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Introduction
This	text	details	the	development	and	use	of	3D	modeling	tools	in	Blender’s
Python	API.	We	challenge	the	perception	of	Blender	as	purely	an	artist’s	tool	by
building	precise	data-driven	models.	Simultaneously,	we	teach	you	how	aid	and
enable	artists	by	deploying	custom	tools	in	the	familiar	Blender	environment.

The	knowledge	presented	in	this	text	is	the	result	of	a	deep	understanding	of
not	only	Blender’s	documentation	and	source	code,	but	also	of	the	source	code
of	add-ons	written	by	Blender’s	core	developers.	The	author	has	discovered
many	useful	functionalities	that	are,	as	of	the	time	of	writing,	undocumented.
Thankfully,	we	as	users	can	stay	on	the	cutting	edge	by	listening	to	and	learning
from	those	developers.	This	text	unifies	well-documented	introductory	material
and	undocumented	advanced	material	to	create	a	powerful	reference.

This	book	is	packed	with	code	examples	and	screenshots	of	powerful	scripts
and	add-ons.	We	include	scripts	to	automate	precise	tasks	that	would	otherwise
be	very	difficult	to	implement	by	hand.	In	addition,	we	build	add-ons	that
augment	Blender’s	existing	functionalities	with	new	tools,	objects,	and
customization	options.

Definitions
3D	modeling	is	the	art	of	manipulating	data	to	create	3D	representations	of
objects	and	environments.	3D	artists	use	the	following	tools	and	techniques	to
build	3D	models.

Manual	modeling	involves	the	artist	interacting	with	a	software	interface.
This	can	be:

Using	a	3D	modeling	suite	(Blender,	Maya,	or	3ds	Max)	to	create	and
edit	objects	by	hand

Playing	video	games	with	3D	building	elements	(Minecraft,	Fallout	4,
or	Sims)

Manually	inputting	data	into	a	3D	object	file	(.obj,	.stl,	or	.glTF)

Automated	Modeling	involves	algorithmically	generating	3D	models.	This
can	be:

Procedural	generation	of	environments	and	characters	in	video	games

Generating	detailed	models	of	buildings	from	architectural



specifications

Producing	3D-printed	art	from	fractal	algorithms

Primitives	are	the	basic	building	blocks	of	3D	models.	Though	there	are	no
strict	rules	on	what	constitutes	a	primitive,	these	can	be:

Simple	closed	shapes	like	planes,	cubes,	and	pyramids

Simple	curved	shapes	like	spheres,	cylinders,	and	cones

Complex	shapes	like	tori	(plural	of	torus),	Bezier	curves,	Nurbs
surfaces

3D	models	are	data	representations	of	objects	and	environments.	3D	models
have	the	following	components.

Data	formats	allow	models	to	differentiate	and	specialize	by	application.
Every	type	of	3D	model	has	a	format	by	which	it	is	specified.	These
include:

Suite-specific	formats	like	.blend	for	Blender,	.3ds	for	3ds	Max,	and
.ma	for	Maya

Renderer-specific	formats	like	.babylon	for	BabylonJS,	.json	geometry
descriptor	for	3JS,	and	.glsl	for	OpenGL	shaders

Minimalistic	interchange	formats	like	.obj	and	.stl

Vertices	and	faces	define	the	points	and	the	surfaces	connecting	those	points
in	3D	space.

Vertices	are	triplets	of	real	numbers	3D	space,	or	traditional	(	x,	y,	z	)
coordinates	of	each	point	of	the	object.

Faces	are	triplets	of	integers,	where	(	i,	j,	k	)	represents	the	triangle	in	3D
space	formed	by	the	i	-th,	j	-th,	and	k	-th	vertex.

Prerequisite	Knowledge	for	This	Book
This	book	covers	Blender	version	2.78c	running	Python	3.5.2.	Most	examples
run	on	Blender	2.70	and	greater,	and	the	concepts	apply	to	Blender	generally.
Nonetheless,	it	is	recommended	that	readers	use	Blender	2.78c	to	best	follow
along.	As	we	discuss	the	history	and	development	of	Blender	and	the	Python
language,	we	will	point	out	programming	practices	that	are	not	likely	to	work	on
past	and	future	versions.



past	and	future	versions.
We	assume	a	basic	working	knowledge	of	Blender	and	Python	3.	Familiarity

with	any	version	of	Blender	2.60	or	greater	is	sufficient.	Similarly,	pure	Python
2	programmers	will	have	no	problem	following	along.

Material	Overview
This	text	introduces	knowledge	and	sequentially	builds	on	it	to	create	more	and
more	complete	and	complex	software	solutions.	We	introduce	and	discuss	the
following	major	topics.

Chapter	1	:	The	Blender	Interface
There	are	many	individual	interfaces	that	make	up	Blender.	The	core	interfaces
are	highly	scriptable	because	almost	every	possible	user	interaction	is	tied
directly	to	a	Python	function.	We	establish	some	familiarity	with	those	parts	of
the	interface	especially	important	for	Python	programming.

The	Blender	interface	will	act	as	both	the	deployment	and	development
environment	for	your	software.	We	discuss	unique	considerations	for
programming	and	testing	Python	while	remaining	in	the	Blender	interface.

In	an	effort	to	minimize	usage	of	screenshots	throughout	this	text,	we
introduce	important	vocabulary	for	discussing	the	Blender	interface.	Using	this
vocabulary,	we	can	focus	on	Python	code	while	allowing	users	to	work	in	their
own	preferred	layout	of	the	Blender	interface.

Chapter	2	:	The	bpy	Module
The	bpy	module	is	the	core	of	the	Blender	Python	API.	Learning	to	navigate
this	module	will	drastically	improve	your	understanding	both	Blender	and	the
API.	Early	in	this	book,	we	focus	on	classes	within	bpy	that	construct	objects
and	manipulate	their	associated	metadata.	Later	in	the	book,	we	access	new
classes	in	the	bpy	module	that	turn	scripts	into	plugins.

The	module	itself	is	very	verbose.	Early	scripts	will	appear	both	complicated
and	repetitive.	After	getting	our	feet	wet	with	object	creation	and	manipulation,
we	will	begin	adding	useful	function	to	a	toolkit	we	will	build	throughout	the
book.	We	will	store	complex	and	commonly-used	algorithms	in	the	toolkit	but
encourage	readers	to	commit	core	elements	of	the	bpy	module	to	memory.	In
this	way,	we	create	code	that	is	both	easy	to	write	and	easy	to	share.

Chapter	3	:	The	bmesh	Module



The	bmesh	module	is	a	relatively	new	module	that	attempts	to	simplify
complex	vertex-level	manipulation	of	object	data.	For	those	readers	familiar
with	Blender,	most	of	the	operations	in	bmesh	will	only	run	in	Edit	Mode	and
not	Object	Mode.	This	serves	to	enforce	that	the	functions	in	bmesh	are	for
granular	changes	rather	than	global	transformation	of	the	mesh	data.

This	module,	in	the	author’s	opinion,	is	what	distinguishes	the	Blender
Python	API	from	other	automated	3D	modeling	software.	The	bmesh	module
gives	us	algorithmic	access	to	Blender’s	large	suite	of	Edit	Mode	tools	for
vertex-level,	edge-level,	and	face-level	object	manipulation.	It	allows	us	to	write
procedural	generation	algorithms	for	very	complex	objects	in	hundreds	instead
of	thousands	of	lines	of	code.

Chapter	4	:	Topics	in	Modeling	and	Rendering
It	is	essential	to	anyone	working	in	3D	modeling	to	have	a	basic	understanding
of	the	mechanisms	we	rely	on	to	render	and	visualize	our	work	product.	We	will
discuss	the	basics	of	rendering	pipelines	and	important	rendering	topics	for
Blender	Python	development.	Many	perceived	bugs	and	strange	behaviors	in
Blender	and	in	visualizers	to	which	we	export	are	actually	intended	behaviors	of
renderers.	We	learn	to	detect	and	program	around	these	behaviors	to	ensure	we
are	creating	highly	portable	models.

We	discuss	common	and	uncommon	file	formats,	Z-fighting,	normal	vectors,
the	differences	between	software	and	hardware	rendering,	and	much	more.	This
will	help	us	debug	Python	code	based	on	behaviors	we	see	in	various	rendering
software.

Chapter	5	:	Introduction	to	Add-On	Development
Bridging	the	gap	between	a	script	and	a	distributable	add-on	can	be	a	difficult
process	that	relies	on	very	specific	development	practices,	careful	code
organization,	and	occasional	meta-programming.	Many	of	these	concepts	mirror
standard	Python	module	development	practices,	while	many	others	rely	on
unique	behaviors	of	Blender’s	scripting	interface.

We	discuss	GUI	development,	custom	Blender	data	objects,	bpy.types	,
and	bpy.utils	in	detail	here.	We	discuss	organization	of	add-on	files	and
ways	to	increase	portability	across	different	versions	of	Blender.	At	this	point	in
the	text,	readers	will	be	able	to	create	add-ons	that	extend	Blender	to	the	benefit
of	modelers	that	do	have	Python	experience.



Chapter	6	:	The	bgl	and	blf	Modules
The	bgl	module	is	an	OpenGL	wrapper	for	Blender	that	is	useful	for	marking
up,	measuring,	and	visualizing	objects	and	data	in	the	Blender	interface.	The
blf	module	is	for	drawing	text	and	fonts	with	the	Blender	interface	and	is	rarely
used	without	the	bgl	module.	We	touch	on	the	bpy_extras	and
mathutils	modules	to	aid	us	here.

These	modules	are	incredibly	useful	for	add-on	development,	because	we
can	influence	the	data	the	user	sees	without	affecting	the	models	themselves.	We
introduce	them	at	this	point	in	the	text	because	their	effectiveness	depends	on	the
ability	to	run	them	as	add-ons.

Chapter	7	:	Advanced	Add-On	Development
Up	to	this	point,	we	will	have	used	Blender’s	Text	Editor	to	create	scripts	and
add-ons.	The	Text	Editor	introduces	various	limitations	on	the	form	of	our	add-
ons	that	we	overcome	here.	We	also	discuss	best	practices	for	data	storage	and
module	management	by	citing	popular	community	add-ons.	We	conclude	this
chapter	with	a	discussion	of	advanced	GUI	development.

Chapter	8	:	Textures	and	Rendering
Up	to	this	point,	we	will	have	worked	purely	with	meshes	in	Blender.	In	this
chapter,	we	bring	scenes	to	life	with	texturing	and	rendering.	We	discuss
procedural	uv	-mapping,	lighting	placement,	and	camera	positioning.	With	this
discussion	comes	an	overview	of	lighting	types,	camera	perspective	dynamics,
and	bounding	box	algorithms.

We	conclude	this	chapter	by	procedurally	rendering	an	arbitrary	scene	and
providing	a	framework	for	automated	rendering	pipelines.	We	focus	on	still
renderings	in	this	chapter,	but	readers	interested	in	automated	animation	will	be
able	to	extend	the	examples	without	difficulty.

History	of	Blender	and	Python
The	relationship	between	the	Blender	interface	and	the	Blender	Python	API	is	a
rare	one	in	the	world	of	software	development.	It	is	typical	for	API-enabled
platforms	to	treat	users	and	developers	as	separate	classes	of	citizens,	complete
with	separate	tools,	separate	environments,	and	separate	goals.	Blender,	on	the
other	hand,	has	erased	the	line	between	developers	and	users,	making	it	easy	for
users	to	act	as	developers	and	vice	versa.

The	close	relationship	between	developers	and	users	is	the	product	of	wise



The	close	relationship	between	developers	and	users	is	the	product	of	wise
early	design	decisions	within	Blender’s	core	development	team.	Before	Blender
was	released	as	free	open	source	software	in	August	2003	as	version	2.26,	the
core	development	team	released	the	Python	API	documentation	for	the	then-
premium	version	2.25.	Python	2.0	had	just	been	released	in	October	2000,	and
Blender	was	already	using	it	to	manage	calls	from	the	interface	to	its	C-level
data	structures.

Released	in	2009,	Blender	2.50	and	forward	would	use	pure	Python	to
dispatch	editing	tasks	to	its	lower-level	algorithms	and	data	structures.	Every
action	on	the	user	interface	was	linked	to	a	Python	function,	and	the	user	had	the
option	of	accessing	and	calling	these	functions	from	consoles	and	scripts.

As	we	moved	through	the	early	2010s,	Blender	artists	would	become
increasingly	aware	of	the	influence	Python	scripting	had	on	the	modeling
experience.	Certain	add-ons	would	become	“must-haves”	for	artists	with
interests	in	certain	fields.	Developers	of	other	3D	modeling	software	were
jumping	on	the	opportunity	to	develop	exporters	to	port	Blender	to	their
software.	Today,	Blender	has	its	modularity	to	thank	for	its	massive	talent	pool,
well-paying	career	opportunities,	and	active	development	community.
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1.	The	Blender	Interface
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This	chapter	discusses	and	defines	components	of	Blender’s	interface.	It	serves
as	a	reference	for	vocabulary	we	use	to	discuss	the	interface	throughout	the	text.
We	will	focus	on	components	of	the	interface	most	often	used	in	Python
development,	as	well	as	set	up	custom	interfaces	for	efficient	Python	scripting.

In	an	effort	to	avoid	placing	large	screenshots	throughout	the	book,	we
strictly	define	the	names	of	various	components	in	the	Blender	interface.
Component	names	are	introduced	here	in	italics	and	appear	with	the	first
characters	capitalized	throughout	the	text.

The	Default	Blender	Interface
When	we	first	open	up	Blender,	we	get	the	familiar	default	user	interface.	We
have	a	cube,	a	camera	object,	and	a	lamp	object	drawn	into	the	scene	shown	in
the	3D	Viewport.	Figure	1-1	is	a	simple	screenshot	of	the	default	Blender
interface.	Figure	1-2	shows	the	same	interface	with	various	major	components
labeled.	We	discuss	the	function	of	each	of	these	interfaces.



Figure	1-1. 	The	default	Blender	interface

Figure	1-2. 	The	components	of	the	Default	Blender	interface



Note
We	have	applied	the	white-orange	theme	to	our	Blender	interface	for	ease	of
printing.	The	default	Blender	theme	is	dark	gray.

3D	Viewport
The	3D	Viewport	,	or	simply	Viewport,	gives	us	a	preview	of	our	work	product.
When	we	manipulate	data	in	Blender,	the	3D	Viewport	waits	for	all	processes	to
finish	writing	data	before	updating	itself.	This	is	not	noticeable	in	simple
operations,	like	translations	and	rotations,	that	seem	to	happen	instantaneously
and	in	real	time,	but	it	is	still	important	to	acknowledge	in	add-on	development.

The	3D	Viewport	has	different	viewing	options	and	interaction	options.
Viewing	options	include	solid,	wireframe,	and	rendered,	while	interaction
options	include	Object	Mode,	Edit	Mode,	and	Sculpt	Mode.

Header	Menu
The	Header	menu	is	a	fairly	standard	header	for	a	graphical	user	interface.	It
allows	us	to	switch	between	interface	layouts	like	Default,	Animation,	and
Scripting,	as	well	as	switch	between	rendering	engines	like	Blender	Render,
Cycles	Render,	and	Blender	Game.

Properties	Window
The	Properties	window	allows	us	to	access	properties	of	objects,	scenes,
textures,	animations,	and	more.	Most	interfaces	in	the	Properties	window	will
give	summaries	and	basic	attributes	rather	than	display	all	available	details.	It	is
very	useful	for	keeping	track	of	existing	objects,	object	names,	applied	and
unapplied	transformations,	and	a	few	other	important	attributes.	This	window	is
generally	always	open	in	a	Blender	artist’s	layout,	so	it	is	a	popular	location	to
place	add-on	functions.

Tool	Shelf	and	Tool	Properties
The	Tool	Shelf	is	where	different	classes	of	operators	are	grouped	by	type.	If	we
expand	the	window,	we	can	see	the	Tool	Shelf	has	various	tabs	like	Tools,
Create,	and	Relations.	Most	Blender	add-ons	will	create	a	new	tab	in	the	Tool
Shelf	to	hold	its	operators	and	parameters.

The	Tool	Properties	window	is	a	dynamic	window	that	Blender	populates



with	different	sets	of	parameters	depending	on	what	tool	the	user	has	active.	For
example,	when	using	the	Rotate	tool,	we	can	fine-tune	the	rotation	in	this
window	instead	of	navigating	to	the	exact	spot	in	the	Properties	window	that
specifies	rotation.	Tool	Properties	are	advanced	features	typically	intended	to
optimize	ease-of-use	rather	than	provide	distinct	functionalities	to	a	tool.	Many
Blender	add-ons	ignore	them	altogether,	and	only	a	handful	of	native	Blender
tools	use	them.

Timeline
The	Timeline	is	used	in	animation.	We	can	ignore	this	as	we	will	not	be
animating	in	this	book.

The	Scripting	Interface
To	enter	the	scripting	interface,	select	the	Scripting	option	in	the	drop-down
menu	to	the	right	of	the	Help	button	within	the	Header	menu.	Throughout	the
text,	we	will	present	instructions	like	this	with	bold-faced	directives,	like:
Header	Menu	➤	Screen	Layout	➤	Scripting.	See	Figure	1-3	for	the	location
of	the	menu.	The	layout	of	Blender	will	change	to	appear	like	Figure	1-4	.

Figure	1-3. 	Selecting	the	Scripting	interface



Figure	1-4. 	The	Scripting	interface

The	Scripting	layout,	or	some	variant	of	it,	will	be	where	we	do	most	of	our
work	in	Blender.	We	will	discuss	new	components	of	the	Blender	interface
introduced	in	Figure	1-5	.



Figure	1-5. 	Components	of	the	Scripting	interface

Text	Editor
We	can	edit	Python	scripts	(and	any	other	text	files)	in	the	Text	Editor.	We	can
click	the	New	and	Open	buttons	to	create	and	open	scripts,	respectively.	Once
scripts	are	loaded,	the	menu	bar	at	the	bottom	of	the	Text	Editor	will	change	to
allow	saving	and	switching	between	files.

Blender’s	Text	Editor	has	some	special	properties	pertaining	to	imports,
system	paths,	and	linked	files	in	Python.	We	discuss	this	in	detail	later	in	this
chapter	and	in	future	chapters	when	developing	add-ons.

Command	Log
The	Command	Log	shows	function	calls	made	by	the	Blender	interface	during
the	session.	This	window	is	extremely	useful	when	experimenting	with	scripts
and	learning	about	the	API.	If,	for	example,	we	translate	the	cube	in	the	3D
Viewport	using	the	red	arrow,	we	get	the	output	shown	in	Listing	1-1	in	the
Command	Log.

bpy.ops.transform.translate(value=(3.05332,	0,	0),

constraint_axis=(True,	False,	False),

constraint_orientation='GLOBAL',	mirror=False,



constraint_orientation='GLOBAL',	mirror=False,

proportional='DISABLED',

proportional_edit_falloff='SMOOTH',

proportional_size=1,	release_confirm=True)
Listing	1-1. 	Command	Log	Output	from	Translation	Along	x-Axis

The	output	in	Listing	1-1	shows	that	we	called	the	translate()	function
from	the	transform	class	of	the	bpy.ops	submodule.	The	parameters	are
fairly	verbose	and	often	redundant	in	calls	made	from	the	interface,	but	they	are
straightforward	enough	that	we	can	decipher	what	they	mean	and	experiment
with	the	function.	We	dig	into	code	like	this	in	the	next	chapter.	While	the	act	of
deciphering	is	often	the	best	and	fastest	way	to	learn	about	functions	in	Blender
Python,	we	can	also	reference	the	official	documentation	for	more	detail.	This	is
also	discussed	in	the	next	chapter.

Interactive	Console
The	Interactive	Console	is	a	Python	3	environment	similar	to	vanilla	Python
console	and	IPython	consoles	that	often	appear	at	the	bottom	of	IDEs
(interactive	development	environments).	The	Interactive	Console	does	not	share
local	or	module-level	data	with	the	Text	Editor	scripts,	but	both	Interactive
Console	and	Text	Editor	scripts	have	access	to	the	same	global	Blender	data
stored	in	bpy	and	its	submodules.	So,	the	console	will	not	be	able	to	read	or
modify	variables	local	to	the	the	scripts,	but	modifications	to	bpy	(and	the
Blender	session	in	general)	are	shared.

To	further	complicate	matters,	the	console	and	scripts	share	linked	scripts
and	system	path	variables	during	the	Blender	session.	The	relationship	between
these	components	may	seem	needlessly	complex,	but	we	will	come	to	see	that
their	relationship	is	optimal	for	both	development	and	experimentation.

Customizing	the	Interface
Components	of	the	Blender	interface	are	modular,	detachable,	expandable,	and
all-around	customizable.	Users	can	drag	around	the	top-right	corner	of	any
window	to	modify	and	create	new	windows.

Dragging	the	top-right	corner	to	the	left	will	create	a	new	window	of	the
same	type

Dragging	the	top-right	corner	to	the	right	will	allow	you	to	overtake
adjacent	windows



Holding	Shift	and	dragging	the	top-right	corner	in	any	direction	will	copy
the	component	in	a	new	detached	window

Creating	a	3D	Viewport	in	a	detachable	window	and	duplicating	the	Text
Editor	is	great	way	to	use	a	dual-screen	setup.	Having	two	Text	Editors	available
is	very	helpful	for	debugging	custom	modules.	See	Figure	1-6	for	a	screenshot	of
a	dual-screen	setup.

Figure	1-6. 	Example	of	a	dual-screen	development	interface

Note	that	if	your	Tool	Shelf	or	Tool	Properties	windows	disappear	when
moving	around	the	interface,	press	T	on	the	keyboard	while	in	the	3D	Viewport
to	reveal	them.	Additionally,	press	N	on	the	keyboard	while	in	the	3D	Viewport
to	reveal	a	new	window,	the	Object	Properties.	This	window	is	used	very	often
in	add-on	development,	specifically	when	we	begin	assigning	custom	Blender
classes	to	our	objects	as	parameters.

Starting	Blender	from	the	Command	Line	(for
Debugging)
When	developing	Python	scripts	in	Blender,	it	is	very	important	that	we	start
Blender	from	the	command	line.	When	we	run	scripts	in	Blender,	if	we	get	an
error,	the	Command	Log	will	show	this	message:

Python	script	fail,	look	in	the	console	for	now...

This	message	can	be	very	confusing,	because	the	Interactive	Console	will
show	nothing.	What	Blender	means	is:	Look	in	the	terminal	for	now…
Unfortunately,	most	people	do	not	open	Blender	via	the	terminal,	and	the	error
messages	and	tracebacks	will	go	unnoticed	unless	we	have	a	terminal	running



Blender	in	the	background.	Opening	Blender	via	the	terminal	is	the	unofficial
“Debug	Mode”	for	Python	developers.	Blender	has	an	official	Debug	Mode	used
by	the	core	developers,	but	this	is	not	generally	helpful	to	us	as	API	users.

To	open	Blender	from	the	terminal,	we	must	navigate	to	the	Blender
executable	in	a	Blender	distribution	saved	on	our	system.	Make	sure	to	have
downloaded	the	Blender	.zip	or	.bz2	file	for	the	appropriate	operating	system
from	https://www.blender.org/download/	.	Save	and	unzip	the
folder	in	an	easily	accessible	location.	Windows	users	will	open	the	command
prompt,	and	UNIX	users	will	open	a	terminal.	Listings	1-2	and	1-3	show	the
commands	required	to	open	a	Blender	install	sitting	on	the	Desktop	for	Windows
and	UNIX	users,	respectively.	Alternatively,	Windows	users	can	open	Blender
normally,	then	navigate	to	Header	Menu	➤	Window	➤	Toggle	System	Console
to	view	the	terminal.

#	Assuming	you	are	starting	from

C:\Users\%USERNAME%

cd	Desktop\blender-2.78c-windows64

blender

#	Navigating	from	anywhere	on	the	Windows	#

filesystem	to	Blender	on	the	Desktop	cd

C:\Users\%USERNAME%\Desktop\blender-2.78c-windows64

blender	#	If	an	existing	Blender	install	causes	#

the	wrong	version	to	open,	use	blender.exe	cd

C:\Users\%USERNAME%\Desktop\blender-2.78c-windows64

blender.exe

Listing	1-2. 	Opening	Blender	from	the	Command	Line	in	Windows

#	Navigating	to	Blender	on	the	Desktop	from	#

anywhere	in	the	filesystem	for	Linux	cd

∼/Desktop/blender-2.78c-linux-glibc211-x86_64
./blender

#	Navigating	to	Blender	in	the	home	directory	for

OSX

cd	∼/Desktop/blender-2.78c-OSX-10.6-x86_64
./blender

Listing	1-3. 	Opening	Blender	from	the	Command	Line	in	UNIX

https://www.blender.org/download/


Now	Blender	is	running	from	the	terminal,	and	it	will	dump	warnings	and
errors	to	the	terminal.	If	we	exit	the	terminal,	Blender	will	also	close.	Developers
should	always	open	Blender	from	the	command	line	to	get	detailed	debugging
information.	We	will	generally	keep	the	terminal	minimized	until	we	get	an
error,	then	maximize	it	to	study	the	recent	output	.

Running	Our	First	Python	Script
With	the	information	presented	in	this	chapter,	we	can	open	a	fresh	Blender
session	with	the	command	line,	arrange	the	interface	to	a	nice	development
layout,	and	be	prepared	to	debug	our	Python	code.

Our	first	objective	will	be	to	create	a	cube	out	of	cubes.	We	will	walk
through	the	natural	thought	process	of	exploring	Blender	and	the	API	to	create	a
script	that	accomplishes	our	objective.

Finding	the	Function
First,	we	need	to	figure	out	which	function	adds	a	cube	to	the	scene.	Navigate	to
the	3D	Viewport	and	go	to	3D	Viewport	Header	➤	Add	➤	Meshes	➤	Cube.
Now	navigate	to	the	Command	Log	to	verify	that	the	function	was	executed	as
shown	in	Listing	1-4.

bpy.ops.mesh.primitive_cube_add(radius=1,

view_align=False,	enter_editmode=False,	location=(0,

0,	0),	layers=(True,	False,	False,	False,	False,

False,	False,	False,	False,	False,	False,	False,

False,	False,	False,	False,	False,	False,	False,

False))
Listing	1-4. 	Command	Log	Output	for	Adding	a	Cube	to	the	Scene

Testing	the	Function
Upon	examination,	we	see	many	arguments	that	we	do	not	need	to	accomplish
our	objective.	We	do	not	want	to	enter	Edit	Mode,	we	do	not	need	to	align	the
3D	Viewport	to	the	object,	and	we	are	working	in	the	first	layer	for	now.	We
will	guess	that	we	do	not	need	the	arguments	view_align,
enter_editmode,	and	layers,	and	that	their	default	values	are	acceptable.
Additionally,	we	will	assume	that	radius	specifies	the	size	of	the	cube,	and
location	specifies	the	location.	To	test	this,	run	Listing	1-5	in	the	Interactive
Console.



#	Make	a	bigger	cube	sitting	in	the	first	quadrant

bpy.ops.mesh.primitive_cube_add(radius=3,	location=(5,

5,	5))
Listing	1-5. 	Testing	Defaults	of	primitive_cube_add()

By	running	Listing	1-5	in	the	Interactive	Console,	we	see	no	errors,	and	we
see	a	large	cube	centered	at	(5,	5,	5)	in	the	3D	Viewport.	We	can	now
confidently	use	the	function	in	a	script	to	accomplish	our	objective,	making	a
cube	of	cubes.

Delete	our	big	cube	(and	any	other	stray	objects)	from	the	scene	in
preparation	to	run	our	script.	Use	the	A	key	in	the	3D	Viewport	to	toggle	Select
All	and	press	the	X	key	to	be	prompted	to	delete	all	selected	objects.

Writing	the	Script
Make	sure	to	go	to	Text	Editor	➤	New	to	create	a	new	script.	To	create	a	cube
of	cubes,	we	will	nest	three	loops	that	iterate	through	our	x,	y,	and	z	values.	Copy
Listing	1-6	into	the	Text	Editor	and	go	to	Text	Editor	➤	Run	Script.

import	bpy

for	k	in	range(5):	for	j	in	range(5):	for	i	in

range(5):	bpy.ops.mesh.primitive_cube_add(radius=0.25,

location=(i,	j,	k))

Listing	1-6. 	Creating	a	Cube	of	Cubes

This	script	creates	a	cube	0.25	*	2	=	0.5	units	wide,	centered	at	every
combination	of	whole	number	vertices	such	that	0	≤	x,	y,	z	<	5.	The	result	is
pictured	in	Figure	1-7	.



Figure	1-7. 	Cubes	of	cubes	generated	by	Listing	1-6

Note
To	find	functions,	classes,	parameter	lists,	and	minimal	documentation,	use
the	autocomplete	feature	of	Blender’s	Interactive	Console.	With	the	mouse
cursor	in	the	window	of	the	Interactive	Console,	begin	typing	a	bpy	function.
Press	Ctrl+Space,	and	Blender	will	show	class	and	function	information.

Conclusion
In	the	coming	chapters,	we	expand	on	the	process	used	to	arrive	at	Listing	1-6,
allowing	us	to	create	virtually	anything	in	Blender.	Using	the	vocabulary
established	in	this	chapter,	we	will	be	able	to	talk	through	advanced	concepts	in
Blender	Python	scripting.
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This	chapter	introduces	and	details	major	components	of	the	bpy	module.	In
doing	so,	we	explain	many	important	behaviors	of	Blender.	We	cover	selection
and	activation,	creation	and	deletion,	scene	management,	and	code	abstraction.

The	official	documentation	for	the	Blender	Python	API	can	be	found	by
selecting	a	version	of	Blender	at	http://www.blender.org/api/	.	We
are	using	Blender	2.78c	in	this	text,	so	our	documentation	can	be	found	at
http://www.blender.org/api/blender_python_api_2_78c_release/

.

Module	Overview
We	begin	by	giving	some	background	on	each	submodule	of	bpy.

bpy.ops
As	implied,	this	submodule	contains	operators.	These	are	primarily	functions	for
manipulating	objects	,	similarly	to	the	way	Blender	artists	manipulate	objects	in
the	default	interface.	The	submodule	can	also	manipulate	the	3D	Viewport,
renderings,	text,	and	much	more.

For	manipulating	3D	objects,	the	two	most	important	classes	are
bpy.ops.object	and	bpy.ops.mesh.	The	object	class	contains
functions	for	manipulating	multiple	selected	objects	at	the	same	time	as	well	as
many	general	utilities.	The	mesh	class	contains	functions	for	manipulating
vertices,	edges,	and	faces	of	objects	one	at	a	time,	typically	in	Edit	Mode.

There	are	currently	71	classes	in	the	bpy.ops	submodule,	all	fairly	well-

http://www.blender.org/api/
http://www.blender.org/api/blender_python_api_2_78c_release/


named	and	well-organized.

Note
Documentation	for	modules,	submodules,	and	classes	can	be	accessed
directly	by	appending	the	Pythonic	path	to	the	object	and	.html	to	the	home
URL	of	your	version’s	Blender	documentation.	For	example,	documentation
for	the	bpy.ops.mesh	class	can	be	found	here:
www.blender.org/api/blender_python_api_2_78c_release/bpy.ops.mesh.html

.

bpy.context
The	bpy.	context	submodule	is	used	to	access	objects	and	areas	of	Blender
by	various	status	criteria.	The	primary	function	of	this	submodule	is	to	give
Python	developers	a	means	of	accessing	the	current	data	that	a	user	is	working
with.	If	we	create	a	button	that	permutes	all	of	the	selected	objects,	we	can	allow
the	user	to	select	the	objects	of	his	choice,	then	permute	all	objects	in
bpy.context.select_objects.

We	make	frequent	use	of	bpy.context.scene	when	building	add-ons,
as	it	is	a	required	input	to	certain	Blender	objects.	We	can	also	use
bpy.context	to	access	the	active	objects,	toggle	between	Object	Mode	and
Edit	Mode,	and	accept	data	from	a	grease	pencil.

bpy.data
This	submodule	is	used	to	access	Blender’s	internal	data	.	It	can	be	difficult	to
interpret	documentation	on	this	specific	module	(the	*/bpy.data.html	page
points	directly	to	a	separate	class),	but	we	will	rely	heavily	on	it	throughout	this
text.	The	bpy.data.objects	class	contains	all	of	the	data	determining	an
object’s	shape	and	position.	When	we	say	the	the	previous	submodule
bpy.context	is	great	for	pointing	us	to	groups	of	objects,	we	mean	that
bpy.context	classes	will	generate	references	to	datablocks	of	the
bpy.data	class.

bpy.app
This	submodule	is	not	entirely	documented,	but	the	information	we	are	confident
about	thus	far	can	be	used	to	great	effect	in	scripting	and	add-on	development.
The	sub-submodule	bpy.app.handlers	is	the	only	one	we	will	concern

http://www.blender.org/api/blender_python_api_2_78c_release/bpy.ops.mesh.html


ourselves	with	in	this	text.	The	handlers	submodule	contains	special
functions	for	triggering	custom	functions	in	response	to	events	in	Blender.	Most
commonly	used	is	the	frame	change	handle,	which	executes	some	function	every
time	the	3D	Viewport	is	updated	(i.e.,	after	a	frame	change).

bpy.types	,	bpy.utils	,	and	bpy.props
These	modules	are	discussed	in	detail	in	later	chapters	on	add-on	development.
Readers	may	presently	find	the	documentation	in	*/bpy.types.html	useful
for	describing	classes	of	objects	we	are	utilizing	elsewhere.

bpy.path
This	submodule	is	essentially	the	same	as	the	os.path	submodule	that	ships
natively	with	Python.	It	is	rarely	useful	to	Blender	Python	developers	outside	of
the	core	development	team.

Selection,	Activation,	and	Specification
The	Blender	interface	was	designed	to	be	intuitive	while	also	providing	complex
functionality.	Certain	operations	logically	apply	to	single	objects	where	others
can	logically	be	used	on	one	or	many	objects	at	the	same	time.	To	handle	these
scenarios,	Blender	developers	created	three	ways	to	access	an	object	and	its	data.

Selection:	One,	many,	or	zero	objects	can	be	selected	at	once.	Operations
that	use	selected	objects	can	perform	that	operation	simultaneously	on	a
single	object	or	many	objects.

Activation:	Only	a	single	object	can	be	active	at	any	given	time.	Operations
that	work	on	the	active	object	are	typically	more	specific	and	drastic,	thus
cannot	be	intuitively	performed	on	many	things	at	once.

Specification:	(Python	only)	Python	scripts	can	access	objects	by	their
names	and	write	directly	to	their	datablocks.	While	an	operation	that
manipulates	selected	objects	is	typically	a	differential	action	like	translate,
rotate,	or	scale,	writing	data	to	specific	objects	is	typically	a	declarative
action	like	position,	orientation,	or	size.

Selecting	an	Object
Before	continuing,	readers	are	encouraged	to	create	a	handful	of	different	objects



in	the	3D	Viewport	to	use	as	examples.	Go	to	3D	Viewport	Header	➤	Add	to
see	the	object	creation	menu.

When	we	click	around	in	the	3D	Viewport	with	a	right-click,	objects
highlight	and	unhighlight.	When	we	hold	the	Shift	key	and	click	around,	we	are
able	to	highlight	multiple	objects	at	once.	These	highlights	in	the	3D	Viewport
represent	the	selected	objects.	To	list	the	selected	objects,	type	the	code	in
Listing	2-1	into	the	Interactive	Console.

#	Outputs	bpy.data.objects	datablocks

bpy.context.selected_objects

Listing	2-1. 	Getting	a	List	of	Selected	Objects

As	we	alluded	to	earlier,	the	bpy.context	submodule	is	great	for	fetching
lists	of	objects	based	on	their	state	within	Blender.	In	this	case,	we	fetched	all
the	selected	objects.

#	Example	output	of	Listing	2.1,	list	of

bpy.data.objects	datablocks

[bpy.data.objects['Sphere'],

bpy.data.objects['Circle'],	bpy.data.objects['Cube']]

In	this	case,	a	sphere	named	Sphere,	a	circle	named	Circle,	and	a	cube
named	Cube	were	all	selected	in	the	3D	Viewport.	We	were	returned	a	Python
list	of	bpy.data.objects	datablocks.	Given	the	knowledge	that	all
datablocks	of	this	type	have	a	name	value,	we	can	loop	through	the	results	of
Listing	2-1	to	access	the	names	of	the	selected	objects.	See	Listing	2-2,	where
we	grab	both	the	names	and	positions	of	the	selected	objects.

#	Return	the	names	of	selected	objects	[k.name	for

k	in	bpy.context.selected_objects]

#	Return	the	locations	of	selected	objects	#

(location	of	origin	assuming	no	pending

transformations)	[k.location	for	k	in

bpy.context.selected_objects]

Listing	2-2. 	Getting	a	List	of	Selected	Objects

Now	that	we	know	how	to	manually	select	objects,	we	need	to	automatically



select	objects	based	on	some	criteria.	The	requisite	functions	are	in	bpy.ops.
Listing	2-3	creates	a	function	that	takes	an	object	name	as	an	argument	and
selects	it,	clearing	all	other	selections	by	default.	If	the	user	specifies
additive	=	True,	the	function	will	not	clear	other	selections	beforehand.

import	bpy

def	mySelector(objName,	additive=False):

				#	By	default,	clear	other	selections	if	not

additive:	bpy.ops.object.select_all(action='DESELECT')

				#	Set	the	'select'	property	of	the	datablock	to

True	bpy.data.objects[objName].select	=	True

#	Select	only	'Cube'

mySelector('Cube')

#	Select	'Sphere',	keeping	other	selections

mySelector('Sphere',	additive=True)

#	Translate	selected	objects	1	unit	along	the	x-

axis	bpy.ops.transform.translate(value=(1,	0,	0))

Listing	2-3. 	Programmatically	Selecting	Objects

Note
To	easily	view	the	names	of	objects	without	Python	scripting,	navigate	to	the
Properties	window	and	select	the	orange	cube	icon.	Now,	active	objects	will
show	their	name	near	the	top	of	this	subwindow,	as	is	the	case	in	Figure	2-1.
Also,	the	bottom-left	corner	of	the	3D	Viewport	will	display	the	name	of	the
active	object.	We	discuss	activation	in	the	next	subsection	of	this	chapter.

Figure	2-1. 	Checking	object	names	in	the	Blender	interface



Activating	an	Object
Activation,	like	selection,	is	an	object	state	in	Blender.	Unlike	selection,	only
one	object	can	be	active	at	any	given	time.	This	state	is	generally	used	for
vertex,	edge,	and	face	manipulation	of	single	objects.	This	state	also	has	a	close
relationship	with	Edit	Mode,	which	we	discuss	in	detail	later	in	this	chapter.

When	we	left-click	around	the	3D	Viewport,	any	object	that	we	click	will	be
highlighted.	When	we	highlight	a	single	object	in	this	manner,	Blender	both
selects	and	activates	that	object.	If	we	hold	Shift	and	left-click	around	the	3D
Viewport,	only	the	first	object	we	click	will	be	active.

Note	the	area	of	the	Properties	window	pictured	in	Figure	2-1,	where	the
name	of	the	active	object	is	displayed.	Objects	can	also	be	activated	via	the
menu	at	the	bottom	of	Figure	2-1.

To	access	the	active	object	in	Python,	type	Listing	2-4	in	the	Interactive
Console.	Notice	there	are	two	equivalent	bpy.context	classes	for	accessing
the	active	object.	Just	as	with	selected	objects,	we	are	returned	a
bpy.data.objects	datablock,	which	we	can	operate	on	directly.

#	Returns	bpy.data.objects	datablock

bpy.context.object

#	Longer	synonym	for	the	above	line

bpy.context.active_object

#	Accessing	the	'name'	and	'location'	values	of	the

datablock	bpy.context.object.name

bpy.context.object.location

Listing	2-4. 	Accessing	the	Active	Object

Listing	2-5	is	an	analogue	to	Listing	2-3	for	activation.	Since	only	one	object
can	be	active	at	any	given	time,	the	activation	function	is	much	simpler.	We	pass
a	bpy.data.objects	datablock	to	a	scene	property	that	handles	internal
data	on	activation.	Because	Blender	only	allows	a	single	object	to	be	active,	we
can	make	a	single	assignment	to	bpy.context.scene	and	allow	Blender’s
internal	engine	to	sort	out	de-activation	of	other	objects.

import	bpy



def	myActivator(objName):

		#	Pass	bpy.data.objects	datablock	to	scene	class

bpy.context.scene.objects.active	=

bpy.data.objects[objName]

#	Activate	the	object	named	'Sphere'

myActivator('Sphere')

#	Verify	the	'Sphere'	was	activated	print("Active

object:",	bpy.context.object.name)

#	Selected	objects	were	unaffected	print("Selected

objects:",	bpy.context.selected_objects)

Listing	2-5. 	Programmatically	Activating	an	Object

Note
When	we	introduce	listings	intended	for	use	in	the	Text	Editor	rather	than	the
Interactive	Console	(typically	multi-line	programs),	we	always	import	bpy.
The	bpy	module	is	imported	by	default	in	the	Interactive	Console,	but	each
run	of	a	script	in	the	Text	Editor	is	an	independent	session	that	does	not
import	bpy	by	default.	Additionally,	when	we	want	to	view	output	of	a
program	in	the	Interactive	Console,	we	will	simply	type	the	object	we	want	to
view	information	on.	When	we	want	to	view	output	from	the	Text	Editor,	we
use	printing	functions	to	send	the	output	to	the	terminal	with	which	Blender
was	opened.	Otherwise,	we	would	be	unable	to	see	output	other	than
warnings	and	errors	from	the	Text	Editor	scripts.

Specifying	an	Object	(Accessing	by	Name)
This	section	details	how	to	return	bpy.data.objects	datablocks	by
specifying	the	name	of	the	object.	Listing	2-6	shows	how	to	access	the
bpy.data.objects	datablock	for	an	object	given	its	name.	Based	on	our
discussion	up	to	this	point,	Listing	2-6	may	seem	trivial.	This	circular	nature	of
datablock	referencing	has	a	very	important	purpose.

#	bpy.data.objects	datablock	for	an	object	named

'Cube'

bpy.data.objects['Cube']



bpy.data.objects['Cube']

#	bpy.data.objects	datablock	for	an	object	named

'eyeballSphere'

bpy.data.objects['eyeballSphere']

Listing	2-6. 	Accessing	an	Object	by	Specification

Listing	2-7	is	an	analogue	to	Listings	2-3	and	2-5,	but	applies	to
specification.	The	goal	of	mySelector()	and	myActivator()	were	to
return	the	datablock	or	datablocks	of	objects	with	a	given	state.	In	this	case,
mySpecifier()	trivially	returns	the	datablock.

import	bpy

def	mySpecifier(objName):	#	Return	the	datablock

return	bpy.data.objects[objName]

#	Store	a	reference	to	the	datablock	myCube	=

mySpecifier('Cube')

#	Output	the	location	of	the	origin

print(myCube.location)

#	Works	exactly	the	same	as	above	myCube	=

bpy.data.objects['Cube']

print(myCube.location)

Listing	2-7. 	Programmatically	Accessing	an	Object	by	Specification

Pseudo-Circular	Referencing	and	Abstraction
The	bpy.data.objects	datablocks	have	a	very	interesting	property	that
highlights	many	of	the	wise	architecting	decisions	made	for	the	Blender	Python
API.	With	the	goal	of	promoting	modularity,	extensibility,	and	liberal
abstraction,	bpy.data.objects	datablocks	were	built	to	nest	infinitely.	We
refer	to	this	as	pseudo-circular	referencing	because,	while	references	are
circular,	they	occur	within	rather	than	between	objects,	making	the	concept
distinct	from	circular	referencing.

See	Listing	2-8	for	trivial	examples	of	datablocks	making	pseudo-circular



references.

#	Each	line	will	return	the	same	object	type	and

memory	address	bpy.data

bpy.data.objects.data

bpy.data.objects.data.objects.data

bpy.data.objects.data.objects.data.objects.data

#	References	to	the	same	object	can	be	made	across

datablock	types	bpy.data.meshes.data

bpy.data.meshes.data.objects.data

bpy.data.meshes.data.objects.data.scenes.data.worlds.d

ata.materials.data

#	Different	types	of	datablocks	also	nest	#	Each	of

these	lines	returns	the	bpy.data.meshes	datablock	for

'Cube'

bpy.data.meshes['Cube']

bpy.data.objects['Cube'].data

bpy.data.objects['Cube'].data.vertices.data

bpy.data.objects['Cube'].data.vertices.data.edges.data

.materials.data

Listing	2-8. 	Pseudo-Circular	Referencing

Listing	2-8	showcases	a	powerful	feature	of	the	Blender	Python	API.	When
we	append	.data	to	an	object,	it	returns	a	reference	to	the	parent	datablock.
This	behavior	comes	with	some	restrictions.	For	example,	we	cannot	append
.data.data	to	move	from	a	bpy.data.meshes[]	datablock	to	the
bpy.data	datablock.	Nonetheless,	this	behavior	will	help	us	build	clean	and
readable	codebases	that	are	naturally	modular.

We	will	create	tools	in	this	text	that	enable	us	to	build	and	manipulate
objects	in	Blender	without	directly	calling	the	bpy	module.	While	pseudo-
circular	referencing	seems	trivial	as	we	present	it	in	Listing	2-8,	readers	will	see
that	it	often	happens	implicitly	in	toolkits	when	abstracting	the	bpy	module.

Transformations	with	bpy
This	section	discusses	major	components	of	the	bpy.ops.transorm	class



and	its	analogues	elsewhere.	It	naturally	expands	on	the	theme	of	abstraction	and
introduces	some	helpful	Blender	Python	tricks.

Listing	2-9	is	a	minimal	set	of	tools	for	creating,	selecting,	and	transforming
objects.	The	bottom	of	the	script	runs	some	example	transformations.	Figure	2-2
shows	the	output	from	a	test	run	of	the	minimal	toolkit	in	the	3D	Viewport.

Figure	2-2. 	Minimal	toolkit	test

import	bpy

#	Selecting	objects	by	name	def	select(objName):

bpy.ops.object.select_all(action='DESELECT')

bpy.data.objects[objName].select	=	True

#	Activating	objects	by	name	def	activate(objName):

bpy.context.scene.objects.active	=

bpy.data.objects[objName]

class	sel:	"""Function	Class	for	operating	on

SELECTED	objects"""

				#	Differential	def	translate(v):

bpy.ops.transform.translate(



												value=v,	constraint_axis=(True,	True,

True))

				#	Differential	def	scale(v):

bpy.ops.transform.resize(value=v,	constraint_axis=

(True,	True,	True))

				#	Differential	def	rotate_x(v):

bpy.ops.transform.rotate(value=v,	axis=(1,	0,	0))

				#	Differential	def	rotate_y(v):

bpy.ops.transform.rotate(value=v,	axis=(0,	1,	0))

				#	Differential	def	rotate_z(v):

bpy.ops.transform.rotate(value=v,	axis=(0,	0,	1))

class	act:	"""Function	Class	for	operating	on

ACTIVE	objects"""

				#	Declarative	def	location(v):

bpy.context.object.location	=	v

				#	Declarative	def	scale(v):

bpy.context.object.scale	=	v

				#	Declarative	def	rotation(v):

bpy.context.object.rotation_euler	=	v

				#	Rename	the	active	object	def	rename(objName):

bpy.context.object.name	=	objName

class	spec:	"""Function	Class	for	operating	on

SPECIFIED	objects"""

				#	Declarative	def	scale(objName,	v):

bpy.data.objects[objName].scale	=	v

				#	Declarative	def	location(objName,	v):

bpy.data.objects[objName].location	=	v



				#	Declarative	def	rotation(objName,	v):

bpy.data.objects[objName].rotation_euler	=	v

class	create:	"""Function	Class	for	CREATING

Objects"""

				def	cube(objName):

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(0,	0,	0))	act.rename(objName)

				def	sphere(objName):

bpy.ops.mesh.primitive_uv_sphere_add(size=0.5,

location=(0,	0,	0))	act.rename(objName)

				def	cone(objName):

bpy.ops.mesh.primitive_cone_add(radius1=0.5,	location=

(0,	0,	0))	act.rename(objName)

#	Delete	an	object	by	name	def	delete(objName):

				select(objName)

				bpy.ops.object.delete(use_global=False)

#	Delete	all	objects

def	delete_all():

				if(len(bpy.data.objects)	!=	0):

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete(use_global=False)

if	__name__	==	"__main__":

				#	Create	a	cube	create.cube('PerfectCube')

				#	Differential	transformations	combine

sel.translate((0,	1,	2))

				sel.scale((1,	1,	2))

				sel.scale((0.5,	1,	1))



				sel.rotate_x(3.1415	/	8)

				sel.rotate_x(3.1415	/	7)

				sel.rotate_z(3.1415	/	3)

				#	Create	a	cone	create.cone('PointyCone')

				#	Declarative	transformations	overwrite

act.location((-2,	-2,	0))

				spec.scale('PointyCone',	(1.5,	2.5,	2))

				#	Create	a	Sphere	create.sphere('SmoothSphere')

				#	Declarative	transformations	overwrite

spec.location('SmoothSphere',	(2,	0,	0))

act.rotation((0,	0,	3.1415	/	3))	act.scale((1,	3,	1))

Listing	2-9. 	Minimal	Toolkit	for	Creation	and	Transformation	(ut.py)

Notice	the	comment	tags	differential	and	declarative.	There	are	a	handful	of
ways	to	rotate,	scale,	and	translate	objects	in	Blender	Python,	but	it	is	important
to	remember	which	functions	dictate	a	form	(declarative)	and	which	functions
modify	a	form	(differential).	Thankfully,	the	verbiage	of	the	bpy	functions	and
class	values	are	fairly	intuitive.	For	example,	rotate	is	a	verb,	therefore
differential,	and	rotation	is	a	noun,	therefore	declarative.

Listing	2-9,	which	we	will	call	ut.py,	is	a	good	starting	point	for	a	custom
utility	class.

In	this	book,	we	are	interested	in	teaching	the	Blender	Python	API,	not	the
author’s	ut.py	module.	While	the	ut.py	module	is	a	good	reference	and
teaching	tool,	we	will	refrain	from	using	its	single-line	function	calls	in	future
chapters.	While	those	function	calls	may	solve	our	problems	in	the	short-term,
they	obscure	class	structures	and	parameters	we	would	otherwise	like	to
reinforce	through	repetition.

For	now,	we	will	do	some	cool	visualizations	with	ut.py.	In	future
chapters,	we	will	add	bulky	and	meaningful	utility	functions	to	it	while	treating
the	single-line	functions	as	placeholders.

Visualizing	Multivariate	Data	with	the	Minimal	Toolkit



In	this	section,	we	visualize	multivariate	data	with	the	toolkit	in	Listing	2-9.
Before	we	begin,	give	this	toolkit	a	Python	filename	of	ut.py	using	the	bar	at
the	base	of	the	Text	Editor.	Now,	click	the	plus	sign	in	the	base	of	the	Text
Editor	to	create	a	new	script.	The	file	ut.py	is	now	a	linked	script	within	the
Blender	Python	environment,	and	we	can	import	it	into	other	scripts	within	the
environment.

We	will	be	visualizing	the	famous	Fisher’s	Iris	data	set.	This	data	set	has	five
columns	of	data.	The	first	four	columns	are	numeric	values	describing
dimensions	of	flower,	and	the	final	column	is	a	categorical	value	describing	the
type	of	flower.	There	are	three	types	of	flowers	in	this	data	set:	setosa	,
versicolor	,	and	virginica	.

Listing	2-10	serves	as	the	header	code	for	this	example.	It	imports	the
necessary	modules:	our	toolkit	ut,	the	csv	module	,	and	urllib.request.
We	will	fetch	the	data	from	a	file	repository	with	urllib,	then	parse	it	with
csv.	It	is	not	necessary	to	understand	all	the	code	in	Listing	2-10	to	profit	from
this	example.

import	ut

import	csv

import	urllib.request

###################

#	Reading	in	Data	#

###################

#	Read	iris.csv	from	file	repository	url_str	=

'http://blender.chrisconlan.com/iris.csv'

iris_csv	=	urllib.request.urlopen(url_str)	iris_ob

=	csv.reader(iris_csv.read().decode('utf-

8').splitlines())

#	Store	header	as	list,	and	data	as	list	of	lists

iris_header	=	[]

iris_data	=	[]

for	v	in	iris_ob:	if	not	iris_header:	iris_header	=

v



				else:	v	=	[float(v[0]),

													float(v[1]),

													float(v[2]),

													float(v[3]),

													str(v[4])]

								iris_data.append(v)

Listing	2-10. 	Reading	in	iris.csv	for	the	Exercise

Visualizing	Three	Dimensions	of	Data
Since	Blender	is	a	3D	modeling	suite,	it	seems	most	logical	to	visualize	three
dimensions	of	data.	Listing	2-11	places	a	sphere	at	the	(x,	y,	z)	values	of	the	3D
Viewport	specified	by	the	sepal	length,	sepal	width,	and	petal	length	of	each
observation.

#	Columns:	#	'Sepal.Length',	'Sepal.Width',	#

'Petal.Length',	'Petal.Width',	'Species'

#	Visualize	3	dimensions	#	Sepal.Length,

Sepal.Width,	and	'Petal.Length'

#	Clear	scene	ut.delete_all()

#	Place	data	for	i	in	range(0,	len(iris_data)):

ut.create.sphere('row-'	+	str(i))	v	=	iris_data[i]

				ut.act.scale((0.25,	0.25,	0.25))

ut.act.location((v[0],	v[1],	v[2]))

Listing	2-11. 	Visualizing	Three	Dimensions	of	Data

The	resultant	set	of	spheres	appear	in	the	3D	Viewport,	as	shown	in	Figure
2-3.	Obviously,	the	2D	picture	printed	in	this	text	does	not	do	this	model	justice.
Using	Blender’s	mouse	and	keyboard	movement	tools,	users	can	explore	this
data	very	intuitively.



Figure	2-3. 	Visualizing	Three	Dimensions	of	Iris	Data

Visualizing	Four	Dimensions	of	Data
Fortunately,	there	are	more	than	three	ways	we	can	parameterize	objects	using
Blender	Python.	To	account	for	the	final	numeric	variable,	petal	width,	we	will
scale	the	spheres	by	the	petal	width.	This	will	allow	us	to	visualize	and
understand	four	dimensions	of	data	within	Blender.	Listing	2-12	is	a	slight
modification	of	the	prior.

#	Columns:

#	'Sepal.Length',	'Sepal.Width',	#	'Petal.Length',

'Petal.Width',	'Species'

#	Visualize	4	dimensions	#	Sepal.Length,

Sepal.Width,	'Petal.Length',	#	and	scale	the	object	by

a	factor	of	'Petal.Width'



#	Clear	scene	ut.delete_all()

#	Place	data	for	i	in	range(0,	len(iris_data)):

ut.create.sphere('row-'	+	str(i))	v	=	iris_data[i]

				scale_factor	=	0.2

				ut.act.scale((v[3]	scale_factor,)	3)

ut.act.location((v[0],	v[1],	v[2]))

Listing	2-12. 	Visualizing	Four	Dimensions	of	Data

The	resultant	set	of	spheres	appear	in	the	3D	Viewport,	as	shown	in	Figure
2-4.	It	is	very	apparent	that	the	lower	group	of	spheres	has	a	very	small	sepal
width.	Figure	2-5	zooms	in	on	this	cluster	of	data.



Figure	2-4. 	Visualizing	Four	Dimensions	of	Iris	Data

Figure	2-5. 	Visualizing	Four	Dimensions	of	Iris	Data	Pt.	2

Visualizing	Five	Dimensions	of	Data
From	what	we	have	seen	up	to	this	point,	there	exist	at	least	two	very	distinct
clusters	within	this	data.	We	will	dig	into	the	flower	species	data	to	look	for	a
relationship.	To	easily	distinguish	between	types	of	flowers	within	the	3D
Viewport,	we	can	assign	each	flower	type	a	geometric	shape.	See	Listing	2-13.

#	Columns:	#	'Sepal.Length',	'Sepal.Width',	#

'Petal.Length',	'Petal.Width',	'Species'

#	Visualize	5	dimensions	#	Sepal.Length,

Sepal.Width,	'Petal.Length',	#	and	scale	the	object	by

a	factor	of	'Petal.Width'

#	setosa	=	sphere,	versicolor	=	cube,	virginica	=

cone

#	Clear	scene	ut.delete_all()



#	Place	data	for	i	in	range(0,	len(iris_data)):	v	=

iris_data[i]

				if	v[4]	==	'setosa':	ut.create.sphere('setosa-'

+	str(i))	if	v[4]	==	'versicolor':

ut.create.cube('versicolor-'	+	str(i))	if	v[4]	==

'virginica':	ut.create.cone('virginica-'	+	str(i))

				scale_factor	=	0.2

				ut.act.scale((v[3]	scale_factor,)	3)

ut.act.location((v[0],	v[1],	v[2]))

Listing	2-13. 	Visualizing	Five	Dimensions	of	Data

The	resultant	output	in	the	3D	Viewport	(Figure	2-6)	sheds	light	on	the
relationship	between	dimensions	and	species	within	the	data.	We	see	many
cones,	virginica	flowers,	at	the	peak	of	the	larger	cluster,	and	we	see	many
cubes,	versicolor	flowers,	at	the	bottom	of	that	larger	cluster.	There	is	some
overlap	between	the	dimensions	of	these	two	species.	The	spheres,	setosa
flowers,	make	up	the	completely	separated	cluster	of	flowers	with	smaller
dimensions.



Figure	2-6. 	Visualizing	Five	Dimensions	of	Iris	Data

Discussion
With	fewer	than	200	lines	code,	we	have	built	a	powerful	proof-of-concept	for
an	interactive	multivariate	data	visualization	software.	Concepts	like	this	can	be
extended	with	advanced	API	functions	we	have	yet	to	cover,	including	texturing,
GUI	development,	and	vertex-level	operations.	At	present,	our	example	software
can	use	improvement	on	the	following	fronts:

No	ability	to	scale	data	for	the	visualizer.	The	iris	data	worked	nicely
because	the	numeric	values	were	conveniently	in	the	range	of	(0,	0,	0)	±	10,
which	is	about	how	many	Blender	units	are	easily	viewable	by	default.

We	could	investigate	a	better	system	for	scaling	objects	such	that	they	best



represent	the	data.	For	example,	the	volume	of	a	sphere	is	proportional	to
the	cube	of	the	radius,	so	we	may	consider	passing	the	cubic	root	of	the	data
value	as	radius	to	the	scale()	function.	The	argument	can	be	made	that
this	creates	a	more	intuitive	visualization.	The	same	argument	can	be	made
for	taking	the	square	root	of	the	data	value,	because	the	area	covered	by	a
sphere	in	the	3D	Viewport	is	proportional	to	the	square	of	its	radius.

In	our	five-dimensional	visualization,	it	would	be	more	intuitive	to	change
the	colors	of	the	spheres	rather	than	assign	a	shape	to	each	species.

Our	method	of	reading	in	data	is	static	and	GUI-less.	An	add-on	developer
would	naturally	like	to	apply	this	methodology	to	any	data	set,	giving	the
user	comprehensive	controls	over	what	he	views	and	how	he	does	so.

Note	that,	via	ut.py,	the	main	script	was	able	to	manipulate	models	in	Blender
without	calling	or	importing	bpy.	This	is	not	a	recommended	practice	by	any
means,	but	it	is	exemplar	of	how	the	Blender	Python	environment	treats	bpy	as
a	global	collection	of	functions	and	data.

Conclusion
This	chapter	has	introduced	a	lot	of	important	high-level	concepts	about	the
Blender	Python	API,	as	well	as	detailed	core	functions	of	the	bpy	module.	In
the	next	chapter,	we	discuss	Edit	Mode	and	the	bmesh	module	in	detail.	By	the
end	of	Chapter	3,	users	should	be	able	to	create	any	shape	using	the	API.	As	we
introduce	more	complicated	and	interdependent	processes,	abstraction	will
become	both	more	important	and	more	laborious.
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So	far,	we	have	talked	about	ways	to	create,	manage,	and	transform	whole
objects.	Blender’s	default	mode	is	Object	Mode,	which	allows	us	to	select	and
manipulate	one	or	many	objects,	typically	with	transformations	that	can	be
appropriately	applied	to	groups	of	disparate	objects,	such	as	rotation	and
translation.

Blender	begins	to	shine	as	a	3D	art	suite	when	we	enter	Edit	Mode.	This
mode	allows	us	to	select	one	or	many	vertices	of	a	single	object	to	perform
advanced	and	detailed	transformations.	As	one	would	expect,	most	operations
that	are	intended	for	Edit	Mode	cannot	be	performed	in	Object	Mode	and	vice
versa.

The	bmesh	module	deals	almost	exclusively	in	Edit	Mode	operations.	Thus,
we	will	give	a	proper	treatment	of	the	differences	between	Object	Mode	and	Edit
Mode	before	diving	into	the	functionalities	of	bmesh.

Edit	Mode
To	manually	enter	Edit	Mode	as	a	traditional	Blender	3D	artist	would,	go	to	3D
Viewport	Header	➤	Interaction	Mode	Menu	➤	Edit	Mode,	as	pictured	in
Figure	3-1.	Use	the	same	menu	for	switching	back	into	Object	Mode.



Figure	3-1. 	Toggling	Between	Edit	and	Object	Mode

When	switching	into	Edit	Mode,	the	activated	object	at	that	time	will	be	the
only	object	the	user	can	edit	for	that	session	of	Edit	Mode.	If	the	user	want	to
manipulate	a	different	object	in	Edit	Mode,	he	must	switch	back	to	Object	Mode
to	activate	the	desired	object	first.	Only	then,	after	switching	back	into	Edit
Mode	with	the	desired	object	activated,	will	he	be	able	to	manipulate	it.	Refer	to
the	section	“Selection,	Activation,	and	Specification”	in	Chapter	2	if	the
verbiage	regarding	selection	and	activation	is	unclear	at	this	point.	Remember
that	we	can	always	run	bpy.context.object	in	the	Interactive	Console	to
check	the	name	of	the	activated	object.

To	programmatically	switch	between	Object	Mode	and	Edit	Mode,	use	the
two	commands	in	Listing	3-1.

#	Set	mode	to	Edit	Mode

bpy.ops.object.mode_set(mode="EDIT")	#	Set	mode	to

Object	Mode

bpy.ops.object.mode_set(mode="OBJECT")
Listing	3-1. 	Switching	Between	Object	and	Edit	Mode

Selecting	Vertices,	Edges,	and	Planes
To	begin	manipulating	details	of	single	objects,	we	must	be	able	to	select
specific	parts.	We	will	wrap	our	mode-setting	functions	in	our	ut.py	module,
then	discuss	how	bmesh	is	used	to	select	specific	parts	of	an	object.	In	doing	so,
we	will	work	through	a	few	quirks	and	version	compatibility	pitfalls	of	bmesh
and	the	vertex	indexing	protocol	in	Blender.

Switching	Between	Edit	and	Object	Modes	Consistently
Listing	3-2	implements	a	wrapper	function	for	switching	between	Object	Mode
and	Edit	Mode.	We	will	insert	this	in	the	ut.py	toolkit	we	began	building	in



Chapter	2.	The	only	modification	we	have	made	to	the	vanilla	bpy.ops	method
is	to	deselect	all	vertices,	edges,	and	planes	of	the	active	object	when	we	enter
Edit	Mode.	Currently,	Blender’s	protocol	for	determining	which	parts	of	the
object	are	selected	upon	entry	in	Edit	Mode	is	opaque	and	unwieldy.	We	will
take	the	safest	and	most	consistent	approach	by	deselecting	every	part	of	the
object	whenever	we	enter	Edit	Mode.

When	we	enter	Object	Mode	from	Edit	Mode,	Blender	simply	restores	the
active	and	selected	objects	from	when	we	first	entered	Edit	Mode.	This	behavior
is	reliable	and	understandable,	so	we	will	not	modify	the	standard	behavior	of
bpy.ops.object.mode_set(mode	=	"OBJECT").

#	Place	in	ut.py

#	Function	for	entering	Edit	Mode	with	no	vertices

selected,	#	or	entering	Object	Mode	with	no	additional

processes

def	mode(mode_name):

bpy.ops.object.mode_set(mode=mode_name)	if	mode_name

==	"EDIT":	bpy.ops.mesh.select_all(action="DESELECT")

Listing	3-2. 	Wrapper	Function	for	Switching	Between	Object	and	Edit	Mode

Note
If	you’re	editing	a	custom	module	like	ut.py	multiple	times	in	the	same
Blender	session,	make	sure	to	call	importlib.reload(ut)	on	the
module	to	see	import	the	un-cached	version	into	Blender.	See	Listing	3-3	for
an	example.

#	Will	use	the	cached	version	of	ut.py	from	#	your

first	import	of	the	Blender	session	import	ut

ut.create.cube('myCube')

#	Will	reload	the	module	from	the	live	script	of	ut.py

#	and	create	a	new	cached	version	for	the	session

import	importlib	importlib.reload(ut)

ut.create.cube('myCube')

#	This	is	what	the	header	of	your	main	script	#	should



look	like	when	editing	custom	modules	import	ut

import	importlib	importlib.reload(ut)

#	Code	using	ut.py	...

Listing	3-3. 	Editing	Custom	Modules,	Live	Within	a	Blender	Session

Instantiating	a	bmesh	Object
In	Blender,	bmesh	objects	are	fairly	heavy-handed	and	computationally
expensive	when	compared	to	other	core	data	structures.	To	maintain	efficiency,
Blender	gives	much	of	the	data	and	instance	management	work	to	the	user	to
manage	via	the	API.	We	will	continue	to	see	examples	of	this	as	we	explore	the
bmesh	module.	See	Listing	3-4	for	an	example	of	instantiating	a	bmesh	object.
In	general,	instantiating	a	bmesh	object	requires	us	to	pass	a
bpy.data.meshes	datablock	to	bmesh.from_edit_mesh()	while	in
Edit	Mode.

import	bpy	import	bmesh

#	Must	start	in	object	mode	#	Script	will	fail	if

scene	is	empty	bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	a	cube	and	enter	Edit	Mode

bpy.ops.mesh.primitive_cube_add(radius=1,	location=(0,

0,	0))	bpy.ops.object.mode_set(mode='EDIT')

#	Store	a	reference	to	the	mesh	datablock

mesh_datablock	=	bpy.context.object.data

#	Create	the	bmesh	object	(named	bm)	to	operate	on

bm	=	bmesh.from_edit_mesh(mesh_datablock)

#	Print	the	bmesh	object

print(bm)

Listing	3-4. 	Instantiating	a	bmesh	Object

If	we	try	running	these	commands	in	the	Interactive	Console,	we	may	get	a



different	result.	Instances	of	bmesh	objects	are	not	persistent.	Unless	Blender
detects	that	it	is	being	actively	used,	the	bmesh	object	will	dereference	the	mesh
datablock,	garbage	collect	internal	data,	and	return	<BMesh	dead	at
some_memory_address>.	This	is	a	desirable	behavior	given	the	space	and
compute	power	required	to	maintain	a	bmesh	object,	but	it	does	require
programmers	to	execute	extra	commands	to	keep	it	alive.	We	will	encounter
these	commands	as	we	build	functions	for	selecting	specific	parts	of	3D	objects.

Selecting	Parts	of	a	3D	Object
To	select	parts	of	a	bmesh	object,	we	manipulate	the	select	Booleans	of	each
BMesh.verts,	BMesh.edges,	and	BMesh.faces	object.	Listing	3-5	gives
an	example	of	selecting	parts	of	a	cube.

Notice	the	numerous	calls	to	ensure_lookup_table()	in	Listing	3-5.
We	use	these	functions	to	remind	Blender	to	keep	certain	parts	of	the	BMesh
object	from	being	garbage-collected	between	operations.	These	functions	take	up
minimal	processing	power,	so	we	can	call	them	liberally	without	much
consequence.	It	is	better	to	over-call	them	than	to	under-call	them,	because
debugging	this	error:

ReferenceError:	BMesh	data	of	type	BMesh	has	been

removed

Can	be	nightmarish	in	large	codebases	with	no	protocol	for
ensure_lookup_table().

import	bpy

import	bmesh

#	Must	start	in	object	mode

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	a	cube	and	enter	Edit	Mode

bpy.ops.mesh.primitive_cube_add(radius=1,	location=(0,

0,	0))	bpy.ops.object.mode_set(mode='EDIT')

#	Set	to	"Face	Mode"	for	easier	visualization



bpy.ops.mesh.select_mode(type	=	"FACE")

#	Register	bmesh	object	and	select	various	parts	bm

=	bmesh.from_edit_mesh(bpy.context.object.data)

#	Deselect	all	verts,	edges,	faces

bpy.ops.mesh.select_all(action="DESELECT")

#	Select	a	face	bm.faces.ensure_lookup_table()

bm.faces[0].select	=	True

#	Select	an	edge	bm.edges.ensure_lookup_table()

bm.edges[7].select	=	True

#	Select	a	vertex	bm.verts.ensure_lookup_table()

bm.verts[5].select	=	True

Listing	3-5. 	Selecting	Parts	of	3D	Objects

Readers	will	notice	that	we	run	bpy.ops.mesh.select_mode(type
=	"FACE").	This	concept	has	not	been	covered	up	to	this	point	but	is
important	to	understand	to	properly	use	advanced	Edit	Mode	functions.
Typically,	Blender	artists	click	one	of	the	three	options	in	3D	Viewport	Header,
as	shown	in	Figure	3-2.	The	buttons	in	Figure	3-2	correspond	to	the	VERT,
EDGE,	and	FACE	arguments	in	bpy.ops.mesh.select_mode().	Right
now,	this	will	only	affect	how	we	visualize	selections	in	Edit	Mode.	We	select
FACE	for	this	example	because	it	is	the	best	mode	for	visualizing	all	three	types
simultaneously.	Later	in	the	chapter,	we	will	discuss	some	functions	in	Edit
Mode	whose	behavior	will	change	depending	on	this	selection.

Figure	3-2. 	Toggling	various	selection	modes

Edit	Mode	Transformations
This	section	discusses	simple	transformations	like	translation	and	rotation	in	Edit
Mode,	as	well	as	advanced	transformations	like	randomization,	extrusion,	and
subdivision.



subdivision.

Basic	Transformations
Conveniently	enough,	we	can	use	the	same	functions	we	used	for	Object	Mode
transformations	in	Chapter	2	to	operate	on	individual	parts	of	a	3D	object.	We
will	give	some	examples	Listing	3-6	using	the	bpy.ops	submodule	introduced
in	Listing	2-9.	See	Figure	3-3	for	output	of	slightly	deformed	cubes.

Figure	3-3. 	Deforming	cubes	with	edit	mode	operations

import	bpy

import	bmesh

#	Must	start	in	object	mode

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	a	cube	and	rotate	a	face	around	the	y-axis

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(-3,	0,	0))	bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")

#	Set	to	face	mode	for	transformations

bpy.ops.mesh.select_mode(type	=	"FACE")

bm	=	bmesh.from_edit_mesh(bpy.context.object.data)



bm	=	bmesh.from_edit_mesh(bpy.context.object.data)

bm.faces.ensure_lookup_table()

bm.faces[1].select	=	True

bpy.ops.transform.rotate(value	=	0.3,	axis	=	(0,	1,

0))

bpy.ops.object.mode_set(mode='OBJECT')

#	Create	a	cube	and	pull	an	edge	along	the	y-axis

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(0,	0,	0))	bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")

bm	=	bmesh.from_edit_mesh(bpy.context.object.data)

bm.edges.ensure_lookup_table()

bm.edges[4].select	=	True

bpy.ops.transform.translate(value	=	(0,	0.5,	0))

bpy.ops.object.mode_set(mode='OBJECT')

#	Create	a	cube	and	pull	a	vertex	1	unit	#	along

the	y	and	z	axes	#	Create	a	cube	and	pull	an	edge

along	the	y-axis

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(3,	0,	0))	bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")

bm	=	bmesh.from_edit_mesh(bpy.context.object.data)

bm.verts.ensure_lookup_table()

bm.verts[3].select	=	True

bpy.ops.transform.translate(value	=	(0,	1,	1))

bpy.ops.object.mode_set(mode='OBJECT')

Listing	3-6. 	Basic	Transformations	in	Edit	Mode

Advanced	Transformations
We	could	not	hope	to	cover	all	of	the	tools	included	in	Blender	for	editing
meshes,	so	we	will	cover	a	handful	in	this	section	and	flush	out	more	using
examples	at	the	end	of	the	chapter.	Listing	3-7	implements	the	extrude,



subdivide,	and	randomize	operators	.	See	Figure	3-4	for	the	intended	output.

Figure	3-4. 	Extrude,	Subdivide,	and	Randomize	Operators

import	bpy	import	bmesh

#	Will	fail	if	scene	is	empty

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	a	cube	and	extrude	the	top	face	away	from

it	bpy.ops.mesh.primitive_cube_add(radius=0.5,

location=(-3,	0,	0))

bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")

#	Set	to	face	mode	for	transformations

bpy.ops.mesh.select_mode(type	=	"FACE")

bm	=	bmesh.from_edit_mesh(bpy.context.object.data)

bm.faces.ensure_lookup_table()

bm.faces[5].select	=	True

bpy.ops.mesh.extrude_region_move(TRANSFORM_OT_trans

late	=

						{"value":	(0.3,	0.3,	0.3),

							"constraint_axis":	(True,	True,	True),



"constraint_orientation"	:'NORMAL'})

bpy.ops.object.mode_set(mode='OBJECT')

#	Create	a	cube	and	subdivide	the	top	face

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(0,	0,	0))	bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")

bm	=	bmesh.from_edit_mesh(bpy.context.object.data)

bm.faces.ensure_lookup_table()

bm.faces[5].select	=	True

bpy.ops.mesh.subdivide(number_cuts	=	1)

bpy.ops.mesh.select_all(action="DESELECT")

bm.faces.ensure_lookup_table()

bm.faces[5].select	=	True

bm.faces[7].select	=	True

bpy.ops.transform.translate(value	=	(0,	0,	0.5))

bpy.ops.object.mode_set(mode='OBJECT')

#	Create	a	cube	and	add	a	random	offset	to	each

vertex	bpy.ops.mesh.primitive_cube_add(radius=0.5,

location=(3,	0,	0))

bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="SELECT")

bpy.ops.transform.vertex_random(offset	=	0.5)

bpy.ops.object.mode_set(mode='OBJECT')

Listing	3-7. 	Extrude,	Subdivide,	and	Randomize	Operators

Note	on	Indexing	and	Cross-Compatibility
Readers	may	have	noticed	that	the	indices	of	vertices,	edges,	and	faces	in	3D
objects	are	arranged	in	no	particular	order.	In	the	example	scripts	thus	far,	the
author	had	manually	located	the	indices	in	advance	rather	than	discover	them
programmatically.	For	example,	when	manipulating	the	tops	of	cubes	in	Listing
3-7,	the	author	determined	in	advance	that	ut.act.select_face(bm,	5)
would	select	the	face	on	the	top	side	of	the	cube.	This	was	determined	through



trial-and-error	testing.
Using	trial-and-error	tests	to	discover	the	index	number	of	a	part	of	an	object

is	an	acceptable	practice	in	general,	but	suffers	from	a	number	of	disadvantages.
Within	any	given	version	of	Blender,	indexing	semantics	should	be	considered
replicable	but	untamable.

Default	indices	of	objects	vary	wildly	across	different	versions	of	Blender.
The	author	has	noted	major	compatibility	issues	in	add-ons	relying	on
hardcoded	indices	across	different	versions	of	Blender.	Major	differences
were	noted	between	version	2.77	and	version	2.78	in	add-ons	relying	on
hardcoded	indices.

Behavior	of	indexing	after	certain	transformations	is	very	unwieldy.	See
Figure	3-5	for	an	example	of	the	vertex	indices	of	a	default	plane,	a	plane
after	three	insets,	and	a	plain	after	two	subdivisions.	The	indices	in	these
planes	conform	to	no	particular	logical	pattern.	Variance	among
transformations	is	another	source	of	cross-version	incompatibility.

Figure	3-5. 	Default,	inset,	and	subdivided	planes	with	vertex	indices	labeled

Add-ons	using	hardcoded	indices	are	very	limited	in	user-interaction
possibilities.	An	add-on	that	uses	hardcoded	indices	can	run	successively,
but	can	very	rarely	if	ever	engage	in	back-and-forth	interaction	with	the
user	.

The	workaround	to	this	issue	is	selection	by	characteristic.	To	select	a	vertex
by	a	characteristic,	we	loop	through	each	vertex	in	the	object	and	run
bm.verts[i].select	=	True	on	vertices	that	meet	a	criteria.	The	same
holds	for	edges	and	faces.	On	paper,	this	method	looks	very	computationally



expensive	and	algorithmically	complex,	but	you	will	find	it	is	surprisingly	fast
and	modular.	Plugins	that	use	pure	selection	by	characteristic	can	often	run
successfully	on	many	versions	of	Blender	simultaneously.	Unfortunately,
implementing	this	opens	up	a	conceptual	can	of	worms	in	Blender	regarding
local	and	global	coordinate	systems.	We	flush	this	out	as	well	in	the	next	section.

Global	and	Local	Coordinates
Blender	stores	many	sets	of	coordinate	data	for	each	part	of	each	object.	In	most
cases,	we	will	only	be	concerned	with	two	sets	of	coordinates:	global
coordinates	G	and	local	coordinates	L.	When	we	perform	transformations	on
objects,	Blender	stores	these	transformations	as	part	of	a	transformation	matrix,
T.	Blender	will,	at	some	point,	apply	the	transformation	matrix	to	the	local
coordinates.	After	Blender	applies	the	transformation	matrix,	the	local
coordinates	will	be	equal	to	the	global	coordinates,	and	the	transformation
matrix	will	be	the	identity	matrix.

Within	the	3D	Viewport,	we	view	global	coordinates	G	=	T	*	L	always.
We	can	control	when	Blender	applies	transformations	with

bpy.ops.object.transform_apply().	This	will	not	change	the
appearance	of	the	objects,	rather	it	will	set	L	equal	to	G	and	set	T	equal	to	the
identity.

We	can	use	this	to	our	advantage	to	easily	select	specific	parts	of	objects.	If
we	delay	execution	of	bpy.ops.object.transform_apply()	by	not
running	it	and	not	exiting	Edit	Mode,	we	can	maintain	two	data	sets	G	and	L.	In
practice,	G	is	very	useful	for	positioning	objects	relative	to	others,	and	L	is	very
easy	to	loop	through	to	fetch	indices.

See	Listing	3-8	for	functions	to	access	global	and	local	coordinates	of	an
object.	Given	the	bpy.data.meshes[].vertices	datablock	as	v,	v.co
gives	the	local	coordinates	and	bpy.data.objects[].matrix_world	*
v.co	gives	the	global	coordinates.	Thankfully,	this	datablock	can	be	accessed	in
both	Object	Mode	and	Edit	Mode.	We	will	build	mode-independent	functions
for	accessing	these	coordinates.	See	Listing	3-8	for	functions	that	fetch	each	set
of	coordinates	independent	of	the	mode.

These	functions	sacrifice	some	clarity	in	exchange	for	brevity	and	efficiency.
In	this	code,	v	is	a	list	of	tuples	that	represents	our	matrix	L,	and
obj.matrix_world	is	a	Python	matrix	that	represents	our	transformation
matrix	T.



def	coords(objName,	space='GLOBAL'):

					#	Store	reference	to	the	bpy.data.objects

datablock	obj	=	bpy.data.objects[objName]

					#	Store	reference	to	bpy.data.objects[].meshes

datablock	if	obj.mode	==	'EDIT':	v	=

bmesh.from_edit_mesh(obj.data).verts	elif	obj.mode	==

'OBJECT':	v	=	obj.data.vertices

					if	space	==	'GLOBAL':	#	Return	T	*	L	as	list

of	tuples	return	[(obj.matrix_world	*	v.co).to_tuple()

for	v	in	v]

					elif	space	==	'LOCAL':	#	Return	L	as	list	of

tuples	return	[v.co.to_tuple()	for	v	in	v]

class	sel:

					#	Add	this	to	the	ut.sel	class,	for	use	in

object	mode	def	transform_apply():

bpy.ops.object.transform_apply(

													location=True,	rotation=True,

scale=True)

Listing	3-8. 	Fetching	Global	and	Local	Coordinates

See	Listing	3-9	for	an	example	of	the	behavior	of	local	and	global
coordinates.	We	print	the	first	two	coordinate	triples	of	a	cube	before
transformation,	immediately	after	transformation,	and	after
transform_apply().	This	makes	sense	on	paper	and	in	the	code	editor.
Running	Listing	3-9	in	the	Interactive	Console	line-by-line	highlights	the
interesting	behavior	of	transform_apply().	After	translating	the	cube,
readers	will	see	the	cube	move,	but	the	local	coordinates	will	remain	the	same.
After	running	transform_apply(),	the	cube	will	not	move,	but	the	local
coordinates	will	update	to	match	the	global	coordinates.

import	ut

import	importlib

importlib.reload(ut)

import	bpy



import	bpy

#	Will	fail	if	scene	is	empty

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

bpy.ops.mesh.primitive_cube_add(radius=0.5,

location=(0,	0,	0))	bpy.context.object.name	=	'Cube-1'

#	Check	global	and	local	coordinates

print('\nBefore	transform:')

print('Global:',	ut.coords('Cube-1',	'GLOBAL')

[0:2])	print('Local:	',	ut.coords('Cube-1',	'LOCAL')

[0:2])

#	Translate	it	along	x	=	y	=	z	#	See	the	cube	move

in	the	3D	viewport	bpy.ops.transform.translate(value	=

(3,	3,	3))

#	Check	global	and	local	coordinates	print('\nAfter

transform,	unapplied:')	print('Global:	',

ut.coords('Cube-1',	'GLOBAL')[0:2])	print('Local:	',

ut.coords('Cube-1',	'LOCAL')[0:2])

#	Apply	transformation	#	Nothing	changes	in	3D

viewport	ut.sel.transform_apply()

#	Check	global	and	local	coordinates	print('\nAfter

transform,	applied:')	print('Global:	',

ut.coords('Cube-1',	'GLOBAL')[0:2])	print('Local:	',

ut.coords('Cube-1',	'LOCAL')[0:2])

############################	Output

###########################

#	Before	transform:	#	Global:	[(-0.5,	-0.5,	-0.5),

(-0.5,	-0.5,	0.5)]

#	Local:	[(-0.5,	-0.5,	-0.5),	(-0.5,	-0.5,	0.5)]

#



#	After	transform,	unapplied:	#	Global:	[(2.5,	2.5,

2.5),	(2.5,	2.5,	3.5)]

#	Local:	[(-0.5,	-0.5,	-0.5),	(-0.5,	-0.5,	0.5)]

#

#	After	transform,	applied:	#	Global:	[(2.5,	2.5,

2.5),	(2.5,	2.5,	3.5)]

#	Local:	[(2.5,	2.5,	2.5),	(2.5,	2.5,	3.5)]

###############################################################

Listing	3-9. 	Behavior	of	Global	and	Local	Coordinates	and	Transform	Apply

In	the	next	section,	we	use	this	concept	to	combat	the	issue	presented	in
Figure	3-5	and	unlock	the	full	power	of	Edit	Mode	in	Blender.

Selecting	Vertices,	Edges,	and	Faces	by	Location
See	Listing	3-10	for	two	functions	that	work	together	to	facilitate	selection	of
vertices,	edges,	and	faces	per	their	location	in	global	and	local	coordinate
systems.	The	function	we	specify	as	ut.act.select_by_loc()	looks	and
is	very	complex,	but	does	not	use	any	Blender	concepts	that	we	have	not
introduced	up	to	this	point.	The	author	believes	this	function	should	be	included
as	part	of	the	bmesh	module	because	it	is	so	widely	applicable.

#	Add	in	body	of	script,	outside	any	class

declarations	def	in_bbox(lbound,	ubound,	v,

buffer=0.0001):	return	lbound[0]	-	buffer	<=	v[0]	<=

ubound[0]	+	buffer	and	\

								lbound[1]	-	buffer	<=	v[1]	<=	ubound[1]	+

buffer	and	\

								lbound[2]	-	buffer	<=	v[2]	<=	ubound[2]	+

buffer

class	act:

				#	Add	to	ut.act	class	def	select_by_loc(lbound=

(0,	0,	0),	ubound=(0,	0,	0),	select_mode='VERT',

coords='GLOBAL'):



				#	Set	selection	mode,	VERT,	EDGE,	or	FACE

				selection_mode(select_mode)

				#	Grab	the	transformation	matrix	world	=

bpy.context.object.matrix_world

				#	Instantiate	a	bmesh	object	and	ensure	lookup

table	#	Running	bm.faces.ensure_lookup_table()	works

for	all	parts	bm	=

bmesh.from_edit_mesh(bpy.context.object.data)

bm.faces.ensure_lookup_table()

				#	Initialize	list	of	vertices	and	list	of	parts

to	be	selected	verts	=	[]

				to_select	=	[]

				#	For	VERT,	EDGE,	or	FACE	...

				#	1.	Grab	list	of	global	or	local	coordinates	#

2.	Test	if	the	piece	is	entirely	within	the

rectangular	#				prism	defined	by	lbound	and	ubound	#

3.	Select	each	piece	that	returned	True	and	deselect

#				each	piece	that	returned	False	in	Step	2

				if	select_mode	==	'VERT':	if	coords	==

'GLOBAL':	[verts.append((world	*	v.co).to_tuple())	for

v	in	bm.verts]

								elif	coords	==	'LOCAL':

[verts.append(v.co.to_tuple())	for	v	in	bm.verts]

								[to_select.append(in_bbox(lbound,	ubound,

v))	for	v	in	verts]

								for	vertObj,	select	in	zip(bm.verts,

to_select):	vertObj.select	=	select

				if	select_mode	==	'EDGE':	if	coords	==

'GLOBAL':	[verts.append([(world	*	v.co).to_tuple()	for

v	in	e.verts])	for	e	in	bm.edges]

								elif	coords	==	'LOCAL':

[verts.append([v.co.to_tuple()	for	v	in	e.verts])	for

e	in	bm.edges]



								[to_select.append(all(in_bbox(lbound,

ubound,	v)	for	v	in	e))	for	e	in	verts]

								for	edgeObj,	select	in	zip(bm.edges,

to_select):	edgeObj.select	=	select

				if	select_mode	==	'FACE':	if	coords	==

'GLOBAL':	[verts.append([(world	*	v.co).to_tuple()	for

v	in	f.verts])	for	f	in	bm.faces]

								elif	coords	==	'LOCAL':

[verts.append([v.co.to_tuple()	for	v	in	f.verts])	for

f	in	bm.faces]

								[to_select.append(all(in_bbox(lbound,

ubound,	v)	for	v	in	f))	for	f	in	verts]

								for	faceObj,	select	in	zip(bm.faces,

to_select):	faceObj.select	=	select

Listing	3-10. 	Function	for	Selecting	Pieces	of	Objects	by	Location

Listing	3-11	gives	an	example	of	using	ut.act.select_by_loc()	to
select	pieces	of	a	sphere	and	transform	them.	Remember	that	the	first	two
arguments	to	this	function	are	the	lowest	corner	and	highest	corner	of	a
rectangular	prism	in	the	3D.	If	the	entire	piece	(vertex,	edge,	face)	falls	within
the	rectangular	prism,	it	will	be	selected.

import	ut

import	importlib

importlib.reload(ut)

import	bpy

#	Will	fail	if	scene	is	empty

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

bpy.ops.mesh.primitive_uv_sphere_add(size=0.5,

location=(0,	0,	0))	bpy.ops.transform.resize(value	=

(5,	5,	5))	bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action='DESELECT')



#	Selects	upper	right	quadrant	of	sphere

ut.act.select_by_loc((0,	0,	0),	(1,	1,	1),	'VERT',

'LOCAL')

#	Selects	nothing	ut.act.select_by_loc((0,	0,	0),

(1,	1,	1),	'VERT',	'GLOBAL')

#	Selects	upper	right	quadrant	of	sphere

ut.act.select_by_loc((0,	0,	0),	(5,	5,	5),	'VERT',

'LOCAL')

#	Mess	with	it	bpy.ops.transform.translate(value	=

(1,	1,1))	bpy.ops.transform.resize(value	=	(2,	2,	2))

#	Selects	lower	half	of	sphere

ut.act.select_by_loc((-5,	-5,	-5),	(5,	5,	-0.5),

'EDGE',	'GLOBAL')

#	Mess	with	it	bpy.ops.transform.translate(value	=

(0,	0,	3))	bpy.ops.transform.resize(value	=	(0.1,	0.1,

0.1))

bpy.ops.object.mode_set(mode='OBJECT')

Listing	3-11. 	Selecting	and	Transforming	Pieces	of	a	Sphere

Checkpoint	and	Examples
Up	to	this	point	we	have	made	a	lot	of	additions	to	ut.py.	For	an	up-to-date
version	with	all	of	the	additions	we	have	made	thus	far	in	the	book,	visit
blender.chrisconlan.com/ut_ch03.py.

Given	this	version	of	ut.py,	we	will	try	some	fun	examples.	See	Listing	3-
12	for	a	random	shape	growth	algorithm.	A	brief	algorithm	randomly	(and
sloppily)	selects	a	chunk	of	space	in	which	the	object	resides,	then	extrudes	the
selected	portion	along	the	vertical	normal	of	the	selected	surface.	To	extrude
along	the	vertical	normal	of	a	surface,	we	simply	run	ut.act.extrude((0,
0,	1)),	since	this	function	uses	the	local	orientation	of	the	surface	by	default.

The	algorithm	lets	us	build	both	elegant	and	wacky	shapes.	The	type	of	result
is	mostly	dependent	on	which	shape	we	supply	in	the	ut.create	call	near	the



top	of	the	script.	See	Figures	3-6	and	3-7	for	examples	of	Listing	3-12	with	a
cube	and	sphere,	respectively.

Figure	3-6. 	Random	cube	extrusion	with	500	iterations



Figure	3-7. 	Random	sphere	extrusion	with	1000	iterations

import	ut

import	importlib	importlib.reload(ut)	import	bpy

from	random	import	randint

from	math	import	floor

#	Must	start	in	object	mode

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	a	cube

bpy.ops.mesh.primitive_cube_add(radius=0.5,	location=

(0,	0,	0))	bpy.context.object.name	=	'Cube-1'

bpy.ops.object.mode_set(mode='EDIT')

bpy.ops.mesh.select_all(action="DESELECT")



for	i	in	range(0,	100):

				#	Grab	the	local	coordinates	coords	=

ut.coords('Cube-1',	'LOCAL')

				#	Find	the	bounding	box	for	the	object

lower_bbox	=	[floor(min([v[i]	for	v	in	coords]))	for	i

in	[0,	1,	2]]

				upper_bbox	=	[floor(max([v[i]	for	v	in

coords]))	for	i	in	[0,	1,	2]]

				#	Select	a	random	face	2x2x1	units	wide,

snapped	to	integer	coordinates	lower_sel	=	[randint(l,

u)	for	l,	u	in	zip(lower_bbox,	upper_bbox)]

				upper_sel	=	[l	+	2	for	l	in	lower_sel]

				upper_sel[randint(0,	2)]	-=	1

				ut.act.select_by_loc(lower_sel,	upper_sel,

'FACE',	'LOCAL')

				#	Extrude	the	surface	along	it	aggregate

vertical	normal

bpy.ops.mesh.extrude_region_move(TRANSFORM_OT_translat

e	=

										{"value":	(0,	0,	1),

											"constraint_axis":	(True,	True,	True),

"constraint_orientation"	:'NORMAL'})

Listing	3-12. 	Random	Shape	Growth

While	these	examples	may	seem	trivial,	they	illustrate	the	power	of
automating	Edit	Mode	operations	in	Blender.	While	the	brief	algorithm	in
Listing	3-12	can	make	fascinating	shapes,	the	concepts	within	can	be	used	to
create	entire	CAD	systems	in	Blender	given	the	right	domain-specific
knowledge.	Great	examples	include:

Models	of	commercial	buildings

Models	of	mathematical	surfaces

Atomic	and	chemical	models



All	of	these	can	be	achieved	with	the	concepts	discussed	in	this	chapter.	As	it
stands,	our	toolkit	is	not	very	case-specific.	There	are	a	lot	of	areas	where	it	can
be	improved	to	accommodate	modeling	needs	of	different	disciplines	and
applications.	Notable	ways	to	customize	and	improve	our	toolkit	include	:

Creating	ut.act.select_by_loc()	functions	that	support	selection
regions	other	than	rectangular	prisms.	There	is	potential	use	for	cylindrical,
spherical,	two-dimensional,	and	one-dimensional	selection	surfaces.

Creating	additional	ut.create	functions	and	case-specific	automated
naming	schema	for	them.

Adding	additional	edit	mode	operations	to	ut.act	in	the	same	way	we
have	added	ut.act.extrude	and	ut.act.subdivide.	There	is
ample	opportunity	to	explore	and	further	parameterize	these	functions.

Adding	LOCAL,	NORMAL,	and	GIMBAL	axis	operations	to	ut.sel.	Thus
far,	we	have	been	using	the	default	of	GLOBAL.	For	example,	translation,
rotation,	and	scaling	can	all	be	performed	along	these	axes.

Conclusion
In	the	next	chapters,	we	talk	about	basic	rendering	concepts	required	for
effective	add-on	development	in	Blender.
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This	chapter	introduces	and	details	particular	topics	in	3D	modeling	and
rendering.	While	very	general,	these	topics	become	important	in	Chapter	5	and
the	remainder	of	the	text	as	we	build	more	advanced	tools	and	plugins.	Readers
are	introduced	to	many	utilities	and	pitfalls	commonly	known	to	3D	artists,
game	developers,	and	rendering	software	engineers.	Equipped	with	this
knowledge,	readers	will	be	able	to	better	serve	the	needs	of	these	professionals
in	script	and	add-on	development.

Specifying	a	3D	Model
3D	models	are	complex	digital	assets	that	can	be	made	up	of	many	different
components.	Where	we	typically	think	of	the	mesh	as	the	most	important
structure	that	constitutes	the	shape	of	the	asset,	meshes	are	made	of	faces,	which
consist	of	vertices	arranged	by	indices.	The	mesh	can	contain	normal	vectors	or
normals,	which	can	be	specified	with	the	vertices	or	faces,	depending	on	the	file
format.	When	we	refer	to	these	terms	in	the	abstract,	we	are	discussing	3D
modeling	topics	generally,	not	as	they	are	specifically	defined	in	Blender.

We	begin	our	discussion	of	3D	models	with	purely	the	meshes,	consisting	of
vertices,	indices,	faces,	and	normals.	From	there,	we	discuss	more	advanced	and
specific	features	of	3D	models	as	an	extension	of	our	discussion	of	meshes.

Specifying	Meshes
For	the	purpose	of	this	chapter,	we	consider	that	a	basic	mesh	is	defined	by	its
faces	and	normal	vectors.	See	the	following	definitions	of	the	aforementioned
components:



components:
Vertices	are	real-valued	triplets	specifying	a	location	in	3D	space,	typically
represented	as	(x,	y,	z).	For	reasons	we	discuss,	it	is	common	to	see	the
same	point	specified	multiple	times	throughout	a	file	specifying	a	3D	mesh.
In	3D	modeling,	the	z-axis	or	the	y-axis	is	most	often	used	to	represent	the
vertical	axis.	In	Blender,	the	z-axis	is	the	vertical	axis.	We	will	use	this
format	throughout	the	text.

Indices	are	positive	integer-valued	triplets	that	specify	faces	using	a	series
of	vertices,	typically	represented	as	(i,	j,	k).	Given	a	list	of	N	vertices
indexed	as	1,	…,	N,	a	face	in	3D	space	can	be	specified	by	a	triplet	of	any
three	unique	integers	in	1,	…,	N.	This	concept	extends	itself	very	logically
to	allow	us	to	define	meshes	by	reusing	pre-specified	vertices.	For	reasons
we	explain,	the	order	of	the	integers	is	important	in	determining	the
direction	in	which	the	face	is	visible.	The	concept	of	indexing	reused	tuple
values	is	often	extended	to	other	tuples	such	as	normals	and	UVs	in
practice.

Faces	are	determined	by	integer	triplets	of	indices	referencing	some	three
vertices.	From	our	definitions,	we	naturally	arrive	at	the	fact	that	a	three-
vertex	face	in	3D	space	requires	a	total	of	nine	real-valued	data	points.	It	is
important	to	note	that	faces	in	3D	space	are	only	visible	in	a	single
direction.	Given	a	rotating	camera	and	a	single	face	in	3D	space,	the	user
will	only	be	able	to	view	the	face	from	a	single	direction.	From	the	other
direction,	the	face	will	appear	totally	transparent.	This	is	a	native	and
expected	behavior	of	many	3D	renderers	that	we	will	learn	to	control	for.
Note	that	Blender	does	not	exhibit	this	single-direction	behavior	by	default,
but	Blender	will	not	automatically	control	or	correct	for	it	when	exporting
to	other	file	formats	.

Normal	Vectors	are	real-valued	triplets	that	define	how	the	mesh	interacts
with	lights	and	cameras	in	a	scene.	At	the	moment,	we	are	concerned	only
with	normals	as	they	are	directly	assigned	to	points	rather	than	normal	maps
that	3D	artists	may	already	by	familiar	with.	As	the	name	implies,	the
camera	and	lighting	in	a	scene	interacts	with	the	mesh	under	the	assumption
that	the	normal	vectors	lie	normal	to	the	faces	it	is	illuminating.	This	is	not
always	a	trivial	question,	as	we	will	see	with	our	cube	examples.	Normal
vectors	also	affect	the	direction	in	which	a	face	is	viewable	and	the
direction	in	which	it	is	transparent,	as	referenced	in	the	definition	of	faces.

Specifying	Textures



The	purpose	of	textures	in	3D	models	is	to	map	a	2D	image	onto	a	3D	surface,
typically	using	an	existing	2D	art	asset.	The	coordinate	convention	we	use	for
this	is	the	(u,	v)	coordinate	system.	In	other	areas	of	mathematics,	when
discussing	2D	projections	of	3D	surfaces,	we	typically	use	the	(u,	v)	coordinate
system	to	clearly	denote	that	we	are	working	in	a	space	separate	from	the	(x,	y,	z)
coordinate	system.

Texture	coordinates	are	very	intuitive.	If	we	would	like	to	stretch	an	image
over	a	rectangular	surface,	we	specify	the	list	of	uv	coordinates	[(0.0,
0.0),	(1.0,	0.0),	(0.0,	1.0),	(1.0,	1.0)]	to	stretch	the	full
image,	face-up,	left-to-right,	over	the	surface	we	are	looking	at.	This	is	assuming
that	coordinates	1	through	4	in	our	model	represent	the	bottom-left,	bottom-
right,	top-left,	and	top-right	coordinates	of	the	surface	from	our	perspective.	See
Figure	4-1	for	an	example	of	this	vanilla	texturing	scheme.

Figure	4-1. 	Vanilla	texturing	scheme	on	a	cube

If	we	want	to	stretch,	shrink,	or	duplicate	the	image	across	the	surface,	we
simply	adjust	the	uv	coordinates	by	the	appropriate	factors.	For	example,	the	tile
the	image	three	times	across	the	surface	of	the	cube,	we	enter	uv	coordinates
[(0.0,	0.0),	(3.0,	0.0),	(0.0,	3.0),	(3.0,	3.0)].	See
Figure	4-2	for	an	example	of	a	tiled	texture.



Figure	4-2. 	Repeated	texturing	scheme	on	a	cube

We	will	not	work	with	textures	through	Blender’s	Python	API	until	Chapter
8,	but	the	concept	of	uv	coordinates	for	textures	is	important	to	understand	as	we
discuss	3D	models	and	file	formats.

Common	File	Formats
We	begin	by	listing	common	file	formats	and	explaining	their	respective
advantages	and	uses.	We	use	these	formats	in	conjunction	with	our	definitions	of
3D	objects	in	the	beginning	of	the	chapter	to	further	illustrate	these	concepts.

Wavefront	(.obj	and	.mtl	)
The	Wavefront	geometric	(.obj)	and	materials	(.mtl)	specification	formats
work	in	conjunction	to	specify	meshes	and	textures.	They	are	written	in	such	a
way	that	the	.obj	file	can	stand	on	its	own	to	specify	solely	geometry.	The
.obj	file	is	very	minimal	and	easy	to	understand,	making	it	ideal	for	use	as	a
standard	notation	for	discussing	the	shapes	of	3D	objects.

See	Listing	4-1	for	an	example	of	simple	square	in	the	xy-plane	with	the	.obj
format.	We	will	refrain	from	explaining	the	.mtl	file	in	detail,	as	it	is	less
pertinent	to	our	discussion	of	rendering	concepts.

#	Use	hashes	to	leave	comments	in	.obj	files	#	The

'o'	tag	is	used	to	name	objects	#	all	data	following

an	'o'	tag	is	considered	#	to	have	this	name	until

another	name	is	entered	o	MySimpleFace



another	name	is	entered	o	MySimpleFace

#	Vertices	are	entered	with	the	'v'	tag	as	#	space-

delimited	(x,	y,	z)	tuples	v	-1.00	0.00	1.00

v	1.00	0.00	1.00

v	-1.00	0.00	-1.00

v	1.00	0.00	-1.00

#	Texture	coordinate	are	entered	with	the	'vt'	tag

as	#	space-delimited	(u,	v)	tuples,	between	0	and	1

vt	0.00	1.00

vt	1.00	1.00

vt	0.00	0.00

vt	1.00	0.00

#	Normal	vectors	are	entered	with	the	'vn'	tag	as	#

space-delimited	(x,	y,	z)	tuples,	can	be	normal

vectors	if	desired	vn	0.0000	1.0000	0.0000

#	Indices	are	entered	with	the	'f'	(for	face)	tag

as	#	space-delimited	triplets	of	v,	vt,	and	vn	indices

as	#	f	v_i/vt_i/vn_i	v_j/vt_j/vn_j	v_k/vt_k/vn_k	#

Faces	can	have	any	number	(three	or	more)	coplanar

points	f	2/2/1	3/3/1	1/1/1

f	2/2/1	4/4/1	3/3/1

#	Alternatively,	the	faces	section	for	this	face

can	be	#	written	as	a	single	coplanar	quadrilateral:	f

1/1/1	2/2/1	4/4/1	3/3/1

#	Alternatively,	the	texture	coordinates	can	be	#

excluded	with	double	slashes	f	1//1	2//1	4//1	3//1

Listing	4-1. 	Simple	Square	in	the	.obj	Format

We	see	in	Listing	4-1	a	specification	in	the	.obj	file	format	for	a	simple
face	with	the	following	characteristics:

Two	units	long	by	two	units	wide

Centered	at	the	origin,	normal	vector	facing	upward	along	the	z-axis

Some	texture	oriented	along	the	positive	x	and	y	axes



We	will	see	in	the	following	examples	that	the	.obj	format	is	fairly	mature	and
flexible	in	comparison	to	others.

STL	(STereoLithography	)
The	STL	file	format	is	commonly	used	by	engineers	and	CAD	software.	It	is
verbose	when	compared	to	the	.obj	format,	but	comes	with	a	binary
specification	to	compensate	for	its	inefficiency.	Most	STL	exporters	(including
Blender’s)	use	the	binary	specification	by	default,	making	the	files	illegible	for
humans	without	the	aid	of	special	software.	We	only	work	with	the	text	format
of	the	file	in	this	text.

See	Listing	4-2	for	our	simple	face	as	in	Listing	4-1	specified	in	the	STL
format.	STL	supports	normal	vectors	and	faces,	but	does	not	use	indices	or
support	texture	coordinates.	As	can	be	seen	in	Listing	4-2,	we	must	specify	the
same	normal	vector	twice	and	a	total	of	six	vertices	to	specify	a	quadrilateral
face	in	STL.	In	addition,	STL	does	not	support	specification	of	more	than	three
coplanar	points.	Curiously,	where	most	3D	file	formats	allow	normal	vectors	to
be	assigned	to	points,	STL	only	allows	normal	vectors	to	be	assigned	on	the	face
level.

The	structure	is	fairly	self-explanatory.	Every	facet	normal	x	y	z
initializes	a	face,	then	each	outer	loop-endloop	pair	holds	the	ordered
vertices	of	the	face.	Each	vertex	is	specified	as	vertex	x	y	z	within	the
loop.

solid	MyFace

		facet	normal					0.0				0.0				1.0

				outer		loop

						vertex						-1.0			-1.0				0.0

						vertex							1.0			-1.0				0.0

						vertex						-1.0				1.0				0.0

				endloop

		endfacet

		facet	normal					0.0				0.0				1.0

				outer		loop

						vertex							1.0			-1.0				0.0

						vertex							1.0				1.0				0.0

						vertex						-1.0				1.0				0.0

				endloop

		endfacet



endsolid	MyFace
Listing	4-2. 	Simple	Face	in	the	STL	Format	(Text	Form)

PLY	(Polygon	File	Format	)
This	file	format	was	built	by	Stanford	to	work	with	3D	scanning	software.	It	has
close	roots	in	the	C	language	and	many	open	source	tools	for	working	directly
with	it.	Our	discussion	of	3D	mesh	formats	should	start	to	feel	repetitive.	The
PLY	format	is	essentially	a	stripped-down	version	of	.obj	with	additional
metadata	that	only	supports	vertices	and	faces,	not	normal	vectors	or	textures.

Some	metadata	in	the	header	is	fairly	standard,	including	the	ply,	format,
and	property	tags.	We	will	not	delve	into	the	property	tags.	Just	know	that
they	refer	to	C-level	data	types	for	cooperation	with	existing	C	libraries.	The
element	vertex	and	element	face	lines	specify	how	many	lines	of	the
file	refer	to	vertices	and	faces,	respectively.	In	our	example,	we	have	element
vertex	4	and	element	face	1	because	we	are	specifying	a	face.	It	is
worth	noting	the	PLY	format	supports	specification	of	more	than	three	coplanar
points.

See	Listing	4-3	for	an	example	of	a	face.

ply

format	ascii	1.0

comment	specifies	a	simple	faceelement	vertex	4

property	float32	xproperty	float32	yproperty

float32	zelement	face	1

property	list	uint8	int32	vertex_indices	end_header

-1	-1	0

1	-1	0

1	1	0

-1	1	0

4	1	0	3	2

Listing	4-3. 	Simple	Face	in	the	PLY	Format

Blender	(.blend	)	Files	and	Interchange	Formats
Especially	in	light	of	the	preceding	examples,	Blender’s	native	file	format	and
in-memory	data	structures	are	very	complex.	Blender	supports	operations	on
vertices,	edges,	and	faces	with	noncoplanar	vertices.	All	the	while,	Blender
manages	complex	data	related	to	textures,	sounds,	animations,	rigs,	lights,	and



more.	These	.blend	files	are	represented	in	binary	and	not	intended	to	be
human-readable.	Thankfully,	we	can	continue	to	access	and	manipulate
Blender’s	internal	data	safely	through	the	Python	API.

The	difference	in	complexity	and	completeness	between	.blend	files	and
the	aforementioned	.obj,	.stl,	and	.ply	files	is	intentional.	While	all	of
these	files	represent	3D	models	in	one	way	or	another,	.blend	files	are	not
designed	to	be	exported	and	imported	in	other	3D	modeling	suites.	The	file
formats	discussed	above	are	called	interchange	formats,	meaning	they
intentionally	represent	a	common	and	well-defined	subset	of	features	that	can	be
ported	easily	between	modeling	software	and	renderers.

While	developers	have	made	attempts	in	the	past	to	create	complete
interoperability	between	specific	3D	modeling	suite	like	3DS	Max,	AutoCAD,
and	Maya,	and	Blender,	they	necessarily	fall	short	of	capturing	all	of	the	features
any	one	suite	supports.	Thus,	we	settle	on	interchange	formats	to	keep
communications	and	expectations	consistent.

Minimal	Specification	of	Basic	Objects
It	is	important	to	discuss	some	of	the	theory	behind	specification	of	3D	models
so	that	we	can	assess	the	efficiency	and	capabilities	of	various	3D	file	formats.
We	will	reference	the	file	formats	discussed	in	the	previous	section	to	help
illustrate.

Definition	of	a	Cube
A	cube	is	a	three-dimensional	object	with	six	faces	consisting	of	squares	of
equal	lengths.	A	cube	contains	6	faces,	12	edges,	and	8	vertices.	The	square
faces	of	a	cube	can	be	treated	as	compositions	of	two	right	triangles	with	leg
lengths	equal	to	the	square	length.	Note	that	any	object	in	3D	space	can	be
defined	by	float	and	integer	values,	where	floats	specify	locations	and	directions
in	3D	space	and	integers	specify	related	indices.	3D	objects	also	require	normal
vectors,	which	can	be	assigned	to	vertices	or	faces.

We	will	use	this	information	to	construct	tables	detailing	the	data	density	of
different	3D	specification	schema.

Naive	Specification
To	naively	specify	a	3D	cube,	we	will	specify	each	of	the	6	2	=	12	required
triangular	faces	independently	of	one	another	as	well	as	assign	an	independent



normal	vector	to	each	point.	This	should	result	in	12	3	=	36	vertices	and	12	*	3	=
36	normal	vectors.	We	can	write	this	in	.obj	format,	as	in	Listing	4-4.	Figure
4-3	shows	a	visualization	of	the	data	structure	of	this	model.

Figure	4-3. 	Data	structure	of	naively	specified	cube

The	naivety	of	this	model	is	defined	by:
Needless	repetition	of	vertex	coordinates

Needless	repetition	of	normal	vector	directions

Needless	use	of	vertex	normals	in	place	of	face	normals

o	NaiveCube

#	(36	*	3)	+	(36	*	3)	=	216	floats	#	(12	*	3)	+	(12	*

3)	=	72	integers

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-0.999999



v	1.000000	1.000000	-0.999999

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	-1.000000

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	-1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-0.999999

v	1.000000	1.000000	-0.999999

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	0.999999	1.000000	1.000001

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	-1.000000

v	-1.000000	1.000000	-1.000000

v	1.000000	-1.000000	-1.000000

v	-1.000000	-1.000000	1.000000

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	-1.000000

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	1.000000	1.000000	-0.999999

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	-1.000000

v	-1.000000	1.000000	-1.000000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000



vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

f	9//1	17//13	13//25

f	24//2	20//14	16//26

f	15//3	12//15	10//27

f	6//4	18//16	2//28

f	3//5	23//17	14//29

f	1//6	8//18	5//30

f	29//7	11//19	32//31

f	36//8	22//20	34//32

f	31//9	19//21	30//33

f	27//10	21//22	33//34



f	26//11	7//23	35//35

f	25//12	4//24	28//36

Listing	4-4. 	Naively	Defined	Cube

In	other	words,	naive	3D	specifications	do	not	reuse	vertices	or	normals
through	indexing	by	treating	every	face	as	a	wholly	independent	triangle.	In
addition,	using	vertex	normals	rather	than	face	normals	in	simple	cases	such	as	a
cube	can	increase	waste.	This	model	would	benefit	greatly	from:

Removing	repeated	vertices

Specifying	triangular	faces	as	square	faces

Removing	repeated	normals	and/or	using	face	normals

Properly	utilizing	indices	to	organize	vertices	and	normals

It	is	worth	noting	that	this	format	has	the	same	level	of	complexity	as	the	.stl
format	barring	STL’s	use	of	face	normals.

We	will	show	next	how	non-repeating	vertices	and	normals	can	shrink	the
model	size	without	increasing	complexity.

Using	Indices	to	Share	Vertices	and	Normals
Listing	4-5	shows	a	.obj	file	with	shared	vertices	and	normals.	When	the	file	is
able	to	properly	use	indices	and	not	duplicate	float	data,	we	only	need	a	total	of
42	floats.	In	the	next	example,	we	will	take	advantage	of	coplanar	surfaces	to
reduce	the	total	number	of	integers.	Visually,	this	data	looks	the	same	as	in
Figure	4-3,	we	have	only	reduced	repetition	in	the	float	data.

o	SharingCube

#	(8	*	3)	+	(6	*	3)	=	42	floats	#	(12	*	3)	+	(12	*

3)	=	72	integers

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-0.999999

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	-1.000000



v	-1.000000	1.000000	-1.000000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	-0.0000	0.0000

vn	0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

f	1//1	3//1	4//1

f	8//2	6//2	5//2

f	5//3	2//3	1//3

f	6//4	3//4	2//4

f	3//5	8//5	4//5

f	1//6	8//6	5//6

f	1//1	2//1	3//1

f	8//2	7//2	6//2

f	5//3	6//3	2//3

f	6//4	7//4	3//4

f	3//5	7//5	8//5

f	1//6	4//6	8//6

Listing	4-5. 	Cube	with	Shared	Vertices	and	Normals

Using	Coplanar	Vertices	to	Reduce	Face	Count
Listing	4-6	shows	a	.obj	file	where	each	face	of	the	cube	is	specified	in	whole.
Because	we	know	the	faces	of	the	cube	are	all	collections	of	coplanar	points,	we
can	specify	them	as	a	single	face.	While	renderers	will	still	interpret	the	cube	as
a	collection	of	triangular	faces,	the	.obj	file	format	allows	us	to	specify	N-
dimensional	surfaces	with	coplanar	vertices.	Figure	4-4	shows	a	visual
representation	of	this	data	structure.



Figure	4-4. 	Face-planar,	vertex-sharing,	normal-sharing	cube

o	CoplanarFaceCube

#	(8	*	3)	+	(6	*	3)	=	42	floats	#	(6	*	4)	+	(6	*	4)

=	48	integers

v	-1.000000	-1.000000	1.000000

v	-1.000000	1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	-1.000000	1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	1.000000	1.000000	1.000000

v	1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-1.000000

vn	-1.0000	0.0000	0.0000

vn	0.0000	0.0000	-1.0000

vn	1.0000	0.0000	0.0000

vn	0.0000	0.0000	1.0000

vn	0.0000	-1.0000	0.0000

vn		0.0000	1.0000	0.0000

f	1//1	2//1	4//1	3//1



f	1//1	2//1	4//1	3//1

f	3//2	4//2	8//2	7//2

f	7//3	8//3	6//3	5//3

f	5//4	6//4	2//4	1//4

f	3//5	7//5	5//5	1//5

f	8//6	4//6	2//6	6//6

Listing	4-6. 	Cube	with	Coplanar	Surfaces	as	Single	Faces

There	is	not	much	repetition	to	be	observed	here.	The	last	repetitive
characteristic	is	specification	of	the	normal	vector	index	at	each	point	of	each
face.	We	present	a	theoretical	.obj	file	next	that	uses	face	vertices.

Using	Face	Vertices	to	Simplify	Indices
Listing	4-7	shows	a	theoretical	.obj	file	where	each	face	of	the	cube	is
assigned	to	the	same	normal.	Because	cubes	have	well-defined	face	normals,	it	is
easy	for	us	to	specify	them	within	a	data	structure.	Normally	in	.obj	files,	we
would	repetitively	specify	the	indices	of	vertex	normals.	The	rendering	process
would	then	compute	a	composition	of	the	vertex	normals	to	determine	how	to
shade	the	concerned	face.	In	this	theoretical	.obj	file,	we	will	specify	the
vertex	indices	at	the	face	level	rather	than	the	point	level.	The	file	is	called
“theoretical”	because	.obj	files	do	not	actually	support	face	normals,	although
other	common	file	formats	do.	We	will	continue	to	use	the	.obj	format	in	this
example	for	sake	of	consistency,	but	note	that	this	file	with	not	import.	See
Figure	4-5	for	a	visual	representation	of	this	data	structure.



Figure	4-5. 	Cube	with	face	normals

The	next	iteration	will	reduce	the	complexity	by	binarizing	the	cube	into	the
renderer	itself.	This	is	a	special	case	only	applicable	to	very	common	and	simple
shapes.	Rarely	will	a	developer	have	the	ability	to	customize	this	functionality	in
the	renderer	itself,	but	it	is	worth	noting.

o	FaceNormalsCube

#	Theoretical	.obj	format,	not	valid	#	(8	*	3)	+	(6

*	3)	=	42	floats	#	(6	*	4)	+	(6	*	1)	=	30	integers

v	-1.000000	-1.000000	1.000000

v	-1.000000	1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	-1.000000	1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	1.000000	1.000000	1.000000

v	1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-1.000000



v	1.000000	1.000000	-1.000000

vn	-1.0000	0.0000	0.0000

vn	0.0000	0.0000	-1.0000

vn	1.0000	0.0000	0.0000

vn	0.0000	0.0000	1.0000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

#	Face	and	normals	defined	as:	#	f	(v_1,	v_2,	v_3,

v_4)//n_1

f	(1	2	4	3)//1

f	(3	4	8	7)//2

f	(7	8	6	5)//3

f	(5	6	2	1)//4

f	(3	7	5	1)//5

f	(8	4	2	6)//6

Listing	4-7. 	Cube	with	Face	Normals

Representing	a	Cube	as	a	Primitive
Primitives	loosely	refer	to	very	common	objects	that	are	pre-built	into	a	3D
software	package.	Most	notably	for	this	discussion,	primitives	in	renderers	are
binarized	versions	of	common	objects	that	will	always	outperform	the	equivalent
text	file	specification	(.obj,	.stl,	etc.)	in	load	time.	When	possible,	look	into
your	renderer’s	documentation	to	find	opportunities	to	add	simple	objects,
typically	cubes,	spheres,	cylinders,	cones,	and	tori,	using	the	renderer’s	default
primitives.	This	is	not	to	say	that	the	in-memory	specifications	of	the	objects	are
more	spatially	efficient	than	any	others,	but	only	that	they	have	the	advantage	of
already	being	binarized.

Summary
We	discussed	four	sequentially	more	efficient	methods	of	specifying	a	cube,
ending	with	the	final	option	of	using	primitives.	See	the	following	table	for	a
summary	of	the	results.	We	have	determined	the	size	of	the	.obj	file	through
command-line	tools.	We	have	estimated	the	in-memory	size	of	the	object	using
the	fact	that,	in	32-bit	systems,	floats	and	integers	in	C++	are	four	bytes.	The
percentage	change	in	in-memory	size	is	substantial	enough	at	every	step	to



justify	making	any	of	these	efficiency	adjustments.

Method No.	Floats No.	Integers .obj	Size	(KB) In-Memory	Size	(KB) In-Mem	%∆
Naive 216 72 2.28 1.15 0%
Add	Triplet	Sharing 42 72 0.61 0.46 60%
Use	Coplanar	Surfaces 42 48 0.54 0.36 22%
Use	Face	Normals 42 30 0.50 0.29 20%

The	in-memory	percentage	change	for	triplet	sharing	is	a	compelling	reason
to	always	favor	.obj	and	.ply	over	.stl	whenever	possible.	Familiarity	with
information	discussed	in	this	section	is	critical	for	Blender	Python	API
developers.	While	Blender	is	very	powerful,	it	gives	us	the	opportunity	to	be
both	wasteful	and	efficient.

Common	Errors	in	Procedural	Generation
We	use	the	language	established	in	this	chapter	to	illustrate	some	common
problems	with	procedurally	generated	models	and	what	steps	to	take	to	debug
them.

Concentric	Normals
When	generating	models	and	exporting	to	various	interchange	and	rendering
formats,	it	is	very	easy	for	normal	vectors	to	be	ignored	or	misassigned.	Blender
handles	much	of	the	normal	vector	management	process	for	us	in	the	3D
Viewport,	so	these	issues	are	rarely	uncovered	pre-export.	One	very	common
bug	we	encounter	is	unexplainable	wonky	lighting.	The	issue	typically	comes
down	to	normal	management	and	can	be	solved	with	a	few	function	calls	or
button	clicks	in	Blender	itself.

See	Listing	4-8	for	an	example	of	a	cube’s	.obj	file,	which	has	been
improperly	given	concentric	normals.	See	Listing	4-9	for	an	example	of	a	cube
correctly	exported	with	planar	normals.	These	cubes	were	each	rendered	in
WebGL	to	show	how	the	normals	affect	lighting	when	exported	to	other
renderers.	See	Figures	4-6	and	4-7	for	the	renderings	of	the	concentric	and
planar	cube	models.



Figure	4-6. 	Concentric	normals	(smooth	shading)	in	WebGL

Figure	4-7. 	Planar	normals	(flat	shading)	in	WebGL

The	concentric	cube	is	lit	and	shaded	as	though	it	were	a	sphere,	whereas	the
planar	cube	is	lit	and	shaded	logically,	treating	the	top	side	as	a	sort	of	tabletop.
Looking	through	Listing	4-8,	we	see	that	each	vertex	in	the	cube	is	matched	to	a
normal	vector	that	is	equal	to	the	vertex	scaled	by	1/√3	≈	0.5773.	This	is	a
dangerous	behavior	in	some	exporters	where,	if	explicit	normal	information	is
not	found,	it	will	default	to	creating	unit	vectors	out	of	scaled	vertices.	This
prevents	the	exporter	from	failing,	but	results	in	a	poorly	lit	and	often
unrecognizable	object.

This	problem	is	common	to	hard-surface	modelers	that	typically	work	with



This	problem	is	common	to	hard-surface	modelers	that	typically	work	with
large	planar	surfaces.	To	organic	modelers	that	create	high-poly	models,	this
problem	can	more	easily	go	undiagnosed.

o	ConcentricCube

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-0.999999

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	-1.000000

vn	0.5773503	-0.5773503	-0.5773503

vn	0.5773503	-0.5773503	0.5773503

vn	-0.5773503	-0.5773503	0.5773503

vn	-0.5773503	-0.5773503	-0.5773503

vn	0.5773503	0.5773503	-0.5773497

vn	0.5773497	0.5773503	0.5773508

vn	-0.5773503	0.5773503	0.5773503

vn	-0.5773503	0.5773503	-0.5773503

f	1//1	3//3	4//4

f	8//8	6//6	5//5

f	5//5	2//2	1//1

f	6//6	3//3	2//2

f	3//3	8//8	4//4

f	1//1	8//8	5//5

f	1//1	2//2	3//3

f	8//8	7//7	6//6

f	5//5	6//6	2//2

f	6//6	7//7	3//3

f	3//3	7//7	8//8

f	1//1	4//4	8//8

Listing	4-8. 	Cube	with	Concentric	Normals

o	PlanarCube

v	1.000000	-1.000000	-1.000000

v	1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	1.000000

v	-1.000000	-1.000000	-1.000000



v	-1.000000	-1.000000	-1.000000

v	1.000000	1.000000	-0.999999

v	0.999999	1.000000	1.000001

v	-1.000000	1.000000	1.000000

v	-1.000000	1.000000	-1.000000

vn	0.0000	-1.0000	0.0000

vn	0.0000	1.0000	0.0000

vn	1.0000	0.0000	0.0000

vn	-0.0000	-0.0000	1.0000

vn	-1.0000	-0.0000	-0.0000

vn	0.0000	0.0000	-1.0000

f	1//1	2//1	3//1	4//1

f	5//2	8//2	7//2	6//2

f	1//3	5//3	6//3	2//3

f	2//4	6//4	7//4	3//4

f	3//5	7//5	8//5	4//5

f	5//6	1//6	4//6	8//6

Listing	4-9. 	Cube	with	Planar	Normals

Note
Blender’s	built-in	exporters	(including	.obj	and	.stl)	will	rarely,	if	ever,
exhibit	this	behavior	under	normal	circumstances.	This	behavior	is	more
common	to	add-on	exporters	and	other	third-party	exporters.

Concentric	and	planar	shading	are	defined	in	this	text	for	sake	of	example.
While	not	by	any	means	equivalent,	similar	problems	can	occur	when	smooth
shading	and	flat	shading	are	misused,	respectively.	Smooth	shading	refers	to
creating	a	single	normal	per	vertex	using	a	composition	of	adjacent	face
normals,	and	flat	shading	refers	to	creating	many	normals	per	vertex	using
each	individual	face	normal.	In	the	case	of	a	one-unit	cube,	concentric
normals	and	smooth	shading	appear	equivalent,	and	face	normals	and	flat
shading	appear	to	be	equivalent.

This	problem	can	be	solved	in	a	few	ways	depending	on	the	specific	exporter.	In
many	cases,	the	target	file	format	does	not	support	face-level	normals	or	face
normals,	so	we	must	force	Blender	to	work	with	vertex-level	normals	or	vertex



normals.	In	this	case,	we	have	Blender	create	multiple	instances	of	each	vertex,
so	that	it	can	assign	a	separate	normal	to	each.	In	our	cube	example,	each	vertex
of	a	cube	is	connected	to	three	separate	faces,	so	needs	three	separate	vertex
normals.

We	can	use	the	Edge	Split	modifier	to	accomplish	this.	This	can	be	found	in
Properties	➤	Modifiers	➤	Add	Modifier	➤	Edge	Split.	Adjust	the	split
threshold	to	your	liking	and	choose	Apply.	See	Listing	4-10	for	a	Blender
Python	method	of	accessing	this	modifier.	This	can	easily	be	wrapped	in	a
function	and	would	fit	well	in	the	ut.sel	function	class	established	in	previous
chapters.

#	Add	modifier	to	selected	objects

bpy.ops.object.modifier_add(type='EDGE_SPLIT')	#	Set

split	threshold	in	radians

bpy.context.object.modifiers["EdgeSplit"].split_angle

=	(3.1415	/	180)	*	5

#	Apply	modifier

bpy.ops.object.modifier_apply(apply_as='DATA',

modifier='EdgeSplit')

Listing	4-10. 	Cube	with	Planar	Normals

The	result	is	shown	to	be	very	effective.	Figures	4-8	and	4-9	show	the	before
and	after	normal	vectors	viewed	in	Blender.



Figure	4-8. 	Normal	vectors	before	edge	split	(smooth	shaded)



Figure	4-9. 	Normal	vectors	after	edge	split	(flat	shaded)

Flipped	Normals
Another	common	problem	is	unintentionally	flipped	normals.	This	issue	can
sneak	up	on	Blender	Python	programmers	because	of	certain	behaviors	of
Blender’s	3D	Viewport.	As	previously	mentioned,	flipped	normals	can	make
planes	appear	transparent.	This	is	often	hard	to	diagnose	in	Blender	because
Blender	treats	all	planes	as	two-sided	in	the	3D	Viewport.	This	is	unintuitive
because	common	renderers	treat	planes	as	one-sided	for	sake	of	performance	and
consistency.

In	Figures	4-8	and	4-9,	we	drew	the	normal	vectors	to	show	the	directions
they	point.	In	both	of	these	figures,	the	normals	clearly	point	outward	from	the
object,	so	there	is	no	danger	of	encountering	flipped	normals	upon	export.
Figures	4-10	and	4-11	show	two	perspectives	of	a	cube	rendered	in	WebGL	with
flipped	normals	on	a	single	face.	As	we	can	see	in	these	figures,	the	face	with
flipped	normals	is	transparent,	and	the	faces	we	would	expect	to	see	behind	it	are
also	transparent	because	we	are	viewing	them	from	behind.	Mathematically,	this
can	be	remedied	by	scaling	each	flipped	normal	vector	by	−1.	Within	Blender,
this	can	be	performed	fairly	easily	by	entering	Edit	Mode	and	navigating	to	Tool
Shelf	➤	Shading	/	UVs	➤	Shading	➤	Normals	➤	Flip	Direction.	This	button
will	flip	the	normals	of	all	selected,	vertices,	edges,	or	faces	depending	on	the
selected	parts.

Figure	4-10. 	Cube	with	flipped	normals	on	single	face	(perspective	#1)



Figure	4-11. 	Cube	with	flipped	normals	on	single	face	(perspective	#2)

In	Blender’s	Python	API,	we	can	perform	the	same	function	by	calling
bpy.ops.mesh.flip_normals()	while	in	Edit	Mode	with	some	parts	of
the	object	selected.	Complex	procedural	generation	will	often	produce	poorly
oriented	normals	that	can	be	corrected	post-generation	with	this	function.

The	Tool	Shelf	➤	Shading	/	UVs	➤	Shading	➤	Normals	➤	Recalculate
command,	which	calls	bpy.ops.mesh.normals_make_consistent(),
will	tell	Blender	to	recalculate	normals	of	well-defined	objects	to	the	best	of	its
ability.	This	does	not	behave	well	for	every	object	but	can	be	useful	nonetheless.

Z-Fighting
Z-fighting	is	a	common	rendering	issue	that	produces	glitchy	objects	without
throwing	errors	or	crashing	the	renderer.	Most	animators	and	gamers	are	familiar
with	this	problem	regardless	of	whether	they	have	heard	the	term	for	it.	See
Figure	4-12	for	an	example	of	Z-fighting	among	four	cubes	in	Blender	in
Rendered	view.



Figure	4-12. 	Z-fighting	of	cubes	with	coplanar	faces

To	understand	why	Z-fighting	occurs,	we	must	understand	how	depth	buffers
function	in	renderers.	In	almost	every	case,	the	computations	involved	in
rendering	an	object	occur	on	graphics	processing	units	(GPUs)	with	very
standardized	graphics	APIs	(e.g.,	OpenGL	and	DirectX).	The	standard	protocol
in	these	rendering	APIs	is	to	use	the	camera’s	position	relative	to	the	meshes	to
determine	which	objects	are	visible	and	invisible	to	the	user.	This	information	is
stored	in	the	depth	buffer.	Before	presenting	a	2D	image	on	the	screen,	the	depth
buffer	tells	the	renderer	which	mesh	pixel	is	closest	to	the	camera	and	therefore
visible	to	the	user.

Given	this	information,	why	does	the	depth	buffer	not	favor	one	mesh	over
another	to	prevent	the	glitchy	Z-fighting	effect?	The	depth	buffer	stores	high-
precision	floating-point	values,	and	renderers	do	not	make	adjustments	to	assess
the	equality	of	floating-point	numbers.	Low-level	languages	that	drive	graphics
APIs	maintain	efficiency	by	making	naive	floating-point	number	comparisons.
For	the	same	reason	that	0.1	*	0.1	>	0.01	returns	True	in	Python,
floating-point	number	comparisons	behave	inconsistently	in	renderers.	The



problems	associated	with	floating-point	arithmetic	are	well-studied	in	computer
science,	and	floating-point	equality	is	one	of	its	most	significant	challenges.

How	does	one	solve	this	problem	given	the	tools	in	Blender	and	its	Python
API?	There	are	a	number	of	solutions,	depending	on	the	particular	situation.

Translate	each	object	by	a	small	and	unnoticeable	amount	(around
0.000001	Blender	units)	such	that	the	surfaces	are	no	longer	coplanar.	If
the	translation	has	no	effect,	try	translating	it	by	a	slightly	larger	distance.

Delete	interior	faces	in	Edit	Mode.

Retool	your	algorithm	to	generate	non-overlapping	surfaces.

Use	the	dissolve	and	limit	dissolve	tools	in	Edit	Mode.

Ultimately,	there	are	many	methods	for	dealing	with	Z-fighting	that	all
amount	to	making	sure	coplanar	surfaces	no	longer	exist	in	your	model.	We
refrain	from	detailing	all	of	the	potential	methods.

Conclusion
It	is	important	to	remember	that	Blender	has	abstracted	away	from	many	of	the
low-level	3D	modeling	concepts	discussed	here.	It	is	helpful	to	us	that	we	do	not
have	to	worry	about	data	representations,	shading	semantics,	and	Z-fighting	the
vast	majority	of	the	time.	We	introduce	these	concepts	nonetheless	beacuse,
when	debugging,	awareness	of	these	issues	and	their	drivers	can	prevent	a	lot	of
headache.
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This	chapter	builds	basic	add-ons	using	using	Blender’s	Python	API.	One	of	the
biggest	hurdles	of	add-on	development	is	transitioning	from	a	development
environment	to	a	neatly	packaged	and	OS-independent	add-on,	so	we	spend
considerable	time	in	this	chapter	discussing	various	development	practices.	By
the	end	of	the	chapter,	readers	should	be	able	to	register	simple	add-ons	in	both
development	and	deployment	environments.	Following	chapters	build	on	this
knowledge	to	incorporate	more	advanced	features	into	add-ons.

A	Simple	Add-On	Template
For	this	section,	enter	the	scripting	view	in	Blender	and	go	to	Text	Editor	➤
New	to	create	a	new	script.	Give	it	a	name,	for	example,	simpleaddon.py.
See	Listing	5-1	for	a	simple	template	from	where	we	can	start	building	our	add-
on.	Running	this	script	will	create	a	new	tab	in	the	Tools	panel	called	“Simple
Addon”	that	has	a	simple	text	input	field	and	a	button.	The	button	will	print	a
message	to	the	console	verifying	that	the	plugin	works,	then	parrot	back	the
string	in	the	text	input	field.	See	Figure	5-1	for	the	appearance	and	location	of
the	add-on’s	GUI.



Figure	5-1. 	Simple	add-on	template

bl_info	=	{

				"name":	"Simple	Add-on	Template",	"author":

"Chris	Conlan",	"location":	"View3D	>	Tools	>	Simple

Addon",	"version":	(1,	0,	0),	"blender":	(2,	7,	8),

"description":	"Starting	point	for	new	add-ons.",

"wiki_url":	"http://example.com",	"category":

"Development"

}

#	Custom	modules	are	imported	here	#	See	end	of

chapter	example	for	suggested	protocol

import	bpy

#	Panels,	buttons,	operators,	menus,	and	#

functions	are	all	declared	in	this	area

#	A	simple	Operator	class



class	SimpleOperator(bpy.types.Operator):	bl_idname

=	"object.simple_operator"

				bl_label	=	"Print	an	Encouraging	Message"

				def	execute(self,	context):

print("\n\n###########################################

#########")	print("#	Add-on	and	Simple	Operator

executed	successfully!")	print("#	"	+

context.scene.encouraging_message)

print("###############################################

#####")	return	{'FINISHED'}

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)

								#	Register	properties	related	to	the	class

here	bpy.types.Scene.encouraging_message	=

bpy.props.StringProperty(

												name="",	description="Message	to	print

to	user",	default="Have	a	nice	day!")

				@classmethod

				def	unregister(cls):	print("Unregistered	class:

%s	"	%	cls.bl_label)

								#	Delete	parameters	related	to	the	class

here	del	bpy.types.Scene.encouraging_message

#	A	simple	button	and	input	field	in	the	Tools

panel	class	SimplePanel(bpy.types.Panel):

bl_space_type	=	"VIEW_3D"

				bl_region_type	=	"TOOLS"

				bl_category	=	"Simple	Addon"

				bl_label	=	"Call	Simple	Operator"

				bl_context	=	"objectmode"

				def	draw(self,	context):

self.layout.operator("object.simple_operator",

text="Print	Encouraging	Message")



self.layout.prop(context.scene,	'encouraging_message')

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)	#	Register	properties	related	to	the

class	here.

				@classmethod	def	unregister(cls):

print("Unregistered	class:	%s	"	%	cls.bl_label)	#

Delete	parameters	related	to	the	class	here

def	register():

				#	Implicitly	register	objects	inheriting

bpy.types	in	current	file	and	scope

#bpy.utils.register_module(__name__)

				#	Or	explicitly	register	objects

bpy.utils.register_class(SimpleOperator)

bpy.utils.register_class(SimplePanel)

				print("%s	registration	complete\n"	%

bl_info.get('name'))

def	unregister():

				#	Always	unregister	in	reverse	order	to	prevent

error	due	to	#	interdependencies

				#	Explicitly	unregister	objects	#

bpy.utils.unregister_class(SimpleOperator)	#

bpy.utils.unregister_class(SimplePanel)

				#	Or	unregister	objects	inheriting	bpy.types	in

current	file	and	scope

bpy.utils.unregister_module(__name__)	print("%s

unregister	complete\n"	%	bl_info.get('name'))

#	Only	called	during	development	with	'Text	Editor

->	Run	Script'



#	When	distributed	as	plugin,	Blender	will	directly

#	and	call	register()	and	unregister()	if	__name__	==

"__main__":

				try:	unregister()

				except	Exception	as	e:	#	Catch	failure	to

unregister	explicitly	print(e)

								pass

				register()

Listing	5-1. 	Simple	Add-On	Template

When	we	run	the	script,	we	should	get	console	output	about	the	registration
and	unregistration	of	the	classes	we	declared	in	Listing	5-1.	By	changing	the
messages	and	choosing	Print	Encouraging	Message,	we	should	get	something
like	the	following	in	the	console:

Unregistered	class:	Print	an	Encouraging	Message

Unregistered	class:	Call	Simple	Operator	Simple	Add-on

Template	unregister	complete

Registered	class:	Print	an	Encouraging	Message

Registered	class:	Call	Simple	Operator	Simple	Add-on

Template	registration	complete

####################################################

#	Add-on	and	Simple	Operator	executed	successfully!

#	Have	a	nice	day!

####################################################

####################################################

#	Add-on	and	Simple	Operator	executed	successfully!

#	I	changed	the	message!

####################################################

Though	there	are	many	specifics	to	explain,	Blender	add-ons	are	fairly



elegant	and	readable.	While	every	line	of	code	has	a	purpose,	the	scripts	benefit
from	consistency	via	repetition.	The	template	presented	in	Figure	5-1	is	fairly
minimal,	but	we	also	included	a	handful	of	optional	quality	controls.	We	discuss
each	component	before	proceeding	to	more	advanced	add-ons	.

Components	of	Blender	Add-Ons
Blender	add-ons	rely	on	many	different	and	specifically	named	variables	and
class	functions	to	operate	properly.	We	detail	them	by	category	here.

The	bl_info	Dictionary
The	first	thing	to	appear	in	a	Blender	add-on	should	be	the	bl_info	dictionary
.	This	dictionary	is	parsed	from	the	first	1024	bytes	of	the	source	file	so	it	is
imperative	that	bl_info	appear	at	the	top	of	the	file.	We	will	use	the	word
dictionary	to	refer	to	Python	objects	of	class	dict	in	writing.

Blender’s	internal	engine	uses	data	in	this	dictionary	to	populate	various
metadata	related	to	the	add-on	itself.	If	we	navigate	to	Header	Menu	➤	File	➤
User	Preferences	➤	Add-ons,	we	can	see	various	official	and	community	add-
ons	already	in	Blender.	Clicking	the	caret	on	any	of	the	add-ons	shows	how
bl_info	information	is	used	to	populate	this	GUI,	as	shown	in	Figure	5-2.

Figure	5-2. 	How	Blender	uses	bl_info

It	is	important	to	note	that	the	bl_info	dictionary	does	not	have	any
functional	bearing	on	the	add-on,	rather	it	determines	how	the	eventual	user	can
find	and	activate	it	in	this	window.	See	the	detailed	description	here:

name	—The	name	of	the	plugin	as	it	appears	in	the	add-ons	tab	of	the
user	preferences	(e.g.,	Math	Vis	(Console),	Motion	Capture	Tools).	It	is
written	as	a	single	string.



author	—The	Name	of	the	author	or	authors	as	it	appears	in	the	user
preferences	(e.g.,	Campbell	Barton,	Fabian	Fricke).	It	can	be	a	string	with
commas	or	a	tuple	of	strings.

location	—The	primary	location	of	the	add-on’s	GUI.	Common	syntax
is	Window	➤	Panel	➤	Tab	➤	Section	for	add-ons	in	the	Tools,	Properties,
and	Toolshelf	panels.	When	in	doubt,	follow	conventions	established	by
other	add-ons.

version	—The	version	number	of	the	add-on	as	a	tuple.

blender	—According	to	the	Blender	Wiki,	this	is	the	minimum	Blender
version	number	required	to	run	the	add-on.	Community	add-ons	often
falsely	list	(2,	7,	8)	as	the	version	when	lower	versions	can	support	an
add-on.	In	many	cases	the	number	refers	the	minimum	version	the
developer	has	chosen	to	support.

description	—A	brief	description	that	appears	in	the	user	preferences
window	specified	as	a	single	string.

wiki_url—An	URL	pointing	to	the	handbook	or	guide	for	the	add-on
specified	as	a	single	string.

category	—A	string	specifying	one	the	categories	listed	in	Table	5-1.

Table	5-1. 	The	bl-info	Category	Options

3D	View Compositing Lighting Object Rigging Text	Editor
Add	Mesh Development Material Paint Scene UV
Add	Curve Game	Engine Mesh Physics Sequencer User	Interface
Animation Import-Export Node Render System 	

There	are	a	few	remaining	bl_info	options	that	are	less	often	seen.

support	—	OFFICIAL,	COMMUNITY,	or	TESTING.	Where	official	refers
to	officially	supported	Blender	add-ons,	community	refers	community-
supported	add-ons,	and	testing	refers	to	unfinished	or	new	add-ons	that
should	be	intentionally	excluded	from	Blender	releases.

tracker_url	—URL	pointing	to	a	bug	tracker	(e.g.,	GitHub	issues	or
similar).

warning	—String	specifying	some	warning	that	will	appear	in	the	user
preferences	window.



Operators	and	Class	Inheritance	(bpy.types.Operator	)
In	the	simplest	sense,	add-ons	allow	us	to	call	Blender	Python	functions	by
clicking	a	button	in	the	standard	Blender	GUI.	Functions	called	by	the	Blender
GUI	must	first	be	registered	as	operators	of	class	bpy.types.Operator.
Take	for	example	SimpleOperator.	When	we	register	this	class,	the	call	to
SimpleOperator.execute()	is	mapped	to	a	function	object	in	bpy.ops.
The	function	is	bpy.ops	that	it	is	mapped	to	is	determined	by	the	bl_idname
value	at	the	head	of	the	class.	Thus,	after	you	run	the	script	in	Listing	5-1,	you
can	print	an	encouraging	message	by	calling
bpy.ops.object.simple_operator()	from	the	Interactive	Console,
from	the	add-on	itself,	or	from	unrelated	Python	scripts.

The	following	are	the	steps	to	declare	an	operator	in	Blender.	Refer	to	the
SimpleOperator	class	definition	in	Listing	5-1	throughout.

1. Declare	a	class	that	inherits	bpy.types.Operator.	This	will	appear	in
our	code	as:

class	MyNewOperator	(bpy.types.Operator):

	

2. Declare	bl_idname	as	a	string	with	class	and	function	name	of	your
choice,	separated	by	a	period	(e.g.,	object.simple_operator	or
simple.message).	The	class	and	function	names	can	only	contain
lowercase	characters	and	underscores.	The	execute	function	will	later	be
accessible	at	bpy.ops.my_bl_idname.

	

3. (Optional)	Declare	a	bl_label	as	any	string	describing	the	function	of	the
class.	This	will	appear	in	function	documentation	and	metadata
automatically	generated	by	Blender.

	

4. Declare	an	execute	function.	This	function	will	act	as	a	normal	class
function	and	will	always	accept	a	reference	to	bpy.context	as	a
parameter.	By	design	of	the	bpy.types.Operator	class,	the	execute
function	will	always	be	defined	as:

def	execute(self,	context):

	



It	is	best	practice	to	return	{"FINISHED"}	for	a	successful	call	to
execute()	within	an	operator	class.

5. (Optional)	Declare	class	methods	for	registering	and	unregistering	the	class.
The	register	and	unregister	functions	will	always	require	the
@classmethod	decorator	and	take	cls	as	an	argument.	These	functions
are	run	whenever	Blender	attempts	to	register	or	unregister	the	operator
class.	It	is	helpful	during	development	to	include	a	print	statement	about
class	registration	and	deregistration	as	we	have	done	in	Listing	5-1	to	check
that	Blender	is	not	mistakenly	reregistering	existing	classes.	It	is	also
important	to	note	that	we	can	declare	and	delete	scene	properties	in	these
functions.	We	discuss	this	in	later	sections	.

	

There	are	a	handful	of	restrictions	and	guidelines	to	follow	to	ensure	Blender
can	use	our	Python	code.	Ultimately,	these	guidelines	change	the	way	we	code
and	the	way	we	think	about	architecting	Python	codebases.	This	is	the	point	in
our	understanding	of	the	Blender	Python	API	where	it	starts	to	feel	like	a	true
application	programming	interface	(API)	rather	than	just	a	collection	of	useful
functions	.

Panels	and	Class	Inheritance	(bpy.types.Panel)
The	bpy.types.Panel	class	is	next	most	common	class	inherited	in	add-
ons.	Panels	already	make	up	the	majority	of	Blender’s	Tools,	Toolshelf,	and
Properties	windows.	Each	collapsible	section	of	one	of	these	windows	is	a
distinct	panel.	For	example,	if	we	navigate	to	3D	Viewport	➤	Tools	➤	Tools
we	see	three	panels	by	default:	Transform,	Edit,	and	History.	Within	a	Blender
Python	add-on,	these	would	be	represented	by	three	distinct
bpy.types.Panel	classes.

Here	are	the	requirements	to	register	a	panel.	Reference	the	SimplePanel
class	in	Listing	5-1	throughout.

1. Declare	a	class	that	inherits	bpy.types.Panel.	This	will	appear	as
class	MyNewPanel(bpy.types.Panel):.

	

2. Declare	bl_space_type,	bl_region_type,	bl_category,	and
bl_label.	Readers	may	have	noticed	the	ordering	of	these	is	intentional
(though	not	necessary).	These	four	variables,	in	the	order	written	and	in

	



Listing	5-1,	specify	the	path	that	the	user	takes	to	reach	the	panel.	In	Listing
5-1,	this	reads	VIEW_3D	➤	TOOLS	➤	Simple	Addon	➤	Call	Simple
Operator,	which	looks	very	familiar	to	the	way	we	have	located	GUI
elements	thus	far	in	the	text.	Correct	case	and	spelling	matter	in	these
variables.	While	the	category	and	label	can	be	arbitrary	values,	the	space
and	region	must	reference	real	areas	of	the	Blender	GUI.	See	Tables	5-2	and
5-3	for	the	list	of	possible	arguments	to	bl_space_type	and
bl_region_type.

Table	5-2. 	bl-space-type	Options

EMPTY NLA_EDITOR NODE_EDITOR INFO

VIEW_3D IMAGE_EDITOR LOGIC_EDITOR FILE_BROWSER

TIMELINE SEQUENCE_EDITOR PROPERTIES CONSOLE

GRAPH_EDITOR CLIP_EDITOR OUTLINER 	

DOPESHEET_EDITOR TEXT_EDITOR USER_PREFERENCES 	

Table	5-3. 	bl-region-type	Options

WINDOW HEADER CHANNELS TEMPORARY	UI TOOLS TOOL_PROPS PREVIEW

Most	combinations	of	bl_space_type	and	bl_region_type	do
not	work	together,	but	logical	combinations	will	generally	work.	There	is
presently	no	complete	documentation	on	which	space	types	and	region	types
cooperate.	Also,	not	all	space	types	and	region	types	require	a	declaration	of
bl_category	or	bl_label.	Again,	using	them	where	logical	typically
gives	good	results.

3. (Optional)	Declare	bl_context.	As	in	the	previous	example,	we	can	set
bl_context	equal	to	objectmode	to	make	the	panel	only	appear	in
Object	Mode.	As	of	the	time	of	writing,	we	do	not	have	a	concrete	list	of
valid	options	for	this	variable.	The	API	documentation	currently	has	a
TODO	tag	requesting	more	explanation.	We	introduce	in	a	later	chapter	the
poll()	method,	which	is	a	much	more	flexible	way	of	implementing	this
type	of	behavior	.

	

4. Declare	the	draw	method.	This	function	takes	the	context	as	a	parameter
and	will	always	be	declared	as	def	draw(self,	context):.	In	this
function	definition,	it	is	important	to	note	that	context	refers	to	the

	



bpy.context	object	but	should	not	be	passed	as	bpy.context.	The
important	variables	in	the	body	of	this	function	are
bpy.context.scene	and	self.layout.	The	layout.prop()
function	can	reference	scene	properties,	object	properties,	and	a	few	other
Blender	internal	properties.	It	will	automatically	create	the	appropriate	input
field	based	on	the	scene	property	itself.	The	encouraging_message
scene	property	in	Listing	5-1	was	declared	as	a	string	property,	so	supplying
it	as	an	argument	to	layout.prop()	produced	a	text	entry	field.	The
layout.operator()	function	takes	the	bl_idname	of	an	operator
and	creates	a	button	with	label	specified	by	the	text	=	argument.	We
will	not	go	into	detail	about	the	layout	object	here,	because	it	can	get	very
complex	for	advanced	GUIs.	We	discuss	the	layout	object	in	detail	later	in
this	chapter.

5. (Optional)	Declare	register()	and	unregister()	functions	with
decorator	@classmethod,	as	in	our	discussion	of
bpy.types.Operator	classes.

	

Register()	and	Unregister()
Near	the	end	of	Listing	5-1	are	two	functions,	register()	and
unregister(),	that	are	required	in	add-ons.	These	two	functions	are
responsible	for	calling	bpy.utils.register_class(),
bpy.utils.unregister_class(),
bpy.utils.register_module(),	and
bpy.utils.unregister_module().	Any	class	that	inherits	a
bpy.type	class	needs	to	be	registered	for	it	to	be	used	by	Blender	in	the	add-
on.	Blender	uses	the	unregister()	function	when	an	add-on	is	switched	off
by	the	user	in	the	user	preferences.

We	have	two	choices	for	registering	and	unregistering	classes.	Some	work
better	than	others	for	development	and	others	work	better	for	deployment.

Explicitly	register	and	unregister	each	class.	In	this	case,	we	want	to
register	classes	in	a	logical	sequence.	Classes	that	depend	on	others	should
be	registered	after	their	dependents.	We	do	this	in	the	register()
function	using	bpy.utils.register_class(),	passing	the	class
name	as	an	argument.	The	classes	should	be	unregistered	in	reverse	order
using	bpy.utils.unregister_class()	in	the	unregister()



function.

Implicitly	register	and	unregister	classes	according	to	its	membership	in	a
module.	We	do	so	with	the	bpy.utils.register_module()	and
bpy.utils.unregister_module()	functions.	We	often	see
bpy.utils.register_module(__name__)	called	in	the
register()	function	of	published	add-ons,	but	it	can	be	messy	during
development,	as	we	explain	shortly	.

Looking	back	at	Listing	5-1,	we	see	that	we	have	explicitly	registered	but
implicitly	unregistered	our	classes.	This	setup	is,	in	the	author’s	opinion,	ideal
for	live	editing	of	single-file	add-ons.	The
bpy.utils.unregister_module(__name__)	works	as	intended	to
clear	the	add-on	environment	of	classes	registered	in	previous	runs	of	the	script.
During	editing	done	using	Blender’s	Text	Editor,
bpy.utils.register_module(__name__)	often	registers	dead	or
unused	copies	of	classes	from	previous	runs	of	the	script.

Therefore,	the	clean	slate	approach	to	live	editing	add-ons	seems	to	be
explicitly	registering	and	implicitly	deregistering.	Implicit	deregistration	will
pick	up	stray	class	instances	from	previous	runs,	then	explicit	registration
instantiates	only	the	newly	created	classes	from	the	current	run.	This	goes
against	the	advice	of	most	documentation,	which	typically	suggests	registering
and	deregistering	using	one	of	the	styles	in	Listing	5-2.	Our	methods	in	Listing
5-1	are	safe,	verbose,	and	can	be	easily	modified	to	conform	to	the	commonly
accepted	practices	in	Listing	5-2.

#	Option	1:	#	Using	implicit	registration

def	register():	bpy.utils.register_module(__name__)

def	unregister():

bpy.utils.unregister_module(__name__)

if	__name__	==	"__main__":	register()

#	Option	2:	#	Using	explicit	registration

def	register():

bpy.utils.register_class(SimpleOperator)

bpy.utils.register_class(SimplePanel)



def	unregister():

bpy.utils.unregister_class(SimpleOperator)

bpy.utils.unregister_class(SimplePanel)

if	__name__	==	"__main__":	register()

#	Option	3	(Recommended)	#	Explicit	registration

and	implicit	unregistration	#	With	safe	+	verbose

single-script	run

def	register():

bpy.utils.register_class(SimpleOperator)

bpy.utils.register_class(SimplePanel)

def	unregister():

bpy.utils.unregister_module(__name__)

if	__name__	==	"__main__":	try:	unregister()

				except	Exception	as	e:	print(e)

								pass

				register()

Listing	5-2. 	Registration	Protocol

Scene	Properties	and	bpy.props
Properties	that	are	added	to	the	Scene	and	Object	types	will	be	saved	to	the
.blend	file.	In	order	for	users	to	modify	variables	via	the	Blender	GUI,	they
must	be	registered	as	bpy.props.*	objects.	The	bpy.props	class	has
options	for	most	data	types,	including	floats,	integers,	strings,	and	Booleans.
They	may	be	registered	to	bpy.types.*	classes,	including	Scene	and
Object.	In	this	section,	we	discuss	how	to	register	simple	scene	properties	to
bpy.types.Scene.*	variables.	These	are	arbitrarily	named	variables	that
are	accessible	via	bpy.context.scene.*.	While	the	name	is	arbitrary,	it	is
restricted	to	lowercase	characters	and	underscores.

There	are	two	places	we	can	register	scene	variables:
In	the	register()	function	at	the	bottom	of	the	script.

In	the	register()	classmethod	of	any	class	that	inherits	a
bpy.types.*	class	(panels,	operators,	menus,	etc.).



Most	commonly,	scene	variables	are	tied	directly	to	a	class.	For	sake	of	clarity
and	organization,	we	want	to	declare	those	variables	within	the	register()
classmethod	of	that	class.	Other	variables	that	do	not	fit	neatly	into	a	class
definition	can	be	declared	in	the	register()	function	at	the	bottom	of	the
script.	In	this	text,	we	encourage	that	scene	properties	are	declared	in	the
register()	classmethod	if	closely	associated	with	a	specific	class,	but	this	is
not	commonly	seen	in	existing	community	add-ons	.

Scene	variables	will	be	instances	of	bpy.types.*	variables.	These
include	the	Blender	types	StringProperty,	FloatProperty,
IntProperty,	and	BoolProperty.	Any	time	a	panel	includes	a	variable	in
a	GUI	via	a	call	to	self.layout.prop,	the	variable	will	be	logically
formatted	according	to	its	type.	Integers	and	floats	appear	in	slider	bars,	strings
appear	as	text	input	fields,	Booleans	appear	as	checkboxes,	and	so	on.

In	Listing	5-3,	we	redeclare	SimpleOperator	and	SimplePanel	from
Listing	5-1	with	additional	scene	variables.	Readers	will	rewrite	these	classes
using	Listing	5-1	as	a	template.	See	Figure	5-3	for	the	resulting	GUI.

Figure	5-3. 	Exploring	scene	properties



#	Simple	Operator	with	Extra	Properties	class

SimpleOperator(bpy.types.Operator):	bl_idname	=

"object.simple_operator"

				bl_label	=	"Print	an	Encouraging	Message"

				def	execute(self,	context):

print("\n\n###########################################

#########")	print("#	Add-on	and	Simple	Operator

executed	successfully!")	print("#	Encouraging

Message:",	context.scene.encouraging_message)	print("#

My	Int:",	context.scene.my_int_prop)	print("#	My

Float:",	context.scene.my_float_prop)	print("#	My

Bool:",	context.scene.my_bool_prop)	print("#	My	Int

Vector:",	*context.scene.my_int_vector_prop)	print("#

My	Float	Vector:",

*context.scene.my_float_vector_prop)	print("#	My	Bool

Vector:",	*context.scene.my_bool_vector_prop)

print("###############################################

#####")	return	{'FINISHED'}

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)

								bpy.types.Scene.encouraging_message	=

bpy.props.StringProperty(

												name="",

												description="Message	to	print	to	user",

default="Have	a	nice	day!")

								bpy.types.Scene.my_int_prop	=

bpy.props.IntProperty(

												name="My	Int",

												description="Sample	integer	property	to

print	to	user",	default=123,

												min=100,

												max=200)

								bpy.types.Scene.my_float_prop	=



bpy.props.FloatProperty(

												name="My	Float",	description="Sample

float	property	to	print	to	user",	default=3.1415,

												min=0.0,

												max=10.0,

												precision=4)

								bpy.types.Scene.my_bool_prop	=

bpy.props.BoolProperty(

												name="My	Bool",

												description="Sample	boolean	property	to

print	to	user",	default=True)

								bpy.types.Scene.my_int_vector_prop	=

bpy.props.IntVectorProperty(

												name="My	Int	Vector",

description="Sample	integer	vector	property	to	print

to	user",	default=(1,	2,	3,	4),	subtype='NONE',

												size=4)

								bpy.types.Scene.my_float_vector_prop	=

bpy.props.FloatVectorProperty(

												name="My	Float	Vector",

description="Sample	float	vector	property	to	print	to

user",	default=(1.23,	2.34,	3.45),	subtype='XYZ',

												size=3,

												precision=2)

								bpy.types.Scene.my_bool_vector_prop	=

bpy.props.BoolVectorProperty(

												name="My	Bool	Vector",

description="Sample	bool	vector	property	to	print	to

user",	default=(True,	False,	True),	subtype='XYZ',

												size=3)

				@classmethod

				def	unregister(cls):	print("Unregistered	class:

%s	"	%	cls.bl_label)	del

bpy.types.Scene.encouraging_message



#	Simple	button	in	Tools	panel	class

SimplePanel(bpy.types.Panel):	bl_space_type	=

"VIEW_3D"

				bl_region_type	=	"TOOLS"

				bl_category	=	"Simple	Addon"

				bl_label	=	"Call	Simple	Operator"

				bl_context	=	"objectmode"

				def	draw(self,	context):

self.layout.operator("object.simple_operator",

text="Print	Encouraging	Message")

self.layout.prop(context.scene,	'encouraging_message')

self.layout.prop(context.scene,	'my_int_prop')

self.layout.prop(context.scene,	'my_float_prop')

self.layout.prop(context.scene,	'my_bool_prop')

self.layout.prop(context.scene,	'my_int_vector_prop')

self.layout.prop(context.scene,

'my_float_vector_prop')

self.layout.prop(context.scene,	'my_bool_vector_prop')

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)	#	Register	properties	related	to	the

class	here.

				@classmethod

				def	unregister(cls):	print("Unregistered	class:

%s	"	%	cls.bl_label)

Listing	5-3. 	Exploring	Scene	Properties

See	Table	5-4	for	a	list	of	available	bpy.props.*	variables.	See	the	API
documentation	page	for	bpy.props	for	more	information.	So	far	we	have	not
covered	EnumProperty,	CollectionProperty,	or
PointerProperty.	We	cover	EnumProperty	later	in	this	chapter,	and	we
cover	CollectionProperty	in	Chapter	7	on	advanced	add-on
functionalities.

Table	5-4. 	Available	Blender	Properties



BoolProperty EnumProperty IntProperty StringProperty

BoolVectorProperty FloatProperty IntVectorProperty 	

CollectionProperty FloatVectorProperty PointerProperty 	

The	arguments	given	to	property	declarations	are	generally	straightforward,
and	many	of	them	are	shared	across	different	properties.	Most	notably:

default=	is	a	value	or	tuple	of	a	length	equal	to	the	size	that	specifies
the	default	value.

name=	is	the	value	that	will	appear	in	the	GUI	to	the	left	of	the	input
field.

description=	is	a	character	string	that	is	displayed	when	the	user
hovers	his	cursor	over	the	GUI	element.

precision=	specifies	the	decimal	precision	in	the	display	of	any
float	property.

size=	specifies	the	size	of	the	vector	(typically	of	type	Vector,
bpy_boolean,	or	bpy_int)	desired	in	any	vector	property.

subtype=	specifies	the	desired	display	formatting	string	for	a
variable.	Useful	examples	are	XYZ	and	TRANSLATION,	which	will	display
X,	Y,	Z,	and	W	ahead	of	your	first	four	variables	in	the	UI.	Another	notable
example	is	subtype="COLOR",	which	will	create	an	attractive	color
selection	UI	when	added	to	a	panel.	See	Listing	5-4	and	Figure	5-4	for	an
example	of	the	color	subtype.	Note	that	Blender	uses	a	floating-point	range
of	(0.0,	1.0)	for	colors.	Tables	5-5	and	5-6	show	the	property	and	vector
property	subtypes.



Figure	5-4. 	Color	subtype

Table	5-5. 	Available	Property	Subtypes

PIXEL PERCENTAGE ANGLE DISTANCE UNSIGNED FACTOR TIME NONE

Table	5-6. 	Available	Vector	Property	Subtypes

COLOR VELOCITY EULER XYZ NONE

TRANSLATION ACCELERATION QUATERNION COLOR_GAMMA 	

DIRECTION MATRIX AXISANGLE LAYER 	

min=	and	max=	specify	the	extreme	values	that	can	be	displayed	in	the
GUI	as	well	as	the	extreme	values	that	can	be	stored	in	the	variables.

softmin=	and	softmax=	specify	the	minimum	and	maximum	slider
values	used	to	display	variables	and	scale	the	slider.	Arbitrary	values	can
still	be	inputted	manually	so	long	as	they	are	between	min	and	max.



update=	accepts	a	function	as	an	argument.	The	function	is	run	every
time	the	value	is	updated.	The	specified	function	should	accept	self	and
context	as	arguments	regardless	of	where	it	is	declared.	This	function	is
currently	undocumented	but	fairly	well-behaved.

bpy.types.Scene.my_color_prop	=

bpy.props.FloatVectorProperty(

				name="My	Color	Property",

				description="Returns	a	vector	of	length	4",

default=(0.322,	1.0,	0.182,	1.0),	min=0.0,

				max=1.0,

				subtype='COLOR',

				size=4)

Listing	5-4. 	Using	the	Color	Subtype

Precision	Selection	Add-On	Example
At	this	point	in	the	text,	we	have	discussed	Blender	Python	API	concepts	in	a
sufficient	capacity	to	start	building	effective	add-ons.	For	our	first	real	add-on,
we	will	parameterize	the	ut.act.select_by_loc()	function	declared	in
Chapter	3	to	enable	precise	group	selection	in	Edit	Mode.

Before	we	begin,	make	sure	to	download	Chapter	3’s	iteration	of	ut.py
from	http://blender.chrisconlan.com/ut.py	.	We	will	import	this
in	our	add-on.	The	community	has	used	a	few	different	protocols	for	managing
custom	imports	in	add-ons.	We	will	discuss	a	common	protocol	for	managing
custom	imports	from	single-level	directories.	In	other	words,	we	will	import
custom	modules	that	lie	in	the	same	directory	as	the	main	script.

Code	Overview	for	Our	Add-On
We	outline	the	steps	taken	to	build	the	add-on,	from	development	through
deployment	and	sharing	:

1. Create	the	main	script	and	name	it	__init__.py	in	Blender’s	Text
Editor.	Copy	the	add-on	template	from	Listing	5-1	into	this	script.

	

2. Create	a	second	script	and	name	it	ut.py	in	Blender’s	Text	Editor.	Copy
the	Python	module	at	http://blender.chrisconlan.com/ut.py

	

http://blender.chrisconlan.com/ut.py
http://blender.chrisconlan.com/ut.py


into	this	script.

3. Modify	bl_info	for	our	new	add-on. 	
4. Add	the	custom	module	import	protocol.	See	Listing	5-5	starting	at	if

"bpy"	in	locals():.	Quite	simply,	to	test	whether	or	not	we	are
Deployment	Mode	or	Development	Mode,	we	check	whether	or	not	bpy	is
in	the	current	namespace.

If	bpy	is	in	the	namespace	at	this	point	in	the	script,	we	have
previously	loaded	the	add-on	and	its	dependent	modules.	In	this	case,
reload	the	objects	using	importlib.reload().

If	bpy	is	not	in	the	namespace	at	this	point,	then	we	are	loading	the
add-on	for	the	first	time.	Import	the	module	assuming	it	is	sitting	in	the
same	directory	as	__init__.py	in	the	filesystem.	To	import	from
the	same	directory	as	the	main	script,	we	use	from	.	import
custommodule.

Note	This	protocol	depends	on	import	bpy	coming	after	it	in	the
script.	If	we	import	bpy	ahead	of	this	protocol,	then	bpy	in
locals()	will	always	be	True,	rendering	it	useless.

This	protocol	will	behave	nicely	when	the	add-on	has	been	loaded	in
Blender,	or	otherwise,	when	it	has	been	deployed.	We	will	import	custom
modules	normally	when	developing	in	the	Blender	Text	Editor.

	

5. Import	any	native	Blender	and/or	native	Python	modules	normally. 	
6. Declare	our	core	operator	class,	SelectByLocation.	We	will

parameterize	ut.act.select_by_loc()	with	sensible	inputs	as	scene
properties.

Use	bpy.props.FloatVectorProperty	to	register	bounding
boxes.

Use	bpy.props.EnumProperty	to	register	menus	for	selection
mode	and	coordinate	system.	See	Listings	3-8	through	3-10	in	Chapter

	



3	for	an	explanation	of	these	parameters.

7. Declare	our	core	panel	class,	XYZSelect.	We	will	organize	the	buttons
and	parameters	associated	with	operator	here.	The	default	menu	layout
looks	pretty	intuitive	in	this	case.	Declare	the	poll()	classmethod	to
return	True	only	if	the	mode	is	Edit	Mode.

	

8. Implement	safe	and	verbose	registration,	as	shown	in	Listing	5-1. 	
bl_info	=	{

				"name":	"XYZSelect",

				"author":	"Chris	Conlan",	"location":	"View3D	>

Tools	>	XYZSelect",	"version":	(1,	0,	0),	"blender":

(2,	7,	8),	"description":	"Precision	selection	in	Edit

Mode",	"category":	"3D	View"

}

###	Use	these	imports	to	during	development	###

import	ut

import	importlib	importlib.reload(ut)

###	Use	these	imports	to	package	and	ship	your	add-

on	###

#	if	"bpy"	in	locals():	#				import	importlib

#				importlib.reload(ut)	#				print('Reloaded	ut.py')

#	else:	#				from	.	import	ut	#				print('Imported

ut.py')

import	bpy	import	os	import	random

#	Simple	Operator	with	Extra	Properties

class	xyzSelect(bpy.types.Operator):	bl_idname	=

"object.xyz_select"

				bl_label	=	"Select	pieces	of	objects	in	Edit

Mode	with	bounding	boxes"

				def	execute(self,	context):



								scn	=	context.scene

								output	=

ut.act.select_by_loc(lbound=scn.xyz_lower_bound,

ubound=scn.xyz_upper_bound,

select_mode=scn.xyz_selection_mode,

oords=scn.xyz_coordinate_system)

								print("Selected	"	+	str(output)	+	"	"	+

scn.xyz_selection_mode	+	"s")

								return	{'FINISHED'}

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)	bpy.types.Scene.xyz_lower_bound	=

bpy.props.FloatVectorProperty(

												name="Lower",	description="Lower	bound

of	selection	bounding	box",	default=(0.0,	0.0,	0.0),

subtype='XYZ',	size=3,	precision=	2

								)

								bpy.types.Scene.xyz_upper_bound	=

bpy.props.FloatVectorProperty(

												name="Upper",	description="Upper	bound

of	selection	bounding	box",	default=(1.0,	1.0,	1.0),

subtype='XYZ',	size=3,	precision=2

								)

								#	Menus	for	EnumProperty's	selection_modes

=	[

												("VERT",	"Vert",	"",	1),	("EDGE",

"Edge",	"",	2),	("FACE",	"Face",	"",	3),	]

								bpy.types.Scene.xyz_selection_mode	=	\

												bpy.props.EnumProperty(items=selection_

modes,	name="Mode")

								coordinate_system	=	[

												("GLOBAL",	"Global",	"",	1),	("LOCAL",

"Local",	"",	2),	]



								bpy.types.Scene.xyz_coordinate_system	=	\

												bpy.props.EnumProperty(items=coordinate

_system,	name="Coords")

				@classmethod

				def	unregister(cls):	print("Unregistered	class:

%s	"	%	cls.bl_label)	del

bpy.context.scene.xyz_coordinate_system	del

bpy.context.scene.xyz_selection_mode	del

bpy.context.scene.xyz_upper_bound	del

bpy.context.scene.xyz_lower_bound

#	Simple	button	in	Tools	panel	class

xyzPanel(bpy.types.Panel):	bl_space_type	=	"VIEW_3D"

				bl_region_type	=	"TOOLS"

				bl_category	=	"XYZSelect"

				bl_label	=	"Select	by	Bounding	Box"

				@classmethod

				def	poll(self,	context):	return

context.object.mode	==	'EDIT'

				def	draw(self,	context):	scn	=	context.scene

lay	=	self.layout	lay.operator('object.xyz_select',

text="Select	Components")	lay.prop(scn,

'xyz_lower_bound')	lay.prop(scn,	'xyz_upper_bound')

lay.prop(scn,	'xyz_selection_mode')	lay.prop(scn,

'xyz_coordinate_system')

				@classmethod

				def	register(cls):	print("Registered	class:	%s

"	%	cls.bl_label)

				@classmethod

				def	unregister(cls):	print("Unregistered	class:

%s	"	%	cls.bl_label)

def	register():	#

bpy.utils.register_module(__name__)



				bpy.utils.register_class(xyzSelect)

bpy.utils.register_class(xyzPanel)

				print("%s	registration	complete\n"	%

bl_info.get('name'))

def	unregister():	#

bpy.utils.unregister_class(xyzPanel)	#

bpy.utils.unregister_class(xyzSelect)

				bpy.utils.unregister_module(__name__)	print("%s

unregister	complete\n"	%	bl_info.get('name'))

if	__name__	==	"__main__":	try:

								unregister()

				except	Exception	as	e:	print(e)

								pass

				register()

Listing	5-5. 	XYZSelect	Add-On

See	Figure	5-5	for	an	example	of	precisely	contorting	an	icosphere	using	this
plugin.



Figure	5-5. 	Color	subtype

We	introduced	two	new	concepts	in	this	example—the	poll()	classmethod
and	the	EnumProperty	variable.	We	explain	these	both	next.

The	poll()	Classmethod
The	poll()	classmethod	is	a	function	typically	placed	after	the	bl_*	variables
in	a	panel	declaration.	The	function	will	be	called	whenever	the	3D	Viewport
updates	to	determine	whether	or	not	to	display	the	panel.

If	the	function	returns	any	non-null	value,	the	panel	will	display.	It	is
considered	best	practice	to	return	a	Boolean	even	though	any	non-null	will
suffice.	Recall	that	the	number	0,	empty	strings,	and	False	are	all	considered
null	in	Python.

In	our	add-on,	we	simply	return	True	if	the	user	is	in	Edit	Mode,	as	seen
here:

#	poll	function	for	edit-mode-only	panels

@classmethod



def	poll(self,	context):	return	context.object.mode

==	'EDIT'

EnumProperty	Variables
The	bpy.props.EnumProperty	class	is	how	we	display	drop-down	menus
via	API.	It	is	instantiated	by	a	list	of	tuples,	where	each	element	in	a	tuple
represents	a	Blender	data	value.	The	schema	is	as	follows:

my_enum_list	=	[

				("python_1",	"display_1",	"tooltip_1",	"icon_1",

'number_1),	("python_2",	"display_2",	"tooltip_2",

"icon_2",	'number_2),	#	etc	...

				("python_n",	"display_n",	"tooltip_n",	"icon_n",

'number_n)	]

This	is	directly	from	the	API	documentation:

1. The	first	parameter	is	the	value	returned	by
bpy.context.scene.my_enum_list	in	Python.

	

2. The	second	parameter	is	the	value	displayed	in	the	GUI
menu.

	

3. The	third	value	is	the	tooltip	displayed	in	the	GUI	menu.	It
can	be	an	empty	string.

	

4. (Optional)	Integer	or	string	identifier,	used	internally	and	by
bpy.types.UILayout.icon.

	

5. (Optional)	Unique	value	stored	in	file	data,	used	when	the
first	parameter	is	potentially	dynamic.

	

Preparing	Our	Add-On	for	Distribution
To	prepare	our	add-on	for	distribution	,	follow	these	steps:



1. Uncomment	the	import	lines	per	the	instructions	in	the	comments. 	
2. Revert	script	to	explicit	registration	and	explicit	unregistration. 	
3. (Optional)	Remove	verbose	print	statements	when	you’re	done	testing	the

add-on.	This	is	purely	to	avoid	cluttering	the	end	user’s	terminal.
	

4. Replace	the	modules	in	the	following	file	hierarchy	and	compress	it	as	a
.zip	file.

	

xyz-select/

		|		__init__.py

		\		ut.py

To	install	our	add-on,	navigate	to	Header	Menu	➤	File	➤	User
Preferences	➤	Add-ons	➤	Install	From	File.	From	there,	check	and	uncheck
the	box	to	enable	and	disable	the	add-on.	This	will	trigger	the	register()
and	unregister()	methods	in	__init__.py.	Registration	should	succeed
without	errors.

To	download	the	zipped	add-on	directly,	go	to
http://blender.chrisconlan.com/xyz-select.zip	.

Conclusion
In	the	next	chapter,	we	discuss	the	blf	and	bgl	modules	for	visualizing	data	in
the	3D	Viewport.	In	Chapter	7,	we	introduce	advanced	add-on	development
concepts.

http://blender.chrisconlan.com/xyz-select.zip
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The	bgl	module	is	a	wrapper	for	OpenGL	functions	commonly	used	by	Blender
in	the	3D	Viewport	and	Blender	Game	Engine.	OpenGL	(Open	Graphics
Library)	is	an	open	source	low-level	API	used	in	innumerable	3D	applications	to
take	advantage	of	hardware-accelerated	computing.

The	bgl	documentation	will	seem	familiar	to	those	reader	already	familiar
with	OpenGL.	The	bgl	module	itself	is	meant	to	mimic	to	call	structure	and
frame-by-frame	rendering	style	of	OpenGL	2.1.

In	reading	through	the	bgl	documentation,	we	notice	many	advanced
concepts	like	buffer	operations,	face	culling,	and	rasterization.	Fortunately	for
Blender	Python	programmers,	the	3D	Viewport	manages	these	operations
already.	We	are	more	concerned	with	marking	up	the	3D	Viewport	with	extra
information	to	help	the	user	understand	his	models.	This	chapter	focuses
primarily	on	drawing	with	bgl.

The	blf	module	is	a	small	set	of	functions	for	displaying	text	and	drawing
fonts.	It	is	closely	related	to	bgl	and	rarely	mentioned	in	examples	without	it.
Blender	Python	developers	commonly	combine	the	bgl	and	blf	modules	to
make	measurement	tools,	drawing	lines	with	bgl	and	displaying	their
measurements	with	blf.	We	do	just	that	in	this	chapter.

Note	that	these	modules	are	commonly	seen	in	examples	with	the	bge
(Blender	Game	Engine)	module.	We	will	not	be	working	in	Blender	Game
Engine,	so	these	scripts	will	not	run,	and	attempts	to	import	bge	will	fail.	We
restrict	our	drawing	to	the	3D	Viewport.

Note	also	that	the	bgl	module	is	set	to	be	replaced	or	majorly	reconstructed
in	Blender	2.80+.	It	is	likely	this	chapter	will	be	the	first	due	for	an	update	after



the	release	of	this	text.

Instantaneous	Drawing
The	bgl	and	blf	modules	cannot	be	taught	in	the	same	way	that	other	Blender
Python	modules	can.	When	a	line	or	character	is	drawn	on	the	3D	Viewport	by
either	of	these	modules,	it	is	only	visible	for	a	single	frame.	So,	we	cannot
experiment	with	it	in	the	Interactive	Console	like	we	have	with	other	modules.
Functions	we	execute	in	the	Interactive	Console	may	execute	without	error,	but
we	will	not	be	able	to	view	the	results	in	the	3D	Viewport.

To	effectively	use	the	bgl	and	blf	modules,	we	must	use	them	within	a
handler	function	that	is	set	to	update	at	every	frame	change.	Thus,	we	start	with
a	handler	example	using	non-OpenGL	concepts.

Handlers	Overview
This	section	gives	examples	of	handlers	using	bpy.app.handlers.	This	is
not	the	submodule	we	will	ultimately	use	when	dealing	with	bgl	and	blf,	but	it
is	instructive	for	learning	about	handlers	in	Blender.

Clock	Example
Handlers	are	functions	that	are	set	to	run	every	time	an	event	occurs.	To
instantiate	a	handler,	we	declare	a	function,	then	add	it	to	one	of	the	possible
lists	of	handlers	in	Blender.	In	Listing	6-1,	we	create	a	function	that	modifies	the
text	of	a	text	mesh	with	the	current	time.	We	then	add	the	function	to
bpy.app.handlers.scene_update_pre	to	indicate	that	we	would	like
it	to	run	right	before	the	3D	Viewport	is	updated	and	displayed.

The	result	is	what	appears	to	be	a	clock	in	the	3D	Viewport.	In	actuality,	it	is
a	text	mesh	that	is	updating	many	times	per	second.	This	example	is	not	safe	or
full-proof,	but	as	long	as	we	keep	the	object	in	the	scene	and	named
MyTextObj,	we	can	add	and	edit	other	objects	with	the	clock	running	in	the
background.	See	Figure	6-1	for	the	result.



Figure	6-1. 	Result	of	the	Blender	clock	handler	example

Note
The	behavior	of	the	clock	is	not	a	documented	behavior	and	may	change	with
future	releases	of	Blender.	Specifically,	Blender	intends	to	change	what	they
qualify	as	a	frame	change.	Currently,	frame	changes	seem	to	happen
instantaneously	and	constantly.

The	official	Blender	documentation	gives	examples	where	the	only
parameter	passed	to	the	handler	is	a	dummy.	Handler	functions	should	be
treated	like	traditional	Python	lambdas,	with	the	exception	that	a	single
dummy	argument	is	required	as	the	first	parameter.	We	pass	the	function
itself	rather	than	the	output	of	the	function,	and	a	new	unnamed	instance	of
the	function	is	created	when	it	is	passed.	We	cannot	easily	access	this
unnamed	function	after	it	is	created	for	the	handler.

import	bpy	import	datetime

#	Clear	the	scene

bpy.ops.object.select_all(action='SELECT')



bpy.ops.object.delete()

#	Create	an	object	for	our	clock

bpy.ops.object.text_add(location=(0,	0,	0))

bpy.context.object.name	=	'MyTextObj'

#	Create	a	handler	function	def	tell_time(dummy):

current_time	=

datetime.datetime.now().strftime('%H:%M:%S.%f')[:-3]

				bpy.data.objects['MyTextObj'].data.body	=

current_time

#	Add	to	the	list	of	handler	functions

"scene_update_pre"

bpy.app.handlers.scene_update_pre.append(tell_time)

Listing	6-1. 	Blender	Clock	Handler	Example

Managing	Handlers
In	the	case	of	bpy.app.handlers,	we	can	edit	various	lists	of	functions	to
manage	our	handlers.	These	lists	are	quite	literally	Python	classes	of	type	list,
and	we	can	operate	on	them	as	such.	We	can	use	list	class	methods	such	as
append(),	pop(),	remove(),	and	clear()	to	manage	our	handler
functions.	See	Listing	6-2	for	some	useful	examples.

#	Will	only	work	if	'tell_time'	is	in	scope

bpy.app.handlers.scene_update_pre.remove(tell_time)	#

Useful	in	development	for	a	clean	slate

bpy.app.handlers.scene_update_pre.clear()

#	Remove	handler	at	the	end	of	the	list	and	return

it	bpy.app.handlers.scene_update_pre.pop()

Listing	6-2. 	Managing	Handler	Lists

Types	of	Handlers
In	Listing	6-1,	we	used	bpy.app.handlers.scene_update_pre	to
modify	a	mesh	according	to	internal	variables	before	each	update.	Table	6-1
details	types	of	handlers	in	bpy.app.handlers	as	they	appear	in	the	official



documentation.

Table	6-1. 	Types	of	Handlers

Handler Called	On
frame_change_post After	frame	change	during	rendering	or	playback
frame_change_pre Before	frame	change	during	rendering	or	playback
render_cancel Canceling	a	render	job
render_complete Completing	a	render	job
render_init Initializing	a	render	job
render_post After	render
render_pre Before	render
render_stats Printing	render	statistics
render_write Directly	after	frame	is	written	in	rendering
load_post After	loading	a	.blend	file
load_pre Before	loading	a	.blend	file
save_post After	saving	a	.blend	file
save_pre Before	saving	a	.blend	file
scene_update_post After	updating	scene	data	(e.g.,	3D	Viewport)
scene_update_pre Before	updating	scene	data	(e.g.	,3D	Viewport)
game_pre Starting	the	game	engine
game_post Ending	the	game	engine

There	is	some	functional	overlap	in	Table	6-1,	and	not	every	handler	behaves
how	one	would	expect.	For	example,	using	scene_update_post	in	Listing
6-1	as	opposed	to	scene_update_pre	does	not	work	at	all.	Readers	are
encouraged	to	experiment	to	determine	which	one	fits	their	needs.

Persistent	Handlers
If	we	want	handlers	to	persist	after	loading	a	.blend	file,	we	can	add	the
@persistent	decorator.	Normally,	handlers	are	freed	when	loading	a
.blend	file,	so	certain	handlers	like	bpy.app.handlers.load_post
necessitate	this	decorator.	Listing	6-3	uses	the	@persistent	decorator	to	print
file	diagnostics	after	loading	a	.blend	file.

import	bpy

from	bpy.app.handlers	import	persistent

@persistent



@persistent

def	load_diag(dummy):	obs	=

bpy.context.scene.objects

					print('\n\n###	File	Diagnostics	###')

print('Objects	in	Scene:',	len(obs))	for	ob	in	obs:

print(ob.name,	'of	type',	ob.type)

bpy.app.handlers.load_post.append(load_diag)

#	After	reloading	startup	file:	#

#	###	File	Diagnostics	###

#	Objects	in	Scene:	3

#	Cube	of	type	MESH

#	Lamp	of	type	LAMP

#	Camera	of	type	CAMERA

Listing	6-3. 	Printing	File	Diagnostics	on	Load

Handlers	in	blf	and	bgl
Now	that	we	have	a	basic	understanding	of	handlers,	we	will	detail	how	to	draw
with	OpenGL	tools	directly	on	the	3D	Viewport.	The	handlers	used	for	drawing
on	the	3D	Viewport	are	not	part	of	bpy.app.handlers,	rather	they	are
undocumented	member	functions	of	bpy.types.SpaceView3D.	To
understand	these	member	functions,	we	have	reduced	real-world	examples	of
their	use	by	other	developers.

Listing	6-4	shows	how	to	use	bgl	and	blf	to	draw	the	name	of	an	object	on
its	origin	point.

import	bpy

from	bpy_extras	import	view3d_utils	import	bgl

import	blf

#	Color	and	font	size	of	text	rgb_label	=	(1,	0.8,

0.1,	1.0)	font_size	=	16

font_id	=	0

#	Wrapper	for	mapping	3D	Viewport	to	OpenGL	2D

region



def	gl_pts(context,	v):	return

view3d_utils.location_3d_to_region_2d(

								context.region,

								context.space_data.region_3d,	v)

#	Get	the	active	object,	find	its	2D	points,	draw

the	name

def	draw_name(context):

				ob	=	context.object	v	=	gl_pts(context,

ob.location)

				bgl.glColor4f(*rgb_label)

				blf.size(font_id,	font_size,	72)

blf.position(font_id,	v[0],	v[1],	0)	blf.draw(font_id,

ob.name)

#	Add	the	handler	#	arguments:	#	function	=

draw_name,	#	tuple	of	parameters	=	(bpy.context,),	#

constant1	=	'WINDOW',	#	constant2	=	'POST_PIXEL'

bpy.types.SpaceView3D.draw_handler_add(

				draw_name,	(bpy.context,),	'WINDOW',

'POST_PIXEL')

Listing	6-4. 	Drawing	the	Name	of	an	Object

Running	Listing	6-4	in	the	text	editor	will	allow	you	to	see	the	name	of	the
active	object	drawn	on	its	origin	point.

Handlers	created	with	bpy.types.SpaceView3D	are	not	as	easily
accessible	as	those	in	bpy.app.handlers	and	are	persistent	by	default.
Unless	we	create	better	controls	for	flicking	these	handlers	on	and	off,	we	will
have	to	restart	Blender	to	detach	this	handler.	In	the	next	section,	we	place	this
handler	in	an	add-on	that	allows	us	to	flick	it	on	and	off	with	a	button.	Also,	we
store	the	handler	in	a	bpy.types.Operator	so	we	will	not	lose	our
reference	to	the	function	after	adding	it	to	the	handler.

Note
The	draw_handler_add()	and	draw_handler_remove()	functions



are	currently	undocumented	in	bpy.types.SpaceView3D	in	Blender’s
official	documentation.	Therefore,	we	will	work	with	them	as	best	we	can
based	on	known	functional	examples.

Example	Add-On
This	add-on	is	a	standalone	script,	so	it	may	be	run	by	copying	it	into	the	Text
Editor	or	importing	it	via	the	User	Preferences.	Readers	are	encouraged	to	run	it
via	the	Text	Editor	for	easy	experimentation.	See	Listing	6-5	for	the	add-on	and
Figure	6-2	for	a	screenshot	of	the	result	(in	Edit	Mode).

Figure	6-2. 	Drawing	add-on	on	a	cube	in	Edit	Mode

bl_info	=	{

				"name":	"Simple	Line	and	Text	Drawing",

"author":	"Chris	Conlan",	"location":	"View3D	>	Tools

>	Drawing",	"version":	(1,	0,	0),	"blender":	(2,	7,

8),	"description":	"Minimal	add-on	for	line	and	text



drawing	with	bgl	and	blf.	"

																			"Adapted	from	Antonio	Vazquez's

(antonioya)	Archmesh."	,	"wiki_url":

"http://example.com",	"category":	"Development"

}

import	bpy

import	bmesh

import	os

import	bpy_extras

import	bgl

import	blf

#	view3d_utils	must	be	imported	explicitly	from

bpy_extras	import	view3d_utils

def	draw_main(self,	context):	"""Main	function,

toggled	by	handler"""

				scene	=	context.scene	indices	=

context.scene.gl_measure_indices

				#	Set	color	and	fontsize	parameters	rgb_line	=

(0.173,	0.545,	1.0,	1.0)	rgb_label	=	(1,	0.8,	0.1,

1.0)	fsize	=	16

				#	Enable	OpenGL	drawing

bgl.glEnable(bgl.GL_BLEND)	bgl.glLineWidth(1)

				#	Store	reference	to	active	object	ob	=

context.object

				#	Draw	vertex	indices	if

scene.gl_display_verts:	label_verts(context,	ob,

rgb_label,	fsize)

				#	Draw	measurement	if	scene.gl_display_measure:

if(indices[1]	<	len(ob.data.vertices)):



draw_measurement(context,	ob,	indices,	rgb_line,

rgb_label,	fsize)

				#	Draw	name	if	scene.gl_display_names:

draw_name(context,	ob,	rgb_label,	fsize)

				#	Disable	OpenGL	drawings	and	restore	defaults

bgl.glLineWidth(1)

				bgl.glDisable(bgl.GL_BLEND)	bgl.glColor4f(0.0,

0.0,	0.0,	1.0)

class	glrun(bpy.types.Operator):	"""Main	operator,

flicks	handler	on/off"""

				bl_idname	=	"glinfo.glrun"

				bl_label	=	"Display	object	data"

				bl_description	=	"Display	additional

information	in	the	3D	Viewport"

				#	For	storing	function	handler	_handle	=	None

				#	Enable	GL	drawing	and	add	handler

@staticmethod

				def	handle_add(self,	context):	if	glrun._handle

is	None:	glrun._handle	=

bpy.types.SpaceView3D.draw_handler_add(

																draw_main,	(self,	context),

'WINDOW',	'POST_PIXEL')

context.window_manager.run_opengl	=	True

				#	Disable	GL	drawing	and	remove	handler

@staticmethod

				def	handle_remove(self,	context):	if

glrun._handle	is	not	None:

bpy.types.SpaceView3D.draw_handler_remove(glrun._handl

e,	'WINDOW')	glrun._handle	=	None

context.window_manager.run_opengl	=	False

				#	Flicks	OpenGL	handler	on	and	off	#	Make	sure

to	flick	"off"	before	reloading	script	when	live



editing	def	execute(self,	context):	if

context.area.type	==	'VIEW_3D':

												if	context.window_manager.run_opengl	is

False:	self.handle_add(self,	context)

context.area.tag_redraw()	else:

self.handle_remove(self,	context)

context.area.tag_redraw()

												return	{'FINISHED'}

								else:	print("3D	Viewport	not	found,	cannot

run	operator.")	return	{'CANCELLED'}

class	glpanel(bpy.types.Panel):	"""Standard	panel

with	scene	variables"""

				bl_idname	=	"glinfo.glpanel"

				bl_label	=	"Display	Object	Data"

				bl_space_type	=	'VIEW_3D'

				bl_region_type	=	"TOOLS"

				bl_category	=	'Drawing'

				def	draw(self,	context):	lay	=	self.layout	scn

=	context.scene

								box	=	lay.box()

								if	context.window_manager.run_opengl	is

False:	icon	=	'PLAY'

												txt	=	'Display'

								else:	icon	=	'PAUSE'

												txt	=	'Hide'

								box.operator("glinfo.glrun",	text=txt,

icon=icon)

								box.prop(scn,	"gl_display_names",

toggle=True,	icon="OUTLINER_OB_FONT")	box.prop(scn,

"gl_display_verts",	toggle=True,	icon='DOT')

box.prop(scn,	"gl_display_measure",	toggle=True,

icon="ALIGN")	box.prop(scn,	"gl_measure_indices")



				@classmethod

				def	register(cls):

								bpy.types.Scene.gl_display_measure	=

bpy.props.BoolProperty(

												name="Measures",	description="Display

measurements	for	specified	indices	in	active	mesh.",

default=True,	)

								bpy.types.Scene.gl_display_names	=

bpy.props.BoolProperty(

												name="Names",	description="Display

names	for	selected	meshes.",	default=True,	)

								bpy.types.Scene.gl_display_verts	=

bpy.props.BoolProperty(

												name="Verts",	description="Display

vertex	indices	for	selected	meshes.",	default=True,	)

								bpy.types.Scene.gl_measure_indices	=

bpy.props.IntVectorProperty(

												name="Indices",	description="Display

measurement	between	supplied	vertices.",	default=(0,

1),	min=0,	subtype='NONE',	size=2)

								print("registered	class	%s	"	%

cls.bl_label)

				@classmethod

				def	unregister(cls):	del

bpy.types.Scene.gl_display_verts	del

bpy.types.Scene.gl_display_names	del

bpy.types.Scene.gl_display_measure	del

bpy.types.Scene.gl_measure_indices

								print("unregistered	class	%s	"	%

cls.bl_label)

#####	Button-activated	drawing	functions	#####



#	Draw	the	name	of	the	object	on	its	origin	def

draw_name(context,	ob,	rgb_label,	fsize):	a	=

gl_pts(context,	ob.location)

bgl.glColor4f(rgb_label[0],	rgb_label[1],

rgb_label[2],	rgb_label[3])	draw_text(a,	ob.name,

fsize)

#	Draw	line	between	two	points,	draw	the	distance

def	draw_measurement(context,	ob,	pts,	rgb_line,

rgb_label,	fsize):	#	pts	=	(index	of	vertex	#1,	index

of	vertex	#2)

				a	=	coords(ob,	pts[0])	b	=	coords(ob,	pts[1])

				d	=	dist(a,	b)

				mp	=	midpoint(a,	b)

				a	=	gl_pts(context,	a)	b	=	gl_pts(context,	b)

mp	=	gl_pts(context,	mp)

				bgl.glColor4f(rgb_line[0],	rgb_line[1],

rgb_line[2],	rgb_line[3])	draw_line(a,	b)

				bgl.glColor4f(rgb_label[0],	rgb_label[1],

rgb_label[2],	rgb_label[3])	draw_text(mp,	'%.3f'	%	d,

fsize)

#	Label	all	possible	vertices	of	object

def	label_verts(context,	ob,	rgb,	fsize):	try:	#

attempt	get	coordinates,	will	except	if	object	does

not	have	vertices	v	=	coords(ob)	bgl.glColor4f(rgb[0],

rgb[1],	rgb[2],	rgb[3])	for	i	in	range(0,	len(v)):	loc

=	gl_pts(context,	v[i])	draw_text(loc,	str(i),	fsize)

except	AttributeError	:	#	Except	attribute	error	to

not	fail	on	lights,	cameras,	etc	pass

#	Convert	3D	points	to	OpenGL-compatible	2D	points

def	gl_pts(context,	v):	return

bpy_extras.view3d_utils.location_3d_to_region_2d(



								context.region,

								context.space_data.region_3d,	v)

#####	Core	drawing	functions	#####

#	Generic	function	for	drawing	text	on	screen	def

draw_text(v,	display_text,	fsize,	font_id=0):	if	v:

blf.size(font_id,	fsize,	72)	blf.position(font_id,

v[0],	v[1],	0)	blf.draw(font_id,	display_text)	return

#	Generic	function	for	drawing	line	on	screen	def

draw_line(v1,	v2):	if	v1	and	v2:

bgl.glBegin(bgl.GL_LINES)	bgl.glVertex2f(*v1)

bgl.glVertex2f(*v2)	bgl.glEnd()

				if	return

#####	Utilities	#####

#	Returns	all	coordinates	or	single	coordinate	of

object	#	Can	toggle	between	GLOBAL	and	LOCAL

coordinates	def	coords(obj,	ind=None,	space='GLOBAL'):

if	obj.mode	==	'EDIT':	v	=

bmesh.from_edit_mesh(obj.data).verts	elif	obj.mode	==

'OBJECT':	v	=	obj.data.vertices

				if	space	==	'GLOBAL':	if	isinstance(ind,	int):

return	(obj.matrix_world	*	v[ind].co).to_tuple()	else:

return	[(obj.matrix_world	*	v.co).to_tuple()	for	v	in

v]

				elif	space	==	'LOCAL':	if	isinstance(ind,	int):

return	(v[ind].co).to_tuple()	else:	return

[v.co.to_tuple()	for	v	in	v]

#	Returns	Euclidean	distance	between	two	3D	points

def	dist(x,	y):	return	((x[0]	-	y[0])**2	+	(x[1]	-

y[1])**2	+	(x[2]	-	y[2])**2)**0.5

#	Returns	midpoint	between	two	3D	points	def

midpoint(x,	y):	return	((x[0]	+	y[0])	/	2,	(x[1]	+

y[1])	/	2,	(x[2]	+	y[2])	/	2)



#####	Registration	#####

def	register():	"""Register	objects	inheriting

bpy.types	in	current	file	and	scope"""

				#	bpy.utils.register_module(__name__)

				#	Explicitly	register	objects

bpy.utils.register_class(glrun)

bpy.utils.register_class(glpanel)	wm	=

bpy.types.WindowManager	wm.run_opengl	=

bpy.props.BoolProperty(default=False)	print("%s

registration	complete\n"	%	bl_info.get('name'))

def	unregister():

				wm	=	bpy.context.window_manager	p	=

'run_opengl'

				if	p	in	wm:	del	wm[p]

				#	remove	OpenGL	data

				glrun.handle_remove(glrun,	bpy.context)

				#	Always	unregister	in	reverse	order	to	prevent

error	due	to	#	interdependencies

				#	Explicitly	unregister	objects	#

bpy.utils.unregister_class(glpanel)	#

bpy.utils.unregister_class(glrun)

				#	Unregister	objects	inheriting	bpy.types	in

current	file	and	scope

bpy.utils.unregister_module(__name__)	print("%s

unregister	complete\n"	%	bl_info.get('name'))

#	Only	called	during	development	with	'Text	Editor

->	Run	Script'

#	When	distributed	as	plugin,	Blender	will	directly

call	register()	if	__name__	==	"__main__":	try:

os.system('clear')

								unregister()



				except	Exception	as	e:	print(e)

								pass	finally:	register()

Listing	6-5. 	Simple	Line	and	Text	Drawing

From	here,	we	explain	the	core	concepts	of	working	with	bgl	and	blf	via
references	to	Listing	6-5.	We	will	move	from	the	lowest-level	code	(core	bgl
and	blf)	to	the	highest-level	code	(panel	and	handler	declarations).

Drawing	Lines	and	Text
Our	goal	is	to	draw	lines	and	text	on	the	canvas.	The	draw_text()	and
draw_line()	functions	in	Listing	6-5	accomplish	this	by	taking	2D	canvas
coordinates	as	input	and	passing	information	to	bgl	and	blf.

#	Generic	function	for	drawing	text	on	screen	def

draw_text(v,	display_text,	fsize,	font_id=0):	if	v:

blf.size(font_id,	fsize,	72)	blf.position(font_id,

v[0],	v[1],	0)	blf.draw(font_id,	display_text)	return

#	Generic	function	for	drawing	line	on	screen	def

draw_line(v1,	v2):	if	v1	and	v2:

bgl.glBegin(bgl.GL_LINES)	bgl.glVertex2f(*v1)

bgl.glVertex2f(*v2)	bgl.glEnd()

				return

Converting	to	the	2D	Canvas
The	points	must	be	converted	to	the	coordinate	system	of	the	2D	canvas
beforehand.	Fortunately,	the	bpy_extras	module	has	a	utility	for	this.	We
wrapped	the
bpy_extras.view3d_utils.location_3d_to_region_2d()

utility	in	a	function	that	accepts	bpy.context	and	a	3D	point	as	arguments.
We	will	simply	convert	any	3D	points	to	the	2D	canvas	before	passing	them	to
our	drawing	functions.

#	Convert	3D	points	to	OpenGL-compatible	2D	points

def	gl_pts(context,	v):	return

bpy_extras.view3d_utils.location_3d_to_region_2d(

								context.region,



								context.space_data.region_3d,	v

								)

Declaring	Button-Activated	Drawing	Functions
The	add-on	will	do	three	things:

Label	vertices	of	any	object	with	their	indices	using	label_verts().

Display	the	distance	and	draw	a	line	between	any	two	vertices	on	an	object
using	draw_measurement().

Display	the	object’s	name	at	its	origin	point	with	draw_name().

These	functions	accept	bpy.context,	a	reference	to	the	object	itself,	desired
indices,	and	color	and	font	information	to	pass	to	draw_line()	and
draw_text().

Note
Most	of	the	functions	performed	by	this	add-on	can	be	performed	by	starting
Blender	with	the	--debug	flag	or	manipulating	display	settings	of	Edit
Mode.	This	add-on	is	meant	to	serve	as	an	example	the	reader	can	build	on.

Declare	Main	Drawing	Function
The	draw_main()	function	will	be	executed	on	every	frame	update.	The
draw_main()	function	should	accept	self	and	context.	It	can	accept	any
other	parameters	that	are	present	in	its	operator	class	that	we	detail	next,	but
it	is	encouraged	that	user-declared	parameters	are	passed	as	bpy.props
objects	through	context.

In	each	frame,	the	draw_main()	function	should:
Enable	OpenGL	blending	with	bgl.glEnable(bgl.GL_BLEND)

and	set	OpenGL	parameters.	The	call	to	bgl.glEnable()	allows	the
OpenGL	scene	drawn	in	the	add-on	to	blend	with	the	scene	in	the	3D
Viewport.

Draw	each	line	and	character.

Disable	OpenGL	with	bgl.glDisable(bgl.GL_BLEND)	and
reset	any	OpenGL	parameters.

Although	it	is	possible	to	not	enable	and	disable	OpenGL	at	every	step,	it	is
encouraged	to	ensure	cooperation	with	other	add-ons	potentially	using	it.



Declaring	the	Operator	with	Handlers
The	draw_main()	function	is	meant	to	be	executed	at	every	frame	update.	To
manage	handlers	in	operators,	we	use	the	@staticmethod	decorator	with
functions	handler_add(self,	context)	and
handler_remove(self,	context).	These	functions	have	special
properties	that	help	them	nicely	interact	with	handlers	when	called	via
execute().	As	we	have	mentioned,	many	of	the	components	associated	with
this	add-on	are	undocumented,	so	we	will	accept	them	at	face	value.	Outside	of
the	operator	class,	we	also	accept	lines	related	to
bpy.types.WindowManager	at	face	value.

The	glrun()	operator	class	in	Listing	6-5	can	stand	in	for	most	if	not	all
OpenGL-enabled	add-ons	in	Blender	Python.	We	can	typically	achieve	the
desired	result	by	modifying	the	functions	outside	it	rather	than	the	operator
class	itself.

Declaring	the	Panel	with	Dynamic	Drawing
The	panel	class	is	fairly	straightforward	given	our	discussion	of	add-ons	in
Chapter	5.	It	is	worth	pointing	out	that	Listing	6-5	introduces	the	organizational
tool	self.layout.box(),	which	we	will	discuss	in	Chapter	7.	Also,	we
have	introduced	dynamic	panels	in	Listing	6-5.	In	brief,	the	draw()	class
function	is	called	on	each	frame	update	and	can	be	modified	dynamically
without	consequence.	Chapter	7	also	discusses	how	we	can	use	this	to	make
more	intuitive	add-ons.

Extending	our	bgl	and	blf	Template
In	Listing	6-5,	we	drew	the	names	of	objects,	labeled	their	vertices,	and	drew
lines	and	measurements	from	one	vertex	to	another.	Using	Listing	6-5	as	a
template,	we	can	easily	achieve	more	complex	and	domain-specific	tools.

For	example,	say	we	wanted	to	draw	the	distance	from	every	object	to	every
other	object.	This	may	be	useful	in	studying	the	atomic	structures	of	molecules
or	airline	flight	patterns.	In	both	cases,	we	care	about	how	close	certain	objects
are	to	each	other.	Listing	6-6	shows	a	function	we	can	add	to	Listing	6-5	for
drawing	the	distance	between	all	objects	supplied	to	it.	Figure	6-3	shows	the
result.



Figure	6-3. 	Drawing	the	distance	matrix

#	Draws	the	distance	between	the	origins	of	each

object	supplied	def	draw_distance_matrix(context,	obs,

rgb_line,	rgb_label,	fsize):

				N		=		len(obs)	for	j	in	range(0,	N):	for	i	in

range(j	+	1,	N):	a	=	obs[i].location	b	=

obs[j].location	d	=	dist(a,	b)	mp	=	midpoint(a,	b)

												a_2d	=	gl_pts(context,	a)	b_2d	=

gl_pts(context,	b)	mp_2d	=	gl_pts(context,	mp)

												bgl.glColor4f(*rgb_line)

draw_line(a_2d,	b_2d)

												bgl.glColor4f(*rgb_label)



draw_text(mp_2d,	'%.3f'	%	d,	fsize)

#	Add	this	to	draw_main()	to	draw	between	all

selected	objects:	#	obs	=	context.selected_objects	#

draw_distance_matrix(context,	obs,	rgb_line,

rgb_label,	fsize)

#	Add	this	to	draw_main()	to	draw	between	all

objects	in	scene:	#	obs	=	context.scene.objects	#

draw_distance_matrix(context,	obs,	rgb_line,

rgb_label,	fsize)

Listing	6-6. 	Drawing	a	Distance	Matrix

Conclusion
In	this	chapter,	we	discussed	how	to	use	handlers,	bgl	and	blf,	to	display	data
in	real-time	in	the	3D	Viewport.	This	is	another	tool	we	have	at	our	disposal	to
build	complete	and	comprehensive	add-ons.

In	the	next	chapter,	we	discuss	advanced	add-ons.	We	learn	how	to	ignore
the	Text	Editor	completely	and	build	complex	add-ons	directly	in	Blender’s	file
tree.	In	addition,	we	study	some	popular	open	source	add-ons	to	see	how	they
work	around	many	of	the	development	challenges	we	have	faced	thus	far.
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This	chapter	discusses	various	topics	in	advanced	add-on	development.	We
conclude	the	chapter	with	an	in-depth	look	at	some	of	Blender’s	most	popular
add-ons.

Topics	include	developing	in	Blender’s	filesystem,	developing	outside
Blender’s	Text	Editor,	organizing	your	add-on	as	a	traditional	Python	module,
advanced	panel	organization,	data	storage	best	practices,	and	submitting	your
add-on	to	Blender.

Developing	in	Blender’s	Filesystem
Up	to	this	point,	we	have	developed	scripts	and	add-ons	in	the	Blender	Text
Editor.	We	have	dealt	with	the	cumbersome	task	of	adjusting	our	add-ons	to
work	both	in	the	Text	Editor	and	independently	as	add-ons.	Ultimately,
manually	modifying	code	to	take	it	from	development	to	deployment	is	an
unsafe	practice.	We	want	to	be	certain	that	our	code	in	development	works
exactly	the	same	as	it	does	in	deployment.

For	the	development	environment	to	mimic	the	deployment	environment,	we
must	develop	directly	in	Blender’s	filesystem.	When	we	refer	to	Blender’s
filesystem,	we	refer	to	the	non-static	application	files	in	Blender’s	root	directory.

First,	navigate	to	your	Blender	installation.	For	64-bit	Blender	2.78c	on
Linux,	it	is	called	blender-2.78c-linux-glibc219-x86_64.	The
name	varies	across	operating	systems,	so	we	will	call	this	directory	blender-
2.78c	throughout	our	discussion.	The	add-ons	directory	is	located	as
blender-2.78c/2.78/scripts/addons.	In	this	folder,	we	see	all	of
our	currently	installed	add-ons,	including	those	that	came	with	the	Blender



distribution.	Some	of	the	add-ons	are	single	scripts,	some	are	single-level
directories,	and	others	are	complex	multi-level	directories.

Any	valid	add-on	placed	in	this	directory	will	appear	in	the	Blender	User
Preferences.	So,	if	we	build	a	valid	add-on	from	scratch,	we	can	activate	it	in	the
User	Preferences	without	ever	opening	Blender’s	Text	Editor.	We	have	touched
on	the	requirements	for	an	add-on	in	Chapter	5,	but	we	have	not	discussed	add-
ons	as	multi-level	directories.	See	Listing	7-1	for	ASCII	filetrees	of	various
types	of	add-ons.

###	Single	Scripts					###

###	e.g.	Node	Wrangler	###

node_wrangler.py

###	Single-level	or	Flat	Directories	###

###	e.g.	Mesh	Inset																		###

mesh_inset/

|--	geom.py

|--	__init__.py

|--	model.py

|--	offset.py

'--	triquad.py

###	Multi-level	Directories		###

###	e.g.	Rigify														###

rigify

|--	CREDITS

|--	generate.py

|--	__init__.py

|--	metarig_menu.py

|--	metarigs

|			|--	human.py

|			|--	__init__.py

|			'--	pitchipoy_human.py

|--	README

|--	rig_lists.py

|--	rigs

|			|--	basic

|			|			|--	copy_chain.py

|			|			|--	copy.py



|			|			'--	__init__.py

|			|--	biped

|			|			|--	arm

|			|			|			|--	deform.py

|			|			|			|--	fk.py

|			|			|			|--	ik.py

|			|			|			'--__init__.py

|			|			|--	__init__.py

|			|			|--	leg

|			|			|			|--	deform.py

|			|			|			|--	fk.py

|			|			|			|--	ik.py

|			|			|			'--__init__.py

|			|			'--	limb_common.py

|			|--	finger.py

|			|--	__init__.py

|			|--	misc

|			|			|--	delta.py	|			|			'--__init__.py

|			|--	neck_short.py

|			|--	palm.py

|			|--	pitchipoy

|			|			|--	__init__.py

|			|			|--	limbs

|			|			|			|--	arm.py

|			|			|			|--	__init__.py

|			|			|			|--	leg.py

|			|			|			|--	limb_utils.py	|			|			|			|--

paw.py

|			|			|			|--	super_arm.py	|			|			|			|--

super_front_paw.py	|			|			|			|--	super_leg.py

|			|			|			|--	super_limb.py	|			|			|			|--

super_rear_paw.py	|			|			|			'--	ui.py

|			|			|--	simple_tentacle.py	|			|			|--

super_copy.py

|			|			|--	super_face.py

|			|			|--	super_finger.py

|			|			|--	super_palm.py

|			|			|--	super_torso_turbo.py	|			|			|--

super_widgets.py	|			|			'--	tentacle.py



|			'--	spine.py

|--	rig_ui_pitchipoy_template.py	|--

rig_ui_template.py

|--	ui.py

'--	utils.py

Listing	7-1. 	Filetrees	of	Various	Types	of	Add-Ons

As	we	see	in	Listing	7-1,	it	is	possible	to	build	add-ons	with	the	structure	of
traditional	Python	modules	as	well	as	single	scripts	and	flat	directories.	The
solution	that	is	best	for	an	add-on	depends	not	so	much	on	the	size	of	the
codebase,	but	on	the	complexity	of	its	functions.	Rigify	is	a	great	example	of	an
add-on	that	necessitates	multiple	directories.	The	add-on	is	intended	to	rig	(or
prepare	to	animate)	many	different	types	of	meshes.	The	filetree	shows	custom
modules	for	legs,	arms,	tentacles,	paws,	and	more,	each	organized	into	a
submodule,	like	biped	or	limbs,	for	organization.

Creating	an	Add-on	in	the	Filesystem
For	this	exercise,	we	need	a	text	editor	other	than	Blender’s.	Readers	are
encouraged	to	open	their	favorite	IDE	or	text	editor	and	create	a	new	project.
Create	a	directory	called	sandbox/	directly	in	Blender’s	add-on	folder	as
blender-2.78c/2.78/scripts/addons/sandbox/.	From	there,
create	a	file	called	__init__.py	with	the	contents	of	Listing	7-2.

bl_info	=	{

				"name":	"Add-on	Sandbox",	"author":	"Chris

Conlan",	"version":	(1,	0,	0),	"blender":	(2,	78,	0),

"location":	"View3D",	"description":	"Within-

filesystem	Add-on	Development	Sandbox",	"category":

"Development",	}

def	register():	pass

def	unregister():	pass

#	Not	required	and	will	not	be	called,	#	but	good

for	consistency	if	__name__		==	'__main__':	register()

Listing	7-2. 	Minimal	Init	File	for	In-Filesystem	Add-On



Save	this	file,	then	open	Blender	and	navigate	to	Header	Menu	➤	File	➤
User	Preferences	➤	Add-ons	and	filter	by	“Development”	to	see	our	add-on,
Sandbox.	The	result	should	appear	as	in	Figure	7-1.	Click	the	checkbox	to
activate	our	add-on,	then	check	the	terminal	for	errors.	No	news	is	good	news,	as
we	should	see	our	blank	add-on	instantiate	without	errors.

Figure	7-1. 	Activating	our	sandbox

After	clicking	the	checkbox,	look	in	blender-
2.78c/2.78/scripts/addons/sandbox/.	We	see	a	folder	called
__pycache__,	and	the	following	filetree:

sandbox

|--	__init__.py

'--	__pycache__

			'--__init__.cpython-35.pyc

The	__pycache__	folder	is	where	Python	stores	the	compiled	.py	files	as
.pyc	files.	Given	the	way	Blender	registers	add-ons,	the	*.pyc	files	in	the
__pycache__	directories	represent	the	in-memory	version	of	the	add-on.
When	we	click	the	checkbox	in	User	Preferences,	Blender	makes	sure	that	the
Python	source	files	on	disk	(e.g.,	sandbox/__init__.py)	have	not
changed.	If	they	have	changed,	Python	will	recompile	the	related
__pycache__	directories	and	Blender	will	load	the	compiled	Python	into



memory.	Thus,	while	they	are	not	strictly	the	same	data,	the	compiled	Python
represents	the	current	in-memory	version	of	the	add-on.	This	is	why	we	can	edit
the	Python	source	without	affecting	the	add-on	in	real	time.

Note
This	is	not	the	case	if	Python	fails	to	compile	a	.py	file	or	Blender	fails	to
reload	an	add-on.	In	this	case,	the	add-on	cannot	be	successfully	turned	on,	so
the	in-memory	version	will	be	blank	or	inactive.

Using	F8	to	Reload	Add-Ons
Now	that	we	are	editing	the	source	of	our	add-on	in	the	Blender	filesystem,	we
can	recompile	the	add-on	to	update	the	in-memory	version.	The	F8	key	will
reload	all	of	the	active	add-ons	by	calling	unregister(),	recompiling	the
.pyc	files	if	necessary,	then	calling	register()	on	the	compiled	.pyc	files.
Simply	press	F8	to	reload	all	of	the	active	add-ons,	not	just	the	one	we	may	be
working	on.	This	is	excellent	for	complex	projects,	especially	those	that	depend
on	operators	and	function	calls	from	other	add-ons.	In	general,	editing	add-ons
with	this	method	is	a	best	practice.

When	we	press	F8,	we	should	see	terminal	output	from	the
unregister()	call	of	the	old	in-memory	add-on,	then	the	register()
function	of	our	new	in-memory	add-on.	If	the	add-on	has	been	updated,	Blender
will	recompile	after	running	unregister()	on	the	old	add-on.	If	the	add-on
has	not	been	updated	and	therefore	does	not	require	recompilation,	Blender	will
still	run	the	unregister()	function.

Here	is	the	console	output	for	such	an	operation.	Note	that	the	final	lines
with	gc.collect()	are	calls	to	a	Python	garbage	collector.

###	F8	after	updating	on	disk...	###

###	Other	modules	and	add-ons...

reloading	addon:	sandbox	1491112473.307823

1491116213.6005275	blender-

2.78c2.78/scripts/addons/sandbox/__init__.py	module

changed	on	disk:	blender-

2.78c2.78/scripts/addons/sandbox/__init__.py

reloading...

Hello	from	Sandbox	Registration!

gc.collect()	->	19302



###	F8	without	updating	on	disk...	###

Hello	from	Sandbox	Unregistration!

###	Other	modules	and	add-ons...

Hello	from	Sandbox	Registration!

gc.collect()	->	19302

Important	Takeaway
It	may	seem	counterintuitive,	but	the	best	practice	for	developing	Blender	add-
ons	is	to	avoid	the	Blender	Text	Editor	altogether.	This	introduces	some	logistic
issues	concerning	external	text	editors	and	IDEs,	which	we	discuss	next.

Managing	Imports
Looking	back	to	Chapter	5,	Listing	5-5,	the	XYZ-Select	add-on	showed	an
example	add-on	that	required	modification	to	move	from	the	Blender	Text
Editor	to	an	add-on.	Listing	7-3	shows	the	proper	way	to	manage	imports	when
editing	in-filesystem.	Say,	for	example,	we	had	ut.py	sitting	adjacent	to
__init__.py	in	a	flat	directory.	We	would	import	it	as	shown	in	Listing	7-3.

if	"bpy"	in	locals():	#	Runs	if	add-ons	are	being

reloaded	with	F8

				import	importlib

				importlib.reload(ut)

				print('Reloaded	ut.py')

else:	#	Runs	first	time	add-on	is	loaded	from	.

import	ut

				print('Imported	ut.py')

#	bpy	should	be	imported	after	this	block	of	code

import	bpy

Listing	7-3. 	Managing	Imports	While	Editing	In-Filesystem

IDEs	for	In-Filesystem	Development
Developing	in	the	filesystem	fundamentally	changes	the	way	we	develop
Blender	Python	scripts	and	add-ons,	because	it	removes	much	of	the
accessibility	and	modularity	we	previously	enjoyed	in	the	Blender	Interactive
Console	and	Text	Editor.	Nonetheless,	in-filesystem	is	the	best	way	to	develop
published	add-ons,	and	we	will	adjust	our	tools	to	help	us	with	this	endeavor.



published	add-ons,	and	we	will	adjust	our	tools	to	help	us	with	this	endeavor.
Tools	and	features	we	desire	in	an	IDE	for	Blender	Python:

Tab-completion	or	auto-complete,	as	typically	accessed	in	the
Interactive	Console	with	Ctrl+Space

Not	creating	error	marks	or	red	squiggly	lines	when	working	with	bpy,
bmesh,	bgl,	etc.

Python	code	highlighting,	possibly	Blender-specific	code	highlighting,
which	we	discuss	in	a	few	classes	of	options	later

Lightweight	(Notepad++,	Gedit,	and	Vim)
Lightweight	text	editors	are	good	for	simple	add-ons	and	scripts.	In	general,	they
have	the	following	characteristics:

Support	syntax	highlighting	for	Python

Will	not	create	error	tags	and	red	squiggly	lines	for	Blender	modules

Do	not	support	project	management	and	directory	browsing

Do	not	have	tab-completion	built-in

Midweight	(Sublime	Text,	Atom,	and	Spyder)
Midweight	editors	are	a	good	default	for	programmers	who	do	not	want	to	spend
too	long	configuring	their	IDEs.	Generally,	they	are	the	same	as	lightweight
IDEs	but	with	project	management	tools.	They	have	the	following
characteristics:

Support	syntax	highlighting	for	Python

Generally	will	not	create	error	tags	and	red	squiggly	lines	for	Blender
modules

Have	project	management	and	directory	browsing	built-in

Generally	do	not	have	tab-completion	for	Python	built-in

Do	not	have	tab-completion	for	Blender	Python	built-in

Heavyweight	(Eclipse	PyDev,	PyCharm,	and	NetBeans)
Heavyweight	editors	are	good	for	programmers	who	are	already	used	to	them.
They	may	require	some	configuration	to	work	nicely	with	Blender	Python	add-
ons.	The	option	to	configure	is	not	always	available.	They	have	the	following



characteristics:
Support	syntax	highlighting	for	Python

Generally	create	error	tags	and	red	squiggly	lines	for	Blender	modules

Have	project	management	and	directory	browsing	built-in

Have	tab-completion	for	Python	built-in

Do	not	have	tab-completion	for	Blender	Python	built-in

Can	be	configured	to	work	cleanly	with	Blender	Python

Eclipse	PyDev	is	popular	among	the	developer	community,	and	developers	often
ask	how	to	configure	it	to	work	with	Blender	Python.	Eclipse	in	particular	is
very	naggy	about	creating	error	markers	on	Blender	Python	module	calls.
Various	attempts	have	been	made	to	create	configuration	files	for	it,	but	they	are
not	being	actively	maintained.

Compiling	Blender	as	a	Python	Module
So	far,	the	best	catch-all	solution	(for	all	heavyweight	IDEs)	to	lack	of	tab-
completion	is	to	compile	Blender	as	a	Python	module.	When	compiled	as	a
Python	module,	IDEs	can	descend	submodules	of	bpy	and	the	like	to	suggest
corrections	and	enable	tab-completion.	We	do	not	detail	this	solution	here,	as	it
is	not	guaranteed	to	work	across	different	operating	systems.	Linux	users
interested	in	this	solution	are	encouraged	to	research	it.

Compiling	Blender	as	a	module	can	open	up	more	opportunities	for	low-
level	control	of	your	development	process.	Users	who	are	able	to	compile
Blender	as	a	module	are	encouraged	to	check	out	the	Sybren	Stüvel’s	remote
debugger	add-on	for	PyCharm	at	his	Blender	add-on	GitHub	repo	(
https://github.com/sybrenstuvel/random-blender-addons

).	His	add-on	gives	low-level	debugging	control	to	developers	right	inside
PyCharm.

Summary
In	the	author’s	opinion,	midweight	IDEs	are	the	best	solution	for	Blender	Python
development	for	users	who	have	no	particular	loyalty	to	an	IDE.	Many
developers	struggle	to	integrate	Blender	Python	with	heavyweight	IDEs.	It	is	not
difficult	to	settle	for	a	midweight	IDE	and	refer	to	the	Interactive	Console	and
official	documentation	for	API	tips.

https://github.com/sybrenstuvel/random-blender-addons


Best	Practices	for	External	Data
We	shift	gears	here	to	analyze	a	handful	of	popular	add-ons	and	critique	how
they	handle	external	data.	We	discuss	how	to	best	deliver	external	data	by
drawing	on	examples	from	the	Blender	Python	developer	community.

In	Chapter	4,	we	discussed	the	various	ways	in	which	a	3D	mesh	can	be
defined.	Most	notable	in	our	discussion	was	the	extensibility	and	brevity	of	the
.obj	file	format	in	transmitting	mesh,	normal,	and	texture	data	between	different
software.

Blender	Python	add-ons	often	depend	on	predefined	data.	For	example,
BlenderAid’s	Asset	Flinger	allows	users	to	easily	spawn	in	assets	from	a
predefined	list	into	the	scene.	We	discuss	ways	in	which	Asset	Flinger	and	other
add-ons	get	data	into	Blender.

Using	File	Interchange	Formats
The	Asset	Flinger	add-on	imports	meshes	into	Blender	via	.obj	files.	If	we	sift
through	the	assets/	directory	of	the	add-on,	we	see	a	few	dozen	.obj	files
and	screenshots	of	them.	Using	interchange	formats	like	.obj	is	a	good	way	to
get	external	data	into	Blender	Python,	because	it	is	modular	and	standard	to	3D
artists.

This	add-on	allows	users	to	extend	it	by	adding	their	own	.obj	files.	Using
interchange	formats	is	the	best	practice	for	building	extensible	add-ons	with
clear	Python	code.	The	function	in	Listing	7-4	is	all	that	is	required	to	import	a
.obj	file	into	a	Blender	scene.

bpy.ops.import_scene.obj(filepath=myAbsoluteFilepat

h)
Listing	7-4. 	Importing	OBJ	Files	into	a	Scene

As	we	will	see,	other	methods	of	importing	data	can	clutter	your	Python	code
and	make	it	difficult	for	other	developers	to	collaborate	on	it.

Using	Hardcoded	Python	Variables
As	we	discussed	in	Chapter	4,	a	3D	mesh	requires	a	minimum	set	of	information
to	specify	it	completely,	regardless	of	which	file	format	is	used.	Some
developers	have	used	this	knowledge	hardcode	meshes	into	as	Python	variables
in	their	code.

Antonio	Vazquez’s	(antonioya)	Archimesh	add-on	allows	users	to	create	and

https://github.com/BlenderAid/Asset-Flinger


edit	architectural	meshes	such	as	walls,	windows,	and	doors,	with	a	custom	user
interface.	Instead	of	saving	these	doors	and	windows	externally	in	a	file
interchange	format,	he	has	hardcoded	these	meshes	in	Python	as	lists	of	tuples.
See	the	Archimesh	GitHub	Repo	at
https://github.com/Antonioya/blender/blob/master/archimesh/src/

for	examples	of	this.	The	tail	end	of	many	of	the	Python	files	in	this	repo	contain
hardcoded	lists	of	tuples	of	vertex	and	face	data	represented	by	floats	and
integers.

This	design	choice	is	not	without	its	motivations	or	consequences.	In	order	to
create	rooms	with	arbitrary	numbers	of	walls	and	windows	with	arbitrary
numbers	of	panes,	these	Python	variables	are	duplicated,	subsetted,	and
transformed	many	times	in	a	complex	fashion.	As	a	consequence,	these	objects
cannot	be	easily	substituted	for	one	another.	They	are	specifically	designed	to
work	with	the	algorithms	laid	out	in	the	add-on.

The	core	API	calls	here	are	to	bpy.data.meshes.new()	and
my_mesh_object.from_pydata().	The	add-on	creates	a	blank	mesh,
manipulates	a	great	deal	of	Python	data	to	form	the	object,	then	instantiates	the
mesh	using	the	from_pydata()	function	on	the	mesh.	See	Listing	7-5	for	a
minimal	example	of	how	this	add-on	operates.	The	bottom	section	of	Listing	7-5
shows	an	alternate	method	using	bpy.ops.object.add().

#	Adapted	from	Antonio	Vazquez’s	Archimesh	import

bpy

#	Clear	scene

bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Manipulate	Python	lists	of	vertex	and	face

data...

#	Sample	here	creates	a	triangular	pyramid	myvertex

=	[(0.0,	0.0,	0.0),	(1.0,	0.0,	0.0),	(0.0,	1.0,	0.0),

(0.0,	0.0,	1.0)]

myfaces	=	[(1,	2,	3),	(1,	2,	4),	(1,	3,	4),	(2,	3,

4)]

##############################################################

https://github.com/Antonioya/blender/blob/master/archimesh/src/


#		Option	#1	-	bpy.ops.object.add()

bpy.ops.object.add(type	=	'MESH')	mainobject	=

bpy.context.object	mainmesh	=	mainobject.data

mainmesh.name	=	'WindowMesh'

mainobject.name	=	'WindowObject'

#	Write	the	Python	data	to	the	mesh	and	update	it

mainmesh.from_pydata(myvertex,	[],	myfaces)

mainmesh.update(calc_edges	=	True)

##############################################################

#	WARNING:	Known	to	cause	crashes	and	segmentation

faults	in	#	certain	operating	systems.	Linux	builds

are	safe.

#	Option	#2	-	bpy.data.meshes.new()	mainmesh	=

bpy.data.meshes.new("WindowMesh")	mainobject	=

bpy.data.objects.new("WindowObject",	mainmesh)

#	Link	the	object	to	the	scene,	activate	it,	and

select	it	bpy.context.scene.objects.link(mainobject)

bpy.context.scene.objects.active	=	mainobject

mainobject.select	=	True

#	Write	the	Python	data	to	the	mesh	and	update	it

mainmesh.from_pydata(myvertex,	[],	myfaces)

mainmesh.update(calc_edges	=	True)

##############################################################

Listing	7-5. 	Creating	Meshes	with	from_pydata()

Reading	through	the	Archimesh	source	code,	we	can	see	how	a	simple
example	as	in	Listing	7-5	can	evolve	into	something	capable	of	procedurally
generating	architectural	models.	Hardcoding	large	amounts	of	data	may	not	be
the	most	Pythonic	approach	to	procedural	generation,	but	it	is	put	to	good	use	in
Archimesh.	The	argument	can	be	made	that	the	hardcoding	is	unnecessary	and
the	data	could	be	easily	stored	in	external	files,	while	still	allowing	for	the	use	of
from_pydata().

Algorithmic	Manipulation	of	Primitives



Algorithmic	Manipulation	of	Primitives
The	final	method	bringing	mesh	data	into	Blender	is	algorithmic	manipulation	of
primitives	.	Primitives,	in	this	case,	refer	to	objects	in	3D	Viewport	Header	➤
Add	by	default.	It	is	possible,	for	example,	to	algorithmically	call	Edit	Mode
operations	on	a	plane	to	turn	them	into	a	detailed	model	of	a	window.	By
continually	subdividing,	translating,	and	extruding	a	plane,	we	can	arrive	at	a
complex	model	of	a	window.	When	we	do	this,	the	algorithm	becomes	the
descriptor	of	the	mesh,	and	it	can	be	modified	to	create	different	variations	of	the
mesh.

When	we	code	algorithmic	processes	to	create	meshes,	they	are	almost
naturally	modular.	For	example,	if	we	created	an	algorithm	to	build	a	fence	with
20	posts	with	width	of	6	inches,	it	would	naturally	extend	to	an	algorithm	that
builds	fences	with	n	posts	with	width	w.

See	Listing	7-6	for	an	example	of	an	algorithmically	generated	maze.	We
can	adjust	maze_size,	maze_height,	fp,	and	buf	to	alter	the	way	the
maze	is	built.	There	are	many	points	in	the	script	that	we	can	customize	to
further	alter	the	way	the	maze	is	generated.	Such	is	the	nature	of	procedural
generation.	Parameterization	comes	naturally.	See	Figure	7-2	for	an	example	of
the	output.	Note	that	this	requires	the	ut.py	module	available	at
http://blender.chrisconlan.com/ut.py	.

Figure	7-2. 	Randomly	generated	maze

import	bpy

http://blender.chrisconlan.com/ut.py


import	bpy

import	ut

import	random

#	Clear	scene,	must	be	in	object	mode

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	size	of	maze	maze_size	=	20

#	height	of	maze	maze_height	=	1.0

#	Create	NxN	plane

bpy.ops.mesh.primitive_plane_add(radius	=	maze_size/

2,	location=(0,	0,	0.1))

#	Subdivide	and	deselect	mesh

bpy.ops.object.mode_set(mode='EDIT'))

bpy.ops.mesh.subdivide(number_cuts=maze_size	-	1)

bpy.ops.mesh.select_all(action='DESELECT')

#	Set	starting	point	v	=	[-maze_size	2,	-maze_size

2]

#	Stop	iterating	if	point	strays	buf	away	from

plane	buf	=	5

b	=	[-maze_size	2	-	buf,	maze_size	2	+	buf]

#	Probability	of	point	moving	forward	fp	=	0.6

while	b[0]	<=	v[0]	<=	b[1]	and	b[0]	<=	v[1]	<=

b[1]:

						#	Select	square	in	front	of	v

ut.act.select_by_loc(lbound=(v[0]	-	0.5,	v[1]	-	0.5,

0),	ubound=(v[0]	+	1.5,	v[1]	+	1.5,	1),

select_mode='FACE',	coords='GLOBAL',	additive=True)

						#	Returns	0	or	1

						ind	=	random.randint(0,	1)



						#	Returns	-1	or	1	with	probability	1	-	fp	or

fp	dir	=	(int(random.random()	>	1	-	fp)	*	2)	-	1

						#	Adjusts	point	v[ind]	+=	dir

bpy.ops.mesh.select_all(action='INVERT')

bpy.ops.mesh.extrude_region_move(TRANSFORM_OT_translat

e={"value":	(0,	0,	maze_height),	"constraint_axis":

(False,	False,	True)}

																														)

bpy.ops.object.mode_set(mode	=	'OBJECT')

Listing	7-6. 	Algorithmic	Manipulation	of	a	Plane,	Random	Maze

Listing	7-6	uses	randomness	and	algorithmic	manipulation	to	generate	an
object.	It	should	also	be	noted	that	algorithmic	manipulation	is	often	used	to
generate	deterministic	objects.

Summary
As	a	matter	of	best	practice,	it	is	the	author’s	opinion	that	hardcoding	Python
variables	should	be	avoided	in	favor	of	the	other	two	methods:	external
interchange	files	and	algorithmic	manipulation.	Hardcoding	should	be	avoided
mainly	because	external	interchange	files	are	a	superior	replacement	for	it.	All	of
the	benefits	of	hardcoding	can	be	realized	by	reading	the	interchange	file	and
holding	its	data	within	Python	variables.

As	a	matter	of	practicality,	it	is	the	author’s	opinion	that	external	interchange
files	should	be	used	in	place	of	algorithmic	manipulation	where	substantial
parameterization	is	not	required.	Virtually	any	object	can	be	obtained	with	either
method,	but	algorithmic	manipulation	can	become	unduly	complicated	(without
benefit)	in	cases	where	parameterization	is	a	second	thought.	For	example,	if	we
desire	a	very	detailed	window	(1000+	vertices)	and	the	only	thing	we	want	to
parameterize	is	its	size,	algorithmically	generating	this	window	would	be	a	poor
use	of	development	time.	The	preferred	method	here	would	be	loading	in	the
window	from	an	external	interchange	file	and	resizing	it	using	Blender’s	tools.

Conversely,	it	is	easy	to	recognize	when	external	interchange	files	will	not
suffice.	If	the	original	goal	of	the	add-on	is	to	parameterize	a	mesh,	it	is	almost
always	best	to	opt	for	algorithmic	manipulation.



Advanced	Panel	Creation
We	conclude	this	chapter	with	a	discussion	of	advanced	panel	creation	.	The
bpy.types.Panel	class	has	a	handful	of	useful	class	methods	for	organizing
buttons	on	a	panel.	For	this	discussion,	we	use	our	add-on	template	from	Chapter
5.	The	version	used	for	this	discussion	can	be	downloaded	at
http://blender.chrisconlan.com/addon_template.py	.

To	explain	advanced	panel	customization,	we	use	the	properties	and	operator
registered	already	in	the	template.	In	other	words,	we	focus	purely	on	the
draw()	function	of	the	SimplePanel	class.

Panel	Organization
We	have	already	discussed	how	operator()	and	prop()	can	be	called	to
add	buttons	and	type-specific	GUI	elements	to	the	canvas,	respectively.	With
what	we	have	introduced	thus	far,	readers	are	only	able	to	create	vertically
stacked	lists	of	buttons	and	properties	in	their	panels.	Listing	7-7	shows	how	to
use	organizational	functions	to	customize	panels.	See	Figure	7-3	for	the	result.

http://blender.chrisconlan.com/addon_template.py


Figure	7-3. 	Experimenting	with	panel	functions

#	Simple	button	in	Tools	panel	class

SimplePanel(bpy.types.Panel)	bl_space_type	=	"VIEW_3D"

				bl_region_type	=	"TOOLS"

				bl_category	=	"Simple	Addon"

				bl_label	=	"Call	Simple	Operator"

				def	draw(self,	context):	#	Store	reference	to

context.scene	scn	=	context.scene

									#	Store	reference	to	self.layout	lay	=



self.layout

									#	Create	box	box	=	lay.box()

									box.operator("object.simple_operator",

text="Print	#1")	box.prop(scn,	'encouraging_message')

									#	Create	another	box	box	=	lay.box()

									#	Create	a	row	within	it	row	=	box.row()

									#	We	can	jam	a	few	things	on	the	same	row

row.operator("object.simple_operator",	text="Print

#2")	row.prop(scn,	'encouraging_message')

									#	Create	yet	another	box	box	=	lay.box()

									#	Create	a	row	just	for	a	label	row	=

box.row()

									row.label('There	is	a	split	row	below

me!')	#	Create	a	split	row	within	it	row	=	box.row()

									splitrow	=	row.split(percentage=0.2)	#

Store	references	to	each	column	of	the	split	row

left_col	=	splitrow.column()	right_col	=

splitrow.column()

left_col.operator("object.simple_operator",

text="Print	#3")	right_col.prop(scn,

'encouraging_message')

									#	Throw	a	separator	in	for	white	space...

									lay.separator()

									#	We	can	create	columns	within	rows...

									row	=	lay.row()

									col	=	row.column()

									col.prop(scn,	'my_int_prop')	col.prop(scn,

'my_int_prop')	col.prop(scn,	'my_int_prop')	col	=

row.column()

									col.prop(scn,	'my_float_prop')

col.label("I'm	in	the	middle	of	a	column")

col.prop(scn,	'my_float_prop')

									#	Throw	a	few	separators	in...



									lay.separator()

									lay.separator()

									lay.separator()

									#	Same	as	above	but	with	boxes...

									row	=	lay.row()

									box	=	row.box()

									box.prop(scn,	'my_int_prop')

box.label("I'm	in	the	box,	bottom	left.")	box	=

row.box()	box.prop(scn,	'my_bool_prop')

box.operator("object.simple_operator",	text="Print

#4")

Listing	7-7. 	Organizing	Panels

The	core	organizational	functions	of	the	bpy.types.Panel	are	box(),
row(),	column(),	separator(),	and	label().	Each	of	these	five
functions	can	be	nested	within	box(),	row(),	or	column()	for	more
granular	organization.	Overall,	this	is	a	very	intuitive	GUI	development	toolkit.
It	enables	easy	construction	of	aesthetically	pleasing	GUIs.

Note
Blender’s	GUI	is	built	with	these	same	tools.	If	you’re	interested	in	how	to
replicate	a	GUI	element,	right-click	on	it	and	select	Edit	Source	to	see	the
bpy.types.Panel	class	declaration	for	it.

Panel	Icons
Looking	around	the	Blender	GUI,	we	notice	many	different	icons	positioned	to
the	left	of	buttons.	There	are	over	550	icons	built	into	Blender,	all	of	which	we
can	use	next	to	our	own	buttons.	Buttons	are	represented	by	character	strings	that
we	will	pass	to	the	prop()	function	via	the	icon=	argument.	At	the	time	of
writing,	the	most	comprehensive	reference	to	the	available	icons	is	the	Icons
add-on	that	comes	packaged	with	Blender.	After	activating	it,	press	Ctrl+F	in
the	Blender	Text	Editor	to	see	the	properties	panel,	where	it	will	be	located	at	the
bottom.	Listing	7-8	shows	how	we	draw	icons	in	the	panel	next	to	our	operators.
See	Figure	7-4	for	the	result.



Figure	7-4. 	Experimenting	with	panel	icons

class	SimplePanel(bpy.types.Panel):	bl_space_type	=

"VIEW_3D"

				bl_region_type	=	"TOOLS"

				bl_category	=	"Simple	Addon"

				bl_label	=	"Call	Simple	Operator"

				def	draw(self,	context):	#	Store	reference	to

context.scene	scn	=	context.scene

								#	Store	reference	to	self.layout	lay	=



self.layout

								#	Create	a	row	within	it	row	=	lay.row()

								row.operator("object.simple_operator",

text="#1",

icon='OBJECT_DATA')row.operator("object.simple_operato

r",	text="#2",

icon='WORLD_DATA')row.operator("object.simple_operator

",	text="#3",	icon='LAMP_DATA')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#4",

icon='SOUND')row.operator("object.simple_operator",

text="#5",

icon='MATERIAL')row.operator("object.simple_operator",

text="#6",	icon='ERROR')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#7",

icon='CANCEL')row.operator("object.simple_operator",

text="#8",

icon='PLUS')row.operator("object.simple_operator",

text="#9",	icon='LOCKED')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#10",

icon='HAND')row.operator("object.simple_operator",

text="#11",

icon='QUIT')row.operator("object.simple_operator",

text="#12",	icon='GAME')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#13",

icon='PARTICLEMODE')row.operator("object.simple_operat

or",	text="#14",



icon='MESH_MONKEY')row.operator("object.simple_operato

r",	text="#15",	icon='FONT_DATA')

								row	=

lay.row()row.operator("object.simple_operator",

text="#16",	icon='SURFACE_NSPHERE')

row.operator("object.simple_operator",	text="#17",

icon='COLOR_RED')row.operator("object.simple_operator"

,	text="#18",	icon='FORCE_LENNARDJONES')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#19",

icon='MODIFIER')row.operator("object.simple_operator",

text="#20",

icon='MOD_SOFT')row.operator("object.simple_operator",

text="#21",	icon='MOD_DISPLACE')

								row	=	lay.row()

								row.operator("object.simple_operator",

text="#22",	icon='IPO_CONSTANT')

row.operator("object.simple_operator",	text="#23",

icon='GRID')row.operator("object.simple_operator",

text="#24",	icon='FILTER')

Listing	7-8. 	Panel	Icons

Conclusion
Thus	concludes	our	discussion	of	advanced	add-ons.	This	guide	is	by	no	means
comprehensive,	as	there	are	many	places	and	possibilities	to	explore	when	it
comes	to	add-on	development.	It	is	important	to	remember	that	the	Blender	GUI
itself	is	built	on	the	Python	classes	we	have	been	discussing,	so	every
functionality	we	see	can	be	replicated.

The	background	knowledge	on	add-on	organization	in	this	chapter	should
allow	readers	to	more	easily	understand	the	source	code	of	other	developers.
Blender	is	an	open	source	platform	that	encourages	users	to	share	code	and	learn
from	each	other.	Readers	are	encouraged	to	copy	and	modify	work	from	other
developers,	then	share	their	work	for	others	to	learn	from.

The	next	chapter	concludes	this	text	with	a	treatment	of	texturing	and



The	next	chapter	concludes	this	text	with	a	treatment	of	texturing	and
rendering.
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So	far,	we	have	constrained	our	code	examples	to	the	creation	of	meshes	and
add-ons	in	Blender.	For	3D	artists	and	animators,	the	goal	of	3D	modeling	is	to
make	a	scene	come	to	life	with	rendered	images	and	videos.	Rendering	in
Blender	Python	is	actually	very	simple,	typically	requiring	only	a	single	function
call.	To	bring	us	to	the	point	where	we	want	to	render	our	scenes,	we	will
discuss	texturing,	lighting,	and	camera	placement.

By	the	end	of	this	chapter,	users	will	be	able	to	create	automated	pipelines
for	texturing,	lighting,	camera	placement,	and	still	rendering.	While	it	is	possible
to	render	animated	video	with	Blender	Python,	we	will	limit	our	discussion	here
to	rendering	still	images.

Vocabulary	of	Textures
There	are	many	types	of	textures	in	general,	and	many	extra	parameterized	types
in	Blender.	Our	first	example	uses	diffuse	textures	and	normal	maps	to	illustrate
how	materials	function	in	Blender.	Before	we	proceed,	we	will	establish	some
new	vocabulary	about	textures.

Types	of	Influence	in	Blender
While	these	effects	are	categorized	as	influences	in	Blender,	they	traditionally
refer	to	types	of	textures	in	the	broad	domain	of	3D	modeling.	Blender	has	its
own	types	of	textures,	each	of	which	can	adopt	any	of	these	influences.	See
Figure	8-1	for	the	location	of	these	influences	in	the	Blender	GUI.	They	can	be
found	in	Properties	➤	Materials	➤	Influence.



Diffuse	textures	are	for	coloring	the	object.	Diffuse	textures	can	describe
the	color,	intensity,	alpha	levels,	and	translucency	of	objects	in	Blender.	To
overlay	an	image	on	the	face	of	an	object,	we	use	a	diffuse	color	texture.

Shading	textures	describe	how	the	object	interacts	with	others	in	the	scene.
If	we	want	the	object	to	mirror	another,	to	emit	color	onto	another,	or	spill
ambient	light	into	the	scene,	we	specify	the	requisite	shading	properties	in
Blender.

Specular	textures	describe	how	the	object	reacts	to	light.	For	example,	if	we
supplied	an	image	of	static	fuzz	(as	one	might	see	on	an	old	TV	screen)	as	a
specular	texture,	the	light	would	reflect	off	the	object	like	shiny	grains	of
sand.	We	can	fine-tune	specular	maps	by	specifying	how	intensely	and	in
what	direction	the	colors	react	to	light.

Geometry	textures	allows	the	object	to	affect	the	geometric	appearance	of
the	object.	For	example,	if	we	supplied	black	and	white	stripes	to	a
geometric	map	and	specified	a	normal	map,	we	would	see	3D	ridges	in	our
model.	It	is	important	to	note	that	these	effects	are	realized	only	in
rendering,	not	in	the	mesh	data	itself.



Figure	8-1. 	Influences	in	Blender

Types	of	Textures	in	Blender
Though	we	will	mainly	be	working	with	image	textures,	Blender	has	numerous
customizable	textures	we	can	choose	from.	These	are	selected	from	the
Properties	➤	Materials	➤	Type	menu	shown	in	in	Figure	8-2.



Figure	8-2. 	Texture	types	in	Blender

The	Image	and	Video	and	Environment	Map	options	can	import	image	and
video	files.	The	remaining	textures	can	be	parameterized	in	Blender	to	achieve
the	desired	result.	We	do	not	detail	how	to	work	with	any	of	these	parameterized
textures	specifically,	as	would	be	many	dozens	of	parameters	to	discuss.	Listing
8-1	explains	how	to	work	with	the	parameters	of	the	Image	and	Video	type	in
order	to	texture	an	object.	From	here,	readers	should	be	able	to	replicate	this
process	for	any	of	the	remaining	types	using	Blender’s	Python	tooltips.

Adding	and	Configuring	Textures



Adding	and	Configuring	Textures
We	touched	on	the	definition	of	textures	in	Chapter	4	while	discussing	file
interchange	formats.	Textures	are	mapped	to	a	face	in	3D	space	via	uv
coordinates.	To	map	a	square	image	as	a	texture	to	a	square	face	of	a	mesh,	we
specify	uv	coordinates	[(0,	0),	(1,	0),	(0,	1),	(1,	1)]	to	the
bottom-left,	bottom-right,	top-left,	and	top-right	points	of	the	mesh,	respectively.
As	shapes	of	faces	become	more	complicated,	so	do	the	processes	required	to
achieve	the	desired	texture	mappings.	We	discuss	method	for	mapping	uv
coordinates	to	common	shapes	next.

Loading	Textures	and	Generating	UV	Mappings
Due	to	the	manner	in	which	Blender	handles	texture	imports	and	materials,	uv
mapping	is	not	an	altogether	straightforward	task.	We	have	to	overcome	a	few
procedural	hurdles	in	order	to	reach	the	point	in	our	script	where	we	can
explicitly	define	the	uv	coordinates	on	our	object.	Once	we	reach	this	point,
precise	specification	of	uv	coordinates	is	fairly	straightforward.	We	explain	by
way	of	example	in	Listing	8-1.

We	use	sample	images	of	the	numbers	1	and	2	in	our	example	that	can	be
downloaded	at	http://blender.chrisconlan.com/number_1.png
and	http://blender.chrisconlan.com/number_2.png	.	Readers
can	use	these	images	or	any	other	desired	image	for	Listing	8-1.	See	Figure	8-4
for	the	result.	We	discuss	the	functions	used	in	Listing	8-1	in	the	following
sections.

Note
After	running	this	script,	view	the	results	by	selecting	Rendered	view	in	the
3D	Viewport	Header,	as	shown	in	Figure	8-3.

http://blender.chrisconlan.com/number_1.png
http://blender.chrisconlan.com/number_2.png


Figure	8-3. 	Selecting	rendered	view

import	bpy

import	bmesh

from	mathutils	import	Color

#	Clear	scene	bpy.ops.object.mode_set(mode='OBJECT')

bpy.ops.object.select_all(action='SELECT')

bpy.ops.object.delete()

#	Create	cube	bpy.ops.mesh.primitive_cube_add(radius	=

1,	location	=	(0,	0,	0))	bpy.ops.object.mode_set(mode

=	'EDIT')

#	Create	material	to	hold	textures	material_obj	=

bpy.data.materials.new('number_1_material')

###	Begin	configure	the	number	one	###

#	Path	to	image	imgpath	=

'homecconlan/Desktop/blender-

book/ch08_pics/number_1.png'

image_obj	=	bpy.data.images.load(imgpath)

#	Create	image	texture	from	image	texture_obj	=

bpy.data.textures.new('number_1_tex',	type='IMAGE')

texture_obj.image	=	image_obj

#	Add	texture	slot	for	image	texture	texture_slot	=

material_obj.texture_slots.add()	texture_slot.texture

=	texture_obj

###	Begin	configuring	the	number	two	###

#	Path	to	image	imgpath	=

'homecconlan/Desktop/blender-

book/ch08_pics/number_2.png'

image_obj	=	bpy.data.images.load(imgpath)

#	Create	image	texture	from	image	texture_obj	=

bpy.data.textures.new('number_2_tex',	type='IMAGE')



texture_obj.image	=	image_obj

#	Add	texture	slot	for	image	texture	texture_slot	=

material_obj.texture_slots.add()	texture_slot.texture

=	texture_obj

#	Tone	down	color	map,	turn	on	and	tone	up	normal

mapping	texture_slot.diffuse_color_factor	=	0.2

texture_slot.use_map_normal	=	True

texture_slot.normal_factor	=	2.0

###	Finish	configuring	textures	###

#	Add	material	to	current	object

bpy.context.object.data.materials.append(material_obj)

###	Begin	configuring	UV	coordinates	###

bm	=

bmesh.from_edit_mesh(bpy.context.edit_object.data)

bm.faces.ensure_lookup_table()

#	Index	of	face	to	texture	face_ind	=	0

bpy.ops.mesh.select_all(action='DESELECT')

bm.faces[face_ind].select	=	True

#	Unwrap	to	instantiate	uv	layer	bpy.ops.uv.unwrap()

#	Grab	uv	layer	uv_layer	=	bm.loops.layers.uv.active

#	Begin	mapping...

loop_data	=	bm.faces[face_ind].loops

#	bottom	right	uv_data	=	loop_data[0][uv_layer].uv

uv_data.x	=	1.0

uv_data.y	=	0.0

#	top	right	uv_data	=	loop_data[1][uv_layer].uv

uv_data.x	=	1.0

uv_data.y	=	1.0

#	top	left

uv_data	=	loop_data[2][uv_layer].uv	uv_data.x	=	0.0

uv_data.y	=	1.0



uv_data.y	=	1.0

#	bottom	left	uv_data	=	loop_data[3][uv_layer].uv

uv_data.x	=	0.0

uv_data.y	=	0.0

#	Change	background	color	to	white	to	match	our

example	bpy.data.worlds['World'].horizon_color	=

Color((1.0,	1.0,	1.0))

#	Switch	to	object	mode	to	add	lights

bpy.ops.object.mode_set(mode='OBJECT')

#	Liberally	add	lights	dist	=	5

for	side	in	[-1,	1]:	for	coord	in	[0,	1,	2]:	loc	=	[0,

0,	0]

								loc[coord]	=	side	*	dist

bpy.ops.object.lamp_add(type='POINT',	location=loc)

#	Switch	to	rendered	mode	to	view	results

Listing	8-1. 	Loading	Textures	and	Generating	UV	Maps



Figure	8-4. 	Explicitly	mapping	UV	coordinates

Textures	Versus	Materials	in	Blender
Texture	is	a	broad	term	in	3D	modeling.	It	can	refer	to	diffuse	textures,	color
textures,	gradient	textures,	bump	maps,	and	more.	It	is	important	to	note	that	we
can	map	all	of	these	forms	of	textures	to	an	object	simultaneously.	For	example,
a	set	of	shingles	on	the	roof	of	a	house	may	require	an	image	texture,	a	diffuse
map,	and	a	bump	map	in	order	to	appear	realistic	when	rendered.

Additionally,	it	is	common	for	the	image,	diffuse	map,	and	bump	map	of	a
real-world	material	to	be	built	specifically	for	each	other.	In	our	shingle
example,	the	bump	map	would	define	the	ridges	between	the	physical	shingles
as	they	appear	in	the	image	texture.	The	diffuse	map	would	further	define	the
shiny	particles	we	typically	see	on	roof	shingles.	By	design,	the	files	that
represent	the	images	and	maps	would	not	necessarily	work	with	other	files	from
outside	the	set.	This	is	the	motivation	for	materials	in	Blender.

A	material	in	Blender	is	a	collection	of	texture-related	data.	It	may	include
any	of	the	images	and	maps	mentioned	previously,	and	it	may	include	others	like
normal	and	alpha	maps.	So,	we	must	first	build	the	material	from	its	constituent
textures,	then	assign	the	material	to	the	object.	Regardless	of	whether	we	have
one	or	many	textures	comprising	a	material,	texture	data	must	be	assigned	to	the
material.	Then,	materials	must	be	assigned	to	the	object.

This	discussion	reveals	the	motivation	behind	material	management	in
Listing	8-1.	We	declare	and	manipulate	all	required	textures	first,	then	we	add
the	entire	material	to	the	object	via
bpy.context.object.data.materials.append().	From	here,	we
can	manipulate	the	uv	coordinates	of	the	entire	material.

UV	Coordinates	and	Loops
The	second	half	of	Listing	8-1	accesses	a	data	endpoint	we	have	not	worked	with
previously.	The	uv	coordinate	data	layer	we	aim	to	access	is	contained	within	a
loops	object.	Loops	can	be	thought	of	as	3D	polygons	that	trace	a	set	of	vertices
of	a	3D	object.	Loops	can	span	multiple	faces,	but	must	start	and	end	on	the
same	point.	When	loops	span	multiple	faces,	they	are	intended	to	capture	a
localized	set	of	adjacent	faces.

3D	artists	have	access	to	advanced	tools	that	help	them	create	loops.	These
loops	then	aid	them	in	manual	assignment	of	uv	coordinates.	While	we	will	not
be	manipulating	these	loops	in	Blender	Python,	it	is	important	to	understand	how
they	work,	because	the	loops	data	object	lies	between	the	mesh	itself	and	the



uv	layer.
Fortunately,	loops	data	objects	in	Blender	have	a	1-to-1	correspondence	with

bmesh.faces[].verts[]	objects,	which	we	are	used	to	working	with.	In
other	words,	the	(u,	v)	coordinates	accessed	by	bm.faces[f].loops[v]
[uv_layer].uv	correspond	to	the	(x,	y,	z)	coordinates	accessed	by
bm.faces[f].verts[v].co	for	any	two	integers,	f	and	v.

It	is	important	to	note	that	two	integers	f	and	v	may	not	specify	a	unique
point	in	3D	space.	In	a	default	Blender	2.78c	cube,	as	it	appears	in	the	startup
file,	f:v	pairs	0:2,	3:3,	and	4:0	all	correspond	to	the	point	(-1.0,	-1.0,
-1.0)	in	3D	space.	When	the	cube	is	textured,	these	uv	coordinates	will
typically	be	unique,	because	they	will	all	correspond	to	different	parts	of	the
texture	map.

Another	Note	on	Indexing	and	Cross-Compatibility
When	dynamically	texturing	objects,	we	run	into	a	problem	similar	to	that
mentioned	in	Chapter	3’s	“Note	on	Indexing	and	Cross-Compatibility”.	In	that
section,	we	noted	that	the	behavior	of	vertex	indices	were	replicable	but
untamable,	thus	justifying	selection	by	characteristic	as	a	workaround
(implemented	in	Listing	3-13).	The	same	concept	applies	here,	except	we	must
work	with	bm.faces[f].verts[v].co	as	opposed	to	just
bm.verts[v].co.

For	example,	say	we	wanted	to	place	a	texture	upright	along	on	the	y-axis	on
the	top	of	a	cube.	One	possible	solution	is	to	use
ut.act.select_by_loc()	from	our	ut.py	toolkit	to	select	the	top	face
of	the	cube	based	on	its	location.	From	here,	we	can	use	f_ind	=	[f.index
for	f	in	bm.faces	if	f.select][0]	to	return	the	selected	face	index.
Using	the	face	index,	we	can	store	the	face’s	vertices	as	vert_vectors	=
[v.co	for	v	in	bm.faces[f_ind.verts]]	and	use	this	information	to
orient	our	texture	along	the	cube.

Our	other	option	is	to	operate	against	the	advice	of	the	Chapter	3’s	“Note	on
Indexing	and	Cross-Compatibility”	by	assuming	we	know	the	location	and
orientation	of	the	face	vertices	of	an	object	in	advance	of	texturing	it.	We	can
often	determine	this	information	in	advance	and	hardcode	it	into	our	texturing
scripts	as	we	did	in	Listing	8-1.	This	is	a	viable	option	for	controlled	and	internal
use	but	is	advised	against	for	code	that	we	will	share	with	the	community	and
that	is	tested	for	cross-version	compatibility.

Based	on	our	discussion	up	to	this	point,	readers	should	have	the	tools	and



knowledge	available	to	implement	their	desired	dynamic	(or	non-dynamic)
texturing	scripts.	The	referenced	section	of	Chapter	3,	along	with	its	following
sections,	are	a	strong	analogue	to	any	dynamic	texturing	task	readers	may
undertake.

We	now	move	on	to	discuss	rendering	in	Blender	and	some	of	its	uses.

Removing	Unused	Textures	and	Materials
We	have	discussed	many	useful	functions	for	deleting	meshes	and	objects	in
Blender.	As	we	continually	test	scripts,	our	materials	and	textures	data	can
quickly	become	cluttered	without	our	realizing.	Blender	will	rename	textures	to
my_texture.001,	my_texture.002,	etc.	when	we	neglect	to	delete	them.

Textures	and	materials	must	have	no	users	in	order	to	be	eligible	for
deletion.	In	this	case,	users	refers	to	the	number	of	objects	that	currently	have	it
assigned.	To	delete	textures	and	materials,	we	loop	through	our
bpy.data.materials	and	bpy.data.textures	datablocks	and	call
.remove()	on	those	that	are	not	in	use.	See	Listing	8-2	for	this
implementation.

import	bpy

mats	=	bpy.data.materials	for	dblock	in	mats:	if

not	dblock.users:	mats.remove(dblock)

texs	=	bpy.data.textures	for	dblock	in	mats:	if	not

dblock.users:	texs.remove(dblock)

Listing	8-2. 	Loading	Textures	and	Generating	UV	Maps

Rendering	Using	Blender	Render
Using	Blender’s	built-in	rendering	functions	is	very	straightforward.	We
introduce	and	explain	how	to	position	lights	and	cameras	in	a	scene,	then	call	the
rendering	function	to	create	an	image.	The	majority	of	our	discussion	focuses	on
semantics	and	helper	functions	for	cameras	and	lights.

Adding	Lights
In	Listing	8-1,	we	added	six	lights	around	our	cube	to	make	it	viewable	in



Blender’s	Rendered	view	in	the	3D	Viewport.	Properly	using	this	view,	and
rendering	in	general,	requires	lights.	Lighting	is	an	important	and	large	domain
in	3D	modeling	in	and	of	itself.	In	this	section,	we	focus	on	Blender	Python
functions	related	to	lighting	rather	than	general	practices	for	aesthetically
pleasing	lighting.

In	the	3D	Viewport	Header,	we	can	navigate	to	Add	➤	Lamp	to	select	any
of	Blender’s	built-in	lights.	Using	Python	tooltips,	we	can	see	that	they	all	rely
on	the	function	bpy.ops.object.lamp_add(),	with	the	type=
parameter	determining	the	type	of	light.	We	have	the	options	SUN,	POINT,
SPOT,	HEMI,	and	AREA.	Each	of	these	types	has	its	own	sets	of	parameters	to
configure.

Our	primary	concerns	when	it	comes	to	procedurally	generated	lighting	are
placement	and	direction.	We	will	introduce	some	utilities	for	managing
placement	and	direction.	For	example,	to	lazily	light	our	entire	scene,	we	may
want	to	create	point	lights	around	the	aggregate	bounding	box	of	the	scene.
Additionally,	we	may	want	to	point	a	spotlight	directly	at	another	arbitrarily
placed	object.	See	Listing	8-3	for	a	list	of	utilities	that	may	help	with
procedurally	adding	lights.	All	of	the	functions	we	declare	in	Listing	8-3	have
been	added	to	our	toolkit	ut.py,	which	can	be	downloaded	at
http://blender.chrisconlan.com/ut.py	.

See	Table	8-1	for	a	basic	description	of	each	type	of	light

Table	8-1. 	Types	of	Lights
Type Description
Point Emits	lights	equally	in	all	directions;	rotation	has	no	effect
Spot Emits	a	cone	of	light	in	a	particular	direction
Area Emits	light	from	a	rectangular	area;	follows	a	Lambert	distribution
Hemispheric Similar	to	area,	but	has	spherical	curvature
Sun Emits	orthogonal	light	in	a	particular	direction;	position	has	no	effect

Adding	Cameras
Rendering	a	scene	requires	a	camera.	To	procedurally	add	a	camera,	we	must
position	it,	adjust	its	direction,	and	modify	its	parameters.	We	will	use	the
functions	in	Listing	8-3	to	position	and	direct	the	cameras	as	well	as	lights.

The	biggest	problem	we	must	solve	when	procedurally	generating	cameras	is
determining	the	distance	and	field	of	view	such	that	the	entire	scene	will	be
captured	without	appearing	too	small	in	the	rendering.	We	will	use	some	basic
trigonometry	to	solve	these	problems.

http://blender.chrisconlan.com/ut.py


The	field	of	view	(FoV)	is	a	pair	of	two	angles	(θ	x	,	θ	y	)	projecting	outward
from	a	camera	that	defines	an	infinitely	extending	rectangular	pyramid.
Everything	lying	within	this	rectangular	pyramid	can	be	seen	by	the	camera	if
there	is	nothing	in	front	of	it.	To	give	some	perspective,	an	iPhone	6	camera	has
a	FoV	of	about	(63°,	47°)	degrees	when	in	landscape	mode.	Note	that	when
photographers	refer	to	FoV	colloquially,	they	commonly	refer	to	only	the	larger
of	the	two	angles.

We	must	understand	FoV	so	that	we	can	ensure	the	placement	and
calibration	of	the	camera	captures	the	scene	we	want	to	render.

Given	a	camera	with	FoV	(θ	x	,	θ	y	)	centered	along	and	facing	a	scene	with
bounding	box	of	height	h	and	width	w,	the	distance	from	the	scene	d	required	to
capture	the	scene	is	max(d	x	,	d	y	).	For	this	discussion,	d	x	and	d	y	represent	the
requisite	distance	to	capture	the	scene	along	the	horizontal	and	vertical
dimensions,	respectively.	See	Figure	8-5	for	a	visual	representation.	Using	basic
trigonometry,	we	arrive	at

Figure	8-5. 	Field	of	view	along	the	y-axis

	

This	only	accounts	for	the	simple	case	where	the	camera	is	pointing	along	the	x-
or	y-axis,	but	it	will	suffice	for	our	purposes.	In	Listing	8-4,	we	use	utility
functions	established	previously	to	direct	the	camera	such	that	it	can	render	the
entire	visible	scene.

#	Point	a	light	or	camera	at	a	location	specified

by	"target"

def		point_at(ob,	target):	ob_loc	=	ob.location

dir_vec	=	target	-	ob.location	ob.rotation_euler	=

dir_vec.to_track_quat('-Z',	'Y').to_euler()



#	Return	the	aggregate	bounding	box	of	all	meshes

in	a	scene	def	scene_bounding_box():

					#	Get	names	of	all	meshes	mesh_names	=	[v.name

for	v	in	bpy.context.scene.objects	if	v.type	==

'MESH']

					#	Save	an	initial	value	#	Save	as	list	for

single-entry	modification	co	=	coords(mesh_names[0])

[0]

					bb_max	=	[co[0],	co[1],	co[2]]

					bb_min	=	[co[0],	co[1],	co[2]]

					#	Test	and	store	maxima	and	minima	for	i	in

range(0,	len(mesh_names)):	co	=	coords(mesh_names[i])

for	j	in	range(0,	len(co)):	for	k	in	range(0,	3):	if

co[j][k]	>	bb_max[k]:	bb_max[k]	=	co[j][k]

																	if	co[j][k]	<	bb_min[k]:	bb_min[k]

=	co[j][k]

					#	Convert	to	tuples	bb_max	=	(bb_max[0],

bb_max[1],	bb_max[2])	bb_min	=	(bb_min[0],	bb_min[1],

bb_min[2])

					return	[bb_min,	bb_max]

Listing	8-3. 	Utilities	for	Lights	and	Cameras

Rendering	an	Image
Rendering	is	the	process	of	computing	high-resolution	imagery	and	video	given
3D	data.	Rendering	is	not	instantaneous.	While	the	3D	Viewport	in	Blender
seems	to	move	fluidly	as	we	translate	and	rotate	the	camera,	rendering	can	take	a
considerable	amount	of	time.	The	3D	Viewport	is	an	instantaneous	rendering	of
the	3D	data,	but	it	does	not	represent	the	same	level	of	quality	or	definition	as	a
traditional	rendering.

In	Listing	8-4,	we	render	the	output	of	Listing	8-1	using	both	Blender	Render
and	OpenGL	render.	This	example	assumes	positions	the	camera	to	point
upward	along	the	x-axis	at	the	median	of	the	scene,	from	the	yz-median	of	the
scene,	such	that	it	will	capture	the	whole	scene.	We	use	the	equations	discussed



previously	to	accomplish	this.	Recall	that	these	equations	assume	the	simple	case
that	we	are	pointing	the	camera	along	an	axis.

The	resulting	rendering	captures	the	object	squarely	within	the	frame.	See
Figure	8-6	for	the	Blender	Render	of	the	cube	created	in	Listing	8-1.	For	the
Blender	Render,	the	scene’s	camera	is	used	as	the	rendering	camera.	This	is	why
it	is	important	to	know	how	to	set	the	camera’s	position	procedurally.	If	we	want
to	loop	through	and	render	many	scenes,	we	need	to	be	confident	that	the	scene
will	be	captured	within	the	frame.

Figure	8-6. 	Blender	Render

We	can	also	render	a	snapshot	of	the	3D	Viewport	using	OpenGL	render.
This	will	capture	basic	features	of	the	scene	similar	to	how	we	see	the	3D
Viewport	in	Object	Mode	with	Solid	view.	See	Figure	8-7	for	the	result.	Note
that	we	can	see	both	the	lights	and	camera,	but	not	the	materials,	in	this	view.
When	we	call	bpy.ops.render.opengl(),	setting	view_context	=
True	will	cause	Blender	to	use	the	3D	Viewport	camera	(the	user’s	view)	rather
than	the	scene	camera.



Figure	8-7. 	OpenGL	rendering

###	Assumes	output	of	Listing	8-1	is	in	scene	at

runtime	###

import	bpy

import	bmesh

import	ut

from	math	import	pi,	tan	from	mathutils	import

Vector

#	Get	scene's	bounding	box	(meshes	only)	bbox	=

ut.scene_bounding_box()

#	Calculate	median	of	bounding	box	bbox_med	=	(

(bbox[0][0]	+	bbox[1][0])/2,	(bbox[0][1]	+	bbox[1]

[1])/2,	(bbox[0][2]	+	bbox[1][2])/2	)

#	Calculate	size	of	bounding	box	bbox_size	=	(

(bbox[1][0]	-	bbox[0][0]),	(bbox[1][1]	-	bbox[0][1]),

(bbox[1][2]	-	bbox[0][2])	)



#	Add	camera	to	scene

bpy.ops.object.camera_add(location=(0,	0,	0),

rotation=(0,	0,	0))	camera_obj	=	bpy.context.object

camera_obj.name	=	'Camera_1'

#	Required	for	us	to	manipulate	FoV	as	angles

camera_obj.data.lens_unit	=	'FOV'

#	Set	image	resolution	in	pixels	#	Output	will	be

half	the	pixelage	set	here	scn	=	bpy.context.scene

scn.render.resolution_x	=	1800

scn.render.resolution_y	=	1200

#	Compute	FoV	angles	aspect_ratio	=

scn.render.resolution_x	/	scn.render.resolution_y

if	aspect_ratio	>	1:	camera_angle_x	=

camera_obj.data.angle	camera_angle_y	=	camera_angle_x

/	aspect_ratio	else:	camera_angle_y	=

camera_obj.data.angle	camera_angle_x	=	camera_angle_y

*	aspect_ratio

#	Set	the	scene's	camera	to	our	new	camera

scn.camera	=	camera_obj

#	Determine	the	distance	to	move	the	camera	away

from	the	scene	camera_dist_x	=	(bbox_size[1]/2)

(tan(camera_angle_x	/	2)	*	-1)	camera_dist_y	=

(bbox_size[2]/2)	(tan(camera_angle_y	/	2)	*	-1)

camera_dist	=	max(camera_dist_x,	camera_dist_y)

#	Multiply	the	distance	by	an	arbitrary	buffer

camera_buffer	=	1.10

camera_dist	*=	camera_buffer

#	Position	the	camera	to	point	up	the	x-axis

camera_loc	=	(bbox[0][1]	-	camera_dist,	bbox_med[1],

bbox_med[2])

#	Set	new	location	and	point	camera	at	median	of



scene	camera_obj.location	=	camera_loc

ut.point_at(camera_obj,	Vector(bbox_med))

#	Set	render	path	render_path	=

'homecconlan/Desktop/blender_render.png'

bpy.data.scenes['Scene'].render.filepath	=

render_path

#	Render	using	Blender	Render

bpy.ops.render.render(	write_still	=	True	)

#	Set	render	path	render_path	=

'homecconlan/Desktop/opengl_render.png'

bpy.data.scenes['Scene'].render.filepath	=

render_path

#	Render	3D	viewport	using	OpenGL	render

bpy.ops.render.opengl(	write_still	=	True	,

view_context	=	True	)

Listing	8-4. 	Rendering	Using	Blender	Render	and	OpenGL	Render

Conclusion
This	chapter	concludes	our	discussion	of	the	Blender	Python	API.	Even	with	its
many	examples,	this	text	is	not	a	comprehensive	guide.	This	is	a	testament	to	the
complexity	and	modularity	of	Blender	more	than	anything	else.	Blender	can	be
edited,	tweaked,	customized,	and	expanded	using	the	Python	API.	The	author	of
this	book	and	the	dedicated	professionals	that	assisted	in	its	development	hope
that	this	knowledge	helps	encourages	research	and	development	in	the	Blender
community.
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