 to s = 361 and
θ = 0, 45, 90, 135 degrees, a 362 × 4 accumulator is used to collect the votes.
Figure7.13c shows the number of votes versus distance s for θ = 0◦. It is obvious
from the figure that width of the lines is about 60 and 120 pixels. The lines occur

7.3 Hough Transform 213

(a)

0 50 100 150 200 250

0

50

100

150

200

250

(b)

0 50 100 150 200 250

0

50

100

150

200

250

33 94 154 214 360
0

60

120

vo
te

s

s

(c)

θ = 0°

33 94 154 214
0

45

90

135
θ

s

(d)

Fig. 7.13 aA 256×256 gray level image; b the edgemap image; c number of votes versus distance
s for θ = 0◦; d the Hough transform of the image

at s = 33, 94, 154, 214. For θ = 90◦, we get a similar statistics accounting for all
the 8 lines. With a threshold 20, the (s, θ) vectors of the detected lines are shown in
Fig. 7.13d.

7.4 Summary

• In the Radon transform, an image is represented by its mappings with respect to
a set of lines at various angles represented by polar coordinates. The values at
various polar coordinates are the transform coefficients.

• When an image is represented in Radon transform form, we are able to form the
image of the interior of an object with out intrusion. In its implementation, we use
the 1-D DFT and interpolation operations.

• TheRadon transformuses the normal formof a line. In this form, a line is expressed
in terms of its perpendicular distance, s, from the line to the origin and the angle,
θ, subtended between the perpendicular line and the x-axis.

214 7 Image Reconstruction from Projections

• The Radon transform transforms an image in the spatial domain (m, n) to the (s, θ)
domain.

• The reconstructed image is found corresponding to each of the angles θ, and the
resulting images are summed to get the final image, called the back-projection.

• In practical applications, a set of projections R(s, θ) is provided by the sensors.
The problem is the inversion of the transform to reconstruct the image. The direct
or indirect convolution and back-projection are used, in practice, to find the inverse
Radon transform.

• Projections are obtained, for example, by the absorption of the X-ray in passing
through the object from the source to the detector. The source and the detector
assembly are rotated around the object to get the projections at a finite set of
angles.

• Fourier-slice theorem states that the 1-D FT of the Radon transform R(s, θ) with
respect to s of an image f (x, y) is equal to the slice of the 2-D FT of the image at
the same angle θ. This theorem relates the 1-D FT of the projections of an image
to that of its 2-D FT and is the basis for the effective reconstruction of the image
from its projections.

• Filtered back-projected image using the inverse Radon transform definition, for
each angle of projection, is computed. Sumof all the filtered back-projected images
yields the image of the object.

• Computerized axial tomography and nondestructive testing of mechanical objects
are typical applications of the Radon transform.

• The Hough transform is mostly used to detect lines in images. This transform uses
the normal form a line.

Exercises

7.1 Find the equation of the straight line, in the normal form, located at a distance
s from the origin and the perpendicular to it makes an angle of θ degrees with the
x-axis.
(i) s = 3, θ = 0◦.
(ii) s = 1, θ = 45◦.
* (iii) s = 2, θ = −60◦.
(iv) s = 5, θ = 315◦.
(v) s = 0, θ = 30◦.

7.2 Find the Radon transform of a circular cylinder with radius 6 and height 3 located
at the origin.
The cylinder is characterized by

f (x, y) =
{
3 for x2 + y2 ≤ 62

0 otherwise

From the transform obtained, and using the Radon transform properties, find the
Radon transform of

Exercises 215

(i)

f (x, y) =
{
3 forx2 + y2 ≤ 32

0 otherwise

* (ii)

f (x, y) =
{
3 for(x − 1)2 + (y − 2)2 ≤ 62

0 otherwise

(iii)

f (x, y) =
{
3 for (3x)2 + (3y)2 ≤ 62

0 otherwise

7.3 Find the Radon transform of the shifted and scaled impulse.
(i) δ(x, y)
(ii) δ(x − 4, y − 4)
* (iii) δ(x − 4, y + 4)
(iv) δ(x − 1, y)
(v) δ(x, y − 1)

7.4 Find the Radon transform of the line f (x, y) characterized by the given equation.
Using the result, find the transforms of f (ax, ay) and f (x−p, y−q) from the properties
of the Radon transform. Find the equation of the lines f (ax, ay) and f (x − p, y − q)
and determine the Radon transform directly. Verify that the results are the same as
those obtained using the properties.
(i)

f (x, y) = 3x + 2y − 6 = 0, x is limited from 0 to 2, a = 2, p = 2, q = 3

(ii)

f (x, y) = 4x + 2y − 8 = 0, x is limited from 0 to 2, a = 3, p = 3, q = 2

(iii)

f (x, y) = x + y − 1 = 0, x is limited from 0 to 1, a = −3, p = −3, q = 2

7.5 Find the Radon transform R(s, θ) of the image x(m, n) and reconstruct the image
from its transform by the back-projection method, using the DFT and the IDFT.
(i)

x(m, n) =
[
1 2
2 3

]

(ii)

x(m, n) =
[
3 1
2 0

]

216 7 Image Reconstruction from Projections

(iii)

x(m, n) =
[
1 1
1 1

]

(iv)

x(m, n) =
[
3 4
1 2

]

(v)

x(m, n) =
[
4 3
3 2

]

7.6 Detect the lines in the 4 × 4 binary image x(m, n). Choose a suitable threshold.
* (i)

x(m, n) =

⎡

⎢
⎢
⎣

0 0 1 0
1 0 1 0
0 0 1 0
0 0 1 0

⎤

⎥
⎥
⎦

(ii)

x(m, n) =

⎡

⎢
⎢
⎣

0 0 0 0
1 1 1 1
0 0 1 0
0 1 0 0

⎤

⎥
⎥
⎦

(iii)

x(m, n) =

⎡

⎢
⎢
⎣

0 0 0 0
1 1 1 1
0 0 0 1
1 0 0 1

⎤

⎥
⎥
⎦

(iv)

x(m, n) =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 1
0 0 1 1
0 0 0 0

⎤

⎥
⎥
⎦

(v)

x(m, n) =

⎡

⎢
⎢
⎣

0 0 0 0
1 1 1 1
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦

Chapter 8
Morphological Image Processing

Abstract In processing the color and grayscale images, which occur mostly, their
binary version is often used. Inmorphological processing of images, pixels are added
or removed from the images. The structure and shape of the objects are analyzed
so that they can be identified. The basic operations in this processing are binary
convolution and correlation, that is based on logical operations rather than arithmetic
operations. Dilation and erosion are the basic operations, and rest of the operations
and algorithms are based on these operations. Morphological processing is also
extended to gray-level images using the minimum and maximum operators.

After segmentation of an image, the shape of its objects has to be analyzed. Mor-
phology is a study of form and structure. In image processing, it is used to analyze
and modify geometric properties (shape) of an image by probing it with different
forms. The fitness of these forms, called structuring elements, leads to quantitative
measures those are useful in computer vision. The process is similar to linear con-
volution and correlation, except that logical operations AND (denoted by &), OR
(denoted by |), and NOT (denoted by ˜) are used (a logical neighborhood operation)
instead of arithmetic operations. Pixels are added to an object or deleted from it.
Border extension has to be defined, and windows (structuring elements) may have
to be rotated by 180◦. In linear convolution, the output is a linear combination of the
pixels in the neighborhood. In median filtering, we use sorting and selection to find
the output. In morphological image processing with binary images, we use the log-
ical version of the convolution operation. In the convolution operation, with masks
made of different types of impulse responses, we are able to process signals with
different filters such as low pass, high pass. In a similar way, with different types
of structuring elements (masks) and carrying out convolution with logical operators,
we are able to perform various types of analysis of objects. While its primary use is
with binary images, morphology is also extended to grayscale images.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_8

217

218 8 Morphological Image Processing

8.1 Binary Morphological Operations

Dilation and erosion are the two basic operations in morphology. Various morpho-
logical operations are carried out by combining these two operations in a suitable
way. Dilation expands objects in an image by adding pixels at the borders, while
erosion removes pixels at the borders and shrinks the objects.

8.1.1 Dilation

The 1-D dilation operation is shown in Fig. 8.1a. The input sequence is

{x(0) = 1, x(1) = 1, x(2) = 1, x(3) = 0, x(4) = 0, x(5) = 1}

The window or mask or structuring element (similar to the impulse response in
convolution) is

{h(−1) = 1, h(0) = 1, h(1) = 0}

The origin of the structuring element is shown in boldface. This origin must overlap
the input pixel being processed. The time-reversed structuring element is

{h(1) = 0, h(0) = 1, h(−1) = 1}

The required pixels at the borders are assumed to be zero for dilation operation, as
shown in the figure in dashed boxes. This assumption is used to avoid the border
effect. The characterizing equation of the dilation operation is

1 1 0h(n)

h(−k)
h(1 − k)
h(2 − k)
h(3 − k)
h(4 − k)
h(5 − k)

0 1 1 1 0 0 1 0x(n)

0 1 1
0 1 1

0 1 1
0 1 1

0 1 1
0 1 1

y(n) = x(n) ⊕ h(n), n = 0, 1, 2, 3, 4, 5
1 1 1 0 1 1

1 1 0h(n)

h(k)
h(k − 1)
h(k − 2)
h(k − 3)
h(k − 4)
h(k − 5)

1 1 1 1 0 0 1 1x(n)

1 1 0
1 1 0

1 1 0
1 1 0

1 1 0
1 1 0

y(n) = x(n) h(n), n = 0, 1, 2, 3, 4, 5
1 1 1 0 0 0

(a) (b)

Fig. 8.1 a Dilation and b erosion

8.1 Binary Morphological Operations 219

y(n) = (h(1) & x(n − 1)) | (h(0) & x(n)) | (h(−1) & x(n + 1)), n = 0, 1, . . . 5,

which is similar to the linear convolution operation with the arithmetic operations
replaced by logical operations. In finding the output for each pixel, the neighborhood
is defined by the 1’s of the structuring element. The time-reversed structuring element
is shifted to various positions and the output, with the same number of elements as
that of the input, is found. For the example,

y(0) = (0 & 0) | (1 & 1) | (1 & 1) = 1

If there is at least one pair of 1’s in the image and the mask at the corresponding
positions, then the output is 1. Otherwise, the output is zero. The result is that the
object is dilated or expanded. Small holes are filled, and the border becomes smoother.

The dilation of the binary image x(m, n) and the window or mask h(m, n) is
defined as

y(m, n) = |k |l (h(k, l) & x(m − k, n − l)) = x(m, n) ⊕ h(m, n), (∀k, l)h(k, l) = 1
(8.1)

where m and n vary over the dimensions of the image, and k and l vary over the
dimensions of the structuring element. Pixels corresponding to h(k, l) = 1 contribute
to the output. A 3 × 3 window of an image is

⎡
⎣
x(m − 1, n − 1) x(m − 1, n) x(m − 1, n + 1)
x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n − 1) x(m + 1, n) x(m + 1, n + 1)

⎤
⎦

and a 3 × 3 mask and its 180◦ rotated version are

h(m, n) =
⎡
⎣
h(−1, −1) h(−1, 0) h(−1, 1)
h(0, −1) h(0, 0) h(0, 1)
h(1, −1) h(1, 0) h(1, 1)

⎤
⎦ h(−m,−n) =

⎡
⎣
h(1, 1) h(1, 0) h(1, −1)
h(0, 1) h(0, 0) h(0, −1)
h(−1, 1) h(−1, 0) h(−1, −1)

⎤
⎦

Consider the 8 × 8 input image

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

the 3 × 3 structuring element and its 180◦ rotated version

220 8 Morphological Image Processing

h(m, n) =
⎡
⎣
1 1 0
0 1 0
1 0 0

⎤
⎦ h(−m,−n) =

⎡
⎣
0 0 1
0 1 0
0 1 1

⎤
⎦

The origin of the structuring element is shown in boldface. Assuming that the border
pixels are zero-padded, the output of the dilation operation, obtained by sliding
h(−m,−n) over x(m, n), is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0
0 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The expression for the output is

y(m, n) = (x(m − 1, n + 1) | x(m, n) | x(m + 1, n) | x(m + 1, n + 1)) = x(m, n) ⊕ h(m, n)

Note that it is possible to decompose the 2-D structuring elements into two 1-D
elements and obtain faster execution time, as in the case of 2-D convolution.

Figure8.2a shows a 256 × 256 binary image and its dilated versions (b–d). The
structuring elements used are

h4(m, n) =
⎡
⎣
0 1 0
1 0 1
0 1 0

⎤
⎦ h8(m, n) =

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦

There are 8889 pixels with value 1, and the rest of the 65536 pixels are zero-valued
in the image. The dilated output with h4(m, n) is shown in Fig. 8.2b. The number
of pixels with value 1 has increased to 9713. After 5 iterations of dilation with the
same mask, the number of pixels with value 1 has increased to 12945, as shown in
Fig. 8.2c. After 5 iterations of dilation with h8(m, n), the number of pixels with value
1 has increased to 13965, as shown in Fig. 8.2d.

8.1.2 Erosion

The 1-D erosion operation is shown in Fig. 8.1b. The origin of the structuring element
is shown in boldface. Note that there is no time-reversal required for erosion. The
general expression defining 1-D erosion is given by

8.1 Binary Morphological Operations 221

(a) (b)

(c) (d)

Fig. 8.2 a A 256× 256 binary image; b the dilated output with h4(m, n); c the dilated output with
h4(m, n) after 5 iterations; d the dilated output with h8(m, n) after 5 iterations

y(n) = (h(−1) & x(n − 1)) & (h(0) & x(n)) & (h(1) & x(n + 1)), n = 0, 1, . . . 5

Only AND operations are used in the computation of erosion. For a specific h(k), the
terms involving with h(k) = 1 only must be retained. Then, the expression reduces
to ANDing of all the corresponding pixels in the image. The required pixels at the
borders are assumed to be 1 for erosion operation, which is similar to the linear
correlation operation with the arithmetic operations replaced by logical operations.
In finding the output for each pixel, the neighborhood is defined by the 1’s of the
structuring element. The structuring element is shifted to various positions and the

222 8 Morphological Image Processing

output, with the same number of elements as that of the input, is found. For the
example,

y(0) = (1 & 1) & (1 & 1) = (1 & 1) = 1

If and only if all the 1’s in the structuring element match up with those of the image
at the corresponding positions, then the output is 1. Otherwise, the output is zero.
The result is that the object is eroded or shrank. Objects may get disconnected or
disappear.

The erosion of the binary image x(m, n) and the structuring element h(m, n) is
defined as

y(m, n) = &k &l (h(k, l) & x(m + k, n + l)) = x(m, n) � h(m, n), (∀k, l)h(k, l) = 1
(8.2)

For a specific h(k, l), the terms with h(k, l) = 1 only must be retained. Then, the
expression reduces to ANDing of all the corresponding pixels in the image. The
output of the erosion operation, for the same input x(m, n) and structuring element
h(m, n) used for dilation, is obtained using

y(m, n) = (x(m + 1, n − 1) & x(m, n) & x(m − 1, n) & x(m − 1, n − 1)) = x(m, n) � h(m, n)

The structuring element, input, and output are, respectively,

⎡
⎣
1 1 0
0 1 0
1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The dilation and erosion operations are shift-invariant and are not inverses of each
other. Erosion is the complement of the dilation of the complement of the input with
a 180◦ rotated mask. Dilation is the complement of the erosion of the complement
of the input with a 180◦ rotated mask. That is,

x(m, n) � h(m, n) = z̃(m, n), z(m, n) = x̃(m, n) ⊕ h(−m,−n)

x(m, n) ⊕ h(m, n) = z̃(m, n), z(m, n) = x̃(m, n) � h(−m,−n)

Figure8.3a shows a 256 × 256 binary image and its eroded versions (b–d). The
structuring elements used are the same as that for dilation, h4(m, n) and h8(m, n).
There are 8889 pixels with value 1, and the rest of the 65536 pixels are zero-valued
in the image. The eroded output with h4(m, n) is shown in Fig. 8.3b. The number
of pixels with value 1 has decreased to 8077. After 5 iterations of erosion with the
same mask, the number of pixels with value 1 has decreased to 5080, as shown in

8.1 Binary Morphological Operations 223

(c) (d)

(a) (b)

Fig. 8.3 a A 256× 256 binary image; b the eroded output with h4(m, n); c the eroded output with
h4(m, n) after 5 iterations; d the eroded output with h8(m, n) after 5 iterations

Fig. 8.3c. After 5 iterations of erosion with h8(m, n), the number of pixels with value
1 has decreased to 4268, as shown in Fig. 8.3d. The four components of the image
are separated.

8.1.3 Opening and Closing

In these operations, the input image is subjected to both dilation and erosion. The
difference is the order of these operations. The opening operation opens small gaps
between touching objects in an image while the closing operation closes small gaps
in an object.

224 8 Morphological Image Processing

Erode

Dilate

x(m,n)

h(m,n) y(m,n)
= x(m,n) ◦ h(m,n)
= (x(m,n) h(m,n)) ⊕ h(m,n)

Fig. 8.4 Block diagram of the opening operation

Opening

Opening operation removes small regions of 1s. Dilation preceded by erosion is
called the opening operation, defined as

y(m, n) = x(m, n) ◦ h(m, n) = (x(m, n) � h(m, n)) ⊕ h(m, n)

The block diagram of the opening operation is shown in Fig. 8.4. The advantage
of this operation is that while small objects are removed, the general shrinking of
the object is avoided. Further, the object boundaries become smoother. The spatial
content is also reduced.

The input image and the structuring element are the same as those used for dilation
and erosion examples. The pixels on the border of the object are shown in boldface.

⎡
⎣
1 1 0
0 1 0
1 0 0

⎤
⎦

⎡
⎣
0 0 1
0 1 0
0 1 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After erosion and, then, dilation yields,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• All the 1s in the object those are completely covered by the structuring element
are preserved.

• All the 1s those can be reached by the structuring element, when it is placed at the
1s obtained in the erosion operation are also preserved.

8.1 Binary Morphological Operations 225

This operation smooths the contour of an object by discarding pixels in the narrow
portions. The erosion operation eliminates small objects, in addition to shrinking. The
following dilation operation grows the objects back, but not the eliminated portions.

Figure8.5a shows a 256 × 256 binary image of a grill. Structuring elements can
be of arbitrary shapes and sizes to suit the purpose. Figure8.5b shows the image
subjected to opening operation by a structuring element, which is a straight line
segment at 60◦ given by the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The portions of the image those fit in the structuring element are retained, and the rest
are discarded. Figure8.5c shows the output of the erosion operation alone. Figure8.5d
shows the image subjected to opening operation by a structuring element, which is
a vertical line. Figure8.5e shows the image subjected to opening operation by a
structuring element, which is a disk given by the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 8.5f shows the image subjected to opening operation by a structuring element,
which is a larger disk. The small disks in Fig. 9.5e have disappeared, and only the
disk corresponding to the lock is retained.

Closing

Closing operation removes small regions of 0s. Dilation followed by erosion is called
the closing operation, defined as

y(m, n) = x(m, n) • h(m, n) = (x(m, n) ⊕ h(m, n)) � h(m, n)

http://dx.doi.org/10.1007/978-981-10-6113-4_9

226 8 Morphological Image Processing

(a) (b)

(c) (d)

(e) (f)

Fig. 8.5 a A 256 × 256 binary image; b the output of the opening operation by a structuring
element, which is a straight line at 60◦; c the output of the erosion operation alone; d the output
of the opening operation by a structuring element, which is a vertical line; The outputs, e and f, by
disk-shaped structuring elements

8.1 Binary Morphological Operations 227

Dilate

Erode

x(m,n)

h(m,n) y(m,n)
= x(m,n) • h(m,n)
= (x(m,n) ⊕ h(m,n)) h(m,n)

Fig. 8.6 Block diagram of the closing operation

The block diagram of the closing operation is shown in Fig. 8.6. The input image and
the structuring element are the same as those used for dilation and erosion examples.

⎡
⎣
1 1 0
0 1 0
1 0 0

⎤
⎦

⎡
⎣
0 0 1
0 1 0
0 1 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After dilation and, then, erosion yields,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0
0 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This operation can be expressed, in terms of opening, as

x(m, n) • h(m, n) = z̃(m, n), z(m, n) = x̃(m, n) ◦ h(−m,−n)

General expansion of the object is avoided. The spatial content is increased. The
dilation operation changes the values of some pixels from 0 to 1 in narrow portions,
in addition to expansion. The following erosion operation shrinks the object back,
but leaves the 1s in the narrow portions. Further applications of opening and closing
operations by the same structuring element have no effect. They are idempotent.

Figure8.7a shows a 256 × 256 image of a set of flowers. Figure8.7b, c show the
image subjected to closing operation by structuring elements, which are 11×11 and
13 × 13 squares, respectively. The effect of closing is the tendency to fuse objects
together by closing the gaps between them. A larger structuring element produces

228 8 Morphological Image Processing

(a) (b)

(c) (d)

(e) (f)

Fig. 8.7 a A 256 × 256 binary image of a set of flowers; the output of the closing operation by a
structuring element which is b a 11 × 11 square; c a 13 × 13 square; d a 25 × 25 disk e a 29 × 29
disk; e a 33 × 33 disk

8.1 Binary Morphological Operations 229

more fusion. Figure8.7d, e, f show the image subjected to closing operation by
structuring elements, which are 25 × 25, 29 × 29 and 33 × 33 disks, respectively.
The borders of the object clearly show the nature of the square and disk structuring
elements.

8.1.4 Hit-and-Miss Transformation

The erosion operation indicates the locations in an object wherever there is a match
between object pixels and those of the structuring element, with no reference to the
background of the image. The hit-and-miss transformation is used to detect specific
objects in an image using a combination of two operators, in which the background of
the image is also taken into account. This requires erosion with two nonoverlapping
structuring elements. Let the input image be x(m, n) and the structuring elements be
h(m, n) = {hh(m, n), hms(m, n)}. This transformation is given by

x(m, n) ©� h(m, n) = (x(m, n) � hh(m, n))&(x̃(m, n) � hms(m, n))

where x̃(m, n) is the logical complement of x(m, n). This expression is a logicalAND
of the erosion of x(m, n) with hh(m, n) and the erosion of x̃(m, n) with hms(m, n).
Figure8.8 shows the block diagram of the hit-and-miss transformation. Note that
there should be no overlap of elements of hh(m, n) and hms(m, n). The output is
a 1, when hh(m, n) matches the corresponding elements in x(m, n) and hms(m, n)

matches the corresponding elements in x̃(m, n). The occurrence of a shape can be
detected. Let

hh(m, n) =
⎡
⎣
1 1 0
1 0 0
0 0 0

⎤
⎦ hms(m, n) =

⎡
⎣
0 0 0
0 0 1
0 1 1

⎤
⎦

Erode

&

hh(m,n)

hms(m,n)

x(m,n) y(m,n)
= x(m,n) (m,n)
= (x(m,n) hh(m,n))
&(x̃(m,n) hms(m,n))

ErodeC

Fig. 8.8 Block diagram of the hit-and-miss transformation

230 8 Morphological Image Processing

The input x(m, n) and its logical complement x̃(m, n) are

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̃(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1
1 1 0 1 0 0 1 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 1 1
1 1 1 1 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output of (x(m, n) � hh(m, n)) = oh(m, n) checks only the hit pattern, and its
output includesmiss patterns also. The output of (x̃(m, n)�hms(m, n)) = oms(m, n)

checks only the miss pattern and its output includes hit patterns also.

oh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

oms =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 1 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output, y(m, n) = x(m, n) ©� h(m, n), is the logical AND of oh and oms.

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The border extension for erosion is assumed to be padding with 1s.
Figure8.9a shows a 256× 256 binary image with 3 squares. It has 8 corners. Let

us use the hit-and-miss transformation to find those corners. The 4 hit structuring
elements hh(m, n) are

⎡
⎣
0 1 0
0 1 1
0 0 0

⎤
⎦

⎡
⎣
0 1 0
1 1 0
0 0 0

⎤
⎦

⎡
⎣
0 0 0
1 1 0
0 1 0

⎤
⎦

⎡
⎣
0 0 0
0 1 1
0 1 0

⎤
⎦

8.1 Binary Morphological Operations 231

(a) (b)

Fig. 8.9 a A 256 × 256 binary image; b the locations of its corners

The corresponding 4 miss structuring elements hms(m, n) are

⎡
⎣
0 0 0
1 0 0
1 1 0

⎤
⎦

⎡
⎣
0 0 0
0 0 1
0 1 1

⎤
⎦

⎡
⎣
0 1 1
0 0 1
0 0 0

⎤
⎦

⎡
⎣
1 1 0
1 0 0
0 0 0

⎤
⎦

We apply the transformation using the 4 pairs of structuring elements, and the logical
OR of the 4 outputs yields the exact locations of the corners shown in Fig. 8.9b. For
easy visibility, we dilated the output (which is a single pixel at the location of each
corner) so that the corner locations are marked by big disks.

8.1.5 Morphological Filtering

Let the image x(m, n) be corrupted by impulse noise, the occurrence of random
black and white pixels. The structuring element is 3 × 3 cross.

h(m, n) =
⎡
⎣
0 1 0
1 1 1
0 1 0

⎤
⎦

Then, x(m, n) � h(m, n) will reduce the noise due to white pixels in black areas but
also enlarges the black pixels in white areas. We can reduce this effect by dilating
twice.

((x(m, n) � h(m, n)) ⊕ h(m, n)) ⊕ h(m, n)

232 8 Morphological Image Processing

(a) (b)

(c) (d)

(e) (f)

Fig. 8.10 a A 256 × 256 binary image; b its noisy version; c the image in b after erosion; d the
image in c after dilation; e the image in d after dilation; f the image in e after erosion

8.1 Binary Morphological Operations 233

Now, the noise is reduced but the black areas got shrunk. To restore the image
properly, another erosion is required.

(((x(m, n) � h(m, n)) ⊕ h(m, n)) ⊕ h(m, n)) � h(m, n)

That is opening followed by closing

y = (x(m, n) ◦ h(m, n)) • h(m, n)

Figure8.10a, b show a 256 × 256 binary image and its noisy version, respectively.
The image in (b) after erosion, with enlarged black pixels, is shown in (c). The noise
is reduced after two dilations of (c), as shown in (d) and (e). The filtered image,
shown in (f), is obtained after the erosion of the image in (e). While the noise is
effectively removed, some undesirable breaks in the image have appeared since no
connectivity condition was imposed.

8.2 Binary Morphological Algorithms

8.2.1 Thinning

In thinning, an object without holes is reduced to a minimally connected stroke such
that it is located equidistant from its nearest outer boundaries. An object with a hole
is reduced to a minimally connected ring in the center of the object. The object is
reduced to 1-pixel width without breaking and shortening.

The 3 × 3 neighborhood pixels of pixel p are

⎡
⎣

w(0, 0) w(0, 1) w(0, 2)
w(1, 0) p w(1, 2)
w(2, 0) w(2, 1) w(2, 2)

⎤
⎦

Each iteration of this thinning algorithm, presented asMATLABcode, consists of two
parts. In the first part, a pixel p is deleted only when the following three conditions
are satisfied.

b1=0;b2=0;b3=0;b4=0;
if w(1,2) == 0 && (w(0,2) == 1 || w(0,1) == 1)

b1 = 1;
end
if w(0,1) == 0 && (w(0,0) == 1 || w(1,0) == 1)

b2 = 1;
end
if w(1,0) == 0 && (w(2,0) == 1 || w(2,1) == 1)

b3 = 1;
end
if w(2,1) == 0 && (w(2,2) == 1 || w(1,2) == 1)

234 8 Morphological Image Processing

b4 = 1;
end
c1 = b1 + b2 + b3 + b4 ; % Condition 1
s1 = (w(1,2) | w(0,2)) + (w(0,1) | w(0,0)) + (w(1,0) | w(2,0)) + (w(2,1) | w(2,2));
s2 = (w(0,2) | w(0,1)) + (w(0,0) | w(1,0)) + (w(2,0) | w(2,1)) + (w(2,2) | w(1,2));
c2 = min(s1,s2); % Condition 2
c3 = (w(0,2) | w(0,1) | ˜w(2,2)) & w(1,2) ; % Condition 3
if c3 == 0 && c2>=2 && c2<=3 && c1 == 1

p = 0 ; % setting the pixel value
end

In the second part, a pixel is deleted only when the first two conditions of the first
part are satisfied along with the following third condition.

c3 = (w(2,0) | w(2,1) | ˜w(0,0)) & w(1,0) ; % Condition 3
if c3 == 0 && c2>=2 && c2<=3 && c1 == 1

p = 0 ; % setting the pixel value
end

The iterations continue until there is no change in the output from the previous
iteration.

Let the input image x(m, n) be

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is assumed that the image is zero-padded on all sides.
Consider the pixel x(0, 2). Its neighborhood is

⎡
⎣

w(0, 0) w(0, 1) w(0, 2)
w(1, 0) p w(1, 2)
w(2, 0) w(2, 1) w(2, 2)

⎤
⎦ =

⎡
⎣
0 0 0
0 1 1
0 0 1

⎤
⎦

Now, b1 = b2 = b3 = 0, b4 = 1 and c1 = 1.
s1 = 1+ 0 + 0 + 1 = 2, s2 = 0 + 0 + 0 + 1 = 1 and the minimum of s1 and s2 is
c2 = 1.
c3 = (0|0|0)&1 = 0.
Now, the condition c2 ≥ 2 fails and the pixel is not set to 0.
Consider the pixel x(0, 3). Its neighborhood is

⎡
⎣

w(0, 0) w(0, 1) w(0, 2)
w(1, 0) p w(1, 2)
w(2, 0) w(2, 1) w(2, 2)

⎤
⎦ =

⎡
⎣
0 0 0
1 1 1
0 1 1

⎤
⎦

8.2 Binary Morphological Algorithms 235

Now, b1 = b4 = b3 = 0, b2 = 1 and c1 = 1.
s1 = 1 + 0 + 1 + 1 = 3, s2 = 1 + 0 + 1 + 1 = 3 and the minimum of s1 and s2 is
c2 = 3.
c3 = (0|0|0)&1 = 0.
Now, the condition for setting the pixel 0 is satisfied, and the pixel is set to 0. The
output of the first part of the first iteration of the algorithm is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pixel x(2, 4) is to be set 0, but it is not done in the first part of the algorithm. Its
neighborhood is

⎡
⎣

w(0, 0) w(0, 1) w(0, 2)
w(1, 0) p w(1, 2)
w(2, 0) w(2, 1) w(2, 2)

⎤
⎦ =

⎡
⎣
1 1 1
0 1 1
0 0 1

⎤
⎦

and c3 = (1|1|0)&1 = 1.
In the second part of the algorithm, its neighborhood is

⎡
⎣

w(0, 0) w(0, 1) w(0, 2)
w(1, 0) p w(1, 2)
w(2, 0) w(2, 1) w(2, 2)

⎤
⎦ =

⎡
⎣
1 1 0
0 1 1
0 0 1

⎤
⎦

c1 = 1, c2 = 3, and c3 = (0|0|0)&0 = 0. Now, the condition for setting the pixel 0
is satisfied, and the pixel is set to 0. The thinned output of the input image is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure8.11a shows a 256×256 binary image. The output of the thinning algorithm
after 4, 7, and 11 iterations are shown in Fig. 8.11b–d. The number of 1s in the

236 8 Morphological Image Processing

(a) (b)

(c) (d)

Fig. 8.11 a A 256 × 256 binary image; the output of the thinning algorithm after b 4 iterations,
c 7 iterations, and d 11 iterations

input image is 7326 and those after 4, 7, and 11 iterations are 3125, 1235, and 692,
respectively. The algorithm terminates after the 11th iteration.

8.2.2 Thickening

Thickening of an image can be carried out by:

• Complement the input image x(m, n) to get x̃(m, n).
• Thin x̃(m, n) to get ỹ(m, n).
• Complement ỹ(m, n) to get the thickened input image y(m, n).

8.2 Binary Morphological Algorithms 237

Additional processing may be required after each iteration, in case of extraneous
pixels appearing in the output.

Consider the input image and its complement

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̃(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The thickened image after 1 and 2 iterations is, respectively

y1(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y2(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The input image has 2 1s and it has become 5 and 13 after 1 and 2 iterations of
thickening.

Figure8.12a shows a 256× 256 binary image. The output of the thickening oper-
ation after 1, 2, and 3 iterations are shown in Fig. 8.12b–d, respectively. The number
of 0s in the input image is 2112. Due to thickening, this number increases to 4577,
6968, and 9342 in Fig. 8.12b–d.

8.2.3 Noise Removal

Isolated pixels with value 1 in a neighborhood of 0s are replaced by 0. Consider the
mask

h(m, n) =
⎡
⎣
0 0 0
0 1 0
0 0 0

⎤
⎦

Let the input image be x(m, n). Then, pixels with value 1 in the output image are
given by

y(m, n) = (x(m, n)&(x(m − 1, n)|x(m − 1, n − 1)|
x(m − 1, n + 1)|x(m, n − 1)|x(m, n + 1)|x(m + 1, n)|x(m + 1, n + 1)|x(m + 1, n − 1)))

238 8 Morphological Image Processing

(a) (b)

(c) (d)

Fig. 8.12 a A 256 × 256 binary image; the output of the thickening operation after b 1 iteration,
c 2 iterations, and d 3 iterations

For example, the input and output are

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 1
1 1 1 1 0 1 0 1
1 1 1 1 0 0 0 1
0 0 1 1 0 0 0 1
1 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 1
1 1 1 1 0 0 0 1
1 1 1 1 0 0 0 1
0 0 1 1 0 0 0 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pixels x(5, 0) and x(2, 5) have been replaced by zeros. Border pixels are assumed
to be 0s.

8.2 Binary Morphological Algorithms 239

8.2.4 Skeletons

Skeleton is another description of a shape of an object. It is the axis, which is equidis-
tant from the borders of a shape. It is a central outline of the object. One way to find
the skeleton is to use the distance transform, presented in Chap.10. The distance
transform is an algorithm that approximates the Euclidean distance of each point in
the image to a region faster.

Let the input image be x(m, n) and the distance of the pixels from the region
marked with 1s in the complement of x(m, n), x̃(m, n), be D(m, n).

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

D(mn,) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 5 5 5 5 5 5 0
0 5 10 10 10 10 5 0
0 5 10 15 15 10 5 0
0 5 10 15 15 10 5 0
0 5 10 10 10 10 5 0
0 5 5 5 5 5 5 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The distances shown in D(m, n) are scaled by a factor of 5. For example, the distance
of the pixel x̃(4, 4) from its nearest pixel with value 1 is 3, which after scaling by 5
gives 15. The reason for complementing is that it is easier to comprehend the distance
image.

We start with a matrix skel(m, n), of the same size as the input image, with all
zero entries. Each pixel in this matrix is replaced by a 1, if the corresponding value
in D(m, n) is greater or equal to the largest value of its 4 nearest neighbors. For
example, consider the neighborhood of D(1, 1).

⎡
⎣

0
0 5 5

5

⎤
⎦

As D(1, 1) = 5 is greater or equal to the largest value of its 4 nearest neighbors,
skel(1, 1) = 1. The skeleton of the input image is

skel(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure8.13a shows a 256×256 binary image. Figure8.13b shows its complement.
Figure8.13c shows its distance transform representation. The central axis is quite

http://dx.doi.org/10.1007/978-981-10-6113-4_10

240 8 Morphological Image Processing

(a) (b)

(c) (d)

Fig. 8.13 a A 256× 256 binary image; b its complement; c the distance transform representation;
d the skeleton

clear. Figure8.13d shows its skeleton. We have dilated the actual output once to
get a thick line. The skeleton is not connected, as no connectivity check was made.
Thinning algorithms yield skeletons with connectivity guaranteed.

8.2.5 Fill

Isolated pixels with value 0 in a neighborhood of 1s are replaced by 1. Consider the
mask

8.2 Binary Morphological Algorithms 241

h(m, n) =
⎡
⎣
1 1 1
1 0 1
1 1 1

⎤
⎦

Let the input image be x(m, n). Then, pixels with value 1 in the output image is
given by

y(m, n) = (x(m, n)|(x(m − 1, n)&x(m − 1, n − 1)&x(m − 1, n + 1)&

x(m, n − 1)&x(m, n + 1)&x(m + 1, n)&x(m + 1, n + 1)&x(m + 1, n − 1)))

For example, the input and output are

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pixel x(1, 1) has been replaced by 1. Pixels x(4, 4) and x(5, 5) will be replaced by
1s with a 4-connected neighborhood. Border pixels are assumed to be 0s.

8.2.6 Boundary Extraction

If we erode an image by a structuring element by one iteration, then the pixels in the
border of the objects are set to zero, leaving the interior pixels unchanged. Now, if
we subtract the output of erosion from the input, an image with object boundary is
obtained. Consider the mask

h(m, n) =
⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦

Let the input image be x(m, n). Then, pixels with value 1 in the eroded image are
given by

y(m, n)=(x(m, n)&(x(m − 1, n)&x(m − 1, n − 1)&x(m − 1, n + 1)&

x(m, n − 1)&x(m, n + 1)&x(m + 1, n)&x(m + 1, n + 1)&x(m + 1, n − 1)))

242 8 Morphological Image Processing

For example, let

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output of erosion and the extracted border are, respectively,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Border pixels are assumed to be 0s.
Figure8.14a, b show, respectively, a 256 × 256 binary image and its boundary

obtained using a 3 × 3 square structuring element.

(a) (b)

Fig. 8.14 a A 256 × 256 binary image and b its boundary

8.2 Binary Morphological Algorithms 243

8.2.7 Region Filling

Given a region defined by its boundary and the location of a pixelwithin it, the interior
of the region is to be filled. Let the image be x(m, n). The algorithm is defined by

xl(m, n) = (xl−1(m, n) ⊕ h(m, n))&x̃(m, n), l = 2, 3, . . .

where

h(m, n) =
⎡
⎣
0 1 0
1 1 1
0 1 0

⎤
⎦

and x1(m, n) is a matrix of the same size as x(m, n) with all entries zero except a
1 at the given location inside the region. Repeatedly, we keep dilating the current
xl(m, n) with h(m, n) and AND with the complement of the input image until there
is no difference between two consecutive versions of xl(m, n). Without the AND
operation, the dilation operation is uncontrolled and will fill up the entire image.

Let x(m, n) be the given image and (3, 3) is the given starting location. Then,

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0
0 0 1 0 0 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x2(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x3(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x4(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x5(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The OR of x5(m, n) and x(m, n) gives the filled region.

244 8 Morphological Image Processing

8.2.8 Extraction of Connected Components

This algorithm is similar to the region filling algorithm except that the dilated image
is combined with the input image (rather than its complement, as it is in region filling
algorithm) by the AND operator. It is defined by

xl(m, n) = (xl−1(m, n) ⊕ h(m, n))&x(m, n), l = 2, 3, . . .

Let the input image be

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The image has 2 connected components. Let us try the algorithm with a 3×3 square
structuring element and initial location (3, 3). As all the 1s are reachable from the
initial location, the algorithm finds the connected component, on the left, in one
(dilation) iteration. Let the initial location be (6, 6). Then, the algorithm requires 3
iterations to find the connected component, on the right.

8.2.9 Convex Hull

If the straight line segment connecting any pair of points in an image lies within the
image, then it is said to be convex. For example, a straight line, an ellipse, and a disk
are all convex. Given an object, it is useful to find the minimal convex set, called
the convex hull, containing the object. The concept of convex hull is useful in object
description. The convex hull, c(m, n), of an image, x(m, n), can be found using the
algorithm

clk(m, n) = clk−1(m, n) ©� hl(m, n) | x(m, n) l = 0, 1, 2, 3 and k = 1, 2, . . .

where cl0(m, n) = x(m, n) and hl(m, n) are the structuring elements used. When the
algorithm converges, for each hl(m, n), clk(m, n) = clk−1(m, n). Let the four outputs
be c0(m, n), c1(m, n), c2(m, n), and c3(m, n). Then, the convex hull is

c(m, n) = (c0(m, n) | c1(m, n) | c2(m, n) | c3(m, n))

8.2 Binary Morphological Algorithms 245

Let the four structuring elements h(m, n) in four directions are

⎡
⎣
1 x x
1 0 x
1 x x

⎤
⎦

⎡
⎣
x x x
x 0 x
1 1 1

⎤
⎦

⎡
⎣
x x 1
x 0 1
x x 1

⎤
⎦

⎡
⎣
1 1 1
x 0 x
x x x

⎤
⎦

The structuring elements are 90◦ rotated versions. The entry x indicates don’t care
condition. If the image pixel corresponding to the center of the mask is zero and the
other 3 corresponding pixels are 1s, then the pixel at the center is given the value 1.
An image and its convex hull using this algorithm are

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 0
0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There are 14 1s in the input image and 21 1s in the convex set. The first mask does not
match at any place in the image and contributes nothing to the output. The outputs are
found for pixels within the object area only. The secondmaskmakes x(3, 5) = 1. The
third mask makes x(5, 5) = 1 in the first iteration and x(5, 4) = 1 in the second. The
fourth mask makes x(3, 4) = 1 and x(5, 5) = 1 in the first iteration, x(4, 3) = 1 and
x(5, 4) = 1 in the second iteration, x(5, 3) = 1, in the third iteration and x(6, 4) = 1
in the fourth iteration. The convex hull is the combination of these results by OR (|)
operation. The algorithm may not give the minimal convex hull, for which a more
complex algorithm is required.

8.2.10 Pruning

Pruning removes undesirable short spurs after operations such as thinning. Let us
define an operation

x(m, n) ⊗ w(m, n) = x(m, n) & z̃(m, n), z(m, n) = (x(m, n) ©� w(m, n))

with input image x(m, n) and 8 masks

w1(m, n) =
⎡
⎣

× 0 0
1 1 0
× 0 0

⎤
⎦ , w2(m, n) =

⎡
⎣

× 1 ×
0 1 0
0 0 0

⎤
⎦ , w3(m, n) =

⎡
⎣
0 0 ×
0 1 1
0 0 ×

⎤
⎦ ,

246 8 Morphological Image Processing

w4(m, n) =
⎡
⎣
0 0 0
0 1 0
× 1 ×

⎤
⎦ , w5(m, n) =

⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ , w6(m, n) =

⎡
⎣
0 0 1
0 1 0
0 0 0

⎤
⎦ ,

w7(m, n) =
⎡
⎣
0 0 0
0 1 0
0 0 1

⎤
⎦ , w8(m, n) =

⎡
⎣
0 0 0
0 1 0
1 0 0

⎤
⎦

The masks are 90◦ rotated versions.
At the pixel x(m, n), the output of the hit-and-miss transformation with mask

w1(m, n) is

o1 = x(m, n − 1)&x(m, n)&x̃(m, n + 1)&x̃(m + 1, n)&x̃(m + 1, n + 1)

&x̃(m − 1, n)&x̃(m − 1, n + 1)

This operation outputs a 1 if the neighbors of x(m, n) match w1(m, n). Then,

x(m, n) ⊗ w1(m, n) = x(m, n) & õ1

If o1 = 1, pixel x(m, n) is assigned 0. The sequence of 8 masks are used in the given
order to get the pruned output. That is,

x(m, n) ⊗ {w(m, n)} = (((((((x(m, n) ⊗ w1(m, n)) ⊗ w2(m, n)) ⊗ w3(m, n)) ⊗ w4(m, n))

⊗w5(m, n)) ⊗ w6(m, n)) ⊗ w7(m, n)) ⊗ w8(m, n)

Pruning is carried out the required number of times. Some end points may also be
lost in the process. Therefore, all the end points are reconnected at the end from the
list of deleted pixels.

8.3 Grayscale Morphology

Grayscale morphology is an extension of that of the binary images, the binary mor-
phology. In erosion of binary images, the image becomes darker since the number
of pixels with zero value increases. In dilation, the image becomes lighter. The same
effect is achieved in gray-level images also. Instead of the logical operators, we use
the minimum and maximum functions. The origin of the structuring element must
be noted. In the case of dilation operation, the structuring element has to be rotated
180◦ about its origin.We present a commonly used version of grayscale morphology.

8.3 Grayscale Morphology 247

8.3.1 Dilation

The dilation of the gray-level image x(m, n) and the window or mask or structuring
element h(m, n) is defined as

y(m, n) = max
k,l

{x(m − k, n − l)} = x(m, n) ⊕ h(m, n) (8.3)

where m and n vary over the dimensions of the image, and k and l vary over the
dimensions of the structuring element. For a 3 × 3 neighborhood with the origin at
the center,

y(m, n) = max{(x(m − 1, n − 1), x(m − 1, n), x(m − 1, n + 1), x(m, n − 1),

x(m, n), x(m, n + 1), x(m + 1, n − 1, x(m + 1, n), x(m + 1, n + 1)}) = x(m, n) ⊕ h(m, n)

Consider the 8 × 8 input image and the 3 × 3 structuring element.

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92
103 105 111 112 114 108 86 39
106 107 112 113 107 73 26 25
111 114 14 104 64 23 25 28
117 115 97 45 15 13 23 29
119 93 32 0 15 11 19 23
88 15 0 2 10 13 11 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assuming that the border pixels are replicated, the output of the dilation operation is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

102 104 107 114 114 114 110 110
105 111 112 114 114 114 110 110
107 112 113 114 114 114 110 104
114 114 114 114 114 114 108 86
117 117 115 113 113 107 73 29
119 119 115 104 104 64 29 29
119 119 115 97 45 23 29 29
119 119 93 32 15 19 23 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, y(1, 1) = 111, which is the maximum in the neighborhood of
x(1, 1) = 102.

248 8 Morphological Image Processing

8.3.2 Erosion

The erosion of the gray-level image x(m, n) and the window or mask or structuring
element h(m, n) is defined as

y(m, n) = min
k,l

{x(m + k, n + l)} = x(m, n) � h(m, n) (8.4)

where m and n vary over the dimensions of the image, and k and l vary over the
dimensions of the structuring element. For a 3 × 3 neighborhood with the origin at
the center,

y(m, n) = min{(x(m − 1, n − 1), x(m − 1, n), x(m − 1, n + 1), x(m, n − 1),

x(m, n), x(m, n + 1), x(m + 1, n − 1, x(m + 1, n), x(m + 1, n + 1)}) = x(m, n) � h(m, n)

For the same image and the structuring element, assuming that the border pixels are
replicated, the output of the erosion operation is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 88 100 101 101 104 92 92
88 88 100 101 101 86 39 39
92 92 102 104 73 26 25 25
103 14 14 14 23 23 23 25
106 14 14 14 13 13 13 23
93 14 0 0 0 11 11 19
15 0 0 0 0 10 11 11
15 0 0 0 0 10 11 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, y(1, 1) = 88, which is the minimum in the neighborhood of
x(1, 1) = 102.

8.3.3 Opening and Closing

These operations are defined and used the same way as in binary morphology.

y(m, n) = x(m, n) ◦ h(m, n) = (x(m, n) � h(m, n)) ⊕ h(m, n)

y(m, n) = x(m, n) • h(m, n) = (x(m, n) ⊕ h(m, n)) � h(m, n)

For the same image and the structuring element, assuming that the border pixels
are replicated, the output of the opening operation is

8.3 Grayscale Morphology 249

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 100 101 101 104 104 104 92
92 102 104 104 104 104 104 92
103 103 104 104 104 101 86 39
106 106 104 104 104 73 26 25
106 106 14 23 23 23 25 25
106 106 14 14 14 13 23 23
93 93 14 0 11 11 19 19
15 15 0 0 10 11 11 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The output of the closing operation is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

102 102 104 107 114 110 110 110
102 102 104 107 114 110 104 104
105 105 111 112 114 108 86 86
107 107 112 113 107 73 29 29
114 114 104 104 64 29 29 29
117 115 97 45 23 23 23 29
119 93 32 15 15 15 19 23
119 93 32 15 15 15 19 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.3.4 Top-Hat and Bottom-Hat Transformations

The top-hat transformation is defined as the subtraction of its opening from the image
x(m, n).

y(m, n) = x(m, n) − (x(m, n) ◦ h(m, n))

For the same image and the structuring element, assuming that the border pixels are
replicated, the output of the top-hat transformation is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 3 0 10 6 6 15
0 0 0 3 8 6 0 0
0 2 7 8 10 7 0 0
0 1 8 9 3 0 0 0
5 8 0 81 41 0 0 3
11 9 83 31 1 0 0 6
26 0 18 0 4 0 0 4
73 0 0 2 0 2 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

One of the applications of this transformation is in shading correction.
The bottom-hat transformation is defined as the subtraction of the image x(m, n)

from its closing.
y(m, n) = (x(m, n) • h(m, n)) − x(m, n)

250 8 Morphological Image Processing

For the example x(m, n), the output of the bottom-hat transformation is

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 2 0 6 0 0 0 3
10 0 0 0 2 0 0 12
2 0 0 0 0 0 0 47
1 0 0 0 0 0 3 4
3 0 90 0 0 6 4 1
0 0 0 0 8 10 0 0
0 0 0 15 0 4 0 0
31 78 32 13 5 2 8 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This transformation is often used in contrast enhancement.

8.3.5 Morphological Gradient

The morphological gradient of the image x(m, n) is defined as

y(m, n) = (x(m, n) ⊕ h(m, n)) − (x(m, n) � h(m, n))

For the example x(m, n),

y(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 16 7 13 13 10 18 18
17 23 12 13 13 28 71 71
15 20 11 10 41 88 85 79
11 100 100 100 91 91 85 61
11 103 101 99 100 94 60 6
26 105 115 104 104 53 18 10
104 119 115 97 45 13 18 18
104 119 93 32 15 9 12 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In a smooth region, the difference is small, and it is large in the vicinity of an edge.

8.4 Summary

• Mathematical morphology is the study of form and shapes of objects.
• The basic operations, in the analysis of binary images, are in the form of convolu-
tion and correlation with the difference that arithmetic operations are replaced by
logical operations. Similar to realizing filters with different frequency responses
by using suitable impulse response in the convolution operation, various types of
shape analysis can be carried out using different structuring elements (windows
or masks of 1s and 0s) in morphology.

8.4 Summary 251

• Two operations, dilation and erosion, are fundamental in morphology. All other
operations are essentially a combination of these two operations.

• Dilation enlarges an object while erosion shrinks it.
• Pattern matching, thinning, thickening, filtering, region filling, boundary extrac-
tion, and pruning are some of the tasks carried out in morphology.

• Morphology of gray-level images is an extension of that of binary images. Mini-
mum and maximum functions replace the logical operations used in the morphol-
ogy of binary images.

• Morphology is essential in segmentation, feature extraction, and description of
images.

Exercises

8.1 Find the dilation of x(m, n) and h(m, n).

h(m, n) =
⎡
⎣
1 0 1
0 1 0
1 1 1

⎤
⎦

(i)

x(m, n) =

⎡
⎢⎢⎣
1 1 0 0
1 1 0 0
0 1 1 1
1 1 1 0

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
0 1 1 1
0 0 1 1
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦

8.2 Find the erosion of x(m, n) and h(m, n).

h(m, n) =
⎡
⎣
0 1 0
1 0 1
0 0 0

⎤
⎦

252 8 Morphological Image Processing

(i)

x(m, n) =

⎡
⎢⎢⎣
1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
0 1 1 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
1 0 1 0
1 1 1 1
1 1 1 0
0 1 1 0

⎤
⎥⎥⎦

8.3 Find the opening of x(m, n) and h(m, n).

h(m, n) =
⎡
⎣
0 1 0
1 1 1
0 1 0

⎤
⎦

(i)

x(m, n) =

⎡
⎢⎢⎣
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 0

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
0 1 0 0
0 1 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
0 1 1 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦

Exercises 253

8.4 Find the closing of x(m, n) and h(m, n).

h(m, n) =
⎡
⎣
1 0 1
0 1 0
0 1 1

⎤
⎦

Verify the output using the equivalent expression in terms of the opening operation.
(i)

x(m, n) =

⎡
⎢⎢⎣
0 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎣
0 0 1 1
0 0 1 1
1 0 0 1
1 0 0 0

⎤
⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎣
1 0 1 0
1 0 1 0
1 1 1 0
0 1 1 0

⎤
⎥⎥⎦

8.5 Find the hit-and-miss transformation of x(m, n) and hh(m, n) and hms(m, n).

hh(m, n) =
⎡
⎣
1 0 1
0 0 0
0 0 0

⎤
⎦ hms(m, n) =

⎡
⎣
0 0 0
0 0 0
1 0 1

⎤
⎦

* (i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1
0 0 1 1 1 0 0 1
0 0 0 1 0 0 1 1
1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

254 8 Morphological Image Processing

(ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 1
1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.6 Find the thinned version of x(m, n).
(i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

* (ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercises 255

(iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.7 Find the skeleton of x(m, n).
(i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

* (iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

256 8 Morphological Image Processing

8.8 Extract the boundary of x(m, n).
(i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

* (ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 9
Edge Detection

Abstract Edge detection is an important step in segmentation of the image and
leads to object recognition. An edge is a line of interaction of two surfaces. Edges
are detected using operators based on the first and second derivatives of the image. A
high value or a zero-crossing of the response of the operators indicates an edge pixel.
Derivatives are approximated by differences in digital images. Commonly used edge
operators are presented with examples.

Almost all signals (e.g., alternating voltage waveform in a transmission line) are
constantly changing. The instantaneous rate of change of a signal is its derivative.
Figure9.1 shows the sine waveform x(t) = sin(2πt/8), its first derivative x ′(t) =
(2π/8) cos(2πt/8), and its second derivative x ′′(t) = −(2π/8)2 sin(2πt/8). The
derivative is an important characterization of a signal (image). The rate of change of
the sine waveform is maximum at t = 0, and its first derivative, the cosine waveform,
reaches its positive peak value. The second derivative has a zero-crossing at that point.
Another point to be noted is that the amplitude of the derivatives gets multiplied by
the frequency values, whichmay amplify noise levels, as noise constitutes significant
part of the high-frequency components. These are the key points in edge detection,
which, in digital images, is approximating the derivatives, in two directions, by
differences.

9.1 Edge Detection

An edge is a line of interaction of two surfaces. Edge pixels are characterized by the
abrupt change of intensity with the neighboring pixels. The boundaries of objects in
an image are identified by edges. Edges are useful for tasks such as segmentation,
registration, and object identification. Edges provide a compact representation of
objects than pixels. Edges are amplitude discontinuities between regions of an image.
In the frequency domain, an edge is characterized by the high-frequency components
of the spectrum of the image. Basically, edge detection constitutes highpass filtering
of an image. In the Haar DWT, the high-frequency subband of the signal is extracted

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_9

257

258 9 Edge Detection

Fig. 9.1 Sine waveform
x(t) = sin(2πt/8) and its
first and second derivatives,
x ′(t) = (2π/8) cos(2πt/8),
x ′′(t) =
−(2π/8)2 sin(2πt/8)

−4 −2 0 2 4
−1

0

1

x(
t),

 x
’(

t),
 x

’’
(t)

t

x(t)

x’(t)

x’’(t)

by filtering the signal with a highpass filter. The impulse response of the filter is
{−1, 1}. This filter finds the moving difference of a signal. This is the starting point
of the theory of edge detectors.

It is assumed that the top-left corner of the image is the origin, as presented
in Sect. 1.2. To find edges in a digital image, we use edge detectors. The gradient
(a graded change in the magnitude) along the m-direction of an image x(m, n) is

gm(m, n) = x(m + 1, n) − x(m, n)

The gradient along the n-direction is

gn(m, n) = x(m, n + 1) − x(m, n)

With these definitions, the gradients gm(m, n) and gn(m, n) are positive for an edge
whose amplitude increases from top to bottom and left to right of the image, respec-
tively. The directions of an edge and its gradient are perpendicular to each other. The
operators are filters with masks

{−1
1

}
and {−1, 1}

respectively. The frequency response is

H(e jω) = −(1 − e− jω) = − je− jω/2 1

j
(e j ω

2 − e− j ω
2) = − je− jω/22 sin

(ω

2

)

http://dx.doi.org/10.1007/978-981-10-6113-4_1

9.1 Edge Detection 259

which is a highpass filter and suppresses low-frequency components. The magnitude
of the frequency response is the first quarter of a sine wave. The frequency response
of {−1, 0, 1}, which is symmetrical, is

H(e jω) = −(e jω − e− jω) = − j2 sin (ω)

This is a bandpass filter. The magnitude of the frequency response is the first half of
a sine wave.

Convolution of the input image with the impulse responses of filters yields the
gradient image.

The 3 × 3 neighborhood is defined as

⎡
⎣ x(m − 1, n − 1) x(m − 1, n) x(m − 1, n + 1)

x(m, n − 1) x(m, n) x(m, n + 1)
x(m + 1, n − 1) x(m + 1, n) x(m + 1, n + 1)

⎤
⎦

Table9.1 shows the gradient operator masks of commonly used edge filters. Moving
difference measures the change in intensity on only one side of the pixel. To make
the measurement more symmetrical, we can find the gradient between the neighbors
of the pixel and then take the average. This averaging is usually not shown or taken,
since it affects uniformly across the image. Therefore, the moving difference filters
become

gm(m, n) = x(m + 1, n) − x(m − 1, n)

and
gn(m, n) = x(m, n + 1) − x(m, n − 1)

ThePrewitt operator averages intensity changes over six intervals. TheSobel operator
gives twice the weight to the central pixels. The values of these masks are to be
multiplied by the corresponding pixel values of the image pointwise and divided by
the sum of the magnitudes of the elements of the mask. These operators compute
the differences (highpass filtering in one direction) of local sums (lowpass filtering
in another direction), which has the effect of reducing the noise.

Table 9.1 Typical gradient operator masks. The element at the origin is shown in boldface

Operator Gradient, n-direction Gradient, m-direction

Prewitt

⎡
⎢⎣

−1 0 1

−1 0 1

−1 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 −1 −1

0 0 0

1 1 1

⎤
⎥⎦

Sobel

⎡
⎢⎣

−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎦

260 9 Edge Detection

⎡
⎣ 1 0 −1
1 0 −1
1 0 −1

⎤
⎦ =

⎡
⎣ 1
1
1

⎤
⎦ [

1 0 −1
]

and

⎡
⎣ 1 0 −1
2 0 −2
1 0 −1

⎤
⎦ =

⎡
⎣ 1
2
1

⎤
⎦ [

1 0 −1
]

This characteristic is also clear from the frequency response of the Sobel filters. Using
the row and column filters, computational savings can be achieved. Figure9.2a,
b show, respectively, the magnitude of the frequency response of the two Sobel
gradient filters. Figure9.3 shows the image of the frequency response of the filter
in (a). In these figures, the frequencies are normalized in the range −1 to 1, where
1 indicates π radians (or half the sampling frequency). The frequency response is
symmetrical about the zero frequency. Filter in (a) has a lowpass frequency response
along the l-direction. It has the peak value of 8 (the sum of the magnitudes of the

−1

0

1
0

0

2

4

6

8

fk
fl

|H
(k

,l)
|

−1

0

1
0

0

2

4

6

8

fk
fl

|H
(k

,l)
|

(a) (b)

Fig. 9.2 Magnitude of the frequency responses of Sobel gradient filters

Fig. 9.3 Image of the
magnitude of the frequency
response of Sobel gradient
filter

9.1 Edge Detection 261

filter coefficients) at frequency 0 and tapers toward zero near frequency 1. It is the
first half cycle of a cosine function with a DC offset. The filter has a bandpass
response along the k-direction. The response is zero at frequency 0 and goes up
toward high frequencies, and then, it goes down. It is the first half cycle of a sine
function. Frequency response in (b) is the complement of that in (a).

For uniform regions of the image, the gradient is zero, as it should be. For the
Sobel operator,

gm(m, n) = (x(m + 1, n − 1) + 2x(m + 1, n) + x(m + 1, n + 1))

− (x(m − 1, n − 1) + 2x(m − 1, n) + x(m − 1, n + 1))

and

gn(m, n) = (x(m − 1, n + 1) + 2x(m, n + 1) + x(m + 1, n + 1))

− (x(m − 1, n − 1) + 2x(m, n − 1) + x(m + 1, n − 1))

The magnitude of the gradient is

g(m, n) =
√
(gm2(m, n) + gn2(m, n))

and its direction, with respect to the row axis, is given by

θ(m, n) = tan−1

(
gn(m, n)

gm(m, n)

)

For computational simplicity, the magnitude of the gradient is often approximated
as

g(m, n) = |(gm(m, n)| + |gn(m, n)|

Figure9.4 shows the block diagram of edge detection using gradient operators. Edge
gradients are computed using edge detectors in two orthogonal directions and pixels
with gradient magnitude greater than a threshold are labeled as an edge pixel. Edge

x(m, n)

gradient
n-direction

gradient
m-direction

gm(m, n)

gn(m, n)

gm2(m,n) + gn2(m, n)
tan−1(gn(m,n)/gm(m, n))

Magnitude
g(m, n)

Direction
θ(m,n)

Threshold
Edge map
e(m, n)

Fig. 9.4 Block diagram of edge detection using gradient operators

262 9 Edge Detection

detection is similar to approximating a signal by Fourier analysis. The signal is cor-
related with cosine and sine basis signals, which are orthogonal, and the respective
coefficients are computed. The magnitude and phase computed, using these coef-
ficients, are the magnitude and phase of the corresponding frequency component.
Components with very small magnitudes are ignored. Basically, both the processes
involve correlation operation.

Consider the six sample neighborhoods of the image x(m, n).

[
0 0 0
1 1 1
1 1 1

] [
0 1 1
0 1 1
0 1 1

] [
1 0 0
1 1 0
1 1 1

] [
0 0 0
1 0 0
1 1 1

] [
1 1 0
1 0 0
1 0 0

] [
1 1 1
1 1 0
1 0 0

]

Using the Sobel operator, the gradient values and the angles, respectively, are

neighborhood 1 2 3 4 5 6
gm 4 0 3 4 −2 −3
gn 0 4 −3 −2 −4 −3
θ 0◦ 90◦ −45◦ −26.5651◦ 63.4349◦ 45◦

In case 1, the gradient is in the vertical direction, which is parallel with the m-axis.
Therefore, the angle is zero. The edge strength is also increasing along the m-axis.
Therefore, the strength is positive. The edge strength is, obviously, zero along the
n-axis. The other cases can be interpreted similarly.

Example 9.1 Let the 8 × 8 input image be

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92
103 105 111 112 114 108 86 39
106 107 112 113 107 73 26 25
111 114 14 104 64 23 25 28
117 115 97 45 15 13 23 29
119 93 32 0 15 11 19 23
88 15 0 2 10 13 11 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Find the edge output with the threshold T = 40 and T = 30 using the Sobel gradient
operators.
Solution
The gradient values along the n-direction are

gn(m, n) =

⎡
⎢⎢⎢⎢⎢⎣

6.0000 2.2500 3.6250 1.3750 −6.0000 −13.5000
4.2500 3.1250 1.1250 −5.6250 −18.1250 −25.5000

−9.6250 1.1250 5.3750 −20.6250 −28.6250 −20.0000
−26.0000 −10.5000 1.6250 −29.2500 −18.8750 −2.7500
−28.0000 −30.3750 −16.3750 −16.7500 −2.3750 6.1250
−35.2500 −33.6250 −13.2500 0.1250 2.1250 5.2500

⎤
⎥⎥⎥⎥⎥⎦

9.1 Edge Detection 263

The first value is obtained as

((104 + 2(104) + 111) − (88 + 2(92) + 103))/8 = 6

The divisor 8 is the sum of the magnitudes of the elements of the mask. The gradient
values along the m-direction are

gm(m, n) =

⎡
⎢⎢⎢⎢⎢⎣

4.0000 3.7500 3.6250 1.1250 −3.5000 −14.7500
4.0000 3.3750 1.8750 −5.1250 −19.6250 −32.5000

−8.8750 −24.1250 −20.3750 −24.1250 −35.1250 −27.2500
1.5000 −11.2500 −30.3750 −39.0000 −26.8750 −7.7500

−2.0000 −11.1250 −29.8750 −26.7500 −9.8750 −3.6250
−40.7500 −42.1250 −23.5000 −6.6250 −2.1250 −4.7500

⎤
⎥⎥⎥⎥⎥⎦

The last value is obtained as

((13 + 2(11) + 15) − (13 + 2(23) + 29))/8 = −4.75

The magnitude values of the gradient, using the square-root form, are

g(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

7.2111 4.3732 5.1265 1.7766 6.9462 19.9953
5.8363 4.5996 2.1866 7.6096 26.7143 41.3098

13.0922 24.1512 21.0720 31.7397 45.3118 33.8018
26.0432 15.3887 30.4184 48.7500 32.8410 8.2234
28.0713 32.3482 34.0684 31.5614 10.1566 7.1173
53.8807 53.8995 26.9780 6.6262 3.0052 7.0799

⎤
⎥⎥⎥⎥⎥⎥⎦

The first value is computed as

√
42 + 62 = 7.2111

The rounded angles of the gradient, in degrees, are

θ(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

56 31 45 51 −120 −138
47 43 31 −132 −137 −142

−133 177 165 −139 −141 −144
−87 −137 177 −143 −145 −160
−94 −110 −151 −148 −166 121

−139 −141 −151 179 135 132

⎤
⎥⎥⎥⎥⎥⎥⎦

264 9 Edge Detection

The first value is computed as

tan−1(6/4) = 56.3099◦

With the threshold T = 40 and T = 30, the edge pixels are

e40(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

e30(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Usually, edges are thinned to make them 1-pixel wide. If the size of the edge output
has to be same as that of the input image, then border pixels have to be defined.
For example, the required pixels at the borders can be assigned the values of their
neighbors. This method of border extension is called replication.

9.1.1 Edge Detection by Compass Gradient Operators

The operators, thus far, used gradients in two orthogonal directions to find the edge
map of an image. For selected directions, typically at intervals of 45◦, image gradients
can be estimated using rotated versions of a mask. The maximum of the magnitude
of the outputs of the different masks is the final gradient image.

Table9.2 shows the typical masks of commonly used edge filters. Each mask
of a specific operator is related by a 45◦ rotation to its neighbor. Only four of the
masks are linearly independent. Convolution of the input imagewith themasks yields
the gradient image. The direction of the gradient is the direction of the mask that
produced the maximum value. With larger masks, a finer angular resolution can be
obtained.

For the same six sample neighborhoods used earlier, the responses of the four
compass Sobel operators are

1 2 3 4 5 6
gS 4 0 3 4 −2 −3
gE 0 4 −3 −2 −4 −3
gSE 3 3 0 2 −4 −4
gSW 3 −3 4 4 2 0

9.1 Edge Detection 265

Table 9.2 Typical masks of four compass gradient operators. The element at the origin is shown in
boldface. The corresponding scale factor appears at the top. The direction of the gradient is indicated
at the beginning of each row

1/5 1/15 1/3 1/4

W

⎡
⎢⎣
1 1 −1

1 −2 −1

1 1 −1

⎤
⎥⎦

⎡
⎢⎣
5 −3 −3

5 0 −3

5 −3 −3

⎤
⎥⎦

⎡
⎢⎣
1 0 −1

1 0 −1

1 0 −1

⎤
⎥⎦

⎡
⎢⎣
1 0 −1

2 0 −2

1 0 −1

⎤
⎥⎦

SW

⎡
⎢⎣
1 −1 −1

1 −2 −1

1 1 1

⎤
⎥⎦

⎡
⎢⎣

−3 −3 −3

5 0 −3

5 5 −3

⎤
⎥⎦

⎡
⎢⎣
0 −1 −1

1 0 −1

1 1 0

⎤
⎥⎦

⎡
⎢⎣
0 −1 −2

1 0 −1

2 1 0

⎤
⎥⎦

S

⎡
⎢⎣

−1 −1 −1

1 −2 1

1 1 1

⎤
⎥⎦

⎡
⎢⎣

−3 −3 −3

−3 0 −3

5 5 5

⎤
⎥⎦

⎡
⎢⎣

−1 −1 −1

0 0 0

1 1 1

⎤
⎥⎦

⎡
⎢⎣

−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎦

SE

⎡
⎢⎣

−1 −1 1

−1 −2 1

1 1 1

⎤
⎥⎦

⎡
⎢⎣

−3 −3 −3

−3 0 5

−3 5 5

⎤
⎥⎦

⎡
⎢⎣

−1 −1 0

−1 0 1

0 1 1

⎤
⎥⎦

⎡
⎢⎣

−2 −1 0

−1 0 1

0 1 2

⎤
⎥⎦

E

⎡
⎢⎣

−1 1 1

−1 −2 1

−1 1 1

⎤
⎥⎦

⎡
⎢⎣

−3 −3 5

−3 0 5

−3 −3 5

⎤
⎥⎦

⎡
⎢⎣

−1 0 1

−1 0 1

−1 0 1

⎤
⎥⎦

⎡
⎢⎣

−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎦

NE

⎡
⎢⎣

1 1 1

−1 −2 1

−1 −1 1

⎤
⎥⎦

⎡
⎢⎣

−3 5 5

−3 0 5

−3 −3 −3

⎤
⎥⎦

⎡
⎢⎣

0 1 1

−1 0 1

−1 −1 0

⎤
⎥⎦

⎡
⎢⎣

0 1 2

−1 0 1

−2 −1 0

⎤
⎥⎦

N

⎡
⎢⎣

1 1 1

1 −2 1

−1 −1 −1

⎤
⎥⎦

⎡
⎢⎣

5 5 5

−3 0 −3

−3 −3 −3

⎤
⎥⎦

⎡
⎢⎣

1 1 1

0 0 0

−1 −1 −1

⎤
⎥⎦

⎡
⎢⎣

1 2 1

0 0 0

−1 −2 −1

⎤
⎥⎦

NW

⎡
⎢⎣
1 1 1

1 −2 −1

1 −1 −1

⎤
⎥⎦

⎡
⎢⎣

5 5 −3

5 0 −3

−3 −3 −3

⎤
⎥⎦

⎡
⎢⎣
1 1 0

1 0 −1

0 −1 −1

⎤
⎥⎦

⎡
⎢⎣
2 1 0

1 0 −1

0 −1 −2

⎤
⎥⎦

When there is a clear cut maximum, the angle of the gradient is the angle of the
corresponding mask. This is the case in columns 1, 2, 3, and 6. In the case of two
maximum values, the exact angle can be computed using the gradients in the S and
E directions, and the gradient value is assigned to the nearest mask. Cases 4 and 5
can be assigned to the masks at −45 and 45◦, respectively.

266 9 Edge Detection

9.2 Canny Edge Detection Algorithm

Canny edge detection algorithm is based on three objectives.

1. The edges found should be true edges, and all the edges should be found. The
probability of finding a good edge should be maximized and that of a false edge
should be minimized. Achieving this objective requires a high signal-to-noise
ratio.

2. The location of the edge found must be as close as possible to the exact location.
3. There should be no multiple responses for a single edge.

Finding the edges in an image using the Canny edge detection algorithm consists
of the following four basic steps.

1. The input image is smoothed by a Gaussian filter to improve the SNR.
2. The gradient magnitude and angle images are formed using a gradient filter.
3. The edge image is thinned by using nonmaximum suppression of the gradient

image.
4. By using two thresholds and connectivity constraint, the final edge image is

formed.

Example 9.2 Let the 8× 8 input image x(m, n) be the same as that given in Exam-
ple 9.1. Assuming replication of pixels at the borders, find the 8× 8 edge map using
the Canny edge detection algorithm. Let the standard deviation of the Gaussian filter
be σ = 1. The Gaussian gradient filter is to be used for finding the gradients.

Solution
Step 1 Find the Gaussian smoothing and gradient filters.
The 2-D Gaussian filter is separable. The filter length L is given by the formula

L = 8�σ� = 8

The ceiling function rounds a number to the nearest integer greater than or equal to
it. The impulse response of the 1-D Gaussian lowpass filter is given by

h(n) = 1√
2πσ

e− n2

2σ2

where n varies from

− L − 1

2
, . . .

L − 1

2
= {−3.5,−2.5,−1.5,−0.5, 0.5, 1.5, 2.5, 3.5}

The impulse response of the 1-D Gaussian lowpass filter, for this example, is

h(n) = {0.0009, 0.0175, 0.1295, 0.3521, 0.3521, 0.1295, 0.0175, 0.0009}

9.2 Canny Edge Detection Algorithm 267

0
0

1

|H
(e

jω
)|

ω

lowpass

π−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5
0

0.1

0.2

0.3

h(
n)

n

(a) (b)

Fig. 9.5 a Impulse response of the 1-DGaussian lowpass filter with L = 8 and σ = 1; bmagnitude
of its frequency response

Check normalization by ensuring that the sum of the values is 1. The values are even-
symmetric. Figure9.5a, b show, respectively, the impulse response and themagnitude
of the frequency response of this lowpass filter.

The impulse response of the Gaussian gradient filter, for this example, is

hd(n) = {0.0167, 0.0643, 0.1673, 0.1113,−0.1113,−0.1673,−0.0643,−0.0167}

This sequence is obtained by computing differences of the values of h(n). At the
ends,

hd(−3.5) = (0.0175−0.0009) = 0.0167, hd(3.5) = (0.0009−0.0175) = −0.0167

The second, third, and fourth values are computed as

hd(2.5) = (0.1295 − 0.0009)/2 = 0.0643, hd(1.5) = (0.3521 − 0.0175)/2 = 0.1673,

hd(0.5) = (0.3521 − 0.1295)/2 = 0.1113

The values are odd-symmetric. The coefficients are normalized by dividing the values
by the sum of the first half of the values, 0.3595. The normalized values are

hd(n) = {0.0463, 0.1789, 0.4653, 0.3095,−0.3095,−0.4653,−0.1789,−0.0463}

The sum of all the values is zero. Figure9.6a, b show, respectively, the impulse
response and the magnitude of the frequency response of this gradient filter.

268 9 Edge Detection

0
0

1.4662

|H
(e

jω
)|

ω
π−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5

−0.5

0

0.5

h(
n)

n

(a) (b)

Fig. 9.6 a Impulse response of the 1-D Gaussian gradient filter; b magnitude of its frequency
response

Step 2 The 8 × 8 input image is

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92
103 105 111 112 114 108 86 39
106 107 112 113 107 73 26 25
111 114 14 104 64 23 25 28
117 115 97 45 15 13 23 29
119 93 32 0 15 11 19 23
88 15 0 2 10 13 11 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Image x(m, n) is convolved with the transpose of h(n) to get the smoothed version,
xcl(m, n), of the image.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

91.6867 101.4867 104.9683 104.7502 113.1295 109.0165 103.2324 91.4051
97.4493 103.6297 105.9170 108.5433 111.4264 102.8939 86.9920 65.7040

103.6510 106.5541 97.4387 109.1937 102.9786 83.2139 58.5848 40.5729
108.7476 109.8222 73.7769 98.7010 79.2478 51.6998 34.3354 29.5898
112.9210 108.7355 59.7681 69.1888 45.8958 25.7829 24.5288 27.3254
112.4322 92.1835 49.2913 31.6881 22.3060 14.7257 20.1832 24.6257
103.0894 57.2298 24.1732 8.7501 13.4392 12.5235 15.6294 19.8665
92.5436 26.9420 5.8572 2.5837 10.7824 12.7497 12.2587 16.2929

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, the convolution of the values in the fourth column of x(m, n)

{101, 107, 112, 113, 104, 45, 0, 2}

with h(n) is xcl(3, 3) = 98.7010. A quick and approximate check of this value is

(112 + 45)0.1 + (113 + 104)0.4 = 102.5

9.2 Canny Edge Detection Algorithm 269

Step 3 The smoothed image xcl(m, n) is convolved with hd(n) to get the smoothed
gradient gh(m, n) along horizontal direction.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12.5431 11.7946 8.9847 4.7762 −4.8728 −14.9135 −16.3594 −9.6601
8.4848 8.6223 4.9299 −4.9615 −21.6193 −35.7217 −34.0564 −18.6762

−1.0313 −1.3096 −3.7695 −20.0463 −42.8940 −51.5689 −39.7579 −18.9002
−19.1018 −23.7512 −20.1645 −33.4650 −50.0952 −42.8899 −23.8417 −8.4642
−36.9544 −51.5308 −46.0057 −42.0521 −36.5792 −18.0210 −3.6787 0.7167
−54.2651 −71.4931 −59.7136 −35.9351 −15.2416 0.3622 6.0688 3.9456
−71.9416 −74.3582 −45.4024 −15.2671 0.4157 5.7410 6.3927 3.5829
−80.5180 −66.7048 −26.5270 −0.4152 6.4840 5.3481 4.5181 2.7661

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, the convolution of the fourth row of xcl(m, n)

{108.7476, 109.8222, 73.7769, 98.7010, 79.2478, 51.6998, 34.3354, 29.5898}

with hd(n) is gh(3, 3) = −33.4650. A quick and approximate check of this value is

0.2(34 − 110) + 0.5(51 − 74) + 0.3(79 − 99) = −32.7

Step 4 Image x(m, n) is convolved with h(n) to get the smoothed version, xrl(m, n),
of the image.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

94.5478 100.0169 103.5369 107.2654 110.0735 109.9113 108.5623 107.4473
97.3554 102.0548 105.7177 108.5940 109.0951 105.4261 98.9200 93.8872

104.9077 107.8836 110.7419 111.4065 106.5613 90.8975 65.8630 46.3625
107.2528 109.3599 110.1878 103.8641 83.8940 54.4910 33.0833 26.0425
99.3289 76.0975 67.0675 66.4990 48.1991 31.1661 26.9935 27.5552

112.3543 98.0500 69.2336 37.9184 20.9999 19.7808 24.5838 27.9302
96.4009 61.8850 27.6540 12.9377 12.6802 15.9353 19.8771 22.2646
49.3249 18.7441 5.7990 6.4543 10.0707 11.9990 13.2337 14.4425

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, the convolution of the values in the fourth row of x(m, n)

{106, 107, 112, 113, 107, 73, 26, 25}

with h(n) is xl(3, 3) = 103.8641.

Step 5 The smoothed image xrl is convolved with the transpose of hd(n) to get the
smoothed gradient gv(m, n) along the vertical direction
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.1835 4.8543 3.5275 −0.1592 −9.4872 −23.7979 −40.1333 −50.8824
9.9288 1.7804 −3.4646 −11.2182 −28.1610 −48.5452 −63.8324 −70.5606
4.9156 −13.7383 −27.8064 −38.6963 −55.7961 −66.2969 −62.7429 −55.3233

−1.2537 −25.8221 −51.1524 −67.5397 −72.7382 −60.8535 −39.6482 −25.2303
−13.1870 −35.1012 −61.1333 −74.6588 −63.4017 −39.9062 −20.2757 −11.0329
−41.1412 −58.2191 −64.9127 −57.9576 −37.9925 −21.3653 −13.8481 −11.4084
−55.5250 −64.7090 −52.0752 −31.9009 −16.1342 −10.2366 −10.7183 −11.5796
−35.4956 −36.9173 −24.3557 −11.4274 −4.9359 −4.1116 −5.7590 −6.6598

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

270 9 Edge Detection

For example, the convolution of the fourth column of xrl(m, n)

{[107.2654, 108.5940, 111.4065, 103.8641, 66.4990, 37.9184, 12.9377, 6.4543]}

with the transpose of hd(n) is gv(3, 3) = −67.5397.

Step 6 The magnitude gradient, g(m, n) = √
gh2(m, n) + gv2(m, n) is

g(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14.9766 12.7545 9.6524 4.7788 10.6654 28.0847 43.3395 51.7912
13.0604 8.8042 6.0256 12.2664 35.5026 60.2717 72.3493 72.9904
5.0227 13.8006 28.0607 43.5804 70.3783 83.9918 74.2789 58.4627

19.1429 35.0842 54.9834 75.3759 88.3198 74.4493 46.2645 26.6122
39.2367 62.3499 76.5101 85.6873 73.1971 43.7865 20.6067 11.0562
68.0977 92.1994 88.2008 68.1940 40.9357 21.3684 15.1195 12.0714
90.8769 98.5718 69.0884 35.3659 16.1396 11.7366 12.4799 12.1212
87.9948 76.2392 36.0122 11.4350 8.1489 6.7459 7.3198 7.2115

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For example, the first value is
√
8.18352 + 12.54312 = 14.9766.

Step 7 The normalized magnitude gradient is obtained by dividing g(m, n) by its
maximum value, 98.5718.

gn(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1519 0.1294 0.0979 0.0485 0.1082 0.2849 0.4397 0.5254
0.1325 0.0893 0.0611 0.1244 0.3602 0.6114 0.7340 0.7405
0.0510 0.1400 0.2847 0.4421 0.7140 0.8521 0.7536 0.5931
0.1942 0.3559 0.5578 0.7647 0.8960 0.7553 0.4693 0.2700
0.3981 0.6325 0.7762 0.8693 0.7426 0.4442 0.2091 0.1122
0.6908 0.9354 0.8948 0.6918 0.4153 0.2168 0.1534 0.1225
0.9219 1.0000 0.7009 0.3588 0.1637 0.1191 0.1266 0.1230
0.8927 0.7734 0.3653 0.1160 0.0827 0.0684 0.0743 0.0732

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 8 The high and low thresholds, respectively, are

{0.7031, 0.2813}

The high threshold is about 0.7 of the maximum value of gn(m, n), and the low
threshold is 0.4 that of high. The thresholds can be set, by trial and error, for a
particular image.

Step 9 The direction of the gradient is obtained by taking the inverse tangent of the
ratio of the vertical and horizontal gradients, gv(m, n)/gh(m, n). The rounded value
of the angles, in degrees, are

θ(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

33 22 21 −1 62 57 67 79
49 11 −35 66 52 53 61 75

−78 84 82 62 52 52 57 71
3 47 68 63 55 54 58 71

19 34 53 60 60 65 79 −86
37 39 47 58 68 −89 −66 −70
37 41 48 64 −88 −60 −59 −72
23 28 42 87 −37 −37 −51 −67

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9.2 Canny Edge Detection Algorithm 271

For example, the first entry is obtained as

180(tan−1(
8.1835

12.5431
))/π = 33.1217 ≈ 33

Step 10 The next step is nonmaximum suppression of the gradient values. That
involves selecting the pixels with peak values at the top of the ridges in the edge
map. That is to select only one pixel for an edge. Edges get thinned in this process.
Thresholding of the normalized gradient image gn(m, n)with the value 0.7031 yields
the edge map e′(m, n). The final edge map e(m, n) is derived from e′(m, n). The
pixels on the border rows and columns are not considered.

e′(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 0
0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Three edge pixels are dropped in nonmaximum suppression. This process for the
pixel gn(2, 4) = 0.7140 is shown in Fig. 9.7. There are three edge pixels in that
column with about the same orientation. Only one of them is adequate. The gradient
direction, from the θ matrix, is 52◦ as shown by dashed line. The normal line, which
is perpendicular to the gradient line, is also shown. For the pixel gn(2, 4) = 0.7140 to
be retained as an edge pixel, its valuemust be greater than those of its neighbors along

Fig. 9.7 Nonmaximum
suppression of the edge pixel
gn(2, 4) = 0.7140

−1 0 1

−1

0

1

m

n

gradientnormal

0.71400.4421

0.1244

0.8521

0.7553

 0.1939

0.7765

272 9 Edge Detection

the normal line. For arbitrary angles of the gradient, the normal line intersects the
coordinate axes between two pixels, as shown by asterisks in the figure. The values at
the intersection are found using interpolation of the values of the neighboring pixels.
For this pixel, the vertical distance of the point of intersection is given by

tan(52 + 90) = 0.7813

and the point is marked by the top asterisk. The distance, −0.7813, is marked by
the bottom asterisk. The values of the two neighboring pixels on the normal line are
computed as

0.7813(0.1244) + (1 − 0.7813)0.4421 = 0.1939

0.7813(0.7553) + (1 − 0.7813)0.8521 = 0.7765

As the pixel value 0.7140 is less than the value of one of its neighbors, 0.7765, it
is dropped from the list of edge pixels. A pixel will be retained only if its value is
greater than those of its two adjacent neighbors. Similarly, two other pixels are also
dropped. For gn(4, 4) = 0.7426,

0.5774(0.7647) + (1 − 0.5774)0.4421 = 0.8089

0.5774(0.2168) + (1 − 0.5774)0.4442 = 0.3129

For gn(3, 3) = 0.7647,

0.5095(0.2847) + (1 − 0.5095)0.5578 = 0.4186

0.5095(0.7426) + (1 − 0.5095)0.8960 = 0.8178

Step 11 The last step is hysteresis thresholding. In this step, an edge pixel with its
value above the lower threshold and connected to a strong edge pixel is added to the
edge pixels list. The application of the higher threshold results in edge contours with
gaps. The application of the lower threshold results in several false edges. The idea
is to use some of these pixels to fill up gaps resulted in the edges formed with the
higher threshold, by searching for pixels in the direction of the edge. In the present
example, all the selected edge pixels are connected. Therefore, there is no additional
edge pixel found in the hysteresis thresholding step.

The 8 × 8 input image, with the edge pixels shown in boldface, is

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

88 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92
103 105 111 112 114 108 86 39
106 107 112 113 107 73 26 25
111 114 14 104 64 23 25 28
117 115 97 45 15 13 23 29
119 93 32 0 15 11 19 23
88 15 0 2 10 13 11 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9.2 Canny Edge Detection Algorithm 273

An edge indicates an abrupt change in intensity. It is clear from the values of the
matrix on both sides of the edge that the Canny edge detection algorithm is quite
efficient, justifying its popularity at present.

9.3 Laplacian of Gaussian

While the gradient peaks are the indicators of edges using the first derivatives, zero-
crossings are the indicators of edges using the second derivatives. A zero-crossing in
one or more directions is an occurrence of zero-crossing. This type of masks seems
to give better response when the edge transition is wider.

The 3 × 3 discrete Laplacian edge detector

⎡
⎣0 1 0
1 −4 1
0 1 0

⎤
⎦

is the same as that used in earlier chapters for image sharpening. One advantage of
the Laplacian is that its response is same at all angles. However, it tends to amplify
the noise components of the image significantly. Therefore, it is often used in combi-
nation with a Gaussian lowpass filter, called Laplacian of Gaussian (LoG). The steps
involved in implementing the LoG filter are:

1. Reduce the noise by filtering the image with the Gaussian lowpass filter.
2. Apply the Laplacian to the smoothed image.
3. Detect the zero-crossings to find the edge image.

The 2-D Gaussian function is given by

g(x, y) = e− (x2+y2)
2σ2

Now, we have to find the Laplacian of this function. Taking the partial derivative
with respect to x and y, we get

(− x

σ2
)e− (x2+y2)

2σ2 + (− y

σ2
)e− (x2+y2)

2σ2

Taking the partial derivative with respect to x and y again, we get

∇2g(x, y) = (
x2

σ2 − 1)(
1

σ2)e
− (x2+y2)

2σ2 + (
y2

σ2 − 1)(
1

σ2)e
− (x2+y2)

2σ2 =
(

1

σ2

) (
(x2 + y2)

σ2 − 2

)
e− (x2+y2)

2σ2

The amplitude response of the filter is a function of σ. Zero-crossing occurs at
x2+ y2 = 2σ2, a circle with center at the origin and radius

√
2σ. This filter combines

both smoothing and second-order differentiation.

274 9 Edge Detection

The discrete version of the filter is obtained after some normalization. Let us
find the coefficients of the 5 × 5 filter h(m, n), m = −2,−1, 0, 1, 2, n =
−2,−1, 0, 1, 2, and σ = 0.5. First, the coefficients of the lowpass filter

gl(m, n) = e− (m2+n2)
2σ2

are found.

gl(m, n) =

⎡
⎢⎢⎢⎢⎣

0.0000 0.0000 0.0003 0.0000 0.0000
0.0000 0.0183 0.1353 0.0183 0.0000
0.0003 0.1353 1.0000 0.1353 0.0003
0.0000 0.0183 0.1353 0.0183 0.0000
0.0000 0.0000 0.0003 0.0000 0.0000

⎤
⎥⎥⎥⎥⎦

For example, with m = 0 and n = 0, the central value is 1. Next, the coefficients
are normalized by dividing by their sum, which is 1.6163. The central value is
1/1.6163 = 0.6187.

gln(m, n) =

⎡
⎢⎢⎢⎢⎣

0.0000 0.0000 0.0002 0.0000 0.0000
0.0000 0.0113 0.0837 0.0113 0.0000
0.0002 0.0837 0.6187 0.0837 0.0002
0.0000 0.0113 0.0837 0.0113 0.0000
0.0000 0.0000 0.0002 0.0000 0.0000

⎤
⎥⎥⎥⎥⎦

Now, the unnormalized LoGfilter coefficients are found from the defining expression

gln(m, n)

(
1

σ2

) (
(m2 + n2)

σ2
− 2

)

hun(m, n) =

⎡
⎢⎢⎢⎢⎣

0.0000 0.0020 0.0116 0.0020 0.0000
0.0020 0.2720 0.6698 0.2720 0.0020
0.0116 0.6698 −4.9495 0.6698 0.0116
0.0020 0.2720 0.6698 0.2720 0.0020
0.0000 0.0020 0.0116 0.0020 0.0000

⎤
⎥⎥⎥⎥⎦

For example, the central coefficient is, with m = 0 and n = 0 and σ = 0.5,
−8(0.6187) = −4.9495. Now, the coefficients of the filter h(m, n) are found by
subtracting the value obtained dividing the sum of all the elements of hun(m, n),
which is−1.1196, by the product of the dimensions of the filter,which is (5)(5) = 25,
(average) so that its sum is zero. That is, −1.1196/25 = −0.0448.

9.3 Laplacian of Gaussian 275

−1

0

1

−1

0

1
0

2

4

6

8

kl

|H
(k

,l)
|

−2

0

2

−2

0

2

−4

−3

−2

−1

0

n
m

h(
m

,n
)

−1

0

1

−1

0

1
0

0.05

0.1

0.15

0.2

kl

|H
(k

,l)
|

−6

0

6

−6

0

6

−15

−10

−5

0

x 10
−3

n
m

h(
m

,n
)

(a) (b)

(c) (d)

Fig. 9.8 a Impulse response of a 5 × 5 LoG filter, σ = 0.5; b its frequency response; c impulse
response of a 13 × 13 LoG filter, σ = 2; d its frequency response

h(m, n) =

⎡
⎢⎢⎢⎢⎣

0.0448 0.0468 0.0564 0.0468 0.0448
0.0468 0.3167 0.7146 0.3167 0.0468
0.0564 0.7146 −4.9048 0.7146 0.0564
0.0468 0.3167 0.7146 0.3167 0.0468
0.0448 0.0468 0.0564 0.0468 0.0448

⎤
⎥⎥⎥⎥⎦

For example, the central coefficient is −4.9495 − (−0.0448) = −4.9047. The dif-
ference 0.0001 from the actual coefficient is due to rounding. Figure9.8a, b show,
respectively, the impulse response of a 5 × 5 LoG filter with σ = 0.5 and its fre-
quency response. Figure9.8c, d show, respectively, the impulse response of a 13×13
LoG filter with σ = 2 and its frequency response. The frequency response is closer
to that of a lowpass filter for large values of σ and to that of a highpass filter for
small values of σ. In between, it is a bandpass filter, as shown in Fig. 9.8d. We have

276 9 Edge Detection

used the 5 × 5 filter for the example. The filter size is, typically, N × N , where
N = �(3σ)�2 + 1. A suitable value for σ has to be found by trial and error.

The same input used in Example9.1, assuming replication at the borders, is con-
volved with h(m, n) to get the filtered output
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

28.8484 −8.5289 −7.0866 29.8151 −28.0139 −3.8529 −21.5964 −24.3066
27.4631 −5.8423 6.9058 3.8381 −17.0194 −24.5141 −43.1364 −35.9755
−9.9300 −4.8803 −24.1955 −22.2136 −53.2700 −83.7926 −70.2963 114.4824
0.6518 −25.0575 −90.9783 −81.7078 −101.2147 −25.7595 133.1563 62.2465

−7.5198 −101.1569 421.1627 −181.2069 −15.2021 109.2424 29.5660 0.6081
−40.8491 −115.9491 −176.7897 18.2622 101.7073 57.0825 −0.8439 −20.6883

−120.7839 −110.2583 77.2334 136.4755 −2.6536 27.0237 −6.0811 −11.7889
−53.3866 189.8142 110.3045 39.9276 1.9904 −3.0470 19.7785 7.4534

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The zero-crossings of the filtered output, subject to some threshold, are the locations
of the edge pixels. For most images, it is found that zero-valued response is unlikely
since the edges are mostly of ramp type, not step. A procedure to detect the zero-
crossings is to ensure that both the following conditions hold.

1. The value of the pixel is negative and at least one of its four neighbors adjacent
to it is positive.

2. The magnitude of the difference between the values of the two pixels is greater
than a given threshold.

Fig. 9.9 a A 256 × 256 synthetic image; Edge maps by b Canny, c Sobel and d LoG methods

9.3 Laplacian of Gaussian 277

An additional checkup is required in case the pixel value is zero. In this case, at least
one of the two adjacent pair of neighbors must have values with opposite sign. The
threshold value becomes doubled.

With the threshold 41.4424, which is 0.75 times the average of the magnitude of
the values of the filtered output, the edge map, for the example, is

eLoG(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ecanny(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Compare this edge map with that obtained by the Canny algorithm (right).
Figure9.9a, b, c, d show, respectively, a 256 × 256 synthetic image and the edge

map foundbyCanny, Sobel andLoGmethods. Figure9.10a, b, c, d show, respectively,
a 256 × 256 image and the edge map found by Canny, Sobel, and LoG methods.

Fig. 9.10 a A 256 × 256 image; Edge maps by b Canny, c Sobel and d LoG methods

278 9 Edge Detection

9.4 Summary

• The derivative (gradient) of a function, which is an indicator of its instantaneous
rate of change, is one of its important characteristics.

• The gradient is approximated by difference in discrete signal analysis.
• In image processing, the gradient is used to find the edges (boundary between
two regions of an image characterized by abrupt change in the gray level), which
segment an image into its constituent components.

• Convolution and thresholding are the major operations in detecting edges in an
image.

• The various edge detectors are different approximations of the gradient.
• One of the two principal ways to approximate the gradient is to find the peak of
the first difference of the image.

• Another way to approximate the gradient is to find the zero-crossing of the second
difference of the image.

• The thresholding of the gradient image yields the edge map.
• For noisy images, smoothing followed by edge detection is more effective.
• Thinning of the edges and using two thresholds yields an effective edge map.
• The choice of the edge detection method depends on the requirements of the
application such as the accuracy, simplicity, computational complexity, and the
nature of the input image.

• For simplicity, the Sobel edge detector is recommended. For accuracy, the Canny
edge detection algorithm is recommended.

Exercises

9.1 Find the 6× 6 filtered magnitude output and the edge map of x(m, n) obtained
using the Sobel filters. The threshold is 1.2 times the average of the magnitude of
the values of the filtered output.
*(i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

227 179 45 10 14 15 14 12
227 227 177 18 15 17 15 14
227 227 225 56 8 15 18 15
227 227 227 98 9 17 18 16
227 227 227 141 7 17 18 17
227 227 227 194 26 9 14 14
227 227 227 214 92 0 11 11
227 227 227 212 184 64 5 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercises 279

(ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

168 153 111 58 0 0 0 42
159 161 114 79 9 2 5 42
134 181 124 67 86 20 15 26
117 180 122 79 74 47 46 47
152 181 132 70 36 38 40 49
156 171 117 59 73 77 61 67
174 166 124 84 69 57 55 55
172 159 129 93 84 31 22 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 10 13 9 7 5 4 2
6 10 12 10 6 6 2 0
19 19 12 11 6 3 2 2
19 19 18 18 10 5 2 3
19 18 16 17 14 10 7 6
17 14 15 15 10 9 8 6
13 10 11 13 12 9 8 3
14 9 9 9 10 10 8 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9.2 Find the filtered output and the edge map of x(m, n) obtained using a 5 × 5
LoG filter with σ = 1. The threshold is 0.75 times the average of the magnitude of
the values of the filtered output. Assume replication at the borders.
(i)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25 17 22 8 118 186 136 133
15 38 18 13 152 147 131 150
33 32 14 9 115 165 143 173
34 14 14 12 21 64 41 179
15 14 7 18 106 137 92 195
15 24 39 156 188 194 191 197
12 24 129 204 204 206 208 195
0 7 145 206 206 209 211 200

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

*(ii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

147 163 179 186 191 194 197 157
160 175 182 184 184 186 162 50
141 163 170 175 174 133 38 3
91 127 135 124 85 16 0 7

113 126 121 117 18 0 1 10
136 135 125 151 99 54 8 9
148 150 159 161 149 106 89 20
142 164 178 181 168 113 120 91

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

280 9 Edge Detection

(iii)

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

72 77 66 62 50 43 66 66
75 65 61 65 50 36 64 64
67 57 62 67 48 31 63 63
55 62 64 62 16 34 61 61
41 46 47 46 11 33 59 62
39 28 58 54 25 7 50 61
41 0 49 48 28 9 6 29
63 20 6 23 16 10 7 15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 10
Segmentation

Abstract Segmentation of an image is its partition into disjoint regions. Various
segmentation methods are based on finding the interior of the region or its border.
The border of a region can be found by edge detection. The interior of the region is
determined by the distinct properties of the pixels comprising the region. Threshold-
ing, region-based methods, and watershed are typical segmentation algorithms.

A typical image consists of regions, which are connected and exhibit distinct char-
acteristics with respect to some measure, such as histogram bands and textural prop-
erties. With respect to these characteristics, it is possible to segment an image into
regions. Image segmentation tries to identify and label the different objects and
regions, the image is composed of. For example, the characters in a word have to be
segmented before their identification. There are two basic methods of segmentation:
(i) finding the boundary of a region and (ii) finding the interior of a region. Finding the
boundary is typically based on the abrupt changes in gray levels. Finding the interior
is based on the pixels having similar properties. If each region is composed of distinct
band of gray levels, then, by appropriate thresholding, they can be segmented. It is
assumed that each object is spatially connected.

A region can be defined by its interior part or border (edge). The homogeneity P
of a region R is defined as

P(R) =
{
1, if f (R) ∈ H
0, otherwise

where f is function defining the homogeneity, and H is the predefined range of
values of f . The function f can be defined in any suitable way. For example, it
could be the standard deviation of the region, the mean, the difference between
the largest and smallest values of pixels, co-occurrence matrices, or a gray-level
threshold. Segmentation of an image is its partitioning into a set of N connected
regions R(n), n = 0, 1, . . . , N − 1. Some of the points to be noted are:

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_10

281

282 10 Segmentation

1. The sum of all the regions is exactly equal to the image.
2. A pixel of the image belongs to only one of the regions.
3. The predicate of a region holds for all its pixels.
4. The predicates of adjacent regions must be different.

Edge detection, thresholding, region growing and splitting, and watershed segmen-
tation are the basic approaches of segmentation.

10.1 Edge-Based Segmentation

Segmentation of a region by edge detection is based on abrupt change in the inten-
sity of the pixels at the borders. The edges obtained are assumed to be the object
boundaries and used to find the objects. Edge detection has been presented in the
last chapter. Edges found, however, may not characterize a region accurately due to
breaks in the edge contour because of noise and nonuniform illumination. There-
fore, edge linking is usually followed by edge detection to make the boundary of the
objects more useful. In this section, point and line detection is presented.

10.1.1 Point Detection

The mask, which is one of the versions of the Laplacian masks presented in Chap.2
multiplied by −1, for point detection is

⎡
⎣−1 −1 −1

−1 8 −1
−1 −1 −1

⎤
⎦

The mask is applied to the image, and the output is thresholded to detect the isolated
points (segmentation of points). Note that, for edge detection, the Laplacian response
is analyzed for zero-crossings.

Figure10.1a shows a 256 × 256 image. Figure10.1b shows the locations of white
dots in the three roses. The output of point detection, for each dot, is a single pixel.
For clear visibility, a dilated version is shown in (b).

10.1.2 Line Detection

The masks for line detection at four directions (E-W, NW-SE, N-S, NE-SW) are,
respectively,

http://dx.doi.org/10.1007/978-981-10-6113-4_2

10.1 Edge-Based Segmentation 283

Fig. 10.1 a A 256 × 256 image; b image showing the locations of white dots in the three roses

Fig. 10.2 a A 256 × 256 gray-level image; b line from the southwest to northeast direction and
lines from east to west direction; c line from the northwest to southeast direction; d lines from north
to south direction

284 10 Segmentation

⎡
⎢⎣

−1 −1 −1

2 2 2
−1 −1 −1

⎤
⎥⎦

⎡
⎢⎣

2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎥⎦

⎡
⎢⎣

−1 2 −1

−1 2 −1
−1 2 −1

⎤
⎥⎦

⎡
⎢⎣

−1 −1 2

−1 2 −1
2 −1 −1

⎤
⎥⎦

The masks produce the strongest response for lines oriented in the corresponding
directions. The pixels in the preferred directions are given a stronger weight. The
sum of all the coefficients of eachmask is zero, since no response should be produced
in constant intensity regions of the image. For example, the first mask produces the
strongest response for a line from east to west. With a constant background, the
maximum response occurs when the middle-row coefficients are aligned with the
line.

Figure10.2b shows the detection of the line from the southwest to northeast direc-
tion and lines from east to west direction. Figure10.2c shows the detection of the
line from the northwest to southeast direction. Figure10.2d shows the detection of
the lines from north to south direction.

10.2 Threshold-Based Segmentation

The simplest approach to segmentation is to partition an image into regions based
on different ranges of their pixel values. The histogram is an aid in this process. An
image typically has 256 gray levels. If we are able to determine the threshold between
an object and the background, then the region corresponding to the object is labeled
by selecting the pixels those are in the object range of gray levels. The thresholding
process of an image x(m, n), yielding its segmented version R(m, n), is given by

R(m, n) =
{
o, for x(m, n) ≥ T
b, otherwise

where T is the threshold, and o and b represent the object and the background. Of
course, there can be more than one threshold partitioning the image into several
regions. For example,

R(m, n) =
⎧⎨
⎩
o1, for x(m, n) > T 1
o2, for T 0 < x(m, n) ≤ T 1
b, otherwise

Pixels in the gray-level range x(m, n) > T 1 are labeled as object 1, and those in the
range T 0 < x(m, n) ≤ T 1 are labeled as object 2. The rest of the pixels are labeled
as background.

Figure10.3a and b show, respectively, a 256 × 256 gray level image and its his-
togram. The image is composed of the background, metal bars of the grill door,
and the lock with pixel values around 5, 170, and 245, respectively. As can be seen

10.2 Threshold-Based Segmentation 285

90 220
0

500

co
un

t

gray level

(a) (b)

(c) (d)

Fig. 10.3 a A 256 × 256 gray-level image; b its histogram; c segmenting the image with one
threshold; d segmenting the image with two thresholds

from the histogram, most of the pixels belong to the background (not shown). With
threshold 90, the segmentation of the image is shown in Fig. 10.3c. The background
is black with gray level 0, and the rest is white with gray level 255. Normally, the
regions in a segmented image are assigned integer labels. With one threshold, while
we are able to isolate the background, we are not able to partition the lock from the
bars. With two thresholds 90 and 220, the background, the bars, and the lock regions
are segmented, as shown in Fig. 10.3d. The bars and the lock are assigned the gray
levels 168 and 255, respectively.

Picking the lowest point in the valley between peaks of the histogram is a practical
choice for the threshold. The histogram of the example image has clear valleys so that
the selection of the thresholds and, hence, the segmentation of the image are easy.
For any application of thresholding, the selection of the appropriate threshold is the
key step. While algorithms have been developed for the determination of optimum
threshold values, the manual approach, by trial and error, is the best in most of the
cases. However, it may not be feasible if the number of images is very large, and
algorithms are required for automatic determination of the threshold.

286 10 Segmentation

A simple algorithm to find the threshold is to iteratively separate the gray-level
values into two groups based on an initial threshold, take the average of the averages
of the two groups as the new threshold, and continue the process until the difference
between the estimated threshold values of two consecutive iterations is within some
limit. Consider the 4 × 4 image

⎡
⎢⎢⎣
185 182 45 2
188 140 10 5
189 74 2 7
164 21 5 6

⎤
⎥⎥⎦

Let the initial threshold be the average gray level of the image, 76.5625. With this
threshold, we get two groups of pixels

⎡
⎢⎢⎣
185 182
188 140
189
164

⎤
⎥⎥⎦

⎡
⎢⎢⎣

45 2
10 5

74 2 7
21 5 6

⎤
⎥⎥⎦

The first group has values greater than 76.5625 with the average 174.6667. The
second group has the remaining values with the average 17.7. The average of the
values, 96.1833, is the new threshold value. In the next iteration, we get the same
value, and the algorithm terminates. The segmented image is

⎡
⎢⎢⎣
1 1 0 0
1 1 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦

This simple algorithm works well for histograms with a reasonably clear valley
between peaks.

10.2.1 Thresholding by Otsu’s Method

This method maximizes the between-class variance, and it is based on the histogram
of the image. Let the range of gray levels of the image be from 0 to L − 1, and the
normalized histogram values be hn(k), k = 0, 1, . . . L − 1. Let the threshold T be
k, k = 0, 1, . . . , L − 1. Then, the pixels are placed in two groups g1 and g2 with
the first group consists of pixels with gray levels in the range from 0 to k, and the
other group consists of pixels with gray levels in the range from k + 1 to L − 1. The
between-class variance, σ2

b(k), is given by

σ2
b(k) = hc1(k)(ha1(k) − ha(L − 1))2 + hc2(k)(ha2(k) − ha(L − 1))2 (10.1)

10.2 Threshold-Based Segmentation 287

where thenormalized cumulative histogramsand the average intensities are defined as

hc1(k) =
k∑

i=0

hn(i), hc2(k) =
L−1∑

i=k+1

hn(i) = 1 − hc1(k),

ha1(k) = 1

hc1(k)

k∑
i=0

(i) hn(i), ha2(k) = 1

hc2(k)

L−1∑
i=k+1

(i) hn(i),

ha(k) =
k∑

i=0

(i) hn(i), ha(L − 1) =
L−1∑
i=0

(i) hn(i)

Since

hc2(k) = 1 − hc1(k), ha1(k) = ha(k)

hc1(k)
and ha2(k) = ha(L − 1) − ha(k)

1 − hc1(k)
,

we get σ2
b(k) as

σ2
b(k) = (ha(L − 1)hc1(k) − ha(k))2

hc1(k)(1 − hc1(k))
(10.2)

It is clear from Eq.10.1 that the larger the difference between the means ha1(k) and
ha2(k), the larger is the between-class variance. A measure of the separability of the
image intensities, in the range 0–1, is given by

σ2
b(k)

σ2

where σ2 > 0 is the image variance. If all the pixels have the same gray-level
value, then only the variance is zero, and, in that case, it is not possible to separate
the histogram. Equation10.2 is convenient for computation, since it requires fewer
variables to compute the variance.

Consider the 4 × 4 3-bit image

⎡
⎢⎢⎣
2 7 6 6
5 6 5 5
6 5 5 6
7 6 4 5

⎤
⎥⎥⎦

The normalized histogram hn(k), and its cumulative sum hc1(k), the average inten-
sity ha(k), and the variance σ2

b(k) are shown, respectively, in the rows from 2 to 5 in
the following table.

Since it is a 3-bit image, the gray-level range, shown in the first row, varies from
0 to 7. For example, σ2

b(2)

288 10 Segmentation

Gray level, k 0 1 2 3 4 5 6 7
hn(k) 0 0 0.0625 0 0.0625 0.3750 0.3750 0.1250
hc1(k) 0 0 0.0625 0.0625 0.1250 0.5 0.8750 1
ha(k) 0 0 0.1250 0.1250 0.3750 2.2500 4.5000 5.3750
σ2
b(k) 0 0 0.7594 0.7594 0.8058 0.7656 0.3772 0

((5.375)(0.0625) − 0.125)2

(0.0625(1 − 0.0625))
= 0.7594

The index of the maximum variance 0.8058 is 4, and it is the optimum threshold
value T . If the maximum variance occurs more than once, then the average value of
the indices is taken as the threshold. The measure of the separability is given by

0.8058∑7
k=0(k − 5.375)2hn(k)

= 0.5928

This measure varies from 0 (for an image with a single gray level) to 1 (for a 2-valued
image with gray levels 0 and L −1 only). Figure10.4a shows a 256×256 gray-level

0 131 255
0

853

 c
ou

nt

 gray level

0 131 255
0

4000

be
tw

ee
n−

cl
as

s v
ar

ia
nc

e

 gray level

(a) (b)

(c) (d)

Fig. 10.4 aA256×256 gray-level image; b its histogram; c segmented image; d the between-class
variance

10.2 Threshold-Based Segmentation 289

image, and (b) shows its histogram with the threshold 131. The segmented image is
shown in (c). The between-class variance is shown in (d).

The two algorithms presented produce nearly the same threshold when the separa-
bilitymeasure is high. In other cases, where thresholding is effective in segmentation,
Otsu’s method produces better results.

10.2.1.1 Segmenting Noisy Images

When an image is degraded due to noise, its histogram becomes somewhat flat, and
segmentation becomes difficult. Figure10.5a shows a 256 × 256 gray-level noisy
image. The noise is Gaussian with mean zero and standard deviation 0.04. The
valleys and peaks in the histogram of the original image have disappeared in the
histogram, shown by dots in (b). If we apply the Otsu’s method and segment, the
resulting image is shown in (c). All the white dots in the black regions and vice versa
are segmentation errors. Applying a lowpass 5×5 averaging filter reduces the noise,

0 135 255
0

657

 c
ou

nt

 gray level

(a) (b)

(c) (d)

Fig. 10.5 a A 256 × 256 gray-level noisy image; b its histogram (dots) and the histogram (line)
after noise reduction; c segmented noisy image; d segmented image after noise reduction

290 10 Segmentation

and the original histogram is almost restored, as shown by a line in (b). The result
of thresholding is shown in (d). The thresholds of the noisy and filtered images are
134 and 129, respectively.

10.3 Region-Based Segmentation

In this type of segmentation, pixels are grouped into regions based on some similar-
ity criteria and connectivity. For a pixel to be a part of a region, it should have
the attributes characterizing the region and also should meet some connectivity
constraints. Given a set of pixels, if we can identify at the least one 4-connected
path between any pair of pixels, then it is a 4-connected region. Both 4- and 8-
connectivities are often used in image-processing operations. An image can be con-
sidered as the union of disjoint regions, each region characterizing an object. A pixel
belongs to any one of the regions of the image. The pixels in a region are connected.
Typical attributes characterizing a region are:

• The average of the gray values of the pixels in a region is significantly different
from that of the image.

• The standard deviation of the gray-level values of the pixels in the region is within
a distinct range.

• Pixels in the region exhibit distinct textural properties.

10.3.1 Region Growing

In the region-growing method of segmentation, we start with a pixel, called a seed
pixel, and start checking the similarity of the attributes of the pixels and the connec-
tivity. All the pixels satisfying the criteria are collected, and they form the region.
The process is continued until all the pixels of the image are assigned to some region.

Consider the 8 × 8 image x(m, n).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

179 179 183 180 185 183 182 175
175 179 185 179 181 179 177 173
180 183 181 170 181 176 174 174
181 181 182 180 174 176 179 175
185 184 185 177 172 176 174 170
184 184 182 182 175 172 165 167
177 185 181 175 171 166 165 169
179 184 177 173 170 171 171 172

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R0(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let the seed pixel be x(2, 5) = 176, shown in boldface. Let us use the 4-connectivity,
and the region is to be made of pixels with gray levels less than or equal to 176. The

10.3 Region-Based Segmentation 291

seed pixel R0(2, 5) is 1 in the region matrix R0(m, n). The pixels are examined row
by row. In the first iteration, the four neighbors

{x(2, 5), x(2, 7), x(1, 6), x(3, 6)}

of x(2, 6) are examined. Obviously, pixel x(2, 6) belongs to the region and entered
in the 8 × 8 R1(m, n) matrix with 1 at the corresponding coordinates (2, 6). This
entry is done only once for each pixel. Then, pixel x(2, 7) is also found to be in the
region. Out of bounds, pixels are to be ignored. That is, pixels in the defined image
only are considered for connectivity determination. Then, the pixels in the next row
are scanned. At the end of the first iteration, the region matrix R1(m, n) is

R1(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After two more iterations, the final region map is obtained.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

With 8-connectivity, the final region matrix is

R(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

292 10 Segmentation

Fig. 10.6 a and b Partially segmented image during initial iterations; c the segmented image;
d the image after morphological closing operation

One more pixel at coordinates (2, 3) is in the region compared with that of the 4-
connectivity. The algorithm can also be used for growing a set of regions, each with
a single seed pixel.

Figure10.6a–d shows the segmentation of the image in Fig. 10.1a by region grow-
ing.The threshold is 89, and8-connectivity condition is used. Figure10.6a andb show
partially segmented image during initial iterations. The segmented image, shown in
Fig. 10.6c, has some small white patches. These can be removed by morphological
closing operation, as shown in Fig. 10.6d.

The main limitation of this method is its dependence upon the location of the
seeds. If the location of the seed is not available, then one procedure is to cluster
the pixels of the regions, find the centroids, and use the coordinates of the pixels in
the neighborhood of the centroids as the seed points. Figure10.7 shows finding the
location of the seeds by clustering. A 8 × 8 image with two regions, one marked
by dots (4 pixels) and the other by crosses (9 pixels), is shown in the figure. Any

10.3 Region-Based Segmentation 293

Fig. 10.7 Finding the
location of the seeds by
clustering

2 3 5 6 7

2

3

5

6

7

n

m

two points of the regions can be selected as initial centroids, for example (2, 2) and
(2, 3), shown by circles in the figure. Now, points closest to each centroid are grouped
together, and a new centroid is found. The points closest to (2, 2) are (2, 2) and (2, 3).
They form the first group after the first iteration. The new centroid of this group is
(2.5, 2), shown by asterisk. The rest of the 11 pixels form the second group, and their
new centroid is (5.3636, 5.4545). In the next iteration, pixels are grouped properly
with 4 in the first group and 9 in the second group, and final centroids (shown by the
diamond symbol) are fixed. At this point of convergence, the sum of the distances
of the pixels from their respective centroids is minimum. Even if the number of
regions is given, some number of trials are recommended to fix the seed locations.
If the number of regions is unknown, experimentation is the solution until the given
segmentation problem is adequately solved.

10.3.2 Region Splitting and Merging

While region growing is a bottom-up approach, region splitting and merging is a
top-down approach. The criteria of segmentation do not hold for the whole image,
and we divide the image into subimages. This division is carried out recursively until
the criteria are met and the merging of all these subimages as required in the region
being formed. The data structure most suitable for this algorithm is quadtree. This
is a tree in which each node, except the leaves, has four children. Each segmented
region is represented by a leaf. This type of data structure is also used in image
compression algorithms.

294 10 Segmentation

We start with a region image of the same size as the input image with all the pixel
values equal to 1. The same image in the last example, after the first iteration of
dividing it into four quadrants of size 4 × 4, yields the region map R1(m, n).

R1(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Each quadrant is checked with the constraint that the pixel value is less than or equal
to 176, along with the 4-connectivity condition. Since there are no such pixels in the
top-left quadrant of the image, all its entries are zeros in R1(m, n). Each of the other
three quadrants are further divided into four quadrants of size 2×2. After examining
the pixels, the region map, at the end of the second iteration, is

R2(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the third iteration, the image is divided into subimages of size 1 × 1, and the rest
of the pixels are labeled yielding the same region map as in region growing.

Figure10.8a shows the segmentation of the image in Fig. 10.1a by region splitting
and merging. The threshold is 89, and 8-connectivity condition is used. We start with
a 256×256 region image with all pixels equal to zero. The image is divided into four
quadrants each of size 128×128 in the first iteration. The pixels in each of the blocks
are tested. Since none of the quadrants can be eliminated as a nonregion, we further
divide each quadrant into blocks of size 64 × 64. Now, no pixel in the upper-left
and bottom-right quadrants satisfies the segmentation conditions. Therefore, they
are marked white as shown in (a). The process continues, and the elimination of
block sizes 16× 16 and 4× 4 are shown, respectively, in (b) and (c). The segmented
image is shown in (d).

10.4 Watershed Algorithm 295

Fig. 10.8 Segmentation of a 256 × 256 image. a–c The image during iterations of the algorithm;
d the segmented image

10.4 Watershed Algorithm

A watershed is a ridge that divides the catchment basins. The location of the water-
shed lines demarcates the basins. In image processing, an image is segmented using
the boundaries by a process which resembles finding the watershed lines in a catch-
ment area. The idea is to derive an image, from the input image, such that the
catchment basins correspond to the constituent regions of the image. The distance
between pixels is an important entity in watershed algorithms as well as in other
image-processing tasks. Now, we present an algorithm to approximate the Euclidean
distance.

10.4.1 The Distance Transform

It is often required to find the distance between pixels in images. The Euclidean
distance between pixels x(p, q) and x(m, n) is defined as

296 10 Segmentation

d =
√
(m − p)2 + (n − q)2 (10.3)

For large number of pixels, the number of operations becomes very large. In addition,
the operation is computationally intensive. The distance transform is an algorithm
for computing the distances. Let the binary image x(m, n) be

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Theminimum distance between each pixel to its nearest pixel in the connected region
defined by the 1s, using Eq.10.3 is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.4721 3.6056 2.8284 2.2361 1.4142 1.0000 1.4142 2.2361
4.1231 3.1623 2.2361 1.4142 1.0000 0 1.0000 2.0000
4.0000 3.0000 2.0000 1.0000 0 0 1.0000 1.4142
3.6056 2.8284 2.2361 1.4142 1.0000 0 0 1.0000
3.1623 2.2361 1.4142 1.0000 1.0000 0 0 1.0000
3.0000 2.0000 1.0000 0 0 0 1.0000 1.4142
3.1623 2.2361 1.4142 1.0000 1.0000 0 1.0000 2.0000
3.6056 2.8284 2.2361 2.0000 1.4142 1.0000 1.4142 2.2361

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The algorithm finds the approximate distances at a reduced computational complex-
ity. The algorithm is essentially passing 2 masks over the image. The forward and
backward masks are

h f (m, n) =
⎡
⎣∞ 1 ∞

1 0 ∞
∞ ∞ ∞

⎤
⎦ and hb(m, n) =

⎡
⎣∞ ∞ ∞

∞ 0 1
∞ 1 ∞

⎤
⎦

The given image is sufficiently zero-padded, and all the zero-valued pixels are
assigned a value of ∞, and the pixels with value 1 are assigned the value 0, giv-
ing a initial distance matrix DS as

10.4 Watershed Algorithm 297

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞
∞ ∞ ∞ ∞ 0 0 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, the forward mask is passed over the matrix, starting from top-left corner of
the image. The mask is moved from left to right and top to bottom. At each pixel,
the pixels of the mask are added with the corresponding pixels of the image. The
minimum value of this set replaces current value in the DS matrix. At each pixel
location, the updated values of the DS matrix are to be used in the computation, not
those of the initial DS matrix. For example, the pixels in the third row are updated
as [∞ 1

1 0

]
+

[∞ ∞
∞ 0

]
=

[∞ ∞
∞ 0

]

[∞ 1
1 0

]
+

[∞ ∞
0 ∞

]
=

[∞ ∞
1 ∞

]

[∞ 1
1 0

]
+

[∞ ∞
1 ∞

]
=

[∞ ∞
2 ∞

]

The result of the first pass is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 1 2 ∞
∞ ∞ ∞ ∞ ∞ 0 0 1 2 ∞
∞ ∞ ∞ ∞ ∞ 1 0 0 1 ∞
∞ ∞ ∞ ∞ ∞ 2 0 0 1 ∞
∞ ∞ ∞ ∞ 0 0 0 1 2 ∞
∞ ∞ ∞ ∞ 1 1 0 1 2 ∞
∞ ∞ ∞ ∞ 2 2 1 2 3 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remember that ∞ + 1 = ∞. Now, the backward mask is passed over this matrix,
starting from bottom-right corner of the image. The mask is moved from right to
left and bottom to top. At each pixel, the pixels of the mask are added with the
corresponding pixels of the image. The minimum value of this set replaces current
value in the DS matrix. The result of the second pass is

298 10 Segmentation

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 5 4 3 2 1 2 3
5 4 3 2 1 0 1 2
4 3 2 1 0 0 1 2
5 4 3 2 1 0 0 1
4 3 2 1 1 0 0 1
3 2 1 0 0 0 1 2
4 3 2 1 1 0 1 2
5 4 3 2 2 1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These distances are approximate. A more accurate result can be obtained using
integer-valued masks and by increasing the mask size. Consider the forward and
backward masks

h f (m, n) =
⎡
⎣ 4 3 4

3 0 ∞
∞ ∞ ∞

⎤
⎦ and hb(m, n) =

⎡
⎣∞ ∞ ∞

∞ 0 3
4 3 4

⎤
⎦

With these masks, the first pass result is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 3 6 ∞
∞ ∞ ∞ ∞ ∞ 0 0 3 6 ∞
∞ ∞ ∞ ∞ 4 3 0 0 3 ∞
∞ ∞ ∞ 8 7 4 0 0 3 ∞
∞ ∞ 12 11 0 0 0 3 4 ∞
∞ 16 15 4 3 3 0 3 6 ∞
∞ 19 8 7 6 4 3 4 7 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the second pass result is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 11 8 7 4 3 4 7
13 10 7 4 3 0 3 6
12 9 6 3 0 0 3 4
11 8 7 4 3 0 0 3
10 7 4 3 3 0 0 3
9 6 3 0 0 0 3 4

10 7 4 3 3 0 3 6
11 8 7 6 4 3 4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These values have to be divided by 3, the value for pixel at distance 1. The first value
14/3 = 4.6667 is quite close with the exact value 4.4721.

Consider the forward and backward masks

10.4 Watershed Algorithm 299

h f (m, n) =

⎡
⎢⎢⎢⎢⎣

∞ 11 ∞ 11 ∞
11 7 5 7 11
∞ 5 0 ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎦ and hb(m, n) =

⎡
⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ 0 5 ∞
11 7 5 7 11
∞ 11 ∞ 11 ∞

⎤
⎥⎥⎥⎥⎦

With these masks, the first pass result is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 5 10 ∞ ∞
∞ ∞ ∞ ∞ ∞ 11 0 0 5 10 ∞ ∞
∞ ∞ ∞ 22 11 7 5 0 0 5 ∞ ∞
∞ ∞ 22 18 14 11 7 0 0 5 ∞ ∞
∞ ∞ 25 21 18 0 0 0 5 7 ∞ ∞
∞ ∞ 28 11 7 5 5 0 5 10 ∞ ∞
∞ ∞ 18 14 11 10 7 5 7 11 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the second pass result is

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

22 18 14 11 7 5 7 11
21 16 11 7 5 0 5 10
20 15 10 5 0 0 5 7
18 14 11 7 5 0 0 5
16 11 7 5 5 0 0 5
15 10 5 0 0 0 5 7
16 11 7 5 5 0 5 10
18 14 11 10 7 5 7 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Dividing by 5, we get

DS(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.4 3.6 2.8 2.2 1.4 1.0 1.4 2.2
4.2 3.2 2.2 1.4 1.0 0 1.0 2.0
4.0 3.0 2.0 1.0 0 0 1.0 1.4
3.6 2.8 2.2 1.4 1.0 0 0 1.0
3.2 2.2 1.4 1.0 1.0 0 0 1.0
3.0 2.0 1.0 0 0 0 1.0 1.4
3.2 2.2 1.4 1.0 1.0 0 1.0 2.0
3.6 2.8 2.2 2.0 1.4 1.0 1.4 2.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

300 10 Segmentation

Fig. 10.9 a A 256 × 256 8-bit image; b distance transform of its complemented binary version;
c labeled image indicating the two regions and the boundary between them; d segmented image

10.4.2 The Watershed Algorithm

Figure10.9a shows a 256×256 8-bit image. The image is composed of two overlap-
ping regions. The binary version of the image is derived first by suitable thresholding.
Then, the binary image is complemented. The regions become black, and the back-
ground becomes white. The distance between each black pixel to its nearest white
pixel is computed, and it is shown in Fig. 10.9b. The distance for each white pixel is
zero, since the nearest white pixel is itself. Pixels in the center of the regions have
the largest distances. The complement of this image makes the two regions similar to
two catchment basins, and their minima indicate their bottom. Then, the watershed
algorithm finds equidistant lines between the minima of the regions. In addition, the
algorithm assigns label 0 to the boundary lines and other integers to the regions.
For the example, Fig. 10.9c shows the labeled image with the two regions and the
boundary line in between. The boundary line is superimposed on the input image
yielding the segmented image, shown in Fig. 10.9d.

10.4 Watershed Algorithm 301

Fig. 10.10 a A 256×256 8-bit image; b its magnitude edge image; c watershed lines; dwatershed
lines with some morphological processing

The segmentation of the regions is perfect in the last example, since we used an
idealized image.Good segmentation results can be achieved for practical images also,
but with some additional processing. Consider the 256 × 256 8-bit image shown in
Fig. 10.10a. In addition to the distancemeasure, themagnitude of the edgemap can be
used in thewatershed algorithm. The gradientmagnitude is high along the boundaries
of regions and relatively low elsewhere. Either with the distance measure or with the
gradient magnitude, due to noise and irrelevant objects, over-segmentation results.
Figure10.10b shows the gradient magnitude image obtained using the Sobel edge
operator. Figure10.10c and d show the watershed lines obtained without and with
some morphological processing to smooth the gradient image. Even in the second
case, there are too many watershed lines, and it is difficult to make a correspondence
with the regions of interest.

Some suitable preprocessing using the characteristics of the regions mitigates the
over-segmentation problem.Consider the 256×2568-bit image shown inFig. 10.11a.
Let us say that the regions of interest are the three white flowers (one partly seen).
With the threshold at 96, the binary image, shown in Fig. 10.11b, is obtained. Then,
the binary image is subjected to morphological open and close operations, in that

302 10 Segmentation

Fig. 10.11 a A 256 × 256 8-bit image; b its thresholded version; c image after morphological
processing; d its distance transform; e labeled image indicating the three regions and the boundary
lines between them; f segmented image

10.4 Watershed Algorithm 303

order, with the same structuring element, which is a disk of radius 9. The three
objects are distinctly segmented, as shown in Fig. 10.11c. Figure10.11d shows the
distances. Figure10.11e shows the labeled image with the three regions and the
boundary lines between them. The boundary lines are first dilated (to make it clearly
visible) and then superimposed on the input image yielding the segmented image,
shown in Fig. 10.11f.

10.5 Summary

• Segmentation of an image is its partition into regions representing objects of inter-
est.

• Segmentation provides a compact and abstract representation of an image that is
necessary for the classification of the objects in the image.

• Selection of the method and the set of features that discriminate the regions are
critical for effective segmentation.

• Segmentation methods either find the borders of the different regions or group the
pixels in the regions. Each method has several variations.

• Edge detection is used to segment an image by finding the borders of the regions
using the abrupt change in the intensity of the pixels along the borders.

• Thresholding method segments an image using the different ranges of the gray
levels of the different regions.

• Region-growing method of segmentation, starting with a seed pixel, grows the
region by grouping the pixels based on similarity of selected features and connec-
tivity.

• Region splitting and merging method subdivides an image into some number
of disjoint regions and then split and merge the regions as required to meet the
similarity criteria and connectivity.

• In watershed segmentation method, an image is segmented based on the distance
of the pixels of a region from other pixels.

Exercises

10.1 Using the averaging method, find the threshold of the 4 × 4 8-bit image. Let
the initial value of the threshold be the average of the gray levels of the image.
The iteration stops when the difference between two consecutive threshold values
becomes less than 0.5. ⎡

⎢⎢⎣
140 10 5 6
74 2 7 6
21 5 6 5
2 6 5 5

⎤
⎥⎥⎦

304 10 Segmentation

10.2 Using the averaging method, find the threshold of the 4 × 4 8-bit image. Let
the initial value of the threshold be the average of the gray levels of the image.
The iteration stops when the difference between two consecutive threshold values
becomes less than 0.5. ⎡

⎢⎢⎣
191 102 1 7
182 45 2 6
140 10 5 6
74 2 7 6

⎤
⎥⎥⎦

*10.3 Using the averaging method, find the threshold of the 4 × 4 8-bit image.
Let the initial value of the threshold be the average of the gray levels of the image.
The iteration stops when the difference between two consecutive threshold values
becomes less than 0.5. ⎡

⎢⎢⎣
184 188 72 2
188 163 22 5
191 102 1 7
182 45 2 6

⎤
⎥⎥⎦

10.4 Using Otsu’s method, find the threshold of the 4 × 4 3-bit image. Find the
separability index. ⎡

⎢⎢⎣
5 2 6 5
2 5 6 6
2 7 6 6
5 6 5 5

⎤
⎥⎥⎦

10.5 Using Otsu’s method, find the threshold of the 4 × 4 3-bit image. Find the
separability index. ⎡

⎢⎢⎣
4 0 2 6
3 6 5 6
6 1 7 6
5 2 6 5

⎤
⎥⎥⎦

*10.6 Using Otsu’s method, find the threshold of the 4 × 4 3-bit image. Find the
separability index. ⎡

⎢⎢⎣
5 6 5 5
6 5 5 6
7 6 4 5
5 5 5 5

⎤
⎥⎥⎦

10.7 Consider the 8 × 8 image. The seed pixel is shown in boldface. Use the 4-
connectivity to segment the image so that the region is to be made of pixels with
gray levels less than or equal to 176.

Exercises 305

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

255 207 73 38 42 43 42 40
255 255 205 46 43 45 43 42
255 255 253 84 36 43 46 43
255 255 255 126 37 45 46 44
255 255 255 169 35 45 46 45
255 255 255 222 54 37 42 42
255 255 255 242 120 28 39 39
255 255 255 240 212 92 33 42

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

*10.8 Consider the 8 × 8 image. The seed pixel is shown in boldface. Use the 4-
connectivity to segment the image so that the region is to be made of pixels with
gray levels less than or equal to 76.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

172 157 115 62 4 4 4 46
163 165 118 83 13 6 9 46
138 185 128 71 90 24 19 30
121 184 126 83 78 51 50 51
156 185 136 74 40 42 44 53
160 175 121 63 77 81 65 71
178 170 128 88 73 61 59 59
176 163 133 97 88 35 26 27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.9 Consider the 8 × 8 image. The seed pixel is shown in boldface. Use the 4-
connectivity to segment the image so that the region is to be made of pixels with
gray levels less than or equal to 56.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

65 62 65 61 59 57 56 54
58 62 64 62 58 58 54 52
71 71 64 63 58 55 54 54
71 71 70 70 62 57 54 55
71 70 68 69 66 62 59 58
69 66 67 67 62 61 60 58
65 62 63 65 64 61 60 55
66 61 61 61 62 62 60 57

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

*10.10 Consider the 8× 8 image. Use the 8-connectivity to segment, using the split
and merge algorithm, the image so that the region is to be made of pixels with gray
levels less than or equal to 45.

306 10 Segmentation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

59 50 40 29 22 20 20 21
55 48 39 28 22 20 20 20
53 47 38 28 22 20 20 22
54 47 38 28 22 20 20 23
57 49 40 29 23 21 21 22
62 54 44 32 25 22 22 20
69 60 49 36 28 23 22 20
78 68 55 41 31 24 22 22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.11 Consider the 8 × 8 image. Use the 8-connectivity to segment, using the split
and merge algorithm, the image so that the region is to be made of pixels with gray
levels less than or equal to 240.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

248 247 242 238 236 235 235 234
248 247 243 241 238 235 235 234
249 248 244 242 239 235 235 235
249 248 246 244 240 235 235 235
249 248 247 245 241 236 236 235
247 247 246 244 241 236 236 236
244 245 244 243 241 236 236 236
241 243 242 241 239 236 236 236

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.12 Consider the 8 × 8 image. Use the 8-connectivity to segment, using the split
and merge algorithm, the image so that the region is to be made of pixels with gray
levels less than or equal to 240.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

239 240 240 240 241 243 238 231
239 240 240 240 241 242 239 234
239 240 240 240 240 240 240 238
239 240 240 240 239 238 240 241
239 240 240 240 239 239 242 244
237 238 239 240 241 245 245 245
236 238 239 240 241 245 246 245
236 238 239 240 241 245 246 245

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.13 Find the seed points of the regions by clustering and finding the centroids.
Initial seeds are {2, 2} and {2, 3}.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercises 307

*10.14 Find the seed points of the regions by clustering and finding the centroids.
Initial seeds are {2, 2} and {2, 3}.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.15 Find the seed points of the regions by clustering and finding the centroids.
Initial seeds are {2, 2} and {2, 3}.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.16 Using the distance transform with masks

h f (m, n) =
⎡
⎣∞ 1 ∞

1 0 ∞
∞ ∞ ∞

⎤
⎦ and hb(m, n) =

⎡
⎣∞ ∞ ∞

∞ 0 1
∞ 1 ∞

⎤
⎦

find the distance of the pixels of the 8 × 8 image.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.17 Using the distance transform with masks

308 10 Segmentation

h f (m, n) =
⎡
⎣ 4 3 4

3 0 ∞
∞ ∞ ∞

⎤
⎦ and hb(m, n) =

⎡
⎣∞ ∞ ∞

∞ 0 3
4 3 4

⎤
⎦

find the distance of the pixels of the 8 × 8 image.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

*10.18 Using the distance transform with masks

h f (m, n) =

⎡
⎢⎢⎢⎢⎣

∞ 11 ∞ 11 ∞
11 7 5 7 11
∞ 5 0 ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

⎤
⎥⎥⎥⎥⎦ and hb(m, n) =

⎡
⎢⎢⎢⎢⎣

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ 0 5 ∞
11 7 5 7 11
∞ 11 ∞ 11 ∞

⎤
⎥⎥⎥⎥⎦

find the distance of the pixels of the 8 × 8 image.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 11
Object Description

Abstract The objects of a segmented image are represented by various ways, and
their features are extracted to enable object recognition. The boundary of an object
is represented by chain code, signature, and Fourier descriptor. The interior of a
region is characterized by their geometrical features, moments, and textural features.
Typical geometrical features are area, perimeter, compactness, and irregularity. Euler
number is a topological descriptor.Moments are a sort of combination of geometrical
features. Textural features are derived based on the histogram and co-occurrence
matrices. Principal component analysis is based on decomposing an image into its
components and leads to data reduction using linear algebra techniques.

Feature is a prominent attribute or distinct characteristic of anobject. The chin,mouth,
nose, eyes, and forehead are the features of a human face. Both the size and other
features of these objects can be used to identify a particular face. Similarly, an image
is composed of several objects. Each object is a collection of pixels, and it has to be
described. The descriptor is a set of numbers characterizing the salient properties of
the object. The descriptor is compared with that of the reference object for object
recognition. A descriptor should have some desirable properties. A descriptor should
completely characterize an object and, at the same time, it should be concise. A
descriptor should be unique. That is, two objects with the same descriptor must
have the same shape. Similar objects should have similar descriptors. A descriptor
should be invariant with respect to scaling, rotation, and translation. Any prominent
attribute or aspect of an object is a feature. Features are used both for segmentation
and classification. Features should be evaluated and a figure-of-merit established for
each feature. This is done by applying the features for segmentation and classification
of artificial images with known features.

A region of an image is characterized by its internal or external features. Internal
features are based on the pixels comprising the region. Typical features are area,
perimeter, and compactness. External features are related to the boundary of the
region.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_11

309

310 11 Object Description

11.1 Boundary Descriptors

A region is characterized by its boundary, and the form of the boundary is called the
shape. A point is on the boundary if there is at the least one of its neighbors is outside
the region and the point itself is in the region. One way of finding the boundary of an
object is to start at a point on the boundary and keep following the boundary, either
clockwise or anticlockwise, using connectivity and other conditions. Four pixels that
share an edge (located on the same row or column), but not a corner, with a pixel are
its 4-connected neighbors.

11.1.1 Chain Codes

The set of coordinates of all the boundary pixels of a region is its description. How-
ever, we are looking for efficient ways to represent the shape. One way is to use a
code for each principal direction the trace of the boundary could move. Figure11.1
shows the encoding scheme for chain coding with 8 directions. Each direction can
be coded with 3 bits. If the boundary path moves toward east direction from a pixel
to its neighbor, then the path is coded with digit 0. A path along west is coded with
digit 4 and so on.

Figure11.2 shows the chain coding of a boundary with 8 directional codes. Let us
start with the top-left pixel on the boundary and traverse in the clockwise direction.
The path moves along the east direction and, therefore, that link is coded with 0.
Proceeding similarly, the chain code for the region is

{0, 0, 7, 6, 5, 6, 5, 5, 6, 4, 4, 2, 2, 3, 2, 1, 1, 1}

Despite the starting point, we can always end up with the same code for the same
boundary by shifting the code (assuming that the digits of the code form an integer)
so that its magnitude is the minimum. In the example, the magnitude of the code
happens to be minimum. Chain code is invariant with respect to translation only. By

Fig. 11.1 Encoding scheme
for 8-directional chain
coding

04

2

6

13

5 7

11.1 Boundary Descriptors 311

Fig. 11.2 Chain coding of a
boundary with 8 directional
codes

0 0
7

6

5

6

5

5

6
4 4

2

2

3

2

1

1

1

finding the differences of the adjacent codes, rotational invariance can be obtained.
The difference is the number of changes in the direction between the adjacent codes
in clockwise or counterclockwise direction. The code for the example, using the
counterclockwise direction, after finding the differences is

{7, 0, 7, 7, 7, 1, 7, 0, 1, 6, 0, 6, 0, 1, 7, 7, 0, 0}

The first two codes are {0, 0} pointing in the same direction, and, therefore, the
second difference code is 0. The next two codes are {0, 7}. Starting from direction 0
and traversing in the counterclockwise direction, seven changes in the direction are
required to get to direction 7. Therefore, the difference code is 7. The first element
of the difference code, 7, is computed using the last and first codes {1, 0}. Rotational
dependence is removed in the relative changes. Circularly shifting the code to the
right two times, the code with the minimum magnitude is obtained.

{0, 0, 7, 0, 7, 7, 7, 1, 7, 0, 1, 6, 0, 6, 0, 1, 7, 7}

11.1.2 Signatures

A signature is a 1-D representation of a 2-D region by the radial distances of its
boundary. The radial distances are computed from the centroid of the region. Then,
the signature is plotted, distance versus angle. The signature of a closed boundary is
a periodic function. This description is applicable to shapes for which the signature
is a single-valued function. The area of a region x(m, n) is given by

312 11 Object Description

A =
N−1∑

m=0

N−1∑

n=0

x(m, n)

The coordinates of the centroid (center of mass), (m̄, n̄), of the region is defined as

m̄ = 1

A

N−1∑

m=0

N−1∑

n=0

mx(m, n) and n̄ = 1

A

N−1∑

m=0

N−1∑

n=0

nx(m, n)

For example, the centroid of a circle of radius R with the center at the origin is (0, 0).
Now, the radial distance at any angle is R and, therefore, the signature of this circle
is a constant function d(θ) = R.

Consider the 4 × 4 binary image x(m, n)

x(m, n) =

⎡

⎢⎢⎣

0 1 1 1
0 1 0 1
0 1 0 1
0 1 1 1

⎤

⎥⎥⎦

With the top-left corner the origin (0, 0), the centroid of the boundary is at (1.5, 2).
The signature is

θ 0◦ 34◦ 63◦ 117◦ 146◦ 180◦ −34◦ −63◦ −117◦ −146◦
d(θ) 1.5 1.8028 1.1180 1.1180 1.8028 1.5 1.8028 1.1180 1.1180 1.8028

For example, the distance of the bottom-right pixel at coordinates (3,3) is

√
(1.5 − 3)2 + (2 − 3)2 = 1.8028

and the angle is 34◦.
Consider the 100 × 78 binary image and its signature shown, respectively, in

Fig. 11.3a and b.
The centroid is (52.6036, 37.0036), shown by a dot and the letter C in Figure (a).

From C to the middle of the left side is angle −90◦. From C to the middle of the
bottom side is angle 0◦. It is obvious that the distance from C is minimum at −90◦.
The distances at some angles are indicated by the symbol ∗ in (b).

11.1.3 Fourier Descriptors

Closed boundaries of an object in an image can be compactly represented using
Fourier coefficients. The two coordinates of all the boundary pixels are represented
in the transform domain. Starting from a point in the boundary with coordinates
(m0, n0), followed by

11.1 Boundary Descriptors 313

0 37 76

96

52.6

8

m

n

(a)

C

−180 −90 0 90 179

29.0063

37.9985

43.3964
44.6036

53.3336

d(
θ)

θ

(b)

Fig. 11.3 a A boundary; b its signature

(ml, nl), l = 1, 2, . . . N − 1

can be considered as a 1-D periodic complex data

d(l) = (ml + jnl), l = 0, 1, . . . N − 1

of period N . The first and second coordinates represent, respectively, the real and
imaginary parts of the complex data. Then, the DFT of d(l), the set of N 1-D DFT
coefficients, is the Fourier descriptor of the boundary with significant advantages.
The 1-D N -point DFT of d(l) is defined as

D(k) =
N−1∑

l=0

d(l)e− j 2π
N kl, k = 0, 1, . . . , N − 1. (11.1)

The 1-D IDFT of D(k) gets back the coordinates.

d(l) = 1

N

N−1∑

k=0

D(k)e j 2π
N kl, l = 0, 1, . . . , N − 1. (11.2)

Figure11.4a and b show, respectively, a rectangular boundary and the normalized
magnitude of part of its Fourier descriptor obtained using Eq. (11.1). The first 16
coefficients are shownbydots, and the last 16 are shownbycrosses. The512boundary
coordinates are encoded into complex form, and its DFT is computed. As the data is
complex, its DFT does not have the conjugate symmetry associated with the DFT of

314 11 Object Description

(a)

0 4 8 12 496 511

0

1(b)

|D
(k

)|
, n

or
m
al

iz
ed

k

(c) (d)

Fig. 11.4 a A rectangular boundary; b the magnitude of the largest 32 of the 512 DFT coefficients
(normalized) of the boundary points; c and d the reconstructed boundaries using only the largest
48 and 32 DFT coefficients, respectively

real data. Figure11.4c and d show the reconstructed boundary using only 48 and 32
of the largest of the 512 DFT coefficients, respectively. The boundary is quite close
to the original.

Fourier analysis is decomposing an arbitrary waveform into its sinusoidal com-
ponents. We always remember the well-known square wave reconstruction example.
As more and more sinusoidal components are used to reconstruct the square wave,
the more closer it becomes to its ideal form. In reconstructing a boundary from its
Fourier descriptor, a similar process occurs but with a difference. Real sinusoidal
waveforms are related to the complex exponential and its conjugate by the Euler’s

11.1 Boundary Descriptors 315

formula. The Fourier descriptor does not have the complex-conjugate symmetry.
A DFT coefficient is the coefficient of a complex exponential

e j 2π
N kl

in the time domain. The samples of a complex exponential occur on the unit circle.
Therefore, the plot of the real and imaginary parts of a complex exponential is a
circle. Its radius is proportional to the magnitude of its coefficient. In reconstructing
a boundary from its Fourier descriptor, we use circles to approximate the boundary.

Figure11.5a shows the circles corresponding to twoof the largestDFTcoefficients
other than the DC. The boundary corresponding to the combined effect of the two
DFT coefficients is also shown, which is an approximation of the actual boundary.
The smaller circle corresponds to a higher frequency and appropriately adds negative
and positive values to the larger circle, therebymaking it closer to the actual boundary.
Now, the addition of the DC component of the DFT, which represents the average of
the two coordinates, fixes the center of the boundary, as shown in Fig. 11.5b. With
just the DC and two other DFT coefficients, we are able to get a good approximation
of the boundary. Therefore, a major advantage is that the shape can be adequately
described by much fewer than the N coefficients. As noise is generally characterized
by high frequencies, this leads to reduce the noise affecting the boundary points.
Another advantage is that the 2-D shape is described by 1-D data.

A descriptor should be as insensitive as possible for scaling, translation, and
rotation. Fourier descriptors of a boundary and its modified version are related due
to the properties of the Fourier transform. Consider the 4 × 4 binary image x(m, n)

and its shifted version x(m + 1, n + 1)

−50 0 50

−50

0

50

60 120 180
60

120

180

(a) (b)

Fig. 11.5 a Two circles corresponding to two DFT coefficients and the boundary corresponding to
their combined effect; b the reconstructed boundary using the DC and two other DFT coefficients
only

316 11 Object Description

x(m, n) =

⎡

⎢⎢⎣

0 0 0 0
0 1 1 1
0 1 0 1
0 1 1 1

⎤

⎥⎥⎦ x(m + 1, n + 1) =

⎡

⎢⎢⎣

1 1 1 0
1 0 1 0
1 1 1 0
0 0 0 0

⎤

⎥⎥⎦

The complex data formed from the boundary coordinates of x(m, n) is

b(l) = {1 + j1, 2 + j1, 3 + j1, 3 + j2, 3 + j3, 2 + j3, 1 + j3, 1 + j2}

The DFT of b(l) is

B(k) = {16 + j16,−6.8284 − j6.8284, 0, 0, 0,−1.1716 − j1.1716, 0, 0}

The complex data formed from the boundary coordinates of x(m + 1, n + 1) is

b(l) = {0 + j0, 1 + j0, 2 + j0, 2 + j1, 2 + j2, 1 + j2, 0 + j2, 0 + j1}

The DFT of b(l) is

B(k) = {8 + j8,−6.8284 − j6.8284, 0, 0, 0,−1.1716 − j1.1716, 0, 0}

Only, the DC components of the two DFTs differ and that difference indicates trans-
lation.

The complex data formed from the coordinates of the rotated boundary of x(m, n),
for example, is

c(l) = e j π
4 {1 + j1, 2 + j1, 3 + j1, 3 + j2, 3 + j3, 2 + j3, 1 + j3, 1 + j2}

The DFT of c(l) is

C(k) = e j π
4 {16 + j16,−6.8284 − j6.8284, 0, 0, 0,−1.1716 − j1.1716, 0, 0}

The starting-point shifted complex data formed from the coordinates of the bound-
ary of c(l), for example, is c(l − 1). The DFT of c(l − 1) is

e− jk 2π
8 C(k) = e− jk 2π

8 e j π
4 {16+ j16, −6.8284− j6.8284, 0, 0, 0, −1.1716− j1.1716, 0, 0}

The scaled complex data formed from the coordinates of the boundary of x(m, n),
for example, is Zb(l) and its transform is Z B(k), due to the linearity property of the
Fourier transform.

11.2 Regional Descriptors 317

11.2 Regional Descriptors

The shape of a region has been identified and represented by a chain code, signa-
ture, or Fourier descriptor. Now, the region has to be described. Features are the
characterizing attributes of the image and its objects. A feature vector is created for
each object. Features are important in image segmentation and classification. Some
features come from visual appearance of an image and other features are derived
by operations such as taking the transform. Derived features include histograms and
spectra of images. Certain patterns of gray-level values and the intensity of regions
are visual features. There are several types of features. It is desirable that features
have the invariance property with respect to scaling, translation, and rotation. This
enables machine vision systems to identify the scaled, translated, and rotated ver-
sions of the same object. Further, the features should be robust despite the conditions
affecting the quality of the image formation such as noise, poor spatial resolution,
improper lighting, and other distortions.

11.2.1 Geometrical Features

Area The area of a connected region x(m, n) of a binary image, measured in pixels,
is defined as

A =
∑

m

∑

n

x(m, n)

It is the number of pixels with value 1 in the region. It is invariant to rotation, except
for a small error due to interpolation involved in rotation. Obviously, area changes
with scaling.

Perimeter Let the coordinates of the perimeter of a region is given by x(k) and y(k).
Then, the perimeter of the region is defined by

P =
∑

k

√
(x(k) − x(k − 1))2 + (y(k) − y(k − 1))2

It is the distance around the boundary of the region. As the pixels are located on a
square grid, the terms in the summation are equal to 1 or

√
2 only, depending on the

neighboring pixels located either on an axis or on a diagonal.

Compactness Compactness is defined, in terms of the perimeter and area, as

C = 4π A

P2
= A

P2/(4π)

For a circular region, which has the highest compactness, with radius r ,

318 11 Object Description

C = (4π(πr2))/((2πr)(2πr)) = 1 (11.3)

For a square, C = π/4. It is a measure of the area enclosing ability of the shape of
the region. It is the ratio of the area of the region and the area of the circle with the
same perimeter as that of the region. Let the object be a unit square. Its area is 1 and
perimeter is 4. The radius of a circle with the same perimeter is (4/(2π)), and its
area is 4/π . The area of the circle is greater than that of the square. Two different
shapes can have the same compactness. Therefore, compactness with other measures
should be used for shape discrimination.

Irregularity Irregularity of a region is defined by

I = π maxk (x(k) − x̄)2 + (y(k) − ȳ)2)

A

where (x̄, ȳ) are the averages of the coordinates of the region. This is a measure
of the density of the region. The numerator defines the area of the smallest circle
enclosing the region. For circular shapes, I is unity. For a square, it is I = 0.5π .
There are also other geometric features.

Consider the 256×256 binary image, shown in Fig. 11.6a. The image is normally
segmented and in binary form for feature extraction. That part involves segmentation
and morphological operations. The area of the four objects in the image is

{2460D, 1279 I, 1621 S, 1537 C}

measured in number of pixels. For example, the width and height of the letter I are,
respectively, 16 and 75. The area is approximately (75)(16) = 1200. All these values

(a)

0.5199 0.6589 1
0.1182
0.1311

0.2675

0.4086

co
m

pa
ct
ne

ss

 normalized area

(b)

I

C
S

D

Fig. 11.6 aA256×256 binary image;b its feature space profile (normalized area and compactness)

11.2 Regional Descriptors 319

are divided by the largest area (2460 of D) to get the normalized area plotted. The
perimeters of the four objects in the image are

{275.0538 D, 245.1127 I, 415.1615 S, 383.8478 C}

For example, the perimeter of the letter I is approximately 2(75 + 16) = 182.
The compactness is computed using Eq. (11.3). The compactness values of the four
objects in the image are

{0.4086 D, 0.2675 I, 0.1182 S, 0.1311 C}

From the feature profile, shown in Fig. 11.6b, letters I and D can be easily identified.
The other two letters are located close to each other in the profile, although still dis-
tinguishable. For large number of objects, more features are required for recognition.
The accuracy of the features itself depends on good segmentation.

11.2.1.1 Euler Number

A topological descriptor of an image x(m, n) is that which remains the same for all its
versions of continuous one-to-one transformations (rubber-sheet distortions). This
descriptor is not affected by rotation or stretching. The Euler number E is defined
as the difference between the number of connected components and the number of
holes. For the image in Fig. 11.6a, E = 4 − 1 = 3, since there are four objects and
one hole.

11.2.2 Moments

Properties of images considering their behavior for very large and very small values
of their independent variables are useful. Moments are global descriptors, similar
to the Fourier descriptors, and provide the advantages of invariance, compactness,
and reducing the effects of noise. They are a sort of combination of the geometrical
features. The (p + q)th order moment of a N × N region x(k, l) is defined as

m pq =
N−1∑

k=0

N−1∑

l=0

k plq x(k, l), p = 0, 1, 2, . . . , q = 0, 1, 2, . . . (11.4)

Eq. (11.4) for various values of p and q are called as moment conditions, because of
the similarity in form tomoments encountered inmechanics. Some specificmoments
are

320 11 Object Description

m00 =
N−1∑

k=0

N−1∑

l=0

x(k, l), m10 =
N−1∑

k=0

N−1∑

l=0

kx(k, l), m01 =
N−1∑

k=0

N−1∑

l=0

lx(k, l)

The zero-order moment is the area. The other two first-order moments are this area
multiplied by their distances of their center of gravity from the origin. The coordinates
of the centroid (center of mass) of the region is defined as

k̄ = m10

m00
and l̄ = m01

m00

The central moments, which are translation-invariant since centroids are part of their
definition, are defined as

μpq =
N−1∑

k=0

N−1∑

l=0

(k − k̄)p(l − l̄)q x(k, l), p = 0, 1, 2, . . . , q = 0, 1, 2, . . . (11.5)

The normalized central moments, which are invariant to translation, scaling, and
rotation, are defined as

ηpq = μpq

μ
γ

00

, γ = (p + q)

2
+ 1, (p + q) = 2, 3, . . . (11.6)

The first seven normalized central moments are defined as

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)((η30 + η12)
2 − 3(η21 + η03)

2)

+ (3η21 − η03)(η21 + η03)(3(η30 + η12)
2 − (η21 + η03)

2)

φ6 = (η20 − η02)((η30 + η12)
2 − (η21 + η03)

2) + 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)((η30 + η12)
2 − 3(η21 + η03)

2)

+ (3η12 − η30)(η21 + η03)(3(η30 + η12)
2 − (η21 + η03)

2)

Consider the 4 × 4 binary image with one region. Let us compute the first two
normalized central moments φ1 and φ2.

x(k, l) =

⎡

⎢⎢⎣

0 1 1 0
0 1 1 0
0 0 1 1
0 0 0 0

⎤

⎥⎥⎦

11.2 Regional Descriptors 321

The coordinates of the top-left corner are (0, 0), those of the bottom-left corner are
(3, 0), those of the top-right corner are (0, 3) and those of the bottom-right corner
are (3, 3).

{m00 = 6, m10 = 6, m01 = 11, k̄ = 1, l̄ = 1.8333}

μ11 = (−1)(−0.8333) + (−1)(0.1667) + (1)(0.1667) + (1)(1.1667) = 2,

μ20 = 4, μ02 = 2.8333

η11 = 0.0556, η20 = 0.1111, η02 = 0.0787, φ1 = 0.1898, φ2 = 0.0134

Figure11.7a shows a segmented binary image with four objects. There are some
small holes in the objects. If we starting labeling, we may end up with more than
four objects. Morphological close operation is used to get the image in Fig. 11.7b.
Morphological operations are usually required in this stage to correct imperfect
segmentation. The four components in the image are labeled and separated, as shown
in Fig. 11.7c–f. The first two moments, φ1 and φ1, of the four objects are listed in
Table11.1. The three components, except the one at the bottom left, are translated,
scaled, and rotated versions of the same object. The moments of these components
in the first, third, and fourth columns are about the same. The moments of the other
object, which is about the same size as the one at the top left, are totally different.
Therefore, the three components are the images of the same object while the fourth
one is different. For the images in Fig. 11.7b–f, the Euler numbers are E = 4− 6 =
−2, E = 1 − 2 = −1, E = 1 − 0 = 1, E = 1 − 2 = −1 and E = 1 − 2 = −1,
respectively.

11.2.3 Textural Features

Texture is a pattern resembling a mosaic, made by a physical composition of an
object using constituents of various sizes and shapes. Statistical features, taken over
the whole image or in its neighborhoods, are used to characterize a texture.

11.2.3.1 Histogram-Based Features

Histogram is a representation of the distribution of the gray values of an image. In
addition to its other uses in image analysis, useful features can also be derived from
it. Let the L gray levels in the N × N image be

u = 0, 1, 2, . . . L − 1

Let the number of occurrences of the gray levels be nu . Then, the histogram of the
image is given as

322 11 Object Description

Fig. 11.7 a A 256 × 256
binary image; b the image
after image close operation;
c–f images of the four
components in (b) separated

11.2 Regional Descriptors 323

Table 11.1 First two moments of the four objects in Fig. 11.7b

φ1 0.4519 0.2320 0.4554 0.4510

φ2 0.1149 0.0269 0.1082 0.1116

his(u) = nu

The normalized histogram of the image is

hisn(u) = p(u) = nu

N 2

Consider the 4 × 4 8-bit image shown in Table 11.2.
The histogram of this image and its normalized version (with a precision of 2

digits) are shown in Table11.3, which also is the probability p(u) of the occurrences
of the gray levels. The nonzero entries only are shown.

Mean The mean m, which is the average intensity, is given by

m =
L−1∑

u=0

up(u)

For the example, the mean is 35.3750 with L = 256.

Standard deviation The standard deviation σ , which is the average contrast and the
2nd moment, is defined as

σ =
√√√√

L−1∑

u=0

(u − m)2 p(u)

Table 11.2 A 4 × 4 8-bit image

0 19 20 22

53 4 23 25

116 16 17 24

110 90 4 23

Table 11.3 The histogram and its normalized version of the image in Table11.2

g_lev 0 4 16 17 19 20 22 23 24 25 53 90 110 116

his 1 2 1 1 1 1 1 2 1 1 1 1 1 1

hisn 0.06 0.13 0.06 0.06 0.06 0.06 0.06 0.13 0.06 0.06 0.06 0.06 0.06 0.06

324 11 Object Description

For the example, σ = 35.8153. The square of the standard deviation is the variance.

Smoothness A measure of the smoothness of the texture is defined as

S = 1 − 1

1 + σ 2
n

where σ 2
n is a normalized version of the variance and

σ 2
n = σ 2

(L − 1)2

For the example image,

S = 1 − 1

1 + (35.81532/2552)
= 1 − 1

1.0197
= 0.0193

For regions with constant intensity, S = 0 and it increases with increasing value of
σ toward the limit 1.

Skew The skew, which indicates the asymmetry of the histogram about the mean
and the third moment, is defined as

Sk =
L−1∑

u=0

(u − m)3 p(u)

Sk is zero for a symmetric histogram. It is positive for a right skew (spreads to the
right) and negative for a left skew (spreads to the left). Sk is also normalized in the
same way and the normalized value is 0.9341 (positive skew) for the example.

Uniformity This measure, uniformity of energy, is given by

U =
L−1∑

u=0

p2(u)

U is maximum when all the intensity levels are the same, and it has a lower value
otherwise. For the example image, U = 0.0781.

Entropy The entropy, which is measure of randomness, is given by

E = −
L−1∑

u=0

p(u) log2(p(u))

A lower value indicates a higher redundancy in the image data and should give a
high compression ratio, when compressed. For the example image, E = 3.75.

11.2 Regional Descriptors 325

(a)

0 108.2774 255
0

677(b)

co
un

t

gray level

108.277
38.215
0.022
0.227
0.007
7.253

Fig. 11.8 a A 256 × 256 8-bit image; b its histogram with texture measures

0 122.7055 255
0

446

co
un

t

gray level

122.705
60.007
0.052
0.071
0.005
7.873

(a) (b)

Fig. 11.9 a A 256 × 256 8-bit image; b its histogram with texture measures

Figures11.8, 11.9, 11.10, and 11.11 show some images in the a part and the
corresponding histograms with texture measures in the b part.

The six measures listed in each (b) part are mean, standard deviation, smoothness,
skew, uniformity, and entropy in that order.

The entropy values of the images are {7.253, 7.873, 7.680, 7.843}. Obviously, the
variation of the intensity is least random in the first image. Therefore, the contrast
{38.215, 60.007, 51.867, 61.007} is also the least. With the smoothness measure
{0.022, 0.052, 0.040, 0.054}, it is also the smoothest. It is more uniform with that

326 11 Object Description

(a)

0 129.2971 255
0

579(b)

co
un

t

gray level

129.297
51.867
0.040
−0.576
0.005
7.680

Fig. 11.10 a A 256 × 256 8-bit image; b its histogram with texture measures

(a)

0 107.5749 255
0

730(b)

co
un

t

gray level

107.575
61.007
0.054
0.356
0.005
7.843

Fig. 11.11 a A 256 × 256 8-bit image; b its histogram with texture measures

measure {0.007, 0.005, 0.005, 0.005}. With respect to skewness, the third image has
a negative skewness −0.576 indicating that its histogram has a longer left tail and a
much shorter right tail about the mean. The two sides are demarcated by a dashed
line. The other three images have positive skewness.

11.2 Regional Descriptors 327

Fig. 11.12 Relationship
between the locations of a
pair of pixels

(k, l)

(p, q)

)θ

r

11.2.3.2 Co-occurrence Matrix-Based Features

Apair of pixels, with gray levels a and b, occurring with the same spatial relationship
is co-occurrence. Due to the repetition of patterns in texture, co-occurrence is an
important factor that should be taken in to account. Co-occurrence matrices carry
information of the spatial relationships between pixels. Let the number of gray levels
in x(m, n)be L , {0, 1, . . . , L−1}.A co-occurrencematrix g(m, n) is a L×L matrix in
which each element g(m, n) represents the number of occurrences of a pair of pixels
with intensities Im and In , in a given spatial relationship in the image x(m, n). It is
the joint probability distribution of pairs of pixels. Let there be two pixels x(k, l)
and x(p, q) at coordinates (k, l) and (p, q) with pixel values Im and In , respectively,
in the image x(m, n). Further, let the radial distance between them be r and the
angle between the line joining them and the horizontal axis be θ radians, as shown
in Fig. 11.12. Due to discretization, only limited values of r and θ are possible. The
probability p(Im, In) of the co-occurrences of the gray levels Im and In is defined as

p(Im, In) = n(Im, In)

M
= g(m, n)

M

where n(Im, In) is the number of occurrences with x(k, l) = Im and x(p, q) = In

and M is the total number of occurrences in g(m, n), the co-occurrence matrix. If
the pixel pairs are highly correlated, then the entries will be densely populated along
the diagonal of the matrix. The finer the texture, the more uniform is the distribution
of the values in the co-occurrence matrix. Coarse texture skews toward the diagonal.

Consider the 8 × 8 8-bit image x(m, n)

x(m, n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

52 71 72 74 64 55 43 74
105 56 75 77 64 60 53 78
168 68 69 76 69 62 58 71
162 142 56 75 73 64 60 53
162 180 89 67 79 68 63 30
186 175 156 61 78 72 63 53
210 171 192 87 67 77 67 59
250 158 188 140 59 77 69 61

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the number of gray levels is 256, the size of the co-occurrence matrix has to
be 256 × 256. Using different spatial relationships, a series of matrices are used to
analyze the texture in a single image. Therefore, in order to reduce the computational

328 11 Object Description

complexity and the storage requirements, the intensity range of the image is usually
quantized. Let us divide each pixel value in x(m, n) by 32 and truncate the result.
The intensity quantized image xq(m, n) is

xq(m, n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 2 2 1 1 2
3 1 2 2 2 1 1 2
5 2 2 2 2 1 1 2
5 4 1 2 2 2 1 1
5 5 2 2 2 2 1 0
5 5 4 1 2 2 1 1
6 5 6 2 2 2 2 1
7 4 5 4 1 2 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, the co-occurrence matrix is of size 8 × 8, since the number of gray levels
is limited to eight. Let the spatial relationship of a pair of pixels be x(m, n) and
x(m, n + 1). That is, a pixel and its immediate right neighbor form the pair. With
this spatial relationship and xq(m, n), we get the co-occurrence matrix g(m, n) as

g(m, n) =

n →
0 1 2 3 4 5 6 7

0
1
2

m 3
↓ 4
5
6
7

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 5 8 0 0 0 0 0
0 8 18 0 0 0 0 0
0 1 0 0 0 0 0 0
0 3 0 0 0 1 0 0
0 0 2 0 3 2 1 0
0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this matrix, each element is the number of occurrences of a left pixel with gray
level m and a right pixel with gray level n in xq(m, n). Since there is no left pixel
with value 0, the first row entries are all zeros. Since there is no right pixel with
value seven, the last column entries are all zeros. Since there is only one occurrence
of the pair of gray levels (1, 0), (xq(4, 6) = 1 and xq(4, 7) = 0), g(1, 0) = 1. The
number of occurrences of the pixel pair (2, 2) is the highest at 18. Now, let the spatial
relationship be x(m, n) and x(m+1, n+1). That is, a pixel and its immediate bottom-
right (diagonal) neighbor form the pair. With this spatial relationship and xq(m, n),
we get the co-occurrence matrix g(m, n) as

11.2 Regional Descriptors 329

g(m, n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 7 5 0 0 0 0 0
0 8 16 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 2 4 1 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there are seven occurrences of the pixel pair (1, 1) in the given diagonal spatial
relationship, g(1, 1) = 7. As many co-occurrence matrices as required have to be
generated.

The joint probability matrix p(m, n) is defined as

p(m, n) = g(m, n)

M
, M =

∑

m

∑

n

g(m, n)

For the example, using the second g(m, n) and with M = 49, we get

p(m, n) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0.0204 0.1429 0.1020 0 0 0 0 0

0 0.1633 0.3265 0 0 0 0 0
0 0 0.0204 0 0 0 0 0
0 0 0.0408 0 0 0 0 0
0 0 0 0 0.0408 0.0816 0.0204 0
0 0 0 0 0.0408 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Some of the features are based on the energy distribution in this matrix.

Maximum probability
It is in the range 0 to 1 and indicates the maximum value of p(m, n). For the example,
it is p(2, 2) = 0.3265.

Entropy

E = −
N−1∑

m=0

N−1∑

n=0

p(m, n) log2 p(m, n)

For a p(m, n) with all zero entries, E = 0. For a p(m, n) with all entries equal,
E = 2 log2 N . For the example, E = 2.8951 with N = 8.

Contrast
The contrast in intensity of a pixel and its neighbor over the image is given by this
measure. The range of values for C is from 0 to (N − 1)2.

330 11 Object Description

C =
N−1∑

m=0

N−1∑

n=0

(m − n)2 p(m, n)

For the example, C = 0.6939.

Energy (Uniformity)
This measure is an indicator of the energy. Its range is from 0 to 1.

U =
N−1∑

m=0

N−1∑

n=0

p2(m, n)

For the example, U = 0.1770.
Homogeneity

H =
N−1∑

m=0

N−1∑

N=0

p(m, n)

1 + |(m − n)|

This measure indicates the closeness of the distribution of the values in the co-
occurrence matrix to its diagonal and it is in the range 0 to 1. For the example,
H = 0.7619.

Correlation

R =
N−1∑

m=0

N−1∑

n=0

(m − m̄)(n − n̄)p(m, n)

σmσn
, σm �= 0, σn �= 0

where

m̄ =
N−1∑

m=0

N−1∑

n=0

mp(m, n), n̄ =
N−1∑

m=0

N−1∑

n=0

np(m, n)

σ 2
m =

N−1∑

m=0

N−1∑

n=0

(m − m̄)2 p(m, n), σ 2
n =

N−1∑

m=0

N−1∑

n=0

(n − n̄)2 p(m, n)

This measure, with range −1 to 1, indicates the similarity of a pixel to its neighbor
over the entire image. For the example, R = 0.8508.

Figures11.13, 11.14, 11.15, and 11.16 show, respectively, the corresponding co-
occurrence matrix of the images in Figs. 11.8, 11.9, 11.10, and 11.11, the mesh plots
in (a) parts and the images in (b) parts. A pixel and its immediate right neighbor form
the pair. In Fig. 11.13, the number of co-occurrences is very high in the neighborhood
of the main diagonal, indicating that a wide variation in the intensity levels but not
many large jumps between adjacent pairs of pixels. In Fig. 11.14, the contrast is high
and, therefore, there are less number of co-occurrences. Due to white patches in the
image, the number of co-occurrences is only at high intensity values. In Fig. 11.15,
the number of co-occurrences is moderately high in the middle and high at the end

11.2 Regional Descriptors 331

(a) (b)

Fig. 11.13 Co-occurrence matrix a mesh plot; b image

(a) (b)

Fig. 11.14 Co-occurrence matrix a mesh plot; b image

due to the brightness of the image. In Fig. 11.16, due to the high contrast, the number
of co-occurrences is small except at the low intensity values.

Table11.4 shows the texturalmeasures of the images in Figs. 11.8, 11.9, 11.10, and
11.11 based on the co-occurrencematrix. Thesemeasures can be used to differentiate
the various types of textures.

11.2.3.3 Fourier Spectra Based Features

An image with texture typically has strong periodic spectral components.
Figure11.17a and b, show a 256 × 256 gray-level image and its DFT magnitude

332 11 Object Description

(a) (b)

Fig. 11.15 Co-occurrence matrix a mesh plot; b image

(a) (b)

Fig. 11.16 Co-occurrence matrix a mesh plot; b image

Table 11.4 Texture measures based on co-occurrence matrix

Figure Maximum p E H U C R

11.8 0.0008 12.8600 0.1687 0.0002 380.6666 0.9188

11.9 0.0072 13.7058 0.1594 0.0002 756.0718 0.8703

11.10 0.0006 13.7221 0.1262 0.0001 838.6651 0.7726

11.11 0.0018 14.5118 0.0965 5.7966e −
05

2.2376e +
03

0.6996

11.2 Regional Descriptors 333

Fig. 11.17 a A 256× 256 gray-level image; b its DFT magnitude spectrum in log scale; c a set of
its largest DFT coefficients; d the reconstructed image from these coefficients

spectrum in log scale. It has dominant spectral components in two directions. A set
of largest DFT coefficients is shown in Fig. 11.17c and the reconstructed image from
these coefficients is shown in Fig. 11.17d. These coefficients are typically summed
over sectors, rings, vertical and horizontal slits, as shown in Fig. 11.18. As the DFT
coefficients are symmetric, the summation over half of the spectrum is sufficient.
These sums are textural features. The DFTmagnitude coefficients are shift invariant.

334 11 Object Description

Fig. 11.18 Typical sector,
ring, and slits over which the
DFT coefficients are
summed to represent texture

11.3 Principal Component Analysis

Signals may be random or deterministic. Fourier amplitude or power spectrum is
a much simpler and effective representation of signals than their original form. A
good approximation of the image, which is adequate for practical applications, can be
obtained using a small set of coefficients. That is data reduction, which is a necessity
in image processing. Principal component analysis (PCA) is another transformation,
which serves a similar purpose, using linear algebra techniques. Matrix represen-
tation of data is transformed to its diagonal form. The data gets uncorrelated, and
sufficient number of components can be used to approximate the data with a desired
accuracy. Typical applications of PCA are in compression and approximation of the
feature vectors. Themore smoother the waveform, the lesser is the number of Fourier
coefficients to represent the waveform. Similarly, the higher the correlation of the
data, the more effective is the PCA in data reduction.

Let there be M vector variables, with each having N samples. The samples can
be represented in column vectors. Then, the M variables form a N × M matrix

X = [x0, x1 · · · xM−1]

We want to find a matrix
Y = [y0, y1 · · · yM−1]

such that
Y = XR

and the columns of Y are mutually orthogonal. Therefore,

Y TY = (XR)T (XR) = D

11.3 Principal Component Analysis 335

where D is a diagonal matrix (a square matrix whose elements below and above the
main diagonal are all zero). Using the property

(AB)T = BT AT

and multiplying both sides by 1/(N − 1), we get

1

N − 1
Y TY = RT (XT X)

N − 1
R = D

The factor
(XT X)

N − 1

is the covariance matrix C of X . Covariance is the generalization of the variance,
presented in Chap.2, for multiple variables. It is a measure of the linear depen-
dence between two sets of data. From the diagonalization problem in linear algebra,
D is composed of the eigenvalues of C and R is composed of the corresponding
eigenvectors. The columns of Y are the principal components. The components are
uncorrelated. The eigenvectors are the new coordinate system in which Y is rep-
resented. The orientation of the principal axis maximizes the overall variance of
the data. The residual data is used to find the second principal axis and the process
continues to find the all the principal axes, M . PCA is a coordinate transformation,
similar to Fourier analysis.

Given two 2× 2 images, let us find the corresponding PCA components and their
covariance. Then, let us reconstruct the original images from the PCA components.

a(m, n) =
[
2 1
3 6

]
b(m, n) =

[
3 2
1 2

]

The mean of the matrices are am = 3 and bm = 2. Subtracting the respective means
from the matrices, we get

az(m, n) =
[−1 −2

0 3

]
bz(m, n) =

[
1 0

−1 0

]

Converting az(m, n) and bz(m, n) into column vectors and concatenating, we get,

x(m, n) =

⎡

⎢⎢⎣

−1 1
−2 0
0 −1
3 0

⎤

⎥⎥⎦

The covariance of this matrix is the scaled product of its transpose with itself.

http://dx.doi.org/10.1007/978-981-10-6113-4_2

336 11 Object Description

C(m, n) = 1

3

[−1 −2 0 3
1 0 −1 0

]
⎡

⎢⎢⎣

−1 1
−2 0
0 −1
3 0

⎤

⎥⎥⎦ = 1

3

[
14 −1
−1 2

]

The covariance matrix is square with the dimensions equal to the number of images.
This matrix is always symmetric (the matrix and its transpose are the same). In order
to find the eigenvectors of this matrix, we have to find its eigenvalues. They are found
by equating the determinant of I − C to zero (its characteristic equation), where λI
is the identity matrix.

∣∣∣∣
λ − 14

3
1
3

1
3 λ − 2

3

∣∣∣∣ = 0 or λ2 − 16

3
λ + 27

9
= 0 or (λ − 4.6943)(λ − 0.6391) = 0

The two eigenvalues are {4.6943, 0.6391}. For finding the eigenvectors, we use the
equation

(λI − C)R = 0

For λ = 4.6943, we get

[
4.6943 − 14

3
1
3

1
3 4.6943 − 2

3

] [
R(0)
R(1)

]
= 0

For λ = 0.6391, we get

[
0.6391 − 14

3
1
3

1
3 0.6391 − 2

3

][
R(0)
R(1)

]
= 0

Solving the two sets of equations, we get the eigenvectors as

R =
[−0.9966 0.0825

0.0825 0.9966

]

The first and second columns are, respectively, the eigenvectors corresponding to
eigenvalues 4.6943 and 0.6391. The principal components are found as

Y = XR =

⎡

⎢⎢⎣

−1 1
−2 0
0 −1
3 0

⎤

⎥⎥⎦

[−0.9966 0.0825
0.0825 0.9966

]
=

⎡

⎢⎢⎣

1.0791 0.9141
1.9932 −0.1650

−0.0825 −0.9966
−2.9898 0.2474

⎤

⎥⎥⎦

The covariance of the PCA component matrix is the scaled product of its transpose
with itself.

11.3 Principal Component Analysis 337

C(m, n) = 1

3

[
1.0791 1.9932 −0.0825 −2.9898
0.9141 −0.1650 −0.9966 0.2474

]
⎡

⎢⎢⎣

1.0791 0.9141
1.9932 −0.1650

−0.0825 −0.9966
−2.9898 0.2474

⎤

⎥⎥⎦ =
[
4.6943 0

0 0.6391

]

Note that the components are uncorrelated (the two zero entries). The input can be
reconstructed by

Y RT +

⎡

⎢⎢⎣

am bm
am bm
am bm
am bm

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1.0791 0.9141
1.9932 −0.1650

−0.0825 −0.9966
−2.9898 0.2474

⎤

⎥⎥⎦

[−0.9966 0.0825
0.0825 0.9966

]
+

⎡

⎢⎢⎣

3 2
3 2
3 2
3 2

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

−1 1
−2 0
0 −1
3 0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

3 2
3 2
3 2
3 2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

2 3
1 2
3 1
6 2

⎤

⎥⎥⎦

The covariance matrix can be computed from the 2 × 2 matrices directly. Using the
formula, for M number of P × Q images xi (m, n),

C(k, l) = 1

P Q − 1

P−1∑

m=0

Q−1∑

n=0

(xk (m, n)− x̄k)(xl (m, n)− x̄l), k = 0, 1, . . . M −1, l = 0, 1, . . . M −1

Figure11.19a shows a 256 × 256 RGB color image. Figure11.19b shows the
gray-level image obtained by averaging its RGB components. In the representation
of multispectral images, the uncorrelated PCA components can be used to reduce the
data. For example, the first principal component may be an adequate representation.
Gray-level version is often used in image processing. The PCA representation is
superior to averaging. Figure11.20a, c, e show the R, G, and B components of a

Fig. 11.19 a A 256 × 256 RGB color image; b gray-level image obtained by averaging its RGB
components

338 11 Object Description

Fig. 11.20 a, c, e The R, G, and B components of a 256×256 color image; b, d, f the reconstructed
images using the PCA components with variance decreasing, respectively

11.3 Principal Component Analysis 339

color image. Figure11.20b, d, f show the PCA components of the color image.
Figure11.20b, with maximum variance, is a good gray-level version of the color
image.

11.4 Summary

• Feature is any attribute of an object that characterizes it and can be used for
segmentation and classification. Features are compact description of an image
that is sufficient and convenient for further analysis.

• An object can be characterized by its shape (external) and the properties of the
pixels (internal) comprising the object. External features characterize the shape
and internal features characterize properties such as texture.

• Chain codes, signatures, and Fourier descriptors are typical shape descriptors.
• Area, perimeter, compactness, histograms, moments, Fourier coefficients, and
Euler number are typical internal features of an object.

• It is desirable that descriptors and features are invariant with respect to translation,
rotation, and scaling.

• Texture is a pattern resembling a mosaic, made by a physical composition of
an object using constituents of various sizes and shapes. It is characterized by
histogram and co-occurrence matrix-based features.

• Principal component analysis is a statistical and linear algebraic method that pro-
vides data reduction of images and their features, similar to that of the other
transforms. It decomposes the principal constituent components of an image and
the image can be adequately described by few components with high variances.
The components are orthogonal and their covariance matrix is diagonal.

Exercises

11.1 Find the chain code for the image.
*(i) ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

340 11 Object Description

(ii) ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(iii) ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

11.2 Find the signature of the image.
(i) ⎡

⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎥⎥⎦

*(ii) ⎡

⎢⎢⎣

1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1

⎤

⎥⎥⎦

(iii) ⎡

⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥⎥⎦

11.3 Find the Fourier descriptor of the image. Reconstruct the image from the
descriptor and verify that it is the same as the input image.

Exercises 341

(i) ⎡

⎢⎢⎣

0 1 1 1
0 1 0 1
0 1 0 1
0 1 1 1

⎤

⎥⎥⎦

(ii) ⎡

⎢⎢⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥⎥⎦

* (iii) ⎡

⎢⎢⎣

0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

⎤

⎥⎥⎦

11.4 Find the area, perimeter, and compactness of the nonzero region in the 3 × 3
image.
(i) ⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

(ii) ⎡

⎣
0 0 0
0 1 1
1 1 1

⎤

⎦

(iii) ⎡

⎣
1 0 0
1 1 0
1 1 1

⎤

⎦

11.5 Find the Euler number of the 8-connected 4 × 4 image.
(i) ⎡

⎢⎢⎣

1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

⎤

⎥⎥⎦

342 11 Object Description

(ii) ⎡

⎢⎢⎣

0 0 0 1
0 1 1 0
1 1 1 1
0 1 1 0

⎤

⎥⎥⎦

(iii) ⎡

⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤

⎥⎥⎦

11.6 Find the first two normalized central moments φ1 and φ2 of the 4 × 4 image.

x(k, l) =

⎡

⎢⎢⎣

0 1 1 0
0 1 1 0
0 1 1 1
0 0 0 0

⎤

⎥⎥⎦

11.7 Find the first two normalized central moments φ1 and φ2 of the 4 × 4 image.

x(k, l) =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 1 1
0 1 1 0

⎤

⎥⎥⎦

*11.8 Find the first two normalized central moments φ1 and φ2 of the 4 × 4 image.

x(k, l) =

⎡

⎢⎢⎣

0 1 1 0
0 1 1 1
0 1 1 0
0 0 0 0

⎤

⎥⎥⎦

*11.9 Find the histogram of the 4 × 4 8-bit image and derive its histogram-based
features.

⎡

⎢⎢⎣

108 81 69 92
114 105 72 101
117 73 67 92
105 0 65 101

⎤

⎥⎥⎦

Exercises 343

11.10 Find the histogram of the 4 × 4 8-bit image and derive its histogram-based
features. ⎡

⎢⎢⎣

120 103 83 78
97 99 81 72

102 96 78 73
121 107 37 0

⎤

⎥⎥⎦

11.11 Find the histogram of the 4 × 4 8-bit image and derive its histogram-based
features. ⎡

⎢⎢⎣

10 133 175 170
0 61 171 170
3 15 131 172
1 3 70 167

⎤

⎥⎥⎦

*11.12 Find the co-occurrence matrix of the 8 × 8 3-bit image.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 2 2 2 2 1 1 2
5 4 1 2 2 2 1 1
5 5 2 2 2 2 1 1
5 5 4 1 2 2 1 1
6 5 6 2 2 2 2 1
6 4 5 4 1 2 2 1
5 5 5 5 2 2 2 1
5 4 5 5 3 2 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let the spatial relationship of a pair of pixels be x(m, n) and x(m, n + 1). That is, a
pixel and its immediate right neighbor form the pair. Find the contrast, correlation,
energy, and homogeneity.

11.13 Find the co-occurrence matrix of the 8 × 8 3-bit image.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 2 2 5
1 0 0 0 1 2 2 5
1 0 0 0 1 2 2 4
1 0 0 0 1 2 2 4
2 1 0 0 1 2 2 3
2 1 0 0 1 1 1 3
2 1 0 0 1 1 1 3
2 1 0 0 1 1 1 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let the spatial relationship of a pair of pixels be x(m, n) and x(m, n + 1). That is, a
pixel and its immediate right neighbor form the pair. Find the contrast, correlation,
energy, and homogeneity.

344 11 Object Description

11.14 Find the co-occurrence matrix of the 8 × 8 3-bit image.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 4 4 5 5 2 2 2
5 2 4 5 5 2 2 2
3 2 5 5 6 3 2 2
2 4 4 5 5 4 2 2
4 5 5 5 6 4 2 2
5 5 5 5 4 4 2 2
5 5 5 3 3 4 2 2
5 5 4 3 4 5 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let the spatial relationship of a pair of pixels be x(m, n) and x(m, n + 1). That is, a
pixel and its immediate right neighbor form the pair. Find the contrast, correlation,
energy, and homogeneity.

11.15 Given two 2 × 2 images, find the corresponding PCA components and their
covariance. Then, reconstruct the original images from the PCA components.

a(m, n) =
[
2 1
3 4

]
b(m, n) =

[
3 1
2 4

]

*11.16 Given two 2 × 2 images, find the corresponding PCA components and their
covariance. Then, reconstruct the original images from the PCA components.

a(m, n) =
[
1 1
2 3

]
b(m, n) =

[
3 1
2 4

]

11.17 Given two 2 × 2 images, find the corresponding PCA components and their
covariance. Then, reconstruct the original images from the PCA components.

a(m, n) =
[
2 1
3 4

]
b(m, n) =

[
2 2
1 3

]

Chapter 12
Object Classification

Abstract The different objects in an image have different characteristics represented
by their features. Given a set of features of an object, comparing that with those in the
database and assigning it to its proper class is classification. There are twomain types
of classification: (i) supervised classification and (ii) unsupervised classification. In
supervised classification, features are specified apriori andobjects are classifiedusing
them. Typical methods used are minimum distance, k-nearest neighbors, decision
trees, and statistical (based on probability distribution models). The decision is prior.
In unsupervised classification, we classify the objects by the constraints imposed by
the features. The decision is posterior.

The different objects in an image have different characteristics represented by their
features.Given a set of features of an object, comparing thatwith those in the database
and assigning it to its proper class is classification. The task includes selection of the
smallest set of features that can classify a set of objects with minimum effort and
high reliability.

There are two main types of classification: (i) supervised classification and (ii)
unsupervised classification. In supervised classification, features are specified a
priori and objects are classified using them. Typical methods used are minimum
distance, k-nearest neighbors, decision trees, and statistical (based on probability
distributionmodels). The decision is prior. In unsupervised classification, we classify
the objects by the constraints imposed by the features. Partition the data into groups
by clustering. Unknown, but distinct set of feature classes are generated. The decision
is posterior.

12.1 The k-Nearest Neighbors Classifier

In this method, the feature set of a test object is compared with the reference set, and
the test object is assigned to the class whose features differ, with respect to some
measure, by the least from that of the test object. In terms of distance, computing
the distance between the k closest points in the reference sets of feature vectors

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_12

345

346 12 Object Classification

is the measure. The method is simple, capable of classifying overlapping classes
and classes with complex structures. With k = 1, it becomes the minimum distance
classifier.

Consider three classes each with three feature vectors each of length 2, as shown
in Fig. 12.1. Each class is discriminated by different symbols. The two test data are
{15, 5} and {9, 15}, shown by the pentagram symbol. The feature vectors are also
shown in Table12.1. The problem is to assign the test data to the most appropriate
class. The distances between the test data {15, 5} and the other nine feature vectors
are

{11.0454, 10.1980, 9.2195, 5.6569, 7.2111, 8.0623, 11.0000, 11.1803, 9.0554}

For example, the first distance is

d =
√

(16 − 15)2 + (16 − 5)2 = 11.0454

Fig. 12.1 k-nearest
neighbors classifier

4 5 6 7 8 9 10 11 12 13 14 15 16 17

3
4
5
6
7
8
9

10
11
12
13
14
15
16

f

f1

class1

class2

class3

2

Table 12.1 Three classes
each with three feature
vectors of length 2

Class Feature 1 Feature 2

Class1 16 16

Class1 17 15

Class1 13 14

Class2 11 9

Class2 9 9

Class2 11 12

Class3 4 5

Class3 4 3

Class3 6 6

12.1 The k-Nearest Neighbors Classifier 347

The sorted distances are

{5.6569, 7.2111, 8.0623, 9.0554, 9.2195, 10.1980, 11.0000, 11.0454, 11.1803}

Sometimes, in order to reduce computation, an alternative definition of distance,
called the city-block distance, is used. It is computed as

d = |(16 − 15)| + |(16 − 5)| = 12

It is the walking distance along the horizontal and vertical directions only, assuming
a 4-neighborhood. The shortest three distances are

{5.6569, 7.2111, 8.0623}

All these three distances correspond to class2 and, therefore, the test data is assigned
to class2. This result is obvious from Fig. 12.1. In the case that there is no maximally
represented class, the test sample can be assigned to the class of the nearest neighbor.

The distances between the test data {9, 15} and the other nine feature vectors are

{7.0711, 8.0000, 4.1231, 6.3246, 6.0000, 3.6056, 11.1803, 13.0000, 9.4868}

The sorted distances are

{3.6056, 4.1231, 6.0000, 6.3246, 7.0711, 8.0000, 9.4868, 11.1803, 13.0000}

The shortest three distances are

{3.6056, 4.1231, 6.0000}

Out of these three, two of the distances correspond to class2 and, therefore, the test
data are assigned to class2. The selection of more than one neighbor smooths the
result, and it is less likely that classification is affected by noisy outlier points.

12.2 The Minimum-Distance-to-Mean Classifier

In this type of classification, the means of a set of features of a class characterize the
class. A new sample is assigned to a class if the distance between the means of the
reference set of that class and that of the new sample is minimum. There are other
distance measures apart from the familiar Euclidean distance.

Let there be three classes each with mean vectors of length 2, as shown in
Table12.2. The mean vectors, { f 1, f 2}, of description of the three classes of objects
are: (i) {6400, 320} (ii) {2500, 5000} and (iii) {500, 1000}. Now, the problem is to
find the boundary discriminant functions. Consider the vectors of class1 and class2,

348 12 Object Classification

Table 12.2 Three classes
each with mean vectors of
length 2

Class Feature 1 Feature 2

Class1 6400 320

Class2 2500 5000

Class3 500 1000

{6400, 320} and {2500, 5000}. First, we find the slope of the line passing through
these points. The slope m of a line passing through points (x1, y1) and (x2, y2) is
defined by

m = y2 − y1

x2 − x1

Therefore, the slope of the line

m = 5000 − 320

2500 − 6400
= 4680

−3900
= −6

5

The midpoint of this line is

(6400 − (6400 − 2500)/2, 320 + (5000 − 320)/2) = (6400 − (3900/2), 320

+ (4680/2)) = (4450, 2660)

The line perpendicular to this line characterizes the boundary discriminant function
for class1 and class2. The slope of a perpendicular line to a line with slope m is
−1/m. Therefore, the slope of this line passing through the point = (4450, 2660) is
= 5

6 . The point-slope form of a line with slope m and passing through (x1, y1) is

y − y1

x − x1
= m or y = mx − mx1 + y1

The boundary discriminant function is

f 2 − 2660

f 1 − 4450
= 5

6
or f 2 = 5

6
f 1 − 5

6
(4450) + 2660 = 5

6
f 1 − 1048.3

This is line l12 as shown in Fig. 12.2. The function

5

6
f 1 − f 2 − 1048.3

evaluates to negative if a test vector is closer to class2. A positive value indicates that
it is closer to class1. Similarly, lines l13 and l23 can be found, respectively, as

f 2 = 8.6765 f 1 − 29274 and f 2 = −0.5 f 1 + 3750

12.2 The Minimum-Distance-to-Mean Classifier 349

Fig. 12.2 Minimum-
distance-to-mean
classifier

500 2500 6400
320

1000

5000

l12l23

l13
class1

class2

class3

f

f1

2

While the procedure is simple enough, a general approach to the formulation of the
problem is required for the classification with a large set of features.

12.2.1 Decision-Theoretic Methods

In this approach, the classification of an object is based on discriminant functions.
Let the feature vector x of three classes be m1, m2, and m3. Three discriminant
functions, d1(x), d2(x), and d3(x), have to be found such that the discriminant
function corresponding to an unclassified feature vector will yield a value that is
greater than those of the functions to which it does not belong. In the case of two
or more functions evaluating to the same value, the decision is arbitrary or based on
some additional factors. This formulation is another form of the minimum distance
classifier.

Let the elements of a test vector be

x = {x1, x2, . . . , xM }

Let the mean vector of the N classes be

{m1,m2, . . . ,mN }

Then,
dn(x) = xmT

n − 0.5mnmT
n , n = 1, 2, . . . , N

Let us get the discriminant functions for the last example. For the first feature vector
{6400, 320},

[
x1 x2

]
[
6400
320

]
− 0.5

[
6400 320

]
[
6400
320

]

350 12 Object Classification

Simplifying, we get

d1(x) = 6400x1 + 320x2 − 20531200

Similarly, for class2, we get

d2(x) = 2500x1 + 5000x2 − 15625000

For class3, we get
d3(x) = 500x1 + 1000x2 − 625000

For the first feature vector, these three functions yield

{20531200, 1975000, 2895000}

As expected, the first function has the greatest value. Similarly, for the second feature
vector, these three functions yield

{−2931200, 15625000, 5625000}

For the third feature vector, these three functions yield

{−17011200,−9375000, 625000}

The difference between two discriminant functions is the boundary discriminant
function for them. For example, the boundary discriminant function for class1 and
class2 is

d12(x) = d1(x) − d2(x)

= (6400x1 + 320x2 − 20531200) − (2500x1 + 5000x2 − 15625000)

= 3900x1 − 4680x2 − 4906200

which is the same thing as that we got earlier by coordinate geometry. Classification
based on the mean works well if the means are well spread out relative to the spread
of the members of each class.

12.3 Decision Tree Classification

In this approach, the feature space is split into unique regions sequentially. A deci-
sion is arrived with out testing all classes and, therefore, it is advantages when the
number of classes is large. Further, the convergence of this algorithm is guaranteed
irrespective of the nature of the feature space.

12.3 Decision Tree Classification 351

Table 12.3 Objects and their features

Object A B C D E

Holes 1 2 0 1 0

End points 2 0 2 0 3

Let us consider the problem of character recognition, a common application of
image processing. In this problem, the tasks required may be removing noise, seg-
mentation by thresholding, thinning, finding the end points and holes, comparing
with the feature vectors, and recognizing the characters. For simplicity, let the text
to be analyzed consists of the five uppercase alphabets {A, B, C, D, E}. The char-
acter set is predetermined and each character is discrete. A more complex problem
may need more processing steps and more number of feature vectors with increased
complexity of the algorithms. However, the basic steps in solving a problem remain
the same.

Two sets of features describing the characters are shown in Table12.3. This clas-
sifier isolates each object in a sequential manner. The first step is to sort the entries
in each row of the feature vectors in ascending order. The maximum difference of
adjacent entries in the first row is 1. It is 2 in the second row. A threshold, that is the
average of the two adjacent entries (0, 2) that produced the maximum difference, is
set. Using this threshold f 2 = (0 + 2)/2 = 1, the rows are partitioned as

[
0 0 1 1 2
0 0 2 2 3

]

This partitioning continues until each partition is just one column. Now, the order of
the first row is restored and we get

[
2 1 1 0 0
0 0 2 2 3

]

Now, the left side partition includes the letters B and D, which can be partitioned
with a threshold f 1 = (1 + 2)/2 = 1.5. The unsorted and sorted feature vectors for
the other three characters are

[
1 0 0
2 2 3

] [
0 0 1
2 2 3

]

The letterA can be isolatedwith a threshold f 1 = 0.5. Letters C andE can be isolated
with a threshold f 2 = 2.5. The decision tree classifier and its flowchart are shown in
Figs. 12.3 and 12.4, respectively. The advantage of this method is that decisions are
made without testing all the feature vectors, which is desirable for solving a problem
with a large number of feature vectors. The algorithm always converges.

352 12 Object Classification

Fig. 12.3 Decision tree
classifier

0 0.5 1 1.5 2
0

1

2

2.5

3

2,
 E
nd

 p
oi
nt

s

f1, Holes

A

B

C

D

E

f
Fig. 12.4 Flowchart of the
decision tree algorithm

f1,f 2

no

yes

no

yes

no

yes

no

yes

no

yes

f2≥1 f1≥1.5

f1≤0.5

f2≥2.5

D

A

C

B

E

12.4 Bayesian Classification

Samples originated from one class may lie closer to another class. In this case, the
minimum distance classifier, which relies on the mean of class only, cannot do effec-
tive classification. The Bayesian approach to statistical methods of classification is
based not only on the set of samples but also on the pertinent prior information.
The Bayesian approach provides discriminant or decision functions, which max-
imize the number of correct classifications and minimize the incorrect ones. Let
there be N features x = {x1, x2, . . . , xN }T representing the M classes of objects,
{ω1, ω2, . . . , ωM }. Let the a priori probability of an arbitrary object belongs to class
ωi be {p(ω1), p(ω2), . . . , p(ωM)}. Let the density distribution of all the objects be

12.4 Bayesian Classification 353

p(x). Let the conditional density distribution of all the objects belonging to class ωi

be p(x/ωi). Using the Bayes’ theorem, the decision rule is

if p(x/ωi)p(ωi) > p(x/ω j)p(ω j) for all i �= j, then assign x to ωi

Since it is difficult to estimate the actual p(x/ωi), in practice, the Gaussian (normal)
density function is often assumed.

For normal distribution,

p(x/ωi) = 1

(2π)(N/2)|C i |0.5 e−0.5(x−mi)
T C−1

i (x−mi)

where the mean mi and the covariance matrix C i are approximated as

mi = 1

Ni

∑

x∈ωi

x and C i = 1

Ni − 1
(xi − mi)

T (xi − mi)

The determinant of C i is |C i |. Since p(x/ωi) is in exponential form, the decision
rule

di (x) = p(x/ωi)p(ωi)

is changed to the form

di (x) = loge(p(x/ωi)p(ωi)) = loge(p(x/ωi)) + loge(p(ωi))

for convenience of manipulation. This change in form does not alter the numerical
order of the decision functions required for classification.

Substituting the exponential expression for p(x/ωi), we get the Bayes decision
function

di (x) = loge(p(ωi)) − 0.5 loge(|C i |) − 0.5((x − mi)
T C−1

i (x − mi)), i = 1, 2, . . . , M
(12.1)

As the term −(N/2) loge(2π) does not affect the numerical order of the decision
functions, it is dropped. If all the covariance matrices are the same, then

di (x) = loge(p(ωi)) + xT C−1mi − 0.5mT
i C

−1mi , i = 1, 2, . . . , M

Further, if C is the identity matrix and p(ωi) = 1/M, i = 1, 2, . . . , M , then

di (x) = xT mi − 0.5mT
i mi , i = 1, 2, . . . , M

which is the same for the decision function of the minimum distance classifier.
Expanding the last term in Eq.12.1

((x − mi)
T C−1

i (x − mi)),

354 12 Object Classification

for a class2 problem with i = 1, we get

[
(x1 − m1) (x2 − m2)

]
[

ci1(0, 0) ci1(0, 1)
ci1(1, 0) ci1(1, 1)

] [
(x1 − m1)

(x2 − m2)

]

where the middle matrix is the coefficients of the inverse of the covariance matrix
for class1. Simplifying, we get

ci1(0, 0)x21 + ci1(1, 1)x22 + (ci1(0, 1) + ci1(1, 0))x1x2 − (2ci1(0, 0)m1 + (ci1(0, 1) + ci1(1, 0))m2)x1

−(2ci1(1, 1)m2 + (ci1(0, 1) + ci1(1, 0))m1)x2 + ci1(0, 0)m
2
1 + ci1(1, 1)m

2
2 + (ci1(0, 1) + ci1(1, 0))m1m2

Figure12.5a shows samples of training data of two classes, with their mean indi-
cated by the square symbol. The class1 and class2 data are

c1(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1795 −1.7891
0.9715 −1.4020
0.8436 −1.0719
1.5955 −0.1995
2.0372 −0.8081
2.0523 −0.4025
0.1807 −1.4430
1.0734 −0.5768

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.5402 −0.5013
−0.9540 4.3240
−0.2186 0.1294
0.5565 2.0579
1.1838 0.7279

−0.8785 2.2567
−3.1094 −0.0817
−2.0498 −0.9831

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The mean of class1 is {1.1167,−0.9616} and that of class2 is {−1.0013, 0.9912}.
Subtracting the respective mean from c1(m, n) and c2(m, n), we get

−2 0 2
−2

0

2

4

training data

n

m

(a)

class1

class2

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

test data

n

m

(b)

Fig. 12.5 Bayes classifier. a Training data; b test samples

12.4 Bayesian Classification 355

cm1(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.9372 −0.8275
−0.1452 −0.4404
−0.2731 −0.1103
0.4788 0.7621
0.9205 0.1535
0.9356 0.5591

−0.9360 −0.4814
−0.0433 0.3848

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

cm2(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.5389 −1.4925
0.0473 3.3328
0.7827 −0.8618
1.5578 1.0667
2.1851 −0.2633
0.1228 1.2655

−2.1081 −1.0729
−1.0485 −1.9743

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The covariance matrices of class1 (dots) and class2 (crosses), respectively, are

C1 = cm1(m, n)T cm1(m, n)

7
=

[
0.5434 0.3333
0.3333 0.3125

]

C2 = cm2(m, n)T cm2(m, n)

7
=

[
2.2490 1.0505
1.0505 3.1336

]

The covariance matrices are symmetric. The diagonal elements are the variances of
the class vector, and the off-diagonal elements are covariances. The determinants of
the matrices are 0.0588 and 5.9440. The inverses are

[
5.3180 −5.6709

−5.6709 9.2470

] [
0.5272 −0.1767

−0.1767 0.3784

]

Let p(ω1) = 0.9 and p(ω2) = 0.1. The decision function for class1, d1(x), is

loge(0.9) − 0.5 loge(0.0588)

−0.5
[
(x1 − 1.1167) (x2 − (−0.9616))

]
[

5.3180 −5.6709
−5.6709 9.2470

] [
(x1 − 1.1167)

(x2 − (−0.9616))

]

= −2.6590x21 − 4.6235x22 + 5.6709(x1 + x2) + 11.3919x1 − 15.2249x2 − 12.3692

For the test data, shown in Fig. 12.5b,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.7884 −0.4345
1.5550 −0.2817
0.3931 3.5806

−0.6417 −1.4612
−2.0366 0.4679
−1.9784 −2.6335

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

the decision function yields

{0.8353, 0.3535,−114.1108,−3.0821,−60.1389,−7.7393}

356 12 Object Classification

The decision function for class2, d2(x), is

−0.2636x2
1 − 0.1892x2

2 + 0.1767(x1 + x2) − 0.7030x1 + 0.5520x2 − 3.8193

For the test data, the decision function yields

{−6.3326,−5.7979,−4.3366,−4.5215,−3.4324,−5.3051}

Comparing the decision function values, the fourth values indicate that the sample
belongs to class1 instead of class2. There is only one incorrect classification. Let
p(ω1) = 0.1 and p(ω2) = 0.9. The decision function for class1, d1(x), is

−2.6590x2
1 − 4.6235x2

2 + 5.6709(x1 + x2) + 11.3919x1 − 15.2249x2 − 14.5665

For the test data, the decision function yields

{−1.3620,−1.8437,−116.3081,−5.2794,−62.3361,−9.9366}

The decision function for class2, d2(x), is

−0.2636x2
1 − 0.1892x2

2 + 0.1767(x1 + x2) − 0.7030x1 + 0.5520x2 − 1.6221

For the test data, the decision function yields

{−4.1354,−3.6007,−2.1394,−2.3243,−1.2352,−3.1079}

The classification is correct. With changes in p(ωi), the boundary between classes
of data gets shifted.

12.5 k-Means Clustering

A cluster is a number of similar things gathered together. The image is analyzed
to find clusters in the feature space. Once clusters have been found, then decision
boundariesmay be constructed to classify the objects similar to supervised classifiers.
The problem is to find the number of clusters, k, based on some given features.

Consider the image shown in Fig. 12.6a. It consists of four objects each one with
distinct gray levels. The background iswhite. In general, no knowledge of the number
of objects is available. While the objects can be segmented using the histogram, let
us try the clustering approach.

• Let us divide the gray levels into two ranges, 0–128 and 129–254. The gray level
of the background is 255. Gather the pixels into two clusters using the two ranges

12.5 k-Means Clustering 357

(a)

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

co
un

t

n

(b)

Fig. 12.6 a A 256 × 256 gray-level image; b k-means clustering of the four objects

of the gray levels. The number of pixels, {7077, 7951}, in the two clusters is shown
in Fig. 12.6b by the symbol ∗.

• Let us divide the gray levels into three ranges, 0–85, 86–170, and 171–254. Gather
the pixels into three clusters using the three ranges of the gray levels. The number
of pixels, {4028, 6803, 4197}, in the three clusters is shown in Fig. 12.6b by the
symbol ×.

• Gather the pixels into four clusters using the four ranges of the gray levels, 0–64,
65–128, 129–192, and 193–254. The number of pixels, {4028, 3049, 3754, 4197},
in the four clusters is shown in Fig. 12.6b by dots.

• Gather the pixels into five clusters using the five ranges of the gray levels, 0 to
51, 52 to 102, 103 to 153, 154 to 204, and 205 to 254. The number of pixels,
{4028, 3049, 0, 3754, 4197}, in the five clusters is shown in Fig. 12.6b by the
symbol �.

With four and five clusters, we get the same number of pixels in four clusters and
zero pixels in the fifth indicating the convergence of the algorithm.While the clusters
are identified, in order to classify each object as club, spade, heart, or diamond, we
have to use known features as in supervised algorithms. This simple example is
presented just to illustrate the basics of clustering algorithms. The flowchart of a
typical clustering algorithm is shown in Fig. 12.7. The input image is decomposed
into some number of clusters based on some similarity measures. Then, a number of
iterations of the algorithm are executed with increased number of clusters until the
algorithm converges or for some number of fixed iterations. After termination, the
output, using additional features, contains the required classification.

358 12 Object Classification

Fig. 12.7 Flowchart of the
k-means clustering algorithm

Image

Cluster

Increase k

Output
yes

no

convergence Stop

12.6 Summary

• Given a set of features of an object, comparing that with those in the database and
assigning it to its proper class is classification.

• There are two main types of classification: (i) supervised classification and (ii)
unsupervised classification.

• In supervised classification, typicalmethods used areminimumdistance, k-nearest
neighbors, decision trees, and statistical (based on probability distributionmodels).
The decision is prior.

• In unsupervised classification, the data is partitioned into groups by clustering.
Unknown, but distinct set of feature classes are generated. The decision is posterior.

• In the k-nearest neighbors classifier method, the feature set of a test object is
compared with the reference set, and the test object is assigned to the class whose
features differ, with respect to some measure, by the least from that of the test
object.

• In the minimum-distance-to-mean classifier, the means of a set of features of a
class characterize the class. A new sample is assigned to a class if the distance
between the means of the reference set of that class and that of the new sample is
minimum.

• The classification of an object is based on discriminant functions. Discriminant
functions have to be found such that the discriminant function corresponding to
an unclassified feature vector will yield a value that is greater than those of the
functions to which it does not belong.

• In the decision tree classification approach, the feature space is split into unique
regions sequentially. A decision is arrived with out testing all classes.

• The Bayesian approach to statistical methods of classification is based not only
on the set of samples but also on the pertinent prior information.

12.6 Summary 359

• In k-means clustering approach, the image is analyzed to find clusters in the fea-
ture space. Once clusters have been found, then the decision boundaries may be
constructed to classify the objects similar to supervised classifiers.

Exercises

*12.1 The feature vectors of three classes are given. Using the 3-nearest neighbors
classifier, classify the test vector {16, 16}.

Class Feature 1 Feature 2
Class1 14 16
Class1 14 14
Class1 13 17
Class2 18 14
Class2 17 16
Class2 17 15
Class3 14 17
Class3 17 19
Class3 15 17

12.2 The feature vectors of three classes are given. Using the 3-nearest neighbors
classifier, classify the test vector {16, 17}.

Class Feature 1 Feature 2
Class1 15 16
Class1 16 19
Class1 15 17
Class2 17 14
Class2 18 15
Class2 17 15
Class3 14 17
Class3 17 18
Class3 14 16

12.3 The feature vectors of three classes are given. Using the 3-nearest neighbors
classifier, classify the test vector {17, 16}.

360 12 Object Classification

Class Feature 1 Feature 2
Class1 15 17
Class1 16 20
Class1 14 14
Class2 20 13
Class2 17 14
Class2 18 15
Class3 16 16
Class3 13 18
Class3 16 19

12.4 Let the mean feature vectors of three classes be {10, 10}, {−10,−10}, and
{10,−10}. Let the test vectors be {12,−10}, {8, 9}, and {−9,−11}. Find the three
discriminant functions of the three classes. Classify the test vectors.

*12.5 Let the mean feature vectors of three classes be {22,−20}, {20, 20}, and
{−18,−19}. Let the test vectors be {23,−20}, {21, 18}, and {−18,−19}. Find the
three discriminant functions of the three classes. Classify the test vectors.

12.6 Let the mean feature vectors of three classes be {15,−17}, {17, 15}, and
{−16, 16}. Let the test vectors be {18,−16}, {18, 14}, and {−16, 16}. Find the three
discriminant functions of the three classes. Classify the test vectors.

12.7 Draw the decision tree flowchart for classifying the five objects.

Object F O U R S
Area 750 964 647 1084 658
Form 132 484 108 233 116

*12.8 Draw the decision tree flowchart for classifying the five objects.

Object 5 6 7 8 9
Area 1199 1245 822 1478 1229
Form 168 327 205 445 327

12.9 Draw the decision tree flowchart for classifying the five objects.

Object 0 1 2 3 4
Area 1419 880 1090 1023 1118
Form 576 273 183 176 402

Exercises 361

12.10 Samples of training data of two classes, c1(m, n) and c2(m, n), are

c1(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7124 −1.0637
1.0219 −1.3503
1.0487 −0.6465
1.7837 −0.5444
2.4486 −0.3089
1.4430 −0.6230
0.8010 −0.9970
1.5931 −1.0655

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.2296 0.7281
−1.2066 0.6124
−1.7524 3.1638
1.3789 0.6478

−2.2385 −0.5050
−1.6842 3.2676
−2.0069 2.7461
−2.6606 0.6753

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Classify the test samples t (m, n) using Bayes classification.

t (m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4804 −1.2375
1.0979 −0.8694

−1.7471 0.1364
−0.8781 0.2799
−0.9416 0.6194
−2.9676 1.2279

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with
(i) p(ω1) = 0.9 and p(ω2) = 0.1.
(ii) p(ω1) = 0.1 and p(ω2) = 0.9.

12.11 Samples of training data of two classes, c1(m, n) and c2(m, n), are

c1(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.3587 −1.7484
1.5513 −0.9966

−1.0799 −1.7673
−1.2003 −1.9427
1.0758 −0.6775
0.1002 −1.2125
1.3904 −0.5126
1.6422 −0.7607

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.2082 −0.4353
0.4252 0.3338

−4.0033 1.1938
−1.7136 0.5872
−2.7969 1.4268
−1.5411 1.5656
−0.0826 −0.3152
0.1678 0.7499

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Classify the test samples t (m, n) using Bayes classification.

t (m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.5374 −2.4336
1.7707 −0.8282

−1.7326 2.1029
−3.5297 1.9491
−1.3760 −0.9096
−2.2018 1.1494

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

362 12 Object Classification

with
p(ω1) = 0.5 and p(ω2) = 0.5.

*12.12 Samples of training data of two classes, c1(m, n) and c2(m, n), are

c1(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.6140 −0.5545
0.5164 −1.0168
0.9973 −1.4846
1.8727 −0.5267
1.1421 −0.6542
2.3328 −0.3331
1.9811 −0.2564
1.2766 −0.1643

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c2(m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3066 1.8237
−0.6225 −0.4234
−0.0926 1.0912
−0.3983 1.8489
−2.8593 −0.9255
−1.5889 1.4916
0.7320 0.7428

−1.0616 −0.3287

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Classify the test samples t (m, n) using Bayes classification.

t (m, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.5646 −1.3982
0.2250 −1.5204

−1.8283 −1.3793
−2.0365 0.0497
−2.6668 0.3246
−0.3692 0.8388

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with
p(ω1) = 0.4 and p(ω2) = 0.6.

Chapter 13
Image Compression

Abstract Image compression is as essential as its processing, since images require
large amounts ofmemory and, in their original form, it is difficult to transmit and store
them. There are two types of image compression: (i) lossless and (ii) lossy. In lossless
compression, the original image can be reconstructed exactly from its compressed
version. Lossy compression is based on the fact that the magnitude of the frequency
components of typical images decreases with increasing frequency. Emphasis is
given to using the DWT, since it is a part of the current image compression standard.

Image compression is essential due to the widespread use of the Internet and other
media. It makes the transmission and storage of images efficient. For example, most
of the images naturally occur in a continuous form. However, images are converted
to digital form and processed for efficiency. Due to the sampling theorem, a finite
number of samples over a finite time interval are adequate to represent a signal
accurately. In a similar way, most images carry information with some redundancy.
They have to be stored and transmitted in a compressed form for efficiency. In
lossy compression, it has to be ensured that image fidelity is maintained to the
required level. Conversion of images in one form to another, to suit the requirement of
processing, is common in image processing. Alongwith analog-to-digital conversion
and transformation such as Fourier, image compression is a part of image processing.
In the conversion from one form to another, it has to be ensured that image quality
is maintained to the required level.

Same information can be represented in different ways. For example, number 7
can be coded in ASCII form using 8 bits or in binary form (111) with 3 bits. Both
forms are required in different applications. For efficient storage and transmission of
images in particular, the compressed form is mandatory. The number of bits required
to represent typical binary, gray, and color images is given in Chap.2. Let us say we
have to transmit a number from 0 to 7 and, most of the time, it is in the range 0–3.
Then, with the assumption that a number in the range 4–7 only is coded using 3 bits
and the other numbers coded with 2 bits, we get efficient transmission and storage.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_13

363

http://dx.doi.org/10.1007/978-981-10-6113-4_2

364 13 Image Compression

The objective in image compression is that the data has to be reduced as much as
possible while retaining the information the image carries.

There are two basic types of compression. In lossless compression, the redun-
dancy in the image is reduced so that the image can be reconstructed exactly. This
type of compression gives relatively small compression ratios but is essential for
compression of documents such as legal and medical records. In lossy compression,
exact reconstruction is not possible but a higher compression ratio is obtained. The
degradation of the image is limited to acceptable levels.

There are three basic types of redundancies in image data. Typically, 256 gray
levels are used in representing an image. In the case that a smaller number of gray
levels are adequate to represent an image, a reduced number of gray levels and,
hence, a reduced number of bits can be used. Further, not all the gray levels occur
with the same probability. Instead of using fixed number of bits to represent all
the gray levels, we can use less number of bits to gray levels occurring frequently.
Coding redundancy exists in using a fixed number of bits to represent all the gray
levels, which can be exploited to compress images.

Most of the time, the gray levels of adjacent pixels are same or nearly the same.
This type is called interpixel redundancy. As pixel values are correlated, the value
of a pixel can be predicted from that of its neighbor with reasonable accuracy. This
process requires a smaller number of bits to represent an image than fixed-length
coding.

Certain information, such as the background, is not important for visual purposes.
Therefore, those pixels can be coded using a smaller number of bits. The response of
a human eye with respect to quantization levels and frequency is limited. This type
of redundancy is due to irrelevant data.

Some of the measures of the effectiveness of the compression algorithms are
defined. The compression ratio is defined as

C = n

nc

where n is the bits per pixel in the uncompressed image and nc is that in the com-
pressed image. A higher C indicates better compression.

The root-mean-square error ε is defined, for a N × N image x(m, n), as

ε =
√
√
√
√

1

N 2

N−1
∑

m=0

N−1
∑

n=0

(x̂(m, n) − x(m, n))2

where x̂(m, n) is the reconstructed image from its compressed version. The error ε

must be zero for lossless compression and as low as possible for lossy compression.
Another quality measure of the reconstructed image is the signal-to-noise ratio,

expressed in decibels and defined as

13 Image Compression 365

SNR = 10 log10

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N−1
∑

m=0

N−1
∑

n=0

x̂2(m, n)

N−1
∑

m=0

N−1
∑

n=0

(x(m, n) − x̂(m, n))2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Compute the signal-to-noise ratio in decibels of the input x(n) and its approxima-
tion x̂(n).

x(n) = {10, 12}, x̂(n) = {10.1, 11.8}

SNR = 36.835dB.

13.1 Lossless Compression

For data, such as legal or medical, to be reconstructed exactly as the input, from its
compressed version, lossless compression is used.

13.1.1 Huffman Coding

Instead of using the same number of bits for all the values of the image to be com-
pressed, the idea is to represent highly probable values by a small number of bits and
lowly probable values by relatively more number of bits. The steps of the Huffman
coding algorithm are:

1. Find the probabilities of the occurrence of each value of the image.
2. Starting from the lowest probability, pair the two of the lowest probabilities to

get a binary tree.
3. Assign 0 to leaf to the left side of a branch and 1 to that in the right side or vice

versa.
4. Repeat steps 2 and 3, until all the values are placed.
5. Read the codes from the root of the tree to the leaf node where the value is placed.

This coding is popular and optimum, when each character is coded individually,
giving the highest compression ratio.

Consider coding the 4 × 4 image

13 14 2 14
8 2 2 8
15 15 2 15
15 8 13 2

366 13 Image Compression

A list of unique values of the image and the relative frequencies is created, as shown
in Table13.1. Then, a binary tree is constructed with the unique values as its leaves
and arranged with the probabilities sorted. The higher the frequency of a value, the
more closer is its location to the root. A right leaf is assigned the bit 0, and the left
leaf is assigned the bit 1. This choice is arbitrary and could be reversed. The position
of a value in the tree indicates its code. We simply read the bits from the root to
the location of the value. The higher the frequency of a value, the fewer the bits
used to encode it. Consider the binary tree shown in Fig. 13.1a. A two-leaf tree is
constructed from the two lowest frequencies (2/16 and 2/16). The sum 4/16 is placed
at the node connecting the two leaves. Now, a left leaf is created with frequency
3/16. A two-leaf tree is constructed from the two frequencies (3/16 and 4/16). The
sum 7/16 is placed at the node connecting the two leaves. One more left leaf with
frequency 4/16 completes the right side of the tree. The sum 11/16 is placed at the
node connecting the two leaves. The most frequently occurring number 2 is placed
in the leaf that is located to the left of the root. Therefore, its code is 1. Number 15
is placed in the first left leaf to the right side of the root. Therefore, its code is 01.
The code for the example image is

{0001 0000 1 0000 001 1 1 001 01 01 1 01 01 001 0001 1}

Table 13.1 Assignment of Huffman codes

Character Frequency Relative
frequency

Code A Total bits Code B Total bits

2 5 5
16 1 5 11 10

8 3 3
16 001 9 01 6

13 2 2
16 0001 8 001 6

14 2 2
16 0000 8 000 6

15 4 4
16 01 8 10 8

1

1 0
1 0

1 0

1 0

11
16 7

16 4
16

5
16
2

4
16
15

3
16
8

2
16
13

2
16
14

1

1 0
1 0

1 0

1 0

7
16 4

16

9
16

5
16
2

4
16
15

3
16
8

2
16
13

2
16
14

(b)(a)

Fig. 13.1 Huffman coding trees

13.1 Lossless Compression 367

The total number of bits to code the image is 5+9+8+8+8 = 38 bits comparedwith
(16)(8) = 128 bits without coding. Therefore, the average number of bits required to
code a character is reduced to 38/16 = 2.375 bits from 8. For coding a large number
of characters, the Huffman coding algorithm is not trivial. If precomputed tables are
available, near optimal coding can be achieved for a class of images.

The decoding is carried out just by looking at the first few characters until a code
corresponding to a value is found. The first 4 bits are 0001 and it corresponds to
13. The next 4 bits are 0000 and it corresponds to 14. Next, we look at 1 and it
corresponds to 2. It goes on until all the bits are decoded.

An alternate binary tree is shown in Fig. 13.1b. Total number of bits to code the
image is 10+6+6+6+8 = 36 bits. Therefore, the average number of bits required
to code a character is reduced to 36/16 = 2.25 bits from 8.

13.1.1.1 Entropy

Ameasure of the effectiveness of compression algorithms is the average information
of the image, called the entropy. It is the theoretical limit of the minimum number of
bits per pixel (bpp) for compressing an image by a lossless compression algorithm.
The total number of bits used to represent an image divided by the total number of
pixels is bpp. Let the number of distinct values in an image be N and the frequency
of their occurrence be

f1, f2, . . . , fN

Entropy is defined as

E =
N

∑

k=1

p(fk) log2

(
1

p(fk)

)

where p(fk) is the probability of occurrence of fk . The term log2(1/p(fk)) gives the
number of bits required to represent 1/p(fk). By multiplying this factor with p(fk),
we get the bpp required to code fk . The sum of bpp for all the distinct values yields
the bpp to code the image. This equation can be equivalently written as

E = −
N

∑

k=1

p(fk) log2(p(fk))

Let N = 4 be number of values in a set with each value being distinct. The probability
of their occurrence is

{1, 1, 1, 1}/4

Then,

E = −(4)
1

4
log2(

1

4
) = (4)

1

4
log2(4) = 2

368 13 Image Compression

With each value distinct, the number of bits required is 2 (which is required in binary
encoding of the numbers). Therefore, there is no compression. The variation of the
probabilities of the occurrences of pixel values of an image makes compression
possible. With all the values the same, E = 0. For all other cases, entropy varies
between 0 and log2(N). In typical images, a considerable amount of repetition of
values occur. For the example 4 × 4 image,

E = −(
5

16
log2(

5

16
) + 3

16
log2(

3

16
) + (2)

2

16
log2(

2

16
) + 4

16
log2(

4

16
)) = 2.2272

The actual value of 2.25 bpp is quite close with the ideal value 2.2272.

13.1.2 Run-Length Encoding

Agray-level image can be decomposed into a set of binary images. Each binary image
can be considered as sequences of alternating strings of 1 s and 0s. A sequence of
0 s and 1s can be encoded by the number of their occurrences. Consider the 8 × 8
binary image

0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0
0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 0
0 1 1 1 0 0 1 0
0 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1
0 0 0 1 0 0 1 0

One method starts with the number of zeros. Each line is coded separately. The first
line is encoded as (13211), since the first bit is zero, followed by 3 1s, 2 0s, 1 1s,
and 1 0s. The other lines are encoded as (13121), (12311), (04211), (13211), (161),
(0422), and (31211).

In another method, the starting position of sequences of 1s and their lengths are
recorded. That is, for each sequence of 1s, a pair of numbers is used to encode. The
first line is encoded as (2371), since the first sequence of 1s starts at second position
with length 3 and the next sequence starts at seventh position with length 1. The
other lines are encoded as (2362), (2271), (1471), (2371), (26), (1472), and (4171).

Gray-level images can be encoded by breaking them into bit planes first and then
encoding each of the planes individually. For example,

⎡

⎢
⎢
⎣

1 5 12 5
14 7 11 9
1 4 15 6
7 12 7 11

⎤

⎥
⎥
⎦

= 23

⎡

⎢
⎢
⎣

0 0 1 0
1 0 1 1
0 0 1 0
0 1 0 1

⎤

⎥
⎥
⎦

+ 22

⎡

⎢
⎢
⎣

0 1 1 1
1 1 0 0
0 1 1 1
1 1 1 0

⎤

⎥
⎥
⎦

+ 2

⎡

⎢
⎢
⎣

0 0 0 0
1 1 1 0
0 0 1 1
1 0 1 1

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

1 1 0 1
0 1 1 1
1 0 1 0
1 0 1 1

⎤

⎥
⎥
⎦

13.1 Lossless Compression 369

13.1.3 Lossless Predictive Coding

Consider the pixel values of a 4 × 4 portion of a 8-bit gray-level image

⎡

⎢
⎢
⎣

246 243 243 242
245 243 242 241
245 242 242 241
245 242 242 241

⎤

⎥
⎥
⎦

The maximum difference of adjacent pixel values is 3. This pattern is typical in
significant part of an image. The difference between adjacent pixel values in an image
is typically in the neighborhood of zero. Therefore, if the pixels are represented by
the difference (the new information) between the actual and predicted values, then
the redundancy in the image is increased and the entropy is reduced. The number of
bits per pixel can be reduced using the difference values of neighboring pixels.

Figure13.2a shows an encoder. It consists of a FIR filter with one coefficient, h(0).
A filter can have more coefficients. The rounded output of the filter is the predicted
value. The rounding operation returns the nearest integer of a number. This value is
subtracted from the current pixel value to get the predicted code. The code is passed
through symbol encoders, such as Huffman encoder, to get the compressed signal.
The prediction error is the difference between the current input pixel x(n) and the
rounded output of the predictor, x̂(n).

e(n) = x(n) − x̂(n)

Fig. 13.2 Lossless
predictive coding x(n)

x̂(n)

x(n−1)

e(n) c(n)
Encoder

Roundz−1

−

h(0)

(a)

x(n)

x̂(n)

x(n−1)

e(n)c(n)
Decoder

z−1

h

(b)

)0(

370 13 Image Compression

where

x̂(n) = round

(
N−1
∑

k=0

h(k)x(n − k + 1)

)

The filter coefficients are h(k). The decoder, shown in Fig. 13.2b, decodes the coded
image to its original form.

x(n) = e(n) + x̂(n)

Each row of the image is coded separately.

x̂(m, n) = round

(
N−1
∑

k=0

h(k)x(m, n − k + 1)

)

As the output depends on some number of past input pixels, the process does not
start from the first pixel.

Consider the 4 × 4 image

51 50 52 47
53 44 39 48
40 63 131 212
114 128 154 155

Let us use a filter with one coefficient with value 1. Then,

x̂(m, n) = round (x(m, n − 1)) and e(m, n) = x(m, n)−x̂(m, n) = x(m, n)−x(m, n−1)

except for the first pixels of the rows. The predictive coding representation of the
image is

51 −1 2 −5
53 −9 −5 9
40 23 68 81
114 14 26 1

Thefirst columnvalues remain the same. For thefirst row, the second, third, and fourth
column values are 50 − 51 = −1, 52 − 50 = 2, and 47 − 52 = −5, respectively.
The values of the other three rows are found similarly. For decompressing of the first
row, the second, third, and fourth column values are 51− 1 = 50, 50+ 2 = 52, and
52 − 5 = 47, respectively.

In the input image, there are 16 symbols each with probability 1/16. Therefore,
the entropy is

−(16(1/16) log 2(1/16)) = 4

13.1 Lossless Compression 371

In the coded image, there are 15 symbols (-5 repeats twice), 14 with probability 1/16
and one with 2/16. Therefore, the entropy is

−(14(1/16) log 2(1/16) + (2/16) log 2(2/16)) = 31/8 = 3.8750

To code the difference, we need one bit more, and usually, the independent symbols
in the coded image are more than that of the input image. However, due to the density
of the histogram at the center, the coded image has a lower entropy, as presented in
the next example.

The histogram of a 256 × 256 image, shown in Fig. 13.3a, is fairly spread out.
The histogram of its predictive coding representation using a filter with just one
coefficient with value 1 is shown in Fig. 13.3b. Although the range of values is larger
than that of the image, the histogram is densely populated in the neighborhood of
zero. Therefore, the entropy of coded image, 6.2297, is smaller than that, 7.4371,
of the input image. The lower entropy will result in a smaller bpp when the coded
image is passed through a symbol encoder.

13.1.4 Arithmetic Coding

In arithmetic coding, a group of symbols is coded rather than each one individually
as in Huffman coding. The advantages are that the coding is more efficient for longer
sequences andno table is required.As it ismore complex than theHuffmancoding,we
have givenMATLABprograms to describe it. Further, although it ismore efficient for
longer sequences, we use short sequences in the examples for ease of understanding
the algorithm.

0 100 200
0

0.01

0.02

(a)

gray level

no
rm

al
iz

ed
 c

ou
nt

−180 0 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
(b)

gray level

no
rm

al
iz

ed
 c

ou
nt

Fig. 13.3 aHistogram of an image and b the histogram of its representation by the linear prediction
error

372 13 Image Compression

Assume that we have to code {22, 23, 32, 33}. Let the probability of occurrence
of the four numbers be equal. Then, a possible code is {00, 01, 10, 11}. Of course,
with longer numbers and the probability of occurrence varying, the number of bits to
code increases. In order to make it practically efficient with finite precision, rescaling
has to be done during the coding process. Further, rounding operation is required to
make the code accurate. Rescaling and coding are the key steps in the algorithm.

As in Huffman coding, the basic principle is to assign a code to each symbol
the length of which is inversely proportional to its probability of occurrence. The
assignment of the code is based on the cumulative distribution function of the sym-
bols. Histogram equalization is also based on the cumulative distribution function.
A higher probability of a gray level gets a longer range of gray levels in the equal-
ized histogram. In arithmetic coding, a higher probability of a symbol gets a shorter
code. With infinite precision, it is possible to assign a distinct code to each distinct
sequence of symbols. However, the number of bits to represent a number is limited in
digital image processing. For example, the range of numbers is 0–255 with 8 bits. In
order to code efficiently with finite precision, arithmetic coding relies on rescaling of
the numbers. For example, to examine a decimal number 125 (01111101 in binary),
with 8-bit representation, we test its MSB. As that bit is 0, it is determined that it
is in the lower-half of the range 0–255. Once that bit is stored, we can rescale the
number 125 to get 11111010 and determine that 125 is in the upper-half of the range
0–127 by testing its MSB.

Amain program and two functions are given. The actual codes can be downloaded
from theWeb site of the book. Themain program calls an encoding function to get the
code for the given sequence. Then, a decoding function is called with the generated
code to get back the input sequence. Just a few runs of the program are enough to
get used to the basics of this coding.

% Program to find the arithmetic code of a sequence.
% set x, the sequence of integers and
% count, the number of times each integer occurs.
% outputs the binary code and the wordlength used.
% decodes the binary code to get back the input
clear
x=[9 9 1 9 9 4 8 1] % input sequence
lseq=length(x); % length of the sequence
y=unique(x) % list of unique symbols
count=[10 2 5 9] % number of times each symbol occurs
c_count=cumsum([0 count]); % cumulative count
[code,N]=a_encode(x,y,c_count) % calling encoding function
xr=a_decode(N,y,c_count,code,lseq) % calling decoding function

% encoding function to generate the binary code
function [code_b,N] = a_encode(seq,sym,c_count)
total=c_count(end); % total count
N=round(log2(4*total)); % word length

13.1 Lossless Compression 373

msb=N; % position of the msb
msbm1=N-1; % position of the second msb
l=0; % initial lower limit of the interval
u=2ˆN-1; % initial upper limit of the interval
flag=0; % flag
cod=[]; % initialize code accumulator
for k=1:length(seq) % one loop for each symbol

temp=l;
num=seq(k); % read the new number
index=find(sym == num); % find the index of the symbol
l=l+floor((u-l+1)*c_count(index)/total); % lower limit
u=temp+floor((u-temp+1)*c_count(index+1)/total)-1; % upper limit
lb=de2bi(l,N); % convert l to binary
ub=de2bi(u,N); % convert u to binary
while (lb(msb) == ub(msb) | (lb(msbm1) == 1 & ub(msbm1) == 0))

% loop if lb(msb) = ub(msb) or lb(msbm1) == 1 & ub(msbm1) == 0
if (lb(msb) == ub(msb)) % if msbs of l and u are equal

b=ub(msb); % msb of ub is the code bit
cod=[cod b]; % accumulate the code
lb=circshift(lb,[0,1]);lb(1)=0;

% left shift lb by one position and then set lsb to 0
ub=circshift(ub,[0,1]);ub(1)=1;

% left shift ub by one position and then set lsb to 1
l=bi2de(lb); % convert lb to decimal
u=bi2de(ub); % convert ub to decimal
while flag > 0

cod=[cod ˜b];
% code bit is the complement of the last code bit

flag=flag - 1; % decrement the flag
end

end % if
% if lb(msbm1) == 1 & ub(msbm1) == 0 holds

if (lb(msbm1) == 1 & ub(msbm1) == 0)
lb(msbm1)=0; % complement lb(msbm1)
ub(msbm1)=1; % complement ub(msbm1)
lb=circshift(lb,[0,1]);lb(1)=0;
ub=circshift(ub,[0,1]);ub(1)=1;
l=bi2de(lb);
u=bi2de(ub);
flag=flag + 1; % increment the flag

end
end % while

end % for
if flag == appending the tag to the code

code_b= [cod lb(N:-1:1)];
else

code_b= [cod lb(N) ones(1,flag) lb(N-1:-1:1)];
end
code_b=code_b(length(code_b):-1:1);

% decoding function to reconstruct the input sequence

374 13 Image Compression

function [decod] =a_decode(N,sym,c_count,code_b,lseq)
%
msb=N; % position of the msb
msbm1=N-1; % position of the second msb
total=c_count(end); % length of the sequence
tag=bi2de(code_b(end-N+1:end)); % most significant N bits
l=0; % initial lower limit
u=2ˆN-1; % initial upper limit
decod=[]; % symbol accumulator
ps=1;
for pp=1:lseq

tem=floor(((tag-l+1)*total-1)/(u-l+1));
k=1;
while (tem >= c_count(k)); % symbol decode

k=k+1;
end
x=sym(k-1); % decoded symbol
decod=[decod sym(k-1)]; % accumulate the symbols
temp=l;
l=l+floor((u-l+1)*c_count(k-1)/total);
u=temp+floor((u-temp+1)*c_count(k)/total)-1;
lb=de2bi(l,N);
ub=de2bi(u,N);
while (lb(msb) == ub(msb) | (lb(msbm1) == 1 & ub(msbm1) == 0))

if (lb(msb) == ub(msb))
tb=de2bi(tag,N);
lb=circshift(lb,[0,1]);lb(1)=0;
ub=circshift(ub,[0,1]);ub(1)=1;
tb=circshift(tb,[0,1]);tb(1)=code_b(end-N+1-ps);

% left shift the tag by 1 bit and read the next bit
% into the lsb from the binary code

ps=ps+1;
l=bi2de(lb);
u=bi2de(ub);
tag=bi2de(tb);

end % if end
if (lb(msbm1) == 1 & ub(msbm1) == 0)

lb(msbm1)=0; % complement second msb of lb
ub(msbm1)=1; % complement second msb of ub
lb=circshift(lb,[0,1]);lb(1)=0;
ub=circshift(ub,[0,1]);ub(1)=1;
l=bi2de(lb);
u=bi2de(ub);
tb=de2bi(tag,N);
tb=circshift(tb,[0,1]);tb(1)=code_b(end-N+1-ps);
ps=ps+1;
tb(msb)=˜tb(msb);
tag=bi2de(tb);

end % 2nd if end
end % while end

end % for end

13.1 Lossless Compression 375

Example 13.1 Depending on the probability of occurrence of the symbols, the
word length has to be fixed. Let us say that our sequence length is 1. Let there
be three symbols {1, 2, 3} and number of occurrences of the symbols, respec-
tively, be {2, 1, 1} in a sequence of length 4. The cumulative count is defined as
{c_count (n), n = 1, 2, 3, 4} = {0, 2, 3, 4} in a sequence of length 4. The interval
for the representation of the input sequence has to be four times that of the total count
total = 4. The interval has to be at least 4 × 4 = 16, and the wordlength is 4. That
is, 24 = 16. Wordlength has to be a power of 2. The index of the MSB is 4, that of
the second MSB is 3, and that of the LSB is 1. The initial lower limit of the interval
is l = 0, and the upper limit is u = 24 − 1 = 15.

Encoding
Let the symbol to be coded is 3. This number is read, and u and l are updated.

l1 = l +
⌊

(u − l + 1) × c_count (3)

total

⌋

= 0 +
⌊
16 × 3

4

⌋

= 12 = (1100)2

u1 = 0+
⌊

(u − l + 1) × c_count (4)

total

⌋

− 1 = 0+
⌊
16 × 4

4

⌋

− 1 = 15 = (1111)2

If both the MSBs are same, that bit is stored in code. Therefore, code = {1}. Now,
both u1 and l1 are shifted left by 1 bit and the LSBs are set 1 and 0, respectively.

l1 = 8 = (1000)2, u1 = 15 = (1111)2

Since the MSBs are same, code = {11}. Shifting u1 and l1, we get

l1 = 0 = (0000)2, u1 = 15 = (1111)2

With these values, we exit from thewhile loop and also exit from the f or loop since
there is no more symbol to be read. The last value of l1 is appended to the code so
that the final code is {110000}.
Decoding
In encoding, we generate the code bits from the symbol with the lower and upper
limits of the intervals. In decoding, we generate the symbol from the code bits with
the same set of lower and upper limits of the intervals. It is just the reverse process.
To decode, we read the first 4 bits of the code into tag = (1100)2 = 12. Using this
and the lower and upper limits (0 and 15), we compute the cumulative count of the
symbol as

tem =
⌊

(tag − l + 1) × total − 1

u − l + 1

⌋

=
⌊
13 × 4 − 1

16

⌋

= 3 = (0011)2

Starting from the first value, we find a value in c_count so that it is greater than or
equal to tem in the while loop. The index of this value is 3. The decoded symbol, 3,

376 13 Image Compression

is with this index in sym list. Now, we update the limits.

l1 = 0 +
⌊
16 × 3

4

⌋

= 12 = (1100)2

u1 = 0 +
⌊
16 × 4

4

⌋

− 1 = 15 = (1111)2

As bothMSBs are equal, u1, l1, and tag are shifted and the LSB of the tag is replaced
by the next bit in the code to get

l1 = 8 = (1000)2, u1 = 15 = (1111)2, tag = 8 = (1000)2

Since the MSB and LSB are equal, we go back to the while loop and update u1, l1,
and tag.

l1 = 0 = (0000)2, u1 = 15 = (1111)2, tag = 0 = (0000)2

Now, we go back to the f or loop, and since there is no more symbol to be decoded,
the execution is finished. �

Example 13.2 The input sequence is

{9, 9, 1, 9, 9, 4, 8, 1}

There are four symbols {1, 4, 8, 9}. The number of occurrences of the symbols, in
that order, is given as {10, 2, 5, 9} in a sequence of length 26. The cumulative count
is {0, 10, 12, 17, 26}. The range of the interval has to be at least 4 × 26 = 104, and
the wordlength is 7. That is, 27 = 128. Wordlength has to be a power of 2. The index
of the MSB is 7, that of the second MSB is 6, and that of the LSB is 1. The initial
lower limit of the interval is l = 0, and the upper limit is u = 27 − 1 = 127.

Encoding
loop 1. symbol 9

l1 = 0 +
⌊
128 × 17

26

⌋

= 83 = (1010011)2

u1 = 0 +
⌊
128 × 26

26

⌋

− 1 = 127 = (1111111)2

cod = {1}

l1 = 38 = (0100110)2, u1 = 127 = (1111111)2

13.1 Lossless Compression 377

loop 2. symbol 9

l2 = 38 +
⌊
90 × 17

26

⌋

= 96 = (1100000)2

u2 = 38 +
⌊
90 × 26

26

⌋

− 1 = 127 = (1111111)2

cod = {11}

l2 = 64 = (1000000)2, u2 = 127 = (1111111)2

cod = {111}

l2 = 0 = (0000000)2, u2 = 127 = (1111111)2

loop 3. symbol 1

l3 = 0 +
⌊
128 × 0

26

⌋

= 0 = (0000000)2

u3 = 0 +
⌊
128 × 10

26

⌋

− 1 = 48 = (0110000)2

cod = {1110}

l3 = 0 = (0000000)2, u3 = 97 = (1100001)2

loop 4. symbol 9

l4 = 0 +
⌊
98 × 17

26

⌋

= 64 = (1000000)2

u4 = 0 +
⌊
98 × 26

26

⌋

− 1 = 97 = (1100001)2

cod = {11101}

l4 = 0 = (0000000)2, u4 = 67 = (1000011)2

loop 5. symbol 9

l5 = 0 +
⌊
68 × 17

26

⌋

= 44 = (0101100)2

378 13 Image Compression

u5 = 0 +
⌊
68 × 26

26

⌋

− 1 = 67 = (1000011)2

l5 = 24 = (0011000)2, u5 = 71 = (1000111)2

f lag = 1

loop 6. symbol 4

l6 = 24 +
⌊
48 × 10

26

⌋

= 42 = (0101010)2

u6 = 24 +
⌊
48 × 12

26

⌋

− 1 = 45 = (0101101)2

cod = {111010}

l6 = 84 = (1010100)2, u6 = 91 = (1011011)2

cod = {1110101}

cod = {11101011}

l6 = 40 = (0101000)2, u6 = 55 = (0110111)2

cod = {111010110}

l6 = 80 = (1010000)2, u6 = 111 = (1101111)2

cod = {1110101101}

l6 = 32 = (0100000)2, u6 = 95 = (1011111)2

l6 = 0 = (0000000)2, u6 = 127 = (1111111)2

f lag = 1

loop 7. symbol 8

l7 = 0 +
⌊
128 × 12

26

⌋

= 59 = (0111011)2

u7 = 0 +
⌊
128 × 17

26

⌋

− 1 = 82 = (1010010)2

13.1 Lossless Compression 379

l7 = 54 = (0110110)2, u7 = 101 = (1100101)2

f lag = 2

loop 8. symbol 1

l8 = 54 +
⌊
48 × 0

26

⌋

= 54 = (0110110)2

u8 = 54 +
⌊
48 × 10

26

⌋

− 1 = 71 = (1000111)2

l8 = 44 = (0101100)2, u8 = 79 = (1001111)2

f lag = 3

l8 = 24 = (0011000)2, u8 = 95 = (1011111)2

f lag = 4

The lower limit is l8 = 0011000. Since f lag = 4, we insert 4 1s after the MSB of l8
to get the tag 01111011000 of 11 bits. This tag is appended to the cod = 1110101101
to get the final code of 21 bits, for the input sequence, as

{111010110101111011000}

Decoding
The first 7 bits of the tag is (1110101)2 = 117. The initial limits are l = 0 and
u = 127.
loop 1

tem =
⌊
118 × 26 − 1

128

⌋

= 23, decod = {9}

l1 = 0 +
⌊
128 × 17

26

⌋

= 83 = (1010011)2

u1 = 0 +
⌊
128 × 26

26

⌋

− 1 = 127 = (1111111)2

l1 = 38 = (0100110)2, u1 = 127 = (1111111)2, tag = 107 = (1101011)2

380 13 Image Compression

loop 2

tem =
⌊
70 × 26 − 1

90

⌋

= 20, decod = {9, 9}

l2 = 38 +
⌊
90 × 17

26

⌋

= 96 = (1100000)2

u2 = 38 +
⌊
90 × 26

26

⌋

− 1 = 127 = (1111111)2

l2 = 64 = (1000000)2, u2 = 127 = (1111111)2, tag = 86 = (1010110)2

l2 = 0 = (0000000)2, u2 = 127 = (1111111)2, tag = 45 = (0101101)2

loop 3

tem =
⌊
46 × 26 − 1

128

⌋

= 9, decod = {9, 9, 1}

l3 = 0 +
⌊
128 × 0

26

⌋

= 0 = (0000000)2

u3 = 0 +
⌊
128 × 10

26

⌋

− 1 = 48 = (0110000)2

l3 = 0 = (0000000)2, u3 = 97 = (1100001)2, tag = 90 = (1011010)2

loop 4

tem =
⌊
91 × 26 − 1

98

⌋

= 24, decod = {9, 9, 1, 9}

l4 = 0 +
⌊
98 × 17

26

⌋

= 64 = (1000000)2

u4 = 0 +
⌊
98 × 26

26

⌋

− 1 = 97 = (1100001)2

l4 = 0 = (0000000)2, u4 = 67 = (1000011)2, tag = 53 = (0110101)2

loop 5

tem =
⌊
54 × 26 − 1

68

⌋

= 20, decod = {9, 9, 1, 9, 9}

13.1 Lossless Compression 381

l5 = 0 +
⌊
68 × 17

26

⌋

= 44 = (0101100)2

u5 = 0 +
⌊
68 × 26

26

⌋

− 1 = 67 = (1000011)2

l5 = 24 = (0011000)2, u5 = 71 = (1000111)2, tag = 43 = (0101011)2

loop 6

tem =
⌊
20 × 26 − 1

48

⌋

= 10, decod = {9, 9, 1, 9, 9, 4}

l6 = 24 +
⌊
48 × 10

26

⌋

= 42 = (0101010)2

u6 = 24 +
⌊
48 × 12

26

⌋

− 1 = 45 = (0101101)2

l6 = 84 = (1010100)2, u6 = 91 = (1011011)2, tag = 87 = (1010111)2

l6 = 40 = (0101000)2, u6 = 55 = (0110111)2, tag = 47 = (0101111)2

l6 = 80 = (1010000)2, u6 = 111 = (1101111)2, tag = 94 = (1011110)2

l6 = 32 = (0100000)2, u6 = 95 = (1011111)2, tag = 61 = (0111101)2

l6 = 0 = (0000000)2, u6 = 127 = (1111111)2, tag = 59 = (0111011)2

loop 7

tem =
⌊
60 × 26 − 1

128

⌋

= 12, decod = {9, 9, 1, 9, 9, 4, 8}

l7 = 0 +
⌊
128 × 12

26

⌋

= 59 = (0111011)2

u7 = 0 +
⌊
128 × 17

26

⌋

− 1 = 82 = (1010010)2

l7 = 54 = (0110110)2, u7 = 101 = (1100101)2, tag = 54 = (0110110)2

382 13 Image Compression

loop 8

tem =
⌊
1 × 26 − 1

48

⌋

= 0, decod = {9, 9, 1, 9, 9, 4, 8, 1}

l8 = 54 +
⌊
48 × 0

26

⌋

= 54 = (0110110)2

u8 = 54 +
⌊
48 × 10

26

⌋

− 1 = 71 = (1000111)2

l8 = 44 = (0101100)2, u8 = 79 = (1001111)2, tag = 44 = (0101100)2

l8 = 24 = (0011000)2, u8 = 95 = (1011111)2, tag = 24 = (0011000)2

�

13.2 Transform-Domain Compression

While, in theory, the range of the frequencies of the components of a signal may
be infinite, the frequencies which physical systems can generate are of finite order.
Further, the magnitude of the high-frequency components decreases with increasing
frequency. We have seen, in earlier chapters, the spectrum of several images in the
center-zero format. In all cases, the magnitude is highest at low frequencies and
lowest at high frequencies. The point is that the rate of convergence of the spectral
coefficients of practical signals and images is quite high. This characteristic makes
the compression of images practical. That is, the magnitudes of the low-frequency
components can be coded with more number of bits and those of the high-frequency
components can be coded with less number of bits. This is the basis of transform
compression.

For a long time, images were decomposed into their individual frequency compo-
nents using versions of Fourier analysis and compressed. The computational com-
plexity of this approach is O(N log2 N). Now, the DWT is part of the current com-
pression standard and is widely used in practice. The point is that, for compression
and some other applications, the decomposition of an image into their subband com-
ponents turns out to be better. That is, the basis signals of the DWT are finite and
composed of groups of frequency components of the spectrum. Decomposing signals
into their individual components requires a complexity of O(N log2 N), while the
decomposition in terms of basis signals composed of groups of frequency compo-
nents requires a complexity of O(N). Further, the decomposition using the DWT
reduces the storage requirement. In signal compression, the compressed version
along with its storage format is required. Remember that, the signal has to be decom-
pressed after storage or transmission. In terms of storage requirements also, the DWT

13.2 Transform-Domain Compression 383

is better. For these reasons, the DWT is the most suitable transform for image com-
pression. Therefore, the DWT is briefly presented in the next section. By taking
the transform of an image, the image data gets uncorrelated. Then, the components
those are negligible or unimportant can be codedwith less number of bits or discarded
altogether.

13.2.1 The Discrete Wavelet Transform

A signal is expressed as a linear combination of sinusoidal signals in Fourier analysis.
In the DWT decomposition, a signal is expressed as a linear combination of finite
duration basis signals, composed of continuous groups of frequency components
(subbands) of the spectrum. For example, a signal is a combination of low- and
high-frequency components. In the DWT, these components are separated similar
to the separation of the individual frequency components in Fourier analysis. This
decomposition is obtained by lowpass and highpass filtering of the signal. While
Fourier analysis is of fundamental importance in signal and systemanalysis, theDWT
is advantageous in analyzing nonstationary signals and in multiresolution analysis.
One advantage is that the basis functions are local enabling the detection of the instant
of occurrence of an event. Further, the basis functions are of different lengths giving
multiresolution characteristic. The computational complexity of the DWT is O(N).

The matrix formulation of the DWT is similar to that of the DFT with some
differences. Consider the 4-point DWT of the sequence

{x(0), x(1), x(2), x(3)}

The 1-level (scale 1) 4-point Haar DWT is

⎡

⎢
⎢
⎣

Xφ(1, 0)
Xφ(1, 1)
Xψ(1, 0)
Xψ(1, 1)

⎤

⎥
⎥
⎦

= 1√
2

⎡

⎢
⎢
⎣

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x(0)
x(1)
x(2)
x(3)

⎤

⎥
⎥
⎦

or X = W 4,1x

The basis functions are nonzero only for subintervals of the input sequence. This
feature enables the shifting of a basis function leading to time-frequency represen-
tation of the input signal. The coefficients Xφ(1, 0) and Xφ(1, 1), indicated by φ

and called the approximation coefficients, are obtained by averaging pairs of input
signals. The coefficients Xψ(1, 0) and Xψ(1, 1), indicated byψ and called the detail
coefficients, are obtained by differencing pairs of input signals. The averaging oper-
ation is lowpass filtering, and differencing is highpass filtering. The spectrum of a
sequence is split into a low-frequency subband and a high-frequency subband. The
spectral range is decomposed into

384 13 Image Compression

(0 − π

2
) and (

π

2
− π) radians

and the signal is decomposed into two components. The corresponding DWT coef-
ficients are

{Xφ(1, 0), Xφ(1, 1)}, {Xψ(1, 0), Xψ(1, 1)}

For example, if Xφ(1, 0) is zero, then there is no signal component in the frequency
range (0− π

2) during the first two samples. If Xφ(1, 0) is small or zero, the probability
is high that Xψ(1, 0) is also small or zero, as they represent the same time-domain
samples of the signal. This results in less storage requirement for storing the locations
of the coefficients in the compressed signal, making compression using the DWT
more efficient. The spectral range of the original signal is 0 to π radians. The signal
samples themselves are the approximation coefficients, and no detail coefficients are
required. This decomposition of a signal into subband components is advantageous
in applications such as discontinuity detection, denoising, and compression. With
longer basis functions, the transform coefficients are obtained by weighted averaging
and differencing. Further, the signal can be decomposed into a suitable number of
subband components.

The inverse DWT (IDWT), with W−1
4,1 = W T

4,1, is

⎡

⎢
⎢
⎣

x(0)
x(1)
x(2)
x(3)

⎤

⎥
⎥
⎦

= 1√
2

⎡

⎢
⎢
⎣

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Xφ(1, 0)
Xφ(1, 1)
Xψ(1, 0)
Xψ(1, 1)

⎤

⎥
⎥
⎦

or x = W−1
4,1X

Example 13.3 Using the Haar transform matrix, find the 1-level (scale 1) DWT of
x(n). Verify that x(n) is reconstructed by computing the IDWT. Verify Parseval’s
theorem.

{x(0) = 1, x(1) = −3, x(2) = 2, x(3) = 4}

Solution
⎡

⎢
⎢
⎣

Xφ(1, 0)
Xφ(1, 1)
Xψ(1, 0)
Xψ(1, 1)

⎤

⎥
⎥
⎦

= 1√
2

⎡

⎢
⎢
⎣

1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
−3
2
4

⎤

⎥
⎥
⎦

= 1√
2

⎡

⎢
⎢
⎣

−2
6
4

−2

⎤

⎥
⎥
⎦

As is the case in the DFT, the output of taking the transform is a set of coefficients.
Summing the product of these coefficients with the corresponding basis functions
yields the input back.

13.2 Transform-Domain Compression 385

1√
2
(1 1 0 0) 1√

2
(−2)+

1√
2
(0 0 1 1) 1√

2
(6)+

1√
2
(1 −1 0 0) 1√

2
(4)+

1√
2
(0 0 1 −1) 1√

2
(−2) =

____ ____ ____ ____
1 −3 2 4

Formally, the IDWT gets back the input.

⎡

⎢
⎢
⎣

x(0)
x(1)
x(2)
x(3)

⎤

⎥
⎥
⎦

= 1√
2

⎡

⎢
⎢
⎣

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎤

⎥
⎥
⎦

1√
2

⎡

⎢
⎢
⎣

−2
6
4

−2

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
−3
2
4

⎤

⎥
⎥
⎦

From Parseval’s theorem, we get

12 + (−3)2 + 22 + 42 = 30 = (
1√
2
)2((−2)2 + 62 + 42 + (−2)2

�

13.2.1.1 Two-Channel Haar Filter Bank

While the DWT is introduced in matrix form, in practical implementations, con-
volution operation is used for efficiency. The basic operation in DWT is filtering
(convolution) of the signal to decompose it into subband components and down-
sample (as the bandwidth of the components becomes smaller). A two-channel Haar
analysis and synthesis filter bank is shown in Fig. 13.4. In the analysis filter bank,
the input x(n) is passed through a lowpass filter in the upper channel and a highpass
filter in the lower channel. The convolution of the input with the respective filter
coefficients is downsampled by a factor of 2 (the odd-indexed values are discarded)
to get the outputs, Xφ(k) and Xψ(k), of the analysis filter bank. Coefficients Xφ(k)

and Xψ(k) represent, respectively, the low- and high-frequency components of the

x(n) Analysis Filter Bank Synthesis Filter Bank

∗ 1√
2
(1, 1)

∗ 1√
2
(−1, 1)

2 ↓

2 ↓

2 ↑

2 ↑

∗ 1√
2
(1, 1)

∗ 1√
2
(1,−1)

+ x̂(n)

Xψ(k)

Xφ(k)

lowpass

highpass

lowpass

highpass

Fig. 13.4 Two-channel Haar analysis and synthesis filter bank

386 13 Image Compression

input signal in terms of the respective basis signals. As frequency range of the com-
ponents is one-half of the input, downsampling operation eliminates the redundancy
in the representation of the signal.

In the synthesis filter bank, coefficients Xφ(k) and Xψ(k) are upsampledbya factor
of 2 (a zero-valued coefficient is inserted between every two adjacent coefficients).
The sampling rate has to be increased to that of the input signal. Then, the upsampled
signals are passed through a lowpass filter in the upper channel and a highpass filter
in the lower channel to filter out the unnecessary frequency components arose due
to upsampling. The upsampling and filtering operations constitute the interpolation
of the signal. This interpolation is required in order to get the original sampling
rate of the signal from the downsampled version. The sum of the two interpolated
signals is the reconstructed input signal. The input and output of the filter bank are
the same as that obtained usingmatrix formulation in Example (13.3). By recursively
decomposing the approximation (low frequency) component at each stage, a signal
can be decomposed into a set of components. The number of components can be 2 to
1+ log2(N). As in the case of the DFT, the length of the input sequence is assumed
to be a power of 2.

13.2.1.2 2-Level Haar DWT

Consider the computation of a 2-level 4-point DWT using a two-stage two-channel
Haar analysis filter bank, shown in Fig. 13.5. The 4-point input is {1,−3, 2, 4}, which
is also considered as approximation of the input at scale 2, Xφ(2, k). The approxima-
tion coefficients at scale 1, Xφ(1, k), are computed by convolving the input x(k)with

the lowpass filter impulse response
{

1√
2
, 1√

2

}

and then downsampling by a factor of

2. Note that the convolution output has five values. Out of these five values, onlymid-
dle three values correspond to cases where both the impulse response values overlap
with the given input. The first and the third values of the threemiddle values constitute
the approximation output Xφ(1, k). These values correspond to those obtained from
the definition (Example13.3). Similarly, the detail coefficients at scale 1, Xψ(1, k),
are computed by convolving the input x(k) with the highpass filter impulse response

Fig. 13.5 Computation of a 2-level 4-point DWT using a two-stage two-channel Haar analysis
filter bank

13.2 Transform-Domain Compression 387

Fig. 13.6 Computation of a 2-level 4-point IDWT using a two-stage two-channel Haar synthesis
filter bank

{

− 1√
2
, 1√

2

}

and then downsampling by a factor of 2. The four coefficients obtained

are the ones required to reconstruct the input. The approximation output Xφ(1, k) of
the first stage again goes through the same process with half the values to produce
Xφ(0, 0) and Xψ(0, 0) at the end of the second-stage analysis filter bank.

The computation of a 2-level 4-point IDWT using a two-stage two-channel Haar
synthesis filter bank is shown in Fig. 13.6. In the synthesis filter bank, convolution
is preceded by upsampling. The outputs of the convolution in both the channels
are added to reconstruct the signal at a higher scale. An upsampler inserts zeros
after each sample so that its output contains double the number of samples in the
input. Coefficients Xφ(0, 0) = 2 and Xψ(0, 0) = −4 are upsampled to yield {2, 0}
and {−4, 0}, respectively. These samples are convolved, respectively, with impulse

responses
{

1√
2
, 1√

2

}

and
{

1√
2
,− 1√

2

}

to produce
{

2√
2
, 2√

2

}

and
{

−4√
2
, 4√

2

}

. Adding

the last two sequences yields
{

−2√
2
, 6√

2

}

. A similar process in the second filter bank

reconstructs the input to the analysis filter bank.

13.2.2 Haar 2-D DWT

Computation of a 1-level 4 × 4 2-D DWT using a two-stage analysis filter bank
is shown in Fig. 13.7. Coefficients Xφ are obtained by applying lowpass filtering
and downsampling to each row of the 2-D data x followed by applying lowpass
filtering and downsampling to each column of the resulting data. Coefficients XH

ψ

are obtained by applying highpass filtering and downsampling to each row of the 2-
D data x followed by applying lowpass filtering and downsampling to each column
of the resulting data. Coefficients XV

ψ are obtained by applying lowpass filtering
and downsampling to each row of the 2-D data x followed by applying highpass
filtering and downsampling to each column of the resulting data. Coefficients XD

ψ

are obtained by applying highpass filtering and downsampling to each row of the 2-D
data x followed by applying highpass filtering and downsampling to each column

388 13 Image Compression

Fig. 13.7 Computation of a 1-level 4 × 4 2-D Haar DWT using a two-stage filter bank

Fig. 13.8 Computation of a 1-level 4 × 4 2-D IDWT using a two-stage filter bank

of the resulting data. Computation of a 1-level 4 × 4 2-D IDWT using a two-stage
synthesis filter bank is shown in Fig. 13.8. The order of the computation can be
changed. That is, columns can be processed first followed by processing the rows of
the resulting data.

13.2 Transform-Domain Compression 389

13.2.3 Image Compression with Haar Filters

Consider the compression of the 4 × 4 8-bit image

172 188 189 186
178 187 189 192
188 190 196 197
191 193 197 199

The image is level shifted by subtracting 128 (0.5 times the maximum gray-level
value) from each pixel value. The resulting image is

44 60 61 58
50 59 61 64
60 62 68 69
63 65 69 71

This ensures that the DWT coefficients are more evenly distributed around zero and
quantization will be more effective. The row DWT (left) and the 2-D Haar DWT
(right) of the level-shifted image are

1√
2

104 119 −16 3
109 125 −9 −3
122 137 −2 −1
128 140 −2 −2

106.5 122.0 −12.5 0
125.0 138.5 −2.0 −1.5

−2.5 −3.0 −3.5 3.0
−3.0 −1.5 0 0.5

The column DWT of the row DWT is the 2-D DWT. The transform coefficients have
to be quantized. The quantized levels are assumed to be −64 to 63. The maximum
value of the coefficients is X (1, 1) = 138.5. Therefore, the quantization step is
138.5/63 = 2.1984. The resulting quantized coefficient matrix is

48 55 −5 0
56 63 0 0

−1 −1 −1 1
−1 0 0 0

A high quantization step will result in more compression, but the quality of the
reconstructed image will be low. The quantized 4× 4 matrix is converted to a 1× 16
vector by arranging the values in the zigzag order. Zigzag scanning helps in getting
a high run-length of zeros. The approximation coefficients are followed by the H ,
V , and D detail coefficients. We get the vector

{48, 55, 56, 63, −5, 0, 0, 0, −1,−1,−1, 0, −1, 1, 0, 0}

390 13 Image Compression

A Huffman code dictionary is

[1] ’0 0 1 1’
[48] ’0 0 1 0’
[55] ’0 0 0 0 1’
[56] ’0 0 0 0 0’
[63] ’0 0 0 1 1’
[-5] ’0 0 0 1 0’
[-1] ’0 1’
[0] ’1’

The Huffman code of the image is

{0010 00001 00000 00011 00010 1 1 1 01 01 01 1 01 0011 1 1}

Small space between the codes is given for easy readability. It can be verified that
the code corresponds to the 1-D vector. The compressed image requires 42 bits and
that of the input image is 16 × 8 = 128. The compression ratio C is defined as the
ratio of the bpp of the given image and that of its compressed version. Therefore, the
compression ratio is C = 128/42 = 3.0476.
The bits per pixel is bpp = 8/3.0476 = 2.6250.
For reconstructing the image, the code is decoded using the dictionary and the result-
ing 1-D vector is converted to the 4 × 4 matrix. The values are multiplied by the
quantization step, 2.1984, to get

105.5238 120.9127 −10.9921 0
123.1111 138.5000 0 0
−2.1984 −2.1984 −2.1984 2.1984
−2.1984 0 0 0

The IDWT of these values is also computed by the row–column method using the
IDWT transform matrix. The row IDWT (right) and the 2-D Haar IDWT (left) are

66.8440 82.3892 85.4982 85.4982
88.6072 88.6072 97.9343 97.9343
−3.1090 0 0 −3.1090
−1.5545 −1.5545 0 0

45.0675 58.2579 60.4563 58.2579
49.4643 58.2579 60.4563 62.6548
60.4563 60.4563 69.2500 69.2500
62.6548 62.6548 69.2500 69.2500

These values are level shifted by adding 128 to get the reconstructed image.

13.2 Transform-Domain Compression 391

173.0675 186.2579 188.4563 186.2579
177.4643 186.2579 188.4563 190.6548
188.4563 188.4563 197.2500 197.2500
190.6548 190.6548 197.2500 197.2500

SNR is 45.2924 dB.

13.3 Image Compression with Biorthogonal Filters

While the Haar DWT filters are practically useful (also the simplest, shortest and
easiest to understand), a set of other DWT filters, with different characteristics, is
also often used in practical applications. We just present one of them. For any DWT
application, the filter selection is important. The basic principle of the DWT remains
the same (decomposition of a signal into its subband components) for any filter, and
the computational procedures (matrix formulation or filter bank approach) are also
the same. The other filters can be considered as generalizations of theHaar filters. The
DWT filters carry out the same lowpass filtering operation as a Gaussian filter does,
but they have to meet certain constraints as DWT filters and their design procedure
is different.

For compression purposes, a standard, called JPEG 2000, is in force. JPEG stands
for Joint Photographic Experts Group. In this standard, the use of the DWT for image
compression is a main feature. Two DWT filters are recommended for image com-
pression. As linear-phase characteristics are important in image processing, both of
them are linear-phase filters. The 5/3 filter is recommended for lossless compression,
and the 9/7 filter is recommended for lossy compression. As lossy compression is
more often used, we concentrate on that.

13.3.1 CDF 9/7 Filter

We list the impulse responses of all the four CDF 9/7 filters with a precision of six
digits.
Lowpass analysis filter

l(0) = 0.852699

l(1) = l(−1) = 0.377403

l(2) = l(−2) = −0.110624

l(3) = l(−3) = −0.023850

l(4) = l(−4) = 0.037829

392 13 Image Compression

Highpass analysis filter

h(−2) = h(4) = l̃(3) = −0.064539

h(−1) = h(3) = −l̃(2) = 0.040689

h(0) = h(2) = l̃(1) = 0.418092

h(1) = −l̃(0) = −0.788486

Lowpass synthesis filter

l̃0 = 0.788486

l̃−1 = l̃1 = 0.418092

l̃−2 = l̃2 = −0.040689

l̃−3 = l̃3 = −0.064539

Highpass synthesis filter

h̃−3 = h̃5 = −l(4) = −0.037829

h̃−2 = h̃4 = l(3) = −0.023850

h̃−1 = h̃3 = −l(2) = 0.110624

h̃0 = h̃2 = l(1) = 0.377403

h̃1 = −l(0) = −0.852699

The magnitude of the frequency responses of the 9/7 analysis filters is shown in
Fig. 13.9. Compared with the Haar filters, these filters have much sharper frequency
responses.

Example 13.4 Compute the 1-level DWT of the input x(n) using the CDF 9/7 filter
by the convolution approach. Assume whole-point symmetry of the data. Compute
the IDWT of the DWT coefficients and verify that the input x(n) is reconstructed.

x = {1,−2, 3, 4, 2,−3, 1, 1, 3,−2, 2, 4, 4, 2,−1, 1}

Fig. 13.9 Magnitude of the
frequency responses of the
CDF 9/7 analysis filters

13.3 Image Compression with Biorthogonal Filters 393

Solution
DWT: The input, with the whole-point symmetry extension, is

xw = {2, 4, 3,−2, 1,−2, 3, 4, 2,−3, 1, 1, 3,−2, 2, 4, 4, 2,−1, 1, −1, 2, 4, 4}
The convolution of xw with the analysis lowpass filter impulse response,

{l−4, l−3, l−2, l−1, l0, l1, l2, l3, l4} =
{0.0378,−0.0238,−0.1106, 0.3774, 0.8527, 0.3774,−0.1106,−0.0238, 0.0378}

after downsampling, is

{Xφ(3, 0), Xφ(3, 1), Xφ(3, 2), Xφ(3, 3), Xφ(3, 4), Xφ(3, 5), Xφ(3, 6), Xφ(3, 7)} =
{−1.3601, 3.2516, 1.8155,−0.3138, 2.0519, 1.6143, 5.6641, 0.0315}

With periodic extension, the lowpass output is

{1.8155, 3.2516, −1.3601, 3.2516, 1.8155,−0.3138, 2.0519, 1.6143, 5.6641, 0.0315, 0.0315, 5.6641}

The convolution of xw with the analysis highpass filter impulse response,

{h−2, h−1, h0, h1, h2, h3, h4} = {−0.0645, 0.0407, 0.4181,−0.7885, 0.4181, 0.0407,−0.0645}

after downsampling, is

{Xψ(3, 0), Xψ(3, 1), Xψ(3, 2), Xψ(3, 3)Xψ(3, 4), Xψ(3, 5), Xψ(3, 6), Xψ(3, 7)} =
{3.0080, −1.3960, 3.4359, 0.4223, 3.5482, −0.7745, −0.1838, −1.9782}

With periodic extension, the highpass output is

{−1.396, 3.008, 3.008,−1.396, 3.4359, 0.4223, 3.5482,−0.7745,−0.1838,−1.9782, −0.1838,−0.7745}

IDWT: The convolution of the lowpass output alternately with the even- and odd-
indexed coefficients

{−0.0407, 0.7885,−0.0407}

and
{−0.0645, 0.4181, 0.4181,−0.0645}

of the synthesis lowpass filter impulse response

l̃ = {−0.0645,−0.0407, 0.4181, 0.7885, 0.4181,−0.0407,−0.0645}

394 13 Image Compression

yields the even- and odd-indexed values of the output of the lowpass channel.

{−1.3371, 0.4638, 2.5453, 2.2265, 1.3119, 0.2856,−0.4048, 0.5054,

1.5650, 1.1875, 0.9589, 2.9086, 4.3991, 2.2751,−0.2069,−0.7048}

The convolution of the highpass output alternately with the even- and odd-indexed
coefficients

{−0.0238, 0.3774, 0.3774,−0.0238, }

and
{−0.0378, 0.1106,−0.8527, 0.1106,−0.0378}

of the synthesis highpass filter impulse response

h̃ = {−0.0378, −0.0238, 0.1106, 0.3774, −0.8527, 0.3774, 0.1106, −0.0238, −0.0378}

yields the even- and odd-indexed values of the output of the highpass channel.

{2.3371,−2.4638, 0.45471.7735, 0.6881,−3.2856, 1.4048, 0.4946,

1.4350,−3.1875, 1.0411, 1.0914,−0.3991,−0.2751,−0.7931, 1.7048}

Adding the last two output sequences, we get back the reconstructed input

{1,−2, 3, 4, 2,−3, 1, 1, 3,−2, 2, 4, 4, 2,−1, 1}. �

In this example, the compression of a 16 × 16 8-bit gray-level image using the
CDF 9/7 filter for lossy compression is presented. Consider the 16×16 image, shown
in Table13.2, with the pixels represented by 8 bits. The 0–255 gray-level range of
the image is changed to −28 to 127 by subtracting 128 from each pixel value. This
process, called level-shifting, spreads the gray levels more evenly around zero, and
the quantization becomes more effective. The resulting image is shown in Table13.3.

The 1-level 2-DDWT is computed by the row–columnmethod using the 9/7 filter,
assuming whole-point symmetry extension at the borders. The resulting transform
representation of the image is shown in Tables13.4, 13.5, 13.6, and 13.7.

The range and precision of the DWT values widely vary. The DWT coefficients
have to be quantized. Quantization is restricting the values of a function to a finite
set of possible values. Let us say the quantization levels be integer values from −64
to 63. That is, the quantized image values are restricted to

{−64,−63,−62, . . . ,−1, 0, 1, . . . , 61, 62, 63}

13.3 Image Compression with Biorthogonal Filters 395

Table 13.2 16 × 16 8-bit image

61 67 59 43 43 49 49 48 48 56 49 48 50 49 48 50

67 59 62 46 45 44 51 51 48 52 54 51 48 50 49 50

69 52 62 47 48 45 50 50 53 60 53 48 53 48 53 49

71 56 62 55 48 48 47 53 52 56 51 50 48 50 51 52

72 61 56 60 50 51 48 50 52 50 53 49 47 51 50 51

68 64 56 58 56 51 51 50 50 51 54 51 48 48 50 49

64 69 59 56 57 51 51 51 49 49 52 55 51 48 51 49

60 74 62 57 56 52 51 52 50 48 50 54 51 49 50 49

67 73 70 56 59 55 53 51 53 50 46 50 53 45 38 48

85 65 72 57 56 59 51 52 54 53 46 44 41 64 132 212

99 63 62 67 55 61 58 54 53 47 61 48 112 228 255 255

84 76 56 66 63 58 60 55 38 154 234 225 255 255 255 255

96 87 58 65 66 60 59 49 129 249 255 255 255 255 255 255

166 94 72 70 69 62 49 111 255 255 255 255 255 255 255 255

219 155 89 72 72 60 53 212 255 255 255 255 255 255 255 255

228 238 179 102 75 101 195 255 255 255 255 255 255 255 255 255

Table 13.3 Level-shifted image

−67 −61 −69 −85 −85 −79 −79 −80 −80 −72 −79 −80 −78 −79 −80 −78

−61 −69 −66 −82 −83 −84 −77 −77 −80 −76 −74 −77 −80 −78 −79 −78

−59 −76 −66 −81 −80 −83 −78 −78 −75 −68 −75 −80 −75 −80 −75 −79

−57 −72 −66 −73 −80 −80 −81 −75 −76 −72 −77 −78 −80 −78 −77 −76

−56 −67 −72 −68 −78 −77 −80 −78 −76 −78 −75 −79 −81 −77 −78 −77

−60 −64 −72 −70 −72 −77 −77 −78 −78 −77 −74 −77 −80 −80 −78 −79

−64 −59 −69 −72 −71 −77 −77 −77 −79 −79 −76 −73 −77 −80 −77 −79

−68 −54 −66 −71 −72 −76 −77 −76 −78 −80 −78 −74 −77 −79 −78 −79

−61 −55 −58 −72 −69 −73 −75 −77 −75 −78 −82 −78 −75 −83 −90 −80

−43 −63 −56 −71 −72 −69 −77 −76 −74 −75 −82 −84 −87 −64 4 84

−29 −65 −66 −61 −73 −67 −70 −74 −75 −81 −67 −80 −16 100 127 127

−44 −52 −72 −62 −65 −70 −68 −73 −90 26 106 97 127 127 127 127

−32 −41 −70 −63 −62 −68 −69 −79 1 121 127 127 127 127 127 127

38 −34 −56 −58 −59 −66 −79 −17 127 127 127 127 127 127 127 127

91 27 −39 −56 −56 −68 −75 84 127 127 127 127 127 127 127 127

100 110 51 −26 −53 −27 67 127 127 127 127 127 127 127 127 127

396 13 Image Compression

Ta
bl
e
13
.4

2-
D
D
W
T
ap
pr
ox
im

at
io
n
co
ef
fic
ie
nt
s
of

th
e
im

ag
e
us
in
g
9/
7
fil
te
r,
as
su
m
in
g
w
ho
le
-p
oi
nt

sy
m
m
et
ry

ex
te
ns
io
n

−1
27
.3
44
8

−1
39
.9
05
5

−1
69
.7
99
1

−1
55
.9
31
6

−1
58
.6
12
8

−1
52
.6
40
5

−1
58
.5
15
0

−1
58
.1
50
5

−1
33
.4
29
1

−1
41
.8
05
1

−1
63
.5
65
5

−1
57
.7
56
8

−1
49
.1
36
4

−1
48
.9
22
0

−1
56
.4
86
9

−1
54
.4
81
9

−1
21
.4
20
8

−1
40
.2
53
6

−1
49
.7
90
2

−1
57
.5
88
8

−1
53
.2
15
6

−1
52
.5
16
2

−1
60
.3
27
3

−1
55
.2
97
5

−1
21
.4
76
2

−1
35
.7
73
2

−1
45
.3
58
9

−1
53
.8
35
3

−1
57
.3
35
3

−1
50
.6
99
5

−1
50
.5
30
5

−1
47
.9
85
1

−1
15
.7
83
4

−1
21
.1
06
3

−1
43
.6
17
4

−1
52
.0
59
9

−1
46
.9
51
9

−1
55
.2
39
3

−1
65
.5
57
8

−1
45
.9
83
0

−8
7.
87
62

−1
31
.3
34
0

−1
36
.5
49
1

−1
36
.5
59
0

−1
55
.0
88
5

−8
9.
55
67

−1
.2
26
5

22
0.
72
38

−6
0.
85
48

−1
33
.4
54
1

−1
18
.9
71
6

−1
53
.8
61
6

20
.6
11
1

27
0.
81
20

26
2.
01
52

24
6.
59
85

14
4.
71
63

−3
4.
77
25

−1
06
.7
29
2

−4
4.
15
69

25
4.
15
56

23
6.
30
62

24
7.
44
66

25
3.
94
37

13.3 Image Compression with Biorthogonal Filters 397

Table 13.5 2-D DWT horizontal detail coefficients of the image using 9/7 filter, assuming whole-
point symmetry extension

−2.9799 7.6479 −1.6731 −0.2939 −4.0619 0.8056 −1.9453 −2.5407

14.5210 6.2178 2.7970 −0.3321 −5.9503 3.1955 2.8303 2.3185

5.2183 −6.7116 −1.7966 −0.9849 1.4458 0.4469 −2.5127 −0.9890

−8.0599 1.3487 3.4332 −1.8456 2.0106 −2.2757 1.1864 4.8338

−3.4114 9.5148 −2.0237 2.6907 −2.5267 −6.0214 12.7566 −31.1115

16.7760 −8.4134 −2.7546 −10.1540 1.3611 28.3373 −21.5006 −6.5359

0.2730 −5.9260 −4.9717 37.9919 −42.0348 13.3518 3.4031 −0.7926

5.6580 4.6383 −1.5196 −32.9030 16.1861 −0.1892 −1.3045 0.6151

Table 13.6 2-DDWTvertical detail coefficients of the image using 9/7 filter, assumingwhole-point
symmetry extension

−0.9432 −0.9770 0.5242 −1.1217 3.1915 −1.5871 1.1461 −0.0318

0.4405 −2.7077 0.4483 0.2741 −0.8797 0.8123 0.3435 −0.3217

0.3747 1.2473 −1.4410 −0.8110 −0.1582 −1.1254 1.3535 1.6255

0.6065 0.6022 1.2402 0.0866 0.8957 −1.2081 −6.8537 −17.9384

0.2776 −1.5503 1.1796 3.7991 −8.8033 −8.7175 45.8253 8.1111

1.3479 −1.0804 0.8881 −10.2223 33.1293 −72.0737 −64.1080 12.2863

12.5249 14.2337 −4.3143 21.8700 −34.7945 21.4219 9.8220 0.0960

−26.6349 −95.1025 0.4736 −120.1604 19.4085 −5.2811 0.5968 −0.0000

Table 13.7 2-D DWT diagonal detail coefficients of the image using 9/7 filter, assuming whole-
point symmetry extension

−1.6493 1.0956 −2.3437 1.8100 −4.3731 1.7987 2.4691 0.6713

−0.2431 −0.2099 1.2240 2.4962 1.3431 2.3551 0.7319 1.4349

−0.5937 −1.0636 −1.5184 −0.8815 1.1241 −1.2761 −0.5882 0.1502

3.1337 3.0249 0.3671 1.3077 −1.5401 −0.8745 3.6515 −7.0732

−3.5100 −4.5996 3.1019 −2.2649 4.9736 15.7175 −30.4008 47.7066

7.7589 −0.9004 −6.4132 28.0413 −4.0175 −5.6723 −13.7155 5.0818

−20.6581 2.9835 8.6363 −29.4636 −20.8988 2.6410 2.2256 −1.0495

22.9774 −8.0826 −21.1060 −25.0058 12.6283 −1.0181 0.0000 0.0000

For example, the value 61.6 is represented by 62, the nearest of the allowable quan-
tization level. We round the values and assign them to the nearest levels. As there are
128 levels, a wordlength of 7 bits is sufficient. Quantization is a stage in compression
where one has to trade off between accuracy and compression ratio. Quantization
results in loss of information. It is an irreversible process, since all the values in the
range of a quantization level are assigned the same value.

398 13 Image Compression

Table 13.8 Quantized image

−30 −33 −40 −36 −37 −36 −37 −37 −1 2 0 0 −1 0 0 −1

−31 −33 −38 −37 −35 −35 −36 −36 3 1 1 0 −1 1 1 1

−28 −33 −35 −37 −36 −35 −37 −36 1 −2 0 0 0 0 −1 0

−28 −32 −34 −36 −37 −35 −35 −34 −2 0 1 0 0 −1 0 1

−27 −28 −33 −35 −34 −36 −39 −34 −1 2 0 1 −1 −1 3 −7

−20 −31 −32 −32 −36 −21 0 51 4 −2 −1 −2 0 7 −5 −2

−14 −31 −28 −36 5 63 61 57 0 −1 −1 9 −10 3 1 0

34 −8 −25 −10 59 55 58 59 1 1 0 −8 4 0 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 −1 0 1 0

0 −1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 −4 1 1 0 0 0 0 1 −2

0 0 0 1 −2 −2 11 2 −1 −1 1 −1 1 4 −7 11

0 0 0 −2 8 −17 −15 3 2 0 −1 7 −1 −1 −3 1

3 3 −1 5 −8 5 2 0 −5 1 2 −7 −5 1 1 0

−6 −22 0 −28 5 −1 0 0 5 −2 −5 −6 3 0 0 0

The maximum value of the coefficients is X (6, 5) = 270.8120. Therefore, the
quantization step is 270.8120/63 = 4.2986. The resulting quantized coefficient
matrix is shown inTable13.8.No thresholding is done in this example. If thresholding
is applied, the number of independent values reduces and the compression ratio will
increase at the cost of more degradation of the reconstructed image.

The quantized coefficients are scanned in a zigzag pattern and represented by a
1-D vector. Then, the corresponding Huffman code is generated. The average bpp is
4.0313.

13.3.1.1 Image Reconstruction

For reconstructing the image, the Huffman code is decoded using the dictionary and
the resulting 1-D vector is converted to 16 × 16 matrix. The values are multiplied
by the quantization step, 4.2986, to get the 2-D DWT of the reconstructed level-
shifted image, shown in Table13.9. The 2-D IDWT yields the values of level-shifted
reconstructed image, shown in Table13.10. These values are level shifted by adding
128 to get the reconstructed image, shown in Table13.11.

Figure13.10a shows a 256 × 256 8-bit image. Figure13.10b–d shows, respec-
tively, the reconstructed images with quantization step sizes 30.1062, 60.2123, and
120.4247. The compression ratios are 4.1173, 5.0486, and 6.2006, respectively.

13.3 Image Compression with Biorthogonal Filters 399

Ta
bl
e
13
.9

2-
D
D
W
T
of

th
e
re
co
ns
tr
uc
te
d
le
ve
l-
sh
if
te
d
im

ag
e

−1
29

−1
42

−1
72

−1
55

−1
59

−1
55

−1
59

−1
59

−4
9

0
0

−4
0

0
−4

−1
33

−1
42

−1
63

−1
59

−1
50

−1
50

−1
55

−1
55

13
4

4
0

−4
4

4
4

−1
20

−1
42

−1
50

−1
59

−1
55

−1
50

−1
59

−1
55

4
−9

0
0

0
0

−4
0

−1
20

−1
38

−1
46

−1
55

−1
59

−1
50

−1
50

−1
46

−9
0

4
0

0
−4

0
4

−1
16

−1
20

−1
42

−1
50

−1
46

−1
55

−1
68

−1
46

−4
9

0
4

−4
−4

13
−3

0

−8
6

−1
33

−1
38

−1
38

−1
55

−9
0

0
21
9

17
−9

−4
−9

0
30

−2
1

−9
−6

0
−1

33
−1

20
−1

55
21

27
1

26
2

24
5

0
−4

−4
39

−4
3

13
4

0

14
6

−3
4

−1
07

−4
3

25
4

23
6

24
9

25
4

4
4

0
−3

4
17

0
0

0

0
0

0
0

4
0

0
0

0
0

−4
0

−4
0

4
0

0
−4

0
0

0
0

0
0

0
0

0
4

0
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−9
−1

7
4

4
0

0
0

0
4

−9
0

0
0

4
−9

−9
47

9
−4

−4
4

−4
4

17
−3

0
47

0
0

0
−9

34
−7

3
−6

4
13

9
0

−4
30

−4
−4

−1
3

4

13
13

−4
21

−3
4

21
9

0
−2

1
4

9
−3

0
−2

1
4

4
0

−2
6

−9
5

0
−1

20
21

−4
0

0
21

−9
−2

1
−2

6
13

0
0

0

400 13 Image Compression

Ta
bl
e
13
.1
0

L
ev
el
-s
hi
ft
ed

re
co
ns
tr
uc
te
d
im

ag
e

−6
7

−6
2

−6
9

−8
6

−8
7

−7
9

−7
8

−7
8

−8
0

−7
2

−8
0

−7
8

−7
9

−8
3

−8
0

−7
6

−6
4

−6
8

−6
8

−8
3

−8
2

−8
6

−7
6

−7
9

−8
0

−7
8

−7
6

−7
9

−7
8

−7
7

−7
9

−7
9

−5
9

−7
6

−6
7

−8
0

−8
1

−8
3

−7
9

−7
8

−7
5

−6
9

−7
5

−8
1

−7
3

−8
1

−7
4

−8
0

−5
7

−7
1

−6
6

−7
1

−7
9

−8
2

−8
1

−7
5

−7
7

−7
4

−7
6

−7
6

−7
9

−7
8

−7
6

−7
9

−5
6

−6
7

−7
4

−6
8

−7
8

−7
8

−7
9

−8
0

−7
7

−7
5

−7
4

−7
9

−8
1

−7
5

−7
9

−7
8

−6
0

−6
3

−7
4

−7
0

−7
4

−7
8

−7
8

−8
0

−7
9

−7
7

−7
5

−7
5

−8
0

−7
7

−7
7

−7
7

−6
3

−6
0

−7
1

−7
3

−7
1

−7
8

−7
6

−7
9

−8
0

−7
8

−7
6

−7
2

−7
8

−8
0

−7
7

−7
7

−6
9

−5
3

−6
7

−6
9

−7
1

−7
6

−7
5

−7
7

−7
8

−7
8

−8
0

−7
4

−7
7

−7
8

−7
8

−8
1

−6
2

−5
5

−5
7

−7
1

−6
8

−7
4

−7
3

−7
6

−7
5

−7
7

−8
1

−8
0

−7
5

−8
4

−8
9

−8
0

−4
2

−6
4

−5
7

−7
1

−7
2

−6
7

−7
6

−7
9

−7
3

−7
4

−8
2

−8
5

−8
8

−6
5

3
84

−2
8

−6
5

−6
6

−6
2

−7
4

−6
7

−7
0

−7
5

−7
4

−8
0

−6
7

−8
2

−1
4

10
0

12
6

12
8

−4
3

−5
1

−7
4

−6
3

−6
6

−6
9

−7
1

−7
4

−9
1

27
10
6

98
12
8

12
7

12
6

12
5

−3
2

−4
1

−6
9

−6
5

−6
2

−6
9

−6
8

−8
0

2
12
2

12
6

12
6

12
7

12
5

12
7

12
6

38
−3

3
−5

5
−5

7
−6

0
−6

7
−7

8
−1

7
12
8

12
6

12
7

12
9

12
7

12
8

12
6

12
7

91
29

−4
0

−5
6

−5
6

−6
9

−7
5

86
12
7

12
7

12
8

12
7

12
9

12
6

12
7

12
7

10
0

11
0

51
−2

6
−5

2
−2

8
68

12
8

12
5

12
5

12
7

12
8

12
9

12
6

12
7

12
7

13.4 Summary 401

Table 13.11 Reconstructed image

61 66 59 42 41 49 50 50 48 56 48 50 49 45 48 52

64 60 60 45 46 42 52 49 48 50 52 49 50 51 49 49

69 52 61 48 47 45 49 50 53 59 53 47 55 47 54 48

71 57 62 57 49 46 47 53 51 54 52 52 49 50 52 49

72 61 54 60 50 50 49 48 51 53 54 49 47 53 49 50

68 65 54 58 54 50 50 48 49 51 53 53 48 51 51 51

65 68 57 55 57 50 52 49 48 50 52 56 50 48 51 51

59 75 61 59 57 52 53 51 50 50 48 54 51 50 50 47

66 73 71 57 60 54 55 52 53 51 47 48 53 44 39 48

86 64 71 57 56 61 52 49 55 54 46 43 40 63 131 212

100 63 62 66 54 61 58 53 54 48 61 46 114 228 254 256

85 77 54 65 62 59 57 54 37 155 234 226 256 255 254 253

96 87 59 63 66 59 60 48 130 250 254 254 255 253 255 254

166 95 73 71 68 61 50 111 256 254 255 257 255 256 254 255

219 157 88 72 72 59 53 214 255 255 256 255 257 254 255 255

228 238 179 102 76 100 196 256 253 253 255 256 257 254 255 255

13.4 Summary

• Image compression is essential for the efficient storage and transmission of images
due to their enormous amount of data.

• In lossless compression, the image is compressed so that it can be decompressed
to its original version exactly. While this type of compression is mandatory for
legal and medical records, the compression ratio achieved is relatively less.

• In lossy compression, a higher compression is achieved at the loss of some fidelity.
However, this type of compression is more often used as some degradation is
acceptable for most purposes.

• In both types of compression, coding is one of the stages, where compression is
achieved. The pixel values with a higher probability are coded with less number
of bits and vice versa.

• In lossy compression, the DWT of the image is computed. The magnitude of the
subband components of image varies. The transform values with low magnitudes
can be coded with less number of bits and those with negligible magnitudes can be
discarded altogether. In lossy compression coding, quantization and thresholding
affect the compression.

• The DWT is a generalization of the Fourier analysis. The basis signals are of
finite duration, composed of a continuous group of frequency components of the
spectrum.

402 13 Image Compression

Fig. 13.10 a 256×256 8-bit image;b–d reconstructed imageswith quantization step sizes 30.1062,
60.2123, and 120.4247

• The DWT decomposes an image into subband components rather than individual
frequency components as in Fourier analysis. DWT is implemented using filter
banks,which are composed of samplers and filters. A variety of filters are available.

• The basic step in the implementation of the DWT is convolution followed by
decimation.

• The 2-D DWT is decomposable and has fast algorithms for its computation.
• The 5/3 and 9/7 DWT filters are recommended for image compression in JPEG
2000 standard. Both these filters are linear-phase filters.

• As the DWT is able to provide time-frequency analysis of an image, it is inherently
suitable for nonstationary images.

13.4 Summary 403

• Two of the major applications of the DWT in image processing are image com-
pression and denoising.

Exercises

13.1 Given a 4×4 image, compute the entropy. Find theHuffman code representation
of its unique symbols and the bpp.
* (i)

⎡

⎢
⎢
⎣

144 113 121 107
144 110 121 103
129 109 120 99
116 108 121 103

⎤

⎥
⎥
⎦

(ii)
⎡

⎢
⎢
⎣

209 190 179 179
143 136 132 129
131 130 125 117
113 109 118 143

⎤

⎥
⎥
⎦

(iii)
⎡

⎢
⎢
⎣

85 91 91 89
79 83 88 87
90 86 86 90
97 93 88 90

⎤

⎥
⎥
⎦

13.2 Given a 4× 4 image, decompose it into 4 bit planes and represent each of them
by run-length coding. Use both the methods.
(i)

⎡

⎢
⎢
⎣

6 6 15 14
8 8 4 11
9 9 10 12

10 14 13 1

⎤

⎥
⎥
⎦

* (ii)
⎡

⎢
⎢
⎣

11 9 15 14
13 7 6 7
6 5 5 5

11 4 4 2

⎤

⎥
⎥
⎦

(iii)
⎡

⎢
⎢
⎣

13 9 12 10
13 13 12 9
13 13 12 9
11 13 12 10

⎤

⎥
⎥
⎦

404 13 Image Compression

13.3 Given a 4 × 4 image, find the linear predictive code. Find the entropies of the
input and the code.
(i)

⎡

⎢
⎢
⎣

15 16 20 20
15 15 19 22
15 16 19 20
15 17 19 16

⎤

⎥
⎥
⎦

(ii)
⎡

⎢
⎢
⎣

158 157 154 149
168 153 157 149
170 152 157 149
166 153 157 142

⎤

⎥
⎥
⎦

* (iii)
⎡

⎢
⎢
⎣

106 103 98 99
121 122 108 93
102 102 100 99
100 101 102 96

⎤

⎥
⎥
⎦

13.4 Given a 1-digit sequence, find its arithmetic code. Reconstruct the sequence
from the code. Let there be three symbols {1, 2, 3} and number of occurrences of the
symbols, respectively, be {2, 1, 1} in a sequence of length 4.
(i) {1}
(ii) {2}

13.5 Given a sequence x(n), find the 1-level DWT coefficients using the 9/7 filter.
Assume whole-point symmetry at the borders. Verify that the reconstructed signal is
the same as the input.
* (i)

{1,−4, 1, 3, 3, 1, 3, 0, 2, 2, 3, 1,−5, 2, 0, 3}

(ii)
{1, 2, 1, 1, 3, 4, 0, 3, 1, 3, 2,−1, 0, 1, 4,−3}

(iii)
{−2, 0, 2,−2, 1, 0, 3, 1,−2, 1, 2,−1, 2, 0,−2, 1}

13.6 Given a 4 × 4 image, find its compressed version using the 1-level Haar DWT
and the Huffman code. What is the bpp and SNR.
(i)

⎡

⎢
⎢
⎣

170 168 164 173
179 167 167 167
184 179 173 166
183 179 184 173

⎤

⎥
⎥
⎦

Exercises 405

* (ii)
⎡

⎢
⎢
⎣

172 173 170 171
171 176 173 172
174 178 172 170
176 175 171 170

⎤

⎥
⎥
⎦

(iii)
⎡

⎢
⎢
⎣

162 163 163 161
162 164 161 161
163 165 164 162
167 161 162 164

⎤

⎥
⎥
⎦

Chapter 14
Color Image Processing

Abstract Human vision is more sensitive to color than gray levels. Therefore, color
image processing is important, although it requires more memory to store and longer
execution times to process. There are different color models, and each one is suitable
for some application. In the RGB model, a color image is expressed in terms of the
intensities of its red, green, and blue components. In the HSI model, the intensity
component is separated from the color components. This model can use the algo-
rithms for gray level images. Some of the processing are based on those of gray level
images, and some are exclusive to color images.

The human visual system ismore sensitive to color and edges than to gray level. There
are two types of color images, full-color and pseudocolor. The first type is obtained
by color sensors, and the second type is obtained by assigning colors to gray level
images. Most of the processing methods of gray level images are applicable to color
image processing either directly or with some modifications. The visible spectrum
is composed of different colors. It is the reflectivity of the object that determines the
color human beings perceive. For example, an object that reflects all colors equally
well is perceived as white. On the other hand, objects which absorb some colors and
reflect others exhibit color.

The pixel value of a color image is vector-valued. For example, the intensity values
of its red, green, and blue components form a vector. Therefore, three 2-D matri-
ces are required to represent a color image. Obviously, the storage and processing
requirements of a color image are three times that of a gray scale image. For each
color, with 8-bit representation, intensity values zero or 255 implies that the color
is absent or fully present, respectively. For example, the vector (0, 0, 0) represents
black and (255, 255, 255) represents white. If all the components of all the vectors
of an image are equal, then it becomes a gray scale image.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4_14

407

408 14 Color Image Processing

14.1 Color Models

There are infinite colors. To specify a color, we need a color model. There are infinite
points in a plane. But all of themare specified by their x- and y-coordinates. In Fourier
analysis, an arbitrary signal is specified by sinusoidal signals of various frequencies.
Infinite places on earth are specified by their longitudes and latitudes. Similarly, any
color can be specified by a set of basis colors. Similar to the availability of various
transforms suitable for various applications, various color models are available to
suit various color image processing tasks. RGB model is mostly used for image
acquisition and display. CMY and CYMK models are used in color printing. The
HSI model is suitable for image processing operations since it decouples the color
component from the intensity value of the image.

14.1.1 The RGB Model

In the RGB color model, any color can be specified as a linear combination of the
three primary colors, red, green, and blue. Computers and televisions use this model
for color display. Figure14.1 shows the wavelengths of the three primary colors, as
set by a standard. However, the wavelengths have to vary around the specified values
to produce all colors. Figure14.2 shows the variation of the blue, green, and red color
intensities with 8 bits in the first row. The variation of the cyan, magenta, and yellow
color intensities with 8 bits is shown in the second row. Each point in the RGB color
cube, shown as an image in Fig. 14.3 and as a line figure in Fig. 14.4, is one of the
infinite colors. The three primary colors form 3 of the 8 corners of the color cube.
Black and white form 2 other corners. The dotted line joining the black and white
corners is the gray level line, along which the gray level varies from black to white.
Obviously, the contributions of the 3 primary colors on this line are equal. The points
on the dotted line between black and white have equal values of the primary colors.
They are shades of gray. The other 3 corners are the secondary colors, cyan, magenta,
and yellow.

A digital color image is characterized by 3 2-D matrices, one for each primary
color, of equal size in the RGB model. The values of these 3 matrices are combined
to produce the image for display. Each of the element in the 3 matrices is typically
represented by 8 bits. A color pixel is characterized by 3 × 8 = 24 bits. Therefore,

Fig. 14.1 The wavelengths
of the 3 primary colors blue,
green, and red in the visible
spectrum

0.4358 0.5461 0.7
Wavelength, micrometers

blue green red

14.1 Color Models 409

Fig. 14.2 The variation of the red, green, and blue color intensities with 8 bits (first row). The
variation of the cyan, magenta, and yellow color intensities with 8 bits

Fig. 14.3 The RGB color
cube

the total number of colors possible is 224 = 16777216. In the line figure, the black
and blue color edge appears first, whereas the yellow and white color edge appears
first in the color cube.

410 14 Color Image Processing

B
(0, 0, 1)
Blue

R
(1, 0, 0)
Red

(1, 0, 1)
Magenta

G
(0, 1, 0)
Green

(0, 1, 1)
Cyan

(0, 0, 0)
Black

(1, 1, 1)
White

(1, 1, 0)
Yellow

Fig. 14.4 The RGB color model

Figure14.5a–d shows a 256×256 color image and the intensities of its red, green,
and blue components. The red, green, and blue component pixel values at coordinates
(73 : 76, 173 : 176), respectively, are

xr =

⎡
⎢⎢⎣
245 246 246 248
246 247 246 247
246 246 245 248
248 247 246 248

⎤
⎥⎥⎦ xg =

⎡
⎢⎢⎣
191 196 193 190
192 197 192 189
192 197 192 189
192 198 191 188

⎤
⎥⎥⎦

xb =

⎡
⎢⎢⎣
222 225 223 223
223 226 223 222
223 225 222 222
223 224 221 224

⎤
⎥⎥⎦

In this neighborhood (about the center of the top-right quadrant), the image is pri-
marily white, and therefore, the intensities of all the three components are almost
equal and high.

14.1 Color Models 411

Fig. 14.5 a A 256 × 256 color image; b–d the intensity images of the its red, green, and blue
components, respectively

The red, green, and blue component pixel values at coordinates (63 : 66, 89 : 92),
respectively, are

xr =

⎡
⎢⎢⎣
251 252 252 248
253 251 252 250
253 252 252 250
252 250 250 247

⎤
⎥⎥⎦ xg =

⎡
⎢⎢⎣
109 114 116 112
118 122 124 120
125 129 130 127
132 137 139 134

⎤
⎥⎥⎦

xb =

⎡
⎢⎢⎣
88 84 89 90
75 67 63 65
55 41 37 42
27 9 5 6

⎤
⎥⎥⎦

412 14 Color Image Processing

In this neighborhood, the image is primarily red, and therefore, the intensity of the
red component is high. The green component has average intensity, and the intensity
of the blue component is low.

Secondary colors are obtained by adding two of the three primary colors. While
full-color representation yields high-quality images, in practice, it is found that 256
colors are adequate for most purposes, reducing the execution time and storage
requirements.

14.1.2 The XYZ Color Model

While the RGB model can generate color corresponding to any wavelength in the
visible spectrum, it is found that the values of some of the components become nega-
tive. As physical realization of negative color sources is not possible, we are left with
two options. One option is to ignore those colors which require negative component
values. As a second option, a color model, called XYZ, is defined. The conversion
between the RGB and XYZ color models is given by the following equations.

⎡
⎣

X
Y
Z

⎤
⎦ =

⎡
⎣
0.411 0.342 0.178
0.222 0.707 0.071
0.020 0.130 0.939

⎤
⎦

⎡
⎣

R
G
B

⎤
⎦

⎡
⎣

R
G
B

⎤
⎦ =

⎡
⎣

3.063 −1.393 −0.476
−0.969 1.876 0.042
0.068 −0.229 1.069

⎤
⎦

⎡
⎣

X
Y
Z

⎤
⎦

The Y component corresponds to luminance or perceived brightness of the color.
The values {X,Y, Z} are called tristimulus values and can be normalized by dividing
with (X + Y + Z). Alternate transform matrices are possible.

14.1.3 The CMY and CMYK Color Models

Most color printers and copiers use these models. The CMY (cyan, magenta, and
yellow)model can be obtained from the RGBmodel using the relationship, assuming
color values have been normalized to the range 0–1,

⎡
⎣

C
M
Y

⎤
⎦ =

⎡
⎣
1
1
1

⎤
⎦ −

⎡
⎣

R
G
B

⎤
⎦

The model is shown in Fig. 14.6. Note that cyan subtracts (absorbs) red component,
and therefore, when white light is reflected from an object with cyan color, the red

14.1 Color Models 413

M
(1, 0, 1)
Magenta

Y
(1, 1, 0)
Yellow

(1, 0, 0)
Red

C
(0, 1, 1)
Cyan

(0, 0, 1)
Blue

(1, 1, 1)
White

(0, 0, 0)
Black

(0, 1, 0)
Green

Fig. 14.6 The CMY color model

component will be zero. Similarly, magenta and yellow surfaces do not reflect green
and blue, respectively. The combination of these colors, in equal proportion, does not
produce a proper black color (essential for printing), as expected. A black component
K is added as the fourth component to get a proper black color.

Figure14.7a and b shows, respectively, a 256 × 256 color image in RGB and
CMY formats. The whitish area of the RGB image has become darker in the CMY
image and vice versa. The pinkish area has become greenish, as the red and blue
component intensities are high compared with that of green. The yellowish area has
become bluish. The cyan,magenta, and yellow component pixel values at coordinates
(73 : 76, 173 : 176), respectively, are

xc =

⎡
⎢⎢⎣
10 9 9 7
9 8 9 8
9 9 10 7
7 8 9 7

⎤
⎥⎥⎦ xm =

⎡
⎢⎢⎣
64 59 62 65
63 58 63 66
63 58 63 66
63 57 64 67

⎤
⎥⎥⎦ xy =

⎡
⎢⎢⎣
33 30 32 32
32 29 32 33
32 30 33 33
32 31 34 31

⎤
⎥⎥⎦

The intensities of the RGB components in this neighborhood have been given earlier.
It can be verified that these values are obtained by subtracting the RGB values from
255.

414 14 Color Image Processing

Fig. 14.7 a A 256 × 256 color image in RGB format; b the image in CMY format

The cyan, magenta, and yellow component pixel values at coordinates (63 :
66, 89 : 92), respectively, are

xc =

⎡
⎢⎢⎣
4 3 3 7
2 4 3 5
2 3 3 5
3 5 5 8

⎤
⎥⎥⎦ xm =

⎡
⎢⎢⎣
146 141 139 143
137 133 131 135
130 126 125 128
123 118 116 121

⎤
⎥⎥⎦

xy =

⎡
⎢⎢⎣
167 171 166 165
180 188 192 190
200 214 218 213
228 246 250 249

⎤
⎥⎥⎦

14.1.4 The HSI Color Model

In the HSI (hue, saturation, and intensity) model, the intensity component is decou-
pled from the color information, making it highly suitable for developing image
processing algorithms. Humans also describe a color using these components rather
than in terms of red, green, and blue components. The significance of the 3 compo-
nents are as follows:

Hue The true color attribute identifies colors red, green, yellow, etc.
Saturation It indicates the amount of white color mixed (color purity). More white

in the color will result in a low saturation value.
Intensity It is a measure of brightness. The intensity of a dark color is low.

14.1 Color Models 415

Fig. 14.8 The HSI color
model

Black

White

I=0

I=1

I=0.5 Red

Green

Blue

S x(H,S,I)
H)Cyan

Yellow

Magenta

The HSI color model is shown in Fig. 14.8. This is a perception-based color
model. The conversion of a RGB image to a HSI image is governed by the following
equations.

H =
{

θ, for B ≤ G
360 − θ, for B > G

, θ = cos−1

(
0.5((R − G) + (R − B))√

(R − G)2 + (R − B)(G − B)

)

S = 1 − 3(min(R,G, B))

(R + G + B)
, I = (R + G + B)

3

The primary colors are separated by 120◦. This model is derived by making the
RGB color cube stand on its black corner with intensity value zero. Then, the white
corner,with intensity value one, is at the top. The two corners are joined by the vertical
intensity line, which gives the intensity component of a pixel. The intensity value I
of any pixel x(H, S, I) is given by the intersection of this line with a plane containing
the pixel and perpendicular to the intensity line. The intensity is the average of those
of the 3 components.

The red color is set as the reference for measuring the hue H of a pixel. The
reference line is from the center of the figure to the red color corner. The color of a

416 14 Color Image Processing

Table 14.1 HSImodel values for imageswith pure primary colors, black, white and pure secondary
colors with intensity varying from 0 to 1

Color RGB values H S I

Red [1 0 0] 0 1 0–1/3

Green [0 1 0] 120◦/360 1 0–1/3

Blue [0 0 1] 240◦/360 1 0–1/3

Black [0 0 0] 0 0 0

White [1 1 1] 0 0 1

Cyan [0 1 1] 180◦/360 1 0–2/3

Magenta [1 0 1] 300◦/360 1 0–2/3

Yellow [1 1 0] 60◦/360 1 0–2/3

pixel x(H, S, I) H is the angle, measured in the anticlockwise direction, between
this reference line and the line joining the pixel and the center of the figure. Therefore,
H = 0◦ for red color, and it is measured along the circumference of the circle.

The saturation component S of a pixel is the length of the line between the center
of the figure and the pixel (radial distance). It indicates the purity of the color. If the
color is achromatic, then S = 0. For a pure color, S = 1. This value is dependent on
the number of colors contributing to the color perception. The higher the number, the
lower is the value of S. The smallest value of the RGB components determines the
amount of white color possible. Table14.1 shows HSI model values for images with
pure primary colors, black, white and pure secondary colors with intensity varying
from 0 to 1. The values in the table can be verified using the defining equations.

The conversion of a HSI image to a RGB image is governed by the following
equations.
RG sector (0◦ ≤ H < 120◦) :

B = I (1 − S)

R = I

(
1 + S cos(H)

cos(60◦ − H)

)

G = 3I − (R + B)

GB sector (120◦ ≤ H < 240◦) :

H = H − 120◦

R = I (1 − S)

G = I

(
1 + S cos(H)

cos(60◦ − H)

)

B = 3I − (R + G)

14.1 Color Models 417

Fig. 14.9 a A 256 × 256 color image; b–d the intensity images of the its HSI components, H, S
and I in that order

BR sector (240◦ ≤ H ≤ 360◦) :

H = H − 240◦

G = I (1 − S)

B = I

(
1 + S cos(H)

cos(60◦ − H)

)

R = 3I − (B + G)

Figure14.9a–d shows a 256 × 256 color image and the intensities of its HSI
components, H, S and I in that order. The light red color in most of the area contains
the RGB components almost in equal proportion. But the red component has the

418 14 Color Image Processing

maximum intensity. The H value is a function of the maximum intensity of the
3 color components. Therefore, the H value has to be around 0. Further, the blue
component intensity is greater than that of the green component. Therefore, the H
values are high, and the component image is almost white. In reddish and yellowish
areas, the color is almost pure, and therefore, the saturation value is high, and the S
component is almost white. In the I component image, the dark color areas are dark
and bright color areas are bright. That is, the intensity is proportional to the average
intensity of the components. The H, S, and I component pixel values at coordinates
(73 : 76, 173 : 176), respectively, are

⎡
⎢⎢⎣
0.9031 0.9020 0.9046 0.9040
0.9031 0.9020 0.9031 0.9040
0.9031 0.9036 0.9046 0.9058
0.9068 0.9110 0.9083 0.8984

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.1292 0.1184 0.1254 0.1377
0.1286 0.1179 0.1286 0.1383
0.1286 0.1153 0.1259 0.1396
0.1312 0.1121 0.1292 0.1455

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.8601 0.8719 0.8654 0.8641
0.8641 0.8758 0.8641 0.8601
0.8641 0.8732 0.8614 0.8614
0.8667 0.8745 0.8601 0.8627

⎤
⎥⎥⎦

TheH, S, and I component pixel values at coordinates (63 : 66, 89 : 92), respectively,
are

⎡
⎢⎢⎣
0.0189 0.0268 0.0247 0.0205
0.0372 0.0470 0.0512 0.0467
0.0567 0.0681 0.0710 0.0666
0.0772 0.0891 0.0920 0.0891

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.4107 0.4400 0.4158 0.4000
0.4955 0.5432 0.5695 0.5517
0.6189 0.7085 0.7351 0.6993
0.8029 0.9318 0.9619 0.9535

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.5856 0.5882 0.5974 0.5882
0.5830 0.5752 0.5739 0.5686
0.5660 0.5516 0.5477 0.5477
0.5373 0.5176 0.5150 0.5059

⎤
⎥⎥⎦

From the values of the corresponding RGB components given earlier, the last value
in the H component is

cos−1((0.5((247 − 134) + (247 − 6)))/
√
(247 − 134)2 + (247 − 6)(134 − 6)) = 0.5595

After normalizing, the value becomes 0.5595/(2π) = 0.0891. The last value in the
S component is 1 − (3 × 6)/(247 + 134 + 6) = 0.9535. The last value in the I
component is (247 + 134 + 6)/(3 × 255) = 0.5059.

The color images in RGB format can be processed either using the vector-valued
pixels or using the basis color components individually. However, it is found that
processing of images using some other formats is also desirable. Humans view an
image in terms of luminance and chrominance. Luminance is ameasure of the bright-
ness and contrast of a pixel. Chrominance is the difference, at the same brightness,
between a reference color and a color.

14.1 Color Models 419

14.1.5 The NTSC Color Model

This format is used for television in some countries. The advantage is that it is suitable
for both color and monochrome television. The conversion between the formats
can be carried using a transformation and its inverse. The luminance (intensity) is
represented by the Y component, and I and Q carry color information jointly, hue
and saturation.

⎡
⎣

Y
I
Q

⎤
⎦ =

⎡
⎣
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤
⎦

⎡
⎣

R
G
B

⎤
⎦

For a gray scale image with no color, as the RGB components are equal, the first row
of the transformation matrix adds to 1 and the other two add to zero. In finding the
Y component, more weight is given to the green component in order to match the
response of the human visual system. The inverse transformation is

⎡
⎣

R
G
B

⎤
⎦ =

⎡
⎣
1.0 0.956 0.621
1.0 −0.272 −0.647
1.0 −1.106 1.703

⎤
⎦

⎡
⎣

Y
I
Q

⎤
⎦

Figure14.10a–d show a 256 × 256 color image in NTSC format and its Y, I and
Q components, respectively. The Y component is a gray level version of the color
image. The Y, I, and Q component pixel values at coordinates (73 : 76, 173 : 176),
respectively, are

⎡
⎢⎢⎣
0.8262 0.8402 0.8324 0.8278
0.8301 0.8441 0.8301 0.8239
0.8301 0.8425 0.8285 0.8251
0.8325 0.8455 0.8269 0.8237

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.0871 0.0803 0.0860 0.0939
0.0871 0.0803 0.0871 0.0939
0.0871 0.0792 0.0860 0.0963
0.0918 0.0817 0.0907 0.0948

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.0826 0.0769 0.0806 0.0884
0.0826 0.0769 0.0826 0.0884
0.0826 0.0748 0.0806 0.0892
0.0843 0.0724 0.0823 0.0937

⎤
⎥⎥⎦

The Y values are close to 1, since the neighborhood is almost white. The transforma-
tion can be verified from the intensities of the RGB components in this neighborhood
given earlier. For example, the last values in the matrices are obtained as

⎡
⎣
0.8237
0.0948
0.0937

⎤
⎦ =

⎡
⎣
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤
⎦ 1

255

⎡
⎣
248
188
224

⎤
⎦

420 14 Color Image Processing

Fig. 14.10 a A 256 × 256 color image in NTSC format; b the Y component; c the I component;
d the Q component

14.1.6 The YCbCr Color Model

The YCbCr model is mostly used in digital video. The YCbCr model is a format
in which Y represents the intensity and Cb and Cr represent the chrominance. Cb
component is the difference between blue component and a reference value. Cr
component is the difference between red component and a reference value. The
energy of an image is more evenly distributed among its three components in the
RGB format. In theYCbCr format, the intensity carriesmost of the energy. Therefore,
the chrominance component can be effectively compressed requiring reduced storage
requirements.

The luminance is defined as a weighted average of that of the three components.
This is due to the response of the human eye for different colors. Let the intensity
values of an image from 0 to 255 be scaled to 0–1 obtained by dividing by 255. The
conversion between the formats can be carried using a transformation and its inverse.

14.1 Color Models 421

Fig. 14.11 a A 256×256 color image in YCbCr format; b the Y component; c the Cb component;
d the Cr component

⎡
⎣

Y
Cb
Cr

⎤
⎦ =

⎡
⎣

16
128
128

⎤
⎦ +

⎡
⎣

65.481 128.553 24.966
−37.797 −74.203 112.000
112.000 −93.786 −18.214

⎤
⎦

⎡
⎣

R
G
B

⎤
⎦

In this formula, let the RGB input values be 0–1. Then, output Y varies from 16 to
235. Outputs Cb and Cr vary from 16 to 240. Scaling the output by 255, we get the
outputs in the range 0–1. The inverse transformation is

⎡
⎣

R
G
B

⎤
⎦ =

⎡
⎣
0.0046 0.0000 0.0063
0.0046 −0.0015 −0.0032
0.0046 0.0079 0.0000

⎤
⎦

⎡
⎣

⎡
⎣

Y
Cb
Cr

⎤
⎦ −

⎡
⎣

16
128
128

⎤
⎦

⎤
⎦

Figure14.11a–d shows a 256 × 256 color image in YCbCr format and its Y,
Cb, and Cr components, respectively. The Y, Cb, and Cr component pixel values at
coordinates (73 : 76, 173 : 176), respectively, are

422 14 Color Image Processing

⎡
⎢⎢⎣
0.7723 0.7843 0.7776 0.7737
0.7757 0.7877 0.7757 0.7704
0.7757 0.7863 0.7743 0.7714
0.7777 0.7889 0.7729 0.7702

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.5240 0.5228 0.5228 0.5251
0.5240 0.5228 0.5240 0.5251
0.5240 0.5217 0.5228 0.5245
0.5228 0.5183 0.5217 0.5291

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.5863 0.5800 0.5848 0.5926
0.5863 0.5800 0.5863 0.5926
0.5863 0.5785 0.5848 0.5943
0.5897 0.5791 0.5883 0.5952

⎤
⎥⎥⎦

The transformation can be verified from the intensities of theRGBcomponents in this
neighborhood given earlier. For example, the last values in the matrices are obtained
as

⎡
⎣
196.3907
134.9184
151.7816

⎤
⎦ =

⎡
⎣

16
128
128

⎤
⎦ +

⎡
⎣

65.481 128.553 24.966
−37.797 −74.203 112.000
112.000 −93.786 −18.214

⎤
⎦ 1

255

⎡
⎣
248
188
224

⎤
⎦

Normalizing the output values, dividing by 255, we get the values 0.7702, 0.5291,
and 0.5952.

14.2 Pseudocoloring

Pseudocoloring is often used to color gray level images for easier visual interpretation
of their aspects. One of the methods used is intensity slicing.

14.2.1 Intensity Slicing

The histogram of the image is computed. Then, each range of the gray levels is
assigned a color. The set of colors to be assigned is called the color map. A color
map is a matrix with 3 columns, and each row shows the RGB values from 0 to 1.
The number of rows of the color map is the number of partitions of the histogram.

Consider the 256 × 256 gray level image and its histogram shown in Fig. 14.12a
and b. The background of the image is white with gray level 255. The 4 objects are
club, heart, diamond, and spade suits of playing cards with gray levels 0, 64, 128,
192, respectively. The histogram shows that there are 2022, 2049, 1564, and 1909
pixels with these gray level values. Obviously, the diamond suit is the smallest, and
the heart suit is the largest. There are 57992 pixels in the background, which is not
shown in the histogram. The pixel counts add up to

256 × 256 = 65536 = 2022 + 2049 + 1564 + 1909 + 57992

14.2 Pseudocoloring 423

0 64 128 192 255
1564

1909

2022
2049

co
un

t
gray level

(a) (b)

(c) (d)

Fig. 14.12 a A gray level image; b its histogram; c, d coloring the image with two different color
maps

We have to assign colors to each object. Let the two color maps be

color_map1 =

⎡
⎢⎢⎢⎢⎣

0 0 1
1 0 1
1 1 0
1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎦

color_map2 =

⎡
⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 1
1 1 1
1 0 1

⎤
⎥⎥⎥⎥⎦

The 5 ranges of the histogram values and their color assignment are shown in
Table14.2. Figure14.12c and d shows the pseudocolored images with color map
1 and 2, respectively. The background color of the first one is green and that of the
second is magenta. Typically, 256 colors are used, which is adequate for most appli-

424 14 Color Image Processing

Table 14.2 Two color maps

Gray level
range

0 1–64 65–128 129–192 255

color_map1 Blue Magenta Yellow Red Green

color_map2 Yellow Green Blue White Magenta

cations and requires much less storage than full-color representation using 24 bits
for each pixel. Another way to pseudocolor images is to specify suitable functions
to yield the RGB values for each gray level.

14.3 Color Image Processing

There are two basic ways a color image can be processed.

• The RGB image can be processed using pixels with vector values, or each of its
color components can be processed separately and the partial results combined.

• The RGB image can be converted to perception-based models, in which the inten-
sity component is separated from the color components, and the intensity compo-
nent is processed using algorithms for gray level images. The processed intensity
component is recombined with the color components to obtain the processed color
image.

The suitable approach is to be chosen depending upon the processing requirements.
The block diagram of the approaches is shown in Fig. 14.13a–c.

14.3.1 Image Complement

The complement of an image is its negative version. It is obtained by reversing the
shades of gray or colors.With the intensity range normalized to 0–1, the complement
of a color or gray level image x(m, n) is obtained by subtracting its values from 1,
1−x(m, n). The complement of a binary image is its logical complement. Sometimes,
complementing a part of the intensity range is also carried out. Complements are
useful to highlight certain features. In complementing a color image, each component
is individually complemented. Figure14.14a and b shows a RGB image and its
complement. The flowers are yellow, and the values of the R and G components are
about equal with that of the blue component is close to zero. Therefore, the flowers
look blue in the complement. The dark areas in the image have become white in its

14.3 Color Image Processing 425

Vector-valued
algorithmInput image Output image

(a)

BB
GG
RR

Scalar-valued
algorithmInput image Output image

(b)

II
S
H

Scalar-valued algorithm
Input image Output image

(c)

Fig. 14.13 Color image processing

Fig. 14.14 a A RGB image and b its complement

complement. In other areas of the image, the values of the R and G components are
about equal with that of the blue component about half of that. Therefore, these areas
look light blue in the complement.

426 14 Color Image Processing

0 64 128 192 255
0

500

1000

1500

co
un

t

gray level

(a) (b)

(c) (d)

Fig. 14.15 a A RGB image; b the histogram of its intensity component and that of its equalized
version; c the histogram-equalized image obtained after adjusting the intensity component alone;
d the histogram-equalized image after adjusting all the 3 color components individually

14.3.2 Contrast Enhancement

The contrast can be enhanced by histogram equalization. Figure14.15a shows a
RGB image. The image is converted to HSI type. The histogram of its intensity
component is shown by a continuous line in Fig. 14.15b. The equalized histogram
is also shown by dots in Fig. 14.15b. The image is reconstructed with the modified
intensity component and the unchanged color components. It is shown in Fig. 14.15c
and is brighter than the original. However, while the colors remain unchanged, their
intensity looks somewhat dimmed. The histogram-equalized image can be improved
by increasing the saturation component slightly. Figure14.15d shows the histogram-

14.3 Color Image Processing 427

Fig. 14.16 a A RGB image; b the averaged image using its RGB components; c the averaged
image using its HSI intensity component; d the averaged image using all its HSI components

equalized image obtained by equalizing its 3 components separately. Changes in
color are noticeable. Therefore, for this type of processing, modifying the intensity
component with further adjustments seems better.

14.3.3 Lowpass Filtering

Figure14.16a and b show a 256× 256 image and its blurred version using a 11× 11
averaging filter. The filter is applied to each of its 3 RGB components separately,
and then, the image is reconstructed (Fig. 14.16b) using the filtered components. The
image gets blurred, as averaging is lowpass filtering. Next, the filter is applied to its
intensity component of its HSI version, and then, the image is reconstructed using
the filtered intensity component and the unchanged color components (Fig. 14.16c).

428 14 Color Image Processing

Fig. 14.17 a A RGB image; b the blurred image using its RGB components; c enhanced image
obtained by highpass filtering of its HSI intensity component alone; d enhanced image obtained by
highpass filtering of its RGB components

In this case, the image gets less blurred and the color composition is also changed.
Next, the filter is applied to each of its 3 HSI components separately, and then, the
image is reconstructed (Fig. 14.16d) using the filtered components. Due to averaging
of the color components, it is clearly seen that we get new colors. The conclusion is
that processing the 3 RGB components separately seems better.

14.3.4 Highpass Filtering

Figure14.17a andb shows a 256×256 image x(m, n) and its blurred version xb(m, n)
using a 11 × 11 averaging filter. The HSI intensity component of the blurred image

14.3 Color Image Processing 429

xb(m, n) is convolved with the Laplacian mask h(m, n) to get the highpass filtered
image x f (m, n).

h(m, n) =
⎡
⎣
0 1 0
1 −4 1
0 1 0

⎤
⎦

The corresponding enhanced image is obtained using the equation

xenh(m, n) = xb(m, n) − x f (m, n),

is shown in Fig. 14.17c. The enhanced image obtained by highpass filtering of its
RGB components separately is shown in Fig. 14.17d, in which the sharpening is
better. Filtering with a Laplacian mask results in negative values of the pixels in the
filtered image. It has to be rescaled for proper display.

14.3.5 Median Filtering

Figure14.18a and b shows a 256×256 image x(m, n) and its noisy version xn(m, n)
with salt-and-pepper noise. The RGB components are separatelymedian filtered, and
the results are combined (Fig. 14.18c). The noise is almost removed. Figure14.18d
shows the result of filtering its HSI intensity component only. As the noise spreads
to all the components in RGB to HSI conversion, only part of the noise is removed.

14.3.6 Edge Detection

In finding the edges in gray level images, typically, the gradients are found in two
directions and the square root of the sum of their squares is the magnitude of the
gradient. In digital image processing, the derivatives are approximated by differences
of gray level values. Different operators are available to approximate the gradients
using the convolution operation. The result of applying the operators is subjected to
a threshold in finding the edge map of an image.

In finding the edges in color images, we can follow the same procedure for each
of the 3 RGB components. The 3 outputs are added and then subjected to a threshold
in finding the edge map of a color image. While the results are good, it turns out that
using vector-valued algorithms yields a better edge map. Let the partial derivatives
of the RGB components along the two directions, at each pixel, be

{
∂R

∂x
,
∂G

∂x
,
∂B

∂x

}
and

{
∂R

∂y
,
∂G

∂y
,
∂B

∂y

}

430 14 Color Image Processing

Fig. 14.18 a A RGB image; b the image with salt-and-pepper noise; c median filtering of its RGB
components; d median filtering of its HSI intensity component only

The partial derivatives are approximated using gradient operators, such as Sobel.
Then,

gxx =
(

∂R

∂x

)2

+
(

∂G

∂x

)2

+
(

∂B

∂x

)2

, gyy =
(

∂R

∂y

)2

+
(

∂G

∂y

)2

+
(

∂B

∂y

)2

,

gxy = ∂R

∂x

∂R

∂y
+ ∂G

∂x

∂G

∂y
+ ∂B

∂x

∂B

∂y

The angle of the gradient is given by

θ1 = 0.5 tan−1

(
2gxy

gxx − gyy

)
, θ2 = θ1 + π

2

14.3 Color Image Processing 431

Fig. 14.19 a A 256× 256 image; b edge map by vector-valued algorithm with threshold 0.1 in the
intensity range 0–1; c edgemap by processing RGB components separatelywith the same threshold;
d edge map by vector-valued algorithm with threshold 0.3

The magnitude of the gradient in the direction of θ1 and θ2 is computed using the
expression

g = √
0.5((gxx + gyy) + (gxx − gyy) cos(2θ) + 2gxy sin(2θ))

The maximum of the two values is taken as the magnitude of the gradient, which is
then thresholded.

Figure14.19a shows a 256× 256 RGB image. Its edge maps, obtained by vector-
valued algorithm, using the Sobel operator, with thresholds 0.1 and 0.3 in the intensity
range 0–1, are shown, respectively, in Fig. 14.19b and d. Figure14.19c shows the edge
map obtained by processing RGB components separately using the Sobel mask with
the threshold 0.1.

432 14 Color Image Processing

Fig. 14.20 a A 256×256 image; b segmentation of the red disk; c segmentation of the blue areas;
d segmentation of the green ring

14.3.7 Segmentation

Let the average color of the region, to be segmented, of the RGB image x(m, n) be
{ar, ag, ab}. Then, the square root of the sum of the Euclidean distance between the
reference and image pixel color components is computed, and then, it is subjected
to a threshold. The distances are computed using the equation.

D(m, n) =
√
(xr(m, n) − ar)2 + (xg(m, n) − ag)2 + (xb(m, n) − ab)2)

The pixels with distances above the threshold are not in the segment and are assigned
the value zero. The other pixels are assigned the value 1.

14.3 Color Image Processing 433

Fig. 14.21 a A 256 × 256 image; b segmentation of the red flower; c segmentation of the yellow
areas; d segmentation of the green areas

Consider the synthetic image shown in Fig. 14.20a. Let us try to segment the red
disk. The average value is (1, 0, 0). The distance of all the red pixels is zero and
that of the other colors will be

√
2. With a threshold value less than

√
2, the red

disk is segmented as shown in Fig. 14.20b. The other two color segments, shown in
Fig. 14.20c and d, are isolated similarly with reference color vectors (0, 0, 1) and
(0, 1, 0).

Figure14.21a shows a 256×256 image. Figure14.21b–d shows the segmentation
of the red flower and the yellow and green areas, respectively.

434 14 Color Image Processing

14.4 Summary

• Since most naturally occurring images are color images and human vision system
is more sensitive to color than to gray levels, color images are important.

• A color is typically composed of 3 components.
• The pixels of a color image are vector-valued.
• Although the pixels are vector-valued requiring more processing time and storage,
color images are more powerful in aiding in the visualization of the features of an
image.

• In one type of representation, the intensity value of the pixels is decoupled from
the color components.

• In another type of representation, each component carries both the intensity and
color values.

• A commonly used color model is to compose the color using red, green, and blue
components.Agray color is composedof equal amounts of the 3 color components.

• In another model, cyan, magenta, and yellow colors are used as basis colors.
• In the hue, saturation, and intensity colormodel, the intensity of a pixel is decoupled
from its color components.

• Different color models are suitable for different applications.
• In addition to full-color images, pseudocolor images are also widely used. They
require less storage and adequate for some applications.

• Operations such as enhancement, edge detection, and segmentation can be carried
out with color images.

• There are three types of algorithms used to process the color images.
• In one type of algorithms, the images are processed using vector-valued algorithms.
• In another type of algorithms, the images are processed using their intensity com-
ponent only.

• In yet another type of algorithms, the 3 color components are processed separately.

Exercises

14.1 Given the RGB components of a 4× 4 color image, find the CMY components
of its CMY model.
(i)

⎡
⎢⎢⎣
229 226 238 214
239 238 225 233
252 247 222 242
214 213 240 224

⎤
⎥⎥⎦

⎡
⎢⎢⎣
215 212 231 213
222 225 214 224
242 235 209 229
201 196 225 211

⎤
⎥⎥⎦

⎡
⎢⎢⎣
71 41 73 72
90 70 74 93
91 76 53 89
50 33 69 79

⎤
⎥⎥⎦

Exercises 435

(ii)

⎡
⎢⎢⎣
171 228 231 229
180 225 231 221
192 225 229 213
204 221 229 216

⎤
⎥⎥⎦

⎡
⎢⎢⎣
133 54 64 44
130 51 63 42
99 48 63 40
71 50 65 44

⎤
⎥⎥⎦

⎡
⎢⎢⎣
125 120 130 113
125 115 129 105
119 114 127 102
116 114 128 109

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
64 68 67 66
61 59 65 65
68 64 66 69
74 71 68 69

⎤
⎥⎥⎦

⎡
⎢⎢⎣
102 107 108 108
93 100 106 104

107 102 102 106
115 110 103 107

⎤
⎥⎥⎦

⎡
⎢⎢⎣
55 64 63 54
55 56 63 59
65 59 58 62
69 66 60 56

⎤
⎥⎥⎦

14.2 Given the RGB components of a 4 × 4 color image, find the HSI components
of its HSI model.
∗(i)

⎡
⎢⎢⎣
232 234 235 235
235 235 237 235
236 236 234 234
236 237 234 236

⎤
⎥⎥⎦

⎡
⎢⎢⎣
49 48 57 71
52 55 61 78
53 61 61 84
57 64 69 92

⎤
⎥⎥⎦

⎡
⎢⎢⎣
162 169 174 188
166 175 181 194
169 180 185 200
172 184 191 206

⎤
⎥⎥⎦

(ii)

⎡
⎢⎢⎣
210 148 149 155
201 152 146 150
190 152 140 144
180 157 134 137

⎤
⎥⎥⎦

⎡
⎢⎢⎣
103 37 29 34
64 37 28 34
48 35 27 34
37 34 28 31

⎤
⎥⎥⎦

⎡
⎢⎢⎣
137 111 120 125
113 115 119 124
125 120 115 122
135 131 110 115

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
98 94 86 82
94 90 83 80
88 85 80 78
80 79 76 74

⎤
⎥⎥⎦

⎡
⎢⎢⎣
131 127 120 116
124 122 116 112
116 115 111 108
109 106 103 103

⎤
⎥⎥⎦

⎡
⎢⎢⎣
82 80 77 74
80 80 78 74
75 75 74 71
69 70 69 67

⎤
⎥⎥⎦

14.3 Given the RGB components of a 4 × 4 color image, find the YIQ components
of its NTSC model.
(i)

⎡
⎢⎢⎣
236 239 242 247
236 239 244 249
235 240 245 250
236 241 245 249

⎤
⎥⎥⎦

⎡
⎢⎢⎣
193 190 187 186
190 187 185 184
189 185 184 182
188 184 182 180

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 1 2 2
0 3 6 6
2 6 9 9

⎤
⎥⎥⎦

436 14 Color Image Processing

∗(ii)
⎡
⎢⎢⎣
209 210 232 250
206 212 235 248
208 213 233 238
212 212 220 219

⎤
⎥⎥⎦

⎡
⎢⎢⎣
32 28 37 43
29 29 40 42
31 33 43 39
35 38 39 32

⎤
⎥⎥⎦

⎡
⎢⎢⎣
51 54 66 76
46 51 65 69
47 49 61 61
50 49 53 48

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
222 223 227 231
226 227 232 235
233 234 235 237
238 239 238 238

⎤
⎥⎥⎦

⎡
⎢⎢⎣
185 185 186 189
183 183 183 186
179 179 179 180
175 174 174 174

⎤
⎥⎥⎦

⎡
⎢⎢⎣
3 1 2 5
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

14.4Given the RGB components of a 4×4 color image, find the YCbCr components
of its YCbCr model.
∗(i)

⎡
⎢⎢⎣
142 142 150 149
144 144 143 163
145 144 152 157
147 153 155 126

⎤
⎥⎥⎦

⎡
⎢⎢⎣
15 15 24 24
17 17 12 35
18 18 16 24
18 21 20 18

⎤
⎥⎥⎦

⎡
⎢⎢⎣
44 44 49 48
46 47 37 59
47 46 43 51
48 49 42 28

⎤
⎥⎥⎦

(ii) ⎡
⎢⎢⎣
227 230 230 229
224 215 214 215
208 207 208 209
191 197 198 195

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 6 5 3
4 0 0 0
2 2 2 1
0 6 6 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣
27 32 32 32
30 20 19 22
19 15 14 16
13 15 14 13

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
226 226 226 225
226 226 225 223
226 226 225 222
226 226 225 223

⎤
⎥⎥⎦

⎡
⎢⎢⎣
239 239 238 235
239 239 238 235
239 239 238 235
239 239 238 236

⎤
⎥⎥⎦

⎡
⎢⎢⎣
219 221 221 220
219 221 220 218
219 221 220 218
219 221 221 219

⎤
⎥⎥⎦

14.5 A 8-bit gray level image is to be converted to a color image by pseudocoloring.
What is the color map for the given color assignment.

(i)

Gray level range 0 1–64 65–128 129–192 255
color_map Cyan Green Blue magenta Red

Exercises 437

∗(ii)

Gray level range 0 1–64 65–128 129–192 255
color_map Yellow Red magenta Cyan Green

(iii)

Gray level range 0 1–64 65–128 129–192 255
color_map magenta Yellow Red Cyan Blue

14.6 Given the RGB components of a 4 × 4 color image, find its complement.
(i)

⎡
⎢⎢⎣

76 69 93 147
129 88 77 163
67 114 142 163

100 92 160 165

⎤
⎥⎥⎦

⎡
⎢⎢⎣

96 90 121 179
153 113 102 180
99 142 169 191

132 122 188 186

⎤
⎥⎥⎦

⎡
⎢⎢⎣
50 47 58 82
78 59 49 100
34 69 96 111
57 54 109 104

⎤
⎥⎥⎦

(ii)
⎡
⎢⎢⎣

69 114 59 41
78 82 141 56

138 47 81 106
128 131 52 79

⎤
⎥⎥⎦

⎡
⎢⎢⎣

81 131 82 65
90 99 167 82
157 61 104 136
153 150 70 106

⎤
⎥⎥⎦

⎡
⎢⎢⎣
42 73 40 27
49 48 93 37
93 30 53 68
83 88 35 51

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
128 164 139 142
174 199 178 163
179 204 204 169
101 174 202 149

⎤
⎥⎥⎦

⎡
⎢⎢⎣
160 190 169 171
197 215 199 189
200 217 218 193
124 189 216 175

⎤
⎥⎥⎦

⎡
⎢⎢⎣

74 93 71 88
102 105 99 105
90 100 109 100
42 70 104 82

⎤
⎥⎥⎦

14.7Given the RGB components of a 4×4 color image with intensity values varying
from 0 to 255, find the histogram-equalized version of its intensity component of its
HSI model.
∗(i)

⎡
⎢⎢⎣
81 80 81 90
78 73 84 100
75 79 93 93
74 84 102 91

⎤
⎥⎥⎦

⎡
⎢⎢⎣
108 107 107 116
105 99 110 129
101 106 120 122
100 110 130 120

⎤
⎥⎥⎦

⎡
⎢⎢⎣
38 36 37 45
37 31 41 55
35 38 50 49
34 43 59 49

⎤
⎥⎥⎦

438 14 Color Image Processing

(ii)

⎡
⎢⎢⎣
58 110 89 25
61 106 89 81
64 83 130 157
62 88 173 162

⎤
⎥⎥⎦

⎡
⎢⎢⎣
79 129 112 39
82 124 111 83
86 100 130 139
85 92 149 134

⎤
⎥⎥⎦

⎡
⎢⎢⎣
30 73 45 7
29 66 49 45
27 43 70 90
27 39 97 94

⎤
⎥⎥⎦

(iii)

⎡
⎢⎢⎣
114 127 144 114
129 136 131 84
144 137 124 76
143 139 145 120

⎤
⎥⎥⎦

⎡
⎢⎢⎣

84 99 139 128
106 120 135 95
127 135 133 86
143 148 155 130

⎤
⎥⎥⎦

⎡
⎢⎢⎣

69 68 71 55
98 71 57 39
111 80 64 34
89 90 96 76

⎤
⎥⎥⎦

Appendix A
Computation of the DFT

Abstract An algorithm for fast computation of the discrete Fourier transform is
described. It is not an exaggeration to state that a single most important reason for
the existence and continuing growth of digital signal and image processing is due to
this algorithm. The algorithm is based on the divide-and-conquer strategy of devel-
oping fast algorithms. The DFT decomposes an arbitrary time-domain waveform in
terms of sinusoidal waveforms. Using the half-wave symmetry of periodical signals,
an arbitrary waveform can be decomposed into two components by add–subtract
operation. One component is composed of the even-indexed frequency components,
and the other is composed of odd-indexed ones. With a frequency shift of the latter
component, the original problem becomes decomposed into two components of half
the size.

A.1 The DFT Problem Formulation

Any finite-valued periodic sequence x(n) of period N can be expressed by a linear
combination of N complex exponentials. That is,

x(n) = X (0)e j0 2π
N n + X (1)e j1 2π

N n + X (2)e j2 2π
8 n + · · · + X (N − 1)e j (N−1) 2πN n

While the N values of x(n) and the complex exponentials are known, the task is
to separate the frequency components. That is to determine the values X (k), k =
0, 1, . . . , N−1 so that the equation is satisfied.Afinite sequence of values is assumed
to be periodic in DFT computation. Assume that period N is an integral power of 2.
In practice, this constraint is not so severe as most of the signals to be analyzed are
aperiodic and zero-padding can be used to extend their length so that the number of
samples is equal to 2M for some positive integer M . In most applications, therefore,
it is assumed that the number of samples is a power of two. A real sinusoid, at a
given frequency, is characterized by its amplitude and phase. The mathematically
equivalent complex exponential is characterized, at a given frequency, by its single

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4

439

440 Appendix A: Computation of the DFT

complex amplitude.Althoughmost practical signals are real, for obtaining the highest
efficiency as well as ease of use, it is a necessity to formulate the DFT algorithms
using complex exponentials as basis functions, rather than real sinusoids.

A.2 Half-Wave Symmetry of Periodic Waveforms

The easiest way to understand the basics of DFT algorithms is through the half-
wave symmetry of periodic waveforms. Any periodic sequence x(n) of period N can
be decomposed into its even and odd half-wave symmetric components xeh(n) and
xoh(n), respectively. That is x(n) = xeh(n) + xoh(n), where

xeh(n) = 1

2

(
x(n) + x

(
n ± N

2

))
and xoh(n) = 1

2

(
x(n) − x

(
n ± N

2

))

The sequence values of the even half-wave symmetric waveform xeh(n) over any
half period are the same over the preceding or succeeding half period

xeh

(
n ± N

2

)
= xeh(n)

That is, the fundamental period of xeh(n) is N /2. The sequence values of the odd
half-wave symmetric waveform xoh(n) over any half period are the negatives of those
over the preceding or succeeding half period

xoh

(
n ± N

2

)
= −xoh(n)

Therefore,N /2 values of each of xeh(n) and xoh(n) are adequate to uniquely represent
them and, thereby, representing the N values of one period of x(n).

A.3 The DFT and the Half-Wave Symmetry

Sequence xeh(n) contributes the even-indexed frequency components to theDFT rep-
resentation of x(n), and xoh(n) contributes the odd-indexed frequency components,
as, from the DFT definition,

Appendix A: Computation of the DFT 441

X (k) =
N−1∑
n=0

x(n)e− j 2πN kn, k = 0, 1, . . . , N − 1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(N/2)−1∑
n=0

(
x(n) + x

(
n ± N

2

))
e− j 2πN kn =

(N/2)−1∑
n=0

2xeh(n)e
− j 2πN kn, k even

(N/2)−1∑
n=0

(
x(n) − x

(
n ± N

2

))
e− j 2πN kn =

(N/2)−1∑
n=0

2xoh(n)e
− j 2πN kn, k odd

It is by the repeated decomposition of a waveform into its even and odd half-wave
symmetric components, alongwith frequency shifting, and using the temporal redun-
dancy (in time) of these components, we extract the frequency coefficients of its con-
stituent sinusoids. The frequency components are eventually isolated, and they are
reduced to low frequency components with frequency indices either zero or one, but
with their coefficient values unchanged. Then, the first sample value of each compo-
nent is its coefficient value. The decomposition operation involves taking two values,
finding their sum and difference, and storing the resulting two values. Therefore, as
the sum and difference of a and b is a ± b and the plus–minus operation is basic to
the algorithms, the DFT algorithms are called PM DFT algorithms. Further, as two
values are input to the basic operation resulting in two values, it is found that the
most efficient data structure for the algorithms is an array of two element vectors.

A.4 The PM DIF DFT Algorithm

Given a waveform x(n) composed of N frequency components (let us assume
N = 8),

x(n) = X (0)e j0
2π
8 n + X (1)e j1

2π
8 n + X (2)e j2

2π
8 n + X (3)e j3

2π
8 n

+X (4)e j4
2π
8 n + X (5)e j5

2π
8 n + X (6)e j6

2π
8 n + X (7)e j7

2π
8 n, n = 0, 1, . . . , 7

the first step is to decompose x(n) into its even and odd half-wave symmetric com-
ponents xeh(n) and xoh(n), respectively. The decomposition results in

a(n) = {a0(n), a1(n)} = 2{xeh(n), xoh(n)}
= 2{X (0)e j0 2π

8 n + X (2)e j2 2π
8 n + X (4)e j4 2π

8 n + X (6)e j6 2π
8 n,

X (1)e j1 2π
8 n + X (3)e j3 2π

8 n + X (5)e j5 2π
8 n + X (7)e j7 2π

8 n}, n = 0, 1, 2, 3

The division operation by two, required in finding the symmetric components, is
not carried out and hence the factor two appears in the result. Since a half-wave
symmetric component is defined by its values over half the period, the values over half
the period is sufficient for further processing. Therefore, the components are found

442 Appendix A: Computation of the DFT

a(n) 4{X(0)ej0
2π
4 n +X(4)ej2

2π
4 n,

X(2)ej1
2π
4 n +X(6)ej3

2π
4 n}, n = 0, 1

4{X(1)ej0
2π
4 n +X(5)ej2

2π
4 n,

X(3)ej1
2π
4 n +X(7)ej3

2π
4 n}, n = 0, 1

Stage 1 Stage 2
a(0)

a(1)

a(2)

a(3)

A(0) = 8{X(0), X(4)}

A(2) = 8{X(2), X(6)}

A(1) = 8{X(1), X(5)}

A(3) = 8{X(3), X(7)}0

0

2

2

1

3

0

2

Fig. A.1 The signal-flow graph of the PM DIF DFT algorithm, with N = 8, showing the decom-
position of a waveform

only for n = 0, 1, 2, and 3. We reformulate the problem of separating the frequency
components of an arbitrary x(n) into that of its even and odd half-wave symmetric
components xeh(n) and xoh(n). We form the data structure a(n) = {a0(n), a1(n)} =
2{xeh(n), xoh(n)}, n = 0, 1, . . . (N/2) − 1, an array of two element vectors. For
N = 8, we get an array of length four, with each element of the array being a pair of
ordered complex numbers. This array is stored in the nodes at the beginning of the
signal-flow graph of the algorithm shown in Fig.A.1.

A signal-flow graph is an interconnection of nodes and branches. The direction
of signal flow along a branch is indicated by an arrow. A node, shown by unfilled
circles, stores two values. In addition, except the first set of nodes at the beginning
of the graph, each node finds the sum and difference of the two values supplied by
the two incoming branches. An upper node is a node where a branch with a positive
slope terminates. This type of nodes receive the first element of the vectors of the
nodes from which their incoming branches originate. A lower node is a node where
a branch with a negative slope terminates. This type of nodes receive the second
element of the vectors of the nodes from which their incoming branches originate.
A value passing along a branch is multiplied by e− j 2π8 n , where n is an integer that
appears near the arrow of the branch. No integer near an arrow implies that the branch
simply passes the value to its connecting node.

The even half-wave symmetric component can be expressed as

2(X (0)e j0 2π
8 n + X (2)e j2 2π

8 n + X (4)e j4 2π
8 n + X (6)e j6 2π

8 n)

= 2(X (0)e j0 2π
4 n + X (2)e j1 2π

4 n + X (4)e j2 2π
4 n + X (6)e j3 2π

4 n), n = 0, 1, 2, 3

Appendix A: Computation of the DFT 443

This is a waveform composed of N
2 = 4 frequency components with frequency

coefficients

2{X (0), X (2), X (4), X (6)}

The odd half-wave symmetric component is multiplied by the exponential e− j 2π8 n

to get

2(X (1)e j1 2π
8 n + X (3)e j3 2π

8 n + X (5)e j5 2π
8 n + X (7)e j7 2π

8 n)e− j 2π8 n

= 2(X (1)e j0 2π
8 n + X (3)e j2 2π

8 n + X (5)e j4 2π
8 n + X (7)e j6 2π

8 n)

= 2(X (1)e j0 2π
4 n + X (3)e j1 2π

4 n + X (5)e j2 2π
4 n + X (7)e j3 2π

4 n), n = 0, 1, 2, 3

This is a waveform composed of N
2 = 4 frequency components with frequency

coefficients

2{X (1), X (3), X (5), X (7)}

Note that multiplication by e− j 2π8 n (called twiddle factor) is the frequency shifting
operation, which shifts the spectrum to the left by one sample interval. The coeffi-
cients of the spectral components X (k) are not changed. Themultiplication operation
is indicated by the numbers (the value of n in e− j 2π8 n) close to the first set of arrows
near the two bottom nodes in the signal-flow graph.

We have reduced the problem of decomposing a waveform composed of N fre-
quency components into two problems, each of decomposing a waveform composed
of N

2 frequency components. Now, we repeat the same process to these two wave-
forms.Decomposing the twowaveforms into their even and odd half-wave symmetric
components, we get

4{X0e
j0 2π

4 n + X (4)e j2 2π
4 n, X (2)e j1 2π

4 n + X (6)e j3 2π
4 n}, n = 0, 1 (A.1)

4{X (1)e j0 2π
4 n + X (5)e j2 2π

4 n, X (3)e j1 2π
4 n + X (7)e j3 2π

4 n}, n = 0, 1 (A.2)

These vector arrays are stored in the nodes at the middle of the signal-flow graph
of the algorithm shown in Fig.A.1. The nodes, except the first set, carry out an
add–subtract operation, in addition to providing storage.

The even half-wave symmetric component of the waveform given by Eq. (A.1)
can be expressed as

4(X0e
j0 2π

4 n + X (4)e j2 2π
4 n)

= 4(X0e
j0 2π

2 n + X (4)e j1 2π
2 n), n = 0, 1

444 Appendix A: Computation of the DFT

This is awaveformcomposed of N
4 = 2 frequency componentswith frequency coeffi-

cients 4{X (0), X (4)}. The coefficients A(0) = {A0(0), A1(0)} = 8{X (0), X (4)} are
obtained by simply adding and subtracting the two sample values. These coefficients
are stored in the top node at the end of the signal-flow graph shown in Fig.A.1.

The odd half-wave symmetric component of the waveform given by Eq. (A.1) is
multiplied by the exponential e− j 2π8 (2n) = e− j 2π4 n to get

4(X (2)e j1 2π
4 n + X (6)e j3 2π

4 n)e− j 2π4 n

= 4(X (2)e j0 2π
4 n + X (6)e j2 2π

4 n)

= 4(X (2)e j0 2π
2 n + X (6)e j1 2π

2 n), n = 0, 1

This is a waveform composed of N
4 = 2 frequency components with frequency coef-

ficients 4{X (2), X (6)}. The coefficients A(2) = {A0(2), A1(2)} = 8{X (2), X (6)}
are obtained by simply adding and subtracting the two sample values. These coef-
ficients are stored in the second node from top at the end of the signal-flow graph
shown in Fig.A.1.

The even half-wave symmetric component of the waveform defined by Eq. (A.2)
can be expressed as

4(X (1)e j0 2π
4 n + X (5)e j2 2π

4 n)

= 4(X (1)e j0 2π
2 n + X (5)e j1 2π

2 n), n = 0, 1

This is a waveform composed of N
4 = 2 frequency components with frequency coef-

ficients 4{X (1), X (5)}. The coefficients A(1) = {A0(1), A1(1)} = 8{X (1), X (5)}
are obtained by simply adding and subtracting the two sample values. These coeffi-
cients are stored in the third node from top at the end of the signal-flow graph shown
in Fig.A.1.

The odd half-wave symmetric component of the waveform defined by Eq. (A.2)
is multiplied by the exponential e− j 2π4 n to get

4(X (3)e j1 2π
4 n + X (7)e j3 2π

4 n)e− j 2π4 (n)

= 4(X (3)e j0 2π
4 n + X (7)e j2 2π

4 n)

= 4(X (3)e j0 2π
2 n + X (7)e j1 2π

2 n), n = 0, 1

This is a waveform composed of N
4 = 2 frequency components with frequency coef-

ficients 4{X (3), X (7)}. The coefficients A(3) = {A0(3), A1(3)} = 8{X (3), X (7)}
are obtained by simply adding and subtracting the two sample values. These coef-
ficients are stored in the fourth node from top at the end of the signal-flow graph
shown in Fig.A.1.

Appendix A: Computation of the DFT 445

a(r)(h)
= {a(r)0 (h), a(r)1 (h)}

a(r)(l)
= {a(r)0 (l), a(r)1 (l)}

a(r+1)(h)
= {a(r+1)

0 (h), a(r+1)
1 (h)}

a(r+1)(l)
= {a(r+1)

0 (l), a(r+1)
1 (l)}n

n+ N
4

Fig. A.2 The signal-flow graph of the butterfly of the PM DIF DFT algorithm, where 0 ≤ n < N
4 .

A twiddle factor Wn
N = e− j 2πN n is indicated only by its variable part of the exponent, n

The output vectors {A(0), A(1), A(2), A(3)} appear in bit-reversed order. The
binary number representation of the frequency indices {0, 1, 2, 3} is {00, 01, 10, 11}.
By reversing the order of bits, we get the bit-reversed order {00, 10, 01, 11} in binary
form and {0, 2, 1, 3} in decimal form. The bit-reversed order occurs at the output
because of the repeated splitting of the frequency components into groups consisting
of odd- and even-indexed frequency indices over the stages of the algorithm.

Each stage of the algorithm requires N complex additions and N /2 complex
multiplications, where N is the sequence length. There are (log2 N) − 1 stages.
In addition, the initial vector formation requires N complex additions. Therefore,
the algorithm reduces the computational complexity to N log2 N compared from
that of N 2 required for the direct computation of the N -point DFT.

The algorithm is so regular that one can easily get the signal-flow graph for
any value of N that is an integral power of two. The signal-flow graph algorithm
is basically an interconnection of butterflies (a computational structure), shown in
Fig.A.2. The defining equations of a butterfly at the r th stage are given by

a(r+1)
0 (h) = a(r)0 (h) + a(r)0 (l)

a(r+1)
1 (h) = a(r)0 (h) − a(r)0 (l)

a(r+1)
0 (l) = Wn

Na
(r)
1 (h) + W

n+ N
4

N a(r)1 (l)

a(r+1)
1 (l) = Wn

Na
(r)
1 (h) − W

n+ N
4

N a(r)1 (l),

whereWn
N = e− j 2πN n . There are (log2 N)− 1 stages, each with N/4 butterflies. With

N = 8, therefore, we see four butterflies in Fig.A.1.
The extraction of the coefficient e j π

3 = 1
2 + j

√
3
2 , multiplied by 8, (4 + j4

√
3),

of the waveform x(n) = e j (2 2π
8 n+ π

3), is shown in Fig.A.3.
The extraction of the coefficient 3e j π

6 , multiplied by 8, of x(n) = 3e j (7 2π
8 n+ π

6), is
shown in Fig.A.4.

446 Appendix A: Computation of the DFT

Input
values

x(3)=
√
3
2 − j 1

2

x(7)=
√
3
2 − j 1

2

x(2)=− 1
2 − j

√
3
2

x(6)=− 1
2 − j

√
3
2

x(1)=−
√
3
2 + j 1

2

x(5)=−
√
3
2 + j 1

2

x(0)= 1
2 + j

√
3
2

x(4)= 1
2 + j

√
3
2

Vector
formation

a0(3)=
√
3 − j1

a1(3)=0

a0(1)=−√
3 + j1

a1(1)=0

a0(2)=−1 − j
√
3

a1(2)=0

a0(0)=1 + j
√
3

a1(0)=0

Stage 1
output

0
0

0
0

0
−2

√
3 + j2

0
2 + j2

√
3

Stage 2
output

X(3)=A0(3)=0
X(7)=A1(3)=0

X(2)=A0(2)=4 + j4
√
3

X(6)=A1(2)=0

X(1)=A0(1)=0
X(5)=A1(1)=0

X(0)=A0(0)=0
X(4)=A1(0)=0

Fig. A.3 The trace of the PM DIF DFT algorithm, with N = 8, in extracting the coefficient e j
π
3 ,

multiplied by 8, of x(n) = e j (2
2π
8 n+ π

3)

Input
values

x(3)=− 3(
√
6−√

2)
4

− j 3(
√
6+

√
2)

4

x(7)= 3(
√
6−√

2)
4

+ j 3(
√
6+

√
2)

4

x(2)= 3
2 − j 3

√
3

2

x(6)=− 3
2 + j 3

√
3

2

x(1)= 3(
√
6+

√
2)

4

− j 3(
√
6−√

2)
4

x(5)=− 3(
√
6+

√
2)

4

+ j 3(
√
6−√

2)
4

x(0)= 3
√
3

2 + j 3
2

x(4)=− 3
√
3

2 − j 3
2

Vector
formation

a0(3)=0

a1(3)=− 3(
√
6−√

2)
2

−j 3(
√
6+

√
2)

2

a0(2)=0
a1(2)=3 − j3

√
3

a0(1)=0

a1(1)=
3(

√
6+

√
2)

2

− j 3(
√
6−√

2)
2

a0(0)=0
a1(0)=3

√
3 + j3

Stage 1
output

0
6 − j6

√
3

0
6
√
3 + j6

0
0

0
0

Stage 2
output

X(3)=A0(3)=0
X(7)=A1(3)=12

√
3 + j12

X(1)=A0(1)=0
X(5)=A1(1)=0

X(2)=A0(2)=0
X(6)=A1(2)=0

X(0)=A0(0)=0
X(4)=A1(0)=0

Fig. A.4 The trace of the PM DIF DFT algorithm, with N = 8, in extracting the coefficient 3e j
π
6 ,

multiplied by 8, of x(n) = 3e j (7
2π
8 n+ π

6)

Appendix A: Computation of the DFT 447

A.5 The PM DIT DFT Algorithm

We have given the physical explanation of the decomposition of waveforms in the
DIF DFT algorithm. In a decimation-in-frequency (DIF) algorithm, the transform
sequence, X (k), is successively divided into smaller subsequences. For example, in
the beginning of the first stage, the computation of an N -point DFT is decomposed
into two problems: (i) computing the (N /2) even-indexed X (k) and (ii) computing the
(N /2) odd-indexed X (k). In a decimation-in-time (DIT) algorithm, the data sequence,
x(n), is successively divided into smaller subsequences. For example, in the begin-
ning of the last stage, the computation of an N -point DFT is decomposed into two
problems: (i) computing the (N /2)-point DFT of even-indexed x(n) and (ii) com-
puting the (N /2)-point DFT of odd-indexed x(n). The DIT DFT algorithm is based
on zero-padding, time-shifting, and spectral redundancy. For understanding, the DIF
DFT algorithms are easier. However, the DIT algorithms are used more often, as tak-
ing care of the data scrambling problem occurring at the beginning of the algorithm
is relatively easier. The DIT DFT algorithms can be considered as the algorithms
obtained by transposing the signal-flow graph of the corresponding DIF algorithms,
that is by reversing the direction of (signal flow) all the arrows and interchanging the
input and the output. The computational complexity and the storage requirements
can be reduced by a factor of 2 for computing the DFT of real data. It is the reduction
of the computational complexity from N 2 to N log2 N is the most important factor
in the development of digital signal and image processing applications.

Bibliography

1. Gonzalez, R. C., &Woods, R. E. (2008). Digital image processing. NJ: Pearson
Education Inc.

2. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2010).Digital image processing
using Matlab. USA: McGraw Hill.

3. Jain, A. K. (1989). Fundamental of digital image processing. NJ: Prentice-Hall
Inc.

4. Pratt, W. K. (2013). Introduction to digital image processing. NY: CRC Press.
5. Sayood, K. (2006). Introduction to data compression. USA: Elsevier.
6. Sundararajan, D. (2001). Discrete Fourier transform, theory, algorithms, and

applications. Singapore: World Scientific.
7. Sundararajan,D. (2008). Signals and systems—Apractical approach. Singapore:

Wiley.
8. Sundararajan, D. (2015). Discrete wavelet transform, a signal processing

approach. Singapore: Wiley.
9. The Mathworks. (2017). Matlab image processing tool box user’s guide. USA:

The Mathworks, Inc.
10. The Mathworks. (2017). Matlab signal processing tool box user’s guide. USA:

The Mathworks, Inc.
11. TheMathworks. (2017).Matlab wavelet tool box user’s guide. USA: TheMath-

works, Inc.

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4

449

Answers to Selected Exercises

Chapter 1
1.3(i). ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

218 255 218 128 37 0 37 127
255 218 128 37 0 37 127 218
218 128 37 0 37 127 218 255
128 37 0 37 127 218 255 218
37 0 37 127 218 255 218 128
0 37 127 218 255 218 128 37
37 127 218 255 218 128 37 0
127 218 255 218 128 37 0 37

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1.7(i). Aliasing

x(m, n) = cos(
2π

32
4m + 2π

32
2n + π

6
)

Chapter 2
2.4.(i). ⎡

⎢⎢⎣
14 14 3 3
14 14 14 3
15 14 14 14
14 14 14 14

⎤
⎥⎥⎦

2.5.(i). ⎡
⎢⎢⎣
5 5 3 3
5 5 5 3
5 5 5 5
5 5 5 5

⎤
⎥⎥⎦

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4

451

http://dx.doi.org/10.1007/978-981-10-6113-4_1
http://dx.doi.org/10.1007/978-981-10-6113-4_2

452 Answers to Selected Exercises

2.10.

y(m, n) =

⎡
⎢⎢⎣
202.7682 197.0167 193.2693 192.9102
214.7263 209.1150 202.5467 208.1208
221.8699 212.8023 215.4462 224.2604
222.0558 209.8174 224.0159 229.2589

⎤
⎥⎥⎦

2.16.

y(m, n) =

⎡
⎢⎢⎣
184 201 241 267
143 209 272 252
161 205 260 29
158 255 224 166

⎤
⎥⎥⎦

Chapter 3
3.1.(i). The samples are

{4.5000,−3.5981, 1.5000, 1.5981}

The DFT coefficients are

4{1, 0.75 + j0.75
√
3, 2, 0.75 − j0.75

√
3}

The least squares errors are 34, 34.0400, 34.0400.
3.3.(i). The image is

⎡
⎢⎢⎣

3.0000 1.7321 1.0000 −1.7321
1.7321 1.0000 −1.7321 3.0000
1.0000 −1.7321 3.0000 1.7321

−1.7321 3.0000 1.7321 1.0000

⎤
⎥⎥⎦

The DFT coefficients are
⎡
⎢⎢⎣
16 0 0 0
0 8 − j13.8564 0 0
0 0 16 0
0 0 0 8 + j13.8564

⎤
⎥⎥⎦

The least squares errors are 48, 48.16, 48.16.
3.4.(i).

= 1000

⎡
⎢⎢⎣

1.6140 0.1970 − j0.1670 −0.0200 0.1970 + j0.1670
0.1480 + j0.0440 0.0670 + j0.0630 −0.1480 + j0.2140 0.0010 − j0.1210

0.0300 −0.1050 + j0.0030 −0.1520 −0.1050 − j0.0030
0.1480 − j0.0440 0.0010 + j0.1210 −0.1480 − j0.2140 0.0670 − j0.0630

⎤
⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_3

Answers to Selected Exercises 453

The signal power is 188384. The magnitude in log scale and center-zero format is

⎡
⎢⎢⎣
2.1847 2.0255 1.4914 2.0255
2.4170 1.9683 2.1915 2.0864
1.3222 2.4137 3.2082 2.4137
2.4170 2.0864 2.1915 1.9683

⎤
⎥⎥⎦

3.6.(i).

y(m, n) =

⎡
⎢⎢⎣
31 23 8 7
17 5 13 17
8 9 29 26
18 26 18 9

⎤
⎥⎥⎦

rhx (m, n) =

⎡
⎢⎢⎣
31 14 11 19
5 8 22 18
4 20 30 12
28 21 11 10

⎤
⎥⎥⎦ rxh(m, n) =

⎡
⎢⎢⎣
31 19 11 14
28 10 11 21
4 12 30 20
5 18 22 8

⎤
⎥⎥⎦

rxx (m, n) =

⎡
⎢⎢⎣
56 38 26 38
40 32 29 34
38 36 38 36
40 34 29 32

⎤
⎥⎥⎦

Chapter 4
4.1.(iii).

y(n) = {−12, 7,−9, 2}

4.2.(i).

y(m, n) =

⎡
⎢⎢⎣
2 3 4 −3
5 −4 12 5
4 4 −5 1
1 4 5 2

⎤
⎥⎥⎦

4.3.(ii).

y(m, n) =

⎡
⎢⎢⎣
1.7958 1.3504 1.8327 2.0064
1.5006 1.0751 1.4203 1.8115
0.6812 0.3663 0.1055 0.4098
0.8445 0.6601 0.5600 0.5797

⎤
⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_4

454 Answers to Selected Exercises

4.5.(i).

y(m, n) =

⎡
⎢⎢⎣

18 19 11 −9
8 −3 6 −7

−20 32 3 9
17 −22 0 −6

⎤
⎥⎥⎦

Chapter 5
5.2.

x̂(n) = {0.0082, 0.6993, 0.9808, 0.6877,−0.0082,−0.6993,−0.9808,−0.6877}

Chapter 6
6.2.(ii).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

53.00 47.50 42.00 40.50 39.00 48.50 58.00
52.00 48.00 44.00 42.75 41.50 47.50 53.50
51.00 48.50 46.00 45.00 44.00 46.50 49.00
52.50 50.75 49.00 50.00 51.00 49.25 47.50
54.00 53.00 52.00 55.00 58.00 52.00 46.00
58.50 56.50 54.50 57.50 60.50 54.75 49.00
63.00 60.00 57.00 60.00 63.00 57.50 52.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.3.(ii).
[
127 57
108 51

]

6.5.(iii).
⎡
⎢⎢⎢⎢⎣

95 111 0 0
96 115 48 32
89 90 59 26
86 73 37 24
0 0 15 21

⎤
⎥⎥⎥⎥⎦

6.7.(i).

⎡
⎢⎢⎢⎢⎢⎢⎣

2 5 7 9 7 2
3 10 15 10 12 6
3 10 23 19 13 4
4 11 18 15 10 8
1 4 10 14 5 8
1 4 4 5 2 2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.1000 0.2828 −0.0447 0.2236 0.1180 −0.1000
−0.4128 0.0286 0.0408 −0.1342 0.6261 0.8000
−0.5814 −0.4727 0.6200 0.3213 0.2683 −0.1512
−0.3124 −0.4491 0.1315 −0.1315 0.4619 0.5292
−0.4914 −0.6252 0.0316 0.2286 −0.1890 0.5292
−0.1000 −0.1315 −0.1315 −0.1474 −0.1000 −0.1000

⎤
⎥⎥⎥⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_5
http://dx.doi.org/10.1007/978-981-10-6113-4_6

Answers to Selected Exercises 455

Chapter 7
7.1.(iii).

x

2
−

√
3y

2
= 2

7.2.(ii).

R(s, θ) = 6
√
62 − (s − cos(θ) − 2 sin(θ))2

7.3.(iii).
s = √

32 cos(−45◦ − θ)

7.6.(i).

acc(m, n) =

⎡
⎢⎢⎢⎢⎣

1 0 1 1
2 2 0 2
1 1 4 0
1 1 0 0
0 1 0 0

⎤
⎥⎥⎥⎥⎦

The entry acc(2, 2) = 4 in the acc matrix indicates a line at distance 2 from the
top-left corner (origin) of the image at angle 90 + 90 = 180◦ from the m-axis.
Chapter 8
8.5.(i).

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.6.(ii).

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_7
http://dx.doi.org/10.1007/978-981-10-6113-4_8

456 Answers to Selected Exercises

8.7.(iii).

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.8.(ii).

x(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 9
9.1.(i).

⎡
⎢⎢⎢⎢⎢⎢⎣

49.5025 110.4451 78.8531 6.3738 1.2748 1.7766
9.1992 87.9275 104.8967 22.1923 3.6443 1.1180
0.3536 65.3292 111.1987 42.2334 4.8894 0.5590

0 43.4403 110.5075 66.0350 2.4044 2.3049
0 22.5534 98.9326 92.8995 12.9735 5.3180
0 9.5197 68.6740 106.8324 54.7280 5.4458

⎤
⎥⎥⎥⎥⎥⎥⎦

e(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_9

Answers to Selected Exercises 457

9.2.(ii).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.0105 −0.2727 −5.3430 −5.7242 −10.2161 −28.1357 −33.8425 −15.9979
−8.9723 −13.5013 −16.3388 −18.7095 −28.2793 −38.4562 −18.6954 20.0468
0.5121 −9.8865 −17.8006 −24.2760 −27.9287 −12.6175 21.2665 43.7632

24.1600 9.4774 −1.3458 −0.2453 18.7616 38.9715 39.5796 24.7139
14.9449 10.6197 4.6543 8.7492 40.4500 53.8614 35.7797 13.2239
−2.4414 2.3624 −2.5966 −13.3771 3.0772 20.0810 23.4170 23.2587
−3.6860 −3.4955 −11.0425 −25.8184 −23.2475 −10.5215 −2.0928 14.6576
2.5690 −5.4928 −15.0516 −24.8636 −19.8852 −8.3275 −14.2503 −9.5180

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 10
10.3. 85, 94.5714.
10.6.

Gray level, k 0 1 2 3 4 5 6 7
hn(k) 0 0 0 0 0.0625 0.6250 0.2500 0.0625
hc1(k) 0 0 0 0 0.0625 0.6875 0.9375 1
ha(k) 0 0 0 0 0.25 3.3750 4.8750 5.3125
σ2
b(k) 0 0 0 0 0.1148 0.3580 0.1898 0

The threshold and the separability index are 5 and 0.7702.
10.8. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_10

458 Answers to Selected Exercises

10.10. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10.14.
2, 2, 2, 3

2.5000, 2.0000, 4.4286, 5.2857

2.1818, 3.0000, 5.6429, 6.1429

2.4000, 3.4000, 6.70006.8000

2.5000, 3.5000, 7.0000, 7.0000

10.18. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0
3.2 2.2 1.4 1.0 0.0 0.0 0.0 0.0
3.6 2.8 2.2 1.4 1.0 0.0 0.0 0.0
4.2 3.6 2.8 2.2 1.4 1.0 0.0 0.0
5.0 4.2 3.6 2.8 2.0 1.0 0.0 0.0
5.6 5.0 4.0 3.0 2.0 1.0 0.0 0.0
6.2 5.2 4.2 3.2 2.2 1.4 1.0 0.0
6.4 5.4 4.4 3.6 2.8 2.0 1.0 0.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 11
11.1.(i).

{7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2}

11.2.(ii). Centroid {1.5, 1.5}

θ −135 −162 162 135 108 72 45 18 −18 −45 −72 −108
d(θ) 2.121 1.581 1.581 2.121 1.581 1.581 2.121 1.581 1.581 2.121 1.581 1.581

11.3.(iii).

{2 + j0, 1 + j1, 0 + j2, 1 + j3, 2 + j3, 3 + j3, 3 + j2, 3 + j, 3 + j0}

Fourier descriptor

http://dx.doi.org/10.1007/978-981-10-6113-4_11

Answers to Selected Exercises 459

{18 + j15, 1.3803 − j0.5371, 2.1665 + j0.0717, 0 + j0,−0.0271 − j0.5967,

−1.1577 + j0.3974, 0 + j0, 1.2449 − j1.1700,−3.6070 − j13.1652}

11.8.
{m00 = 7, m10 = 7, m01 = 12, k̄ = 1, l̄ = 1.7143}

μ11 = 0, μ20 = 4, μ02 = 3.4286

η11 = 0, η20 = 0.0816, η02 = 0.07

φ1 = 0.1516, φ2 = 0.0001

11.9.

mean = 85.1250, std = 27.7689, Sk = −0.5252, S = 0.0117,U = 0.0859, E = 3.6250

11.12. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 4 0 0 0 0 0 0
7 17 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
3 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0
0 3 0 1 4 0 6 1
0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0714 0.0714 0 0 0 0 0 0
0.1250 0.3036 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0.0179 0 0 0 0 0 0

0.0536 0 0 0 0 0 0.0357 0
0 0 0 0 0 0 0 0
0 0.0536 0 0.0179 0.0714 0 0.1071 0.0179
0 0.0179 0 0 0.0179 0 0.0179 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Contrast : 3.8929,Correlation : 0.7238, Energy : 0.1435, Homogeneity : 0.6710

11.16.
⎡
⎢⎢⎣

−0.0126 0.9013
1.6669 −0.1846
0.2841 −0.4814

−1.9383 −0.2352

⎤
⎥⎥⎦

460 Answers to Selected Exercises

f1, f2

no

yes

yes

no

no

yes

yes

no

f1≥1010.5 7

f1≥1361.5 8

f2≥247.5 5

f1≥1237 6

9

12.8 Flowchart of the decision tree algorithm

Chapter 12
12.1. The sorted distances are

{1, 1.4142, 1.4142, 2.0000, 2.2361, 2.8284, 2.8284, 3.1623, 3.1623}

Test vector belongs to class 2.
12.5.

d1(x) = 22x1 − 20x2 − 442

d2(x) = 20x1 + 20x2 − 400

d3(x) = −18x1 − 19x2 − 342.5

For the first feature vector, these three functions yield

{464,−340,−458}

For the second feature vector, these three functions yield

http://dx.doi.org/10.1007/978-981-10-6113-4_12

Answers to Selected Exercises 461

{−340, 380,−1140}

and, for the third feature vector, these three functions yield

1000{−0.3765,−1.0625, 0.3425}

12.8. Figure
12.12. With p(ω1) = 0.4 and p(ω2) = 0.6, the decision function for class1 d1(x) is

−1.4270x21 − 3.8686x22 + 2.6807(x1 + x2) + 6.2149x1 − 9.0933x2 − 7.3479

For the test data, the decision function yields

{−1.8305,−2.0560,−11.5379,−26.6557,−39.7503,−21.0165}

The decision function for class2 d2(x) is

−0.5588x21 − 0.6123x22 + 0.6542(x1 + x2) − 1.2152x1 + 1.2711x2 − 1.3883

For the test data, the decision function yields

{−9.0630,−5.2618,−2.3027,−1.2355,−2.3397,−0.5830}

Chapter 13
13.1.(i).

[99] ’1 0 1 1’

[103] ’1 0 0’

[107] ’1 0 1 0’

[108] ’0 1 0 1’

[109] ’0 1 0 0’

[110] ’0 1 1 1’

[113] ’0 1 1 0’

[116] ’0 0 0 0 1’

[120] ’0 0 0 0 0’

[121] ’1 1’

[129] ’0 0 0 1’

[144] ’0 0 1’

bpp = 3.5, entropy = 3.4528

http://dx.doi.org/10.1007/978-981-10-6113-4_13

462 Answers to Selected Exercises

13.2.(ii).

⎡
⎢⎢⎣
11 9 15 14
13 7 6 7
6 5 5 5
11 4 4 2

⎤
⎥⎥⎦ = 23

⎡
⎢⎢⎣
1 1 1 1
1 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ + 22

⎡
⎢⎢⎣
0 0 1 1
1 1 1 1
1 1 1 1
0 1 1 0

⎤
⎥⎥⎦ + 2

⎡
⎢⎢⎣
1 0 1 1
0 1 1 1
1 0 0 0
1 0 0 1

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1 1 1 0
1 1 0 1
0 1 1 1
1 0 0 0

⎤
⎥⎥⎦

{04, 013, 4, 013 22, 04, 04, 121 0112, 13, 013, 0121 031, 0211, 13, 013}

{14, 11, 10, 11 32, 14, 14, 22 1132, 23, 11, 1141 13, 1241, 23, 11}

13.3.(iii).
⎡
⎢⎢⎣
106 −3 −5 1
121 1 −14 −15
102 0 −2 −1
100 1 1 −6

⎤
⎥⎥⎦

{3.4528, 3.5}

13.5.(i).

{−2.3039, 0.2557, 3.8341, 2.4144, 1.6731, 4.0880,−3.5067, 2.2929,

3.6913,−1.0733, 1.6485, 1.8253, 0.6833,−1.5910,−3.6983,−1.5573}

13.6.(ii).

[57] ’0 1 0 1’

[59] ’0 1 0 0’

[63] ’0 1 1 1’

[56] ’0 1 1 0’

[1] ’0 0 1’

[-1] ’0 0 0’

[0] ’1’

bpp = 2.375, SN R = 46.9179

Answers to Selected Exercises 463

Chapter 14
14.2.(i).

⎡
⎢⎢⎣
0.8952 0.8893 0.8881 0.8782
0.8942 0.8864 0.8837 0.8738
0.8923 0.8841 0.8776 0.8680
0.8907 0.8817 0.8737 0.8650

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.6682 0.6807 0.6330 0.5688
0.6556 0.6452 0.6180 0.5385
0.6528 0.6164 0.6187 0.5135
0.6323 0.6041 0.5810 0.4831

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.5791 0.5895 0.6092 0.6458
0.5922 0.6078 0.6261 0.6627
0.5987 0.6235 0.6275 0.6771
0.6078 0.6340 0.6458 0.6980

⎤
⎥⎥⎦

14.3.(ii).

⎡
⎢⎢⎣
0.3415 0.3348 0.3867 0.4260
0.3288 0.3381 0.3966 0.4183
0.3362 0.3476 0.3994 0.3961
0.3515 0.3579 0.3714 0.3519

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.3897 0.3926 0.4192 0.4422
0.3922 0.3999 0.4242 0.4474
0.3935 0.4005 0.4213 0.4373
0.3947 0.3928 0.4054 0.4169

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0.1700 0.1827 0.1971 0.2120
0.1676 0.1786 0.1923 0.2038
0.1663 0.1688 0.1796 0.1919
0.1651 0.1577 0.1672 0.1746

⎤
⎥⎥⎦

14.4.(i).

⎡
⎢⎢⎣
64 64 71 71
66 66 62 81
67 67 67 73
68 71 70 60

⎤
⎥⎥⎦

⎡
⎢⎢⎣
122 122 120 120
122 122 120 120
122 122 120 120
122 121 118 116

⎤
⎥⎥⎦

⎡
⎢⎢⎣
182 182 182 181
182 182 184 183
182 181 186 184
183 184 186 175

⎤
⎥⎥⎦

14.5.(ii).

color_map1 =

⎡
⎢⎢⎢⎢⎣

1 1 0
1 0 0
1 0 1
0 1 1
0 1 0

⎤
⎥⎥⎥⎥⎦

14.7.(i). The intensity component and its equalized version are

⎡
⎢⎢⎣
76 74 75 84
73 68 78 95
70 74 88 88
69 79 97 87

⎤
⎥⎥⎦

⎡
⎢⎢⎣
128 96 112 175
64 16 143 239
48 96 223 223
32 159 255 191

⎤
⎥⎥⎦

http://dx.doi.org/10.1007/978-981-10-6113-4_14

Index

A
Affine transform, 167

matrices, 167
properties, 179
rotation, 173
scaling, 167
shear, 169
translation, 172

Aliasing, 12
Arithmetic coding

decoding, 372
encoding, 372
example, 375, 376
main program, 372

Autocorrelation, 179, 181

B
Back-projection, 194
Border extension, 41

periodic, 42
replication, 42
symmetric, 41

Boundary descriptors, 310
chain codes, 310
Fourier, 312
signatures, 311

Bpp, 390

C
CDF 9/7 filters, 391

frequency response, 392
implementation, 391

Centroid, 312
Classification, 345

Bayesian, 352

decision tree, 350
decision-theoretic, 349
discriminant functions, 349

boundary, 350
k-means clustering, 356
k-nearest neighbor, 345
minimum-distance-to-mean, 347
supervised, 345
unsupervised, 345

Clustering, 356
Color

hue, 414
intensity, 414
primary

variation of intensity, 409
wavelengths, 408

saturation, 414
secondary

variation of intensity, 408
Color cube, 408
Compression ratio, 390
Contrast, 27
Convolution, 43

1-D, 43
2-D, 45
using the DFT, 110, 111
zero-padding, 110

Co-occurrence matrix, 327
Correlation, 179

1-D, 179
2-D, 180
auto, 181
cross-, 179

Correlation coefficient, 181
Covariance matrix, 353
Cross-correlation, 179

© Springer Nature Singapore Pte Ltd. 2017
D. Sundararajan, Digital Image Processing, DOI 10.1007/978-981-10-6113-4

465

466 Index

D
Decoding

Huffman code, 367
Descriptor, 309
DFT, 65

2-D, 75
2-D definition, 76
autocorrelation, 97
center-zero format, 76, 86, 92
computational complexity, 78
cross-correlation, 96
definition, 69
DIF DFT algorithm, 441
DIT DFT algorithm, 447
Fourier reconstruction, 82
half-wave symmetry, 440
inverse, 69
least-squares error, 68
log scale, 72, 86
matrix fomulation, 69
of 8 × 8 image, 87
of 2-D impulse, 78
of DC, 72
of images, 76
of impulse, 71
of square wave, 72
orthogonality, 69, 70
problem formulation, 439
properties, 87

convolution, 95
linearity, 87
Parseval’s theorem, 100
periodicity, 93
reversal, 98
rotation, 98
shift, 93
symmetry, 98

row–column method, 82
separable signals, 99
sinusoidal surface, 75
spectrum

of DC, 72
of sinusoid, 72
of unit impulse, 72

sum and difference of sequences, 97
2-D FT

definition, 102
Discrete wavelet transform, 383

2-D, 387
2-level, 386
Haar filter bank, 385

Distance transform, 295

E
Edge detection, 257

Canny algorithm, 266
compass masks, 264
edge, 257
gradient angle, 262
gradient magnitude, 262
Laplacian of Gaussian, 273
LoG, 273
Prewitt mask, 259
Sobel, 259
zero-crossing, 273

Enhancement, 16
Entropy, 367

F
Feature, 309

external, 309
Fourier spectra based, 331
internal, 309
textural

co-occurrence matrix based, 327
histogram based, 321

Filter
bandpass, 134, 158
bandreject, 134, 158
Gaussian, 48
highpass, 43, 51

Butterworth, 132
Gaussian, 134
ideal, 129
Laplacian, 51, 123

homomorphic, 136
ideal, 126
lowpass, 43, 46

averaging, 46, 112
Butterworth, 129
Gaussian, 113, 134
ideal, 128

median, 55
notch, 158
restoration, 144
separable, 111, 112, 117
Wiener, 145, 150

Fourier analysis, 65
Fourier descriptor

boundary reconstruction, 315
Fourier transform

of pulse, 101
Frequency response

CDF 9/7 filters, 392
FT

Index 467

definition, 101, 102
inverse, 101

G
Geometric transformations, 163
Gray level, 4

H
Haar transform matrix, 384
Histogram, 26

equalization, 29
specification, 32
stretching, 27

Hough transform, 209
Huffman code

coding, 365
coding tree, 366
decoding, 367

I
IDFT

definition, 69
IDFT using the DFT, 86
Image, 2

absorption, 2
acquisition, 2
amplitude distortion, 124
binary, 5
bit-plane representation, 11
bit-planes, 11
color, 5, 407

complement, 424
contrast enhancement, 425
edge detection, 429
highpass filtering, 428
lowpass filtering, 427
median filtering, 429
processing, 424
segmentation, 432

color model, 408
CMY, 412
HSI, 414
NTSC, 419
RGB, 408
XYZ, 412
YCbCr, 420

complement, 24
compression, 363

arithmetic coding, 371
biorthogonal filters, 391
coding redundancy, 364

compression ratio, 364
interpixel redundancy, 364
irrelavant data, 364
lossless, 364, 365
lossless predictive coding, 369
lossy, 364, 389
root-mean-square error, 364
run-length encoding, 368
signa-to-noise ratio, 364
transform-domain, 382

coordinates, 3
degradation model, 151
digital, 3
emission, 2
enhancement, 109
gamma correction, 24
gray level, 4
intensity slicing, 422
monochromatic, 4
origin, 3
phase distortion, 124
processing in the frequency domain, 109
pseudocolor, 422
reconstruction from projections, 189
reflection, 2
registration, 182
representation in the frequency domain,
6

sharpening, 53
Implementation of the DWT

CDF 9/7 filter, 391
Impulse response, 43
Interpolation, 163

bilinear, 164
nearest-neighbor, 164

Inverse filtering, 144

L
Least-squares error, 144
Least-squares error criterion, 68
Light, 2
Line

normal form, 190
Linear filtering, 42
Logarithmic scale, 72

M
Mean, 55
Median, 55
Moiré effect, 15
Morphology, 217

boundary extraction, 241

468 Index

closing, 225
convex hull, 244
dilation, 218
erosion, 220
extraction of connected components, 244
fill, 240
filtering, 231
gray-Scale, 246
hit-and-miss transformation, 229
noise removal, 237
opening, 223
pruning, 245
region filling, 243
skeletons, 239
thickening, 236
thining, 233

N
Neighborhood

4-connected, 41
8-connected, 41

Neighborhood operations, 40
Noise, 154

Gaussian, 154
periodic, 155
reduction, 155
salt-and-pepper, 56
uniform, 154

O
Object description, 309
Object recognition, 309
Orthogonality, 69

P
Parseval’s theorem, 75, 384, 385
Pixel, 3
Point operations, 23
Principal component analysis, 334

Q
Quantization, 6, 8

R
Radon transform, 193

discrete approximation, 198
filtered back-projection, 206, 208
Fourier representation, 204
Fourier-Slice theorem, 202
of cylinder, 194
of impulse, 194

properties, 196
Regional descriptors, 317

Euler number, 319
geometrical features, 317
moments, 319

Restoration, 143

S
Sampling, 6, 12
Segmentation, 281

edge-based, 282
line detection, 282
noisy images, 289
point detection, 282
region growing, 290
region splitting and merging, 293
region-based, 290
threshold

Otsu’s method, 286
threshold-based, 284
watershed algorithm, 295, 300

distance transform, 295
Signal

unit-impulse, 44
Spatial domain, 3
Spatial resolution, 11
Spectrum

electromagnetic, 2
visible, 2

Standard deviation, 55

T
Thresholding, 37

binary, 38
hard, 38
soft, 38

Transform, 65
Transform matrix, 70

U
Unit-impulse, 44

V
Variance, 55

W
Wiener filter, 145, 150, 157

Z
Zero-padding, 112

	Preface
	About the Book
	Contents
	About the Author
	Abbreviations
	1 Introduction
	1.1 Image Acquisition
	1.2 Digital Image
	1.2.1 Representation in the Spatial Domain
	1.2.2 Representation in the Frequency Domain

	1.3 Quantization and Sampling
	1.3.1 Quantization
	1.3.2 Spatial Resolution
	1.3.3 Sampling and Aliasing
	1.3.4 Image Reconstruction and the Moiré Effect

	1.4 Applications of Digital Image Processing
	1.5 The Organization of This Book
	1.6 Summary

	2 Image Enhancement in the Spatial Domain
	2.1 Point Operations
	2.1.1 Image Complement
	2.1.2 Gamma Correction

	2.2 Histogram Processing
	2.2.1 Contrast Stretching
	2.2.2 Histogram Equalization
	2.2.3 Histogram Specification

	2.3 Thresholding
	2.4 Neighborhood Operations
	2.4.1 Linear Filtering
	2.4.2 Median Filtering

	2.5 Summary

	3 Fourier Analysis
	3.1 The 1-D Discrete Fourier Transform
	3.2 The 2-D Discrete Fourier Transform
	3.3 DFT Representation of Images
	3.4 Computation of the 2-D DFT
	3.5 Properties of the 2-D DFT
	3.6 The 1-D Fourier Transform
	3.7 The 2-D Fourier Transform
	3.8 Summary

	4 Image Enhancement in the Frequency Domain
	4.1 1-D Linear Convolution Using the DFT
	4.2 2-D Linear Convolution Using the DFT
	4.3 Lowpass Filtering
	4.3.1 The Averaging Lowpass Filter
	4.3.2 The Gaussian Lowpass Filter

	4.4 The Laplacian Filter
	4.4.1 Amplitude and Phase Distortions

	4.5 Frequency-Domain Filters
	4.5.1 Ideal Filters
	4.5.2 The Butterworth Lowpass Filter
	4.5.3 The Butterworth Highpass Filter
	4.5.4 The Gaussian Lowpass Filter
	4.5.5 The Gaussian Highpass Filter
	4.5.6 Bandpass and Bandreject Filtering

	4.6 Homomorphic Filtering
	4.7 Summary

	5 Image Restoration
	5.1 The Image Restoration Process
	5.2 Inverse Filtering
	5.3 Wiener Filter
	5.3.1 The 2-D Wiener Filter

	5.4 Image Degradation Model
	5.5 Characterization of the Noise and Its Reduction
	5.5.1 Uniform Noise
	5.5.2 Gaussian Noise
	5.5.3 Periodic Noise
	5.5.4 Noise Reduction

	5.6 Summary

	6 Geometric Transformations and Image Registration
	6.1 Interpolation
	6.1.1 Nearest-Neighbor Interpolation
	6.1.2 Bilinear Interpolation

	6.2 Affine Transform
	6.2.1 Scaling
	6.2.2 Shear
	6.2.3 Translation
	6.2.4 Rotation

	6.3 Correlation
	6.3.1 1-D Correlation
	6.3.2 2-D Correlation

	6.4 Image Registration
	6.5 Summary

	7 Image Reconstruction from Projections
	7.1 The Normal Form of a Line
	7.2 The Radon Transform
	7.2.1 Properties of the Radon Transform
	7.2.2 The Discrete Approximation of the Radon Transform
	7.2.3 The Fourier-Slice Theorem
	7.2.4 Reconstruction with Filtered Back-projections

	7.3 Hough Transform
	7.4 Summary

	8 Morphological Image Processing
	8.1 Binary Morphological Operations
	8.1.1 Dilation
	8.1.2 Erosion
	8.1.3 Opening and Closing
	8.1.4 Hit-and-Miss Transformation
	8.1.5 Morphological Filtering

	8.2 Binary Morphological Algorithms
	8.2.1 Thinning
	8.2.2 Thickening
	8.2.3 Noise Removal
	8.2.4 Skeletons
	8.2.5 Fill
	8.2.6 Boundary Extraction
	8.2.7 Region Filling
	8.2.8 Extraction of Connected Components
	8.2.9 Convex Hull
	8.2.10 Pruning

	8.3 Grayscale Morphology
	8.3.1 Dilation
	8.3.2 Erosion
	8.3.3 Opening and Closing
	8.3.4 Top-Hat and Bottom-Hat Transformations
	8.3.5 Morphological Gradient

	8.4 Summary

	9 Edge Detection
	9.1 Edge Detection
	9.1.1 Edge Detection by Compass Gradient Operators

	9.2 Canny Edge Detection Algorithm
	9.3 Laplacian of Gaussian
	9.4 Summary

	10 Segmentation
	10.1 Edge-Based Segmentation
	10.1.1 Point Detection
	10.1.2 Line Detection

	10.2 Threshold-Based Segmentation
	10.2.1 Thresholding by Otsu's Method

	10.3 Region-Based Segmentation
	10.3.1 Region Growing
	10.3.2 Region Splitting and Merging

	10.4 Watershed Algorithm
	10.4.1 The Distance Transform
	10.4.2 The Watershed Algorithm

	10.5 Summary

	11 Object Description
	11.1 Boundary Descriptors
	11.1.1 Chain Codes
	11.1.2 Signatures
	11.1.3 Fourier Descriptors

	11.2 Regional Descriptors
	11.2.1 Geometrical Features
	11.2.2 Moments
	11.2.3 Textural Features

	11.3 Principal Component Analysis
	11.4 Summary

	12 Object Classification
	12.1 The k-Nearest Neighbors Classifier
	12.2 The Minimum-Distance-to-Mean Classifier
	12.2.1 Decision-Theoretic Methods

	12.3 Decision Tree Classification
	12.4 Bayesian Classification
	12.5 k-Means Clustering
	12.6 Summary

	13 Image Compression
	13.1 Lossless Compression
	13.1.1 Huffman Coding
	13.1.2 Run-Length Encoding
	13.1.3 Lossless Predictive Coding
	13.1.4 Arithmetic Coding

	13.2 Transform-Domain Compression
	13.2.1 The Discrete Wavelet Transform
	13.2.2 Haar 2-D DWT
	13.2.3 Image Compression with Haar Filters

	13.3 Image Compression with Biorthogonal Filters
	13.3.1 CDF 9/7 Filter

	13.4 Summary

	14 Color Image Processing
	14.1 Color Models
	14.1.1 The RGB Model
	14.1.2 The XYZ Color Model
	14.1.3 The CMY and CMYK Color Models
	14.1.4 The HSI Color Model
	14.1.5 The NTSC Color Model
	14.1.6 The YCbCr Color Model

	14.2 Pseudocoloring
	14.2.1 Intensity Slicing

	14.3 Color Image Processing
	14.3.1 Image Complement
	14.3.2 Contrast Enhancement
	14.3.3 Lowpass Filtering
	14.3.4 Highpass Filtering
	14.3.5 Median Filtering
	14.3.6 Edge Detection
	14.3.7 Segmentation

	14.4 Summary

	Appendix A Computation of the DFT
	A.1 The DFT Problem Formulation
	A.2 Half-Wave Symmetry of Periodic Waveforms
	A.3 The DFT and the Half-Wave Symmetry
	A.4 The PM DIF DFT Algorithm
	A.5 The PM DIT DFT Algorithm

	Bibliography
	Answers to Selected Exercises
	Index

