

Early praise for 3D Game Programming for Kids

I was thrilled how much my son got into programming as a result of this book. He

spent hours with it and was often surprised when his “screen time” was over because

the time just flew by. Although the book doesn’t delve into the fundamentals of software

programming (how computers store and retrieve data), kids get to see the results of

their programming right away—the pictures and animations that they created—and

are hooked into wanting to learn more.

➤ Mark Musante, professional software designer

I would recommend this book to anyone my age that is interested in coding or tech-

nology. It was very helpful and insightful about the basic (and the more complex) parts

of standard coding. This book would be great for anyone looking to jump head-first

into coding.

➤ Hana B., age 15

This is the best book a beginning programmer could get. It teaches programming

concepts in fun and entertaining ways. This book is a great start in learning to program!

➤ Alec M., age 13

It has been great fun reading this book. It takes me back to when I fell in love with

programming. After having spent the past twenty years programming solutions on the

server side, I find this 3D book a welcome diversion that offers new concepts and ideas

with instant visual feedback! I hope the book finds its way into the hands of an inquis-

itive child who gets hooked on computer programming like I did.

➤ Darren Hunt, director of Algorithmic Solutions Limited

3D Game Programming for Kids
Create Interactive Worlds with JavaScript

Chris Strom

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Fahmida Rashid (editor)

Potomac Indexing, LLC (indexer)

Candace Cunningham (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-44-4

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—September, 2013

http://pragprog.com

For Greta, so that she knows she can do

anything.

Contents

Acknowledgments xiii

Introduction xv

1. Project: Creating Simple Shapes 1

Programming with the ICE Code Editor 11.1

1.2 Making Shapes with JavaScript 4

1.3 Animating the Shapes 14

1.4 The Code So Far 15

1.5 What’s Next 15

2. Playing with the Console and Finding What’s Broken . . . 17

Getting Started 172.1

2.2 Opening and Closing the JavaScript Console 18

2.3 Debugging in ICE: The Red X 19

2.4 Debugging in ICE: The Yellow Triangle 19

2.5 Debugging in the Console 20

2.6 Recovering When ICE Is Broken 23

2.7 What’s Next 24

3. Project: Making an Avatar 25

Getting Started 263.1

3.2 Making a Whole from Parts 26

3.3 Breaking It Down 28

3.4 Adding Feet for Walking 29

3.5 Challenge: Make the Avatar Your Own 31

3.6 Doing Cartwheels 32

3.7 The Code So Far 34

3.8 What’s Next 34

4. Project: Moving Avatars 35

Getting Started 354.1

4.2 Building Interactive Systems with Keyboard Events 36

4.3 Converting Keyboard Events into Avatar Movement 37

4.4 Challenge: Start/Stop Animation 39

4.5 Building a Forest with Functions 40

4.6 Moving the Camera with the Avatar 43

4.7 The Code So Far 47

4.8 What’s Next 47

5. Functions: Use and Use Again 49

Getting Started 495.1

5.2 Understanding Simple Functions 53

5.3 When Things Go Wrong 54

5.4 Weird Tricks with Functions 57

5.5 The Code So Far 58

5.6 What’s Next 58

6. Project: Moving Hands and Feet 59

Getting Started 596.1

6.2 Moving a Hand 59

6.3 Swinging Hands and Feet Together 63

6.4 Walking When Moving 63

6.5 The Code So Far 66

6.6 What’s Next 66

7. A Closer Look at JavaScript Fundamentals 67

Getting Started 677.1

7.2 Describing a Thing in JavaScript 67

7.3 Changing Things 69

7.4 Repeating and Skipping Code with while and if 74

7.5 Listing Things 77

7.6 What Makes JavaScript Different 78

7.7 What’s Next 78

8. Project: Turning Our Avatar 79

Getting Started 798.1

8.2 Facing the Proper Direction 79

8.3 Breaking It Down 81

8.4 Animating the Spin 82

Contents • viii

8.5 The Code So Far 84

8.6 What’s Next 84

9. What’s All That Other Code? 85

Getting Started 859.1

9.2 A Quick Introduction to HTML 85

9.3 Setting the Scene 87

9.4 Using Cameras to Capture the Scene 87

9.5 Using a Renderer to Project What the Camera Sees 88

9.6 Exploring Different Cameras and Renderers 89

9.7 What’s Next 91

10. Project: Collisions 93

Getting Started 9310.1

10.2 Rays and Intersections 94

10.3 The Code So Far 98

10.4 What’s Next 98

11. Project: Fruit Hunt 99

Getting Started 9911.1

11.2 Starting a Scoreboard at Zero 100

11.3 Giving Trees a Little Wiggle 101

11.4 Jumping for Points 103

11.5 Making Our Games Even Better 105

11.6 The Code So Far 107

11.7 What’s Next 107

12. Working with Lights and Materials 109

Getting Started 10912.1

12.2 Changing Color 109

12.3 Realism: Shininess 111

12.4 Shadows 113

12.5 Let’s Animate! 115

12.6 The Code So Far 116

12.7 What’s Next 116

13. Project: Build Your Own Solar System 117

Getting Started 11713.1

13.2 The Sun, Earth, and Mars 117

13.3 Earth-Cam! 121

13.4 The Code So Far 123

13.5 What’s Next 123

Contents • ix

14. Project: Phases of the Moon 125

Getting Started 12614.1

14.2 Change Mars into the Moon 126

14.3 The Coolest Trick: Frame of Reference 127

14.4 Challenge: Create an Earth Orbit Frame of Reference 129

14.5 Pausing the Simulation 129

14.6 Understanding the Phases 131

14.7 The Code So Far 132

14.8 What’s Next 132

15. Project: The Purple Fruit Monster Game 133

Getting Started 13315.1

15.2 Let’s Make Physics! 133

15.3 Outline the Game 135

15.4 The Code So Far 143

15.5 What’s Next 143

16. Project: Tilt-a-Board 145

Getting Started 14616.1

16.2 Gravity and Other Setup 146

16.3 Outline the Game 147

16.4 The Code So Far 157

16.5 What’s Next 157

17. Project: Learning about JavaScript Objects 159

Getting Started 15917.1

17.2 Simple Objects 160

17.3 Copying Objects 161

17.4 Constructing New Objects 162

17.5 The Code So Far 164

17.6 What’s Next 164

18. Project: Cave Puzzle 165

Getting Started 16518.1

18.2 Setting the Game’s Boundaries 167

18.3 Building a Random, Unreachable Goal 170

18.4 Building Draggable Ramps 171

18.5 Winning the Game 174

18.6 The Code So Far 176

18.7 What’s Next 176

Contents • x

19. Project: Multilevel Game 177

Getting Started 17719.1

19.2 Building Levels 178

19.3 Adding Finishing Touches to the Game 183

19.4 The Code So Far 184

19.5 What’s Next 184

20. Project: River Rafting 185

Getting Started 18520.1

20.2 Organizing Code 186

20.3 Warping Shapes to Make Unique Things 189

20.4 Build a Raft for Racing 195

20.5 Setting the Finish Line 198

20.6 The Code So Far 205

20.7 What’s Next 205

21. Getting Code on the Web 207

The Mighty, Mighty Browser 20821.1

21.2 Free Websites 212

21.3 Putting Your Code on Another Site 213

21.4 What’s Next 215

A1. Project Code 217

Code: Creating Simple Shapes 217A1.1

A1.2 Code: Playing with the Console and Finding What’s

Broken 218

A1.3 Code: Making an Avatar 219

A1.4 Code: Moving Avatars 220

A1.5 Code: Functions: Use and Use Again 222

A1.6 Code: Moving Hands and Feet 223

A1.7 Code: A Closer Look at JavaScript Fundamentals 226

A1.8 Code: Turning Our Avatar 226

A1.9 Code: What’s All That Other Code? 229

A1.10 Code: Collisions 230

A1.11 Code: Fruit Hunt 234

A1.12 Code: Working with Lights and Materials 240

A1.13 Code: Build Your Own Solar System 241

A1.14 Code: Phases of the Moon 243

A1.15 Code: The Purple Fruit Monster Game 245

A1.16 Code: Tilt-a-Board 249

A1.17 Code: Learning about JavaScript Objects 253

Contents • xi

A1.18 Code: Cave Puzzle 255

A1.19 Code: Multilevel Game 259

A1.20 Code: River Rafting 265

A2. JavaScript Libraries Used in This Book 273

Three.js 273A2.1

A2.2 Physijs 273

A2.3 Tween.js 273

A2.4 Scoreboard.js 274

A2.5 Sounds.js 277

Index 279

Contents • xii

Acknowledgments

I am nothing without my lovely wife, Robin. Not only does she put up with

me disappearing for days on end to write, but she also helps in ways innumer-

able. She was the primary proofreader for the early versions of the book. She

helps to run the kid hackathons (OK, she runs them) that aided in develop-

ment of this book. And oh, yeah—she’s an awesome wife and mother.

Also a big thanks to my son Luke for being the primary guinea pig for the

early versions of the book. His no-nonsense feedback made this a better

product. Thanks also to my daughter Elora for chiming in with her insights.

And, of course, huge thanks to my technical reviewers. It is a tough task to

review a book from a kid’s perspective, but my reviewers were more than up

to the task. In no particular order, they are Alec M., Hana B., Dave S., Thad

K., Maik Schmidt, Silvia Domenech, and Mark Musante.

Special thanks to Sophie H., who provided the inspiration for the game that

eventually became Project: Fruit Hunt.

This book would not exist without the great work of Ricardo Cabello Miguel,

affectionately known as “Mr.doob.” Ricardo is the primary programmer behind

Three.js, the 3D JavaScript library that we use in this book. He also wrote

the original implementation of the ICE Code Editor that we use. This book

would be significantly less without his amazing talents. Thanks also to

Chandler Prall for his work on the Physijs physics engine, of which we make

extensive use. Chandler was also wonderful about answering my many, many

questions while I was learning.

Last, but not least, many thanks to the folks at The Pragmatic Programmers

for believing in the book and helping me realize its full potential. Special

thanks to my editor, Fahmida, for keeping me honest and focused.

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Introduction

Welcome to the world of programming!

I won’t lie; it can be a frustrating world sometimes (it makes me cry at least

once a week). But it’s totally worth the pain. You get to make this world do

whatever you want. You can share your world with others. You can build

things that really make a difference.

This book that you hold in your eager hands is a great way to get started

programming. It is chock-full of clear and understandable explanations. Best

of all, we get to make some pretty cool games. This is going to be a blast.

How I Learned to Program

When I was a kid, I copied computer-program games out of books. This was

a long time ago, so I bought books with nothing but programs, and typed

them into computers.

When I first started doing it, I had no idea what I was doing. Eventually, I

started to recognize certain things that were done over and over, and I almost

understood them.

I started to change things—little things at first—to see what happened. Then

I started making bigger changes. Eventually I got pretty good at it. And after

a long time, I could write my own programs. I hope that this book will let you

do the same, but with one important difference: I’ll explain what’s going on

so you won’t have to guess quite as much.

What You Need for This Book

Not all web browsers can generate the cool 3D-gaming objects that we’ll build

in this book. To get the most out of the book, you should install the Google

Chrome (https://www.google.com/chrome/) web browser on your computer. Other

web browsers will work, but some of the exercises in this book rely on features

available only in Google Chrome. One browser that will definitely not work

with the exercises is Microsoft Internet Explorer.

report erratum • discuss

https://www.google.com/chrome/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

For most of the exercises in the book, any computer with Google Chrome

installed will be sufficient. Later exercises that make use of interesting lighting,

shadows, and 3D materials will require a computer that supports WebGL.

You can test your computer’s capabilities by visiting the Get WebGL site

(http://get.webgl.org/). Don’t worry much about WebGL; you’ll be able to do a ton

of programming even if your computer can’t handle the advanced 3D graphics.

What Is JavaScript?

There are many, many programming languages. Some programmers enjoy

arguing over which is the best, but the truth is that all languages offer unique

and worthwhile things.

In this book we’ll use the JavaScript programming language. We program in

JavaScript because it’s the language of the Web. It is the only programming

language all web browsers understand without needing any additional soft-

ware. If you can program in JavaScript, not only can you make the kinds of

games that you’ll learn in this book, but you can also program just about

every website there is.

We’re not going to become experts in JavaScript.

We’ll cover just enough JavaScript to be able to program the games in this

book. That is quite a lot of JavaScript—enough that you’ll be able to learn

the rest without much difficulty.

How to Read This Book

You’ll see two kinds of chapters: project chapters and learning chapters. The

project chapters start with “Project” just like Chapter 1, Project: Creating

Simple Shapes, on page 1. All the others are learning chapters.

If you want to learn programming the way I did, just read the project chapters

and follow along with all the exercises. You’ll create pretty cool game charac-

ters and worlds to play in. You’ll make space simulations. You’ll make purple

monsters. You’ll make all sorts of great stuff.

If you have questions about why the games are written the way they are, then

read the learning chapters. We won’t go over everything about programming,

but there should be enough to help you understand why we do what we do.

These are the chapters that I wish I’d had when I was a kid.

Let’s Get Started!

Enough introduction—let’s jump right into programming!

Introduction • xvi

report erratum • discuss

http://get.webgl.org/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 1

Project: Creating Simple Shapes

There will be plenty of time for detailed explanations later in this book. For

now, let’s get started with programming!

1.1 Programming with the ICE Code Editor

In this book, we’ll use the ICE Code Editor to do our programming. The ICE

Code Editor runs right inside a browser. It lets us type in our programming

code and see the results immediately.

To get started, open the ICE Code Editor at http://gamingJS.com/ice using Google’s

Chrome web browser. It should look something like this:

When you’re done with this chapter, you will

• Know what a code editor is and how to use

it to program

• Know how to make various 3D shapes

• Be able to program simple JavaScript

• Understand how to make 3D shapes move

report erratum • discuss

http://gamingJS.com/ice
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

That spinning, multisided thing is a sample of some of the stuff we’ll be

working on in this book. In this chapter we’ll create a new project named

Shapes.

To create a new project in the ICE Code Editor, we click on the menu button

(the button with three horizontal lines) in the upper-right corner of the screen

and select New from the drop-down.

Type the name of the project, Shapes, in the text field and click the Save button.

Leave the template set as 3D starter project.

Remember, none of the projects in this book will work if you’re using the ICE

Code Editor in Internet Explorer. Although some of the exercises will work

with Mozilla Firefox, it’s easiest to stick with a single browser (Google Chrome)

for all our projects.

Coding with the ICE Code Editor

We’ll be using the ICE Code Editor throughout this book. You only

need web access the first time that you connect to http://gamingJS.com/
ice/. After the first visit, ICE is stored in your browser so you can

keep working even if you’re not connected to the Internet.

Chapter 1. Project: Creating Simple Shapes • 2

report erratum • discuss

http://gamingJS.com/ice/
http://gamingJS.com/ice/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

When ICE opens a new 3D project, there is already a lot of code in the file.

We’ll look closely at that code later, but for now let’s begin our programming

adventure on line 20. Look for the line that says START CODING ON THE NEXT LINE.

On line 20, type the following:

var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);

Once you finish typing that, you should see something cool:

The ball that we typed—the ball that we programmed—showed up in ICE.

Congratulations! You just wrote your first JavaScript program!

Don’t worry about the structure of the code just yet; you’ll get familiar with

it in A Closer Look at JavaScript Fundamentals. For now, let’s examine the

3D programming that we just did.

report erratum • discuss

Programming with the ICE Code Editor • 3

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

3D things are built from two parts: the shape and something that covers the

shape. The combination of these two things, the shape and its cover, is given

a special name in 3D programming: mesh.

Mesh is a fancy word for a 3D thing. Meshes need shapes (sometimes called

geometry) and something to cover them (sometimes called materials). In this

chapter we’ll look at different shapes. We won’t deal with different covers for

our shapes until Working with Lights and Materials.

Once we have a mesh, we add it to the scene. The scene is where the magic

happens in 3D programming. It is the world in which everything takes place.

In this case, it’s where our ball is hanging out, waiting for some friends. Let’s

add some other shapes to the scene so that the ball isn’t lonely.

Your Work Is Saved Automatically

Your work is saved automatically, so you don’t have to do it yourself.

If you want to save the code yourself anyway, click the three-line

menu button in ICE and select the Save option from the drop-down.

That’s it!

1.2 Making Shapes with JavaScript

So far we have seen only one kind of shape: a sphere. Shapes can be simple,

like cubes, pyramids, cones, and spheres. Shapes can also be more complex,

like faces or cars. In this book we’ll stick with simple shapes. When we build

things like trees, we’ll combine simple shapes, such as spheres and cylinders,

to make them.

Creating Spheres

Balls are always called spheres in geometry and in 3D programming. There

are two ways to control the shape of a sphere in JavaScript.

Size: SphereGeometry(100)

The first way that we can control a sphere is to describe how big it is. We

created a ball whose radius was 100 when we said new THREE.SphereGeometry(100).
What happens when you change the radius to 250?

var shape = new THREE.SphereGeometry(250);❶
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);

❶ This points to where you should change the sphere’s size.

Chapter 1. Project: Creating Simple Shapes • 4

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

This should make it much bigger:

What happens if you change the 250 to 10? As you probably guessed, it gets

much smaller. So that’s one way we can control a sphere’s shape. What is

the other way?

Not Chunky: SphereGeometry(100, 20, 15)

If you click on the Hide Code button in ICE, you may notice that our sphere

isn’t really a smooth ball:

You Can Easily Hide or Show the Code

If you click the white Hide Code button in the upper-right corner of

the ICE window, you’ll see just the game area and the objects in

the game. This is how you’ll play games in later chapters. To get

your code back, click the white Show Code button within the ICE

Code Editor.

Computers can’t really make a ball. Instead they fake it by joining a bunch

of squares (and sometimes triangles) to make something that looks like a ball.

Normally, we’ll get the right number of chunks so that it’s close enough.

Sometimes we want it to look a little smoother. To make it smoother, add

some extra numbers to the SphereGeometry() line:

report erratum • discuss

Making Shapes with JavaScript • 5

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.SphereGeometry(100, 20, 15);❶
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);

❶ The first number is the size, the second number is the number of chunks

around the sphere, and the third number is the number of chunks up

and down the sphere.

This should make a sphere that is much smoother:

Play around with the numbers a bit more. You’re already learning quite a bit

here, and playing with the numbers is a great way to keep learning!

Don’t Change the Chunkiness Unless You Have To

The number of chunks that we get without telling SphereGeometry to
use more may not seem great, but don’t change it unless you must.

The more chunks that are in a shape, the harder the computer has

to work to draw it. As you’ll see in later chapters, it’s usually easier

for a computer to make things look smooth by choosing a different

cover for the shape.

When you’re done playing, move the ball out of the way by setting its position:

var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);
ball.position.set(-250,250,-250);❶

❶ The three numbers move the ball to the left, up, and back. Don’t worry

much about what the numbers do right now—we’ll talk about position

when we start building game characters in Chapter 3, Project: Making an

Avatar, on page 25.

Making Boxes with the Cube Shape

Next we’ll make a cube, which is another name for a box. There are three

ways to change a cube’s shape: the width, the height, and the depth.

Chapter 1. Project: Creating Simple Shapes • 6

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Size: CubeGeometry(300, 100, 20)

To create a box, we’ll write more JavaScript below everything that we used to

create our ball. Type the following:

var shape = new THREE.CubeGeometry(100, 100, 100);
var cover = new THREE.MeshNormalMaterial();
var box = new THREE.Mesh(shape, cover);
scene.add(box);

If you have everything correct, you should see…a square:

Well, that’s boring. Why do we see a square instead of a box? The answer is

that our camera, our perspective, is looking directly at one side of the box. If

we want to see more of the box, we need to move the camera or turn the box.

Let’s turn the box by rotating it:

var shape = new THREE.CubeGeometry(100, 100, 100);
var cover = new THREE.MeshNormalMaterial();
var box = new THREE.Mesh(shape, cover);
scene.add(box);
box.rotation.set(0.5, 0.5, 0);❶

❶ These three numbers turn the box down, counterclockwise, and left-right.

In this case, we rotate 0.5 down and 0.5 to the right:

Try This Yourself

Rotating things takes a little getting used to, so play with the

numbers. Try smaller and bigger numbers. A full rotation is 6.3
(we’ll talk about that number later). Try setting two of the numbers

to 0 and another to 0.1, then to 0.25, and finally to 0.5. If you can

change the numbers fast enough, it’s almost like the cube is

spinning!

report erratum • discuss

Making Shapes with JavaScript • 7

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Setting the box rotation to (0.5, 0.5, 0) should rotate the cube so we can see

that it really is a cube:

Each side of a cube doesn’t have to be the same size. Our box so far is 100
wide (from left to right), 100 tall (up and down), and 100 deep (front to back).

Let’s change it so that it is 300 wide, 100 tall, and only 20 deep:

var shape = new THREE.CubeGeometry(300, 100, 20);
var cover = new THREE.MeshNormalMaterial();
var box = new THREE.Mesh(shape, cover);
scene.add(box);
box.rotation.set(0.5, 0.5, 0);

This should show something like this:

Play around with the numbers to get a good feel for what they can do.

Believe it or not, you already know a ton about JavaScript and 3D program-

ming. There is still a lot to learn, of course, but you can already make balls

and boxes. You can already move them and turn them. And you only had to

write ten lines of JavaScript to do it all—nice!

Let’s move our box out of the way so we can play with more shapes:

var shape = new THREE.CubeGeometry(300, 100, 20);
var cover = new THREE.MeshNormalMaterial();
var box = new THREE.Mesh(shape, cover);
scene.add(box);
box.rotation.set(0.5, 0.5, 0);
box.position.set(250, 250, -250);

Chapter 1. Project: Creating Simple Shapes • 8

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Using Cylinders for All Kinds of Shapes

A cylinder, which is also sometimes called a tube, is a surprisingly useful

shape in 3D programming. Think about it: cylinders can be used as tree

trunks, tin cans, wheels…. Did you know that cylinders can be used to create

cones, evergreen trees, and even pyramids? Let’s see how!

Size: CylinderGeometry(20, 20, 100)

Below the box code, type in the following to create a cylinder:

var shape = new THREE.CylinderGeometry(20, 20, 100);
var cover = new THREE.MeshNormalMaterial();
var tube = new THREE.Mesh(shape, cover);
scene.add(tube);

If you rotate that a little (you remember how to do that from the last section,

right?), then you might see something like this:

If you were not able to figure out how to rotate the tube, don’t worry. Just

add this line after the line with scene.add(tube):

tube.rotation.set(0.5, 0, 0);

When making a cylinder, the first two numbers describe how big the top and

bottom of the cylinder is. The last number is how tall the cylinder is. So our

cylinder has a top and bottom that are 20 in size and 100 in height.

If you change the first two numbers to 100 and the last number to 20, what

happens? What happens if you make the top 1, the bottom 100, and the height

100?

Try This Yourself

Play with those numbers and see what you can create!

What did you find?

A flat cylinder is a disc:

report erratum • discuss

Making Shapes with JavaScript • 9

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

And a cylinder that has either the top or bottom with a size of 1 is a cone:

It should be clear that you can do a lot with cylinders, but we haven’t seen

everything yet. We have one trick left.

Pyramids: CylinderGeometry(1, 100, 100, 4)

Did you notice that cylinders look chunky? It should be no surprise then,

that you can control the chunkiness of cylinders. If you set the number of

chunks to 20, for instance, with the disc, like this:

var shape = new THREE.CylinderGeometry(100, 100, 10, 20);
var cover = new THREE.MeshNormalMaterial();
var tube = new THREE.Mesh(shape, cover);
scene.add(tube);
tube.rotation.set(0.5, 0, 0);

then you should see something like this:

Just as with spheres, you should use lots of chunks like that only when you

really, really need to.

Can you think how you might turn this into a pyramid? You have all of the

clues that you need.

Chapter 1. Project: Creating Simple Shapes • 10

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Try This Yourself

Play with different numbers and see what you can create!

Were you able to figure it out? Don’t worry if you weren’t. The way we’ll do it

is actually pretty sneaky.

The answer is that you need to decrease the number of chunks that you use

to make a cone. If you set the top to 1, the bottom to 100, the height to 100,
and the number of chunks to 4, then you’ll get this:

It might seem like a cheat to do something like this to create a pyramid, but

this brings us to a very important tip with any programming:

Cheat Whenever Possible

You shouldn’t cheat in real life, but in programming—especially in

3D programming—you should always look for easier ways of doing

things. Even if there is a usual way to do something, there may be

a better way to do it.

You’re doing great so far. Move the tube out of the center like we did with the

cube and the sphere:

tube.position.set(250, -250, -250);

Now let’s move on to the last two shapes of this chapter.

Building Flat Surfaces with Planes

A plane is a flat surface. Planes are especially useful for the ground, but they

can also be handy to mark doors and edges in our games.

PlaneGeometry(100, 100)

Since planes are just flat squares, they are much simpler than the other

objects that we’ve seen. Type in the following:

report erratum • discuss

Making Shapes with JavaScript • 11

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.PlaneGeometry(100, 100);
var cover = new THREE.MeshNormalMaterial();
var ground = new THREE.Mesh(shape, cover);
scene.add(ground);
ground.rotation.set(0.5, 0, 0);

Don’t forget the rotation on the last line. Planes are so thin that you might

not see them when looking directly at them.

The numbers when building a plane are the width and depth. A plane that

is 300 wide and 100 deep might look like this:

That’s pretty much all there is to know about planes. Move our plane out of

the way:

var shape = new THREE.PlaneGeometry(300, 100);
var cover = new THREE.MeshNormalMaterial();
var ground = new THREE.Mesh(shape, cover);
scene.add(ground);
ground.position.set(-250, -250, -250);

Now let’s move on to the greatest shape in the world.

Rendering Donuts (Not the Kind You Eat) with Torus

In 3D-programming-speak, a donut is called a torus. The simplest torus that

we can create needs us to assign two values: one for the distance from the

center to the outside edge, and the other for the thickness of the tube.

TorusGeometry(100, 25)

Type the following into ICE:

var shape = new THREE.TorusGeometry(100, 25);
var cover = new THREE.MeshNormalMaterial();
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

You should see a very chunky donut, as shown in Figure 1, A Chunky Donut,

on page 13.

By now you probably know how to make the donut less chunky.

Chapter 1. Project: Creating Simple Shapes • 12

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 1—A Chunky Donut

TorusGeometry(100, 25, 8, 25)

Like the sphere, the donut shape is built from chunks. The chunks can be

made bigger or smaller around the inner tube, which we can set by including

a third number when defining the TorusGeometry. We can also adjust the size

of the chunks around the outside of the donut by including a fourth number.

Try experimenting with numbers like the following and see what happens.

var shape = new THREE.TorusGeometry(100, 25, 8, 25);
var cover = new THREE.MeshNormalMaterial();
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

Now that is a good-looking donut:

TorusGeometry(100, 25, 8, 25, 3.14)

We can play one other trick with donuts. Try adding another number, 3.14,
to the TorusGeometry shape:

report erratum • discuss

Making Shapes with JavaScript • 13

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.TorusGeometry(100, 25, 8, 25, 3.14);
var cover = new THREE.MeshNormalMaterial();
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

That should make a half-eaten donut.

1.3 Animating the Shapes

Before we finish our first programming session, let’s do something cool. Let’s

make all of our shapes spin around like crazy.

In ICE, add the following code after all of the shapes:

var clock = new THREE.Clock();

function animate() {
requestAnimationFrame(animate);
var t = clock.getElapsedTime();

ball.rotation.set(t, 2*t, 0);
box.rotation.set(t, 2*t, 0);
tube.rotation.set(t, 2*t, 0);
ground.rotation.set(t, 2*t, 0);
donut.rotation.set(t, 2*t, 0);

renderer.render(scene, camera);
}

animate();

Don’t worry about what everything means in that code—we’ll look at all of

these lines in greater detail later in the book. For now, it’s enough to know

that at specific time intervals, we’re changing the shape’s rotation. After each

change, we tell the rendering program to redraw the current shapes on the

screen.

If ICE Locks Up

When doing animations and other sophisticated programming, it’s

possible to completely lock up the ICE Code Editor. This is not a

big deal. If ICE stops responding, you’ll need to undo whatever

change you made last. Instructions on how to do that are in

Recovering When ICE Is Broken.

Chapter 1. Project: Creating Simple Shapes • 14

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

1.4 The Code So Far

To make things a little easier, the completed version of this project is included

as part of Section A1.1, Code: Creating Simple Shapes, on page 217. Use that

code to double-check your work as you go through the exercises, but do not

copy and paste code into ICE. It’s impossible to learn and understand pro-

gramming unless you code it yourself.

1.5 What’s Next

Whoa! That was pretty crazy. We learned a ton and we’re just getting started!

Already we know how to code projects in the ICE Code Editor. We know how

to make a lot of different shapes. We even know how to move and spin things

with JavaScript. And best of all, it took us only fifteen lines of code to create

a pretty cool animation after making our shapes. That’s a good start.

Now that we have a taste of how to do 3D programming, let’s talk a little bit

about programming in web browsers.

report erratum • discuss

The Code So Far • 15

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 2

Playing with the Console

and Finding What’s Broken

When programming within web browsers, it’s extremely useful to be able to

use the browser’s JavaScript console. Most modern browsers have a JavaScript

console, but here we’re using Google Chrome.

Programming Can Be Overwhelming

At times it can make you want to throw your computer against the

wall (don’t). While doing this stuff, keep these two facts in mind:

• There will be things that you don’t know—this is OK.

• Your programs are going to break—this is OK.

Just remember that everyone struggles with this, and you’ll be just

fine.

2.1 Getting Started

Know the ICE Code Editor

We’re still using the ICE Code Editor that we used in Chapter 1,

Project: Creating Simple Shapes, on page 1. If you haven’t already

gotten started with ICE, go back to that chapter and familiarize

yourself with the editor.

Start a New Project

Any work that you have already done in ICE should be automatically saved,

so we can jump right into starting a new project. Click on the menu button

and then choose New from the menu:

When you’re done with this chapter, you will

• Be able to open/close the JavaScript

console

• Know how to look for errors in the

JavaScript console

• Be able to fix projects when ICE locks up

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Let’s call the new project Breaking Things.

Be sure to leave the template set to 3D starter project.

Now let’s open the browser’s JavaScript console.

2.2 Opening and Closing the JavaScript Console

The JavaScript console inside the browser is a web programmer’s best friend.

It tells us where we made our mistakes.

Opening and Closing the JavaScript Console

Ctrl+Shift+J (holding down the Ctrl , Shift , and J keys at the same time)

will open and close the JavaScript console.

If you’re using an Apple computer, you can use D+Option+J to open

and close the console.

Don’t worry if you see tons of warnings and errors the first time

you open the JavaScript console. It keeps a log of events that hap-

pen on a web page or in the ICE Code Editor. If the messages are

too much, you can clear the log with the button that has a circle

with a line through it.

The same key combination that opens the JavaScript console will

close it (but leave it open in this chapter).

Chapter 2. Playing with the Console and Finding What’s Broken • 18

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Let’s start by breaking simple things that the ICE Code Editor can tell us

about.

2.3 Debugging in ICE: The Red X

A red X next to your code means ICE sees a problem that will stop your code

from running. Let’s write some really bad JavaScript to demonstrate this.

Enter the following line below START CODING ON THE NEXT LINE.

bad()javascript

That’s some bad JavaScript!

Are you wondering why? It’s bad because you should never have a word come

after the parentheses. If you write code like this, ICE will show a red X next

to the line with the problem to indicate that line has to be fixed. Moving the

mouse pointer over the red X will display the actual error message, such as

“missing ; before statement.”

ICE won’t tell you that you put words after the parentheses. All it knows is

that parentheses should be at the end of the line, and here that wasn’t the

case. When it detected the line wasn’t finished, it triggered an error to warn,

“Hey! You forgot the semicolon at the end of the line!” It’s up to us to figure

out where the line should end.

Some things to check in your code when you see a red X:

• Did you forget a semicolon?

• If you don’t see a problem on the red X line, look at the previous line, as

well. ICE can’t always tell where the problem begins and may be off by

one or two lines.

2.4 Debugging in ICE: The Yellow Triangle

Unlike a red X, a yellow triangle showing up to the left of your code is not a

show-stopper. Your code will probably run even if lines in your code are

marked with yellow triangles, but it may not run correctly. It is best to get rid

of those triangles as they come up.

report erratum • discuss

Debugging in ICE: The Red X • 19

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Let’s put this in action by writing some more bad JavaScript (but not too bad).

First, remove the bad()javascript line from the previous section, and add the fol-

lowing lines:

food;
eat(food);

In this case, ICE will tell us via the yellow triangle that the food line is not

doing anything.

We can fix the problem by changing the food line into an assignment, like this:

food = 'Cookie';
eat(food);

ICE should accept the new food line and no longer display any errors. However,

even though ICE may not report any more issues, there is still something

wrong with this code.

2.5 Debugging in the Console

This is where the JavaScript console comes in handy, as we get to see what

the program is actually doing. Once you open up the console, you’ll see an

error message that eat() is not defined.

When the browser tried to run the bad JavaScript code, it realized there was

a problem. In our program, we told the browser to run the eat() function, but

we never told the browser how to do that. Errors found when trying to run

the code are called run-time errors.

We’ll talk more about functions in Chapter 5, Functions: Use and Use Again,

on page 49. For now, it’s enough to know that a function is a way to write

code that can be run again and again.

The errors flagged by ICE with the red X and yellow triangle are called compile-

time errors. Compile-time errors are caught when the computer is reading

the code and deciding what to do with it. Compiling refers to the computer

deciding what to do with the code.

The JavaScript console helps us fix run-time errors.

Chapter 2. Playing with the Console and Finding What’s Broken • 20

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

To resolve this problem, let’s tell our JavaScript program how to eat food. We

do this by adding a function that explains eating after the line with eat(food).

food = 'Cookie';
eat(food);

function eat(food) {
console.log(food + "! Nom. Nom. Nom.");

}

At this point, there should be no compile-time errors in ICE, no run-time

errors in the JavaScript console, and the message, “Cookie! Nom. Nom. Nom.”

in the console.

Before we wrap up this chapter, let’s look at some common 3D-programming

errors. Add the following code after the closing curly brace of the eat() function:

var shape = new THREE.SpherGeometry(100);
var cover = new Three.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.ad(ball);

You’ll notice that there are no compile-time errors in ICE for this code. The

browser reads the JavaScript code and says, “Yup, that looks like perfectly

fine JavaScript to me. I’ll run it now!” However, problems pop up when the

code is actually run, and you’ll see run-time errors in the JavaScript console.

Possible Error Message—Undefined Is Not a Function

Let’s take a look at what went wrong. First, open the JavaScript console if

it’s not already open. In there, you should see a very unhelpful message.

This message is trying to tell us that SphereGeometry is spelled incorrectly. Check

the code; it turns out we missed an e and typed SpherGeometry instead. The

message in the JavaScript console is very poor and unhelpful.

There are two problems to tackle here. First, “undefined is not a function”

doesn’t really tell us anything and is not easy to understand. Even JavaScript

experts get confused by that one.

The second problem is the line number in the error message. In this example,

gamingjs.com:25 means the browser thinks the problem happened on line 25 of

report erratum • discuss

Debugging in the Console • 21

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

our program (your line numbers may be slightly different). However, the

misspelled word is not on line 25 in ICE. Our problem actually happens on

line 28. And yes, JavaScript experts get confused by this as well.

Console Line Numbers Are Not Always Exact

ICE does its best to get the line numbers in the console correct,

and sometimes it succeeds—it may even be correct for you now—

but other times it can be off by a few lines. Start by looking at the

exact line number. If that doesn’t seem like it matches the error,

then check the next few lines.

Let’s get back to the “undefined is not a function” error message that is

actually referring to line 28 in ICE. This error means that when the browser

tried to run our code, it was looking for a function but found something it

knew nothing about. THREE.SpherGeometry was not defined because the actual

function was called THREE.SphereGeometry.

Luckily it’s easy to fix this problem, as all we have to do is add the e.

Possible Error Message—Three Is Not Defined

However, even after we spell SphereGeometry correctly, a ball doesn’t appear on

the screen. Something is still wrong with our code.

Looking in the JavaScript console, you should see something like the following.

Here, the JavaScript console is telling us that we forgot THREE should always

be all capital letters. There is no such thing as Three, which is what we wrote

and what the JavaScript console is telling us.

This is a very common mistake when working with the 3D library, so make

sure you remember it for the next time you see the error.

We can fix this problem by replacing the Three in the code with THREE.

Possible Error Message—Undefined: No Method

Even with those two issues fixed, the sphere is still not visible and we have

another cryptic error message in the console.

Chapter 2. Playing with the Console and Finding What’s Broken • 22

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Don’t worry about the Object [object Object] part of the message, as it’s not telling

us anything helpful at this point.

In this case, we told the browser that there was a method named ad(), but it

was unable to find any information in the file. The fix is the same as in previ-

ous examples. The method we should have is add(), not ad(). In other words,

we do not want to ad the ball to the screen; we want to add it.

After fixing that line, you’ll finally see a ball and the “Nom. Nom. Nom.” mes-

sage appear in the Javascript console.

2.6 Recovering When ICE Is Broken

It is surprisingly easy to break a web browser. If you create a sphere with a

million chunks, the browser will break. If you create a recursive function with

no stopping point (we’ll talk about those in Functions: Use and Use Again),

the browser will break.

If the browser is broken, then the ICE Code Editor is broken, right?

Well, yes, but there’s an easy way to fix it: add ?e or ?edit-only to the URL so

that you’re looking at http://gamingjs.com/ice/?e. This is edit-only mode for ICE.

report erratum • discuss

Recovering When ICE Is Broken • 23

http://gamingjs.com/ice/?e
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Fix the last thing that you typed to break ICE, and then remove the edit-only

question mark from the URL so that you’re back at http://gamingjs.com/ice/. Now

you should see the preview again.

On some computers, you may find that you need to close the browser tab or

window before trying this. Then you can open a new window or tab in which

you can enter the ICE edit-only URL. Google Chromebooks, in particular, run

edit-only mode better with this procedure.

2.7 What’s Next

Now that we know how to make shapes and where to check when things go

wrong, let’s get started on our first game by building our very own avatar.

Chapter 2. Playing with the Console and Finding What’s Broken • 24

report erratum • discuss

http://gamingjs.com/ice/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 3

Project: Making an Avatar

Developing games involves building a lot of parts, such as the game area, the

players in the game, and things that get in the way of players. In this project

chapter we’ll create a player that we might use in a game—an avatar. It will

end up looking something like this:

An avatar is who you are within the game world. It shows where you are in

the game and what you’re doing. Since it’s supposed to represent you and

me, it should have a good feel to it. We want something better than a plain

box to stand for us.

The Difference Between a Player and an Avatar

In this book, we’ll use the word “player” to mean the person playing

the game. The word “avatar” will be used to describe a player inside

the game.

When you’re done with this chapter, you will

• Know how to place objects together on the

screen

• Have an avatar to use in later chapters and

in games

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

3.1 Getting Started

Let’s open the ICE Code Editor1 again and create a new project named My
Avatar (check Start a New Project, on page 17, if you don’t remember how).

Be sure to leave the template set to 3D starter project. With that, we’re ready to

start programming on the line following START CODING ON THE NEXT LINE.

3.2 Making a Whole from Parts

From Chapter 1, Project: Creating Simple Shapes, on page 1, we already know

how to make basic shapes. Let’s start building our player avatar by making

a sphere for the body.

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
scene.add(avatar);

We already know what happens when we type that in—we get a ball in the

center of the scene.

Let’s add a hand next to the body. Add the following lines below the code that

you already entered to create the body.

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
scene.add(right_hand);

1. http://gamingJS.com/ice

Chapter 3. Project: Making an Avatar • 26

report erratum • discuss

http://gamingJS.com/ice
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Notice that we didn’t create a new cover for the hand. Instead we reused the

same cover, which we named cover when we used it for the avatar’s body. That

saves us a bit of typing.

Less typing is a good thing since we’re all programmers and programmers

are lazy at heart. That reminds me of some programming wisdom I would like

to share with you:

Good Programmers Are Lazy

I don’t mean that programmers hate doing work. We actually love

our jobs and often spend too much time working because we love

it so much.

No, what I mean by lazy is that we hate doing work that computers

are better at. So instead of creating hands and feet individually, we

would rather write a single hand/foot and then copy it as many

times as necessary.

Being lazy benefits us in two very important ways:

• We type less. Believe it or not, this is a big win. Not only do we have to

type less the first time around, but we have to read less when we want to

update later.

• If we want to change the way a limb is created, we only have to change

one thing. That is, if we want to change the cover or even the shape of a

hand in the future, then we only have to make a change in one place.

So let’s see if we can be even lazier when we create the left hand for our avatar:

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
scene.add(left_hand);

Not only did we not make a new cover for the left hand, but we also didn’t

create a new shape! Instead we just used the same shape for the left hand

that we did for the right hand. Now that’s lazy!

With that, our avatar should look something like Figure 2, Avatar with Hands,

on page 28.

OK, I admit that doesn’t look much like a body with hands. Bear with me for

a bit longer, and you’ll see.

report erratum • discuss

Making a Whole from Parts • 27

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 2—Avatar with Hands

3.3 Breaking It Down

Let’s take a quick look at why we used those numbers for the hands. If you’re

impatient, skip ahead to Section 3.4, Adding Feet for Walking, on page 29, to

keep building our game avatar.

When anything is added to a scene, it starts off in the very center. So when

we add the body and a hand, it starts off something like this:

In 3D programming and mathematics, left and right are called the X direction.

Up and down are called the Y direction.

This is why we change the X position of the hands:

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
scene.add(left_hand);

The numbers inside left_hand.position.set(150, 0, 0) are the X, Y, and Z position of

the left hand (Z would be forward and backward). We set X to 150 while Y and

Z are both 0. This is really the same thing as left_hand.position.x = 150. As we’ll

see shortly, it can be very convenient to set multiple values on a single line.

Chapter 3. Project: Making an Avatar • 28

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

But why 150? The answer is that the radius of the body is 100 and the radius

of the hand is 50. We need to move the hand 100 + 50, or 150 in the X

(left/right) direction:

If we only moved the center of the hand 100, then we would end up with the

hand partly inside the body:

Try This Yourself

If you’re not convinced, try it yourself. Change the number for the

X position by fiddling with the first number in right_hand.position.set(-
150, 0, 0). Try it for both the left and right hand. Don’t make them

too big, though, or they won’t even be on the screen anymore!

3.4 Adding Feet for Walking

For the feet, we’ll again use spheres of size 50. I’ll leave it up to you to figure

out how to add the relevant lines.

Some hints:

• Don’t move the feet left/right as far as we did the hands. The feet should

be underneath the body.

report erratum • discuss

Adding Feet for Walking • 29

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

• You’ll have to move them down. The up/down positioning is done with

the Y direction instead of the X direction. This is the second number of

right_hand.position.set(-150, 0, 0). You may have to use negative numbers to go

down—for example, –25.

• Recall that the hand was added before we rendered the scene—before the

line with renderer.render(scene, camera). The feet should be as well.

Here is how we did the right hand; it might help while you try to figure out

the feet:

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
scene.add(right_hand);

Good luck!

Try This Yourself

Try to place the feet yourself. To move the feet left and right, you

change the first number in right_foot.position.set(0, 0, 0). To move it up

and down, you change the second number (the third number is

forward and backward).

It may take a while to get it right, but believe me—it’s good practice.

Try for a bit and then continue with the text.

Did you get it?

This is what it might look like:

Don’t worry if yours is not exactly the same. Yours may even be better!

If you’re having difficulty, refer to the code that was used to make the avatar:

Chapter 3. Project: Making an Avatar • 30

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
scene.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
scene.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
scene.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
scene.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
scene.add(left_foot);

This is everything after START CODING ON THE NEXT LINE.

3.5 Challenge: Make the Avatar Your Own

If you’re up for a challenge, see if you can create an avatar that looks some-

thing like this:

To make this, you need to replace the body with one of the shapes from

Chapter 1, Project: Creating Simple Shapes, on page 1, and add a head. Don’t

report erratum • discuss

Challenge: Make the Avatar Your Own • 31

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

worry about arms and legs to connect the hands and feet to the body—that

would make it harder in later chapters.

And, of course, you can make whatever kind of avatar you like. Just remember

to make one with hands and feet—we’ll need them in later chapters.

3.6 Doing Cartwheels

We’ll add controls to our avatar later. But before moving on to the next lesson,

let’s make the avatar do some flips and cartwheels.

Just like we did at the end of Chapter 1, Project: Creating Simple Shapes, on

page 1, we start by changing the very last line of the code (which is just

above the </script>) tag at the end of the editor. Instead of telling the browser

to show the scene one time, we animate the scene as follows.

// Now, animate what the camera sees on the screen:
function animate() {

requestAnimationFrame(animate);
avatar.rotation.z = avatar.rotation.z + 0.05;
renderer.render(scene, camera);

}
animate();

If you typed everything correctly, you might notice something odd. Just the

head is spinning, not the whole avatar.

That might be a cool effect, but it’s not what we wanted. So how do we go

about spinning the whole avatar?

If you guessed that we add rotation.z changes to the hands and feet, you made

a good guess. But that won’t work. The hands and feet would spin in place

just like the head.

The answer to this problem is a very powerful 3D-programming technique.

We group all of the body parts together and spin the group. It is a simple idea,

but, as you’ll find later, it’s surprisingly powerful.

To group the body parts together, we add the parts to the avatar instead of

the scene.

Chapter 3. Project: Making an Avatar • 32

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

If you look back up to the right hand, you’ll see that we added it to the scene.

We’ll change that line.

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
scene.add(right_hand);❶

❶ Change this line.

Instead of adding the hand to the scene, we add it to the avatar:

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);❶

❶ This line now adds the right hand to the avatar instead of the scene.

After doing the same for the left_hand, the right_foot, and the left_foot, your avatar

should be doing cartwheels—without losing any parts!

Sometimes we might not want our avatar to do cartwheels. Let’s add a line

to control that.

var is_cartwheeling = false;❶
function animate() {

requestAnimationFrame(animate);
if (is_cartwheeling) {❷

avatar.rotation.z = avatar.rotation.z + 0.05;
}
renderer.render(scene, camera);

}
animate();

❶ This is where we say if our avatar is doing cartwheels or not. If we set this

to true, then our avatar is doing cartwheels. If we set it to false (like we’ve

done here), then our avatar won’t do cartwheels.

❷ Wrap the avatar.rotation in an if, as shown. Don’t forget the curly braces on

this line and after the avatar.rotation line.

Change the value of is_cartwheeling from false to true. Does the avatar start

cartwheeling again?

report erratum • discuss

Doing Cartwheels • 33

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Make Our Avatar Flip!

Now that you have the avatar cartwheeling, try to make the avatar

flip, as well. You should use a value like is_flipping to control the

flipping. Hint: instead of avatar.rotation.z, try avatar.rotation.x or

avatar.rotation.y. Did you get it? If not, it’s OK. We’ll cover more of this

in later chapters.

3.7 The Code So Far

The entirety of the code will look something like the code in Section A1.3,

Code: Making an Avatar, on page 219.

Don’t worry if yours is not exactly like that code. Your code may be better or

just different.

3.8 What’s Next

We have a pretty cool-looking avatar. It might be nice for it to have a face or

clothes. But you know what would be even better? If we could move our avatar

with the keyboard. And that is just what we’ll do in Chapter 4, Project: Moving

Avatars, on page 35.

For now, take some time to play with the size, positioning, and rotation of

the parts that make up your avatar.

Chapter 3. Project: Making an Avatar • 34

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 4

Project: Moving Avatars

In Chapter 3, Project: Making an Avatar, on page 25, we covered how to build

a game avatar. An avatar that we cannot move is pretty dull. So in this

chapter you’ll learn how to make the avatar move in different directions. We’ll

also give it a little forest to move around in. It will end up looking something

like this:

4.1 Getting Started

This chapter builds on the work that we did in Project: Making an Avatar. If

you haven’t already done the exercises in that chapter, go back and do them

before proceeding. In particular, you need to go over the animate() exercise at

the end of that chapter.

Let’s make a copy of the previous chapter’s avatar project. That way, if we

ever want to go back to see our simple spinning and cartwheeling avatar, we

can. To make a copy of that project, click the menu button and choose Make
a Copy from the menu. (See Figure 3, Selecting Make a Copy, on page 36. Let’s

call this project My Avatar: Keyboard Controls, as shown in Figure 4, Naming the

Project, on page 36.

With that, we’re ready to add keyboard controls.

When you’re done with this chapter, you will

• Know how to move the avatar with your

keyboard

• Begin to understand JavaScript events

• Be able to move the camera with an avatar

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 3—Selecting Make a Copy

Figure 4—Naming the Project

4.2 Building Interactive Systems with Keyboard Events

So far in this book, our code has been very linear—it follows a straight line.

First we made a cover, a shape, and a mesh, and then we added the objects

to the scene. Then we moved to the next mesh, which was also added to the

scene. Although it is possible to write a lot of JavaScript that looks like this,

most JavaScript programs tend to be quite different.

That’s because JavaScript usually runs in a web browser. In a web browser,

JavaScript code has to respond to events. A key being pressed on the keyboard,

a mouse button being clicked, and the mouse pointer moving around the

page are all events in the web browser. A crazy number of events can poten-

tially happen on every web page, and for the most part, these events are

ignored.

But we’re not going to ignore key presses. We’ll listen for events with something

called—you guessed it—an event listener. Let’s add the following at the very

bottom of our code, below the animate() line that we added in Chapter 3, Project:

Making an Avatar, on page 25.

Chapter 4. Project: Moving Avatars • 36

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// Listen for keypress events
document.addEventListener('keydown', function(event) {

alert(event.keyCode);
});

This adds an event listener to the entire page. It listens for keydown events.

When our code notices a keydown, it will alert us with the keycode of the event

that just occurred.

What is a keycode? To answer that, let’s try it out! Click the Hide Code button

in the toolbar at the top of the page, then press the A key on your keyboard.

You should see something like this alert dialog.

What is this 65? Keep in mind that computers store everything, even letters,

as numbers. The computer converts that number into a letter when displaying

the correct letter to us humans. When we think of the letter a, a computer is

thinking 65.

Why do we need to know this? Click the OK button on the alert if you haven’t

already done so. Then repeat for the left, up, right, and down arrow keys on

your keyboard. For the left arrow, you should discover that the computer

thinks 37. For the up arrow, the computer thinks 38. For the right arrow, the

computer detects the key as 39. For the down arrow, the computer thinks 40.

Let’s use those keycodes to move our avatar!

4.3 Converting Keyboard Events into Avatar Movement

By playing with the keyboard event listener, we now know the numbers that

correspond to each of the four arrow keys. We convert those arrow keys and

numbers into avatar movement like this:

Avatar DirectionComputer NumberArrow Key

Left37Left

Forward38Up

Right39Right

Back40Down

report erratum • discuss

Converting Keyboard Events into Avatar Movement • 37

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

So let’s make this happen. Remove the alert(event.keyCode) line inside the docu-
ment.addEventListener(). Replace it with the following code, starting with the var
code statement.

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 37) avatar.position.x = avatar.position.x-5; // left
if (code == 38) avatar.position.z = avatar.position.z-5; // up
if (code == 39) avatar.position.x = avatar.position.x+5; // right
if (code == 40) avatar.position.z = avatar.position.z+5; // down

});

We saw the if statement in Project: Making an Avatar. In this case, we’re

checking if the keycode is equal to one of the arrow-key computer numbers.

If the key code is 37 (left arrow key), then we change the avatar’s X position

by subtracting 5.

A double equals (==) in JavaScript checks if something is equal to something

else—a single equal (=) makes a value equal to something else. In our preceding

code example, we make code equal to event.keyCode. Then we check to see if it

is equal to the different arrow-key values.

Give It a Try!

Press the Hide Code button and give it a try. Use the arrow keys to

move the avatar around. Does it work like you expect?

Remember: If something goes wrong, check the JavaScript console!

If everything is working correctly, then you should be able to move your avatar

far away, up close, all the way to the left or right, and even off the screen.

You learned how to make sure the avatar’s hands and feet move with the

body when we added the ability to do cartwheels back in Section 3.6, Doing

Cartwheels, on page 32. Since the hands and feet were added to the avatar

object instead of the scene, moving the avatar means that the hands and feet

go along with it.

Chapter 4. Project: Moving Avatars • 38

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Let’s see what happens if one of the legs is not attached to the avatar. In this

case, we’ll change the left_foot so that it’s added to the scene instead of the

avatar.

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
scene.add(left_foot);

Run this, and the left foot goes missing.

Don’t underestimate the power of this concept. We’ll do some crazy things

with it later. For now, don’t forget to fix your left foot to the avatar!

4.4 Challenge: Start/Stop Animation

Remember the is_cartwheeling and is_flipping values from when we built the avatar

in Chapter 3, Project: Making an Avatar, on page 25? Let’s add two more if
statements to the keyboard event listener. If the C key, which the computer

thinks is the number 67, is pressed, then the avatar should either start or

stop cartwheeling. If the F key, which the computer thinks is 70, is pressed,

then the flip routine should start or stop.

Hint: switch between true and false with the not operator. In JavaScript, the not
operator is an exclamation point, !. You can use this not operator to assign

the value of is_cartwheeling to the opposite of its original value with something

like is_cartwheeling = !is_cartwheeling. We’ll see this again in Booleans.

Hopefully, you were able to get it working yourself. Here is the animate() function

that handles the cartwheeling and flipping.

var is_cartwheeling = false;
var is_flipping = false;
function animate() {

requestAnimationFrame(animate);
if (is_cartwheeling) {

avatar.rotation.z = avatar.rotation.z + 0.05;
}

report erratum • discuss

Challenge: Start/Stop Animation • 39

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
renderer.render(scene, camera);

}
animate();

Here is the complete keyboard event listener for moving, flipping, and

cartwheeling our avatar.

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 37) avatar.position.x = avatar.position.x-5; // left
if (code == 38) avatar.position.z = avatar.position.z-5; // up
if (code == 39) avatar.position.x = avatar.position.x+5; // right
if (code == 40) avatar.position.z = avatar.position.z+5; // down

if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});

If you’ve got it right, you should be able to make the avatar do flips and

cartwheels as it moves off the screen.

Actually, it’s pretty crazy that the avatar can leave the screen. We’ll fix that

in a bit, but first let’s add some trees for our avatar to walk through.

4.5 Building a Forest with Functions

We’ll need a lot of trees for our forest. We could build them one at a time, but

we’re not going to do that. Instead, let’s add the following JavaScript after all

of the avatar body parts:

makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

Chapter 4. Project: Moving Avatars • 40

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(

new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

trunk.position.set(x, -75, z);
scene.add(trunk);

}

If you entered all that code correctly, you’ll see the avatar standing in front

of a forest of four trees.

That’s pretty cool, but how did we do that?

Breaking It Down

The first part of the forest-building is pretty easy to follow. We add trees at

different X and Z coordinates (remember that Y is up and down) around the

scene.

makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

That’s easy enough, but how does that makeTreeAt() thing work?

As we’ll see in Chapter 5, Functions: Use and Use Again, on page 49, a Java-

Script function is a way to run the same code over and over. In this case, we

report erratum • discuss

Building a Forest with Functions • 41

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

do all of the repetitive work of building the trunk and treetop in the function

named makeTreeAt(). We could have named it anything, but we give it a name

that tells us what it does—in this case, it makes a tree at the coordinates that

we defined.

We should be familiar with most of the things going on inside this function.

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(❶

new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(❷
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;❸
trunk.add(top);❹

trunk.position.set(x, -75, z);❺
scene.add(trunk);❻

}

❶ Make a trunk out of a cylinder.

❷ Make a treetop out of a sphere.

❸ Move the treetop up (remember Y is up and down) to the top of the trunk.

❹ Add the treetop to the trunk.

❺ Set the position of the trunk to the x and z that the function was called

with—makeTreeAt(500,0)). The Y value of -75 moves the trunk down enough

to look like a tree trunk.

❻ Add the trunk to the scene.

It’s important to remember that we have to add the treetop to the trunk and

not the scene. If we added the treetop to the scene, then when we try to move

the tree, only the trunk will be moved and not the treetop. We would also

have to set the treetop position if we added it to the scene—adding it to the

trunk means that the treetop’s position is the same as the trunk’s.

By now we’re getting good at building objects from shapes and materials and

placing them on the screen. You could probably make four trees without too

much effort. For one tree you need a THREE.CylinderGeometry for the trunk and a

THREE.SphereGeometry for the top of the tree. If you add the green leaves to the

top of the tree, then you move both parts together.

Chapter 4. Project: Moving Avatars • 42

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

And then you would have to repeat the same thing three more times to make

a total of four trees. Four trees would be a lot of typing. Don’t forget: we pro-

grammers don’t like typing. Always remember that we’re lazy. And the thing

that lets us be lazy this time is a function.

Also new here is color. We picked those colors from the Wikipedia list of color

names at http://en.wikipedia.org/wiki/X11_color_names. The tree trunk is the color

sienna. You can try your own colors if you like. The color comes from the first

column on that web page, but we need to replace the # symbol on the web

page with 0x so that JavaScript can read it. Thus, #A0522D becomes 0xA0522D.

Now that we have a forest, let’s see if we can make the camera move with the

avatar as it travels through the scene.

4.6 Moving the Camera with the Avatar

Remember that to get the hands and feet to move along with our avatar, we

added them to the avatar’s body instead of adding them to the scene. That is

exactly what we need to do with the camera. First let’s find the line that says

scene.add(camera) and delete it. Then, below the line where the avatar is added

to the scene, and above the makeTreeAt() function, let’s add the camera to the

avatar:

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

avatar.add(camera);❶

❶ Add this line.

After hiding the code, you’ll see that when the avatar is moved, the camera

stays right in front of the avatar.

It’s always 500 units in front of the avatar (camera.position.z = 500). The camera

is always at the same height as the avatar since we never defined the camera’s

report erratum • discuss

Moving the Camera with the Avatar • 43

http://en.wikipedia.org/wiki/X11_color_names
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

height with position.y. The camera is always right in front since we haven’t yet

set the left-right position with position.x.

It might help to think of the camera being attached to the avatar with an

invisible chain.

Wherever the avatar goes, the camera goes as well.

Pretty cool, right? Well, there is a major problem with this approach. What

happens if the avatar starts cartwheeling or flipping (remember that we’re

using the C and F keys for this)? Try it yourself!

The avatar appears to stay still, but everything else starts spinning! (See

Figure 5, Everything Starts Spinning!, on page 45.)

This is because the camera is stuck on the invisible chain that’s attached to

the avatar. If the avatar spins, the camera spins right along with it. (See Figure

6, The Camera Spinning with the Avatar, on page 45.)

That’s not quite what we want. Instead of locking the camera on the avatar,

what we really want is to lock the camera on the avatar’s position.

In 3D programming there is no easy way to reliably lock something to just

the position of another thing. But all is not lost.

Chapter 4. Project: Moving Avatars • 44

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 5—Everything Starts Spinning!

Figure 6—The Camera Spinning with the Avatar

We’ll add an avatar position marker to the game.

If we lock both the camera and the avatar to this marker, then moving the

marker moves both the avatar and the camera.

report erratum • discuss

Moving the Camera with the Avatar • 45

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

But, more importantly, when the avatar does cartwheels, the camera doesn’t

move. The avatar is cartwheeling, but the marker doesn’t spin. Since the

marker is not spinning, the camera doesn’t spin either.

In 3D programming, this marker is just a marker. It should be invisible. So

we don’t want to use meshes or geometries for this. Instead we use Object3D.

Let’s add the following code before the avatar-generated code, just after START
CODING ON THE NEXT LINE.

var marker = new THREE.Object3D();
scene.add(marker);

Now we change the avatar so that it is added to the marker instead of adding

it to the scene:

var avatar = new THREE.Mesh(body, cover);
marker.add(avatar);

We also need to change how the camera is added. Instead of adding the

camera to the avatar, we add it to the marker.

marker.add(camera);

The last thing we need to change is the keyboard event listener. Instead of

changing the position of the avatar, we have to change the position of the

marker.

Chapter 4. Project: Moving Avatars • 46

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 37) marker.position.x = marker.position.x-5; // left
if (code == 38) marker.position.z = marker.position.z-5; // up
if (code == 39) marker.position.x = marker.position.x+5; // right
if (code == 40) marker.position.z = marker.position.z+5; // down

if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});

With that, we can move the avatar’s position with the keyboard, but when we

flip or cartwheel, the camera stays upright.

4.7 The Code So Far

If you would like to double-check your code so far, compare it to the code in

Section A1.4, Code: Moving Avatars, on page 220.

4.8 What’s Next

We covered a very important skill in this chapter. We’ll group objects like this

over and over as our gaming skills improve. Grouping simplifies moving things

together, as well as twisting, turning, growing, and shrinking things together.

Before adding even more stuff to our avatar, let’s take a break so that we can

explore JavaScript functions a bit more. We’re already using them to make

a forest, to animate, and to listen for events. There’s even more cool stuff that

we can do with them.

report erratum • discuss

The Code So Far • 47

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 5

Functions: Use and Use Again

We’ve come across functions more than once. Most recently we saw them in

Chapter 4, Project: Moving Avatars, on page 35, where we used them to make

a forest. If you were paying close attention, you may have noticed that we

also used a function to build the keyboard event listener in the same chapter.

Although we have used functions already, we haven’t talked much about

them. You may already have a sense that they are pretty powerful, so let’s

take a closer look now.

We’re not going to talk about every aspect of functions—they can get quite

complicated. We’ll talk about them just enough to be able to understand the

functions that we use throughout the book.

5.1 Getting Started

Create a new project in the ICE Code Editor. Use the Empty project template

and call it Functions.

After the opening <script> tag, delete the line that says “Your code goes here,”

and enter the following JavaScript.

var log = document.createElement('div');
log.style.height = '75px';
log.style.width = '450px';
log.style.overflow = 'auto';
log.style.border = '1px solid #666';
log.style.backgroundColor = '#ccc';
log.style.padding = '8px';
log.style.position = 'absolute';
log.style.bottom = '10px';
log.style.right = '20px';
document.body.appendChild(log);

When you’re done with this chapter, you will

• Understand a superpowerful tool (functions)

for programmers

• Know two reasons to use functions

• Recognize some common JavaScript errors

and know how to fix them

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var message = document.createElement('div');
message.textContent = 'Hello, JavaScript functions!';
log.appendChild(message);

message = document.createElement('div');
message.textContent = 'My name is Chris.';
log.appendChild(message);

message = document.createElement('div');
message.textContent = 'I like popcorn.';
log.appendChild(message);

The first chunk of that code creates a place within the browser to log messages.

The last three blocks of code write three different messages to that log. If you

have everything typed in correctly, you should see the three messages printed

at the bottom right of the page.

Back in Chapter 3, Project: Making an Avatar, on page 25, we used a function

to avoid having to repeat the same process for creating a tree four times. So

you can probably guess the first thing that we’ll change here. Let’s change

the way we log those three messages.

Start by deleting everything from the first var message line all the way through

the last log.appendChild line. Where that code was, add the following.

logMessage('Hello, JavaScript functions!', log);
logMessage('My name is Chris.', log);
logMessage('I like popcorn.', log);

function logMessage(message, log) {
var holder = document.createElement('div');
holder.textContent = message;
log.appendChild(holder);

}

When we write that code, a surprising thing happens—it gets easier to read.

Even nonprogrammers could read those first three lines and figure out that

they send a message to the log. This is a huge win for programmers like us.

If we decide later that we want to add the time before each message, now it’s

much easier to figure out where to make that change.

Chapter 5. Functions: Use and Use Again • 50

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Readable Code Is Easier to Change Later

One of the skills that separates great programmers from good

programmers is the ability to change working code. And great pro-

grammers know that it’s easier to make changes when the code is

easy to read.

Obviously we need to change something inside the function. Before, it would

have taken us some time to figure out that those three code blocks were

writing log messages, and how to change them.

This also brings up a very important rule.

Keep Your Code DRY—Don’t Repeat Yourself

This book was published by the same people behind a famous book

called The Pragmatic Programmer. If you keep programming, you’ll

read that book one day. It contains a fantastic tip that programmers

should keep their code DRY—that they follow the rule known as

Don’t Repeat Yourself (DRY for short).

When we first wrote our code, we repeated three things:

1. Creating a holder for the message

2. Adding a text message to the holder

3. Adding the message holder to the log

It was easy to see that we were repeating ourselves since the code in each of

the three chunks was identical except for the message. This is another

opportunity for us to be lazy. If we add more than three messages, we only

have to type one more line, not three.

And of course, if we have to change something about the log message, we

only have to change one function, not three different blocks of code.

We’re not quite finished using functions here. If you look at all of the code,

you’ll notice that it takes a long time to get to the important stuff. (See Figure

7, A Lot of Junk Before the Function, on page 52.)

The important work—writing the messages—doesn’t start until line 15. Before

we write messages to the log we need a log, but all of that other stuff is just

noise.

To fix that, let’s move the noise into a function below the logMessage() lines.

Add a new function named makeLog() in between the three lines that call

logMessage() and where we defined the logMessage() function. The “noise” of

report erratum • discuss

Getting Started • 51

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 7—A Lot of Junk Before the Function

creating the log holder that goes in makeLog() starts with the line that says var
log = document.createElement('div'); and ends with the line document.body.appendChild(hold-
er). Move those lines and everything in between into makeLogM():

function makeLog() {
var holder = document.createElement('div');
holder.style.height = '75px';
holder.style.width = '450px';
holder.style.overflow = 'auto';
holder.style.border = '1px solid #666';
holder.style.backgroundColor = '#ccc';
holder.style.padding = '8px';
holder.style.position = 'absolute';
holder.style.bottom = '10px';
holder.style.right = '20px';
document.body.appendChild(holder);

return holder;
}

Note that we have changed log to holder. Also, don’t forget the last line, which

returns holder so that we can do something else with it.

We can create our log with this function. Our first four lines after the opening

<script> tag become the following:

var log = makeLog();
logMessage('Hello, JavaScript functions!', log);
logMessage('My name is Chris.', log);
logMessage('I like popcorn.', log);

Chapter 5. Functions: Use and Use Again • 52

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

That is some very easy-to-read code!

It’s more difficult to write code like that than you would think. Really good

programmers know not to use functions until there’s a good reason for them.

In other words, great programmers do exactly what we’ve done here: write

working code, then look for ways to make it better.

Always Start with Ugly Code

You are a very smart person. You have to be to have made it this

far. So you must be thinking, “Oh, I can just write readable code

to begin with.”

Believe me when I say that you can’t. Programmers know this so

well that we have a special name for trying it: premature generaliza-

tion. That’s a fancy way to say it’s a mistake to guess how functions

are going to be used before you write ugly code. Programmers have

fancy names for mistakes that we make a lot.

5.2 Understanding Simple Functions

So far we have looked at reasons why we want to use functions. Now let’s see

how functions work.

Remove the three logMessage() lines from the code. Write the following after the

var log = makeLog line.

logMessage(hello('President Obama'), log);
logMessage(hello('Mom'), log);
logMessage(hello('Your Name'), log);

function hello(name) {
return 'Hello, ' + name + '! You look very pretty today :)';

}

The result of this hello() function would be to first return the phrase “Hello,

President Obama! You look very pretty today :).” Logging these phrases should

look something like this:

There is a lot going on in the hello function to make that work, so let’s break

down the function into smaller pieces.

report erratum • discuss

Understanding Simple Functions • 53

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function hello(name) {❶
return 'Hello, ' + name + '! You look very pretty today :)';❷

}

The pieces of a function are as follows:

❶ The word function, which tells JavaScript that we’re making a function.

The name of the function—hello in this case.

Function arguments. In this case, we’re accepting one argument (name)
that we’ll use inside the function body. When we call the function with an

argument—hello(Fred)—we’re telling the function that any time it uses the

name argument, it is the same as using Fred.

The body of the function starts with an open curly brace, {, and ends with

a closing curly brace, }. You may never have used curly braces when

writing English. You’ll use them a lot when writing JavaScript.

❷ The word return tells JavaScript what we want the result of the function

to be. It can be anything: numbers, letters, words, dates, and even more-

interesting things.

JavaScript lines, even those inside functions, should end with a semicolon.

Letters, Words, and Sentences Are Strings

Things inside quotes, like 'Hello', are called strings. Even in other

programming languages, letters, words, and sentences are usually

called strings.

Always be sure to close your quotes. If you forget, you’ll get very

weird errors that are hard to fix.

Next, let’s try to break it intentionally so that we get an idea of what to do

when things go wrong.

5.3 When Things Go Wrong

Let’s put our hacker hats on and try to break some functions.

Although it’s easy to do something wrong with JavaScript functions, it’s not

always easy to figure out what you did wrong. The most common mistakes

that programmers make generate weird errors. Let’s take a look so that you’ll

be better prepared.

Chapter 5. Functions: Use and Use Again • 54

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Hack, Don’t Crack

Don’t worry! We won’t really break anything. Breaking something

would be cracking, not hacking. Hacking is a good thing. You’ll

often hear nonprogrammers using the word hack wrongly. Since

you’re a programmer now, you need to know what the word means

and how to use it correctly. Hacking means that we are playing

around with code, an application, or a website. We play with it to

learn, not to cause damage. And sometimes we try to break our

own code—but only to better understand it.

Hack always. Never crack.

Unexpected Errors

The most common thing to do is forget a curly brace:

// Missing a curly brace - this won't work!
function hello(name)

return 'Hello, ' + name + '! You look very pretty today :)';
}

This is a compile-time error in JavaScript—one of the errors that JavaScript

can detect when it’s trying to read, compile, and run—that we encountered

in Section 2.5, Debugging in the Console, on page 20. Since it’s a compile-time

error, the ICE Code Editor will tell us about the problem.

What happens if we put the curly brace back, but remove the curly brace

after the return statement?

// Missing a curly brace - this won't work!
function hello(name) {

return 'Hello, ' + name + '! You look very pretty today :)';

There are no errors in our hello function, but there is an error at the very

bottom of our code.

report erratum • discuss

When Things Go Wrong • 55

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

This can be a tough error to fix. Often programmers will type many lines and

possibly several functions before they realize that they have done something

wrong. Then it takes time to figure out where you meant to add a curly brace.

Challenge

Try to figure out the following broken code on your own. Where do the errors

show up? Hint: as in Section 2.5, Debugging in the Console, on page 20, some

of these may be run-time errors.

Forgot the parentheses around the argument:

function hello name {
return 'Hello, ' + name + '! You look very pretty today :)';

}

Forgot the function’s argument:

function hello() {
return 'Hello, ' + name + '! You look very pretty today :)';

}

Wrong variable name inside the function:

function hello(name) {
return 'Hello, ' + person + '! You look very pretty today :)';

}

Function called with the wrong name:

logMessage(helo('President Obama'), log);

function hello(name) {
return 'Hello, ' + name + '! You look very pretty today :)';

}

Wow! There sure are a lot of ways to break functions. And believe me when

I tell you that you’ll break functions in these and many other ways as you

get to be a great programmer.

Great Programmers Break Things All the Time

Because they break things so much, they are really good at fixing

things. This is another skill that makes great programmers great.

Don’t ever be upset at yourself if you break code. Broken code is a chance to

learn. And don’t forget to use the JavaScript console like you learned in

Playing with the Console and Finding What’s Broken to help troubleshoot!

Chapter 5. Functions: Use and Use Again • 56

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

5.4 Weird Tricks with Functions

Functions are so special in JavaScript that you can do all sorts of crazy things

to them. Whole books have been written on “functional” JavaScript, but let’s

take a look at one trick that we will use later.

Recursion

Change the hello like this:

function hello(name) {
var ret = 'Hello, ' + name + '! ' + 'You look very pretty today :)';
if (!name.match(/again/)) {

ret = ret + ' /// ' + hello(name + ' (again)');❶
}
return ret;

}

❶ Look closely here. Inside the body of the function hello, we’re calling the

function hello!

This will log the hello messages twice.

A function that calls itself like this is actually not crazy. It is so common that

it has a special name: a recursive function.

Be careful with recursive functions! If there is nothing that stops the recursive

function from calling itself over and over, you’ll lock your browser and have

to go into edit-only mode to fix it, as described in Section 2.6, Recovering

When ICE Is Broken, on page 23.

In this case, we stop the recursion by calling the hello function again only if

the name variable doesn’t match the again. If name doesn’t match again, then we

call hello() with name + '(again)' so that the next call will include again.

Recursion can be a tough concept, but you have a great example in the name

of your code editor:

• What does the I in ICE Code Editor stand for?

• It stands for ICE Code Editor.

• What does the I in ICE Code Editor stand for?

report erratum • discuss

Weird Tricks with Functions • 57

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

• It stands for ICE Code Editor.

• What does the I in ICE Code Editor stand for?

• …

You could go on asking that question forever, but eventually you’ll get sick

of it. Computers don’t get sick of asking, so you have to tell them when to

stop.

5.5 The Code So Far

In case you would like to double-check the code in this chapter, it’s included

in Section A1.5, Code: Functions: Use and Use Again, on page 222.

5.6 What’s Next

Functions are very powerful tools for JavaScript programmers. As we saw,

the two main reasons to use a function are for reuse and for making code

easier to read. We created a logMessage() function so that we could use its

functionality over and over again. We created the makeLog() function to move

a whole bunch of messy code out of the way of more important code. We even

took a peek at some of the crazy things that we can do with functions, like

recursion.

And we’re still just scratching the surface!

As you’ll see shortly, we’ll use functions a lot in the upcoming chapters. Let’s

get started in the next chapter as we teach our avatar how to move its hands

and feet!

Chapter 5. Functions: Use and Use Again • 58

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 6

Project: Moving Hands and Feet

When we last saw our avatar in Chapter 4, Project: Moving Avatars, on page

35, it was moving around pretty well, but it was a little stiff. Even when the

body moved, the hands and the feet stayed still. In this chapter we’ll make

our avatar more lively.

6.1 Getting Started

In this chapter we’re again building on work from previous chapters. Since

we did so much work to get the avatar moving in Project: Moving Avatars, let’s

make a copy of that project to work on in this chapter.

If it’s not already open in the ICE Code Editor, open the project that we named

My Avatar: Keyboard Controls. Make a copy of it by clicking the menu button and

choosing Make a Copy from the menu.

Name the project My Avatar: Moving Hands and Feet and click the Save button.

With that, we’re ready to start adding life to our avatar!

6.2 Moving a Hand

Let’s start with a hand. Recall from previous chapters that hands and feet

are just balls that stick out from the head. We built the right hand in Java-

Script with this:

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

As you know, the three numbers we use to set the position of the hand are

the X position (left/right), the Y position (up/down), and the Z position

(in/out). In the case of the right hand, we have placed it –150 from the center

of the avatar.

When you’re done with this chapter, you will

• Understand some important math for 3D

games

• Know how to swing objects back and forth

• Have an avatar that looks like it’s walking

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

In addition to setting all three numbers for the position, we can change just

one of the positions by updating position.x, position.y, or position.z. To move the

right hand forward (toward the viewer), add the position.z line shown.

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);
right_hand.position.z = 100;

Change the value of position.z from 100 to -100. What happens? What happens

if you keep changing between 100 and -100?

When z is 100, the hand is moved forward.

When z is -100, the hand has moved backward so that we almost cannot see

the hand behind the body.

And when you change position.z back and forth between -100 and 100, it’s

almost like the hand is swinging back and forth. Congrats! You just learned

a famous animation technique!

In some games, it’s enough to move a thing from one place to another place

to make it seem like it’s moving. But we can do better in our game.

Start by removing the line that sets the position.z. We don’t want to set it once.

We want to animate it. So, after removing that line, move to the animate()
function. After Chapter 4, Project: Moving Avatars, on page 35, we’re already

animating cartwheels and flips.

var is_cartwheeling = false;
var is_flipping = false;
function animate() {

requestAnimationFrame(animate);
if (is_cartwheeling) {

avatar.rotation.z = avatar.rotation.z + 0.05;
}

Chapter 6. Project: Moving Hands and Feet • 60

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
renderer.render(scene, camera);

}
animate();

There is a lot happening in our animate() function. We know from Chapter 5,

Functions: Use and Use Again, on page 49, that this “noise” can make it hard

to read our code. We’ll be adding even more stuff to animate(). Unless we do

something, that animate() function is going to get really, really big.

So, let’s create an acrobatics() function that does the flipping and cartwheeling.

We might as well move the is_cartwheeling and is_flipping variables with it. Then

we can call acrobatics() from within animate(), making it easier to read.

function animate() {
requestAnimationFrame(animate);
acrobatics();
renderer.render(scene, camera);

}
animate();
var is_cartwheeling = false;
var is_flipping = false;
function acrobatics() {

if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {

avatar.rotation.x = avatar.rotation.x + 0.05;
}

}

Take a moment to make sure everything still works. If something has gone

wrong, check the JavaScript console!

Now let’s add three things to the animate() function.

var clock = new THREE.Clock(true);❶
function animate() {

requestAnimationFrame(animate);
walk();❷
acrobatics();
renderer.render(scene, camera);

}
animate();
function walk() {❸

var position = Math.sin(clock.getElapsedTime()*10) * 100;
right_hand.position.z = position;

}

report erratum • discuss

Moving a Hand • 61

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

❶ We’ll use this 3D clock as a timer for our animation.

❷ In addition to performing acrobatics, now we’ll also walk.

❸ This is the function that moves the hands and feet.

As you might guess from the name, Math.sin() has something to do with math.

In fact, it’s a pretty amazing mathematical something called a sine that has

all sorts of uses. Here we’re making use of the fact that Math.sin() will generate

a number between –1 and 1 as time passes.

Multiplying 100 times Math.sin() means that position will be a number between –100

and 100. In JavaScript, the asterisk character (*) is used for multiplication.

We’ll talk more about how we work with math in A Closer Look at JavaScript

Fundamentals.

If you’ve typed in everything correctly, you should see the right hand of the

avatar jiggling back:

and forth:

And it should be moving pretty quickly.

Try This Yourself

Experiment with the number inside animate(). If you change the 10

to 100, what happens? If you change the 100 to 1000, what hap-

pens? Try doing a position.x or position.y instead of position.z. Try doing

position.y and position.z at the same time.

Once you have a feel for those numbers, try doing the other hand

and the feet.

Chapter 6. Project: Moving Hands and Feet • 62

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

6.3 Swinging Hands and Feet Together

How did it work? Were you able to get all of the hands and feet swinging back

and forth? Did you run into any problems?

If you tried moving the hands and feet in the same way, you might have

noticed that our avatar is moving awfully strangely. Both feet and both hands

move forward at the same time. And then both feet and both hands swing

back at the same time. No one walks like that in real life.

When you walk, one foot is in front and the other is behind. In avatar terms,

one foot is in the positive Z direction while the other is in the negative Z

direction:

var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_foot.position.z = -position;
left_foot.position.z = position;

People also usually move their right hand forward when their left foot is for-

ward. And if the right hand is forward, then the left hand should be back. We

can make our avatar do this with the following.

function walk() {
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

With that, our hands and feet should be swinging back and forth in a nice

walking motion.

6.4 Walking When Moving

Right now, our avatar is constantly walking—even when we’re not controlling

it with our controls from Chapter 4, Project: Moving Avatars, on page 35. Let’s

fix this problem.

First we add one line to our walk() function.

report erratum • discuss

Swinging Hands and Feet Together • 63

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function walk() {
if (!isWalking()) return;
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

Did you notice the first line of the function? This line of code means if the

avatar is not walking, then return immediately from the function. Calling return
means that we leave the function immediately and that nothing else in the

function is run. That is, if the avatar is not walking, then leave the walk()
function without running any of the code that makes the avatar look like it is

walking.

If you’ve been paying very close attention, you might wonder what that

isWalking() thing is. It’s a function that we’ll write now!

We’ll add this code before the keydown event listener.

var is_moving_right, is_moving_left, is_moving_forward, is_moving_back;
function isWalking() {

if (is_moving_right) return true;
if (is_moving_left) return true;
if (is_moving_forward) return true;
if (is_moving_back) return true;
return false;

}

Immediately before the isWalking() function, we declare “is moving” variables

that will be used soon. We use a JavaScript shortcut—a comma-separated

list—for all four variables on a single line and with only one var.

Inside the function, we use the return keyword to exit immediately from the

function. This time we return a true or false value. If any of the movement

properties of the avatar controls are true, then isWalking() will return true. In
other words, if any of the movement properties of the controls say that the

avatar is moving, then the avatar isWalking().

The very last line of the function isWalking() that returns false, will be reached

only if none of the movement controls are true. If none of the movement

properties of the avatar controls are on, then we return false to let it be known

that the avatar is not walking.

Now we need to turn those movement controls on and off. We do this in the

event listener, where we’re already moving the avatar depending on the key

being pressed. Add the lines shown.

Chapter 6. Project: Moving Hands and Feet • 64

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 37) { // left

marker.position.x = marker.position.x-5;
is_moving_left = true;❶

}
if (code == 38) { // up

marker.position.z = marker.position.z-5;
is_moving_forward = true;❷

}
if (code == 39) { // right

marker.position.x = marker.position.x+5;
is_moving_right = true;❸

}
if (code == 40) { // down

marker.position.z = marker.position.z+5;
is_moving_back = true;❹

}
if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});

❶ The avatar is moving left.

❷ The avatar is moving forward.

❸ The avatar is moving right.

❹ The avatar is moving backward.

This turns the movement controls on, but we still need to be able to turn

them off. Since we used keydown to decide when a key is being pressed, you

can probably guess how we’ll decide when a key is let go.

After the last line of the keydown event-listener code—after the }); line—add

the following keyup event-listener code.

document.addEventListener('keyup', function(event) {
var code = event.keyCode;

if (code == 37) is_moving_left = false;
if (code == 38) is_moving_forward = false;
if (code == 39) is_moving_right = false;
if (code == 40) is_moving_back = false;

});

With that, we should be able to move our avatar with the arrow keys and see

the avatar’s hands and feet swing back and forth. When we let go of those

keys, the avatar’s walking should stop.

Cool!

report erratum • discuss

Walking When Moving • 65

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Challenge: Better Acrobatics Controls

If you’re up for a challenge, let’s aim for better acrobatics controls.

Since we have code to listen for keydown and keyup events, try to make

the cartwheels and flips start when the C or F key is pressed and

stop when the C or F key is let go. Do you think the controls are

better this way? If so, leave them in there—it’s your game!

6.5 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.6, Code: Moving Hands and Feet, on page 223.

6.6 What’s Next

We now have a new way to bring our avatars to life. Back in Chapter 4, Project:

Moving Avatars, on page 35, we were able to move the avatar around the scene

and perform flips and cartwheels. In this chapter we were able to make parts

of the avatar move—making the avatar seem much more alive.

The big concept in this chapter was not a JavaScript thing or even a 3D thing.

It was a math thing: sine. Even if you’ve learned about those in math class, I

bet that you didn’t learn to use them like we did here!

One thing that our avatar still lacks is the ability to turn. Even when the

avatar moves to the left or right, it continues to face forward. That’s a bit odd,

right? In Chapter 8, Project: Turning Our Avatar, on page 79, we’ll cover how

to rotate the entire avatar.

But first it’s time for a quick break to look a little more closely at JavaScript.

Chapter 6. Project: Moving Hands and Feet • 66

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 7

A Closer Look at JavaScript Fundamentals

Before we go further, let’s take a closer look at JavaScript. Like any other

programming language, JavaScript was built so that both computers and

people could understand it.

JavaScript programming can be thought of as describing things and what

those things do, just like English and other languages. When we built our

avatar, we used JavaScript to describe its head, hands, and feet. We also

described how the 3D renderer should draw the scene in our browser. To put

it all together, JavaScript has keywords that both computers and humans

can understand.

Let’s have a look.

7.1 Getting Started

Instead of drawing and moving shapes in this chapter, we’re going explore

the JavaScript programming language. We can do a lot of this in the JavaScript

console, so start by opening that. Refer back to Section 2.2, Opening and

Closing the JavaScript Console, on page 18, if you do not remember how.

Some of the JavaScript that we’ll look at is too big for the JavaScript console.

For that, we need to create a new project in the ICE Code Editor. Use the 3D
starter project template and call it Just JavaScript.

Code in the JavaScript Console.

We’re just introducing things in the beginning of this chapter, so

it’s easiest to play with it in the JavaScript console. Be sure to

experiment!

7.2 Describing a Thing in JavaScript

Have you noticed how we introduce new things in JavaScript?

When you’re done with this chapter, you will

• Know what many of those JavaScript

things, like var, are

• Be able to write code that does things only

when you want it to

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// You don't need to type this in:
var head_shape = new THREE.SphereGeometry(100);

The var keyword declares new things in JavaScript. It tells both the computer

and humans reading the code, “Get ready—something new is coming!”

There are lots of different kinds of things in JavaScript. In the little bit of code

you just saw, we’re making a new 3D sphere shape. Things can also be

numbers:

var my_height = 1.5;

They can be words:

var title = "3D Game Programming for Kids";

Programmers usually call the things inside quotation marks strings. Here the

title item is a string that holds the title of this book.

Strings Are Easy to Break

Always be sure to close your quotes. If you forget, you’ll get very

weird errors that are hard to fix.

They can be true things:

var am_i_cool = true;
var am_i_dumb = false;

They can even be weird JavaScript things that mean nothing:

var i_mean_nothing = null;
var i_also_mean_nothing = undefined;

What Are These null and undefined Things?

You generally don’t have to worry about undefined or null things. It

doesn’t make much sense to create such things. If you see them

at all, it will be in a function—usually indicating that nothing was

found or created by the function.

Why var?

The var keyword is short for variable. A variable is a thing that can change:

var game = "started";
// do some work here
game = "over";

Chapter 7. A Closer Look at JavaScript Fundamentals • 68

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

At first we’re not done with the game. Then, some time later, we are. If we

wrote code where it says, // do some work here, that code would think that the

game is still in progress. Being able to update variables will come in handy

shortly.

About that line that starts with two slashes…

Comments

Double slashes indicate comments. The computer knows it’s supposed to

ignore everything on the line that follows //. In other words, comments are for

people only:

// This returns today's date
var today = new Date();

// This is January 1, 2013
var jan1 = new Date(2013, 1, 1);

You Don’t Need to Type the Comments

The comments you see in this book are meant to give you helpful

hints. You don’t need to type them in, but you should. Comments

will help you to remember why you did things when you open your

code later to make a change.

Really, you should be adding your own comments as well.

7.3 Changing Things

We know that we can change things, but how can each kind of variable change

in JavaScript? Let’s take them one at a time.

Numbers

You can use standard math symbols to add and subtract numbers in Java-

Script. Try the following in the JavaScript console:

5 + 2;
10 - 9.5;
23 - 46;
84 + -42;

You should get back the following answers (the answer is shown in the com-

ments below the math problem).

5 + 2;
// 7

report erratum • discuss

Changing Things • 69

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

10 - 9.5;
// 0.5

23 - 46;
// -23

84 + -42;
// 42

So it even works with negative numbers. Remember this; negative numbers

will be handy as we play with 3D graphics.

OK, so adding and subtracting are pretty easy in JavaScript. What about

multiplication and division? There are plus and minus signs on most key-

boards, but there aren’t × and ÷ keys.

For multiplication, use the asterisk (*) character:

3 * 7;
// 21

2 * 2.5;
// 5

-2 * 4;
// -8

7 * 6;
// 42

Division is done with the slash (/) character:

45 / 9;
// 5

100 / 8;
// 12.5

84 / 2;
// 42

One other thing to know about numbers is that when doing a lot of arithmetic

at the same time, you can use parentheses to group things. The math inside

parentheses is always calculated first:

5 * (2 + 4);
// 30

(5 * 2) + 4;
// 14

Chapter 7. A Closer Look at JavaScript Fundamentals • 70

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

What happens without the parentheses? Can you guess why?1

Geometry

We’re working on 3D game concepts in this book, which means geometry.

We’ll discuss geometry in more detail as part of the various project chapters

that need it. For now let’s consider two geometric functions: sine and cosine.

If you don’t know them, don’t worry—you’ll get to know them in the games.

Just remember that in JavaScript, we do not use degrees. Instead we use

radians. What are radians? Instead of saying that we turned 180° when we

spin half way around a circle, we would say that we turned pi radians around.

Pi is a special number in math. Its value is about 3.14159. You will often see

the symbol π used for pi. We’ll call it pi since JavaScript calls it Math.PI.

Going around a full circle is twice as much as 180° turn—more commonly

called a 360° turn, this is two pi radians, or 2 × pi.

By the way, 2 × pi is the 6.3 that we said was a full rotation way back when

we first started talking about rotation in Making Boxes with the Cube Shape,

on page 6. Since the number value of pi is about 3.15, then 2 × pi is 2 × 3.15,

or 6.3.

1. Without parentheses, multiplication is done first, then division. Remember the “order

of operations” from your math class!

report erratum • discuss

Changing Things • 71

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

In JavaScript, pi is called Math.PI. So 360° would be 2*Math.PI. A handy conversion

table follows:

JavaScriptRadiansDegrees

000°

Math.PI/4pi ÷ 445°

Math.PI/2pi ÷ 290°

Math.PIpi180°

2*Math.PI2 × pi360°

4*Math.PI4 × pi720°

Geometric functions are also available in JavaScript’s Math module. An

example is the sine that we saw in Chapter 6, Project: Moving Hands and Feet,

on page 59. JavaScript shortens both sine and its companion, cosine, to sin
and cos:

Math.sin(0);
// 0

Math.sin(2*Math.PI);
// 0

Math.cos(0);
// 1

Really, Really Close to Zero

Depending on your computer, when you tried Math.sin(2*Math.PI) in
the JavaScript console, you may not have gotten the right answer.

The sine of 2 × pi is zero, but you may have seen something like

-2.4492127076447545e-16 instead. This shows that computers are not

perfect. Sometimes their math can be off by a tiny amount.

When JavaScript has e-16 at the end of number, it means that it’s

a decimal number with the 16 places to the left. In other words,

-2.45e-16 is the same thing as writing -0.000000000000000245. That is a

really, really small number—you would have to add it more than

two million times to get 1.

We won’t need these Math. functions often. They will pop up now and again

as we progress. For the most part, we can make do with the simple arithmetic

operators for addition, subtraction, multiplication, and division.

Chapter 7. A Closer Look at JavaScript Fundamentals • 72

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Strings

Strings in JavaScript are kind of boring. You can really only join two strings

into larger strings. What is interesting is that the plus operator is what joins

them together. Try the following in the JavaScript console.

var str1 = "Howdy";
var str2 = "Bob";

str1 + " " + str2;
// "Howdy Bob"

Pretty crazy, isn’t it? Given that there are no multiplication and division keys

on most keyboards, there definitely are no stick-two-strings-together keys.

So JavaScript gets lazy and uses the plus sign again.

What do you suppose happens if you try to join a string and a number? Well,

give it a try:

var str = "The answer to 7 + 4 is ";
var answer = 7 + 4;

str + answer;

Try This Yourself

Do this and check it in the JavaScript console!

The result is that, when combining a string and a number, JavaScript will

treat the number as a string:

var str = "The answer to 7 + 4 is ";
var answer = 7 + 4;

str + answer;
// "The answer to 7 + 4 is 11"

Booleans

There is not much to a Boolean. It is either true or false. It is possible to convert

Booleans with the not operator. In JavaScript, the exclamation point is the not
operator:

var yes = true;
var the_opposite = !yes;
var the_opposite_of_the_opposite = !!yes;
yes;
// true
the_opposite;

report erratum • discuss

Changing Things • 73

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// false

the_opposite_of_the_opposite;
// true

We won’t use Booleans directly like this very often. We’ll usually see compar-

ison operators that make Booleans:

// The > symbol checks for values greater than others
var is_ten_greater_than_six = 10 > 6;
is_ten_greater_than_six;
// true

// Two equal signs check if values are equal
var is_twelve_the_same_as_eleven = 12 == 11;
is_twelve_the_same_as_eleven;
// false

Double Equal Sign vs. Single Equal Sign

A double equal sign (==) in JavaScript checks if something is equal

to something else. It makes no changes to anything—it only checks

values and produces a Boolean.

As we have seen throughout the book, a single equal sign (=) makes

a value equal to something else. Often called the assignment oper-

ator, a single equal sign does change a value—it updates a variable

or assigns it for the first time.

You might be wondering if it’s wise to have two very different oper-

ators look so similar. It isn’t. It’s a very common source of mistakes

—even for people who’ve been programming for years. But, since

it has been around for so long, it probably won’t be changing any

time soon. So be on the lookout for these kinds of mistakes.

We’ll see these kinds of Booleans a lot. In fact, they are in the very next section.

7.4 Repeating and Skipping Code with while and if
Normally JavaScript code is run from top to bottom. The lines of code at the

top of a program are run first. Once the computer is done running those lines,

it moves on to the next lines. This happens all the way to the bottom of a

program file.

But sometimes we don’t want all of the code to run. And other times we want

to run code more than once. For these times, we use control keywords. The

keywords that we’ll see the most in this book are while and if.

Chapter 7. A Closer Look at JavaScript Fundamentals • 74

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Code in ICE, Check in the Console

The code in the rest of this chapter is too large for the JavaScript

console, so add it in ICE after the START CODING line. Be sure to keep

the JavaScript console open—even though we’re not typing code

in there, we’ll still use it to show messages.

While

If a section of code, which we call a block, starts with while, then the block is

run again and again until something changes. The something that needs to

change goes in parentheses after the while keyword:

var i = 0;
while (i < 5) {

console.log("i is now: " + i);
i = i + 1;

}

If you try this and check in the JavaScript console, you’ll see something like

the following:

i is now: 0
i is now: 1
i is now: 2
i is now: 3
i is now: 4

Each time through the code block, we log the variable i to the JavaScript

console. We also do a little math. We add 1 to the old value of i. Then the

computer will run the while block again—as long as i is less than 5 (that <
symbol means less than). As soon as i is equal to 5, the computer stops

rerunning the while block and moves on to the next lines.

Try This Yourself

What happens if you run the following?

var i = 0;
while (i < 5) {

console.log("Chris is awesome!!!!");
i = i + 1;

}

Be sure to try your own name!

report erratum • discuss

Repeating and Skipping Code with while and if • 75

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Running Code Only If Something Is True

Sometimes we want to skip over code entirely. For these times, we use the if
keyword. Just like while, the if keyword does something with a block of code:

var game = "started";
// More code here that might change the variable "game"
// to something else...

if (game == "over") {
console.log("Game Over!!!");

}

The if keyword lets us write JavaScript code that runs only if some condition

is true. In this case, we check if game is equal to the string over, using the

double equals (==) operator to do so.

We can also extend an if statement with else if and else. Consider the following

code, which we’ll use to turn and move a raft in Chapter 20, Project: River

Rafting, on page 185:

document.addEventListener("keydown", function(event) {
var code = event.keyCode;
if (code == 32) pushRaft(); // space❶
else if (code == 37) rotateRaft(-1); // left❷
else if (code == 39) rotateRaft(1); // right❸
else { // Something else❹

console.log(code);
}

});

We’ll talk more about the code in the project chapters, but we see that

❶ if the code is a space bar code, then we push the raft forward

❷ otherwise, if the code is for the left arrow key, then we turn the raft to the

left

❸ otherwise, if the code is for the right arrow key, then we turn to the right

❹ otherwise, some strange key is pressed and we just log the code to the

JavaScript console

Don’t Overuse Ifs

If, else if, and else are very powerful, but can be used too much. We’ll

talk about better approaches in some of the project chapters.

Chapter 7. A Closer Look at JavaScript Fundamentals • 76

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

7.5 Listing Things

At times it’s quite handy to be able to describe a list of things. In JavaScript,

lists are made with square brackets. A list of amazing movies might look

something like this:

var amazing_movies = [
'Star Wars',
'The Empire Strikes Back',
'Indiana Jones and the Raiders of the Lost Ark'

];

The things in the list can be any of the kinds of things that we have talked

about so far: strings, numbers, Booleans. It is even possible to make a list

with various types of things:

// Don't do this:
var useless_list = [

true,
3.14,
'OK'

];

But don’t do that. It’s silly. Just like in real life, computer lists should contain

the same kinds of things. It wouldn’t make sense to include your favorite

color, the time your friend is coming over, or the score of last night’s game

on a grocery list. A list of things to buy at the store should include only items

that are at the store.

There are lots of ways to use lists, but the one we’ll use the most in this book

is to call a function for each item in the list:

var amazing_movies = [
'Star Wars',
'The Empire Strikes Back',
'Indiana Jones and the Raiders of the Lost Ark'

];

amazing_movies.forEach(function(movie) {
console.log("GREAT: " + movie);

});

Think of the forEach() function as a way of saying that “for each” thing in our

list,

• give it a nickname—we call it movie in the preceding code

• do stuff with it inside the function—we log it as "GREAT"

If you type this and check the JavaScript console, you’ll get back this output:

report erratum • discuss

Listing Things • 77

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

GREAT: Star Wars
GREAT: The Empire Strikes Back
GREAT: Indiana Jones and the Raiders of the Lost Ark

We’ll see lists again in some of the later chapters.

7.6 What Makes JavaScript Different

Many things make JavaScript different from other languages, but the most

important for us is that it’s meant to be run in a browser. This means it can

do a lot of web work very easily. As we saw in Chapter 4, Project: Moving

Avatars, on page 35, JavaScript can open browser alert dialogs:

alert('Stop what you are doing and shout "Yay!"');

JavaScript is also really good at making changes in web pages. We won’t

change web pages much in this book, although we will cover the topic when

we make scoreboards in some of our games.

7.7 What’s Next

There is a lot of information in this chapter. Don’t worry if not all of it makes

sense yet. When you work through the later chapters, come back here if you

have questions. More and more of this will begin to make sense as you

progress.

The basics that we’ve covered here are like the nouns of the JavaScript lan-

guage. The functions we saw in Chapter 5, Functions: Use and Use Again, on

page 49, are like the verbs—they tell the basics what they need to do in order

to make things happen.

Speaking of making things happen, let’s get back to adding cool stuff to our

avatar!

Chapter 7. A Closer Look at JavaScript Fundamentals • 78

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 8

Project: Turning Our Avatar

We’re nearly finished animating our avatar. In Chapter 4, Project: Moving

Avatars, on page 35, we learned how to make our avatar move. In Chapter

6, Project: Moving Hands and Feet, on page 59, we made the avatar look like

it was walking. Now we need to make it look as though it can turn when we

switch directions. Turning, or rotating, is not new to us—we already make

the avatar turn when flipping and cartwheeling. But this time we want to

make our avatar face a particular direction.

8.1 Getting Started

If it’s not already open in the ICE Code Editor, open the project that we named

My Avatar: Moving Hands and Feet (from Project: Moving Hands and Feet). Make a

copy of it by clicking the menu button and choosing Make a Copy from the menu.

Name the project My Avatar: Turning and click the Save button.

8.2 Facing the Proper Direction

Getting the avatar to face the proper direction is fairly easy—especially with

all that we already know. Just as we did when we added the walking motion

of the hands and feet, we’ll write a new function to turn our avatar. We’ll call

this function turn(), so let’s add a call to this function in the animate() function.

function animate() {
requestAnimationFrame(animate);
walk();
turn();
acrobatics();
renderer.render(scene, camera);

}
animate();

When you’re done with this chapter, you will

• Know even more fun math for 3D program-

ming

• Know how to rotate something to face a

specific direction

• Be able to make smooth animations

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Next write the function turn(). JavaScript doesn’t care where you put this

function, but since we call it after walk() in the animate() function, we might as

well put it after the walk() function. Type the following after the closing curly

brace of the walk() function:

function turn() {
var direction = 0;
if (is_moving_forward) direction = Math.PI;
if (is_moving_back) direction = 0;
if (is_moving_right) direction = Math.PI/2;
if (is_moving_left) direction = -Math.PI/2;

avatar.rotation.y = direction;
}

With that, when we walk left or right, the avatar now faces the direction in

which it’s moving:

That is pretty amazing. You have now made a complicated game avatar. Think

about what you’ve accomplished:

• Given the avatar a body, hands, and feet

• Made the avatar move so that all the pieces move with it

• Made the avatar do cartwheels and flips

• Stuck the camera to the avatar

• Stuck the camera to the avatar’s position so that flips and cartwheels

don’t make us dizzy

• Made the hands and feet swing back and forth when the avatar walks

• Made the hands stop moving when the avatar is not moving

• Made the avatar face the direction that it’s walking

Chapter 8. Project: Turning Our Avatar • 80

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

That is an incredible amount of JavaScript 3D programming. You have done

very well to make it this far, but we can do more.

First let’s take a closer look at that turn() function so we’re sure we understand

what’s going on there.

8.3 Breaking It Down

In the turn() function, why do we set the direction to values like Math.PI and

-Math.PI/2?

Recall from Geometry, on page 71, that angles, the amount of rotation, use

radians instead of degrees. The avatar starts facing backward, toward the

camera. So 0° of rotation is 0 radians of rotation, which means facing back-

ward. And 180° is pi radians, which means facing forward into the screen.

The following table is the complete list we’re using in the turn() function.

JavaScriptRadiansDegreesDirection

Math.PIpi180°Forward

Math.PI/2pi ÷ 290°Right

-Math.PI/2-pi ÷ 2-90°Left

000°Backward

Why rotation.y?

So that explains the number that we use for the direction variable in the function

turn(), but why do we set rotation.y? Why not rotation.z or rotation.x?

Well, for one thing, we already change rotation.x when we do cartwheels and

rotation.z when we flip.

We set the rotation.y because we want to spin the avatar around the y-axis.

Recall that, in 3D, the y-axis is pointing up and down. If you imagine a pole

sticking right up the middle of the avatar, that is the avatar’s y-axis:

report erratum • discuss

Breaking It Down • 81

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Spinning the avatar around this pole is what it means to rotate the avatar

around the y-axis.

Don’t Forget About avatar.rotation!

If you tried turning marker.rotation instead of avatar.rotation, you may have noticed

that not only did the avatar spin, but everything else seemed to spin as well.

This is because we attached the camera to the avatar’s marker:

var marker = new THREE.Object3D();
scene.add(marker);

marker.add(camera);

Think of the marker as an invisible box that holds the avatar’s parts. By

adding the camera to the marker, we’re sticking it to one side of the marker.

If we spin the box, then the camera has to go along with it:

This is also why we added the hands and feet to the avatar’s head instead of

to the avatar’s marker. When we turn the avatar inside the marker, its hands

and feet need to move with it—not stay still with the marker.

8.4 Animating the Spin

When we turn our avatar, it’s immediately facing the new direction. Let’s

make it a little more realistic by animating a turn to the new direction. For

that, we’ll need a new JavaScript library. This library will help us animate

between different positions and rotations. The library is called Tween.

For this, go to the top of your code (the very top, not just to the START CODING
ON THE NEXT LINE line). Add the <script> tag for Tween.js, as shown:

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/Tween.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>

Chapter 8. Project: Turning Our Avatar • 82

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The Tween library animates changes between a start and end. Here we want

to animate starting with one rotation and moving to an ending rotation.

The first step in using Tween is to add its update() function to our animate()
function:

function animate() {
requestAnimationFrame(animate);
TWEEN.update();
walk();
turn();
acrobatics();
renderer.render(scene, camera);

}
animate();

Next we need to change the function turn() that we just wrote. Instead of setting

the direction right away, we’ll call a new function that will spin the avatar in

the new direction. Change the last line of the function turn() to call spinAvatar():

function turn() {
var direction = 0;
if (is_moving_forward) direction = Math.PI;
if (is_moving_back) direction = 0;
if (is_moving_right) direction = Math.PI/2;
if (is_moving_left) direction = -Math.PI/2;

spinAvatar(direction);
}

Last, we need to write the code for the spinAvatar() function. The Tween code

might seem a little strange at first. When reading it, keep in mind that we

want to start the spin where the avatar’s head is currently facing (avatar.rota-
tion.y). We want to end in the new direction that is sent into spinAvatar() as the

direction argument.

Write the following spinAvatar() function after the turn() function:

function spinAvatar(direction) {
new TWEEN.

Tween({y: avatar.rotation.y}).
to({y: direction}, 100).
onUpdate(function () {
avatar.rotation.y = this.y;

}).
start();

}

Reading from top to bottom in that function, the new Tween starts with a Y

rotation value of avatar.rotation.y—the direction the avatar is already facing. We

report erratum • discuss

Animating the Spin • 83

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

then tell the Tween that we want to rotate to the new Y rotation passed to the

spinAvatar() function. Every time the animation runs, the stuff inside onUpdate()
is what happens. The rotation of the avatar’s head is updated to the Y rotation

of the Tween. The last line starts it all.

The periods at the end of each line in that function represent method chaining.

In JavaScript, a semicolon ends a “sentence” of code. The period in JavaScript,

unlike in English, indicates that we want to do something else with the current

code—that the code sentence is not over yet.

We could have put all of that code on a single line, but it can be easier for

humans to read code split across lines (computers don’t care). Method

chaining works with only certain JavaScript objects, like Tweens. It is a

somewhat common practice in JavaScript, though we won’t be using it much

ourselves.

Try This Yourself

We told the Tween library that it will run from start to finish in 100

milliseconds. This number was at the end of the line that started

with to.

It would take 1000 milliseconds to make one second, so 100 mil-

liseconds is less than a second. The spin of the avatar takes less

than a second. Experiment with that number to get it the way that

you like. Is 1000 too long? Is 10 too short? You decide!

8.5 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.8, Code: Turning Our Avatar, on page 226.

8.6 What’s Next

Wow! Our simple avatar simulation is getting quite sophisticated, isn’t it?

We’ve already put quite a bit of work into our avatar, but you may have noticed

that it can pass right through our trees. In the next project chapter we’ll talk

about collision detection, and use it to make our avatar stop when it collides

with a tree.

But first it’s time to take a closer look at all of that JavaScript code that was

added for us when we started this project.

Chapter 8. Project: Turning Our Avatar • 84

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 9

What’s All That Other Code?

When we create a new project from the 3D starter template, there is a lot of code

already in there. In this chapter we’ll see what it all means.

9.1 Getting Started

Create a new project from the 3D Starter template in the ICE Code Editor. Name

the project All that other code.

9.2 A Quick Introduction to HTML

At the very top of our code is the following HTML:

<body></body>

HTML is not a programming language. So what’s it doing messing up our

beautiful JavaScript code?

HTML is the Hypertext Markup Language. It is used to build web pages, not

to make web pages do interesting things.

Even though it’s not a programming language, we still need HTML for Java-

Script. Since JavaScript is a web programming language, we need a web page

where we can program—even if it is just a simple page.

The very first line contains an opening and closing <body> tag. In between

those two tags, HTML authors would normally put writing—links to images

and other pages. We’re not putting anything in there because we’re program-

ming, not making web pages.

To get a sense of what HTML does, add the following HTML in between the

two <body> tags, as shown:

When you’re done with this chapter, you will

• Know a little about making web pages

• Understand the starter code

• Be comfortable changing the starter code

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

<body>
<h1>Hello!</h1>
<p>

You can make bold words,
<i>italic</i> words,
even <u>underlined</u> words.

</p>
<p>

You can link to
other pages.
You can also add images from web servers:

</p>
</body>

Ignore ICE Warnings for HTML

Your HTML code may get red X warnings. These can be safely

ignored. ICE is meant to edit JavaScript, not HTML, so it can get

confused.

If you hide the code in the ICE Code Editor, you’ll see something like this:

This is a JavaScript book, not an HTML book, but you already see some of

what’s possible with HTML.

After the <body> tags come two <script> tags. Just like the <body> tags, these

<script> tags are HTML, but these load JavaScript from elsewhere on the Web

so that we can use it on the current page.

<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>

These two lines tell the browser to load two libraries. In this case, we’re

loading a 3D JavaScript library named Three.js and a small library that fixes

some ICE Code Editor bugs in the Chrome web browser.

Chapter 9. What’s All That Other Code? • 86

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

JavaScript doesn’t have to come from other locations. For most of this book,

we’re coding inside an HTML web page.

9.3 Setting the Scene

To do anything in 3D programming, we need a scene. Think of the scene as

the universe in which all of the action is going to take place. For something

so important, it’s really easy to create. The following code in ICE does just

that:

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

Scenes are really simple to work with. We’ve been adding objects to them

throughout the book. Once things have been added to a scene, it’s the scene’s

job to keep track of everything. In fact, that’s pretty much all we need to know

about scenes—after creating one, we add lots of stuff to it and the scene takes

care of the rest.

9.4 Using Cameras to Capture the Scene

Scenes do a great job of keeping track of everything, but they don’t show us

what’s happening. To see anything in the scene, we need a camera. Notice

the following code in ICE:

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
scene.add(camera);

The purpose of the aspect_ratio is to determine the shape of the browser. This

is the same thing as aspect ratios for movie screens and TV sets. A large TV

with a 4:3 aspect ratio might be four meters wide and three meters tall (OK

that’s a really large TV). An even larger 4:3 screen might be twelve meters

wide and nine meters tall (multiply both the 4 and 3 in 4:3 by 3 to get 12:9).

Most movies today are made at an aspect ratio of 16:9, which would mean a

nine-meter-tall screen would be sixteen meters wide—four extra meters when

compared with the same-height 4:3 aspect ratio.

Why does this matter for us? If you try to project a movie made in 16:9 onto

a 4:3 screen, a lot of squishing has to be done. Similarly, a 4:3 movie would

need to be stretched to be shown on a 16:9 screen. Instead of stretching or

squishing, most movies are chopped so that you miss those four meters of

action. Our Three.js library doesn’t chop—it stretches or squishes. In other

words, it’s pretty important to get the aspect ratio right.

report erratum • discuss

Setting the Scene • 87

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

After we build a new camera, we need to add it to the scene. Like anything

else in 3D programming, the camera is placed at the center of the scene to

which we add it. We move it 500 units away from the center in the Z direction

(“out” of the screen) so that we have a good view of what’s going on back at

the center of the scene.

9.5 Using a Renderer to Project What the Camera Sees

The scene and the camera are enough to describe how the scene looks and

from where we’re viewing it, but one more thing is required to show it on the

web page. This is the job of the renderer. It shows, or renders, the scene as

the camera sees it:

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

We have to tell the renderer the size of the screen to which it will be drawing.

We set the size of the view to take up the whole browser (window.innerWidth and

window.innerHeight).

To include the renderer in the web page, we use its domElement property. A

domElement is another name for an HTML tag like those we added earlier in the

chapter. Instead of holding a title or paragraph, this domElement holds our

amazing 3D worlds.

We add that domElement to the document.body—which is the same <body> tag that

held the HTML from earlier. The appendChild() function takes care of adding the

domElement to the document body. If you’re wondering why we have names like

appendChild() and domElement, all I can tell you is to be glad you are a 3D-game

programmer, not a web programmer. Web programmers have to use silly (and

hard-to-remember) names like this all the time.

At this point, the renderer can draw to the screen, but we still need to tell it

to render before anything will show up. This is where renderer.render() comes

into play at the end of your current code.

// Now, show what the camera sees on the screen:
renderer.render(scene, camera);

It might seem as though the renderer is an obnoxious younger brother or

sister, doing the right thing only when we’re extremely specific in our

instructions. In a sense this is true, but in another sense all programming is

like this. Until we tell the computer in exactly the right way to do something,

it often does something completely unexpected.

Chapter 9. What’s All That Other Code? • 88

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

In the case of the renderer, we can already see why it’s nice to have this kind

of control. In some of our experiments, we rendered just a single time. But

in many of our projects, we render repeatedly inside an animate() function.

Without this kind of control, it would be much harder to pick and choose the

right rendering style.

9.6 Exploring Different Cameras and Renderers

You may have noticed that we call our camera a PerspectiveCamera and our

renderer a CanvasRenderer. If these names seem oddly specific, that’s because

there are other kinds of cameras and renderers. We’ve been using these

because most browsers and hardware support them. As we’ll see in Chapter

12, Working with Lights and Materials, on page 109, some cool effects that we

might want to add to our 3D games require different cameras and renderers

that work only on relatively new computers.

You Don’t Have to Do These Examples

Some computers will not be able to run the examples in the rest of

the chapter. This is because they rely on a technology called WebGL,

which we will talk about in more detail in Chapter 12, Working with

Lights and Materials, on page 109. Since your computer might not

support WebGL, you don’t have to follow along in the ICE Code

Editor in this section.

Introducing the WebGL Renderer

The other important renderer is the WebGLRenderer. We use it exactly the same

way that we use the CanvasRenderer. We only need to change the name:

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

WebGL is a fairly new technology that allows programmers to perform inter-

esting 3D-programming techniques like lighting, shadows, and fog. It also

runs animations much faster than is possible with the CanvasRenderer. We’ll

explore it more in Working with Lights and Materials.

A Quick Peek at a Weirdly Named Camera

The other kind of camera is called orthographic. To understand what an

orthographic camera does, we can add a red road on which the purple fruit

monster can travel. Add the following after START CODING ON THE NEXT LINE.

report erratum • discuss

Exploring Different Cameras and Renderers • 89

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.CubeGeometry(200, 1000, 10);
var cover = new THREE.MeshBasicMaterial({color:0x990000});
var road = new THREE.Mesh(shape, cover);
scene.add(road);
road.position.set(0, 400, 0);
road.rotation.set(-Math.PI/4, 0, 0);

Our perspective camera makes the road look something like this:

This is a rectangular road, but it doesn’t look rectangular. It looks as though

it’s getting smaller the farther away it gets. The perspective camera does this

for us:

var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);

If we use an orthographic camera, on the other hand, everything looks flat:

Chapter 9. What’s All That Other Code? • 90

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

That is the same road from the previous image. We’ve only replaced the two

lines that create the perspective camera with the following:

var width = window.innerWidth,
height = window.innerHeight;

var camera = new THREE.OrthographicCamera(
-width/2, width/2, height/2, -height/2, 1, 10000

);

As you might imagine, the perspective camera that gives everything a three-

dimensional feel is very handy in 3D games. Why would you want to use an

orthographic camera?

Orthographic cameras are useful in two cases. The first is when you want to

make a flat, 2D game. Using a 3D camera for a flat game just looks

weird—especially at the edges of the screen. The other is when we make games

with really, really long distances, such as space games. In fact, we can use

orthographic cameras in some of the space simulations we’ll do in a little

while.

9.7 What’s Next

Now that we understand all about cameras, scenes, and JavaScript libraries,

we’ll change them more and more. But first let’s teach our game avatar to not

walk through trees.

report erratum • discuss

What’s Next • 91

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 10

Project: Collisions

We have a pretty slick game avatar. It moves, it walks, it even turns. But you

may have noticed something odd about our avatar. It can walk through trees.

In this chapter we’ll use tools that are built into our Three.js 3D JavaScript

library to prevent the avatar-in-a-tree effect. (As we’ll see in other chapters,

there are other ways to do the same thing.)

10.1 Getting Started

If it’s not already open in the ICE Code Editor, open the project from Project:

Turning Our Avatar that we named My Avatar: Turning.

Make a copy of our avatar project. From the menu in the ICE Code Editor,

select Make a Copy and enter My Avatar: Collisions as the new project name.

When you’re done with this chapter, you will

• Be able to stop game elements from moving

through each other

• Understand collisions, which are important

in gaming

• Have game boundaries for your avatar

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

10.2 Rays and Intersections

The way we prevent our avatar from walking through trees is actually quite

simple. Imagine an arrow pointing down from our avatar.

In geometry, we call an arrow point a ray. A ray is what you get when you

start in one place and point in a direction. In this case, the place is where

our avatar is and the direction is down. Sometimes giving names to such

simple ideas seems silly, but it’s important for programmers to know these

names.

Programmers Like to Give Fancy Names to Simple Ideas

Knowing the names for simple concepts makes it easier to talk to

other people doing the same work. Programmers call these names

patterns.

Now that we have our ray pointing down, imagine circles on the ground around

our trees.

Here is the crazy-simple way that we prevent our avatar from running into a

tree: we don’t! Instead, we prevent the avatar’s ray from pointing through the

tree’s circle.

Chapter 10. Project: Collisions • 94

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

If, at any time, we find that the next movement would place the avatar’s ray

so that it points through the circle, we stop the avatar from moving. That’s

all there is to it!

Star Trek II: The Wrath of Khan

It may seem strange, but watching certain science-fiction movies

will make your life easier as a programmer. Sometimes programmers

say odd things that turn out to be quotes from movies. It is not a

requirement to watch or even like these movies, but it can help.

One such quote is from the classic Star Trek II: The Wrath of Khan.

The quote is “He is intelligent, but not experienced. His pattern

indicates two-dimensional thinking.”

The bad guy in the movie was not accustomed to thinking in three

dimensions, and this was used against him. In this case, we want

to think about collisions in only two dimensions even though we

are building a three-dimensional game. We’re thinking about colli-

sions only in two dimensions (X and Z), completely ignoring the

up-and-down Y dimension.

This is yet another example of cheating whenever possible. Real

3D collisions are difficult and require new JavaScript libraries. But

we can cheat and get the same effect in many cases using easier

tricks.

At this point, a picture of what to do next should be forming in your mind.

We’ll need a list of these tree-circle boundaries that our avatar won’t be allowed

to enter. We’ll need to build those circle boundaries when we build the trees,

and detect when the avatar is about to enter a circle boundary. Last, we need

to stop the avatar from entering these forbidden areas.

report erratum • discuss

Rays and Intersections • 95

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Let’s establish the list that will hold all forbidden boundaries. Just below the

START CODING ON THE NEXT LINE line, add the following.

var not_allowed = [];

Recall from Section 7.5, Listing Things, on page 77, that square brackets are

JavaScript’s way of making lists. Here, our empty square brackets create an

empty list. The not_allowed variable is an empty list of spaces in which the

avatar is not allowed.

Next, find where makeTreeAt() is defined. When we make our tree, we’ll make

the boundaries as well. Add the following code after the line that adds the

treetop to the trunk, and before the line that sets the trunk position.

var boundary = new THREE.Mesh(
new THREE.CircleGeometry(300),
new THREE.MeshNormalMaterial()

);
boundary.position.y = -100;
boundary.rotation.x = -Math.PI/2;
trunk.add(boundary);

not_allowed.push(boundary);

There’s nothing superfancy there. We create our usual 3D mesh—this time

with a simple circle geometry. We rotate it so that it lays flat and position it

below the tree. And, of course, we finish by adding it to the tree.

But we’re not quite done with our boundary mesh. At the end, we push it

onto the list of disallowed spaces. Now every time we make a tree with the

makeTreeAt() function, we’re building up this list. Let’s do something with that

list.

At the very bottom of our code, just above the </script> tag, add the following

code to detect collisions.

function detectCollisions() {
var vector = new THREE.Vector3(0, -1, 0);
var ray = new THREE.Ray(marker.position, vector);
var intersects = ray.intersectObjects(not_allowed);
if (intersects.length > 0) return true;
return false;

}

This function returns a Boolean—a yes-or-no answer—depending on whether

the avatar is colliding with a boundary. This is where we make our ray to see

if it points through anything. As described earlier, a ray is the combination

of a direction, or vector (down in our case), and a point (in this case, the

Chapter 10. Project: Collisions • 96

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

avatar’s marker.position). We then ask that ray if it goes through (intersects) any

of the not_allowed objects. If the ray does intersect one of those objects, then

the intersects variable will have a length that is greater than zero. In that case,

we have detected a collision and we return true. Otherwise, there is no collision

and we return false.

Collisions are a tough problem to solve in many situations, so you’re doing

great by following along with this. But we’re not quite finished. We can now

detect when an avatar is colliding with a boundary, but we haven’t actually

stopped the avatar yet. Let’s do this in the keydown listener.

In the keydown listener, if an arrow key is pressed, we change the avatar’s

position.

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}

Such a change might mean that the avatar is now in the boundary. If so, we

have to undo the move right away. Add the following code at the bottom of

the keydown event listener (just after the if (code == 70)).

if (detectCollisions()) {
if (is_moving_left) marker.position.x = marker.position.x+5;
if (is_moving_right) marker.position.x = marker.position.x-5;
if (is_moving_forward) marker.position.z = marker.position.z+5;
if (is_moving_back) marker.position.z = marker.position.z-5;

}

Read through these lines to make sure you understand them. That bit of code

says if we detect a collision, then check the direction in which we’re moving. If

we’re moving left, then reverse the movement that the avatar just did—go back

in the opposite direction the same amount.

With that, our avatar can walk up to the tree boundaries, but go no farther.

report erratum • discuss

Rays and Intersections • 97

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Yay! That might seem like some pretty easy code, but you just solved a very

hard problem in game programming.

10.3 The Code So Far

In case you would like to double-check the code in this chapter, it’s included

in Section A1.10, Code: Collisions, on page 230.

10.4 What’s Next

Collision detection in games is a really tricky problem to solve, so congratula-

tions on getting this far. It gets even tougher once you have to worry about

moving up and down in addition to left, right, back, and forward. But the

concept is the same. Usually we rely on code libraries written by other people

to help us with those cases. In some of the games we’ll experiment with

shortly, we’ll use just such a code library.

But first we’ll put the finishing touch on our avatar game. In the next chapter

we’ll add sounds and scoring. Let’s get to it!

Chapter 10. Project: Collisions • 98

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 11

Project: Fruit Hunt

We have an avatar. We have trees. Let’s make a game in which our avatar

has to get stuff out of those trees. The trees are hiding yummy fruit that the

avatar wants. And if the avatar can get to the fruit in time, points will be

added to the scoreboard.

It will end up looking something like this:

Congratulations to fellow game programmer Sophie H. for coming up with the

winning game concept used in this chapter!

11.1 Getting Started

To make this game, we need the avatar, the trees, and the collision-detection

functions that we’ve been working on throughout this book. After Chapter

10, Project: Collisions, on page 93, we have everything that we need to get

started on this project. So let’s make a copy of that project we’ve been

working on.

When you’re done with this chapter, you will

• Be able to add sounds to games

• Be able to add simple scoring to a game

• Have a silly game to play

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

From the menu in the ICE Code Editor, select Make a Copy and enter Fruit Hunt!
as the new project name.

To keep score in this game, we’ll need something new—a scoreboard. There

is a fairly nice scoreboard built into the ICE Code Editor, but we have to load

the library first. In Chapter 9, What's All That Other Code?, on page 85, we

looked at the libraries that are loaded with the <script> tags at the very top of

the code. We need to add another one.

Similarly, to make sounds in our game, we need the sounds library. So let’s

add a second <script> tag at the top of the code.

We make these changes by starting a new line after the three <script> tags at

the top of the page with src attributes. The new line should be on line 5. Add

the following <script> tags to pull in the scoreboard and sound libraries:

<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/Sounds.js"></script>

Since this is just the “getting started” section of our program, those lines

won’t actually change anything in the game. To see the scoreboard, we need

to configure it and turn it on. Let’s do that next.

11.2 Starting a Scoreboard at Zero

The rest of the code in this chapter will go below the START CODING ON THE NEXT
LINE line.

To add a scoreboard to our game, we create a new one using the new keyword.

Then we tell the scoreboard to start a countdown timer, show the score, and

add a help message. To do all of that, we first enter the following code after

the line that introduces the not_allowed variable:

var scoreboard = new Scoreboard();
scoreboard.countdown(45);
scoreboard.score();
scoreboard.help(

'Arrow keys to move. ' +
'Space bar to jump for fruit. ' +
'Watch for shaking trees with fruit.' +
'Get near the tree and jump before the fruit is gone!'

);

These lines add a nifty-looking scoreboard to our screen, complete with the

time remaining in the game (45 seconds), the current score (zero), and a hint

to players that they can press the question mark (?) key to get some help.

The scoreboard should look like the following:

Chapter 11. Project: Fruit Hunt • 100

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Before making the game behave the way the help text says it should, we need

to teach the game what to do when time runs out. To do so, add the following

on the line after all of the scoreboard code:

var game_over = false;
scoreboard.onTimeExpired(function() {

scoreboard.message("Game Over!");
game_over = true;

});

This tells the scoreboard that when time expires, it should run the function

that sets the scoreboard message to Game Over! and that the game_over variable

should be set to true.

That’s all there is to build the scoreboard. Now, let’s figure out a way for the

player to add points to the scoreboard.

11.3 Giving Trees a Little Wiggle

The goal of this game will be to find fruit, which we’ll call treasure, in the

trees. At any given time, only one tree will have treasure. To show which tree

it is, we’ll give it a little shake. But first we need a list of trees.

Find the code that created the forest—there should be four lines that make

different makeTree() calls. We added this way back in Chapter 4, Project: Moving

Avatars, on page 35. We need to make a little change to the part of the code

that adds the trees to the scene.

We start by adding two variables. The first is tree_with_treasure, which you might

have guessed will point to the tree that currently has treasure. The second

variable is a list containing all the trees, which we’ll call trees. We then push

into this list all the trees that will make up our forest. Change your four

makeTreeAt() lines to the following:

var tree_with_treasure;
var trees = [];
trees.push(makeTreeAt(500, 0));
trees.push(makeTreeAt(-500, 0));
trees.push(makeTreeAt(750, -1000));
trees.push(makeTreeAt(-750, -1000));

To make this bit work, we need to change the makeTreeAt() function so that it

returns something. If makeTreeAt() doesn’t return anything, then we would be

report erratum • discuss

Giving Trees a Little Wiggle • 101

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

pushing nothing onto our list of trees. Add the following line to the very bottom

of the makeTreeAt() function before the last curly brace:

function makeTreeAt(x, z) {
// Don't change any code at the start...

// ... but add the following line to the end:
return top;

}

With that, the treetop (the green ball/leaves) is returned to be added to the

list of trees. We could have returned the trunk or even the collision boundary

that we added in Project: Collisions. The top of the tree is what we need to

work with the most (as that is where the treasure will be hidden), so it makes

sense to return it so that it can be pushed into the list of trees.

Now that we have a list of trees, we can hide treasure in one and shake it.

After the makeTreeAt() function, add the following function and function call:

function shakeTree() {
tree_with_treasure = Math.floor(Math.random() * trees.length);

new TWEEN
.Tween({x: 0})
.to({x: 2*Math.PI}, 200)
.repeat(20)
.onUpdate(function () {
trees[tree_with_treasure].position.x = 75 * Math.sin(this.x);

})
.start();

setTimeout(shakeTree, 12*1000);
}

shakeTree();

We’ll talk about Math.floor() and Math.random() in Chapter 20, Project: River Rafting,

on page 185. For now, let’s leave it that the first line in shakeTree() picks a random

tree.

We’ve already met the Tween library, which moves things from one value to

another. In this case, we again move along a sine curve. Sines and cosines are

great because they start and end at the same value when moving from zero

to 360° (2*Math.PI). We use the sine.

As the value of the Tween moves from 0 to 2*Math.PI, the value of Math.sin() goes

from 0 to 1, then back to 0, then to -1, and finally back to 0. In other words,

it’s perfect to make things wiggle a little.

Chapter 11. Project: Fruit Hunt • 102

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The last part of shakeTree() sets a timeout for 12 seconds. After 12 seconds

have passed, this timeout calls the shakeTree() function again and assigns a

new tree with the treasure.

After this code, a different tree should be wiggling uncontrollably telling the

player that there is treasure to be collected. Let’s give the avatar a way to

grab that treasure.

11.4 Jumping for Points

In this game, the avatar needs to jump next to the current treasure-filled tree.

We’ll do two things when this happens: the avatar will score some points and

we’ll make a nice little animation of the treasure and play a sound.

But first we need a key that will start a jump. We do this by adding the follow-

ing if statement to the keydown() listener:

if (code == 32) jump(); // space

You can add that if code just above the other if statements that turn the avatar.

Now we add the jump() function that the case statement calls. This function

can go after the detectCollisions() function. It checks for treasure and animates

the jump on our screen:

function jump() {
checkForTreasure();
animateJump();

}

To check whether the avatar is close enough to grab treasure, add the following

function at the bottom of the code (just above the last <script/> tag):

function checkForTreasure() {
if (tree_with_treasure == undefined) return;

var treasure_tree = trees[tree_with_treasure],
p1 = treasure_tree.parent.position,
p2 = marker.position;

var distance = Math.sqrt(
(p1.x - p2.x)*(p1.x - p2.x) +
(p1.z - p2.z)*(p1.z - p2.z)

);

if (distance < 500) {
scorePoints();

}
}

report erratum • discuss

Jumping for Points • 103

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The checkForTreasure() function does three things:

• If there is no active tree—if it is undefined, as described in Describing a

Thing in JavaScript—then it returns immediately and does nothing else.

• If there is an active tree near the avatar, then checkForTreasure() calculates

the distance between the tree and the avatar.

• If the distance is less than 500, then the scorePoints() function is called.

Pythagorean Theorem Alert

If you have already learned a little bit of trigonometry, you may

have recognized the Pythagorean theorem in the checkForTreasure()
function. We used it to find the distance between two points: the

avatar and the active tree.

For now, we’ll keep the scorePoints() function very simple. Add it after the

checkForTreasure() function. We’ll use it only to add points to the scoreboard:

function scorePoints() {
if (scoreboard.getTimeRemaining() === 0) return;
scoreboard.addPoints(10);

}

Be sure to add the first line in that function; otherwise players can get points

after time has expired!

The last thing we need to do is animate the jump so we can see it on the

screen. We combine two things that we’ve seen before: Tweens and a sine
function. Let’s add the animateJump() function next:

function animateJump() {
new TWEEN

.Tween({jump: 0})

.to({jump: Math.PI}, 500)

.onUpdate(function () {
marker.position.y = 200* Math.sin(this.jump);

})
.start();

}

That should do it! If you hide the code, you can now move about, find the

active tree, and jump to get treasure out of it. If you are very fast, you can

even jump multiple times next to the active tree to get multiple points.

This is already a fun game, but we can add a few tweaks to make it even

better.

Chapter 11. Project: Fruit Hunt • 104

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

11.5 Making Our Games Even Better

We’ve spent a good deal of time in this book adding animations to our avatar.

We do this partly to understand important concepts like grouping objects,

but also because this is a lot of what 3D-game programmers do.

Our avatar doesn’t really need to have hands and feet that move as in real

life, but this animation helps make the game seem more real. In this example,

the gameplay is pretty simple: press the space bar near the treasure to get

points.

What makes the game compelling and fun enough that players keep coming

back is a combination of interesting gameplay and the occasional glimpses

of realism.

Adding Animation and Sound

How many tweaks you add is up to you, the game programmer. But for this

chapter let’s add two together: we see an animation and hear a sound when

the avatar gets the treasure-fruit. Adding sound to the game is the easier of

the two, so we’ll tackle that first.

First we add Sounds.bubble.play() to the scorePoints() function:

function scorePoints() {
if (scoreboard.getTimeRemaining() === 0) return;
scoreboard.addPoints(10);
Sounds.bubble.play();

}

You can find more information on the Sounds.js library in Section A2.5,

Sounds.js, on page 277. The library has a fairly small number of sounds to

pick from, but there should be enough to get started writing games.

With that line added, we can score points and hear sound when the avatar

jumps up to grab treasure-fruit. But we’re not actually getting any of that

golden fruit out of the tree.

To animate the fruit, we need to add the fruit to the avatar’s frame of reference,

then Tween it. The Tween will be a little different than those we have done so

far, as it will animate two things. It will rise above the avatar and it will spin.

The following code, which we can add after the scorePoints() function, will do

all of that:

var fruit;
function animateFruit() {

if (fruit) return;

report erratum • discuss

Making Our Games Even Better • 105

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

fruit = new THREE.Mesh(
new THREE.CylinderGeometry(25, 25, 5, 25),
new THREE.MeshBasicMaterial({color: 0xFFD700})

);
fruit.rotation.x = Math.PI/2;

marker.add(fruit);

new TWEEN.
Tween({
height: 150,
spin: 0

}).
to({
height: 250,
spin: 4

}, 500).
onUpdate(function () {
fruit.position.y = this.height;
fruit.rotation.z = this.spin;

}).
onComplete(function() {
marker.remove(fruit);
fruit = undefined;

}).
start();

}

We’ll talk more about the properties inside the curly braces when we reach

Chapter 17, Project: Learning about JavaScript Objects, on page 159. For now,

it’s enough to know that we’re setting two different number properties: the

spin and the height of the fruit. The spin starts at zero and rotates around four

times over the course of the entire animation. The fruit also rises from the

position 150 to 250 on the screen over the course of the animation.

Of course, the animateFruit() function needs to be called before it will do anything.

Add a call to it at the bottom of the scorePoints() function so that it looks like

this:

function scorePoints() {
if (scoreboard.getTimeRemaining() === 0) return;
scoreboard.addPoints(10);
Sounds.bubble.play();
animateFruit();

}

The result is a nice animation that plays as the avatar collects fruit.

Yay! Score!

Chapter 11. Project: Fruit Hunt • 106

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

What Else Can We Add?

This is it for our avatar that we built from scratch starting all the way back

in Chapter 3, Project: Making an Avatar, on page 25. That doesn’t mean you

can’t make this game even better, though!

It is really easy to grab the fruit from a tree in this game. Perhaps you can

add a tweak where the avatar is allowed only one piece of fruit from a tree?

It might also be nice to penalize a player—think subtractPoints()—if the avatar

jumps when the tree is not active and wiggling. If you think the player is

moving too fast or too slow, maybe look in the keydown listener for ways to

improve that. You can build the game to have all sorts of nooks and crannies

and prizes.

This is the job of the game designer, which happens to be you. Make a copy

of the code so far and see what you can add to make the game work the way

you want it to. How are you going to make this game great?

11.6 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.11, Code: Fruit Hunt, on page 234.

11.7 What’s Next

This may be it for our avatar projects, but there is still plenty to do. Next we’ll

explore more of the small touches that go into 3D programming, starting with

lights, materials, and shadows.

report erratum • discuss

The Code So Far • 107

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 12

Working with Lights and Materials

In this chapter we’ll cover how to build interesting shapes and materials that

look like this:

Back in Chapter 1, Project: Creating Simple Shapes, on page 1, we discussed

shapes in our 3D library. Here we’ll talk about different kinds of covers for

those shapes. We cannot learn about covers without also learning about

lighting. Even in the real world, material and lights go together. If a material

is shiny, then it means it reflects light better. If a material is dark and not

shiny, then a very bright light might be needed in order to see it.

The MeshNormalMaterial that we have used so far is helpful when we’re first

building games, but it’s not a good choice for real games. There is no control

over the color, the shininess, or anything. Let’s look at a couple of materials

that will let us change that.

12.1 Getting Started

Start a new project in ICE. Choose the 3D starter project template from the menu,

then save it with the name Lights and Materials.

12.2 Changing Color

Add the following below START CODING ON THE NEXT LINE:

When you’re done with this chapter, you will

• Understand how to make different colors

• Be able to make shapes shiny or hard to

see

• Know how to make shadows in 3D games

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshBasicMaterial();
cover.color.setRGB(1, 0, 0);
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);

MeshBasicMaterial

Notice that, instead of the MeshNormalMaterial that we have used to wrap things

so far, we’re now using a MeshBasicMaterial. Since it’s a basic cover, there’s not

much we can do with it. But we can change the color, which is new.

You should see a red ball on the screen:

Colors in computer programs are written as RGB numbers, which describe

how much red (R) green (G), and blue (B) is used. Believe it or not, you can

make just about every color there is by combining those three colors. Com-

bining RGB colors may not work quite like you would expect—for instance,

you make yellow by combining red and green: cover.color.setRGB(1,1,0).

Wikipedia Has a Very Nice List of Colors

The Wikipedia list at http://en.wikipedia.org/wiki/List_of_colors includes RGB

percentages, which you would need to write as decimals. For

instance, one of the first colors on that list is “Air Force blue (RAF)”

which has the following RGB percentages: 36%, 54%, 66%. To make

our ball that color, use this: cover.color.setRGB(0.36, 0.54, 0.66).

This basic material is a little more useful in real games than the MeshNormalMa-
terial that we’ve used so far. It’s particularly helpful for backgrounds and flat

surfaces. Even so, it’s not the most realistic-looking material that we can

choose. The color always looks the same no matter what light is shining on

it. It won’t reflect light or have shadows. That said, use it wherever possi-

ble—it’s easy for the computer to draw.

Now let’s look at a more interesting material. But first, move the basic red

ball out of the way:

ball.position.set(500, 0, 0);

Chapter 12. Working with Lights and Materials • 110

report erratum • discuss

http://en.wikipedia.org/wiki/List_of_colors
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

12.3 Realism: Shininess

The first thing we need to do for this exercise is switch renderers. We talked

about renderers in Chapter 9, What's All That Other Code?, on page 85.

Remember that the renderer is the thing that draws our games on our com-

puter screens. We briefly discussed different kinds of renderers in that

chapter. Now we’ll use them. The one that we have been using, the CanvasRen-
derer, will work with most computers but cannot perform some of the cool

effects that we might want in our games.

This May Not Work on Your Computer!

To achieve realism, your computer must be WebGL-capable. If your

computer cannot do WebGL, then you should just read through

the rest of this chapter, but not type any of it in since it won’t work.

It’s nice to be able to see these effects, but not necessary for most

of the games that we’ll work with.

The easiest way to tell if your computer and browser can do WebGL

is to visit http://get.webgl.org/. If you see the spinning cube on that

page, then you have WebGL.

To switch to the WebGLRenderer, find the renderer code (it should be near line

15) and change the CanvasRenderer to WebGLRenderer so that the code looks like

this:

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();

If you still see the ball to the right, then everything is OK and your computer

can do WebGL. If not, switch back to the CanvasRenderer and read through this

chapter without making the changes described.

Below the code for the ball, let’s create a donut with the Phong material:

var shape = new THREE.TorusGeometry(100, 50, 8, 20);
var cover = new THREE.MeshPhongMaterial();
cover.emissive.setRGB(0.8, 0.1, 0.1);
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

If you have done everything correctly, then you should see a very dull red

donut. You might be thinking, “that’s it?” Well, of course that’s not it!

What’s missing is light. When something is shiny in real life, that means that

a light—the sunlight, a flashlight, etc.—shines brightly off of it. The same

holds true in computer games. So let’s add a light.

report erratum • discuss

Realism: Shininess • 111

http://get.webgl.org/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Below the donut code, add some sunlight:

var sunlight = new THREE.DirectionalLight();
sunlight.intensity = 0.5;
sunlight.position.set(100, 100, 100);
scene.add(sunlight);

We’re positioning the sunlight to the right, above, and in front of the donut.

The result should be a pretty cool-looking donut:

Emissive

Unlike with the MeshBasicMaterial cover—where we adjusted the color attribute—

with MeshPhongMaterial we adjust the emissive attribute to describe the color:

cover.emissive.setRGB(0.8, 0.1, 0.1);

We can’t just use color because we need to adjust a number of color-related

attributes when working with a MeshPhongMaterial. The emissive attribute describes

the color that the cover “emits”—the color that it is.

Specular

Specular is another color attribute we can adjust. The specular attribute describes

the color of the shiny parts of the object. If we do not set this value, it’s not

very bright. Let’s make it bright.

Add the specular line below the line on which we set the emissive color:

var shape = new THREE.TorusGeometry(100, 50, 8, 20);
var cover = new THREE.MeshPhongMaterial();
cover.emissive.setRGB(0.8, 0.1, 0.1);
cover.specular.setRGB(0.9, 0.9, 0.9);
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

If all of the RGB colors are the same value, then we’ll see black, white, or

some shade of gray. All zeros would be black. All ones would be white. Any-

thing in between is gray. In this case we set the specular color—the color of

Chapter 12. Working with Lights and Materials • 112

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

the shine—to three 0.9 values, which is pretty close to all 1.0 values that would

make white.

In other words, we see a little more of the shine:

Always Use Gray or White for Specular Colors

It’s possible to use any color you like for the specular attribute. Nor-

mally, however, it’s best to stick with gray or white. For instance,

the sunlight that we’re shining on our donut is white, but it’s still

possible to make the specular color yellow (change the last number

to 0.0). But that is just weird—white light creating a yellow shine.

We’ve covered emissive and specular; there are two other color-related properties

that we can set on Phong materials: ambient and plain-old color. The ambient
color applies only when using an “ambient” light—a light that is everywhere.

The color property is used only when there are no strong lights nearby. We’ll

stick with emissive and specular in this book—they make cooler-looking

objects.

12.4 Shadows

We’re shining a light on our donut, and yet there is no shadow. You can

usually skip rendering shadows, but sometimes they really help.

Don’t Overuse Shadows

It requires a lot of work for the computer to be able to draw shad-

ows, so use them only in spots that they really help. This is a tough

choice to make because shadows almost always make games look

better. But, as we’ll see, it makes the computer work harder on

something besides the main game and it’s a bit of a pain to set up

correctly.

First, we need to tell the renderer to expect shadows. Add the line setting the

shadowMapEnabled attribute just below the WebGL renderer line:

report erratum • discuss

Shadows • 113

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.shadowMapEnabled = true;

It might seem like that’s enough—we told the renderer that it should draw

shadows, and it should take care of everything else. But shadows require a

lot of work by the computer. If every light makes shadows and every object

casts a shadow and every object can have a shadow fall on it…well, then the

computer is going to use all of its power drawing shadows and have nothing

left for the user to actually play games.

The next step is to mark the donut as making shadows. To do this, we set

the castShadow attribute after adding the donut to the scene. Add the

donut.castShadow line after scene.add(donut):

var shape = new THREE.TorusGeometry(100, 50, 8, 20);
var cover = new THREE.MeshPhongMaterial();
cover.emissive.setRGB(0.8, 0.1, 0.1);
cover.specular.setRGB(0.9, 0.9, 0.9);
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);
donut.castShadow = true;

Now tell the sunlight that it makes shadows by setting castShadow on it, as

well. Again, add the sunlight.castShadow line after scene.add(sunlight):

var sunlight = new THREE.DirectionalLight();
sunlight.intensity = 0.5;
sunlight.position.set(100, 100, 100);
scene.add(sunlight);
sunlight.castShadow = true;

Last, we need a place for the shadow to fall. In real life, we see a shadow on

a building or the ground. Let’s create some ground below the donut for the

shadow to fall on:

var shape = new THREE.PlaneGeometry(1000, 1000);
var cover = new THREE.MeshBasicMaterial();
var ground = new THREE.Mesh(shape, cover);
scene.add(ground);
ground.position.set(0, -200, 0);
ground.rotation.set(-Math.PI/2, 0, 0);
ground.receiveShadow = true;

Notice that we’re using a plane and a basic material for this. Always use the

simplest object you can.

With this, you should see that our awesome donut is casting a shadow:

Chapter 12. Working with Lights and Materials • 114

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

12.5 Let’s Animate!

That is all pretty cool, but you know what’s even cooler than a shiny donut

casting a shadow? A shiny donut casting a shadow and spinning!

Replace the renderer.render() at the bottom of our code:

var clock = new THREE.Clock();
function animate() {

requestAnimationFrame(animate);

var time = clock.getElapsedTime();
donut.rotation.set(time, 2*time, 0);

renderer.render(scene, camera);
}
animate();

We’ve seen a lot of that code before, but now is a good time to explain it. Our

3D library provides the clock. It is extremely useful for finding out how much

time has gone by since the animation began. This “elapsed time” is useful for

animating all sort of things.

In this code, we use it to set the rotation of the donut around the x-axis and

the y-axis. As the seconds tick by, the donut’s rotation will go from zero to

0.5, to 1, and eventually to 2 × pi (a full rotation). And then it keeps on

rotating another spin to 4 × pi, then 6 × pi, and on and on forever (or until

the computer can no longer count that high). We spin around the y-axis twice

as fast as the x-axis to give it a crazy, wobbly motion.

It’s a little weird using the number of seconds for the amount of rotation.

Then again, they are both just numbers. The clock.getElapsedTime() call gives us

the number of seconds and we use the same number to be the number of

radians the donut has turned.

report erratum • discuss

Let’s Animate! • 115

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The other interesting thing happening in the animate() function is requestAnima-
tionFrame(). This is a function that is built into modern web browsers, which

are very good about knowing just the right time to draw things. By using the

requestAnimationFrame() function, we get very smooth animations.

What’s really interesting about requestAnimationFrame() is that we give it another

function—the very animate() function that’s currently running. We don’t add

the parentheses at the end of animate because that would call the animate()
function. By giving requestAnimationFrame() a reference to animate(), we tell the web

browser that the next time it is ready to do some drawing, which should be

in a few milliseconds, it should call this animate function again.

With that, you just made a donut from nothing and sent it spinning around

wildly.

How cool is that?

12.6 The Code So Far

If you would like to double-check the code in this chapter, flip to Section

A1.12, Code: Working with Lights and Materials, on page 240.

12.7 What’s Next

Lights and materials are advanced topics and we have only scratched the

surface of what’s possible. There are many settings that take a lot of getting

used to. Just setting colors with red, green, and blue values is a little strange

at first. But that’s not why these are advanced topics. Lights and materials

are incredibly cool, but you must realize that you shouldn’t always use them.

This is an important lesson in any kind of programming, not just JavaScript

gaming: just because you can doesn’t mean you should. The best programmers

in the world know this rule well. And now you do, too!

Let’s put our new lighting skills to good use in the next chapter as we build

a simulation of our solar system.

Chapter 12. Working with Lights and Materials • 116

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 13

Project: Build Your Own Solar System

Let’s take a break from our avatar to do something different, but just as cool:

animate the solar system. It will end up looking like this:

No, this isn’t a game, but it’s still fun.

13.1 Getting Started

Start a new project in ICE. Choose the 3D starter project template and name this

project Planets.

13.2 The Sun, Earth, and Mars

Since we’re dealing with space, we need to adjust the usual camera and switch

the renderer. We make these changes to the code that is above START CODING
ON THE NEXT LINE.

Create the camera so that it can see as far away as 1e6, which is a short way

of writing 1 with six zeros following it, or 1,000,000. Also, move the camera

1000 away from the center of the screen.

When you’re done with this chapter, you will

• Know how to move things in circles

• Understand how to make a sun light source

• Be able to switch between two cameras in

the same scene

• Understand a mystery that took humans

thousands of years to solve

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
camera.position.z = 1000;
scene.add(camera);

One other change that we’ll make is to switch to the WebGLRenderer like we did

in Chapter 12, Working with Lights and Materials, on page 109.

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

If the WebGLRenderer Doesn’t Work on Your Computer

If the WebGLRenderer didn’t work for your computer when you tested

it in Chapter 12, Working with Lights and Materials, on page 109,

you can still do most of this chapter. You’ll need to keep the Canvas-
Renderer here. In the following code, replace the MeshPhongMaterial ref-

erences with MeshBasicMaterial. The simulation won’t look as cool—and

you won’t be able to do the last bit—but most of it will still work.

Now we start coding after START CODING ON THE NEXT LINE.

First, let’s do something important for a space simulation. Let’s make space

black.

document.body.style.backgroundColor = 'black';

Now add the sun to our simulation.

var surface = new THREE.MeshPhongMaterial({ambient: 0xFFD700});
var star = new THREE.SphereGeometry(50, 28, 21);
var sun = new THREE.Mesh(star, surface);
scene.add(sun);

var ambient = new THREE.AmbientLight(0xffffff);
scene.add(ambient);

var sunlight = new THREE.PointLight(0xffffff, 5, 1000);
sun.add(sunlight);

The color of the sun is gold from http://en.wikipedia.org/wiki/List_of_colors (recall that

we replace the # on that page with 0x when making JavaScript colors). We

make this the ambient color because there won’t be other lights shining on

the sun. This is the color it gets just by being there.

For the ambient color to work, we need an ambient light, which we add. For

the sun to give light to the planets in our solar system, we need to add a point

Chapter 13. Project: Build Your Own Solar System • 118

report erratum • discuss

http://en.wikipedia.org/wiki/List_of_colors
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

light in the middle of the sun. A point light shines light in all directions from

a single point, much like the sun.

With that, let’s create our planets and place them a little away from the sun

(obviously not to scale!).

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0x0000cd});
var planet = new THREE.SphereGeometry(20, 20, 15);
var earth = new THREE.Mesh(planet, surface);
earth.position.set(250, 0, 0);
scene.add(earth);

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0xb22222});
var planet = new THREE.SphereGeometry(20, 20, 15);
var mars = new THREE.Mesh(planet, surface);
mars.position.set(500, 0, 0);
scene.add(mars);

That should give us our sun, Earth, and Mars. So far, they are not doing

anything. Let’s fix that by changing the last line of code from a single render

to an animate() function.

clock = new THREE.Clock();

function animate() {
requestAnimationFrame(animate);

var time = clock.getElapsedTime();

var e_angle = time * 0.8;
earth.position.set(250* Math.cos(e_angle), 250* Math.sin(e_angle), 0);

var m_angle = time * 0.3;
mars.position.set(500* Math.cos(m_angle), 500* Math.sin(m_angle), 0);

// Now, show what the camera sees on the screen:
renderer.render(scene, camera);

}

animate();

We’ve already used the 3D clock timer, back in Chapter 6, Project: Moving

Hands and Feet, on page 59, when we wanted to move our avatar’s hands

and feet back and forth. To make the hands and feet move back and forth,

we didn’t use JavaScript—we used math. Specifically, we used sine. For our

planets, we are again using sine, but we are also using a new function, cosine.

If we just used a sine, our planets would move back and forth through the

sun, just like our avatar hands and feet moved back and forth. But we want

report erratum • discuss

The Sun, Earth, and Mars • 119

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

our planets to move up and down as well. This is what the cosine is for. When

the sine function would move the planet through the sun, the cosine pushes

it away in the other direction. Over time, this makes a perfect circle.

With that, we should have our planets moving around the sun! In real life,

the planets don’t move in perfect circles, but this is pretty cool anyway, right?

Our space simulation is still missing something: stars. To make stars, we’ll

use a particle system. Be careful while adding the particle system with the

following code (see the warning that follows).

var stars = new THREE.Geometry();
while (stars.vertices.length < 1e4) {

var lat = Math.PI * Math.random() - Math.PI/2;
var lon = 2*Math.PI * Math.random();

stars.vertices.push(new THREE.Vector3(
1e5 * Math.cos(lon) * Math.cos(lat),
1e5 * Math.sin(lon) * Math.cos(lat),
1e5 * Math.sin(lat)

));
}
var star_stuff = new THREE.ParticleBasicMaterial({size: 500});
var star_system = new THREE.ParticleSystem(stars, star_stuff);
scene.add(star_system);

Be Careful Adding while Statements in ICE

A while statement will continue to run until something stops it. If

nothing stops it, then the browser will lock up. When that happens

in ICE, your only option is to switch to edit-only mode (see Recov-

ering When ICE Is Broken).

To prevent freezes, you can comment out the while statement until

you have typed the entire code block. That is, you can put the

double slashes for a comment before the while and type everything

else in the code block. Then go back and remove the double slashes

to see the results of the while onscreen.

We’re not going to worry much about the details of a particle system. In

essence, particle systems are a way of adding a whole lot of things to a simu-

lation in a way that doesn’t make the computer work very hard. In this case,

we add a whole lot of stars to the scene.

Chapter 13. Project: Build Your Own Solar System • 120

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

13.3 Earth-Cam!

Let’s add the ability to watch the planet Mars from Earth. As you watch Mars

from Earth over several months, Mars’s position in the sky changes in a

pretty strange way. It’s so strange that ancient astronomers couldn’t explain

it. But we’ll be able to.

To watch Mars from Earth, we’ll need another camera besides the one looking

down on our solar system. So the first thing we need to do is give our above-

the-solar-system camera a better name. Let’s call it above_cam. Change camera
to above_cam at the top of your code:

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var above_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
above_cam.position.z = 1000;
scene.add(above_cam);

Next let’s add a new camera named earth_cam.

var earth_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
scene.add(earth_cam);

The rest of our code expects a camera named camera, so let’s give it just that.

To start, let’s make camera mean the same thing as above_cam.

var camera = above_cam;

report erratum • discuss

Earth-Cam! • 121

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Next we need to add earth_cam to Earth and rotate it so that it points to Mars.

We do that inside the animate() function. Add the following after the line that

sets Mars’s position and before the renderer.render line.

var y_diff = mars.position.y - earth.position.y,
x_diff = mars.position.x - earth.position.x,
angle = Math.atan2(x_diff, y_diff);

earth_cam.rotation.set(Math.PI/2, -angle, 0);
earth_cam.position.set(earth.position.x, earth.position.y, 22);

If you know the difference between the X and Y coordinates of two objects,

you can again use math to figure out the rotation between the two things.

This is what we’re doing with the x_diff and y_diff variables—we are calculating

how far apart Mars’s and Earth’s X and Y positions are. This is what the

Math.atan2() tells us.

Declaring a Bunch of Variables with One var
You may have noticed that we used only one var keyword to build

the list of variables in the preceding code. JavaScript programmers

often find this a nice way to group a bunch of variables that are

related—in this case, two points and the angle between them. It’s

especially common to do this at the start of functions.

Once we know the rotation, we can place the camera at the same position as

Earth and then rotate it so it’s facing Mars.

Last, we need to add the ability to use the keyboard to switch between our

two cameras. Let’s use A to switch to the above_cam and E to switch to earth_cam.

The computer code for A is 65 and the computer code for E is 69. So, at the

very bottom of our code, before the ending <script> tag, add the following event

listener.

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 65) { // A
camera = above_cam;

}
if (code == 69) { // E

camera = earth_cam;
}

});

That should do it! Now if you hide the code, you should be able to switch back

and forth between “Earth-cam” and “above-solar-system-cam.” Watching from

Chapter 13. Project: Build Your Own Solar System • 122

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Earth, you should notice something strange (but only if you’re using the

WebGL renderer, unfortunately). Mars normally seems to be moving to the

left as time passes. But every now and then, it stops and seems to go backward

for a little while.

If you go outside and observe where Mars is in the sky for several months,

you’ll see the same phenomenon. Ancient astronomers called this “retrograde

motion.” Because they thought Earth was at the center of the universe, they

had no good explanation for why retrograde motion happened. Oh, some of

them came up with crazy explanations, but nothing as simple as we just

simulated.

But we know what’s going on, don’t we? If you switch to above_cam just as Mars

starts going backward, you’ll see that retrograde motion happens when Earth

catches up with Mars and passes it. It’s sort of like a fast car passing a

slower car—the slower car (Mars) almost looks like it’s going backward.

It took you just a hundred lines of JavaScript to solve a question that the

greatest minds in the world couldn’t solve for thousands of years. Awesome!

13.4 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.13, Code: Build Your Own Solar System, on page 241.

13.5 What’s Next

We have a pretty incredible view of the solar system here, which is not bad

for a quick, single-chapter project! Not only did you solve a mystery that has

perplexed great minds, but you learned some pretty useful things about 3D

programming along the way. You now know how to move objects in circular

motion. Even cooler, you can add multiple cameras to a 3D scene, move the

cameras around, and switch back and forth between them.

We’ll build on this project in the next chapter to do something that every 3D

programmer has to do at some point: simulate the phases of the moon as it

revolves around Earth.

report erratum • discuss

The Code So Far • 123

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 14

Project: Phases of the Moon

The retrograde-motion chapter was pretty amazing, but in this chapter we’ll

cover something every 3D programmer must learn at some point: how to

visualize the moon and its phases. It’ll end up looking like this:

Why is it important to simulate the moon’s phases? First, it’s a simple enough

problem—the sun shines on the moon, which revolves around Earth—that

lets us use our knowledge of lights and materials. It also lets us play the rel-

ative-positioning tricks that we practiced with an avatar’s hands and feet

previously.

If you still think it’s not important, go watch Toy Story. It was the first full-

length computer-animated movie, and the programmers behind the project

made sure they got it right—a waxing crescent moon is visible behind Woody

and Buzz when they argue after being left by Andy at the gas station. If it was

important enough for those movie-makers, it’s important enough for us!

When you’re done with this chapter, you will

• Know the most important trick in a 3D

programmer’s virtual toolbox

• Know strategies to make big changes to

existing code

• Understand moon phases better than most

people (but not the Toy Story animators)

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

14.1 Getting Started

We’ll do something a little different in this chapter. Instead of starting anew,

let’s make a copy of our Mars project. From the menu in the ICE Code Editor,

choose Make a Copy.

In the usual project dialog that comes up, call this project Moon Phases.

14.2 Change Mars into the Moon

The first thing we need to do is rename every instance of mars to moon. Do this

before anything else and be sure that no mars variables remain (there should

be six changes).

Once you’ve done this, you’ll still have a red planet revolving around the sun.

Naming it differently doesn’t change how it looks or behaves—we’ll need to

change our code for that.

This is an important first step. We didn’t try to change everything, just the

name of one thing in our code. Once everything is behaving as before, we’re

ready for the next step. Never try to change everything at once—you’ll almost

always end up breaking everything. The worst thing that we could have done

with our first step is make the animation disappear because we missed a mars
somewhere, which is an easy thing to find and correct. Small steps always

win.

With that, let’s change how the moon looks. Change the color property of the

moon to all white: 0xffffff. We should also make the moon a little smaller than

Earth and, while we’re at it, let’s make it less chunky. The size should be 15
and it should have 30 up-and-down chunks and 25 chunks going around.

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0xffffff});
var planet = new THREE.SphereGeometry(15, 30, 25);
var moon = new THREE.Mesh(planet, surface);

Chapter 14. Project: Phases of the Moon • 126

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Next we need to make the moon behave a bit more like a moon. Instead of

orbiting around the sun, we need to make it orbit around Earth. So delete

the lines that set the moon’s position, and add it to the scene. Since the moon

is no longer added to the scene, it will disappear—this is OK. We’ll add it back

in a second.

But first, let’s remove the code that moves the moon around. Inside the curly

braces of the animate() function, delete the lines that calculate y_diff, x_diff, and

angle. Also delete the two lines that set the earth_cam rotation and position.

Finally, remove the line that sets the moon’s position with the sine and cosines,

the line just under var m_angle. We still need to do that for Earth, but we’ll try

something new to move the moon around.

Now that we have removed everything that made the moon behave like Mars,

we’re ready to make it do what the moon should—mainly, revolve around

Earth. To accomplish this, we’ll do something really sneaky.

14.3 The Coolest Trick: Frame of Reference

Just after we create the moon, we create the moon’s orbit, which is just an

empty 3D object—similar to what we did back in Chapter 3, Project: Making

an Avatar, on page 25. Then we add the orbit to Earth:

var moon_orbit = new THREE.Object3D();
earth.add(moon_orbit);

Adding the moon_orbit to Earth like that means that it’s centered on Earth.

And, no matter where Earth goes, this moon_orbit object stays with Earth.

It probably doesn’t seem like it, but this is a crazily important trick in 3D

programming. So important, in fact, that it gets a fancy name: frame of refer-

ence. Our moon_orbit is a new frame of reference. To see the power of frame-of-

reference thinking, we add the moon to the moon_orbit and move it 100 units

away from the center:

moon_orbit.add(moon);
moon.position.set(0, 100, 0);

With that, we should again see the moon, only now it’s stuck next to Earth

as Earth travels around the sun.

Since the moon_orbit frame of reference is always centered on Earth, the moon

is now always 100 units away from Earth. We still need to make the moon

revolve around Earth. We add Earth’s camera to the moon_orbit frame of refer-

ence and rotate it to face the moon:

report erratum • discuss

The Coolest Trick: Frame of Reference • 127

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

moon_orbit.add(earth_cam);
earth_cam.rotation.set(Math.PI/2, 0, 0);

Now comes the really cool part of frame of reference. Back inside the animate()
function, we’ll animate the rotation of the moon_orbit. Add the second line and

change the m_angle—the amount by which the moon’s orbit is changed—to be

as follows:

var m_angle = time * 4;
moon_orbit.rotation.set(0, 0, m_angle);

With that, the moon should be traveling around Earth!

If you look closely, you’ll notice that we’re not moving the moon. Instead,

we’re rotating the moon’s orbit—that is, we’re rotating the moon’s frame of

reference. If you hide the code and press the E key to switch to Earth-cam,

you’ll see that, since we added the camera to the moon’s frame of reference,

it spins to point at the moon at all times.

You can think of this frame of reference as a plate to which we glue the

camera and the moon:

When we spin the plate, the moon and camera spin along with it:

Chapter 14. Project: Phases of the Moon • 128

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The result is that we had to do very little work to orbit the moon or keep

Earth-cam pointed at it. With Mars, we had to do all sorts of crazy sines and

cosines and distance calculations. We had to position Earth and Mars and

the camera with the animate() sequence. With frame of reference, we just rotate

one thing.

Laziness is a wonderful thing.

Oh, you might be wondering: why don’t we use the same trick for Earth? I’m

glad you asked.

14.4 Challenge: Create an Earth Orbit Frame of Reference

You can do this. Just follow the steps that we took for the moon:

• Create a 3D object to hold Earth, and add it to the sun.

• Add Earth to the new orbit frame of reference instead of the scene.

• Delete the animate() code that sets Earth’s position.

• Rotate Earth’s orbit.

Once you do that, you have a very complex astronomical simulation that is

built using nothing but simple frame of reference—no complicated sines or

cosines anywhere!

14.5 Pausing the Simulation

It’s pretty neat to see the moon revolve around Earth while Earth revolves

around the sun. But to really understand the moon’s phases we need to be

able to see the moon from Earth—like we would see it in the night sky. It

would also be helpful to pause everything so that we can switch back and

forth between above-cam and Earth-cam.

To pause, we need to make some changes to the animate() function. When the

simulation is paused, we still need to perform animation and render the scene,

but we shouldn’t update the position of Earth or the moon. This means we

have to move the renderer.render() call up in the animate() function—it will need

to render before we check if the simulation is paused. We also need to come

up with a different way of keeping time in the simulation. The THREE.Clock()
that we have been using cannot be paused.

So remove the clock = THREE.Clock statement above the animate() function. Replace

it with the three variables shown (time, speed, and pause):

var time = 0,
speed = 1,
pause = false;

report erratum • discuss

Challenge: Create an Earth Orbit Frame of Reference • 129

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function animate() {
requestAnimationFrame(animate);
renderer.render(scene, camera);

if (pause) return;
time = time + speed;
var e_angle = time * 0.001;
earth.position.set(250* Math.cos(e_angle), 250* Math.sin(e_angle), 0);
var m_angle = time * 0.02;
moon_orbit.rotation.set(0, 0, m_angle);

}
animate();

There are other changes in there, as well:

• The renderer.render() line is no longer at the bottom. It is now the second

line in animate().
• We added a return statement if pause is true.
• We increased the time by adding speed to it each time.

• The number by which time is multiplied to calculate e_angle and m_angle has

gotten smaller.

Once you have all of those changes made, the simulation should run again,

the same as before. We made those changes so that we could use key presses

to change some of the settings.

To do that, find the keydown listener and change it to the following:

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 67) changeCamera(); // C
if (code == 32) changeCamera(); // space
if (code == 80) pause = !pause; // P
if (code == 49) speed = 1; // 1
if (code == 50) speed = 2; // 2
if (code == 51) speed = 10; // 3

});

function changeCamera() {
if (camera == above_cam) camera = earth_cam;
else camera = above_cam;

}

Now if you hide the code, you can change the camera by pressing either the

C key or the space bar . You can pause or unpause by pressing the P key. You

can even change the speed by pressing 1 , 2 , or 3 .

Give it a try!

Chapter 14. Project: Phases of the Moon • 130

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

14.6 Understanding the Phases

The moon has four main phases: new, first quarter, full, and third quarter.

New is when the moon is in between Earth and the sun. Since the sun is

shining on the side of the moon that we cannot see, we do not see the moon

at this time (also, it’s in the same part of the sky as the sun).

First quarter means that the moon is one-quarter of the way around its orbit.

It doesn’t mean that it’s one-quarter lit up—as you can tell, it’s half full.

When the moon is two-quarters (also known as one-half) of the way around

Earth, it’s full. The part of the moon that we see is completely lit up.

You know what third quarter is. The moon is three-quarters of the way around

Earth, and again it’s half lit.

In between the new moon and the quarters, the moon is a crescent.

report erratum • discuss

Understanding the Phases • 131

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

In between the quarters and full moon, the moon is called gibbous.

When the lit side is growing, it’s said to be waxing. When it’s getting smaller,

it’s said to be waning. And now you know just about everything there is to

know about the moon’s phases. Better yet, you have your own simulation!

14.7 The Code So Far

In case you would like to double-check the code in this chapter, it’s included

in Section A1.14, Code: Phases of the Moon, on page 243.

And no, it doesn’t include the challenge of using a frame of reference for Earth.

Do it yourself!

14.8 What’s Next

This ends the space simulations in the book. Congratulations—you have

made it through a grand tradition in 3D programming. Hopefully you picked

up a thing or two about space. More importantly for your computer skills,

you’ve been introduced to the concept of frame of reference, which we’re def-

initely going to use in our games.

Speaking of games, let’s get started on some in the next chapter!

Chapter 14. Project: Phases of the Moon • 132

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 15

Project: The Purple Fruit Monster Game

In this chapter we’ll make a jumping game. The player will use the keyboard

to make the purple fruit monster jump and move to capture as much rolling

fruit as possible, without touching the ground. It will end up looking something

like this:

This is a fairly simple game to play, but it will give us a taste of some important

gaming concepts.

15.1 Getting Started

Start a new project in ICE. Choose the 3D starter project template and name this

project Purple Fruit Monster.

15.2 Let’s Make Physics!

For this game, we need two new JavaScript libraries and a few configuration

settings. At the very top of the file, add two new <script> tags:

When you’re done with this chapter, you will

• Know how to keep score in games

• Understand how to keep score (or perform

some other action) when objects collide

• Have an example of how physics are used

in a game

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>❶
<script src="http://gamingJS.com/Scoreboard.js"></script>❷
<script src="http://gamingJS.com/ChromeFixes.js"></script>

❶ We’re going to use physics in this game. We use the Physijs library so we

don’t have to write all the physics code ourselves.

❷ This library will help keep score in the game.

Then, at the top of the code from the 3D starter project template, just below the

<script> tag without an src= attribute, make these changes:

<script>
// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';❶
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';❷

// This is where stuff in our game will happen:
var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });❸
scene.setGravity(new THREE.Vector3(0, -100, 0));❹

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 200;❺
camera.position.y = 100;❻
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();❼
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********

❶ A Physijs setting enables Physijs to decide when things bump into each

other.

❷ A worker sits on the side and perform all of the physics calculations.

❸ Instead of a THREE.scene, we need to use a Physijs.scene.

❹ Even with physics, we will not have gravity unless we add it to the scene.

In this case, we add gravity in the negative Y direction, which is down.

❺ Move the camera a little closer to the action.

❻ Move the camera up a little bit for a better view of the action.

Chapter 15. Project: The Purple Fruit Monster Game • 134

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

❼ The WebGLRenderer will work better than the regular CanvasRenderer. If your

browser can’t do WebGL, have no fear—this chapter should still work for

you (though you might not see the ground).

With that, we’re ready to start coding our jumping game.

15.3 Outline the Game

Before coding, let’s think about how we can organize our code. To have made

it this far in the book, you’ve written a lot of code. At times, it must have

gotten difficult to move through the code to see what you’ve done. You’re not

the first programmer to run into this problem, and you won’t be the last.

Thankfully, you can learn from the mistakes of programmers before you.

One of the easiest ways to organize code is to treat it a little bit like writing.

When you write an essay, you might start with an outline. After you have the

outline, you can fill in the details.

When organizing code, it helps to write the outline first, then add the code

below it. Since we’re programming, our outlines are also written in code. Type

in the following, including the double slashes, below START CODING ON THE NEXT
LINE.

//var ground = addGround();
//var avatar = addAvatar();
//var scoreboard = addScoreboard();
//animate();
//gameStep();

Recall from Comments, on page 69, that the double slashes at the beginning

of each of those lines introduce a JavaScript comment. This means JavaScript

will ignore those lines. This is a good thing since we have not defined those

functions yet.

Programmers call this commenting out code so that it will not run. There are

many reasons programmers do this. Here we’re doing it so that JavaScript

doesn’t get upset when we try to call functions that we haven’t defined.

As we define each of these functions, we’ll go back to this code outline so that

we can remove the double slashes before the function call. When programmers

remove the comment symbols, we call it uncommenting code.

This approach makes it easier to find code. Simply by looking at the code

outline, we know that the addGround() function will be defined before the addA-
vatar(). The faster we can find code, the faster we can fix it or add things to it.

When you write a lot of code, tricks like this can really help keep things

straight.

report erratum • discuss

Outline the Game • 135

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

In this game we need ground, an avatar, and a scoreboard. We’ll split the

action into two parts: animation and game logic. All of that is listed in our

code outline. Let’s get started writing the code that matches this outline.

Adding Ground for the Game

The first function call in our code outline is to the addGround() function. Just

below the code outline (after the commented-out //gameStep() line), define that

function as follows:

function addGround() {
document.body.style.backgroundColor = '#87CEEB';
ground = new Physijs.PlaneMesh(

new THREE.PlaneGeometry(1e6, 1e6),
new THREE.MeshBasicMaterial({color: 0x7CFC00})

);
ground.rotation.x = -Math.PI/2;
scene.add(ground);
return ground;

}

The Physijs library “wraps” our 3D objects in code that makes collision

detection easier. That is why the ground is a Physijs.PlaneMesh instead of our

usual THREE.Mesh.

The collision detection that we did back in Chapter 10, Project: Collisions, on

page 93, is good for only simple collisions. In this game we need to detect

collisions with the ground and fruit. Multiple collisions are much harder, so

we’ll use the Physijs library to make our jobs easier.

Aside from the Physijs.PlaneMesh, everything in this function is familiar. We make

a large, green plane, rotate it flat, and add it to the scene.

Once this function is defined, we uncomment the call to addGround() in our

code outline. If everything is working, we should see green ground with blue

sky in the background.

Build a Simple Avatar

Making the avatar is similar. We use a Physijs Box to wrap a purple cube. We

do two other things to our avatar: start it moving and add event listeners for

collisions.

function addAvatar() {
avatar = new Physijs.BoxMesh(

new THREE.CubeGeometry(40, 50, 1),
new THREE.MeshBasicMaterial({color: 0x800080})

);

Chapter 15. Project: The Purple Fruit Monster Game • 136

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

avatar.position.set(-50, 50, 0);
scene.add(avatar);

avatar.setAngularFactor(new THREE.Vector3(0, 0, 0)); // no rotation
avatar.setLinearFactor(new THREE.Vector3(1, 1, 0)); // only move on X/Y axes
avatar.setLinearVelocity(new THREE.Vector3(0, 150, 0));
avatar.addEventListener('collision', function(object) {

if (object.is_fruit) {
scoreboard.addPoints(10);
avatar.setLinearVelocity(new THREE.Vector3(0, 50, 0));
scene.remove(object);

}
if (object == ground) {
game_over = true;
scoreboard.message("Game Over!");

}
});
return avatar;

}

We’re familiar with JavaScript event listeners from Chapter 4, Project: Moving

Avatars, on page 35, where we used them to listen for keys being pressed on

the keyboard. Here we’re listening for something different: the purple fruit

monster colliding with something.

If the avatar collides with fruit, we add 10 points to the score, give the avatar

a little bump up, and remove the fruit from the screen (because the purple

fruit monster ate the fruit). If the avatar collides with the ground, then the

game is over and the purple fruit monster can eat no more.

There’s a lot going on in that function. The most important is the collision

event listener. This is where all the action takes place.

Several other new things in that function are worth mentioning. First is a

THREE.Vector3(). If you have seen the movie Despicable Me, then you know that

a vector is an arrow with direction and magnitude (Oh, yeah!). That means a

vector includes two pieces of information: the direction in which it points and

how strongly it points in that direction. You would use a vector to describe

how hard you would need to jump to reach a ledge that is up and to the left.

Vectors are very important in physics, which is why they’re used with Physijs

things. As the comments suggest, setting the “angular factor” to a vector of

all zeros prevents our avatar from rotating. Setting the “linear factor” is a way

to prevent motion up, down, left, right, forward, or backward. Since we want

our avatar to move only up, down, left, and right (but not into or out of the

screen), we set the X and Y components of the vector to 1 (allow motion) and

the Z component to 0 (don’t allow motion).

report erratum • discuss

Outline the Game • 137

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Finally, the linear velocity of an object is how fast and in which direction a

thing is moving. We start the avatar with a speed of 150 straight up. If the

avatar collides with some fruit, we also give the avatar a little bump of 50

straight up.

Uncomment the addAvatar() call in the code outline. We still have not created

the animate() function, so nothing is moving just yet. The “avatar” should be

resting on the ground. For now, it’s just a purple rectangle—we’ll make it a

little fancier later.

Add Scoring

Next we add the scoreboard:

function addScoreboard() {
var scoreboard = new Scoreboard();
scoreboard.score(0);
scoreboard.help('Use arrow keys to move and the space bar to jump');
return scoreboard;

}

This is similar to the scoreboard we used in Chapter 11, Project: Fruit Hunt,

on page 99, so the code should look familiar. Uncomment the addScoreboard()
function in the code outline, and you should see a scoreboard showing zero

points.

Animate the Scene

Now we should have a scoreboard with zero points and a lovely purple box

sitting on the ground. To make it do something, we move the renderer.render-
er(scene, camera) at the bottom of our code into our usual animate() function—this

time with a twist.

var game_over = false;
function animate() {

if (game_over) return;

requestAnimationFrame(animate);
scene.simulate(); // run physics
renderer.render(scene, camera);

}

New here is a check to see if the game is over. If it is, we return from the

function, which stops the animation. Also new in here is the scene.simulate()
line. As the comment suggests, that line is needed so that the physics library

can move things (make them jump, fall, roll) and check for collisions. Don’t

forget that line!

Chapter 15. Project: The Purple Fruit Monster Game • 138

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Once the animate() function is ready, move back up to the code outline and

uncomment the call to animate(). If everything is working, the avatar should

jump up into the air and fall down to the ground, and the game should end.

Create Game Elements

So far, we have no fruit for the purple fruit monster to eat. We add this in the

gameStep() function. We haven’t seen this before, but it’s very useful in 3D

game programming. The animation and physics are working hard. We don’t

want to interrupt them every time they’re doing something to decide if it’s

time to start rolling another piece of fruit.

So we use a separate gameStep() function, which runs every three seconds.

Type in the following below the animate() function:

function gameStep() {
if (game_over) return;

launchFruit();
setTimeout(gameStep, 3*1000);

}

The first time gameStep() is called, we launch some fruit at the avatar with the

launchFruit() function. After a timeout of 3 seconds, this function calls itself

again, which launches another piece of fruit. Telling a function to take a “time-

out” until it does something else is the job of setTimeout(). The setTimeout() function

is built into JavaScript to wait for some period of time, in milliseconds, before

calling the function that it’s given. In this case, gameStep() calls itself after

3*1000 milliseconds, or after 3 seconds.

Just like with the animate() function, we return immediately from gameStep() if
the game is over.

Of course, none of this will work unless we define the function that launches

the fruit:

function launchFruit() {
var fruit = new Physijs.ConvexMesh(

new THREE.CylinderGeometry(20, 20, 1, 24),
new THREE.MeshBasicMaterial({color: 0xff0000})

);

fruit.is_fruit = true;
fruit.setAngularFactor(new THREE.Vector3(0, 0, 1));
fruit.setLinearFactor(new THREE.Vector3(1, 1, 0));
fruit.position.set(300, 20, 0);
fruit.rotation.x = Math.PI/2;
scene.add(fruit);

report erratum • discuss

Outline the Game • 139

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

fruit.setLinearVelocity(
new THREE.Vector3(-150, 0, 0)

);
}

There’s nothing new in the launchFruit() function. Its job is to create a physics-

ready circle, add it to the scene, and set it rolling. Much more interesting is

the gameStep() function, which we’ll use again in upcoming chapters.

After completing the gameStep() and launchFruit() functions, uncomment the call

to gameStep() in the code outline. If everything is working properly, you should

see pieces of red fruit rolling out toward the avatar. Once the avatar hits the

ground, the game should be over and the fruit should stop moving.

We have just one thing left to do in the basic game—add controls to our avatar.

Creating Avatar Controls

To control the avatar, we use the keydown event listener that we saw in earlier

chapters. Add the following code below the gameStep() and launchFruit() functions:

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 37) left(); // left arrow
if (code == 39) right(); // right arrow
if (code == 38) up(); // up arrow
if (code == 32) up(); // space bar

});

function left() { move(-50, 0); }
function right() { move(50, 0); }
function up() { move(avatar.getLinearVelocity().x, 50); }

function move(x, y) {
avatar.setLinearVelocity(

new THREE.Vector3(x, y, 0)
);

}

With that, we should be able to move the avatar up, left, and right to eat

yummy fruit! (See Figure 8, Purple Box Monster, on page 141.)

Congratulations! You just wrote another game from scratch. To be sure,

there’s still a lot that you might want to do with the game:

• Make the fruit move faster for higher scores

• Add things that the purple fruit monster doesn’t like to make the score

go down when he eats them

Chapter 15. Project: The Purple Fruit Monster Game • 140

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 8—Purple Box Monster

• Stop the game if too much fruit gets past the purple fruit monster

• Reset if the game ends

• Incorporate graphics

Although we can add lots more to make the game even better, the core of the

game is done. We can control the avatar. We can tell when the player earns

points. We can tell when the game is over. We can show the score. That’s a

lot of stuff.

Adding Simple Graphics

Of course, we have graphics available for the purple fruit monster, so let’s

add them. First, in the addAvatar() function, make the MeshBasicMaterial invisible

and add the purple fruit monster image:

function addAvatar() {
avatar = new Physijs.BoxMesh(

new THREE.CubeGeometry(40, 50, 1),
new THREE.MeshBasicMaterial({visible: false})❶

);
var avatar_material = new THREE.MeshBasicMaterial({❷

map: THREE.ImageUtils.loadTexture('/images/purple_fruit_monster.png'),
transparent: true

});
var avatar_picture = new THREE.Mesh(❸

new THREE.PlaneGeometry(40, 50), avatar_material
);
avatar.add(avatar_picture);❹

// Everything else stays the same in this function, starting with this:
avatar.position.set(-50, 50, 0);
scene.add(avatar);

report erratum • discuss

Outline the Game • 141

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

❶ Remove the purple color and make this box invisible.

❷ Create a new kind of material: an image material.

❸ Build a simple mesh with this material.

❹ Attach the image mesh to the avatar.

Do the same for the launchFruit() function.

function launchFruit() {
var fruit = new Physijs.ConvexMesh(

new THREE.CylinderGeometry(20, 20, 1, 24),
new THREE.MeshBasicMaterial({visible: false})❶

);
var material = new THREE.MeshBasicMaterial({❷

map: THREE.ImageUtils.loadTexture('/images/fruit.png'),
transparent: true

});
var picture = new THREE.Mesh(❸

new THREE.PlaneGeometry(40, 40), material
);
picture.rotation.x = -Math.PI/2;❹
fruit.add(picture);❺

❶ Remove the red color and make this cylinder invisible.

❷ Create a new kind of material: an image material.

❸ Build a simple mesh with this material.

❹ Rotate the image mesh to align with the cylinder.

❺ Attach the image mesh to the fruit.

With that, we should have a purple fruit monster on the prowl!

Chapter 15. Project: The Purple Fruit Monster Game • 142

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Challenge: Game Reset

Right now, the only way to restart a game is to show the code, press the Update
button, and then hide the code again. Try adding a keyboard handler so that

when the R key (computer code 82), is pressed, the game resets.

Some things to keep in mind:

• The avatar should go back to the starting position.

• The score should reset.

• The game is no longer over.

• Both animate() and gameStep() need to restart.

Good luck! This may prove quite a challenge—you may even want to give it

a try now, and then return after a few more chapters of experience with

physics.

15.4 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.15, Code: The Purple Fruit Monster Game, on page 245.

15.5 What’s Next

This was an impressive game to make. In the upcoming chapters we’ll practice

the physics skills that we developed here. We’ll also build on the concept of

a gameStep() function, which was fairly simple in this game.

report erratum • discuss

The Code So Far • 143

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 16

Project: Tilt-a-Board

In this chapter we’ll build a 3D game in which a ball lands on a game board

in space. The object of the game is to use the arrow keys to tilt the board so

that the ball falls through a small hole in the center of the board—without

falling off the edge. It will end up looking something like this:

We’ll make this game pretty, so we’ll be using skills from Chapter 12, Working

with Lights and Materials, on page 109. We’ll need physics to make the ball

fall, to make it slide back and forth on the game board, and to detect when

it hits the goal, so we’ll use some of the skills from Chapter 15, Project: The

Purple Fruit Monster Game, on page 133. And we’ll be adding a lot of shapes

and moving them around, so we’ll need the skills from the first half of the

book, as well.

A word to the wise: there’s a ton going on in this game, which means we’ll be

typing a lot of code. We won’t be talking much about the code since a lot of

it uses concepts from earlier chapters. If you haven’t already worked through

those earlier chapters, coding this game may be frustrating!

When you’re done with this chapter, you will

• Know how to build a full 3D game

• Know how to build complex 3D shapes

• Begin to understand how interesting

shapes, materials, lights, and physics work

together in a game

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

16.1 Getting Started

Start a new project in ICE. Choose the 3D starter project template and name this

project Tilt-a-Board.

This Is a WebGL Game

If your browser can’t do WebGL, you’ll have to skip this chapter.

The easiest way to tell if your computer and browser can do WebGL

is to visit http://get.webgl.org/. If you see the spinning cube on that

page, then you have WebGL. If not, you’ll have to work on other

projects.

16.2 Gravity and Other Setup

Just as we did with the Purple Fruit Monster game, we need to do a little

work before the START CODING ON THE NEXT LINE line. Make the changes noted in

the following code.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>❶
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';❷
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';❸

// This is where stuff in our game will happen:
var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });❹
scene.setGravity(new THREE.Vector3(0, -50, 0));❺

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.set(0, 100, 200);❻
camera.rotation.x = -Math.PI/8;❼
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();❽
renderer.shadowMapEnabled = true;❾
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********

Chapter 16. Project: Tilt-a-Board • 146

report erratum • discuss

http://get.webgl.org/
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

❶ Load the physics library.

❷ Tell the physics library where it can find additional help to detect colli-

sions.

❸ Set up a worker to perform all of the physics calculations.

❹ Create a physics-enabled Physijs.scene.

❺ Enable gravity.

❻ Move the camera up a little to better see the action.

❼ Tilt the camera to better see the action.

❽ Use the WebGL renderer.

❾ Enable shadows in the renderer for added realism.

The only differences between this opening and the one that we used in

Chapter 15, Project: The Purple Fruit Monster Game, on page 133, are the

camera rotation and the ability to cast shadows. Now that we’re ready for

physics, let’s get started with the code that goes after START CODING ON THE NEXT
LINE.

16.3 Outline the Game

We’ll need the following in our game: a ball, a game board, a goal, lights, and

a space background. As usual, we’ll also need to animate the game and we’ll

have a separate function for game logic that doesn’t need to happen as often

as animation. Type in the following code outline, including the double slashes.

//addLights();
//var ball = addBall();
//var board = addBoard();

//addControls();
//addGoal();
//addBackground();
//animate();
//gameStep();

Just as we did in Chapter 15, Project: The Purple Fruit Monster Game, on page

133, we’ll uncomment these function calls as we define the functions.

Add Lights

Before doing anything else, let’s add some lights to the scene. Without lights,

the rest of the stuff in our game will be hard to see.

report erratum • discuss

Outline the Game • 147

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Below the commented-out code outline, add the following function definition

of addLights().

function addLights() {
scene.add(new THREE.AmbientLight(0x999999));

var back_light = new THREE.PointLight(0xffffff);
back_light.position.set(50, 50, -100);
scene.add(back_light);

var spot_light = new THREE.SpotLight(0xffffff);
spot_light.position.set(-250, 250, 250);
spot_light.castShadow = true;
scene.add(spot_light);

}

We’ve seen lights from our work in Chapter 12, Working with Lights and

Materials, on page 109, and in Chapter 13, Project: Build Your Own Solar Sys-

tem, on page 117. We’re using three kinds of lights here. An ambient light is

a light that is everywhere—it won’t cast shadows or make things shine, but

will bring out colors in things. A point light is like a light bulb—we place it

above and behind the center of the scene so that it can shine down on the

game platform. A spot light is just what it sounds like—we use it to shine a

light from the side and to cast a shadow.

Now that we’ve added the function definition, uncomment the call to addLights()
in the code outline.

Add the Game Ball

Let’s get started with the addBall() function by adding the following code below

the function definition for addLights().

function addBall() {
var ball = new Physijs.SphereMesh(

new THREE.SphereGeometry(10, 25, 21),
new THREE.MeshPhongMaterial({
color: 0x333333,
shininess: 100.0,
ambient: 0xff0000,
emissive: 0x111111,
specular: 0xbbbbbb

})
);
ball.castShadow = true;
scene.add(ball);
resetBall(ball);
return ball;

}

Chapter 16. Project: Tilt-a-Board • 148

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

From our earlier work, we’re familiar with wrapping 3D shapes and materials

inside a physics-aware mesh. We’ve also seen the various color settings. In

this case, we make our ball a very shiny red (0xff0000 is red). We set its castShad-
ow property to true so that it will have a shadow. Lastly, we add it to the scene.

All very standard—except for the resetBall() function that we add now.

function resetBall(ball) {
ball.__dirtyPosition = true;
ball.position.set(-33, 50, -65);
ball.setLinearVelocity(0,0,0);
ball.setAngularVelocity(0,0,0);

}

dirty Starts with Two Underscores

Be sure to add two underscores before dirtyPosition. It’s not _dirtyPosition.
The setting is __dirtyPosition. If you use only one underscore, there

will be no errors, but the movement controls won’t work.

This resetBall() function starts with the very funny ball.__dirtyPosition setting. Pro-

grammers have odd senses of humor and the dirty position is an example of

this. Programmers often use the word “dirty” to mark something that has

been changed, usually in a wrong way.

In this case, we’re doing something very wrong by changing the ball’s position.

In real life, things do not just change position. The same is true in a 3D

physics world. Things cannot just be in a new place all of a sudden. But we

need to change the ball’s position at the beginning of the game and whenever

the game resets.

So __dirtyPosition is our way of telling the game physics, “Look, I know this is

wrong, but I know what I’m doing and I need the following position to change

right away.” And, since we asked so politely, the game physics will answer,

“No trouble at all! Just don’t forget that setting if you ever need to do it again.”

Isn’t That Premature Generalization?

Back in Functions: Use and Use Again, I said programmers should

never write pretty code first. We could have added that position

code directly inside addBall(). We didn’t for two reasons. First, we

already know we’ll need to reset the game—just like we talked about

with Project: The Purple Fruit Monster Game. Second, I didn’t want

you to have to change a whole bunch of code after you type it.

Still, be cautious when doing something like this.

report erratum • discuss

Outline the Game • 149

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Now that we’ve added the addBall() function definition to the game, we can

uncomment the addBall() call in the code outline. Our code outline should now

look like this:

addLights();
var ball = addBall();
//var board = addBoard();

//addControls();
//addGoal();
//addBackground();

//animate();
//gameStep();

Add the Game Board

We should now have a ball hovering in midair. Let’s add the game board to

give the ball something to do. Add the addBoard() function as follows (warning:

there is a lot of typing for this one).

function addBoard() {
var material = new THREE.MeshPhongMaterial({

color: 0x333333,
shininess: 40,
ambient: 0xffd700,
emissive: 0x111111,
specular: 0xeeeeee

});

var beam = new Physijs.BoxMesh(
new THREE.CubeGeometry(50, 2, 200),
material,
0

);
beam.position.set(-37, 0, 0);
beam.receiveShadow = true;

var beam2 = new Physijs.BoxMesh(
new THREE.CubeGeometry(50, 2, 200),
material

);
beam2.position.set(75, 0, 0);
beam2.receiveShadow = true;
beam.add(beam2);

var beam3 = new Physijs.BoxMesh(
new THREE.CubeGeometry(200, 2, 50),
material

);

Chapter 16. Project: Tilt-a-Board • 150

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

beam3.position.set(40, 0, -40);
beam3.receiveShadow = true;
beam.add(beam3);

var beam4 = new Physijs.BoxMesh(
new THREE.CubeGeometry(200, 2, 50),
material

);
beam4.position.set(40, 0, 40);
beam4.receiveShadow = true;
beam.add(beam4);

beam.rotation.set(0.1, 0, 0);
scene.add(beam);
return beam;

}

There’s a lot of code in there, but you know most of it. We create four beams

and combine them all together to make the game board. At the very end, we

tilt the board a bit (to get the ball rolling) and add it to the scene. Note that

we mark each of the beams as able to have shadows on them.

One thing that’s new is the 0 in the first beam:

var beam = new Physijs.BoxMesh(
new THREE.CubeGeometry(50, 2, 200),
material,
0

);

The 0 tells the physics library that gravity doesn’t apply to this object (or

anything added to it). Without the zero, our game board would fall right off

the screen!

Uncomment the call to addBoard() in the code outline, and you should have the

ball hovering over the game board.

Enable Animation

Before we enable the game-board controls, we need to animate the scene. At

the very bottom of our code, move the renderer.render() line into an animate()
function as follows:

function animate() {
requestAnimationFrame(animate);
scene.simulate(); // run physics
renderer.render(scene, camera);

}

report erratum • discuss

Outline the Game • 151

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Uncomment the animate() function (it’s before the final gameStep() call) from the

code outline. Nothing will change, but now we can add game controls.

Add Game Controls

We have the ball and the board now, so let’s add controls for the game board.

Add the following function definition of addControls() above the animate() function

we just added.

function addControls() {
document.addEventListener("keydown", function(event) {

var code = event.keyCode;

if (code == 37) left();
if (code == 39) right();
if (code == 38) up();
if (code == 40) down();

});
}

By now we’re very familiar with using JavaScript events to control gameplay.

We’re also starting to learn the computer numbers for the arrow keys by heart!

Notice that we need to define a few more functions to tilt the game board left,

right, up, and down. Add the following five function definitions.

function left() { tilt('z', 0.02); }
function right() { tilt('z', -0.02); }
function up() { tilt('x', -0.02); }
function down() { tilt('x', 0.02); }

function tilt(dir, amount) {
board.__dirtyRotation = true;
board.rotation[dir] = board.rotation[dir] + amount;

}

The left(), right(), up(), and down() functions are pretty easy to understand. They

are so short that we can put the entire function definition on one line! What

we’re doing in the tilt() function called by each of those is a little trickier.

We already know what __dirtyRotation is from our work on __dirtyPosition in Add

the Game Ball (and we know that it starts with two underscore characters).

We’re changing the game board’s rotation. Even though the board’s rotation

is changing by only a tiny bit, we need to tell the physics library that we truly

want to do this.

What’s really sneaky in tilt() is board.rotation[dir]. When the left() function is called,

it calls tilt() with the string 'z' as the value for dir. In this case, it’s the same as

Chapter 16. Project: Tilt-a-Board • 152

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

updating board.rotation['z']. This is something new! We’ve seen stuff like

board.rotation.z, but we’ve never seen square brackets and a string like that.

board.rotation['z'] is the same as board.rotation.z. JavaScript sees both as changing

the z property of the rotation. Using this trick, we write just one line that can

update all different directions in tilt().

board.rotation[dir] = board.rotation[dir] + amount;

Without a trick like that, we would probably have to use four different if
statements. So we lazy programmers like this trick!

Uncomment the addControls() call in the code outline and give the game board

a try. You should be able to tilt it left, right, up, and down.

Add the Goal

We need a goal somewhere under the game board. Even if we can’t see it, we

know there’s a goal. When the ball falls all the way through the hole, then

we’ve hit the goal and won the game.

Below the definition of the addControls() function, type the following.

function addGoal() {
var light = new THREE.Mesh(

new THREE.CylinderGeometry(20, 20, 1000),
new THREE.MeshPhongMaterial({
transparent:true,
opacity: 0.15,
shininess: 0,
ambient: 0xffffff,
emissive: 0xffffff

})
);
scene.add(light);

var score = new Physijs.ConvexMesh(
new THREE.PlaneGeometry(20, 20),
new THREE.MeshNormalMaterial({wireframe: true})

);
score.position.y = -50;
score.rotation.x = -Math.PI/2;
scene.add(score);

score.addEventListener('collision', function() {
flashGoalLight(light);
resetBall(ball);

});
}

report erratum • discuss

Outline the Game • 153

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The first part of this function adds a light to the scene, but not a real light.

This is not a light that shines, but rather a fake light that shows where the

goal is. You can tell that it’s a fake light by the geometry and material—both

of which are for regular shapes. To give it the look of a spot light shining on

something important, we mark it as transparent and give it a low opacity. In

other words, we make it very easy to see through.

After we add the light to the scene, we add the actual goal. This is just a small

plane that we add to the scene below the game board. The important thing

about this goal is the collision event listener we add. When the ball collides

with the goal, we flash our goal light and reset the ball. Resetting the ball is

easy, thanks to the resetBall() function.

Wireframing

You might have noticed that we set wireframe to true when we created

the goal. A wireframe lets us see the geometry without a material

to wrap it. It’s a useful tool to explore shapes and to draw planes

as we’ve done here.

Normally you should remove the wireframe property in finished game

code (you can remove the enclosing curly braces too). In this game,

it probably makes the most sense to change wireframe: true to visible:
false so that the goal is invisible to the player.

To flash the light, we need to define the flashGoalLight() function as follows.

function flashGoalLight(light, remaining) {
if (typeof(remaining) == 'undefined') remaining = 9;

if (light.material.opacity == 0.4) {
light.material.ambient.setRGB(1,1,1);
light.material.emissive.setRGB(1,1,1);
light.material.color.setRGB(1,1,1);
light.material.opacity = 0.15;

}
else {

light.material.ambient.setRGB(1,0,0);
light.material.emissive.setRGB(1,0,0);
light.material.color.setRGB(1,0,0);
light.material.opacity = 0.4;

}

if (remaining > 0) {
setTimeout(function() {flashGoalLight(light, remaining-1);}, 500);

}
}

Chapter 16. Project: Tilt-a-Board • 154

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The bulk of this function is dedicated to setting the color and opacity (how

easy it is to see through) of the goal light. If the opacity used to be 0.4, then

we set it to 0.15 (making it easier to see through) and change the spotlight

color to white.

Otherwise, we set the color to red and the opacity to 0.4. That’s the bulk of

the function, but not the most interesting part.

When flashGoalLight() is called, it’s called with the goal light that we want to

flash and the number of flashes that remain. When we called flashGoalLight()
back in the collision event, we didn’t tell it how many times remained to be

flashed—we called it with no parameters. If a JavaScript function is called

without all of its parameters, the parameters are undefined, which we first

talked about back in Section 7.2, Describing a Thing in JavaScript, on page

67.

In this case, if remaining is undefined, then it is the first time the function has

been called, and we set it to 9 more times that we flash the light.

The really interesting thing about this function happens at the end. If the

number of flashes remaining is more than zero, we call the function again

—from inside itself.

if (remaining > 0) {
setTimeout(function() {flashGoalLight(light, remaining-1);}, 500);

}

This is a real-world example of recursion, which we first encountered back

in Functions: Use and Use Again.

In this case, we call the same flashGoalLight() with the same light parameter,

but we subtract one from the number of flashes remaining. So we call it with

eight remaining, which then calls it with seven remaining, and so on, all the

way down to zero remaining. When there are zero remaining we simply do

not call flashGoalLight() again, and the recursion stops.

Also in this last bit of code is setTimeout(). This calls the function after waiting

a little bit. In this case we’re waiting 500 milliseconds, or half a second.

With that, we’re done with the goal, so move back on up to the code outline

and uncomment the call to addGoal().

Add a Background

Let’s add our starry background from Chapter 13, Project: Build Your Own

Solar System, on page 117, to this game. Below the addGoal() function definition,

add the following:

report erratum • discuss

Outline the Game • 155

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function addBackground() {
document.body.style.backgroundColor = 'black';
var stars = new THREE.Geometry();
while (stars.vertices.length < 1000) {

var lat = Math.PI * Math.random() - Math.PI/2;
var lon = 2*Math.PI * Math.random();
stars.vertices.push(new THREE.Vector3(
1000 * Math.cos(lon) * Math.cos(lat),
1000 * Math.sin(lon) * Math.cos(lat),
1000 * Math.sin(lat)

));
}
var star_stuff = new THREE.ParticleBasicMaterial({size: 5});
var star_system = new THREE.ParticleSystem(stars, star_stuff);
scene.add(star_system);

}

This is similar to the space background from the planet simulator. Once you

have that, uncomment the addBackground() function in the code outline.

Game Logic

As we saw in Chapter 15, Project: The Purple Fruit Monster Game, on page 133,

it’s not a good idea to process game logic as often as we perform animation

work. So in this game, we again keep the two separate. Add the following

game-logic definition below the addBackground() function body.

function gameStep() {
if (ball.position.y < -100) resetBall(ball);
setTimeout(gameStep, 1000 / 60);

}

First our game logic tells Physijs to simulate physics in our scene. Then we

check to see if the ball has fallen off the board.

We’re processing game logic sixty times per second. That is, we set the timeout

of that function to 1000 milliseconds divided by 60, or 16.67 milliseconds.

So gameStep() is processed every 16.67 milliseconds, which may seem very

frequent. In computers, though, that is not very frequent. The animation will

get updated at least sixteen times, and probably a lot more, during those

1000 milliseconds.

Truth be told, it doesn’t really matter that we have our game logic separated

in this case. Processing physics in this simple game and deciding if the ball’s

Y position is less than -100 is not too much work for most computers. Still,

this is a good habit to develop when writing games.

Now uncomment the gameStep() function from the code outline and…

Chapter 16. Project: Tilt-a-Board • 156

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

That’s It!

You should have a fully functioning, space-age tilt-a-game working at this

point. Use the arrow keys to tilt the board and score.

16.4 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.16, Code: Tilt-a-Board, on page 249.

16.5 What’s Next

That was our best game yet. We combined our skills with writing 3D games

with our new skills of making shadows and materials. The tilt-a-board game

is really pretty to look at. It certainly took a lot of time to code, but it was

worth it.

In the next chapters we’ll dig a little more into JavaScript. Specifically, we’ll

cover objects, which we’ve been using all along but haven’t talked about

making. Once we have that skill, we’ll build a couple more very cool games.

report erratum • discuss

The Code So Far • 157

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 17

Project: Learning about JavaScript Objects

We’ve made some pretty incredible progress so far. We have an avatar that

can walk around the screen and bump into obstacles. We built an animated

model of the solar system and a simulation of the moon’s movements. We

also tried out our new skills to create a couple of pretty cool games.

We’ve made so much progress, in fact, that we’ve reached the limit of what

we can do with JavaScript—at least without introducing something new. To

understand why we need to learn about this new concept, consider our avatar.

We can make plenty of games where our avatar could play by itself, but what

if the player wanted to play with others?

If two players were to be on the screen at the same time, how would we add

all those hands, feet, and bodies to the screen and not mix them up? How

would we make each one move independently? How would we assign different

colors and shapes to each avatar?

Things quickly get out of control if we try to accomplish all these things with

what we know so far. So it’s time to learn about objects and see what we can

do with them.

This Is a Challenging Chapter

There are a lot of new concepts in this chapter. You may find it best

to skim through the first time and then come back in more depth

later.

17.1 Getting Started

Create a new project in the ICE Code Editor. For this exercise, let’s use the

3D starter project template and call it Objects.

When you’re done with this chapter, you will

• Know what that new keyword we keep

using means

• Be able to define your own objects

• Know how to copy objects

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

We won’t be creating visualizations in this chapter. Instead we’ll be creating

objects in ICE and looking at them in the JavaScript console. So be sure to

have the JavaScript console open.

17.2 Simple Objects

Programmers refer to things as objects. Anything that we can touch or talk

about in the real world can be described as an object in the computer world.

Consider movies, for instance. I think we can all agree that Star Wars is the

greatest movie of all time. Right? Well, here we describe Star Wars as a

JavaScript object:

var best_movie = {
title: 'Star Wars',
year: 1977

};

Even though it’s short, there’s a lot going on in that example. First of all, we

see that JavaScript has another use for curly braces other than just wrapping

function definitions and if statements. Curly braces can also wrap JavaScript

objects. Additionally, we see that JavaScript objects are just like numbers

and strings—they can be assigned to a variable (best_movie in this case).

More importantly, objects let us describe something in different ways. In this

case, we can describe a movie with a title, the movie’s director, and the year

in which the movie was made. The different pieces of information that we

might use to describe things are called attributes.

The attributes of an object can be anything. In our Star Wars example, the

attributes are strings and numbers. We could have used Booleans, lists, and

even functions.

var best_movie = {
title: 'Star Wars',
year: 1977,
stars: ['Mark Hamill', 'Harrison Ford', 'Carrie Fisher'],
aboutMe: function() {

console.log(this.title + ', starring: ' + this.stars);
}

};
best_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

Calling the aboutMe() function on our best_movie objects will produce the “Star

Wars, starring…” message in the JavaScript console. This is what the

console.log() call does—it logs whatever we want to the JavaScript console.

Chapter 17. Project: Learning about JavaScript Objects • 160

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

When we use functions in objects like this, we call them with a different name,

method. Methods let us change an object or, as we’re doing here, return some

other information about the object.

Take a look at the aboutMe() method and how we use the this keyword. The this
keyword is how we refer to the current object. If we’d used title instead of

this.title, we would have gotten an error message telling us that title was unde-

fined. In this example, title was undefined because the code was looking for

a variable named title somewhere else in the program. By using this.title, we are

specifying that we want the title property assigned to the current object.

console.log() Is Your Friend

Web programmers use console.log() all the time to double-check that

variables have the value we expect them to have. It never shows

up in the web page or the game, but programmers can see it—and

fix things if they are broken. Just remember to remove console.log()
when you’re done—it is much easier to use the JavaScript console

without a ton of console.log() messages!

17.3 Copying Objects

In real life, you copy a cool idea or thing by copying everything it does and

changing a few things here and there to make it even better. The thing you’re

copying becomes the prototype for the new way of doing it. JavaScript handles

copying objects in a similar way.

To describe another movie, we can copy the prototypical best_movie object by

using Object.create:

var great_movie = Object.create(best_movie);
great_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

Object.create will create a new object with all the same properties and methods

of the prototypical object we created earlier. So the new object, great_movie, has

the same title and actors as the original best_movie. It also has the same aboutMe()
method.

We don’t need to make any changes to the aboutMe() method. We still want it

to log the movie title and the list of the stars to the JavaScript console. Even

if the title and list of stars changes, the aboutMe() method stays the same—it

may log different information, but it will use the same properties to do so.

report erratum • discuss

Copying Objects • 161

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

However, we do want to update the title and other information in our new

object. Let’s make this new object refer to a movie that’s a favorite of all 3D

programmers like us: Toy Story.

great_movie.title = 'Toy Story';
great_movie.year = 1995;
great_movie.stars = ['Tom Hanks', 'Tim Allen'];
great_movie.aboutMe();
// => Toy Story, starring: Tom Hanks,Tim Allen

best_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

In the first three lines, we change the properties of the current object. Then

we tell the aboutMe() method to do its thing, which it does with the new infor-

mation that we just provided. This little bit of magic happens thanks to the

this keyword in aboutMe(). this.title always refers to the title property of the current

object.

Note that updating properties on the new great_movie object doesn’t affect the

best_movie object. best_movie has all of its properties unchanged and its aboutMe()
method still displays the original results.

All this talk of prototypes and prototypical objects is not just an excuse to

throw fancy words around. In fact, the concept of a prototype is very important

in JavaScript, and answers a question you may have had since the very first

chapter in this book: what’s that new keyword that we keep typing?

17.4 Constructing New Objects

We now have a good idea of what an object is in JavaScript. We also now see

how an object can be a prototypical object and act as a template for creating

similar objects. Creating new objects like this can be pretty tedious and mis-

take-prone. Consider this: if we forget to assign the year property on great_movie,
then the object will think Toy Story was made back in 1977. Unless we tell

the object differently, it copies all properties from the original (star_wars) object,

including the year, 1977!

We can also use a simple function to build objects in JavaScript—yes, the

simple function that we first saw all the way back in Chapter 5, Functions:

Use and Use Again, on page 49. Surprisingly, we don’t have to do anything

special to a function to create new objects. Normally, as a style thing, program-

mers capitalize the name of a function if it creates new objects. For example,

a function that will create movie objects might be called Movie.

Chapter 17. Project: Learning about JavaScript Objects • 162

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function Movie(title, stars) {
this.title = title;
this.stars = stars;
this.year = (new Date()).getFullYear();

}

This is just a normal function using the function keyword, a name Movie, and a

list of parameters (such as the movie title and the list of stars in the movie).

However, we do something different inside the object builder’s function defi-

nition than what we would normally do for functions. Instead of performing

calculations or changing values, we assign the current object’s properties. In

this case, we assign the current object’s title in this.title, the names of the actors

and actresses who starred in the movie, and even the year in the list of

properties.

Aside from assigning the this values, there really is nothing special about this

function. So how does it create objects? What makes it an object constructor

and not a regular function?

The answer is something we saw in the very first chapter of this book: the

new keyword. We don’t call Movie() the way we would a regular function. It’s an

object constructor, so we construct new objects with it by placing new before

the constructor’s name.

var kung_fu_movie = new Movie('Kung Fu Panda', ['Jack Black', 'Angelina Jolie']);

The Movie() in new Movie is the constructor function we defined. It needs two

parameters: the title (Kung Fu Panda), and a list of stars (Jack Black and

Angelina Jolie).

Then, thanks to the property assignments we made in the constructor func-

tion, we can access these properties just like we did with our previous objects.

console.log(kung_fu_movie.title);
// => Kung Fu Panda
console.log(kung_fu_movie.stars);
// => ['Jack Black', 'Angelina Jolie']
console.log(kung_fu_movie.year);
// => 2013

You might notice that the year of the Kung Fu Panda movie is wrong (it came

out in 2008). This is because our constructor only knows to set the year
property to the current year. If you are up for a challenge, change the con-

structor so that it takes a third argument—the year. If the year is set, then

use that instead of the current year in the constructor.

report erratum • discuss

Constructing New Objects • 163

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Now we know how the creators of our 3D JavaScript library write all of their

code, so we can write things like this:

var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);

SphereGeometry, MeshNormalMaterial, and Mesh are all constructor functions in the

Three.js library.

One mystery is solved, but one remains: if we’re using function constructors

to build objects, how can we make methods for those objects? The answer to

that is why we emphasized the word “prototype” in the previous section. To

create an aboutMe() method for the objects created with our Movie() constructor,

we define the method on the constructor’s prototype. That is, for a prototypical

movie, we want the aboutMe() method to look like the following.

Movie.prototype.aboutMe = function() {
console.log(this.title + ', starring: ' + this.stars);

};

With that method in place, we can ask the kung_fu_movie the answer to aboutMe().

kung_fu_movie.aboutMe();
// => Kung Fu Panda, starring: Jack Black,Angelina Jolie

JavaScript objects can have any number of methods, like aboutMe(), but it’s

good to keep the number of methods small. If you find yourself writing more

than twelve or so methods, then it may be time for a second object with a

new constructor.

17.5 The Code So Far

If you would like to double-check the code in this chapter, go to Section A1.17,

Code: Learning about JavaScript Objects, on page 253.

17.6 What’s Next

Object-oriented programming is a tough thing to wrap your brain around. If

you understood everything in this chapter, then you’re doing better than I

did when I learned these concepts. If not everything made sense, don’t worry.

Examples we’ll play with in the next few games should help clarify things.

After you’ve written a game or two with objects, it might help to reread this

chapter. As the games you invent on your own get more and more sophisti-

cated, you’ll want to rely on objects to help organize your code.

Chapter 17. Project: Learning about JavaScript Objects • 164

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 18

Project: Cave Puzzle

In this chapter we’ll build an action-based puzzle game. In the game, the

avatar can only move left or right, but to win, the avatar needs to reach the

top of the screen. The person playing the game can move and rotate ramps

to help the avatar reach the top of the screen and win. To make it even more

challenging, the game board includes some objects that can’t be moved.

A sketch of the game might look something like this:

We’ll be putting all our newly acquired object-oriented programming skills to

good use in this chapter, so refer back to Chapter 17, Project: Learning about

JavaScript Objects, on page 159, as needed.

18.1 Getting Started

We begin by creating a new project in the ICE Code Editor. Let’s use the 3D
starter project (with Physics) template (you need to change the template this time)

and call it Cave Puzzle.

When you’re done with this chapter, you will

• Know how to move things with a mouse

• Have another full-featured game to share

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

As you might guess, this template includes much of the physics-engine work

we manually added back in Chapter 15, Project: The Purple Fruit Monster

Game, on page 133.

We still need to make a couple of changes before the START CODING line. First,

we need to include two more JavaScript libraries—one for keeping score and

one for working with the mouse. Start a new line after line 4, just before the

plain <script> tag, and add the following two <script> tags:

<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/Mouse.js"></script>

It’s important that the Mouse.js <script> tag go after the physi.js <script> tag so

that it can add mouse functionality to physics-ready objects.

The other thing we need to do is pick a better background color to set the game’s

mood. We don’t want it to be completely dark, but something a little grayer and

darker will make the screen feel more like the inside of a cave. So, just above the

START CODING line, set the background color to the following:

document.body.style.backgroundColor = '#9999aa';

Computers Like Hexadecimal Numbers

I think we can all agree that 99 is a number. But how can aa be a

number? Because computers like binary numbers (1s and 0s), they

like to work with numbers in hexadecimal. Instead of counting to

nine and then using two digits (1 and 0) to make ten, computers

like to count all the way to fifteen before adding another digit. Since

humans only have ten single-digit numbers (0, 1, 2, 3, 4, 5, 6, 7,

8, and 9), we use letters for hexadecimal numbers, starting with a.

The digits 0 through 9 in the regular number system and hexadec-

imal are the same. The regular number 10 is a in hexadecimal,

number 11 is b in hexadecimal, and so on until we reach 15, which

is f in hexadecimal. The next number, 16, is 10 in hexadecimal.

Computer colors are often two-digit hexadecimal numbers—especially

on web pages. Two-digit hexadecimal numbers are given a special name

in computers: one byte. With two digits of hexadecimal numbers, we

can count from zero (00) to 255 (ff).

So the hexadecimal 99 tells a computer to turn on a color about 60

percent of its full brightness. The hexadecimal aa is a little

brighter—around 66 percent of its full brightness. ff would turn the

color up to its full brightness and 00 would turn it off completely.

Chapter 18. Project: Cave Puzzle • 166

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The first two numbers are the amount of red we want to use, the second two

numbers are the amount of green, and the last two are the amount of blue.

For the cave, we’re using equal amounts of red and green (99), but we’ll add

a little more blue by setting it to aa.

The last thing we do above the START CODING line is switch to the orthographic

camera we used back in A Quick Peek at a Weirdly Named Camera, on page

89. This is more of a two-dimensional game, so the orthographic camera will

work better for our purposes.

WebGL Only

Make the following changes only if your computer supports WebGL

as described in Section 12.3, Realism: Shininess, on page 111. Even

if your computer does support WebGL, it’s OK to skip these settings

to make it easier to share this game with others.

Comment out the perspective camera and uncomment the three lines for the

orthographic camera:

//var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
var camera = new THREE.OrthographicCamera(

-width/2, width/2, height/2, -height/2, 1, 10000
);

And, since the orthographic camera only works in WebGL, we need to switch

the renderer:

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();

With that, we’re ready to start coding.

18.2 Setting the Game’s Boundaries

All of the action in this game will take place on the screen. So we need

something to keep the avatar in the screen. We need boundaries—four of

them. Since we need to add four of the same things, we’ll do so with a make-
Border() function. This function will use x and y positions to decide where to

place the border. It will also define a width and height to build the correct

shape. Let’s add the following code to our project below the START CODING line:

function makeBorder(x, y, w, h) {
var border = new Physijs.BoxMesh(

new THREE.CubeGeometry(w, h, 100),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color: 0x000000}), 0.2, 1.0

),

report erratum • discuss

Setting the Game’s Boundaries • 167

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

0
);
border.position.set(x, y, 0);
return border;

}

This makes the same kinds of physics-ready meshes that we used in Chapter

15, Project: The Purple Fruit Monster Game, on page 133. Note that the depth

of the rectangular boxes is always 100. This will ensure that the avatar cannot

accidentally fall in front of or behind the borders.

The makeBorder() function builds meshes. We still need to add these meshes to

the scene. Add the left, right, top, and bottom borders with the following four

lines (you don’t have to include all of the spaces if you don’t like them):

scene.add(makeBorder(width/-2, 0, 50, height));
scene.add(makeBorder(width/2, 0, 50, height));
scene.add(makeBorder(0, height/2, width, 50));
scene.add(makeBorder(0, height/-2, width, 50));

Adjust the Border for Perspective Cameras

If you’re using the perspective camera, then the borders won’t quite

reach the edge of the screen. To position them correctly, we have

to make the borders slightly bigger and move them a little further

out.

To make the borders bigger, multiply the width and height by 1.2:

new THREE.CubeGeometry(1.2*w, 1.2*h, 100),

To move the border a little further out, multiply the x and y position

by 1.2 as well:

border.position.set(1.2*x, 1.2*y, 0);

With that, we have four borders to keep our avatar on the screen. Now let’s

add the avatar.

Start with a Simple Avatar

We’ll keep the avatar simple in this game. Feel free to use some of the tech-

niques from Chapter 15, Project: The Purple Fruit Monster Game, on page 133,

or Chapter 12, Working with Lights and Materials, on page 109, after we’re

done, but it’s best to start simple and add complexity later. We’ve done most

of this before, so let’s go through the next code quickly.

Make the avatar’s mesh a flat cylinder with a red cover:

Chapter 18. Project: Cave Puzzle • 168

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var avatar = new Physijs.ConvexMesh(

new THREE.CylinderGeometry(30, 30, 5, 16),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color:0xbb0000}), 0.2, 0.5
)

);

Since this is a physics simulation, we make the material slippery with the 0.2
number (1.0 would be very hard to move) and somewhat bouncy with the 0.5
number (1.0 would be very bouncy).

Next we add the avatar to the scene:

avatar.rotation.set(Math.PI/2, 0, 0);
avatar.position.set(0.5 * width/-2, -height/2 + 25 + 30, 0);
scene.add(avatar);

avatar.setAngularFactor(new THREE.Vector3(0, 0, 0)); // don't rotate
avatar.setLinearFactor(new THREE.Vector3(1, 1, 0)); // only move on X and Y axis

We rotate the avatar 90 degrees (Math.PI/2) so that it’s standing up rather than

lying flat. We position it a bit to the left and just above the bottom boundary

(25 is half the boundary’s width and 30 is the size of the avatar). As in Project:

The Purple Fruit Monster Game, we set the angular factor so that the avatar

won’t fall flat, and we set the linear factor so that it moves only up and down

(not in and out of the screen).

Next let’s decide what to do if the avatar collides with something. In most

cases we won’t care. It doesn’t matter if the avatar bumps into a wall or ramp.

It only matters if the object is a goal:

avatar.addEventListener('collision', function(object) {
if (object.isGoal) gameOver();

});

We’ll worry about the isGoal property when we add the goal a little later.

Next we need to handle interaction with the keyboard:

document.addEventListener("keydown", function(event) {
var code = event.keyCode;
if (code == 37) move(-50); // left arrow
if (code == 39) move(50); // right arrow

});

There’s nothing new there. We still need to tell the avatar to increase its speed

by 50 whenever the left-right arrow keys are pressed:

report erratum • discuss

Setting the Game’s Boundaries • 169

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function move(x) {
var v_y = avatar.getLinearVelocity().y,

v_x = avatar.getLinearVelocity().x;

if (Math.abs(v_x + x) > 200) return;
avatar.setLinearVelocity(

new THREE.Vector3(v_x + x, v_y, 0)
);

}

This move() function is pretty intelligent. First it determines how fast the avatar

is already moving. We need to know how fast the avatar is moving left or right

so that we can increase or decrease the speed (depending on which arrow key

is pressed). We also need to know how fast the avatar is moving up or down

so that we do not change it. It wouldn’t make sense for a falling avatar to all

of a sudden stop falling.

We also do something a little sneaky in here. We set it up so that the avatar

can never go faster than 200. The Math.abs() function strips negatives from

numbers (maybe you’ve seen absolute value in your math class—that’s what

abs stands for here). In other words Math.abs(-200) equals 200—just like

Math.abs(200). This lets us say, “if the avatar’s speed is -200 (moving left) or 200
(moving right), then do not change the speed at all.” The player needs to win

the game with a speed no faster than 200.

That’s it for the avatar. Now let’s add the goal.

18.3 Building a Random, Unreachable Goal

Let’s make the goal a green donut. Don’t forget to wrap the normal 3D mesh

inside the physics mesh for easy collisions.

var goal = new Physijs.ConvexMesh(
new THREE.TorusGeometry(100, 25, 20, 30),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color:0x00bb00})
),
0

);
goal.isGoal = true;

The very last line is how we tell the avatar that this is the goal. We created

the avatar’s collision detection so that it checked for this isGoal property.

Nothing else in our game has this property set, which lets us be certain that

the avatar really has reached the goal.

Next we do something a little different: we place the goal at one of three ran-

dom locations. In JavaScript, a random number comes from Math.random(). It’s

Chapter 18. Project: Cave Puzzle • 170

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

a number between 0 and 1. So, if the random number is less than 0.33, we

place the goal in the top-left corner (width/-2, height/2). If the random number is

greater than 0.66, we place the goal in the top-right corner (width/2, height/2).
Otherwise we place the goal in the middle of the cave ceiling (0, height/2).

function placeGoal() {
var x = 0,

rand = Math.random();
if (rand < 0.33) x = width / -2;
if (rand > 0.66) x = width / 2;
goal.position.set(x, height/2, 0);
scene.add(goal);

}
placeGoal();

We make this a function so that we can call it again and again. When we add

multiple levels to the game in the next chapter, we’ll need to call placeGoal()
whenever the player completes a level. The same goes if we add a game-reset

capability.

If you update the code several times, you should see the goal move to different

places at the top of the screen. Of course, none of this matters yet—there’s

no way for the avatar to get to the top of the screen!

Let’s add a way.

18.4 Building Draggable Ramps

It is a long way up to the top of the screen. game players are going to need

at least two ramps to reach the top. To build two ramps that behave the same

way but are separate, we’ll need to construct some JavaScript objects as we

did in Chapter 17, Project: Learning about JavaScript Objects, on page 159.

report erratum • discuss

Building Draggable Ramps • 171

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

We start by defining our ramp constructor. Since it constructs objects, we

capitalize the name of the constructor function as Ramp. In the constructor,

we define one property, the ramp mesh, and call three methods:

function Ramp(x, y) {
this.mesh = new Physijs.ConvexMesh(

new THREE.CylinderGeometry(5, height * 0.05, height * 0.25),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0x0000cc}), 0.2, 1.0

),
0

);

this.move(x, y);
this.rotate(2*Math.PI*Math.random());
this.listenForEvents();

}

We know meshes by now, so there’s not much to say about this one. As in

Project: The Purple Fruit Monster Game, we make this one a Physijs mesh so

that the avatar can speed up the ramp.

The three methods we call at the end of the constructor help us to initialize

a new ramp. The this.move() method moves the ramp by the amount specified

in the constructor. If we make a new ramp with new Ramp(100, 100), then

this.move(x, y) would move the ramp to X=100, Y=100. Next, we rotate the ramp

by a random amount. Last, we tell our ramp object that it needs to listen for

events. Let’s look at each of those methods in turn.

The move() method expects two number parameters that tell it by how much

the ramp needs to be moved:

Ramp.prototype.move = function(x, y) {
this.mesh.position.x = this.mesh.position.x + x;
this.mesh.position.y = this.mesh.position.y + y;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

When we move a ramp, we’re defying physics—one moment the ramp can be

in the middle of the screen with no rotation and the next it can be at X=100,
Y=100 and rotated randomly. Any time we do this, we have to tell the physics

engine that we’re doing something non-physics, which is why we set __dirtyPo-
sition and __dirtyRotation. Don’t forget that, as in Add the Game Ball, on page 148,

there are two underscores before both of those “dirty” variables.

The rotate() method is very similar:

Chapter 18. Project: Cave Puzzle • 172

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Ramp.prototype.rotate = function(angle) {
this.mesh.rotation.z = this.mesh.rotation.z + angle;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

Next is the listenForEvents() method, which is where all of the action really takes

place:

Ramp.prototype.listenForEvents = function() {
var me = this,

mesh = this.mesh;
mesh.addEventListener('drag', function(event) {

me.move(event.x_diff, event.y_diff);
});

document.addEventListener('keydown', function(event) {
if (!mesh.isActive) return;
if (event.keyCode != 83) return; // S
me.rotate(0.1);

});
};

We start this method by assigning a new me variable to this and a new mesh
variable to this.mesh. We do this mostly because JavaScript can do strange

things to this—especially when dealing with events. JavaScript has very good

reasons for messing with this, but we’re not going to worry about them in this

book.

First we listen for drag events, which occur when the game player clicks and

drags something. In this case, the ramp is dragged by the amounts event.x_diff
and event.y_diff, and we tell the ramp to move itself with the move() method that

we already made.

Next, if the game player clicks a ramp (making it active) and presses the S
key, then we rotate the ramp by a little bit.

Both the drag event and the isActive property come from the Mouse.js library

that we added in Section 18.1, Getting Started, on page 165. Without that

library, neither of those will work.

That’s it! We now have a way to construct as many ramps as we like. Each

ramp that we construct will have its own mesh and will move by itself. To see

this in action, let’s create two ramps and add their meshes to the scene:

var ramp1 = new Ramp(-width/4, height/4);
scene.add(ramp1.mesh);
var ramp2 = new Ramp(width/4, -height/4);
scene.add(ramp2.mesh);

report erratum • discuss

Building Draggable Ramps • 173

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

If you click and drag the ramps with your mouse, you’ll see that you can move

them all over the game area. If you click and press the S key, you can make

them spin. It’s even possible to win the game:

We have a game with some fairly sophisticated elements. The one thing

lacking is the end. So let’s finish the chapter by creating the gameOver() function.

18.5 Winning the Game

At the beginning of this chapter we added two <script> tags. We’ve made good

use of the Mouse.js library to enable our ramps to move and rotate. We haven’t

done anything with the Scoreboard.js library. We use that here to put a time

limit on the game and to set the Game Over message.

Let’s add a scoreboard that includes a timer, a countdown from 40, some

help text, and something to do when the game is over:

var scoreboard = new Scoreboard();
scoreboard.timer();
scoreboard.countdown(40);
scoreboard.help(

"Get the green ring. " +
"Click and drag blue ramps. " +
"Click blue ramps and press S to spin. " +
"Left and right arrows to move player. " +
"Be quick!"

);
scoreboard.onTimeExpired(function() {

scoreboard.setMessage("Game Over!");
gameOver();

});

Chapter 18. Project: Cave Puzzle • 174

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

We’re doing just about everything there is to do with Scoreboard.js here. Most

of these are simple directions for how the scoreboard should look: it should

show the timer, the countdown timer, and some help text.

The last thing we do with the scoreboard is use a function to describe what

happens when time expires—set the scoreboard message to Game Over! and

call the gameOver() function.

We’ve already called this gameOver() function—we called it when the avatar

collided with the goal. So we know that gameOver() needs to account for the

case in which there’s still some time remaining. That is, if the avatar reaches

the goal before time runs out, the player has won the game. In this case, we

set the scoreboard message to Win!:

var pause = false;
function gameOver() {

if (scoreboard.getTimeRemaining() > 0) scoreboard.setMessage('Win!');
scoreboard.stopCountdown();
scoreboard.stopTimer();
pause = true;

}

We also tell the scoreboard to stop its timers. Finally, we set a pause variable.

We’ll use pause to tell the animation and physics functions to stop running.

In both functions, if paused == true, then we return before they have a chance

to call themselves again. Update the animate() function with the line that checks

pause:

function animate() {
if (pause) return;
requestAnimationFrame(animate);
renderer.render(scene, camera);

}
animate();

And do the same for the gameStep() function:

function gameStep() {
if (pause) return;
scene.simulate();
// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

}
gameStep();

If you have everything working correctly, and if you’re very, very good, you

should now be able to win the game. You might even be able to beat my high

score!

report erratum • discuss

Winning the Game • 175

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

18.6 The Code So Far

In case you would like to double-check the code in this chapter, it’s included

in Section A1.18, Code: Cave Puzzle, on page 255.

18.7 What’s Next

That was quite a lot of coding, but it was worth it, don’t you think? We got

our first taste of real object-oriented programming. And we were rewarded

with a pretty cool game for our efforts.

There’s still more we can do with this game. In the next chapter we’ll change

this into a multilevel affair. And in each of the levels, the game is going to get

even harder!

Chapter 18. Project: Cave Puzzle • 176

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 19

Project: Multilevel Game

Once you get the hang of playing the cave-puzzle game we coded in Chapter

18, Project: Cave Puzzle, on page 165, it’s pretty easy to win. As a game player,

it quickly grows boring and you want to move on to more exciting things. As

game designers, it’s our job to build games that make players want to keep

playing. Games should start off easy and keep getting harder (but never

impossible—it’s not fun to play impossible games). With that in mind, let’s

revisit the sketch of our game from the last chapter.

We never got around to adding those immovable obstacles last time, did we?

Let’s do that now—but only after the player has reached the goal for the first

time.

19.1 Getting Started

Before starting this game, you need to work through the game in the previous

chapter. If you’ve already finished the entire program, let’s make a copy of it by

clicking the three-line menu button and selecting Make a Copy from the menu:

When you’re done with this chapter, you will

• Have a strategy for building multilevel

games

• Understand how to reset countdown timers

• See an example of coding progressively

harder games

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

We make a copy because we have a good, working game that took us a while

to write. We can always delete it later if this game turns out great, but it

never hurts to make a copy.

Never Throw Away Working Code

If you have working code, always make sure you have a copy

somewhere. You might think your next changes are small and

couldn’t possibly break things. It is supereasy to break things

badly when programming, though. When that happens, a backup

is like gold. You can refer to your backup or delete your new code

and start again.

After clicking Make a Copy, you’ll get the usual save dialog. Name this game

Multi-Level Cave Puzzle and click Save.

We’re now ready to code—all of the physics and camera work were already

done in the last chapter.

19.2 Building Levels

There are lots of ways for programmers to move players between levels. One

way is to remove everything from the screen—even the scene itself—before

rebuilding a new scene from scratch on the next level. For this to work, the

game has to store information like the number of points the player currently

has, items the player may have picked up, and levels already completed. This

approach works well on consoles like the Wii or Xbox.

Chapter 19. Project: Multilevel Game • 178

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Another way to handle moving between levels is to remove and create specific

game elements—like platforms and obstacles—while the rest of the scene

stays the same. As games get more complicated, this becomes a very hard

way to do it. But in this game we only have a few obstacles, so this approach

will work just fine.

Let’s build a Levels object to hold this information. This is a slightly different

reason to use objects than we saw in the previous chapter. There we used a

Ramp object to help us easily create multiple ramps. This time we build a Levels
object because it will be easier to think of it as a single thing.

Add the Levels code below the scoreboard code, but before the animate() function.

Create the Levels function constructor as follows so that it sets four properties:

function Levels(scoreboard, scene) {
this.scoreboard = scoreboard;
this.scene = scene;
this.levels = [];
this.current_level = 0;

}

The Levels object will need to know about each of these things to do what it

needs to do. It needs access to the scoreboard to reset the counter between

levels. It needs access to the scene to draw and remove obstacles. It needs to

have a list of things on the different levels. Finally, it needs to know what the

current level is.

Objects Should Work on Only Their Own Properties

We don’t really need to pass the scoreboard and scene objects into our

constructor. Since all of our code is in the same place, it’s possible

for our Levels object to do something directly to the scoreboard variable.

Never do that.

There are two reasons. First, if we split all of this code into separate

JavaScript libraries, then scoreboard and scene won’t always be defined

in the library. Second, your code will be cleaner. Object-oriented

programming is not easy. Use whatever rules you can to keep it

from getting messy. This is a good rule.

With the constructor out of the way, let’s define the methods for the Levels
object. First, we need a way to add a new level:

Levels.prototype.addLevel = function(things_on_this_level) {
this.levels.push(things_on_this_level);

};

report erratum • discuss

Building Levels • 179

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

This method will take a list of things that belong to a new level. That list will

include everything that needs to be shown when the player reaches the level.

It’s also everything that needs to be removed when the player completes the

level. We push this onto the list of all levels. If push seems like a strange name

to you, you’re not alone. Sometimes we programmers have to remember

strange names.

Next we need a quick way to get the objects defined for the current level:

Levels.prototype.thingsOnCurrentLevel = function() {
return this.levels[this.current_level];

};

Remember that computers like counting from zero. If the current level is zero,

then this method will return this.levels[0], which is another way of looking up

the first item in a list.

Next, we need to be able to draw the current level on the scene:

Levels.prototype.draw = function() {
var scene = this.scene;
this.thingsOnCurrentLevel().forEach(function(thing) {

scene.add(thing);
});

};

We use the thingsOnCurrentLevel() method that we just created to get a list of the

things we need to draw. Then we say that, for each of those, we want to run

a function that adds the thing to the scene.

Functions Can Do the Unexpected to this
JavaScript functions can do strange things to this, which is why we

make a copy of the scene variable. In Project: Learning about Java-

Script Objects, we saw that this normally refers to the current object.

That is true, except inside functions. Inside a function, like the one

we use to add things to the scene, this refers to the function itself.

To deal with this JavaScript quirk, programmers normally make a

copy of this (or one of its properties) before a function call.

If we have a way to draw objects, then we need a way to erase them:

Levels.prototype.erase = function() {
var scene = this.scene;
this.thingsOnCurrentLevel().forEach(function(obstacle) {

scene.remove(obstacle);
});

};

Chapter 19. Project: Multilevel Game • 180

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Now comes the interesting work that Levels does. It needs to be able to level

up when the player clears a level. As long as there are more levels, leveling

up should erase the current level, increase the current level number, then

draw the next level. Last, we need to tell the countdown timer to reset, but

with a bit less time.

Levels.prototype.levelUp = function() {
if (!this.hasMoreLevels()) return;
this.erase();
this.current_level++;
this.draw();
this.scoreboard.resetCountdown(50 - this.current_level * 5);

};

That’s a nice little method that does exactly what we want it to do. It is tricky

to write code that reads like simple instructions (and sometimes it’s not pos-

sible). But code like that this is something to strive for.

We’re not quite done with the Levels object. The first thing the levelUp() method

does is ask if it has more levels. We need to add that method as follows:

Levels.prototype.hasMoreLevels = function() {
var last_level = this.levels.length-1;
return this.current_level < last_level;

};

If there are two levels in the game, then hasMoreLevels() should be true when

we’re on the first level and false when we’re on the second level. Since Java-

Script likes to start counting from zero, this.current_level will be zero on the first

level and one on the second level. In other words, the last level in a two-level

game would be when this.current_level is one.

Counting from Zero Can Be Difficult

Doing math when you start counting at zero instead of one can be

confusing. It usually helps to plug in real numbers—especially

numbers just before and after the end of a list.

That does it for defining our Levels object. Before we try using it, add the fol-

lowing buildObstacle() method:

function buildObstacle(shape_name, x, y) {
var shape;
if (shape_name == 'platform') {

shape = new THREE.CubeGeometry(height/2, height/10, 10);
} else {

shape = new THREE.CylinderGeometry(50, 2, height);
}

report erratum • discuss

Building Levels • 181

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var material = Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0x333333}), 0.2, 1.0

);

var obstacle = new Physijs.ConvexMesh(shape, material, 0);
obstacle.position.set(x, y, 0);
return obstacle;

}

This builds two different kinds of obstacles—platforms and stalactites.1

Now we’re ready to build levels. Create a new Levels object and add the first

two levels:

var levels = new Levels(scoreboard, scene);
levels.addLevel([]);
levels.addLevel([

buildObstacle('platform', 0, 0.5 * height/2 * Math.random())
]);

The first level has nothing in it and the second has a platform from the

buildObstacle() function.

The last thing we need to do is call that levelUp() method when the player

reaches a goal on the current level. To do that, find the code that adds the

collision event listener to the avatar. It should look something like this:

avatar.addEventListener('collision', function(object) {
if (object.isGoal) gameOver();

});

Delete this code.

Now back down below our levels code, add the following:

avatar.addEventListener('collision', function(object) {
if (!object.isGoal) return;
if (!levels.hasMoreLevels()) return gameOver();
moveGoal();
levels.levelUp();

});

This changes the collision code slightly. We still do nothing if the avatar col-

lides with something that’s not a goal (like the walls, ramps, and obstacles).

We also add a check to see if there are any more levels. If there are no more

levels, then we return the results of the gameOver() function. If levels remain,

then we move the goal and level up.

1. Stalactites are on the ceiling. Stalagmites are on the ground. Stalactites hang on tight

to the ceiling. Stalagmites start on the ground and might reach the ceiling.

Chapter 19. Project: Multilevel Game • 182

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The following will move the goal (after a 2-second delay):

function moveGoal() {
scene.remove(goal);
setTimeout(placeGoal, 2*1000);

}

That should do it. Now if you reach the goal on the first level, you should be

greeted not with a Win! message on the scoreboard, but with a new level that

has a single obstacle in the way. If you’re very skilled, you can win after the

second level:

19.3 Adding Finishing Touches to the Game

This is already a pretty cool game, but we’ve positioned ourselves nicely for

adding touches that can make it more unique and fun. The most obvious

thing to do is add new levels. You can try the following (and possibly add a

few of your own) after the first level and before the avatar.addEventListener():

levels.addLevel([
buildObstacle('platform', 0, 0.5 * height/2 * Math.random()),
buildObstacle('platform', 0, -0.5 * height/2 * Math.random())

]);
levels.addLevel([

buildObstacle('platform', 0, 0.5 * height/2 * Math.random()),
buildObstacle('platform', 0, -0.5 * height/2 * Math.random()),
buildObstacle('stalactite', -0.33 * width, height/2),
buildObstacle('stalactite', 0.33 * width, height/2)

]);

We can also add some of the sounds from Chapter 11, Project: Fruit Hunt, on

page 99. We can make the avatar click when it hits something that is not the

report erratum • discuss

Adding Finishing Touches to the Game • 183

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

goal, and play the guitar when we reach the goal. Add the following just below

your avatar.addEventListener() and before moveGoal():

avatar.addEventListener('collision', function(object) {
if (object.isGoal) Sounds.guitar.play();
else Sounds.click.play();

});

Don’t forget to add the Sounds.js library at the top if you want sound:

<script src="http://gamingJS.com/Sounds.js"></script>

There are all sorts of things that you can do to make this game as special as

possible for players. Get creative!

19.4 The Code So Far

If you would like to double-check the code in this chapter, compare yours

with the code in Section A1.19, Code: Multilevel Game, on page 259.

19.5 What’s Next

Most of the action in this game took place in two dimensions. To be sure, we

used some impressive programming skills (and even a little 3D programming)

to make this game. Still, let’s get back to 3D programming in our next game.

We’ll use all of our skills in the next chapter, so let’s go!

Chapter 19. Project: Multilevel Game • 184

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 20

Project: River Rafting

For our final project, let’s build a river-rafting game in which the player needs

to navigate the raft along a river, dodging obstacles and picking up bonus

points where possible. The game will look something like this sketch:

We’ll also add a few goodies of our own.

20.1 Getting Started

We start by creating a new project in the ICE Code Editor. We use the 3D starter
project (with Physics) template and call it River Rafting.

We’ll want a scoreboard for the game, so let’s insert a new line after line 4,

just before the plain <script> tag, and add the following:

<script src="http://gamingJS.com/Scoreboard.js"></script>

When you’re done with this chapter, you will

• Have made a full 3D game

• Be able to add scoring to games

• Understand how to warp shapes into

something new

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

After the <script> tag, let’s change the gravity from -100 to -20:

scene.setGravity(new THREE.Vector3(0, -20, 0));

You can experiment with this number after you complete the project, but this

will give it a more realistic feel than the -100 with which it starts.

Let’s change the camera position as well. While we build the game, it will help

to have a bird’s-eye view. We need to remove the line that sets the camera’s

position—but don’t remove the next line that adds the camera to the scene!

Replace it with the following two lines:

camera.position.set(250, 250, 250);
camera.lookAt(new THREE.Vector3(0, 0, 0));

This moves the camera to the right, up, and forward by 250. After moving the

camera, we need to tell it to look at the center of the screen, which is what

the second line does.

Lastly, this is a WebGL game, so we have to change the CanvasRenderer to a

WebGLRenderer:

var renderer = new THREE.WebGLRenderer();

That is all we need to do above the START CODING line for now. Let’s move down

into the rest of the code and start making stuff!

20.2 Organizing Code

A code outline for our rafting game might look something like this:

// DON'T TYPE THIS !!!!
addSunlight();
addScoreboard();
addRiver();
addRaft();

Do not type that in just yet—our game is going to wind up looking a little

different. But you get the idea.

We’ll use a code outline like we did in Chapter 15, Project: The Purple Fruit

Monster Game, on page 133, and Chapter 16, Project: Tilt-a-Board, on page 145,

but we’ll work a little differently. Instead of writing the outline first, we’ll build

the code outline at the same time that we build the functions themselves.

There is no right or wrong way to start a project—just choose what works

best for you. Once you’ve built this project, you’ll have tried several different

approaches in this book, and you can choose which you like best for your

next project.

Chapter 20. Project: River Rafting • 186

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Adding Sunlight

Our raft is going to be making jumps and bumping into things. This will be

more fun if there are shadows. For shadows, we need light. Let’s start our

code outline just below the START CODING line with an addSunlight() call:

addSunlight(scene);

Adding sunlight to a game is something of an art. Now that you’re a program-

mer, I’ll let you in on a secret: when programmers say that something is more

art than science, we really mean we’re just guessing. In other words, we try

some numbers and play with them until we think they look right. The following

should end up looking right for us (but feel free to play with the numbers

yourself!):

function addSunlight(scene) {
var sunlight = new THREE.DirectionalLight();
sunlight.intensity = 0.5;
sunlight.castShadow = true;
sunlight.position.set(250, 250, 250);
sunlight.shadowCameraNear = 250;
sunlight.shadowCameraFar = 600;
sunlight.shadowCameraLeft = -200;
sunlight.shadowCameraRight = 200;
sunlight.shadowCameraTop = 200;
sunlight.shadowCameraBottom = -200;
sunlight.shadowMapWidth = 4096;
sunlight.shadowMapHeight = 4096;

scene.add(sunlight);
}

That looks like a lot of code for what might seem like simple light. Most of it

has to do with the art of 3D programming. In fact, only the first two lines are

really needed. They tell the light to be not too bright (intensity = 0.5) and to cast

shadows (castShadows = true).

So what are the rest of the lines for? Well, the remaining numbers help make

nice-looking shadows without forcing the computer to work too hard. You

can skip to the next section if you don’t need the details.

Adding a directional light to a scene is like adding the sun to the sky. The

position that we give a directional light in a scene describes the location of

the sun in the sky. Here it’s 250 to the right, 250 to the front, and 250 above

the center of the scene. So, when this directional light shines down, shadows

will be to the left, toward the back, and fall on the ground.

report erratum • discuss

Organizing Code • 187

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

We could have used 1 for each of the numbers and the effect would be the

same. The sun would still be shining down from the same direction in the

sky (to the right, the front, and up). We used 250 not so that the “sun” will be

far away, but rather because moving the position of the light far away moves

the light’s shadow box.

In addition to describing the location of the directional light in the sky, the

position of a directional light provides a starting point for the shadow box. It

would be too much work for a computer to try to draw shadows everywhere

in a scene. The shadow box is the area within a scene where shadows are

drawn. The box starts from the directional light’s position.

The remaining properties in the addSunlight() function describe the shadow box

for this game. The shadowCameraNear property specifies how far away from the

light we want shadows to appear. In this case, we don’t need shadows until

the light is 200 away from the camera. By setting shadowCameraFar to 600, we’re

telling the camera that it can stop drawing shadows after a distance of 600.
The thickness of the box is then 400, which helps the computer do less work

making shadows so that it can spend more time on more-important tasks.

The shadowCameraLeft, shadowCameraRight, shadowCameraTop, and shadowCameraBottom
properties describe how wide and long the shadow box should be. All of these

were chosen by experimentation. Feel free to come back to play with them

yourself after you’ve finished coding the game.

The last two numbers, shadowMapWidth and shadowMapHeight, describe how much

detail we want in the shadows. Larger numbers mean more details (and more

work for the computer, so don’t make them too big). The normal value of 512,
which would have been used if we didn’t set these properties at all, is too low

for our purposes. The shadows would have been too hard to see. The values

of 4096 were found through art, or just random experimentation.

With light added to our river-rafting game, let’s add another important thing:

the scoreboard to track our scores.

Keeping Score

We’ll use a similar scoreboard to those in Project: The Purple Fruit Monster

Game and Project: Cave Puzzle. We start by adding a second line to the code

outline:

addSunlight(scene);
var scoreboard = addScoreboard();

Then add the following function definition below the addSunlight() function:

Chapter 20. Project: River Rafting • 188

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function addScoreboard() {
var scoreboard = new Scoreboard();
scoreboard.score(0);
scoreboard.timer();
scoreboard.help(

'left / right arrow keys to turn. ' +
'space bar to move forward.'

);

return scoreboard;
}

We’ve seen this Scoreboard code before. We construct a new scoreboard object

with a timer, include some help text, and start the score at zero.

We should keep our code outline in mind as we do this. We now have an

outline with addSunlight() followed by addScoreboard(). Below the code outline, we

added the addSunlight() function, followed by the addScoreboard() function. We’ll

keep adding to the outline and the function definitions like this so things stay

easy to find.

With these two functions out of the way, we’re ready to jump into some seri-

ously cool 3D-programming coding next.

20.3 Warping Shapes to Make Unique Things

So far in this book we’ve managed to build interesting games by combining

basic shapes. Often that’s enough to make unique and challenging games.

But sometimes we need to push 3D programming just a bit further to build

truly interesting shapes and landscapes. We’ll do that for the river in this

game.

We’ll build our river out of just two pieces: land and water. Our land will be

a flat plane. Our water will also be a flat plane that lies just a little bit beneath

land. To make the river, we’ll pull pieces of land below the water. This is a

very powerful technique in 3D animation made even more powerful thanks

to the laws of physics. Let’s get started.

Add the addRiver() function to the bottom of our code outline so that the outline

now looks like this:

addSunlight(scene);
var scoreboard = addScoreboard();
var river = addRiver(scene);

Inside the addRiver() function (that we’re coding below the addScoreboard() func-

tion), we’ll add another code outline. This code outline will describe how to

build the river:

report erratum • discuss

Warping Shapes to Make Unique Things • 189

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function addRiver(scene) {
var ground = makeGround(500);
addWater(ground, 500);
addLid(ground, 500);
scene.add(ground);

return ground;
}

Our code is now calling three functions that don’t exist because we haven’t

written them yet. This will generate errors in the JavaScript console and, even

more important, break our code in such a way that nothing shows up on the

ICE Code Editor screen. To prevent this, add the following skeleton functions:

function makeGround(size) {
}
function addWater(ground, size) {
}
function addLid(ground, size) {
}

These functions won’t do anything when they’re called, but since they’re

defined there are no more errors and our code will run again.

Each of these functions will add flat planes to our game world. The only

complicated one will be the ground since we need to pull parts of it down to

expose the river water. The lid drawn with the last function will be an invisible

barrier over the ground so that our raft won’t jump out of the river.

Let’s get started with the makeGround() function:

function makeGround(size) {
var faces = 100;
var shape = new THREE.PlaneGeometry(size, size, faces, faces);
var cover = Physijs.createMaterial(

new THREE.MeshPhongMaterial({
emissive: new THREE.Color(0x339933), // a little green
specular: new THREE.Color(0x333333) // dark gray / not shiny

}),
1, // high friction (hard to move across)
0.1 // not very bouncy

);
var ground = new Physijs.HeightfieldMesh(

shape, cover, 0
);
ground.rotation.set(-Math.PI/2, 0.2, Math.PI/2);
ground.receiveShadow = true;
ground.castShadow = true;
return ground;

}

Chapter 20. Project: River Rafting • 190

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

This will produce a flat, green plane. (As always, you don’t need to type in the

comments that are in the code, though later they may help you figure out

what’s going on.)

At first glance, this looks a lot like the meshes that we’ve been building since

Chapter 1, Project: Creating Simple Shapes, on page 1. After looking a little

closer, however, you’ll notice some differences.

First off, we built a flat plane with 100 faces (squares). We want a lot of faces

so that pulling down a corner of one of the faces doesn’t pull down the entire

plane—just a tiny part of it. Most of the other code in the function is stuff

we’ve seen already—creating a physical material with Physijs.createMaterial() and

telling the mesh that it can both cast and receive shadows.

New in this code block is something called a height field mesh. This lets the

physics engine work with shapes that are warped (we’ll get to that in a second).

Also different in here is that we have to rotate this mesh in three directions.

Actually, the two 90° (Math.PI/2) turns are not very surprising—they make the

ground lay flat instead of standing up. The slight turn by 0.2 is a clever trick

to make it seem like the river is pushing the raft. Just like a ball will roll down

a hill, so will our raft. The game players don’t need to know that it’s a hill

making our raft move—they can believe that it’s the river.

Of course, we still don’t have a river, let alone a raft to float down it. Let’s fix

that now. We need to add two lines to makeGround() to dig the river. The first

line calls a function to do the actual digging, and the other adds to the ground

mesh the list of points in the river. We now add the following line just below

the line that makes the ground shape:

var river_points = digRiver(shape, faces + 1);

report erratum • discuss

Warping Shapes to Make Unique Things • 191

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Then we add the following points after the ground’s shadow properties:

ground.river_points = river_points;

The entire makeGround() function should now look like this:

function makeGround(size) {
var faces = 100;
var shape = new THREE.PlaneGeometry(size, size, faces, faces);
var river_points = digRiver(shape, faces + 1);

var cover = Physijs.createMaterial(
new THREE.MeshPhongMaterial({
emissive: new THREE.Color(0x339933), // a little green
specular: new THREE.Color(0x333333) // dark gray / not shiny

}),
1, // high friction (hard to move across)
0.1 // not very bouncy

);

var ground = new Physijs.HeightfieldMesh(
shape, cover, 0

);
ground.rotation.set(-Math.PI/2, 0.2, -Math.PI/2);
ground.receiveShadow = true;
ground.castShadow = true;
ground.river_points = river_points;

return ground;
}

Can you see what the problem is? That’s right—this will break our code

because we haven’t defined the digRiver() function. We’ll do that next.

Pulling Corners

We dig our river by typing in the following code after the makeGround() function:

function digRiver(shape, size) {
var center_points = [];
for (var row=0; row<size; row++) {

var center = Math.sin(4*Math.PI*row/size);
center = center * 0.1 * size;
center = Math.floor(center + size/2);
center = row*size + center;

for (var distance=0; distance<12; distance++) {
shape.vertices[center + distance].z = -5 * (12 - distance);
shape.vertices[center - distance].z = -5 * (12 - distance);

}

center_points.push(shape.vertices[center]);

Chapter 20. Project: River Rafting • 192

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

}
shape.computeFaceNormals();
shape.computeVertexNormals();
return center_points;

}

The main purpose of this function is to find the center of the river so that it,

and surrounding points, can be pulled down. We pull down a shape’s vertices

by setting the z property to a negative number.

In the preceding function we worked through the entire plane, one row at a

time. The first for loop sets the row variable to zero, then figures out where the

center of the river should be for that row. From Chapter 6, Project: Moving

Hands and Feet, on page 59, we already know that Math.sin() makes a nice

winding path, so we use it again here.

The four lines that compute and then recompute the center determine how

many curves there should be, how far the bends are from the center, where

this point is in the current row, and where that point falls in the entire list

of vertices. You should experiment with 4 in the first center line and 0.1 in the

second line. If you’ve already taken trigonometry in school, you know these

numbers represent the frequency and amplitude of the sine wave. Mostly, it’s

just fun to play with them.

We dig a trench in each row and then combine them to form the river. We

start from the center point for each and work our way out to ten vertices on

either side (plus and minus the distance). Last, we store the center vertex in

case we want to use it later as a way to put stuff on the river.

Once all of the rows have had some portion of them dug out, we have to

recompute normals. 3D renderers work hard to keep track of the direction in

which faces and their corners are pointing. This direction is called a normal

and it helps with lighting, shading, and shadows. We don’t have to worry

much about how normals work, but we do need to tell the renderer that we’ve

changed them by telling the shape to computeFaceNormals() and computeVertexNor-
mals().

With that, we have a trench for the river to flow through (see Figure 9, The

River Trench, on page 194).

Next we add the actual river.

Tricking the Eye

Adding the river water and the lid to keep the raft inside the river is pretty

easy for us. We need two planes—one for the water, which will be blue, and

report erratum • discuss

Warping Shapes to Make Unique Things • 193

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 9—The River Trench

one for the lid, which will be invisible. We already have empty addWater() and

addLid() functions that just need to be defined. We add the following lines to

draw the water:

function addWater(ground, size) {
var water = new Physijs.ConvexMesh(

new THREE.CubeGeometry(1.4*size, 1.4*size, 10),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color: 0x0000bb}),
0, // No friction (slippery as ice)
0.01 // Not very bouncy at all

),
0 // Never move

);
water.position.z = -20;
water.receiveShadow = true;
ground.add(water);

}

We’re familiar with everything in there, though a couple of things are worth

mentioning. We use a cube rather than a plane to make it hard to accidentally

fall through the water. Physics engines are cool, but they are not perfect.

Giving the water a little thickness makes it less likely that kind of mistake

will happen.

The water is 1.4 times bigger than the ground so that the raft won’t fall off

the world when it reaches the finish line. The last thing to note is that we’re

changing the Z position instead of the usual Y to move up and down. We do

this because the ground was rotated when we added it to the scene.

Chapter 20. Project: River Rafting • 194

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

With that, we have a cool-looking river winding its way through the land:

Finally, we define the lid function as the following:

function addLid(ground, size) {
var lid = new Physijs.ConvexMesh(

new THREE.CubeGeometry(size, size, 1),
new THREE.MeshBasicMaterial({visible:false})

);
ground.add(lid);

}

This invisible lid is an easy addition to keep our raft from jumping the river

banks. Speaking of the raft, we’ll add that next.

20.4 Build a Raft for Racing

A donut shape will work very nicely as a river raft. Add the addRaft() call to the

code outline at the top:

addSunlight(scene);
var scoreboard = addScoreboard();
var river = addRiver(scene);
var raft = addRaft(scene);

Now, after the last of the river code, which should be addLid(), we start addRaft()
like this:

function addRaft(scene) {
var mesh = new Physijs.ConvexMesh(

new THREE.TorusGeometry(2, 0.5, 8, 20),
Physijs.createMaterial(
new THREE.MeshPhongMaterial({

emissive: 0xcc2222,
specular: 0xeeeeee

report erratum • discuss

Build a Raft for Racing • 195

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

}),
0.1,
0.01

)
);
mesh.rotation.x = -Math.PI/2;
mesh.castShadow = true;

scene.add(mesh);
mesh.setAngularFactor(new THREE.Vector3(0, 0, 0));

var rudder = new THREE.Mesh(
new THREE.SphereGeometry(0.5),
new THREE.MeshBasicMaterial({color: 0x000099})

);
rudder.position.set(3, 0, 0);
mesh.add(rudder);

return mesh;
}

We know this code by now. We build the raft using two shapes: a torus and

a sphere. The sphere is a tiny dot that we add to the front of the raft so we

know which direction the raft is pointing.

The raft has been added to the scene at this point, but is not at the start of

the river. We’ll change that in the next part of our code.

Resetting the Game

So far in our code outline, we have three variables that hold the scoreboard, the

river, and the raft. All three have already been added to the scene, so there’s

not much left to do with them—except make each one ready for the beginning

of the game.

Starting a game is not always exactly the same as resetting a game, but in

this case it is. So let’s add another function, startGame(), to the code outline:

addSunlight(scene);
var scoreboard = addScoreboard();
var river = addRiver(scene);
var raft = addRaft(scene);
startGame(raft, river, scoreboard);

Below addRaft(), let’s add the following:

function startGame(raft, river, scoreboard) {
var start = river.river_points[100];
raft.__dirtyPosition = true;

Chapter 20. Project: River Rafting • 196

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

raft.position.set(start.y, start.z + 100, 0);
raft.setLinearVelocity(new THREE.Vector3());
scoreboard.resetTimer();
scoreboard.score(0);
updateCamera();
camera.lookAt(new THREE.Vector3(start.y, 0, 0));

}

Don’t forget that __dirtyPosition starts with two underscore characters!

The code in this function has to work for both starting the game and restarting

the game. The setLinearVelocity() call sets the speed of the raft to zero every time

it’s called. Without that, a player restarting the game midway through a race

would restart at the starting line already at full speed.

Aside from placing the raft at the starting line and resetting the scoreboard,

this code repositions the camera by first moving it, then telling it to look at

the starting line. updateCamera() moves the camera; it’s a new function that we

need to add to our code just below the startGame() function:

function updateCamera() {
camera.position.set(

raft.position.x + 75,
raft.position.y + 40,
raft.position.z

);
}

We make updateCamera() a separate function so that animate() can call it every

time the scene gets updated. We add a call to updateCamera() just above the line

with renderer.render() in animate(), as shown here:

function animate() {
requestAnimationFrame(animate);

updateCamera();
renderer.render(scene, camera);

}
animate();

This ensures the camera will be in front of the raft every time the scene is

rendered.

At this point you should have a raft moving down the river, with the camera

watching it the whole way. Of course, this is pretty useless without controls.

The following keyboard listener and two functions give the game some basic

controls. Add them at the very bottom of your code (before the final </script>
tag).

report erratum • discuss

Build a Raft for Racing • 197

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

document.addEventListener("keydown", function(event) {
var code = event.keyCode;
if (code == 32) pushRaft(); // space
if (code == 37) rotateRaft(-1); // left
if (code == 39) rotateRaft(1); // right
if (code == 82) startGame(raft, river, scoreboard); // R

});

function pushRaft() {
var angle = raft.rotation.z;

raft.applyCentralForce(
new THREE.Vector3(
500 * Math.cos(angle),
0,
-500 * Math.sin(angle)

)
);

}

function rotateRaft(direction) {
raft.__dirtyRotation = true;
raft.rotation.z = raft.rotation.z + direction * Math.PI/10;

}

We’ve seen keyboard listeners a lot by this point, so document.addEventListener()
should already be familiar. The pushRaft() function uses a new method for

physics objects: applyCentralForce(). This is just a fancy way of saying “push a

thing from the middle and not the edge.” Lastly, the rotation, including

__dirtyRotation, should be familiar—we last saw it in Chapter 18, Project: Cave

Puzzle, on page 165.

With that, we have the basic pieces of a pretty cool game! The left and right

arrow keys will turn the raft and the space bar will push the raft forward in

the direction it’s facing.

We can do a lot more with this game. We’ll add simple scoring and an obstacle

or two in the river.

20.5 Setting the Finish Line

Eventually the raft reaches the finish line. And then it keeps right on going.

And going. Instead, let’s pause the game so that players can take a moment

to admire their score before trying again. We need to make changes in four

places: in our code outline and in startGame(), animate(), and gameStep().

Let’s start with the code outline. Before the call to the startGame() function, we

need to add a line for the paused variable:

Chapter 20. Project: River Rafting • 198

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var paused;
startGame(raft, river, scoreboard);

Other functions will use that variable to decide if they need to animate or

update the game. JavaScript is pretty uptight about when variables are

declared. The rule of thumb is that variables need to be declared before they’re

used. The paused variable will be used when startGame(), animate(), and gameStep()
are called, so we declare it before any of them are called.

We set paused for the first time in the startGame() function. Whenever the game

is started, which is what startGame() does, the game shouldn’t be paused. So

we set paused to false at the bottom of startGame():

function startGame(raft, river, scoreboard) {
var start = river.river_points[100];
raft.__dirtyPosition = true;
raft.position.set(start.y, start.z + 100, 0);
raft.setLinearVelocity(new THREE.Vector3());

scoreboard.resetTimer();
scoreboard.score(0);
scoreboard.message('');

updateCamera();
camera.lookAt(new THREE.Vector3(start.y, 0, 0));
paused = false;

}

Next we tell the animate() function that it doesn’t have to render the scene when

the game is paused. That is, if paused is set to true, then we exit the animate()
function before updating the camera or rendering the scene:

function animate() {
requestAnimationFrame(animate);
if (paused) return;

updateCamera();
renderer.render(scene, camera);

}

We check for paused after calling requestAnimationFrame() so the animation function

will continue to work—even though it’s not doing anything. This way when

the game is reset and paused is set to true, the animation is still running and

the computer can update the camera without any extra work.

We do something similar in the gameStep() function. If the game is paused,

then we exit immediately from the function without completing any of the

usual steps:

report erratum • discuss

Setting the Finish Line • 199

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function gameStep() {
// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

if (paused) return;
checkForGameOver();
scene.simulate();

}

Note that we’ve changed the order of the function calls in gameStep() to work

with pausing. The scene.simulate() and checkForGameOver() calls both come after

the if (paused) statement—there’s no sense in simulating physics or checking

if the game is over when the game is paused.

The checkForGameOver() function is new. It can go right after the gameStep()
function and should look like this:

function checkForGameOver() {
if (raft.position.x < 250) return;
paused = true;
scoreboard.stopTimer();
scoreboard.message("You made it!");

}

If the raft’s X position has not reached the finish line, or when X is 250, then

this function does nothing—it returns immediately and nothing else happens.

If the raft has reached the finish line, then we set paused to true so that all the

other functions can stop working. We also stop the scoreboard timer and add

a message to display.

The game should pause at the end of the river and display the time it took

the player to complete the race, and a message of “You made it!” You might

even be able to make it pretty fast:

Scoring Points by Distance

In some games, a player receives points simply for making it further away

from the starting point. Keeping score is something that belongs in the

gameStep() method because it’s game logic, rather than animation, which would

belong in the animate() function.

Chapter 20. Project: River Rafting • 200

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

If you want to increase the score as the raft makes its way along the river,

we can add a call to the updateScore() function in gameStep():

function gameStep() {
// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

if (paused) return;

updateScore();
checkForGameOver();
scene.simulate();

}

Due to the way we have the river scene rotated, the raft’s X position changes

as it moves down the river. To increase the score as the raft reaches the next

25 units of distance, we can use the following (the code goes below the

gameStep() function):

var next_x;
function updateScore() {

if (!next_x) next_x = raft.position.x + 25;
if (raft.position.x > next_x) {

scoreboard.addPoints(10);
next_x = next_x + 25;

}
}

Each time the raft reaches the next X scoring point, this function adds ten

points to the score and recalculates the next X scoring area to be 25 units

further away.

Another distance-based scoring feature we can add is a time bonus for finish-

ing the rafting course within a certain amount of time. We do this by adding

the last three lines shown here to the checkForGameOver() function:

function checkForGameOver() {
if (raft.position.x < 250) return;

paused = true;
scoreboard.stopTimer();
scoreboard.message("You made it!");
if (scoreboard.getTime() < 30) scoreboard.addPoints(100);
if (scoreboard.getTime() < 25) scoreboard.addPoints(200);
if (scoreboard.getTime() < 20) scoreboard.addPoints(500);

}

If the player finishes in less than 30 seconds, an additional 100 points are

awarded. If the player finishes in less than 25 seconds, then both the 100

report erratum • discuss

Setting the Finish Line • 201

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

points and 200 more are awarded. If the player finishes in less than 20 sec-

onds, then the 100 and the 200 points are awarded, along with an additional

500 points, for a possible total of 800 extra points to be won. Can you do it?

Power-Up Points

Many games reward a player for capturing bonus items. If we want to do that

in our raft game, we have to do two things: add those items to the river and

add to the player’s score when the raft bumps into those objects.

We’ll want to add items to the game whenever it gets reset, so much of our

work needs to take place in and after the startGame() function. But first, we

need to declare a variable to hold the list of items in the game. Add it before

the paused variable and the first call to startGame() in the code outline:

var game_items = [];
var paused;
startGame(raft, river, scoreboard);

Then, in the definition of startGame(), add a call to resetItems():

function startGame(raft, river, scoreboard) {
var start = river.river_points[100];
raft.__dirtyPosition = true;
raft.position.set(start.y, start.z + 100, 0);
raft.setLinearVelocity(new THREE.Vector3());
scoreboard.resetTimer();
scoreboard.score(0);
scoreboard.clearMessage();
updateCamera();
camera.lookAt(new THREE.Vector3(start.y, 0, 0));
resetItems(river, scoreboard);
paused = false;

}

Since the call to resetItems() comes after the camera changes, the definition of

the resetItems() function should come after camera functions like updateCamera().
The definition of this function is simple enough. It calls two other func-

tions—one to remove all existing items from the screen and the other to add

new items to the screen:

function resetItems(ground, scoreboard) {
removeItems();
addItems(ground, scoreboard);

}

Removing items from the game is a simple matter of removing each one from

the scene. Once each item has been removed from the scene, we can set the

list of game items to an empty list:

Chapter 20. Project: River Rafting • 202

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function removeItems() {
game_items.forEach(function(item) {

scene.remove(item);
});
game_items = [];

}

Adding items to the river is where things start to get interesting. The ground

still has the river_points property. We’ll use that list of points to randomly place

power-up fruit at a couple of places along the river. Randomly placing the fruit

will make each new game a different challenge for players.

Only we don’t want to be quite random about it. If it were completely random,

we might end up with two pieces of fruit in the same place or one right at the

start.

Recall that there are 100 faces in the ground and 100 points in the ground

that we are using to describe the middle of the river. Lets randomly place a

power-up fruit around river point 20 and another around point 70. The fol-

lowing will do what we need:

function addItems(ground, scoreboard) {
var points = ground.river_points;

var random20 = Math.floor(20 + 10*Math.random()),
fruit20 = addFruitPowerUp(points[random20], ground, scoreboard);

game_items.push(fruit20);

var random70 = Math.floor(70 + 10*Math.random()),
fruit70 = addFruitPowerUp(points[random70], ground, scoreboard);

game_items.push(fruit70);
}

The main purpose of this code block is to call the addFruitPowerUp() function that

we’ll build shortly. The fruit20 and fruit70 items are then pushed onto the list

of all game items (so that they can later be removed as needed).

The random20 and random70 numbers might look a little complicated at first,

but if you look closely, they ought to make some sense. Let’s look at just ran-
dom20 to better understand. The Math.random() function generates a number

between 0 and 1.

• If Math.random() is 0, then 10*Math.random() is 0, making 20 + 10*Math.random()
end up as 20.

• If Math.random() is 0.5, then 10*Math.random() is 5, making 20 + 10*Math.random()
end up as 25.

report erratum • discuss

Setting the Finish Line • 203

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

• If Math.random() is 1, then 10*Math.random() is 10, making 20 + 10*Math.random()
end up as 30.

In other words, since Math.random() is guaranteed to be between 0 and 1, we’re

guaranteed of getting a number between 20 and 30.

The random numbers are wrapped in a Math.floor() function call. Math.floor()
removes everything after the decimal point. If Math.random() returns 0.01, then

10*Math.random() would wind up as 0.1. Math.floor() removes the decimal point and

everything after it, leaving us with 0.

The random number fetches a point from the river_points property to send to

addFruitPowerUp(). That function mostly does stuff that we’ve seen before—it

builds a physical mesh, assigns a collision event listener, and adds the yellow

fruit to the scene:

function addFruitPowerUp(location, ground, scoreboard) {
var mesh = new Physijs.ConvexMesh(

new THREE.SphereGeometry(10, 25),
new THREE.MeshPhongMaterial({emissive: 0xbbcc00}),
0

);
mesh.receiveShadow = true;
mesh.castShadow = true;

mesh.addEventListener('collision', function() {
var list_index = game_items.indexOf(mesh);
game_items.splice(list_index, 1);
scene.remove(mesh);
scoreboard.addPoints(200);
scoreboard.message('Yum!');
setTimeout(function() {scoreboard.clearMessage();}, 2.5* 1000);

});

ground.updateMatrixWorld();
var p = new THREE.Vector3(location.x, location.y, -20);
ground.localToWorld(p);
mesh.position.copy(p);
scene.add(mesh);
return mesh;

}

The first thing we do in the collision-handling function is remove the fruit

from the list of game items. JavaScript doesn’t make this easy—we get the

index (the location in the list) of the item to be removed, then remove it by

splicing from that index to the one following it. There is a famous JavaScript

book named JavaScript: The Good Parts—removing things from lists is defi-

nitely not in that book (which you should read).

Chapter 20. Project: River Rafting • 204

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Also new to us is converting from local coordinates to world coordinates with

the localToWorld() method. For most of this book we have found it very useful

to work in a frame of reference—it’s an invaluable trick for 3D programmers.

Every now and then we have to put things back in the regular scene coordi-

nates. This is one of those times. The localToWorld() method gives us the scene

coordinates for the random river points so that when the fruit is added to the

scene, it looks as though it was added to the river.

Before a localToWorld() call, it’s a good idea to call updateMatrixWorld() on the thing

whose world coordinates we need. A matrix is a mathematical way to describe

position, direction, and other values in 3D. The updateMatrixWorld() call ensures

that these values are all up-to-date and accurate.

With that, we have two pieces of fruit that can help you score points like crazy

while playing the game. You might even be able to beat my high score:

20.6 The Code So Far

If you would like to double-check the code in this chapter, turn to Section

A1.20, Code: River Rafting, on page 265.

20.7 What’s Next

That was a lot of code. But it was worth it. We put many of our skills to use

with physics, lights, and materials. We also saw glimpses of what else is

possible in 3D programming by pulling vertices of shapes and converting local

coordinates to “world” coordinates.

Like our other games, do not consider this one final. There’s still plenty that

you can add. Maybe you can incorporate obstacles that take away points?

Add some jumps? Make this a multilevel game as we did in Chapter 19, Project:

Multilevel Game, on page 177? Make the course longer? You might try adding

camera controls so you can see from the viewpoint of a raft passenger instead

of viewing everything from above. Or maybe you already have ideas for how

to improve this game that I can’t even begin to think of.

In our final chapter we’ll switch gears to putting our projects out on the Web.

report erratum • discuss

The Code So Far • 205

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

CHAPTER 21

Getting Code on the Web

Since we’re programming a web language, it’s worth a quick look at how the

Web works. We’re not going into too much detail here—just enough for us to

understand why we do some of the things that we do in this book.

An Abstraction Is Worth a Thousand Words

You may have heard the phrase “a picture is worth a thousand

words.” Programmers like you and me do a lot of work in our brains.

When we’re thinking about a problem or trying to come up with a

cool new way of doing something, we use mental pictures of the

problem. These pictures in our brains are called abstractions.

Abstractions don’t always have a ton of detail. They usually have

just enough to help us understand the problem. An abstraction for

a cloud might be that it’s made up of a whole bunch of cotton balls.

That’s enough of a mental picture to understand the shape and

appearance of a cloud, and sometimes that is all we need.

But abstractions don’t always suffice. If we try to understand why

a cloud produces rain, the idea that clouds are made of cotton balls

won’t help at all.

Keep this in mind as we talk about the Web. We’re using abstrac-

tions, and they will help most of the time. But sometimes they will

be wet cotton balls.

When you’re done with this chapter, you will

• Have a better idea of the parts that make

up a website

• Understand what we need to build our own

websites

• Know how to put a project on a site like

Tumblr

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

21.1 The Mighty, Mighty Browser

Behold the mighty browser:

A web browser is an extraordinarily complex piece of technology that we use

every day. Amazingly, it’s also pretty dumb about some things.

When we tell a browser that we want a website or a page on a website, it

sends a request through the Internet to a publicly available machine:

As you can see, when you ask your browser to show a site, your browser

makes a request through the Internet. This request asks one particular web

server for information that it has. That information might be an HTML web

page, it might be an image, it might be a movie, and it might be JavaScript.

To reach the right server, our browser has to look up the public Internet

address of the web server. Google’s Internet address for www.google.com is

173.194.73.147. The numbers in the address are enough for the Internet to get

the browser’s request to the web server.

Chapter 21. Getting Code on the Web • 208

report erratum • discuss

http://www.google.com
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Web Servers Must Be Publicly Available on the Internet

Remember that the machine holding a website must be publicly

available on the Internet. The machines that you use at home are

almost never publicly available. Even if someone else on the Internet

knows your machine’s network address, they would still not be

able to reach it because it’s not publicly available.

Unfortunately, this means you usually need to pay a little money

to get your cool web games available on the Internet. You need to

pay a web hosting company to host your games.

When the browser’s request reaches the web server, the server checks to see

if it has the requested item. Web servers can have all sorts of information

stored on them:

Usually the first request that a browser sends to a server is for an HTML web

page:

If the server has the web page the user is looking for, then it sends it back to

the browser:

report erratum • discuss

The Mighty, Mighty Browser • 209

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

This is the kind of dumb part. The web page is usually pretty small and

uninteresting. Web pages often look pretty and do lots of amazing things, but

by themselves they don’t look pretty. A web page by itself can’t do lots of

amazing things. For anything fun to happen, the web page needs to tell the

browser to make lots and lots of other requests.

We saw HTML web pages in Chapter 9, What's All That Other Code?, on page

85. They have funny angle brackets that are the markup important to

browsers:

<body>
<h1>Hello!</h1>
<p>

You can make bold words,
<i>italic</i> words,
even <u>underlined</u> words.

</p>
<p>

You can link to
other pages.
You can also add images from web servers:

</p>
</body>

Chapter 21. Getting Code on the Web • 210

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Some markup has things like JavaScript files or images or styles that make

cool stuff happen. And so, as soon as the browser gets the web page that it

asked for, it has to ask for tons and tons more things:

And here is the really dumb part about all of this: the browser usually has

to wait until most or all of these things come back before it does anything

important.

There are two ways to wait for things to be ready before doing important work.

The first is what we’ve been doing—putting the most important stuff last in

the HTML document:

<body></body>
<script>

// This is where we have been coding - after the <body> tags
</script>

In this case, we have the <script> tag at the very bottom of the document,

meaning that browser will display the web-page stuff (text, images, style

information, etc.) before it runs our code. Hopefully everything else will be

ready by the time the browser runs that code.

The other way to deal with this situation is to use a browser trick known as

on-dom-ready. DOM stands for Document Object Model. When browsers think

about web pages, they use the DOM. Browsers also let web programmers use

report erratum • discuss

The Mighty, Mighty Browser • 211

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

the DOM to make changes to web pages (change colors, show pop-up boxes).

When the browser has read a web page and converted it into the DOM, the

DOM is said to be “ready.” With on-dom-ready, we listen to the document:

// Wait until the web page is fully loaded
document.addEventListener("DOMContentLoaded", function() {

document.body.appendChild(renderer.domElement);
});

This trick goes in the JavaScript, not the web page, and takes advantage of

an important aspect of web pages: they like to shout about things that happen.

A lot of the time, no one and nothing is listening when the browser shouts.

But knowing that a browser does this gives us power.

In this case, we have the power to listen to one particular browser event:

DOMContentLoaded. When the browser loads all of the content a page needs, the

browser shouts to anybody who is interested. Here we tell that browser that

yes, we’re interested, and that when such an event happens, we should add

our 3D renderer to the page.

21.2 Free Websites

Earlier we noted that only publicly available web servers can serve up web

pages, images, JavaScript, and so on. Normally this will cost you some money.

But there are ways to get your web pages and JavaScript games publicly

available for free:

• Tumblr1

• Blogger2

• WordPress3

When You Might Need to Pay

We just talked about ways to get a public site without paying. Why

would you ever need to pay?

The answer is that you need to pay when your website needs to

store new information. If a website needs to keep track of users,

then you need to pay to have space to save that information. If a

website needs to remember players’ scores, then you’ll need to pay

for a place to keep that information.

1. http://tumblr.com
2. http://blogger.com
3. http://www.wordpress.com

Chapter 21. Getting Code on the Web • 212

report erratum • discuss

http://tumblr.com
http://blogger.com
http://www.wordpress.com
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Most free websites have their own way to create web pages, script files and

images. To get an idea of how to copy some of our projects into a real website,

we’ll take a look at putting one of our 3D animations on Tumblr.

21.3 Putting Your Code on Another Site

This section assumes that you already have a Tumblr account (or an account

on a similar service). The instructions should work for most sites, but all

posting services have their own quirks that you may have to debug on your

own. Also note that the Tumblr controls may change over time and may not

look or work exactly as shown here.

Posting our code to Tumblr is pretty easy. Start a post like normal, but be

sure to click the <html> button in the post’s toolbar:

The <html> button should be blue when enabled (but it might be a different

color, depending on your Tumblr theme).

Next add some HTML and a place for your simulation to go. The following

creates a short paragraph, followed by a spot for your 3D game, followed by

another short paragraph:

<p>I made this!</p>
<div id="ice-code-2013-06-06">
<p>It's in the first chapter of
3D Game Programming for Kids.
</p>

It’s important that the id= attribute for the <div> be unique—that there are

no other tags with the same id= anywhere on the page. A good tagging scheme

to use is a combination of the purpose (ice-editor) and today’s date (2013-06-06,
for example). You can change the words inside the <p> tags to be whatever

you like.

Next, copy your code from ICE and paste it into the Tumblr post. When

copying code from ICE, be sure to skip the first line that contains <body></body>.

Only copy from the first <script> tag to the end.

Paste this into the Tumblr post below the HTML that we added earlier. (See

Figure 10, The Tumblr Post, on page 214.)

We’re not quite done. The code we’ve been writing in this book takes up the entire

browser window. In these posts, we want to take up only a small portion of the

post. We also want to attach our animations to the <div> that we added earlier.

report erratum • discuss

Putting Your Code on Another Site • 213

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Figure 10—The Tumblr Post

To get the size correct, adjust the aspect_ratio and renderer size. To make the

renderer 400 wide and 300 tall, you would use this:

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(400, 300);

The aspect ratio would then be as follows:

// This is what sees the stuff:
var aspect_ratio = 400/300;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);

You math whizzes will know that you could also write 4/3 for the aspect ratio

there. You do not have to use these numbers—experiment and use what

works best on the page.

Chapter 21. Getting Code on the Web • 214

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Last, attach the animation to the <div> tag. Find the line that adds the render-
er.domElement (it should look like document.body.appendChild(renderer.domElement)).
Change it so that the renderer’s domElement is added to the <div> tag:

document.getElementById('ice-code-2013-06-06').appendChild(renderer.domElement);

Be sure to change the value in the getElementById() method call to whatever you

used for the id= of the <div> tag earlier.

With that, you should be able to publish your post and see your handiwork:

Be sure to share your work on the book forums: http://pragprog.com/book/csjava/3d-
game-programming-for-kids?tab=tab-forums!

21.4 What’s Next

You’re on your own now! I’ve taught you all I can, which means it’s time for

you to let your creativity loose. None of the games in this book are meant to

be finished products. Each and every game can be made better, but only if

you add code and enhance gameplay. You’ve learned a ton just by making it

to the end of the book. And now is when things get interesting—when you

find out what you can do by yourself. That’s the most exciting adventure I

can imagine for you.

Good luck! And if you need some help, don’t forget to ask in the book forums!

I look forward to hearing what you’re working on.

report erratum • discuss

What’s Next • 215

http://pragprog.com/book/csjava/3d-game-programming-for-kids?tab=tab-forums
http://pragprog.com/book/csjava/3d-game-programming-for-kids?tab=tab-forums
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

APPENDIX 1

Project Code

This appendix contains completed versions of all of the projects created in

this book. Your code may not be exactly the same as the code that follows

—that’s OK. The code is included in case you run into problems and want to

be able to compare your code to a working version.

A1.1 Code: Creating Simple Shapes

This is the final version of the shapes code from Chapter 1, Project: Creating

Simple Shapes, on page 1.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 400;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshNormalMaterial();
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);
ball.position.set(-250,250,-250);

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shape = new THREE.CubeGeometry(300, 100, 20);
var cover = new THREE.MeshNormalMaterial();
var box = new THREE.Mesh(shape, cover);
scene.add(box);
box.position.set(250, 250, -250);

var shape = new THREE.CylinderGeometry(110, 100, 100);
var cover = new THREE.MeshNormalMaterial();
var tube = new THREE.Mesh(shape, cover);
scene.add(tube);
tube.position.set(250, -250, -250);

var shape = new THREE.PlaneGeometry(300, 100);
var cover = new THREE.MeshNormalMaterial();
var ground = new THREE.Mesh(shape, cover);
scene.add(ground);
ground.position.set(-250, -250, -250);

var shape = new THREE.TorusGeometry(100, 25, 8, 25);
var cover = new THREE.MeshNormalMaterial();
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);

var clock = new THREE.Clock();

function animate() {
requestAnimationFrame(animate);
var t = clock.getElapsedTime();

ball.rotation.set(t, 2*t, 0);
box.rotation.set(t, 2*t, 0);
tube.rotation.set(t, 2*t, 0);
ground.rotation.set(t, 2*t, 0);
donut.rotation.set(t, 2*t, 0);

renderer.render(scene, camera);
}

animate();

// Now, show what the camera sees on the screen:
renderer.render(scene, camera);

</script>

A1.2 Code: Playing with the Console and Finding What’s Broken

There was no working code from Chapter 2, Playing with the Console and

Finding What’s Broken, on page 17. We wrote some broken code in ICE and

explored the JavaScript console.

Appendix 1. Project Code • 218

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

A1.3 Code: Making an Avatar

This is the final version of the avatar code from Chapter 3, Project: Making

an Avatar, on page 25.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
scene.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

report erratum • discuss

Code: Making an Avatar • 219

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// Now, animate what the camera sees on the screen:
var is_cartwheeling = false;
var is_flipping = true;
function animate() {

requestAnimationFrame(animate);
if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
renderer.render(scene, camera);

}
animate();

</script>

A1.4 Code: Moving Avatars

This is the moving-avatar code from Chapter 4, Project: Moving Avatars, on

page 35.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
//scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var marker = new THREE.Object3D();
scene.add(marker);

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
marker.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);

Appendix 1. Project Code • 220

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

marker.add(camera);

// Trees
makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(
new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

trunk.position.set(x, -75, z);
scene.add(trunk);

}

// Now, animate what the camera sees on the screen:
var is_cartwheeling = false;
var is_flipping = false;
function animate() {

requestAnimationFrame(animate);
if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}

report erratum • discuss

Code: Moving Avatars • 221

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
renderer.render(scene, camera);

}
animate();

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 37) marker.position.x = marker.position.x-5; // left
if (code == 38) marker.position.z = marker.position.z-5; // up
if (code == 39) marker.position.x = marker.position.x+5; // right
if (code == 40) marker.position.z = marker.position.z+5; // down

if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});
</script>

A1.5 Code: Functions: Use and Use Again

We intentionally broke a lot of things as we explored functions in Chapter 5,

Functions: Use and Use Again, on page 49. A copy of the code that works

follows (note that it doesn’t include the recursion example).

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>
var log = makeLog();
logMessage(hello("President Obama"), log);
logMessage(hello("Mom"), log);
logMessage(hello("Purple Fruit Monster"), log);
logMessage(hello("Chris"), log);

/*
// Missing a curly brace - this won't work!
function hello(name) {

return 'Hello, ' + name + '! You look very pretty today :)';

*/

function hello(name) {
return 'Hello, ' + name + '! You look very pretty today :)';

}

function makeLog() {
var holder = document.createElement('div');
holder.style.height = '75px';
holder.style.width = '450px';

Appendix 1. Project Code • 222

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

holder.style.overflow = 'auto';
holder.style.border = '1px solid #666';
holder.style.backgroundColor = '#ccc';
holder.style.padding = '8px';
holder.style.position = 'absolute';
holder.style.bottom = '10px';
holder.style.right = '20px';
document.body.appendChild(holder);

return holder;
}

function logMessage(message, log) {
var holder = document.createElement('div');
holder.textContent = message;
log.appendChild(holder);

}
</script>

A1.6 Code: Moving Hands and Feet

This is the code from Chapter 6, Project: Moving Hands and Feet, on page 59.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
//scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var marker = new THREE.Object3D();
scene.add(marker);

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
marker.add(avatar);

var hand = new THREE.SphereGeometry(50);

report erratum • discuss

Code: Moving Hands and Feet • 223

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

marker.add(camera);

// Trees
makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(
new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

trunk.position.set(x, -75, z);
scene.add(trunk);

}

// Now, animate what the camera sees on the screen:
var clock = new THREE.Clock(true);
function animate() {

requestAnimationFrame(animate);
walk();
acrobatics();

Appendix 1. Project Code • 224

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

renderer.render(scene, camera);
}
animate();

function walk() {
if (!isWalking()) return;
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

var is_cartwheeling = false;
var is_flipping = false;
function acrobatics() {

if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
}

var is_moving_right, is_moving_left, is_moving_forward, is_moving_back;
function isWalking() {

if (is_moving_right) return true;
if (is_moving_left) return true;
if (is_moving_forward) return true;
if (is_moving_back) return true;
return false;

}

document.addEventListener('keydown', function(event) {
var code = event.keyCode;

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}
if (code == 38) { // up
marker.position.z = marker.position.z-5;
is_moving_forward = true;

}
if (code == 39) { // right
marker.position.x = marker.position.x+5;
is_moving_right = true;

}
if (code == 40) { // down
marker.position.z = marker.position.z+5;

report erratum • discuss

Code: Moving Hands and Feet • 225

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

is_moving_back = true;
}
if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});

document.addEventListener('keyup', function(event) {
var code = event.keyCode;

if (code == 37) is_moving_left = false;
if (code == 38) is_moving_forward = false;
if (code == 39) is_moving_right = false;
if (code == 40) is_moving_back = false;

});
</script>

A1.7 Code: A Closer Look at JavaScript Fundamentals

There was no project code in Chapter 7, A Closer Look at JavaScript Funda-

mentals, on page 67.

A1.8 Code: Turning Our Avatar

This is the code from Chapter 8, Project: Turning Our Avatar, on page 79.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/Tween.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<body></body><script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
//scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var marker = new THREE.Object3D();
scene.add(marker);

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);

Appendix 1. Project Code • 226

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

marker.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

marker.add(camera);

// Trees
makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(
new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

trunk.position.set(x, -75, z);
scene.add(trunk);

}

// Now, animate what the camera sees on the screen:
var clock = new THREE.Clock(true);
function animate() {

report erratum • discuss

Code: Turning Our Avatar • 227

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

requestAnimationFrame(animate);
TWEEN.update();
walk();
turn();
acrobatics();
renderer.render(scene, camera);

}
animate();

function walk() {
if (!isWalking()) return;
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

function turn() {
var direction = 0;
if (is_moving_forward) direction = Math.PI;
if (is_moving_back) direction = 0;
if (is_moving_right) direction = Math.PI/2;
if (is_moving_left) direction = -Math.PI/2;

spinAvatar(direction);
}

function spinAvatar(direction) {
new TWEEN.
Tween({y: avatar.rotation.y}).
to({y: direction}, 100).
onUpdate(function () {

avatar.rotation.y = this.y;
}).
start();

}

var is_cartwheeling = false;
var is_flipping = false;
function acrobatics() {

if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
}

var is_moving_left, is_moving_right, is_moving_forward, is_moving_back;

Appendix 1. Project Code • 228

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function isWalking() {
if (is_moving_right) return true;
if (is_moving_left) return true;
if (is_moving_forward) return true;
if (is_moving_back) return true;
return false;

}

document.addEventListener('keydown', function(event) {
var code = event.keyCode;

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}
if (code == 38) { // up
marker.position.z = marker.position.z-5;
is_moving_forward = true;

}
if (code == 39) { // right
marker.position.x = marker.position.x+5;
is_moving_right = true;

}
if (code == 40) { // down
marker.position.z = marker.position.z+5;
is_moving_back = true;

}
if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

});

document.addEventListener('keyup', function(event) {
var code = event.keyCode;

if (code == 37) {
console.log("not left anymore");
is_moving_left = false;

}
if (code == 38) is_moving_forward = false;
if (code == 39) is_moving_right = false;
if (code == 40) is_moving_back = false;

});
</script>

A1.9 Code: What’s All That Other Code?

There was no new code in Chapter 9, What's All That Other Code?, on page

85. We only explored the code that is automatically created when we start

new projects.

report erratum • discuss

Code: What’s All That Other Code? • 229

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

A1.10 Code: Collisions

This is the avatar code after we added collisions in Chapter 10, Project: Colli-

sions, on page 93.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/Tween.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
//scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var not_allowed = [];

var marker = new THREE.Object3D();
scene.add(marker);

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);
var avatar = new THREE.Mesh(body, cover);
marker.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

Appendix 1. Project Code • 230

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

marker.add(camera);

// Trees
makeTreeAt(500, 0);
makeTreeAt(-500, 0);
makeTreeAt(750, -1000);
makeTreeAt(-750, -1000);

function makeTreeAt(x, z) {
var trunk = new THREE.Mesh(
new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

var boundary = new THREE.Mesh(
new THREE.CircleGeometry(300),
new THREE.MeshNormalMaterial()

);
boundary.position.y = -100;
boundary.rotation.x = -Math.PI/2;
trunk.add(boundary);

not_allowed.push(boundary);

trunk.position.set(x, -75, z);
scene.add(trunk);

}

// Now, animate what the camera sees on the screen:
var clock = new THREE.Clock(true);
function animate() {

requestAnimationFrame(animate);
TWEEN.update();
walk();
turn();
acrobatics();
renderer.render(scene, camera);

}

report erratum • discuss

Code: Collisions • 231

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

animate();

function walk() {
if (!isWalking()) return;
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

function turn() {
var direction = 0;
if (is_moving_forward) direction = Math.PI;
if (is_moving_back) direction = 0;
if (is_moving_right) direction = Math.PI/2;
if (is_moving_left) direction = -Math.PI/2;

spinAvatar(direction);
}

function spinAvatar(direction) {
new TWEEN
.Tween({y: avatar.rotation.y})
.to({y: direction}, 100)
.onUpdate(function () {

avatar.rotation.y = this.y;
})
.start();

}

var is_cartwheeling = false;
var is_flipping = false;
function acrobatics() {

if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
}

var is_moving_left, is_moving_right, is_moving_forward, is_moving_back;
function isWalking() {

if (is_moving_right) return true;
if (is_moving_left) return true;
if (is_moving_forward) return true;
if (is_moving_back) return true;
return false;

}

Appendix 1. Project Code • 232

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

document.addEventListener('keydown', function(event) {
var code = event.keyCode;

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}
if (code == 38) { // up
marker.position.z = marker.position.z-5;
is_moving_forward = true;

}
if (code == 39) { // right
marker.position.x = marker.position.x+5;
is_moving_right = true;

}
if (code == 40) { // down
marker.position.z = marker.position.z+5;
is_moving_back = true;

}
if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

if (detectCollisions()) {
if (is_moving_left) marker.position.x = marker.position.x+5;
if (is_moving_right) marker.position.x = marker.position.x-5;
if (is_moving_forward) marker.position.z = marker.position.z+5;
if (is_moving_back) marker.position.z = marker.position.z-5;

}
});

document.addEventListener('keyup', function(event) {
var code = event.keyCode;

if (code == 37) is_moving_left = false;
if (code == 38) is_moving_forward = false;
if (code == 39) is_moving_right = false;
if (code == 40) is_moving_back = false;

});

function detectCollisions() {
var vector = new THREE.Vector3(0, -1, 0);
var ray = new THREE.Ray(marker.position, vector);
var intersects = ray.intersectObjects(not_allowed);
if (intersects.length > 0) return true;
return false;

}
</script>

report erratum • discuss

Code: Collisions • 233

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

A1.11 Code: Fruit Hunt

This is the avatar code after we added it to the fruit-hunt game in Chapter

11, Project: Fruit Hunt, on page 99. This code uses WebGLRenderer to make the

trees a little prettier, but the CanvasRenderer should work nearly as well.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/Tween.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/Sounds.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
//scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var not_allowed = [];

var scoreboard = new Scoreboard();
scoreboard.countdown(45);
scoreboard.score();
scoreboard.help(

'Arrow keys to move; ' +
'Space bar to jump for fruit; ' +
'Watch for shaking trees with fruit.' +
'Get near the tree and jump before the fruit is gone!'

);
var game_over = false;
scoreboard.onTimeExpired(function() {

scoreboard.message("Game Over!");
game_over = true;

});

var marker = new THREE.Object3D();
scene.add(marker);

var cover = new THREE.MeshNormalMaterial();
var body = new THREE.SphereGeometry(100);

Appendix 1. Project Code • 234

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var avatar = new THREE.Mesh(body, cover);
marker.add(avatar);

var hand = new THREE.SphereGeometry(50);

var right_hand = new THREE.Mesh(hand, cover);
right_hand.position.set(-150, 0, 0);
avatar.add(right_hand);

var left_hand = new THREE.Mesh(hand, cover);
left_hand.position.set(150, 0, 0);
avatar.add(left_hand);

var foot = new THREE.SphereGeometry(50);

var right_foot = new THREE.Mesh(foot, cover);
right_foot.position.set(-75, -125, 0);
avatar.add(right_foot);

var left_foot = new THREE.Mesh(foot, cover);
left_foot.position.set(75, -125, 0);
avatar.add(left_foot);

marker.add(camera);

var tree_with_treasure;
var trees = [];
trees.push(makeTreeAt(500, 0));
trees.push(makeTreeAt(-500, 0));
trees.push(makeTreeAt(750, -1000));
trees.push(makeTreeAt(-750, -1000));

function makeTreeAt(x, z) {
// Don't change any code at the start...
var trunk = new THREE.Mesh(
new THREE.CylinderGeometry(50, 50, 200),
new THREE.MeshBasicMaterial({color: 0xA0522D})

);

var top = new THREE.Mesh(
new THREE.SphereGeometry(150),
new THREE.MeshBasicMaterial({color: 0x228B22})

);
top.position.y = 175;
trunk.add(top);

var boundary = new THREE.Mesh(
new THREE.CircleGeometry(300),
new THREE.MeshNormalMaterial()

);

report erratum • discuss

Code: Fruit Hunt • 235

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

boundary.position.y = -100;
boundary.rotation.x = -Math.PI/2;
trunk.add(boundary);

not_allowed.push(boundary);

trunk.position.set(x, -75, z);
scene.add(trunk);
// ... but add the following line to the end:
return top;

}

function shakeTree() {
tree_with_treasure = Math.floor(Math.random() * trees.length);

new TWEEN
.Tween({x: 0})
.to({x: 2*Math.PI}, 200)
.repeat(20)
.onUpdate(function () {

trees[tree_with_treasure].position.x = 75 * Math.sin(this.x);
})
.start();

setTimeout(shakeTree, 12*1000);
}
shakeTree();

// Now, animate what the camera sees on the screen:
var clock = new THREE.Clock(true);
function animate() {

requestAnimationFrame(animate);
TWEEN.update();
walk();
turn();
acrobatics();
renderer.render(scene, camera);

}
animate();

function walk() {
if (!isWalking()) return;
var position = Math.sin(clock.getElapsedTime()*5) * 50;
right_hand.position.z = position;
left_hand.position.z = -position;
right_foot.position.z = -position;
left_foot.position.z = position;

}

function turn() {

Appendix 1. Project Code • 236

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var direction = 0;
if (is_moving_forward) direction = Math.PI;
if (is_moving_back) direction = 0;
if (is_moving_right) direction = Math.PI/2;
if (is_moving_left) direction = -Math.PI/2;

spinAvatar(direction);
}

function spinAvatar(direction) {
new TWEEN
.Tween({y: avatar.rotation.y})
.to({y: direction}, 100)
.onUpdate(function () {

avatar.rotation.y = this.y;
})
.start();

}

var is_cartwheeling = false;
var is_flipping = false;
function acrobatics() {

if (is_cartwheeling) {
avatar.rotation.z = avatar.rotation.z + 0.05;

}
if (is_flipping) {
avatar.rotation.x = avatar.rotation.x + 0.05;

}
}

var is_moving_left, is_moving_right, is_moving_forward, is_moving_back;
function isWalking() {

if (is_moving_right) return true;
if (is_moving_left) return true;
if (is_moving_forward) return true;
if (is_moving_back) return true;
return false;

}

document.addEventListener('keydown', function(event) {
var code = event.keyCode;
if (code == 32) jump(); // space

if (code == 37) { // left
marker.position.x = marker.position.x-5;
is_moving_left = true;

}
if (code == 38) { // up
marker.position.z = marker.position.z-5;
is_moving_forward = true;

report erratum • discuss

Code: Fruit Hunt • 237

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

}
if (code == 39) { // right
marker.position.x = marker.position.x+5;
is_moving_right = true;

}
if (code == 40) { // down
marker.position.z = marker.position.z+5;
is_moving_back = true;

}
if (code == 67) is_cartwheeling = !is_cartwheeling; // C
if (code == 70) is_flipping = !is_flipping; // F

if (detectCollisions()) {
if (is_moving_left) marker.position.x = marker.position.x+5;
if (is_moving_right) marker.position.x = marker.position.x-5;
if (is_moving_forward) marker.position.z = marker.position.z+5;
if (is_moving_back) marker.position.z = marker.position.z-5;

}
});

document.addEventListener('keyup', function(event) {
var code = event.keyCode;

if (code == 37) is_moving_left = false;
if (code == 38) is_moving_forward = false;
if (code == 39) is_moving_right = false;
if (code == 40) is_moving_back = false;

});

function detectCollisions() {
var vector = new THREE.Vector3(0, -1, 0);
var ray = new THREE.Ray(marker.position, vector);
var intersects = ray.intersectObjects(not_allowed);
if (intersects.length > 0) return true;
return false;

}

function jump() {
checkForTreasure();
animateJump();

}

function checkForTreasure() {
if (tree_with_treasure == undefined) return;

var treasure_tree = trees[tree_with_treasure],
p1 = treasure_tree.parent.position,
p2 = marker.position;

var distance = Math.sqrt(

Appendix 1. Project Code • 238

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

(p1.x - p2.x)*(p1.x - p2.x) +
(p1.z - p2.z)*(p1.z - p2.z)

);

if (distance < 500) {
scorePoints();

}
}

function scorePoints() {
if (scoreboard.getTimeRemaining() === 0) return;
scoreboard.addPoints(10);
Sounds.bubble.play();
animateFruit();

}

var fruit;
function animateFruit() {

if (fruit) return;

fruit = new THREE.Mesh(
new THREE.CylinderGeometry(25, 25, 5, 25),
new THREE.MeshBasicMaterial({color: 0xFFD700})

);
fruit.rotation.x = Math.PI/2;

marker.add(fruit);

new TWEEN.
Tween({

height: 150,
spin: 0

}).
to({

height: 250,
spin: 4

}, 500).
onUpdate(function () {

fruit.position.y = this.height;
fruit.rotation.z = this.spin;

}).
onComplete(function() {

marker.remove(fruit);
fruit = undefined;

}).
start();

}

function animateJump() {
new TWEEN

report erratum • discuss

Code: Fruit Hunt • 239

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

.Tween({jump: 0})

.to({jump: Math.PI}, 500)

.onUpdate(function () {
marker.position.y = 200* Math.sin(this.jump);

})
.start();

}
</script>

A1.12 Code: Working with Lights and Materials

This is the final version of the code that we used to explore lights and materials

in Chapter 12, Working with Lights and Materials, on page 109.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.shadowMapEnabled = true;
//var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********

var shape = new THREE.SphereGeometry(100);
var cover = new THREE.MeshBasicMaterial();
cover.color.setRGB(1, 0, 0);
var ball = new THREE.Mesh(shape, cover);
scene.add(ball);
ball.position.set(500, 0, 0);

var shape = new THREE.TorusGeometry(100, 50, 8, 20);
var cover = new THREE.MeshPhongMaterial();
cover.emissive.setRGB(0.8, 0.1, 0.1);
cover.specular.setRGB(0.9, 0.9, 0.9);
var donut = new THREE.Mesh(shape, cover);
scene.add(donut);
donut.castShadow = true;

Appendix 1. Project Code • 240

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var sunlight = new THREE.DirectionalLight();
sunlight.intensity = 0.5;
sunlight.position.set(100, 100, 100);
scene.add(sunlight);
sunlight.castShadow = true;

var shape = new THREE.PlaneGeometry(1000, 1000);
var cover = new THREE.MeshBasicMaterial();
var ground = new THREE.Mesh(shape, cover);
scene.add(ground);
ground.position.set(0, -200, 0);
ground.rotation.set(-Math.PI/2, 0, 0);
ground.receiveShadow = true;

var clock = new THREE.Clock();
function animate() {

requestAnimationFrame(animate);

var time = clock.getElapsedTime();
donut.rotation.set(time, 2*time, 0);

renderer.render(scene, camera);
}
animate();

</script>

A1.13 Code: Build Your Own Solar System

This is the final version of the solar-system code from Chapter 13, Project:

Build Your Own Solar System, on page 117.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var above_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
above_cam.position.z = 1000;
scene.add(above_cam);

var earth_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
scene.add(earth_cam);

var camera = above_cam;

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();

report erratum • discuss

Code: Build Your Own Solar System • 241

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
document.body.style.backgroundColor = 'black';

var surface = new THREE.MeshPhongMaterial({ambient: 0xFFD700});
var star = new THREE.SphereGeometry(50, 28, 21);
var sun = new THREE.Mesh(star, surface);
scene.add(sun);

var ambient = new THREE.AmbientLight(0xffffff);
scene.add(ambient);

var sunlight = new THREE.PointLight(0xffffff, 5, 1000);
sun.add(sunlight);

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0x0000cd});
var planet = new THREE.SphereGeometry(20, 20, 15);
var earth = new THREE.Mesh(planet, surface);
earth.position.set(250, 0, 0);
scene.add(earth);

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0xb22222});
var planet = new THREE.SphereGeometry(20, 20, 15);
var mars = new THREE.Mesh(planet, surface);
mars.position.set(500, 0, 0);
scene.add(mars);

clock = new THREE.Clock();

function animate() {
requestAnimationFrame(animate);

var time = clock.getElapsedTime();

var e_angle = time * 0.8;
earth.position.set(250* Math.cos(e_angle), 250* Math.sin(e_angle), 0);

var m_angle = time * 0.3;
mars.position.set(500* Math.cos(m_angle), 500* Math.sin(m_angle), 0);

var y_diff = mars.position.y - earth.position.y,
x_diff = mars.position.x - earth.position.x,
angle = Math.atan2(x_diff, y_diff);

earth_cam.rotation.set(Math.PI/2, -angle, 0);
earth_cam.position.set(earth.position.x, earth.position.y, 22);

// Now, show what the camera sees on the screen:

Appendix 1. Project Code • 242

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

renderer.render(scene, camera);
}

animate();

var stars = new THREE.Geometry();
while (stars.vertices.length < 1e4) {

var lat = Math.PI * Math.random() - Math.PI/2;
var lon = 2*Math.PI * Math.random();

stars.vertices.push(new THREE.Vector3(
1e5 * Math.cos(lon) * Math.cos(lat),
1e5 * Math.sin(lon) * Math.cos(lat),
1e5 * Math.sin(lat)

));
}
var star_stuff = new THREE.ParticleBasicMaterial({size: 500});
var star_system = new THREE.ParticleSystem(stars, star_stuff);
scene.add(star_system);

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 65) { // A
camera = above_cam;

}
if (code == 69) { // E
camera = earth_cam;

}
});

</script>

A1.14 Code: Phases of the Moon

This is the final version of the moon-phases code from Chapter 14, Project:

Phases of the Moon, on page 125.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var above_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
above_cam.position.z = 1000;
scene.add(above_cam);

report erratum • discuss

Code: Phases of the Moon • 243

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var earth_cam = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);

var camera = above_cam;

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
document.body.style.backgroundColor = 'black';

var surface = new THREE.MeshPhongMaterial({ambient: 0xFFD700});
var star = new THREE.SphereGeometry(50, 28, 21);
var sun = new THREE.Mesh(star, surface);
scene.add(sun);

var ambient = new THREE.AmbientLight(0xffffff);
scene.add(ambient);

var sunlight = new THREE.PointLight(0xffffff, 5, 1000);
sun.add(sunlight);

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0x0000cd});
var planet = new THREE.SphereGeometry(20, 20, 15);
var earth = new THREE.Mesh(planet, surface);
earth.position.set(250, 0, 0);
scene.add(earth);

var surface = new THREE.MeshPhongMaterial({ambient: 0x1a1a1a, color: 0xffffff});
var planet = new THREE.SphereGeometry(15, 30, 25);
var moon = new THREE.Mesh(planet, surface);

var moon_orbit = new THREE.Object3D();
earth.add(moon_orbit);
moon_orbit.add(moon);
moon.position.set(0, 100, 0);
moon_orbit.add(earth_cam);
earth_cam.rotation.set(Math.PI/2, 0, 0);

var time = 0,
speed = 1,
pause = false;

function animate() {
requestAnimationFrame(animate);
renderer.render(scene, camera);

if (pause) return;
time = time + speed;

Appendix 1. Project Code • 244

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var e_angle = time * 0.001;
earth.position.set(250* Math.cos(e_angle), 250* Math.sin(e_angle), 0);
var m_angle = time * 0.02;
moon_orbit.rotation.set(0, 0, m_angle);

}
animate();

var stars = new THREE.Geometry();
while (stars.vertices.length < 1e4) {

var lat = Math.PI * Math.random() - Math.PI/2;
var lon = 2*Math.PI * Math.random();

stars.vertices.push(new THREE.Vector3(
1e5 * Math.cos(lon) * Math.cos(lat),
1e5 * Math.sin(lon) * Math.cos(lat),
1e5 * Math.sin(lat)

));
}
var star_stuff = new THREE.ParticleBasicMaterial({size: 500});
var star_system = new THREE.ParticleSystem(stars, star_stuff);
scene.add(star_system);

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 67) changeCamera(); // C
if (code == 32) changeCamera(); // space
if (code == 80) pause = !pause; // P
if (code == 49) speed = 1; // 1
if (code == 50) speed = 2; // 2
if (code == 51) speed = 10; // 3

});

function changeCamera() {
if (camera == above_cam) camera = earth_cam;
else camera = above_cam;

}
</script>

A1.15 Code: The Purple Fruit Monster Game

This is the final version of the game code from Chapter 15, Project: The Purple

Fruit Monster Game, on page 133.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>
<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:

report erratum • discuss

Code: The Purple Fruit Monster Game • 245

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';

var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });
scene.setGravity(new THREE.Vector3(0, -100, 0));

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 200;
camera.position.y = 100;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
var ground = addGround();
var avatar = addAvatar();
var scoreboard = addScoreboard();
animate();
gameStep();

function addGround() {
document.body.style.backgroundColor = '#87CEEB';
ground = new Physijs.PlaneMesh(
new THREE.PlaneGeometry(1e6, 1e6),
new THREE.MeshBasicMaterial({color: 0x7CFC00})

);
ground.rotation.x = -Math.PI/2;
scene.add(ground);
return ground;

}

function addAvatar() {
avatar = new Physijs.BoxMesh(
new THREE.CubeGeometry(40, 50, 1),
new THREE.MeshBasicMaterial({visible: false})

);
var avatar_material = new THREE.MeshBasicMaterial({
map: THREE.ImageUtils.loadTexture('/images/purple_fruit_monster.png'),
transparent: true

});
var avatar_picture = new THREE.Mesh(
new THREE.PlaneGeometry(40, 50), avatar_material

);
avatar.add(avatar_picture);

Appendix 1. Project Code • 246

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

avatar.position.set(-50, 50, 0);
scene.add(avatar);

avatar.setAngularFactor(new THREE.Vector3(0, 0, 0)); // no rotation
avatar.setLinearFactor(new THREE.Vector3(1, 1, 0)); // only move on X/Y axes
avatar.setLinearVelocity(new THREE.Vector3(0, 150, 0));

avatar.addEventListener('collision', function(object) {
if (object.is_fruit) {

scoreboard.addPoints(10);
avatar.setLinearVelocity(new THREE.Vector3(0, 50, 0));
scene.remove(object);

}
if (object == ground) {

game_over = true;
scoreboard.message("Game Over!");

}
});
return avatar;

}

function addScoreboard() {
var scoreboard = new Scoreboard();
scoreboard.score(0);
scoreboard.help('Use arrow keys to move and the space bar to jump');
return scoreboard;

}

var game_over = false;
function animate() {

if (game_over) return;

requestAnimationFrame(animate);
scene.simulate(); // run physics
renderer.render(scene, camera);

}

function gameStep() {
if (game_over) return;

launchFruit();
setTimeout(gameStep, 3*1000);

}

function launchFruit() {
var fruit = new Physijs.ConvexMesh(
new THREE.CylinderGeometry(20, 20, 1, 24),
new THREE.MeshBasicMaterial({visible: false})

);
var material = new THREE.MeshBasicMaterial({

report erratum • discuss

Code: The Purple Fruit Monster Game • 247

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

map: THREE.ImageUtils.loadTexture('/images/fruit.png'),
transparent: true

});
var picture = new THREE.Mesh(new THREE.PlaneGeometry(40, 40), material);
picture.rotation.x = -Math.PI/2;
fruit.add(picture);

fruit.is_fruit = true;
fruit.setAngularFactor(new THREE.Vector3(0, 0, 1));
fruit.setLinearFactor(new THREE.Vector3(1, 1, 0));
fruit.position.set(300, 20, 0);
fruit.rotation.x = Math.PI/2;
scene.add(fruit);
fruit.setLinearVelocity(
new THREE.Vector3(-150, 0, 0)

);
}

document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 37) left(); // left arrow
if (code == 39) right(); // right arrow
if (code == 38) up(); // up arrow
if (code == 32) up(); // space bar
if (code == 82) reset(); // R

});

function left() { move(-50, 0); }
function right() { move(50, 0); }
function up() { move(avatar.getLinearVelocity().x, 50); }

function move(x, y) {
avatar.setLinearVelocity(
new THREE.Vector3(x, y, 0)

);
}

function reset() {
avatar.__dirtyPosition = true;
avatar.position.set(-50, 50, 0);
avatar.setLinearVelocity(new THREE.Vector3(0, 150, 0));

for (var i in scene._objects) {
if (scene._objects[i].is_fruit) {
scene.remove(scene._objects[i]);

}
}

scoreboard.score(0);

Appendix 1. Project Code • 248

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

if (game_over) {
game_over = false;
animate();
gameStep();

}
}

</script>

A1.16 Code: Tilt-a-Board

This is the final version of the game code from Chapter 16, Project: Tilt-a-

Board, on page 145.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';

// This is where stuff in our game will happen:
var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });
scene.setGravity(new THREE.Vector3(0, -50, 0));

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.set(0, 100, 200);
camera.rotation.x = -Math.PI/8;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.shadowMapEnabled = true;
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********
addLights();

var ball = addBall();
var board = addBoard();

addControls();
addGoal();
addBackground();

animate();

report erratum • discuss

Code: Tilt-a-Board • 249

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

gameStep();

function addLights() {
scene.add(new THREE.AmbientLight(0x999999));

var back_light = new THREE.PointLight(0xffffff);
back_light.position.set(50, 50, -100);
scene.add(back_light);

var spot_light = new THREE.SpotLight(0xffffff);
spot_light.position.set(-250, 250, 250);
spot_light.castShadow = true;
scene.add(spot_light);

}

function addBall() {
var ball = new Physijs.SphereMesh(
new THREE.SphereGeometry(10, 25, 21),
new THREE.MeshPhongMaterial({

color: 0x333333,
shininess: 100.0,
ambient: 0xff0000,
emissive: 0x111111,
specular: 0xbbbbbb

})
);
ball.castShadow = true;
scene.add(ball);
resetBall(ball);
return ball;

}

function resetBall(ball) {
ball.__dirtyPosition = true;
ball.position.set(-33, 50, -65);
ball.setLinearVelocity(0,0,0);
ball.setAngularVelocity(0,0,0);

}

function addBoard() {
var material = new THREE.MeshPhongMaterial({
color: 0x333333,
shininess: 40,
ambient: 0xffd700,
emissive: 0x111111,
specular: 0xeeeeee

});

var beam = new Physijs.BoxMesh(
new THREE.CubeGeometry(50, 2, 200),

Appendix 1. Project Code • 250

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

material,
0

);
beam.position.set(-37, 0, 0);
beam.receiveShadow = true;

var beam2 = new Physijs.BoxMesh(
new THREE.CubeGeometry(50, 2, 200),
material

);
beam2.position.set(75, 0, 0);
beam2.receiveShadow = true;
beam.add(beam2);

var beam3 = new Physijs.BoxMesh(
new THREE.CubeGeometry(200, 2, 50),
material

);
beam3.position.set(40, 0, -40);
beam3.receiveShadow = true;
beam.add(beam3);

var beam4 = new Physijs.BoxMesh(
new THREE.CubeGeometry(200, 2, 50),
material

);
beam4.position.set(40, 0, 40);
beam4.receiveShadow = true;
beam.add(beam4);

beam.rotation.set(0.1, 0, 0);
scene.add(beam);
return beam;

}

function addControls() {
document.addEventListener("keydown", function(event) {
var code = event.keyCode;

if (code == 37) left();
if (code == 39) right();
if (code == 38) up();
if (code == 40) down();

});
}

function left() { tilt('z', 0.02); }
function right() { tilt('z', -0.02); }
function up() { tilt('x', -0.02); }
function down() { tilt('x', 0.02); }

report erratum • discuss

Code: Tilt-a-Board • 251

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function tilt(dir, amount) {
board.__dirtyRotation = true;
board.rotation[dir] = board.rotation[dir] + amount;

}

function addGoal() {
var light = new THREE.Mesh(
new THREE.CylinderGeometry(20, 20, 1000),
new THREE.MeshPhongMaterial({

transparent:true,
opacity: 0.15,
shininess: 0,
ambient: 0xffffff,
emissive: 0xffffff

})
);
scene.add(light);

var score = new Physijs.ConvexMesh(
new THREE.PlaneGeometry(20, 20),
new THREE.MeshNormalMaterial({wireframe: true})

);
score.position.y = -50;
score.rotation.x = -Math.PI/2;
scene.add(score);

score.addEventListener('collision', function() {
flashGoalLight(light);
resetBall(ball);

});
}

function addBackground() {
document.body.style.backgroundColor = 'black';
var stars = new THREE.Geometry();
while (stars.vertices.length < 1000) {
var lat = Math.PI * Math.random() - Math.PI/2;
var lon = 2*Math.PI * Math.random();
stars.vertices.push(new THREE.Vector3(

1000 * Math.cos(lon) * Math.cos(lat),
1000 * Math.sin(lon) * Math.cos(lat),
1000 * Math.sin(lat)

));
}
var star_stuff = new THREE.ParticleBasicMaterial({size: 5});
var star_system = new THREE.ParticleSystem(stars, star_stuff);
scene.add(star_system);

}

Appendix 1. Project Code • 252

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function animate() {
requestAnimationFrame(animate);
scene.simulate(); // run physics
renderer.render(scene, camera);

}

function gameStep() {
if (ball.position.y < -100) resetBall(ball);
setTimeout(gameStep, 1000 / 60);

}

function flashGoalLight(light, remaining) {
if (typeof(remaining) == 'undefined') remaining = 9;

if (light.material.opacity == 0.4) {
light.material.ambient.setRGB(1,1,1);
light.material.emissive.setRGB(1,1,1);
light.material.color.setRGB(1,1,1);
light.material.opacity = 0.15;

}
else {
light.material.ambient.setRGB(1,0,0);
light.material.emissive.setRGB(1,0,0);
light.material.color.setRGB(1,0,0);
light.material.opacity = 0.4;

}

if (remaining > 0) {
setTimeout(function() {flashGoalLight(light, remaining-1);}, 500);

}
}

</script>

A1.17 Code: Learning about JavaScript Objects

The code from Chapter 17, Project: Learning about JavaScript Objects, on page

159, should look something like the following.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script>

// This is where stuff in our game will happen:
var scene = new THREE.Scene();

// This is what sees the stuff:
var aspect_ratio = window.innerWidth / window.innerHeight;
var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
camera.position.z = 500;
scene.add(camera);

report erratum • discuss

Code: Learning about JavaScript Objects • 253

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// This will draw what the camera sees onto the screen:
var renderer = new THREE.CanvasRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

// ******** START CODING ON THE NEXT LINE ********

var best_movie = {
title: 'Star Wars',
year: 1977

};

var best_movie = {
title: 'Star Wars',
year: 1977,
stars: ['Mark Hamill', 'Harrison Ford', 'Carrie Fisher'],
aboutMe: function() {
console.log(this.title + ', starring: ' + this.stars);

}
};
best_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

var great_movie = Object.create(best_movie);
great_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

great_movie.title = 'Toy Story';
great_movie.year = 1995;
great_movie.stars = ['Tom Hanks', 'Tim Allen'];
great_movie.aboutMe();
// => Toy Story, starring: Tom Hanks,Tim Allen

best_movie.aboutMe();
// => Star Wars, starring: Mark Hamill,Harrison Ford,Carrie Fisher

function Movie(title, stars) {
this.title = title;
this.stars = stars;
this.year = (new Date()).getFullYear();

}
var kung_fu_movie = new Movie('Kung Fu Panda', ['Jack Black', 'Angelina Jolie']);
console.log(kung_fu_movie.title);
// => Kung Fu Panda
console.log(kung_fu_movie.stars);
// => ['Jack Black', 'Angelina Jolie']
console.log(kung_fu_movie.year);
// => 2013

Movie.prototype.aboutMe = function() {

Appendix 1. Project Code • 254

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

console.log(this.title + ', starring: ' + this.stars);
};
kung_fu_movie.aboutMe();
// => Kung Fu Panda, starring: Jack Black,Angelina Jolie

var donut = {
mesh: new THREE.Mesh(
new THREE.TorusGeometry(100, 50, 8, 20),
new THREE.MeshBasicMaterial({color: 0x33cc33})

),
speed: 1,
spin: function() {
var mesh = this.mesh;
scene.add(mesh);

}
};

// Now, show what the camera sees on the screen:
renderer.render(scene, camera);

</script>

A1.18 Code: Cave Puzzle

This is the final version of the game code from Chapter 18, Project: Cave

Puzzle, on page 165.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/Mouse.js"></script>
<script>

// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';

// This is where stuff in our game will happen:
var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });
scene.setGravity(new THREE.Vector3(0, -100, 0));

// This is what sees the stuff:
var width = window.innerWidth,

height = window.innerHeight,
aspect_ratio = width / height;

//var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
var camera = new THREE.OrthographicCamera(

report erratum • discuss

Code: Cave Puzzle • 255

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

-width/2, width/2, height/2, -height/2, 1, 10000
);

camera.position.z = 500;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
document.body.style.backgroundColor = '#9999aa';

// ******** START CODING ON THE NEXT LINE ********

/*
// Perspective camera border
function makeBorder(x, y, w, h) {

var border = new Physijs.BoxMesh(
new THREE.CubeGeometry(1.2*w, 1.2*h, 100),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color: 0x000000}), 0.2, 1.0
),
0

);
border.position.set(1.2*x, 1.2*y, 0);
return border;

}
*/
function makeBorder(x, y, w, h) {

var border = new Physijs.BoxMesh(
new THREE.CubeGeometry(w, h, 100),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color: 0x000000}), 0.2, 1.0
),
0

);
border.position.set(x, y, 0);
return border;

}
scene.add(makeBorder(width/-2, 0, 50, height));
scene.add(makeBorder(width/2, 0, 50, height));
scene.add(makeBorder(0, height/2, width, 50));
scene.add(makeBorder(0, height/-2, width, 50));

var avatar = new Physijs.ConvexMesh(

new THREE.CylinderGeometry(30, 30, 5, 16),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color:0xbb0000}), 0.2, 0.5

Appendix 1. Project Code • 256

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

)
);
avatar.rotation.set(Math.PI/2, 0, 0);
avatar.position.set(0.5 * width/-2, -height/2 + 25 + 30, 0);
scene.add(avatar);

avatar.setAngularFactor(new THREE.Vector3(0, 0, 0)); // don't rotate
avatar.setLinearFactor(new THREE.Vector3(1, 1, 0)); // only move on X and Y axis

avatar.addEventListener('collision', function(object) {
if (object.isGoal) gameOver();

});

document.addEventListener("keydown", function(event) {
var code = event.keyCode;
if (code == 37) move(-50); // left arrow
if (code == 39) move(50); // right arrow

});

function move(x) {
var v_y = avatar.getLinearVelocity().y,

v_x = avatar.getLinearVelocity().x;

if (Math.abs(v_x + x) > 200) return;
avatar.setLinearVelocity(
new THREE.Vector3(v_x + x, v_y, 0)

);
}

var goal = new Physijs.ConvexMesh(
new THREE.TorusGeometry(100, 25, 20, 30),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0x00bb00})

),
0

);
goal.isGoal = true;

function placeGoal() {
var x = 0,

rand = Math.random();
if (rand < 0.33) x = width / -2;
if (rand > 0.66) x = width / 2;
goal.position.set(x, height/2, 0);
scene.add(goal);

}
placeGoal();

function Ramp(x, y) {
this.mesh = new Physijs.ConvexMesh(

report erratum • discuss

Code: Cave Puzzle • 257

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

new THREE.CylinderGeometry(5, height * 0.05, height * 0.25),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color:0x0000cc}), 0.2, 1.0
),
0

);

this.move(x, y);
this.rotate(2*Math.PI*Math.random());
this.listenForEvents();

}

Ramp.prototype.move = function(x, y) {
this.mesh.position.x = this.mesh.position.x + x;
this.mesh.position.y = this.mesh.position.y + y;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

Ramp.prototype.rotate = function(angle) {
this.mesh.rotation.z = this.mesh.rotation.z + angle;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

Ramp.prototype.listenForEvents = function() {
var me = this,

mesh = this.mesh;
mesh.addEventListener('drag', function(event) {
me.move(event.x_diff, event.y_diff);

});

document.addEventListener('keydown', function(event) {
if (!mesh.isActive) return;
if (event.keyCode != 83) return; // S
me.rotate(0.1);

});
};

var ramp1 = new Ramp(-width/4, height/4);
scene.add(ramp1.mesh);
var ramp2 = new Ramp(width/4, -height/4);
scene.add(ramp2.mesh);

var scoreboard = new Scoreboard();
scoreboard.timer();
scoreboard.countdown(40);
scoreboard.help(

"Get the green ring. " +
"Click and drag blue ramps. " +

Appendix 1. Project Code • 258

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

"Click blue ramps and press S to spin. " +
"Left and right arrows to move player. " +
"Be quick!"

);
scoreboard.onTimeExpired(function() {

scoreboard.setMessage("Game Over!");
gameOver();

});

var pause = false;
function gameOver() {

if (scoreboard.getTimeRemaining() > 0) scoreboard.setMessage('Win!');
scoreboard.stopCountdown();
scoreboard.stopTimer();
pause = true;

}

// Animate motion in the game
function animate() {

if (pause) return;
requestAnimationFrame(animate);
renderer.render(scene, camera);

}
animate();

// Run physics
function gameStep() {

if (pause) return;
scene.simulate();
// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

}
gameStep();

</script>

A1.19 Code: Multilevel Game

This is the final version of the game code from Chapter 19, Project: Multilevel

Game, on page 177.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script src="http://gamingJS.com/Scoreboard.js"></script>
<script src="http://gamingJS.com/Mouse.js"></script>
<script src="http://gamingJS.com/Sounds.js"></script>
<script>

// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';

report erratum • discuss

Code: Multilevel Game • 259

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

// This is where stuff in our game will happen:
var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });
scene.setGravity(new THREE.Vector3(0, -100, 0));

// This is what sees the stuff:
var width = window.innerWidth,

height = window.innerHeight,
aspect_ratio = width / height;

//var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 10000);
var camera = new THREE.OrthographicCamera(

-width/2, width/2, height/2, -height/2, 1, 10000
);

camera.position.z = 500;
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
document.body.style.backgroundColor = '#9999aa';

// ******** START CODING ON THE NEXT LINE ********

/*
// Perspective camera border
function makeBorder(x, y, w, h) {

var border = new Physijs.BoxMesh(
new THREE.CubeGeometry(1.2*w, 1.2*h, 100),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color: 0x000000}), 0.2, 1.0
),
0

);
border.position.set(1.2*x, 1.2*y, 0);
return border;

}
*/
function makeBorder(x, y, w, h) {

var border = new Physijs.BoxMesh(
new THREE.CubeGeometry(w, h, 100),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color: 0x000000}), 0.2, 1.0
),
0

);
border.position.set(x, y, 0);
return border;

}

Appendix 1. Project Code • 260

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

scene.add(makeBorder(width/-2, 0, 50, height));
scene.add(makeBorder(width/2, 0, 50, height));
scene.add(makeBorder(0, height/2, width, 50));
scene.add(makeBorder(0, height/-2, width, 50));

var avatar = new Physijs.ConvexMesh(
new THREE.CylinderGeometry(30, 30, 5, 16),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0xbb0000}), 0.2, 0.5

)
);
avatar.rotation.set(Math.PI/2, 0, 0);
avatar.position.set(0.5 * width/-2, -height/2 + 25 + 30, 0);
scene.add(avatar);

avatar.setAngularFactor(new THREE.Vector3(0, 0, 0)); // don't rotate
avatar.setLinearFactor(new THREE.Vector3(1, 1, 0)); // only move on X and Y axis

document.addEventListener("keydown", function(event) {
var code = event.keyCode;
if (code == 37) move(-50); // left arrow
if (code == 39) move(50); // right arrow

});

function move(x) {
var v_y = avatar.getLinearVelocity().y,

v_x = avatar.getLinearVelocity().x;

if (Math.abs(v_x + x) > 200) return;
avatar.setLinearVelocity(
new THREE.Vector3(v_x + x, v_y, 0)

);
}

var goal = new Physijs.ConvexMesh(
new THREE.TorusGeometry(100, 25, 20, 30),
Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0x00bb00})

),
0

);
goal.isGoal = true;

function placeGoal() {
var x = 0,

rand = Math.random();
if (rand < 0.33) x = width / -2;
if (rand > 0.66) x = width / 2;
goal.position.set(x, height/2, 0);
scene.add(goal);

report erratum • discuss

Code: Multilevel Game • 261

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

}
placeGoal();

function Ramp(x, y) {
this.mesh = new Physijs.ConvexMesh(
new THREE.CylinderGeometry(5, height * 0.05, height * 0.25),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color:0x0000cc}), 0.2, 1.0
),
0

);

this.move(x, y);
this.rotate(2*Math.PI*Math.random());
this.listenForEvents();

}

Ramp.prototype.move = function(x, y) {
this.mesh.position.x = this.mesh.position.x + x;
this.mesh.position.y = this.mesh.position.y + y;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

Ramp.prototype.rotate = function(angle) {
this.mesh.rotation.z = this.mesh.rotation.z + angle;
this.mesh.__dirtyRotation = true;
this.mesh.__dirtyPosition = true;

};

Ramp.prototype.listenForEvents = function() {
var me = this,

mesh = this.mesh;
mesh.addEventListener('drag', function(event) {
me.move(event.x_diff, event.y_diff);

});

document.addEventListener('keydown', function(event) {
if (!mesh.isActive) return;
if (event.keyCode != 83) return; // S
me.rotate(0.1);

});
};

var ramp1 = new Ramp(-width/4, height/4);
scene.add(ramp1.mesh);

var ramp2 = new Ramp(width/4, -height/4);
scene.add(ramp2.mesh);

Appendix 1. Project Code • 262

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var scoreboard = new Scoreboard();
scoreboard.timer();
scoreboard.countdown(40);
scoreboard.help(

"Get the green ring. " +
"Click and drag blue ramps. " +
"Click blue ramps and press S to spin. " +
"Left and right arrows to move player. " +
"Be quick!"

);
scoreboard.onTimeExpired(function() {

scoreboard.setMessage("Game Over!");
gameOver();

});

var pause = false;
function gameOver() {

if (scoreboard.getTimeRemaining() > 0) scoreboard.setMessage('Win!');
scoreboard.stopCountdown();
scoreboard.stopTimer();
pause = true;

}

function Levels(scoreboard, scene) {
this.scoreboard = scoreboard;
this.scene = scene;
this.levels = [];
this.current_level = 0;

}

Levels.prototype.addLevel = function(things_on_this_level) {
this.levels.push(things_on_this_level);

};

Levels.prototype.thingsOnCurrentLevel = function() {
return this.levels[this.current_level];

};

Levels.prototype.draw = function() {
var scene = this.scene;
this.thingsOnCurrentLevel().forEach(function(thing) {
scene.add(thing);

});
};

Levels.prototype.erase = function() {
var scene = this.scene;
this.thingsOnCurrentLevel().forEach(function(obstacle) {
scene.remove(obstacle);

});

report erratum • discuss

Code: Multilevel Game • 263

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

};

Levels.prototype.levelUp = function() {
if (!this.hasMoreLevels()) return;
this.erase();
this.current_level++;
this.draw();
this.scoreboard.resetCountdown(50 - this.current_level * 5);

};

Levels.prototype.hasMoreLevels = function() {
var last_level = this.levels.length-1;
return this.current_level < last_level;

};

function buildObstacle(shape_name, x, y) {
var shape;
if (shape_name == 'platform') {
shape = new THREE.CubeGeometry(height/2, height/10, 10);

} else {
shape = new THREE.CylinderGeometry(50, 2, height);

}
var material = Physijs.createMaterial(
new THREE.MeshBasicMaterial({color:0x333333}), 0.2, 1.0

);

var obstacle = new Physijs.ConvexMesh(shape, material, 0);
obstacle.position.set(x, y, 0);
return obstacle;

}

var levels = new Levels(scoreboard, scene);
levels.addLevel([]);
levels.addLevel([

buildObstacle('platform', 0, 0.5 * height/2 * Math.random())
]);
levels.addLevel([

buildObstacle('platform', 0, 0.5 * height/2 * Math.random()),
buildObstacle('platform', 0, -0.5 * height/2 * Math.random())

]);
levels.addLevel([

buildObstacle('platform', 0, 0.5 * height/2 * Math.random()),
buildObstacle('platform', 0, -0.5 * height/2 * Math.random()),
buildObstacle('stalactite', -0.33 * width, height/2),
buildObstacle('stalactite', 0.33 * width, height/2)

]);

avatar.addEventListener('collision', function(object) {
if (!object.isGoal) return;
if (!levels.hasMoreLevels()) return gameOver();

Appendix 1. Project Code • 264

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

moveGoal();
levels.levelUp();

});

avatar.addEventListener('collision', function(object) {
if (object.isGoal) Sounds.guitar.play();
else Sounds.click.play();

});

function moveGoal() {
scene.remove(goal);
setTimeout(placeGoal, 2*1000);

}

// Animate motion in the game
function animate() {

if (pause) return;
requestAnimationFrame(animate);
renderer.render(scene, camera);

}
animate();

// Run physics
function gameStep() {

if (pause) return;
scene.simulate();
// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

}
gameStep();

</script>

A1.20 Code: River Rafting

This is the final version of the game code from Chapter 20, Project: River

Rafting, on page 185. It is very long. There are a few extras to play around with,

as well.

<body></body>
<script src="http://gamingJS.com/Three.js"></script>
<script src="http://gamingJS.com/physi.js"></script>
<script src="http://gamingJS.com/ChromeFixes.js"></script>
<script src="http://gamingJS.com/Scoreboard.js"></script>

<script>
// Physics settings
Physijs.scripts.ammo = 'http://gamingJS.com/ammo.js';
Physijs.scripts.worker = 'http://gamingJS.com/physijs_worker.js';

// This is where stuff in our game will happen:

report erratum • discuss

Code: River Rafting • 265

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var scene = new Physijs.Scene({ fixedTimeStep: 2 / 60 });
scene.setGravity(new THREE.Vector3(0, -20, 0));

// This is what sees the stuff:
var width = window.innerWidth,

height = window.innerHeight,
aspect_ratio = width / height;

var camera = new THREE.PerspectiveCamera(75, aspect_ratio, 1, 1e6);
// var camera = new THREE.OrthographicCamera(
// -width/2, width/2, height/2, -height/2, 1, 10000
//);

camera.position.set(250, 250, 250);
camera.lookAt(new THREE.Vector3(0, 0, 0));
scene.add(camera);

// This will draw what the camera sees onto the screen:
var renderer = new THREE.WebGLRenderer();
renderer.shadowMapEnabled = true;
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
document.body.style.backgroundColor = '#ffffff';

// ******** START CODING ON THE NEXT LINE ********

addSunlight(scene);
var scoreboard = addScoreboard();
var river = addRiver(scene);
var raft = addRaft(scene);
var game_items = [];
var paused;
startGame(raft, river, scoreboard);

function addSunlight(scene) {
var sunlight = new THREE.DirectionalLight();
sunlight.intensity = 0.5;
sunlight.castShadow = true;
sunlight.position.set(250, 250, 250);
sunlight.shadowCameraNear = 250;
sunlight.shadowCameraFar = 600;
sunlight.shadowCameraLeft = -200;
sunlight.shadowCameraRight = 200;
sunlight.shadowCameraTop = 200;
sunlight.shadowCameraBottom = -200;
sunlight.shadowMapWidth = 4096;
sunlight.shadowMapHeight = 4096;

scene.add(sunlight);
}

Appendix 1. Project Code • 266

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function addScoreboard() {
var scoreboard = new Scoreboard();
scoreboard.score(0);
scoreboard.timer();
scoreboard.help(
'left / right arrow keys to turn. ' +
'space bar to move forward.'

);

return scoreboard;
}

function addRiver(scene) {
var ground = makeGround(500);
addWater(ground, 500);
addLid(ground, 500);

scene.add(ground);

return ground;
}

function makeGround(size) {
var faces = 100;
var shape = new THREE.PlaneGeometry(size, size, faces, faces);
var river_points = digRiver(shape, faces + 1);

var cover = Physijs.createMaterial(
new THREE.MeshPhongMaterial({

emissive: new THREE.Color(0x339933), // a little green
specular: new THREE.Color(0x333333) // dark gray / not shiny

}),
1, // high friction (hard to move across)
0.1 // not very bouncy

);

var ground = new Physijs.HeightfieldMesh(
shape, cover, 0

);
ground.rotation.set(-Math.PI/2, 0.2, -Math.PI/2);
ground.receiveShadow = true;
ground.castShadow = true;
ground.river_points = river_points;

return ground;
}

function digRiver(shape, size) {
var center_points = [];
for (var row=0; row<size; row++) {

report erratum • discuss

Code: River Rafting • 267

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var center = Math.sin(4*Math.PI*row/size);
center = center * 0.1 * size;
center = Math.floor(center + size/2);
center = row*size + center;

for (var distance=0; distance<12; distance++) {
shape.vertices[center + distance].z = -5 * (12 - distance);
shape.vertices[center - distance].z = -5 * (12 - distance);

}

center_points.push(shape.vertices[center]);
}
shape.computeFaceNormals();
shape.computeVertexNormals();
return center_points;

}

function addWater(ground, size) {
var water = new Physijs.ConvexMesh(
new THREE.CubeGeometry(1.4*size, 1.4*size, 10),
Physijs.createMaterial(

new THREE.MeshBasicMaterial({color: 0x0000bb}),
0, // No friction (slippery as ice)
0.01 // Not very bouncy at all

),
0 // Never move

);
water.position.z = -20;
water.receiveShadow = true;
ground.add(water);

}

function addLid(ground, size) {
var lid = new Physijs.ConvexMesh(
new THREE.CubeGeometry(size, size, 1),
new THREE.MeshBasicMaterial({visible:false})

);
ground.add(lid);

}

function addSharkJump(pos, ground) {
var ramp = new Physijs.ConvexMesh(
new THREE.CubeGeometry(10, 8, 3),
new THREE.MeshPhongMaterial({emissive: 0xbb0000})

);
ramp.receiveShadow = true;
ramp.rotation.x = -Math.PI/10;
ramp.position.copy(pos);
ramp.position.z = pos.z + 10;
ground.add(ramp);

Appendix 1. Project Code • 268

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

var shark = new Physijs.ConvexMesh(
new THREE.CylinderGeometry(0.1, 2, 3),
new THREE.MeshPhongMaterial({emissive: 0x999999})

);
shark.receiveShadow = true;
shark.position.copy(pos);
shark.rotation.x = Math.PI/2;
shark.rotation.z = Math.PI/8;
shark.position.z = pos.z + 12;
shark.position.y = pos.y - 15;
ground.add(shark);

}

function addRaft(scene) {
var mesh = new Physijs.ConvexMesh(
new THREE.TorusGeometry(2, 0.5, 8, 20),
Physijs.createMaterial(

new THREE.MeshPhongMaterial({
emissive: 0xcc2222,
specular: 0xeeeeee

}),
0.1,
0.01

)
);
mesh.rotation.x = -Math.PI/2;
mesh.castShadow = true;

scene.add(mesh);
mesh.setAngularFactor(new THREE.Vector3(0, 0, 0));

var rudder = new THREE.Mesh(
new THREE.SphereGeometry(0.5),
new THREE.MeshBasicMaterial({color: 0x000099})

);
rudder.position.set(3, 0, 0);
mesh.add(rudder);

return mesh;
}
//raft.setLinearVelocity(
// new THREE.Vector3(50, 0, -10)
//);

function startGame(raft, river, scoreboard) {
var start = river.river_points[100];
raft.__dirtyPosition = true;
raft.position.set(start.y, start.z + 100, 0);
raft.setLinearVelocity(new THREE.Vector3());

report erratum • discuss

Code: River Rafting • 269

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

scoreboard.resetTimer();
scoreboard.score(0);
scoreboard.clearMessage();
updateCamera();
camera.lookAt(new THREE.Vector3(start.y, 0, 0));
resetItems(river, scoreboard);
paused = false;

}

function updateCamera() {
camera.position.set(
raft.position.x + 75,
raft.position.y + 40,
raft.position.z

);
}

function resetItems(ground, scoreboard) {
removeItems();
addItems(ground, scoreboard);

}

function removeItems() {
game_items.forEach(function(item) {
scene.remove(item);

});
game_items = [];

}

function addItems(ground, scoreboard) {
var points = ground.river_points;

var random20 = Math.floor(20 + 10*Math.random()),
fruit20 = addFruitPowerUp(points[random20], ground, scoreboard);

game_items.push(fruit20);

var random70 = Math.floor(70 + 10*Math.random()),
fruit70 = addFruitPowerUp(points[random70], ground, scoreboard);

game_items.push(fruit70);
}
function addFruitPowerUp(location, ground, scoreboard) {

var mesh = new Physijs.ConvexMesh(
new THREE.SphereGeometry(10, 25),
new THREE.MeshPhongMaterial({emissive: 0xbbcc00}),
0

);
mesh.receiveShadow = true;
mesh.castShadow = true;

Appendix 1. Project Code • 270

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

mesh.addEventListener('collision', function() {
var list_index = game_items.indexOf(mesh);
game_items.splice(list_index, 1);
scene.remove(mesh);
scoreboard.addPoints(200);
scoreboard.message('Yum!');
setTimeout(function() {scoreboard.clearMessage();}, 2.5* 1000);

});

ground.updateMatrixWorld();
var p = new THREE.Vector3(location.x, location.y, -20);
ground.localToWorld(p);
mesh.position.copy(p);
scene.add(mesh);
return mesh;

}

// Animate motion in the game
function animate() {

requestAnimationFrame(animate);
if (paused) return;

updateCamera();
renderer.render(scene, camera);

}
animate();

// Run physics
function gameStep() {

// Update physics 60 times a second so that motion is smooth
setTimeout(gameStep, 1000/60);

if (paused) return;

updateScore();
checkForGameOver();
scene.simulate();

}
gameStep();

var next_x;
function updateScore() {

if (!next_x) next_x = raft.position.x + 25;
if (raft.position.x > next_x) {
scoreboard.addPoints(10);
next_x = next_x + 25;

}
}

report erratum • discuss

Code: River Rafting • 271

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

function checkForGameOver() {
if (raft.position.x < 250) return;

paused = true;
scoreboard.stopTimer();
scoreboard.message("You made it!");
if (scoreboard.getTime() < 30) scoreboard.addPoints(100);
if (scoreboard.getTime() < 25) scoreboard.addPoints(200);
if (scoreboard.getTime() < 20) scoreboard.addPoints(500);

}
var mass, velocity;
document.addEventListener("keydown", function(event) {

var code = event.keyCode;
if (code == 32) pushRaft(); // space
if (code == 38) pushRaft(); // up
if (code == 40) pushRaft(); // down
if (code == 37) rotateRaft(-1); // left
if (code == 39) rotateRaft(1); // right
if (code == 82) startGame(raft, river, scoreboard); // r
if (code == 80) { // p
paused = !paused;
if (paused) {

mass = raft.mass;
velocity = raft.getLinearVelocity();
raft.mass=0;

}
else {

raft.mass = mass;
raft.setLinearVelocity(velocity);

}
}

});

function pushRaft() {
var angle = raft.rotation.z;

raft.applyCentralForce(
new THREE.Vector3(

500 * Math.cos(angle),
0,
-500 * Math.sin(angle)

)
);

}
function rotateRaft(direction) {

raft.__dirtyRotation = true;
raft.rotation.z = raft.rotation.z + direction * Math.PI/10;

}
</script>

Appendix 1. Project Code • 272

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

APPENDIX 2

JavaScript Libraries Used in This Book

This appendix contains a list of the JavaScript libraries used in this book,

and details on how you can find more information about each.

A2.1 Three.js

The Three.js JavaScript library is the main library used throughout this book.

The home page for the project is http://threejs.org/. The home page includes lots

of cool animations and samples, many of which you can try in the ICE Code

Editor.

We’re using version 52 of Three.js. Detailed documentation for properties and

methods not discussed in this book can be found at http://gamingjs.com/docs/
threejs/.

A2.2 Physijs

The physics engine that is used in this book is Physijs. The home page for

the library is http://chandlerprall.github.io/Physijs/. That page includes brief samples

and some introductory articles.

The Physijs project doesn’t have as much documentation as the Three.js

project, but there is some on the project wiki: https://github.com/chandlerprall/Physijs/
wiki. We’re using the version of Physijs that is compatible with Three.js 52.

Since Physijs continues to grow, the wiki may refer to newer features than

those supported by the version we’re using.

A2.3 Tween.js

When we want to change values (location, rotation, speed) over the course of

time in this book, we use the Tween library. The project home page is

http://github.com/sole/tween.js.

report erratum • discuss

http://threejs.org/
http://gamingjs.com/docs/threejs/
http://gamingjs.com/docs/threejs/
http://chandlerprall.github.io/Physijs/
https://github.com/chandlerprall/Physijs/wiki
https://github.com/chandlerprall/Physijs/wiki
http://github.com/sole/tween.js
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Building a Tween involves several parts. A Tween needs the starting value or

values, the ending values, the time that it takes to move from the start to the

end values, and a function that’s called as the Tween is running. A Tween

also needs to be started and updated to work.

The Tween from Chapter 11, Project: Fruit Hunt, on page 99, contains a good

example.

new TWEEN.
Tween({

height: 150,
spin: 0

}).
to({

height: 250,
spin: 4

}, 500).
onUpdate(function () {

fruit.position.y = this.height;
fruit.rotation.z = this.spin;

}).
start();

This moves between two values: the height and the spin. Over the course of

half a second (500 milliseconds), the height moves from 150 to 250. The spin

moves from 0 to 4. Each time the Tween is updated, we change the position

and rotation of the fruit being animated. The current values being Tweened

are made available as a property of the special this object.

The last thing we do in the preceding example is to start the Tween.

Tweens also need something to tell them to update. In 3D programming, we

normally do this in the animate() function with a TWEEN.update() call.

function animate() {
requestAnimationFrame(animate);
TWEEN.update();
renderer.render(scene, camera);

}

In addition to onUpdate(), there are onStart() and onComplete() methods that call a

function when the Tween starts and finishes.

A2.4 Scoreboard.js

The Scoreboard.js library is a simple JavaScript library that provides the

basics of scoring in games. It supports very little configuration, but aims to

be easy to use for programmers.

Appendix 2. JavaScript Libraries Used in This Book • 274

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

The project home page is https://github.com/eee-c/scoreboard.js.

The Scoreboard.js library supports messages, help text, scoring, an elapsed

timer, and a countdown timer.

Scoreboard Messages

Use messages to provide in-game messages to the game player. If you create

a scoreboard with var scoreboard = new Scoreboard(), the following methods are

available:

• scoreboard.message('your message here')—sets the current scoreboard message.

This will replace any existing messages. If the message section of the

scoreboard is not shown already, this will show it.

• scoreboard.addMessage('your message here')—adds more messages to the current

scoreboard message.

• scoreboard.addMessage('your message here')—adds more messages to the current

scoreboard message.

• scoreboard.showMessage()—shows the message section of the scoreboard.

• scoreboard.hideMessage()—hides the message section of the scoreboard.

• scoreboard.clearMessage()—erases the message section of the scoreboard.

Help

Scoreboard help provides a way to give instructions to the player without

cluttering up the message section of the scoreboard. Players need to type a

question mark to see the help on the scoreboard.

If you create a scoreboard with var scoreboard = new Scoreboard(), the following

methods are available:

• scoreboard.help('your help instructions here')—sets the scoreboard help. This will

replace any existing help. If the help section of the scoreboard is not shown

already, this will show it.

• scoreboard.showHelp()—shows the help section of the scoreboard.

• scoreboard.hideHelp()—hides the help section of the scoreboard.

Scoring

This feature of the scoreboard keeps track of the number of points the player

has earned in the game.

report erratum • discuss

Scoreboard.js • 275

https://github.com/eee-c/scoreboard.js
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

If you create a scoreboard with var scoreboard = new Scoreboard(), the following

methods are available:

• scoreboard.score(42)—sets the current score in the game. This will replace

any existing score. If no number is supplied, zero is used. If the score

section of the scoreboard is not shown already, this will show it.

• scoreboard.showScore()—shows the score section of the scoreboard.

• scoreboard.hideScore()—hides the score section of the scoreboard.

• scoreboard.getScore()—returns the current score in the game.

• scoreboard.addPoints(10)—increases the score in the game by the specified

number.

• scoreboard.subtractPoints(10)—decreases the score in the game by the specified

number.

Timer

This feature keeps track of the total time that has gone by in the game.

If you create a scoreboard with var scoreboard = new Scoreboard(), the following

methods are available:

• scoreboard.timer()—starts the timer in the game. If the timer section of the

scoreboard is not shown already, this will show it.

• scoreboard.showTimer()—shows the timer section of the scoreboard.

• scoreboard.hideTimer()—hides the timer section of the scoreboard.

• scoreboard.stopTimer()—stops the timer from counting any more.

• scoreboard.startTimer()—starts the timer counting.

• scoreboard.resetTimer()—restarts the timer from zero.

• scoreboard.getTime()—returns the number of seconds that have elapsed in

the game.

Countdown

This feature keeps track of the total time that has gone by in the game.

If you create a scoreboard with var scoreboard = new Scoreboard(), the following

methods are available:

Appendix 2. JavaScript Libraries Used in This Book • 276

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

• scoreboard.countdown(60)—starts the countdown in the game with the number

of seconds supplied. If no time is specified, then 60 seconds will be used.

If the countdown section of the scoreboard is not shown already, this will

show it.

• scoreboard.showCountdown()—shows the countdown section of the scoreboard.

• scoreboard.hideCountdown()—hides the countdown section of the scoreboard.

• scoreboard.stopCountdown()—stops the countdown from counting any more.

• scoreboard.startCountdown()—starts the countdown counting.

• scoreboard.resetCountdown(60)—resets the countdown to the specified number

of seconds.

• scoreboard.getTimeRemaining()—returns the number of seconds left in the game.

• scoreboard.onTimeExpired('Time expired message')—sets the message to be shown

when time expires.

• scoreboard.onTimeExpired(function()) «{ ... }»—if a function is supplied to the

onTimeExpired() method, the function will be called when time runs out.

A2.5 Sounds.js

The Sounds.js JavaScript library contains the bare minimum of sounds for

use in games. Full, up-to-date documentation is available at https://github.com/
eee-c/Sounds.js.

To use the Sounds.js library, it must be sourced in a <script> tag:

<script src="http://gamingJS.com/Sounds.js"></script>

At the time of this writing, there were eleven sounds available: bubble, buzz,

click, donk, drip, guitar, knock, scratch, snick, spring, and swish. Each sound

can be played with code similar to the following:

Sounds.bubble.play();

To make a sound repeat, replace the play() method with repeat():

Sounds.bubble.repeat();

To stop the sound at a later time, call the stop() method:

Sounds.bubble.stop();

If you want a sound to repeat for a fixed amount of time, then start a repeating

sound with a timeout to stop the sound:

report erratum • discuss

Sounds.js • 277

https://github.com/eee-c/Sounds.js
https://github.com/eee-c/Sounds.js
http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Sounds.bubble.repeat();
setTimeout(function(){Sounds.bubble.stop();}, 5*1000);

The preceding would start repeated bubble sounds. After 5 seconds, the

timeout function is run, stopping the repeating bubble sounds.

Appendix 2. JavaScript Libraries Used in This Book • 278

report erratum • discuss

http://pragprog.com/titles/csjava/errata/add
http://forums.pragprog.com/forums/csjava

Index

SYMBOLS
! character, 39, 73

() characters
errors, 19, 56
grouping math with, 70

* character, multiplication
with, 62, 70

+ character
addition with, 69
joining strings with, 73

- character, subtraction with,
69

. character, method chaining,
84

/ character, division with, 70

// notation, commenting with,
69

; character
and functions, 54
errors, 19

= character, defined, 38, 74

== notation, defined, 38, 74

[] characters, listing with, 77

{} characters
function notation, 54–55
JavaScript objects, 160

π, 71

DIGITS
2D

collisions, 95
orthographic camera and,

91, 167

3D
camera perspective and,

7, 90
components, 4

lights and, 187
river-rafting game, 185–

205, 265–272
tilt-a-board game, 145–

157, 249–253

A
aboutMe(), 160–164

absolute value, 170

abstractions, 207

acrobatics() function, 61

addAvatar(), 141

addBackground(), 155

addBall(), 148

addBoard(), 150

addControls(), 152

addFruitPowerUp(), 203

addGround(), 136

addLid(), 193

addLights(), 148

addRaft(), 195

addRiver(), 189

addScoreboard(), 138, 188

addSunlight(), 187

addWater(), 193

addition, 69

ambient attribute, 113

ambient color and light
about, 113
solar-system project, 118
tilt-a-board game, 148

amplitude, wave, 193

angles and rotation, 81

angular factor, 137, 169

animateFruit(), 106

animations
avatar movement, 35–47
cartwheel, 32–33, 39, 44,

61, 66
cave-puzzle game, 165–

184
flipping, 32, 34, 44, 61,

66
fruit in fruit-hunt game,

105
jumping in fruit-hunt

game, 104
moving hands and feet,

59–66
pausing, 129–130, 175,

198
phases of the moon, 125–

132
purple fruit monster

game, 138
river-rafting game, 185–

205
rotating avatar, 82–84
solar-system project,

119–123
spinning donut, 115
spinning shapes, 14
starting and stopping, 39
tilt-a-board game, 151
walking, 61–66
wiggling in fruit-hunt

game, 102

appendChild(), 88

applyCentralForce(), 198

arguments, function, 54, 56

arrow keys
avatar movement, 37–40,

46, 140
cartwheels and flips, 66
cave-puzzle game, 169

collision avoidance, 97
if and else keyword con-

trols, 76
keycodes, 37
purple fruit monster

game, 140
river-rafting game, 197
tilt-a-board game, 145,

152–153
walking animation, 63–65

aspect ratio, 87, 214

assignment operator, 38, 74

assignments, property, 20

asterisk, multiplication with,
62, 70

attributes, 160

avatars
camera following, 43–47,

82
cartwheel animation, 32–

33, 39, 44, 61, 66
cave-puzzle game, 168
collision detection, 93–

98, 230–234
creating simple, 25–32,

136, 168, 219
defined, 25
flipping animation, 32,

34, 39, 44, 61, 66
jumping, 103
moving, 35–47, 140, 220–

222
moving hands and feet,

59–66, 223–226
purple fruit monster

game, 136–138, 140
rotating, 79–84, 226–229
separating parts, 39
starting and stopping, 97
walking animation, 61–66

axis of rotation, 81

B
backgrounds

cave-puzzle game, 166
MeshNormalMaterial, 110
solar-system project, 120
starry, 120, 155
tilt-a-board game, 155

backup code, 178

balls, see also spheres
shadows, 147, 149
tilt-a-board game, 145–

157, 249–253

beams, tilt-a-board game, 151

blocks, if and while, 75

Blogger, 212

board-tilting game, 145–157,
249–253

board.rotation[dir], 152

bodies, creating, 26–32

<body> tags, using, 85

boilerplate code, 85–91

bonus items, 202–205

Booleans, 39, 73, 96

borders, game, 167

bounciness, 169

boundaries
collisions and, 94–98
game, 167

boxes, creating, 6–8

brackets
curly, 54, 160
square, 77

breaking things
project, 17–24
to learn, 55–56

brightness
hexadecimal numbers,

166
specular attribute, 112

browsers, see web browsers

buildObstacle(), 181

bunching variables, 122

C
cameras

adjusting borders for,
168

boilerplate code, 87–91
frame of reference, 127
moving with avatar, 43–

47, 82
orthographic, 89–91, 167
perspective, 7, 90, 168
positioning for games,

134, 147, 186
renderers and, 88–89
resetting, 197
river-rafting game, 197
shadow rendering, 188
solar-system project, 121
switching between, 122,

130

capitalization, 22, 162

cartwheel animation
acrobatics() function, 61
camera position, 44
creating, 32–33
keyboard controls, 66
stopping and starting, 39

castShadow attribute, 114

cave puzzle
basic game, 165–176,

255–259
multilevel game, 177–

184, 259–265

chaining methods, 84

cheating when programming,
11, see also laziness

checkForGameOver(), 200

checkForTreasure(), 104

Chrome, xv, 2

chunkiness, shape, 5–6, 10,
12

circular motion in solar-sys-
tem projects, 119, 127

click sound, 183

clock variable, 115

clocks, see timers

closing, JavaScript console,
18

code, see also code, project
backup, 178
boilerplate, 85–91
hiding, 5
outlining, 135, 186
publishing to web, 207–

215
readability, 50–53
repeating with while, 74
skipping with if, 74, 76
splitting, 179

code editors, see ICE Code
Editor

code, project
avatar movement, 220–

222
cave puzzle, 255–265
collision detection and

avoidance, 230–234
creating simple avatars,

219
creating simple shapes,

217
fruit-hunt game, 234–240
lights and materials,

240–241
message-logger function

example, 222
movie example of Java-

Script objects, 253–255
moving hands and feet,

223–226
phases of the moon, 243–

245

Index • 280

purple fruit monster,
245–249

river rafting, 265–272
rotating avatar, 226–229
solar-system project,

241–243
tilt-a-board game, 249–

253

collisions
cave-puzzle game, 169–

170, 182
detecting and avoiding,

93–98, 230–234
goal in tilt-a-board game,

154
multiple in purple fruit

monster game, 136–
138

river-rafting game, 204

color
ambient, 113, 118
backgrounds, 166
changing, 109–113
emissive attribute, 112
goal lights, 154–155
hexadecimal numbers,

166
list, 43, 110
RGB numbers, 110, 112
solar-system project, 118
specular attribute, 112
trees, 43

color attribute, 113

commenting out, 135

comments
double-slash notation, 69
using, 69, 135
while statements, 120

compile-time errors
defined, 20
functions, 55

computeFaceNormals(), 193

computeVertexNormals(), 193

cones, creating, 10

console.log(), 160–161

constructors
object, 162–164
ramps, 171–174

control keywords, 74–76

controls, see keyboard con-
trols; mouse

coordinates, converting, 205

copying
objects, 161
in programming, 27

projects, 35
this, 180

corners, pulling, 192

cosine
curve, 102
JavaScript function, 71–

72
solar-system animation,

119

countdown timers, see al-

so timers
multilevel games, 181
scoreboard, 100, 174,

181, 276

covers, see materials

crescent moon, 131

cubes, creating, 6–8

curly braces
function notation, 54–55
JavaScript objects, 160

cylinders, creating, 9–11

D
debugging

in ICE Code Editor, 19,
86

in JavaScript console,
19–23

decimal points, 204

defining errors, 22

degrees, see radians

describing, in JavaScript, 67,
160

Despicable Me, 137

digRiver(), 191

direction
avatar, 79–84, 226–229
collision avoidance, 97

directional lights, 187

dirty, defined, 149

__dirtyPosition, 149, 172

__dirtyRotation, 152, 172, 198

discs, creating, 9

distance points, 200

<div> and web hosting, 213

division, 70

documentation, JavaScript,
273–278

domElement property, 88

DOMContentLoaded, 212

Don’t Repeat Yourself (DRY)
principle, 51

donuts
creating, 12–14
raft from, 195
shadow example, 113
shininess example, 111–

113
spinning, 115

double-slashe notation, 69

draggable ramps, 171–174

DRY principle, 51

E
?e option for ICE Code Editor,

23, 120

Earth
phases-of-the-moon

project, 127
solar-system project,

119–123

eat(), debugging example, 20

edit-only mode for ICE Code
Editor, 23, 120

?edit-only option for ICE Code
Editor, 23, 120

else, 76

else if, 76

emissive attribute, 112

equals character notation,
38, 74

erasing objects, 180

errors
compile-time, 20, 55
definition, 22
functions, 55–56, 190
HTML, 86
in ICE Code Editor, 19,

86
in JavaScript console,

20–23
line numbers, 21
quotes, 54, 68
run-time, 20
spelling, 21

event listener
avatar movement, 36–40,

46, 140
camera switching, 122,

130
cartwheels and flips, 66
cave-puzzle game, 169–

170, 173, 182
collision detection and

avoidance, 97, 136–138
draggable ramps, 173
goal in tilt-a-board game,

154

Index • 281

if and else keyword con-
trols, 76

jumping, 103
pausing animations, 130
purple fruit monster

game, 136–138, 140
resetting games, 143
river-rafting game, 197
tilt-a-board game, 152–

153
walking animation, 63–65
web-page loading, 211

exclamation point, 39, 73

Explorer, xv, 2

F
faces, 191, 193

facing proper direction, 79–
84, 226–229

feet
creating, 29–31
moving, 59–66, 223–226
separating from avatar,

39

finish line, river-rafting game,
198–200

Firefox, 2

first-quarter moon, 131

flashGoalLight(), 154

flashing lights, 154

flat surfaces
creating, 11
MeshNormalMaterial, 110
warping, 189–193

flipping animation
acrobatics() function, 61
camera position, 44
creating, 32, 34
keyboard controls, 66
starting and stopping, 39

forEach(), 77

forest, creating, 40–43

frame of reference, 127–129,
205

free web hosting, 212

freeze-ups, 14, 23, 120

frequency, wave, 193

fruit monster game, 133–
143, 245–249

fruit, power-up, 202–205

fruit-hunt game, 99–107,
234–240

full moon, 131

functions
arguments, 54, 56
bunching variables, 122
capitalization, 162
components of, 53
debugging with, 20
errors, 55–56, 190
geometric, 71–72
lists, 77
message-logger example,

49–58, 222
method chaining, 84
null or undefined things, 68
object construction, 162
recursive, 57
reusing code with, 41, 50
skeleton, 190
this keyword and, 180
tree creation, 41
using, 49–58

G
game board, tilt-a-board

game, 150

game logic, tilt-a-board game,
156

game over
check, 138, 200
message, 174

game projects
cave puzzle, 165–184,

255–265
fruit-hunt game, 99–107,

234–240
purple fruit monster,

133–143, 245–249
river rafting, 185–205,

265–272
tilt-a-board, 145–157,

249–253

gameOver(), 174

gameStep()
cave-puzzle game, 175
pausing and, 199
purple fruit monster

game, 139
river-rafting game, 199–

200
scoring and, 200
tilt-a-board game, 156

geometry
cubes, 7
cylinders, 9–11
defined, 4
donuts, 12
JavaScript functions, 71–

72

planes and flat surfaces,
11

rays, 94
rotating avatar, 81
spheres, 4

Get WebGL site, xvi

getElementById(), 215

gibbous moon, 132

goals, see also scoreboards
cave-puzzle game, 169–

170, 182
multilevel games, 182
random placement, 170,

203
river-rafting game, 198–

200
sound effects, 183
tilt-a-board game, 153–

155

Google Chrome, xv, 2

graphics, adding simple, 141

gravity
adding, 134, 146
deselecting with 0 con-

stant, 151
river-rafting game, 186

gray and specular colors, 112

ground
adding, 136
creating for river-rafting

game, 190–192

grouping, 32, 47

guitar sound, 183

H
hacking, defined, 55

hands
creating, 26–29
moving, 59–66, 223–226

hasMoreLevels(), 181

height field mesh, 191

hello() function, 53–58

help messages, scoreboard,
100, 189, 275

hexadecimal numbers, 166

hiding code, 5

HTML
about, 85
boilerplate code, 85, 87
markup, 210
tagging when posting

games, 213

Hypertext Markup Language,
see HTML

Index • 282

I
ICE Code Editor

debugging in, 19, 86
freezing, 14, 23
line numbers for error

messages, 22
using, 1–4

id= attribute and web hosting,
213

if
skipping code with, 74,

76
tilt-a-board game logic,

156

images, adding simple, 141

immovable objects, see obsta-
cles

index, list, 204

initializing, 172

Internet, publishing code to,
207–215

Internet Explorer, xv, 2

intersections and rays, 94–98

isActive property, 173

isGoal property, 170

isWalking(), 64

J
JavaScript

about, xvi, 67
advantages, 78
boilerplate code, 85–91
Booleans, 73
console, 17–24, 160–161
debugging, 19–23
describing things, 67
documentation, 273–278
geometry, 71–72
libraries, 273–278
listing things, 77, 204
mathematics, 69–72
objects, 159–164
shape creation, 4–14
strings, 54, 68, 73

joining strings, 73

jump(), 103

jumping
fruit-hunt game, 103
purple fruit monster

game, 133–143

K
keyboard controls

avatar movement, 36–40,
46, 140

camera switching, 122,
130

cartwheels and flips, 66
cave-puzzle game, 169,

173
collision avoidance, 97
if and else keyword con-

trols, 76
jumping, 103
pausing animations, 130
purple fruit monster

game, 140
resetting games, 143
river-rafting game, 197
tilt-a-board game, 145,

152–153
walking animation, 63–65

keycodes, 37

keywords
about, 67
control, 74–76

Kung Fu Panda, 163

L
launchFruit(), 139

lazy programming, 27, 129

levelUp(), 181

levels, creating, 177–184, see

also multilevel games

Levels object, 179–184

lids, 190, 193

lights
ambient, 113, 118, 148
directional, 187
flashing, 154
goal, 154–155
point, 118, 148
shadows, 113, 148
shininess and, 111–113
spot, 148
sunlight, 112, 114, 187
tilt-a-board game, 147
using, 109–116, 240–241

line numbers and error mes-
sages, 21

linear factor, 137, 169

linear velocity, 138, 197

listenForEvents(), 173

lists
collision avoidance, 96
color, 43, 110
multilevel games, 180
removing items from, 204
square brackets, 77
of trees in fruit-hunt

game, 101

local coordinates, 205

localToWorld(), 205

log
functions example, 49–

58, 222
JavaScript console, 18,

160–161

logic, game, 156

M
m_angle, 128

makeBorder(), 167

makeGround(), 190–192

makeTree(), 101

makeTreeAt(), 40–43, 96

markers, avatar, 45–47, 82

Mars
phases-of-the-moon

project, 126
solar-system project,

119–123

materials
bouncy, 169
changing color, 109–113
defined, 4
image, 141
reusing, 27
shininess, 111–113
slippery, 169
using, 109–116, 240–241

Math.abs(), 170

Math.cos(), 72

Math.floor(), 102, 204

Math.PI, 71, 81

-Math.PI/2, 81

Math.random(), 102, 170, 203

Math.sin()
about, 62, 72
river creation, 193
walking animation, 62
wiggling animation, 102

mathematics, see also geome-
try

in JavaScript, 69–72
order of operations, 70

matrix, 205

me variable, 173

Mesh(), 164

mesh
changing color, 109–113
construction function,

164
defined, 4

Index • 283

draggable ramps, 173
images, 141

mesh variable, 173

MeshBasicMaterial(), 110

MeshNormalMaterial(), 110, 164

message-logger function exam-
ple, 49–58, 222

messages, scoreboard
game over, 174
help, 100, 189, 275
methods, 275

method chaining, 84

methods
“undefined” error mes-

sages, 22
chaining, 84
creating, 164
defined, 161

Microsoft Internet Explorer,
xv, 2

moon-phases project, 125–
132, 243–245

mouse controls, cave-puzzle
game, 166, 173

Mouse.js, 166, 173

move(), 170, 172

Movie(), 163

movie example of JavaScript
objects, 160–164, 253–255

Mozilla Firefox, 2

multilevel games
cave puzzle, 177–184,

259–265
river-rafting game, 185–

205, 265–272

multiplication, 62, 70

N
names, function errors, 56

negative numbers, 70, 170

new keyword
creating scoreboards, 100
object construction, 162–

164

new moon, 131

“no method” error message,
22

normals, recomputing, 193

“not defined” error messages,
22

not operator, 39, 73

not_allowed, 96

null things, 68

numbers
decimal points, 204
hexadecimal, 166
in JavaScript, 69
negative, 70, 170
random, 170, 203
RGB color, 110, 112
treated like strings, 73

O
object-oriented programming,

159–164, 179

Object.create, 161

objects
constructing, 162–164
copying, 161
defined, 160
erasing, 180
immovable, 177, 181
JavaScript, 159–164
Levels, 179
properties and, 179

obstacles
cave-puzzle game, 177,

181
multilevel games, 178

on-dom-ready, 211

onComplete(), 274

onStart(), 274

onUpdate(), 274

opacity, goal lights, 154–155

opening, JavaScript console,
18

orbits in solar-system
projects, 119, 127

order of operations, 70

orthographic camera, 89–91,
167

outlining code, 135, 186

P
parameters, undefined, 155

parentheses
errors, 19, 56
grouping math with, 70

particle systems, solar-system
project, 120, 155

patterns, 94

pause variable, 129

pausing
cave-puzzle game score-

board animation, 175
phases of the moon simu-

lation, 129–130
river-rafting game, 198

penalizing players, 107

performance
chunks and, 6
shadows and, 113

period character, method
chaining, 84

perspective cameras
3D and, 7, 90
adjusting game borders

for, 168

phases-of-the-moon project,
125–132, 243–245

Phong material, shininess ex-
ample, 111–113

physics
0 constant, 151
cave-puzzle game, 166,

169
__dirtyPosition, 149, 172
mouse controls, 166
pausing, 175, 200
purple fruit monster

game, 133, 136–138
tilt-a-board game, 146

Physijs, about, 133, 273, see

also physics

pi, 71

placeGoal() , 171

planes
creating, 11
warping to create rivers,

189–193
water in river-rafting

game, 193

planets in solar-system
project, 119–123

platforms in cave-puzzle
game, 182

players, defined, 25, see al-

so avatars

plus operator
addition with, 69
joining strings with, 73

point lights, 118, 148

points, game
fruit-hunt game, 103
penalties, 107
power-up, 202–205
river-rafting game, 200–

205
scoreboard methods, 275

points, ray, 96

positioning
avatar with arrow keys,

38

Index • 284

borders, 168
camera for games, 134,

147, 186
camera to follow avatar,

43–47, 82
directional lights, 187
feet, 30, 62–63
fruit spinning animation,

106
goal for cave-puzzle

game, 170
hands, 28–29, 59, 62–63
ramps for cave-puzzle

game, 172
spheres, 6
spinning avatar anima-

tion, 82
trees, 42
walking animation, 62–63

power-up points, 202–205

premature generalization, 53,
149

programming
cheats, 11
copying in, 27
frustrations, 17
laziness, 27, 129
object-oriented, 159–

164, 179
outlining code, 135, 186
readability, 50–53

project code, see code, project

properties, objects and, 179

property assignments, 20

prototypes, 162, 164

publishing code to Web, 207–
215

pulling corners, 192

purple fruit monster game,
89–91, 133–143, 245–249

push onto lists, 96, 101, 180

pushRaft(), 198

puzzle, cave
basic game, 165–176,

255–259
multilevel game, 177–

184, 259–265

pyramids, creating, 10

Pythagorean theorem, 104

Q
quarter moon, 131

quotes, closing, 54, 68

R
radians, 71, 81

raft, creating, 195

rafting game, 76, 185–205,
265–272

ramps, draggable, 171–174

random goals, 170, 203

random numbers, 170, 203

rays and intersections, 94–98

readability, code, 50–53

recursion, 57, 155

red X errors, 19, 86

reference, frame of, 127–129,
205

renderer variable, 214

renderer.render(), 88

renderers
boilerplate code, 88–89
defined, 88
pausing animations, 129–

130
shadows, 113
shininess, 111
size and web hosting, 214
switching, 111

repeating
code with while, 74
DRY programming princi-

ple, 51
sounds, 277

requestAnimationFrame(), 116

resetBall(), 149, 154

resetItems(), 202

resetting
ball in tilt-a-board game,

149, 154
bonus items, 202
purple fruit monster

game, 138, 143
river-rafting game, 196

retrograde motion, 123

return in functions, 54

RGB numbers, 110, 112

river
adding items to, 203
creating, 189–193

river-rafting game, 76, 185–
205, 265–272

river_points property, 203

road for purple fruit monster
game, 89–91

rotate() method, 172

rotating
π and, 71
animation for shapes, 14
avatars, 79–84, 226–229
camera in solar-system

project, 122
cartwheel animation, 32–

33
cylinders and tubes, 9
dirty, 152, 198
flipping animation, 34
fruit spinning animation,

106
game board, 152
phases-of-the-moon

project, 128
planes and flat surfaces,

12
ramps for cave-puzzle

game, 172–173
river-rafting game, 191,

198
shapes to see 3D, 7
solar-system project, 119
spinning donut, 115

run-time errors, defined, 20

S
saving

backup code, 178
work in ICE, 4

scene.simulate(), 138

scenes
boilerplate code, 87
camera aspect ratio, 87
defined, 4
game-over check, 138
multilevel games, 178,

180
pausing, 200
physics-enabled, 134,

147

scorePoints(), 104

Scoreboard.js, methods, 274–
277, see also scoreboards

scoreboards, see also goals
cave-puzzle game, 166,

174, 179, 181
fruit-hunt game, 100,

105
help messages, 100, 189
methods, 274–277
multilevel games, 179,

181
pausing, 198
purple fruit monster

game, 133, 138
resetting, 197

Index • 285

river-rafting game, 185,
188, 197, 200–205

sound effects, 105

<script> tags, using, 86

semicolons
and functions, 54
errors, 19

setLinearVelocity(), 197

setTimeout(), 139, 155–156

shadow boxes, 188

shadowMapEnabled attribute, 113

shadows
cameras and, 188
lights and, 113, 148, 187
tilt-a-board game, 147,

149

shakeTree(), 102

shapes
creating avatars, 26–32
creating simple, 1–15,

217
pulling corners, 193
warping, 189–193

shininess, 111–113

showing code, 5

sine
JavaScript function, 71–

72
jumping animation in

fruit-hunt game, 104
river creation, 193
solar-system animation,

119
walking animation, 62
wiggling animation in

fruit-hunt game, 102

sizing
camera aspect ratio, 87
code for web posting, 214
spheres, 4
web browser screen, 88

skeleton functions, 190

skipping code with if, 74, 76

slashes
commenting with, 69
division with, 70

slipperiness, 169

smoothing, shapes, 5

solar-system projects
moon phases, 125–132,

243–245
orbit simulation, 117–

123, 241–243

sounds
about, 277

cave-puzzle game, 183
fruit-hunt game, 100,

105

Sounds.js library, about,
105, 277, see also sounds

space bar
jumping with, 103
pushing raft with, 198

space simulations
orthographic camera, 91
phases of the moon, 125–

132, 243–245
solar-system project,

117–123, 241–243

specular attribute, 112

speed
limiting in cave-puzzle

game, 170
phases of the moon, 129
purple fruit monster

game, 138
resetting in river-rafting

game, 197

speed variable, 129

spelling, error messages, 21

SphereGeometry(), 164

spheres
creating, 3–6
creating avatars, 26–32
debugging example, 21–

23

spinAvatar(), 83

spinning
animation for avatar, 82–

84
animation for shapes, 14
animation in fruit-hunt

game, 105
donut, 115
ramps for cave-puzzle

game, 173

splicing lists, 204

splitting code, 179

spot lights, 148

square brackets, listing with,
77

stalactites, 182

stalagmites, 182

Star Trek II: The Wrath of

Khan, 95

Star Wars, 160

stars
solar-system project, 120
tilt-a-board game, 155

startGame(), 198

starter code, 85–91

starting
cartwheel and flipping

animations, 39
games over, 138, 143,

149, 154, 196
river-rafting game, 196
spinning animation, 83
walking animation, 64

stopping
cartwheel and flipping

animations, 39
cave-puzzle game, 174
in collision avoidance, 97
game-over check, 138,

200
phases-of-the-moon sim-

ulation, 129–130
river-rafting game, 198
spinning animation, 83
walking animation, 64

strings
closing quotes, 54, 68
defined, 54
joining, 73

subtraction, 69

sun in solar-system project,
118–123

sunlight
river-rafting game, 187
shadows example, 114
shininess example, 112

swinging hands and feet, 60–
63

switching, cameras, 122, 130

T
tangent, 71

thingsOnCurrentLevel(), 180

third-quarter moon, 131

this keyword, 161–162, 173,
180

three-dimensional games and
objects, see 3D

Three.js, about, 22, 273

tilt(), 152

tilt-a-board game, 145–157,
249–253

time variable, 129

timers
animation, 61, 115, 119
cave-puzzle game, 174,

181
multilevel games, 181

Index • 286

points bonuses, 201
purple fruit monster

game, 139
river-rafting game, 189
scoreboard, 100, 174,

181, 276
solar-system project, 119
sound, 277
tilt-a-board game, 155–

156
wiggling animation in

fruit-hunt game, 103

torus, see donuts

Toy Story, 125, 162

tree_with_treasure, 101

trees
boundaries, 94–98
creating, 40–43
fruit-hunt game, 99–107,

234–240

triangle errors, 19

troubleshooting, see also er-
rors

code, 19–23
freeze-ups, 14, 23, 120

tubes, see cylinders

Tumblr, posting to, 212–215

turn(), 80–84

Tween
about, 273
jumping animation in

fruit-hunt game, 104
spinning avatar anima-

tion, 82
wiggling animation in

fruit-hunt game, 102,
274

U
uncommenting, 135

“undefined is not a function”
error, 21

undefined things, 68, 155

underscores in dirtyPosition, 149

update(), 83

updateCamera(), 197

updateMatrixWorld(), 205

updateScore(), 201

V
var keyword

about, 68
bunching variables with,

122

variables
bunching, 122
geometry, 71–72
keyword, 68, 122
numbers, 69

vectors, 96, 137

velocity, 138, 170, 197

vertices, pulling corners, 193

W
walking animation, 61–66

waning moon, 132

warping shapes, 189–193

water, creating for river-raft-
ing game, 193

wave amplitude and frequen-
cy, 193, 205, see also co-
sine; sine

waxing moon, 132

web browsers
about, 208–212
aspect ratio, 87, 214
choosing, xv, 2
freezing, 14, 23, 120
publishing code, 207–215
scene renderers, 88–89

web hosting
companies, 209, 212

publishing code, 207–215
Tumblr example, 212–

215

web pages, see also HTML
about, 208–212
changing with Java-

Script, 78

web servers
Internet requests and,

208
public availability, 209

WebGL
renderer, 89
switching to, 111
testing for, xvi, 111, 146

while, 74, 120

white and specular colors,
112

wiggling animation in fruit-
hunt game, 102

Wikipedia color list, 43, 110

wireframing, 154

WordPress, 212

worker for physics, 134, 147

world coordinates, 205

X
X errors, 19, 86

x_diff, 122

Y
y_diff, 122

yellow-triangle errors, 19

Z
zero

approximating, 72
counting from, 180–181
deselecting gravity with 0

constant, 151

Index • 287

Dynamic Audio and Cross-Platform Games
Add audio to your web, mobile, or desktop app. Learn how to create mobile apps for both

iOS and Android in an easy language.

Develop cross-platform mobile games with Corona us-

ing the Lua programming language! Corona is experi-

encing explosive growth among mobile game develop-

ers, and this book gets you up to speed on how to use

this versatile platform. You’ll use the Corona SDK to

simplify game programming and take a fun, no-non-

sense approach to write and add must-have gameplay

features. You’ll find out how to create all the gaming

necessities: menus, sprites, movement, perspective

and sound effects, levels, loading and saving, and game

physics. Along the way, you’ll learn about Corona’s

API functions and build three common kinds of mobile

games from scratch that can run on the iPhone, iPad,

Kindle Fire, Nook Color, and all other Android smart-

phones and tablets.

Printed in full color.

Silvia Domenech

(220 pages) ISBN: 9781937785574. $36

http://pragprog.com/book/sdcorona

http://pragprog.com/book/sdcorona

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take

a healthier approach to programming.

To keep doing what you love, you need to maintain

your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you

learn, remember, concentrate, and be creative—skills

critical to doing your job well. Learn how to change

your work habits, master exercises that make working

at a computer more comfortable, and develop a plan

to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for

those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or

conflict with the advice given to you by your own

healthcare provider including Physician, Nurse Practi-

tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner

(254 pages) ISBN: 9781937785314. $36

http://pragprog.com/book/jkthp

http://pragprog.com/book/jkthp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/book/csjava
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/book/csjava

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/csjava
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/csjava
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	How I Learned to Program
	What You Need for This Book
	What Is JavaScript?
	How to Read This Book
	Let’s Get Started!

	1. Project: Creating Simple Shapes
	Programming with the ICE Code Editor
	Making Shapes with JavaScript
	Animating the Shapes
	The Code So Far
	What's Next

	2. Playing with the Console and Finding What’s Broken
	Getting Started
	Opening and Closing the JavaScript Console
	Debugging in ICE: The Red X
	Debugging in ICE: The Yellow Triangle
	Debugging in the Console
	Recovering When ICE Is Broken
	What’s Next

	3. Project: Making an Avatar
	Getting Started
	Making a Whole from Parts
	Breaking It Down
	Adding Feet for Walking
	Challenge: Make the Avatar Your Own
	Doing Cartwheels
	The Code So Far
	What’s Next

	4. Project: Moving Avatars
	Getting Started
	Building Interactive Systems with Keyboard Events
	Converting Keyboard Events into Avatar Movement
	Challenge: Start/Stop Animation
	Building a Forest with Functions
	Moving the Camera with the Avatar
	The Code So Far
	What’s Next

	5. Functions: Use and Use Again
	Getting Started
	Understanding Simple Functions
	When Things Go Wrong
	Weird Tricks with Functions
	The Code So Far
	What’s Next

	6. Project: Moving Hands and Feet
	Getting Started
	Moving a Hand
	Swinging Hands and Feet Together
	Walking When Moving
	The Code So Far
	What’s Next

	7. A Closer Look at JavaScript Fundamentals
	Getting Started
	Describing a Thing in JavaScript
	Changing Things
	Repeating and Skipping Code with while and if
	Listing Things
	What Makes JavaScript Different
	What’s Next

	8. Project: Turning Our Avatar
	Getting Started
	Facing the Proper Direction
	Breaking It Down
	Animating the Spin
	The Code So Far
	What’s Next

	9. What's All That Other Code?
	Getting Started
	A Quick Introduction to HTML
	Setting the Scene
	Using Cameras to Capture the Scene
	Using a Renderer to Project What the Camera Sees
	Exploring Different Cameras and Renderers
	What’s Next

	10. Project: Collisions
	Getting Started
	Rays and Intersections
	The Code So Far
	What’s Next

	11. Project: Fruit Hunt
	Getting Started
	Starting a Scoreboard at Zero
	Giving Trees a Little Wiggle
	Jumping for Points
	Making Our Games Even Better
	The Code So Far
	What’s Next

	12. Working with Lights and Materials
	Getting Started
	Changing Color
	Realism: Shininess
	Shadows
	Let’s Animate!
	The Code So Far
	What’s Next

	13. Project: Build Your Own Solar System
	Getting Started
	The Sun, Earth, and Mars
	Earth-Cam!
	The Code So Far
	What’s Next

	14. Project: Phases of the Moon
	Getting Started
	Change Mars into the Moon
	The Coolest Trick: Frame of Reference
	Challenge: Create an Earth Orbit Frame of Reference
	Pausing the Simulation
	Understanding the Phases
	The Code So Far
	What’s Next

	15. Project: The Purple Fruit Monster Game
	Getting Started
	Let’s Make Physics!
	Outline the Game
	The Code So Far
	What’s Next

	16. Project: Tilt-a-Board
	Getting Started
	Gravity and Other Setup
	Outline the Game
	The Code So Far
	What’s Next

	17. Project: Learning about JavaScript Objects
	Getting Started
	Simple Objects
	Copying Objects
	Constructing New Objects
	The Code So Far
	What’s Next

	18. Project: Cave Puzzle
	Getting Started
	Setting the Game’s Boundaries
	Building a Random, Unreachable Goal
	Building Draggable Ramps
	Winning the Game
	The Code So Far
	What’s Next

	19. Project: Multilevel Game
	Getting Started
	Building Levels
	Adding Finishing Touches to the Game
	The Code So Far
	What’s Next

	20. Project: River Rafting
	Getting Started
	Organizing Code
	Warping Shapes to Make Unique Things
	Build a Raft for Racing
	Setting the Finish Line
	The Code So Far
	What’s Next

	21. Getting Code on the Web
	The Mighty, Mighty Browser
	Free Websites
	Putting Your Code on Another Site
	What’s Next

	A1. Project Code
	Code: Creating Simple Shapes
	Code: Playing with the Console and Finding What's Broken
	Code: Making an Avatar
	Code: Moving Avatars
	Code: Functions: Use and Use Again
	Code: Moving Hands and Feet
	Code: A Closer Look at JavaScript Fundamentals
	Code: Turning Our Avatar
	Code: What's All That Other Code?
	Code: Collisions
	Code: Fruit Hunt
	Code: Working with Lights and Materials
	Code: Build Your Own Solar System
	Code: Phases of the Moon
	Code: The Purple Fruit Monster Game
	Code: Tilt-a-Board
	Code: Learning about JavaScript Objects
	Code: Cave Puzzle
	Code: Multilevel Game
	Code: River Rafting

	A2. JavaScript Libraries Used in This Book
	Three.js
	Physijs
	Tween.js
	Scoreboard.js
	Sounds.js

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

