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Preface

This volume contains the Þnal version of the papers originally presented at the second
SMILE workshop 3D Structure from Multiple Images of Large-scale Environments,
which was held on 1-2 July 2000 in conjunction with the Sixth European Conference in
Computer Vision at Trinity College Dublin.

The subject of the workshop was the visual acquisition of models of the 3D world
from images and their application to virtual and augmented reality. Over the last few
years tremendous progress has been made in this area. On the one hand important new
insights have been obtained resulting in more ßexibility and new representations. On the
other hand a number of techniques have come to maturity, yielding robust algorithms
delivering good results on real image data. Moreover supporting technologies � such as
digital cameras, computers, disk storage, and visualization devices � have made things
possible that were infeasible just a few years ago.

Opening the workshop was Paul Debevec�s invited presentation on image-based
modeling, rendering, and lighting. He presented a number of techniques for using digital
images of real scenes to create 3D models, virtual camera moves, and realistic computer
animations.The remainder of theworkshopwas divided into three sessions:Computation
and Algorithms, Visual Scene Representations, and Extended Environments. After each
session there was a panel discussion that included all speakers. These panel discussions
were organized by Bill Triggs, Marc Pollefeys, and Tomas Pajdla respectively, who
introduced the topics and moderated the discussion.

A substantial part of these proceedings are the transcripts of the discussions following
each paper and the full panel sessions. These discussions were of very high quality and
were an integral part of the workshop.

The papers in these proceedings are organized into three parts corresponding to the
three workshop sessions. The papers in the Þrst part discuss different aspects of Com-
putation and Algorithms. Different problems of modeling from images are addressed �
structure and motion recovery, mosaicing, self-calibration, and stereo. Techniques and
concepts that are applied in this context are frame decimation, model selection, linear
algebra tools, and progressive reÞnement. Clearly, many of these concepts can be used
to solve other problems. This was one of the topics of the discussion that followed the
presentation of the papers.

The papers in the second part deal with Visual Scene Representations. Papers here
deal with concentric mosaics, voxel coloring, texturing, and augmented reality. In the
discussion following the presentation of these papers different types of representation
were compared. One of the important observations was that the traditional split between
image based and geometry based representations is fading away and that a continuum
of possible representations exists in between.

The papers in the last part are concerned with the acquisition of Extended Environ-
ments. These present methods to deal with large numbers of images, the use of special
sensors, and sequential map-building. The discussion concentrated on how visual repre-
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sentations of extended environments can be acquired. One of the conclusions was the
importance of omnidirectional sensors for this type of application.

Finallywewould like to thank themany peoplewho helped to organize theworkshop,
and without whom it would not have been possible. The scientiÞc helpers are listed on
the following page, but thanks must also go to David Vernon, the chairman of ECCV
2000, for his tremendous help in many areas and for organizing a great conference; to
the student helpers at Trinity College and in Leuven and to the K.U. Leuven and the
ITEA99002 BEYOND project for acting as sponsors of this workshop.

January 2001 Marc Pollefeys, Luc Van Gool
Andrew Zisserman, Andrew Fitzgibbon
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Pursuing Reality with Image-Based Modeling,
Rendering, and Lighting

Paul Debevec

Institute for Creative Technologies
University of Southern California

13274 Fiji Way 5th Floor
Marina del Rey, CA 90292 USA

paul@debevec.org
http://www.debevec.org/

Abstract. This paper presents techniques and animations developed
from 1991 to 2000 that use digital photographs of the real world to create
3D models, virtual camera moves, and realistic computer animations. In
these projects, images are used to determine the structure, appearance,
and lighting conditions of the scenes. Early work in recovering geometry
(and generating novel views) from silhouettes and stereo correspondence
are presented, which motivate Façade, an interactive photogrammetric
modeling system that uses geometric primitives to model the scene. Sub-
sequent work has been done to recover lighting and reflectance properties
of real scenes, to illuminate synthetic objects with light captured from
the real world, and to directly capture reflectance fields of real-world ob-
jects and people. The projects presented include The Chevette Project
(1991), Immersion 94 (1994), Rouen Revisited (1996), The Campanile
Movie (1997), Rendering with Natural Light (1998), Fiat Lux (1999),
and the Light Stage (2000).

1 Introduction

A prominent goal in computer graphics has been the pursuit of rendered images
that appear just as real as photographs. But while graphics techniques have
made incredible advances in the last twenty years, it has remained an extreme
challenge to create compellingly realistic imagery. For one thing, creating realistic
Computer Graphics (CG) models is a time and talent-intensive task. With most
software, the artist must laboriously build a detailed geometric model of the
scene, and then specify the reflectance characteristics (color, texture, specularity,
and so forth) for each surface, and then design and place all of the scene’s lighting.
Second, generating photorealistic renderings requires advanced techniques such
as radiosity and global illumination, which are both computationally intensive
and not, as of today, fully general in simulating light transport within a scene.
Image-based modeling and rendering (IBMR) can address both of these issues.
With IBMR, both the structure and the appearance of the scene is derived
from photographs of the real world - which can not only simplify the modeling

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 1–16, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 P. Debevec

task, but when employed judiciously can reproduce the realism present in the
real-world photographs.

In this article, I present the particular progression of research in this area
that I have been involved with. Image-based modeling and rendering is, at its
heart, a mixture of image acquisition, image analysis, and image synthesis –
or in other words: of photography, computer vision, and computer graphics.
I experimented extensively with photography and computer graphics in high
school; and my first class in computer vision came in the Fall of 1989 from
Professor Ramesh Jain at the Unversity of Michigan. It was in that class, while
writing a correlation-based stereo reconstruction algorithm, that it first seemed
clear to me that the three disciplines could naturally work together: photography
to acquire the images, computer vision to derive 3D structure and appearance
from them, and computer graphics to render novel views of the reconstructed
scene.

2 The Chevette Project: Modeling from Silhouettes

The first animation I made using image-based techniques came in the summer
of 1991 after I decided to create a three-dimensional computer model of my
first car, a 1980 Chevette. It was very important to me that the model be truly
evocative of the real car, and I realized that building a traditional CG model
from grey polygons would not yield the realism I was after. Instead, I devised
a method of building the model from photographs. I parked the car next to
a tall building and, with help from my friend Ken Brownfield, took telephoto
pictures of the car from the front, the top, the sides, and the back. I digitized the
photographs then used image editing software to manually locate the silhouette
of the car in each image. I then aligned the images with respect to each other
on the faces of a virtual box and wrote a program to use the silhouettes to
carve out a voxel sculpture of the car (Fig. 1). The surfaces of the exposed
voxels were then colored, depending on which way they were facing, by the
pixels in the corresponding images. I then created a 64-frame animation of the
Chevette flying across the screen. Although (and perhaps because) the final
model had flaws resulting from specularities, missing concavities, and imperfect
image registration, the realistic texturing and illumination it inherited from the
photographs unequivocally evoked an uncanny sense of the actual vehicle. The
model also exhibited a primitive form of view-dependent texture mapping, as it
would appear to be textured by the front photograph when viewed from the front,
and by the top photograph when viewed from the top, etc. As a result, specular
effects such as the moving reflection of the environment in the windshield were
to some extent replicated, which helped the model seem considerably more life-
like than simple texture-mapped geometry. The animation can be seen at the
Chevette Project website (see Fig. 1)
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Fig. 1. Images from the 1991 Chevette Modeling project. The top three images
show pictures of the 1980 Chevette photographed with a telephoto lens from the top,
side, and front. The Chevette was semi-automatically segmented from each image,
and these images were then registered with each other approximating the projection
as orthographic. The shape of the car is then carved out from the box volume by
perpendicularly sweeping each of the three silhouettes like a cookie-cutter through the
box volume. The recovered volume (shown inside the box) is then textured-mapped by
projecting the original photographs onto it. The bottom of the figure shows a sampling
of frames from a synthetic animation of the car flying across the screen, viewable at
http://www.debevec.org/Chevette .

3 Immersion ’94: Modeling from Stereo

The Chevette project caught the attention of researchers at Interval Research
Corporation, where I was hired as a summer intern in the summer of 1994. There
I was fortunate to work for Michael Naimark, a media artist who has worked
with concepts relating to image-based rendering since the 1970’s, and computer
vision researcher John Woodfill. Naimark had designed a stereo image capture
rig consisting of two Bolex 16mm film cameras fitted with 90-degree-field-of-view
lenses eight inches apart atop an aluminum three-wheeled stroller. An encoder
attached to one of the wheels caused the cameras to fire synchronously every time
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the stroller moved a meter forward. In this way, Naimark had filmed several miles
of the trails in Banff National Forest.

Our goal for the summer was to turn these sets of stereo image pairs into
a photorealistic virtual environment. The technique we used was to determine
stereo correspondences, and thus depth, between left-right pairs of images, and
then to project the corresponded pixels forward into the 3D world. For this we
used a stereo algorithm developed by John Woodill and Ramin Zabih [13]. To
create virtual renderings, we projected a supersampled version of the points onto
a virtual image plane displaced from the original point of view, using a Z-buffer to
resolve the occlusions. Using a single stereo pair, we could realistically re-render
the scene from anywhere up to a meter away from the original camera positions,
except for artifacts resulting from areas that were unseen in the original images,
such as the ground areas behind tree trunks. To fill in the disoccluded areas for
novel views, our system would pick the two closest stereo pairs to the desired
virtual point of view, and render both to the desired novel point of view. These
images were then optically composited so that wherever one lacked information
the other would fill it in. In areas where both images had information, the data
was linearly blended according to which original view the novel view was closer
to - another early form of view-dependent texture mapping. The result was the
ability to realistically move through the forest, as long as one kept within about a
meter of the original path through the forest. Naimark presented this work at the
SIGGRAPH 95 panel “Museums without Walls: New Media for New Museums”
[1], and the animations may be seen at the Immersion project website [10].

4 Photogrammetric Modeling with Façade

My thesis work [4] at Berkeley presented a system for modeling and rendering ar-
chitectural scenes from photographs. Architectural scenes are an interesting case
of the general modeling problem since their geometry is typically very structured,
and at the same time they are one of the most common types of environment
one wishes to to model. The goal of the research was to model architecture in a
way that is convenient, requires relatively few photographs, and produces freely
navigable and photorealistic results.

The product of this research was Façade [6], an interactive computer program
that enables a user to build photorealistic architectural models from a small
set of photographs. I began the basic modeling paradigm and user interface at
Berkeley in 1993, and later was fortunate to collaborate with Camillo Taylor to
adapt his previous work in structure from motion for unorganized line segments
[11] to solving for the shape and position of geometric primitives for our project.
In Façade, the user builds a 3D model of the scene by specifying a collection of
geometric primitives such as boxes, arches, and surfaces of revolution. However,
unlike in a traditional modeling program, the user does not need to specify the
dimensions or the locations of these pieces. Instead, the user corresponds edges
in the model to edges marked in the photographs, and the computer works out
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Fig. 2. The Immersion ’94 image-based modeling and rendering project.
The top images are a stereo pair (reversed for cross-eyed stereo viewing) taken in
Banff National Forest. The middle left photo is a stereo disparity map produced by
John Woodfill’s parallel implementation of the Zabih-Woodfill stereo algorithm [13]. To
its right the map has been processed using a left-right consistency check to invalidate
regions where running stereo based on the left image and stereo based on the right image
did not produce consistent results. Below are two virtual views generated by casting
each pixel out into space based on its computed depth estimate, and reprojecting the
pixels into novel camera positions. On the left is the result of virtually moving one
meter forward, on the right is the result of virtually moving one meter backward. Note
the dark disoccluded areas produced by these virtual camera moves; these areas were
not seen in the original stereo pair. In the Immersion ’94 animations (available at
http://www.debevec.org/Immersion , these regions were automatically filled in from
neighboring stereo pairs.
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the shapes and positions of the primitives that make the model agree with the
photographed geometry (Fig. 3).

Fig. 3. A screen snapshot from Façade. The windows include the image viewers
at the left, where the user marks architectural edge features, and model viewers, where
the user instantiates geometric primitives (blocks) and corresponds model edges to
image features. Façade’s reconstruction feature then determines the camera parame-
ters and position and dimensions of all the blocks that make the model conform to
the photographs. The other windows include the toolbar, the camera parameter dia-
log, the block parameter/constraint dialog, and the main image list window. See also
http://www.debevec.org/Thesis/.

Façade simplifies the reconstruction problem by solving directly for the ar-
chitectural dimensions of the scene: the lengths of walls, the widths of doors,
and the heights of roofs, rather than the multitude of vertex coordinates that
a standard photogrammetric approach would try to recover. As a result, the
reconstruction problem becomes simpler by orders of magnitude, both in com-
putational complexity and, more importantly, in the number of image features
that it is necessary for the user to mark. The technique also allows the user
to fully exploit architectural symmetries – modeling repeated structures and
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computing redundant dimensions only once – further simplifying the modeling
task.

Like any structure-from-multiple-views algorithm, Façade’s reconstruction
technique solves for where the original cameras were in the scene. (In addition
to the extrinsic position and rotation parameters, Façade is also able to solve
for each camera’s intrinsic parameters of focal length and center of projection.)
With the camera positions known, any one of the photographs can be projected
back onto the reconstructed geometry using projective texture mapping. Façade
generates photorealistic views of the scene by using all of the available pho-
tographs. For each surface point, Façade computes which images it appears in
(accounting for visibility), and then blends the pixel values from this set of im-
ages to determine the point’s appearance in the rendering. This blending can
happen in one of several ways. The simple method is to choose entirely the pixel
value of the image that viewed the surface point closest to the perpendicular.
The more advanced method is to use view-dependent texture mapping in which
each pixel’s contribution to the rendered pixel value is determined as an average
weighted by how closely each image’s view of the point is aligned with the view
of the desired view. As in the Chevette project, blending between the original
projected images based on the novel viewpoint helps reproduce some of the effect
of specular reflection, but more importantly, it helps simple models appear to
have more of the geometric detail present in the real-world scene. With large
numbers of original images, the need for accurate geometry decreases, and the
VDTM technique behaves as the techniques in the Light Field [9] and Lumigraph
[8] image-based rendering work.

Façade was the inspiration for Robert Seidl’s photogrammetric modeling
product Canoma, recently acquired by Adobe Systems from MetaCreations, Inc,
and – along with work done at INRIA led by Olivier Faugeras – a source of in-
spiration for RealViz’s ImageModeler software.

Some additional research done in the context of the Façade system enables
the computer to automatically refine a basic recovered model to conform to more
complicated architectural geometry. The technique, called model-based stereo,
displaces the surfaces of the model to make them maximally consistent with
their appearance across multiple photographs. Thus, a user can model a bumpy
wall as a flat surface, and the computer will compute the relief. This technique
was employed in modeling the West façade of the gothic Rouen cathedral for
the interactive art installation Rouen Revisited shown at the SIGGRAPH 96
art show. Most of the area between the two main towers seen in Fig. 4 was
originally modeled as a single polygon. The Rouen project also motivated the
addition of new features to Façade to solve for unknown focal lengths and centers
of projection in order to make use of historic photographs of the cathedral.

5 The Campanile Movie: Rendering in Real Time

After submitting my thesis at the end of 1996, I continued at Berkeley as a
research scientist to create a photorealistic fly-around of the entire Berkeley
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Rendering: 1996 Rendering: 1896 Rendering: painting

Fig. 4. Rouen Revisited. Synthetic views of the Rouen cathedral from the Rouen
Revisited art installation. Left: a synthetic view created from photographs taken in
January, 1996. Middle: a synthetic view created from historic postcards showing the
cathedral at the time Monet executed his series of paintings (1892-1894). Right: a
synthetic view of one of Monet’s twenty-eight paintings of the cathedral projected onto
its historic geometry, rendering it from a novel viewpoint.

campus. The project took the form of an animated film that would blend live-
action video of the campus with computer-rendered aerial imagery, enabling
several impossible shifts in perspective. For this project I secured a donation
of a graphics computer with hardware texture-mapping from Silicon Graphics,
and welcomed graduate students George Borshukov and Yizhou Yu to work on
improvements to the rendering and visiblity algorithms in the Façade system.

The main sequence of the film is a swooping fly-around of Berkeley’s “Cam-
panile” bell tower, gazing out across the surrounding campus. To create the
animation, we built an image-based model of the tower and the surrounding
campus – from the foot of the tower out to the horizon – from a set of twenty pho-
tographs. I took the photographs from the ground, from the tower, and (thanks
to Berkeley professor of architecture Cris Benton) from above the tower using a
kite. The final model we built in Façade contained forty of the campus buildings;
the buildings further away appeared only as textures projected onto the ground.
There were a few thousand polygons in the model, and the sixteen images (Fig.
5) used in rendering the scene fit precisely into the available texture memory of
the Silicon Graphics RealityEngine. Using OpenGL and a hardware-accelerated
view-dependent texture-mapping technique – selectively blending between the
original photographs depending on the user’s viewpoint [7] – made it possible to
render the scene in real time.

The effect of the animation was one that none of us had seen before – a
computer rendering, seemingly indistinguishable from the real scene, able to be



Pursuing Reality with Image-Based Modeling, Rendering, and Lighting 9

Fig. 5. The Campanile Movie. At top are the original sixteen photographs used
for rendering; four additional aerial photographs were used in modeling the campus
geometry. In the middle is a rendering of the campus buildings reconstructed from the
photographs using Façade; the final model also included photogrammetrically recovered
terrain extending out to the horizon. At bottom are two computer renderings of the
Berkeley campus model obtained through view-dependent texture mapping from the
SIGGRAPH 97 animation. See also http://www.debevec.org/Campanile/.
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viewed interactively in any direction and from any position around the tower.
The animation, “The Campanile Movie”, premiered at the SIGGRAPH 97 Elec-
tronic Theater in Los Angeles and would be shown in scores of other venues.
Figure 5 shows the model and some renderings from the film. George Borshukov,
who worked on the Campanile Movie as a Master’s student, went on to join Dan
Piponi and Kim Libreri at MANEX Entertainment in applying the Campanile
Movie techniques to produce virtual backgrounds for the “bullet-time” shots in
the 1999 film The Matrix starring Keanu Reeves.

6 Fiat Lux: Adding Objects and Changing Lighting

Façade was used most recently to model and render the interior of St. Peter’s
Basilica for the animation Fiat Lux (Fig. 6), which premiered at the SIGGRAPH
99 Electronic Theater and was featured in the 1999 documentary The Story
of Computer Graphics. In Fiat Lux, our goal was to not only create virtual
cinematography of moving through St. Peter’s, but to augment the space with
animated computer-generated objects in the service of an abstract interpretation
of the conflict between Galileo and the church.

The key to making the computer-generated objects appear to be truly present
in the scene was to illuminate the CG objects with the actual illumination from
the Basilica. To record the illumination we used a high dynamic photography
method [5] we had developed in which a series of pictures taken with differing
exposures are combined into a radiance image – without the technique, cameras
do not have nearly the range of brightness values to accurately record the full
range of illumination in the real world. We then used an image-based lighting
[2] technique to illuminate the CG objects with the images of real light using
a global illumination rendering system. In addition, we used an inverse global
illumination [12] technique to derive lighting-independent reflectance properties
of the floor of St. Peter’s, allowing the objects to cast shadows on and appear
in reflections in the floor. Having the full range of illumination was additionally
useful in producing a variety of realistic effects of cinematography, such as soft
focus, glare, vignetting, and lens flare.

7 The Future: Acquiring Reflectance Fields with a Light
Stage

In our most recent work we have examined the problem of realistically placing
real objects into image-based models, taking the photometric interaction of the
object with the environment fully into account. To accomplish we have designed a
device called a Light Stage (Fig. 7) to directly measure how an object transforms
incident environmental illumination into reflected radiance, what we refer to as
the reflectance field of the object. The first version of the light stage consists of
a spotlight attached to a two-bar rotation mechanism which can rotate the light
in a spherical spiral about the subject in approximately one minute. During
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Fig. 6. Fiat Lux. The animation Fiat Lux shown at the SIGGRAPH 99 Electronic
Theater used Façade [6] to model and render the interior of St. Peter’s Basilica from sin-
gle panorama assembled from a set of ten perspective images. Each image was acquired
using high dynamic range photography [5], in which each image is taken with a range of
different exposure settings and then assembled into a single image that represents the
full range of illumination in the scene. This imagery was then used to illuminate the
synthetic CG objects which were placed within the scene, giving them the correct shad-
ing, shadows, reflections, and highlights. See also http://www.debevec.org/FiatLux/.

this time, one or more digital video cameras record the object’s appearance
under every form of directional illumination. From this set of data, we can then
render the object under any form of complex illumination by computing linear
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combinations of the color channels of the acquired images as described in [3]. In
particular, the illumination can be chosen to be measurements of illumination
in the real world [2] or the illumination from a virtual environment, allowing the
image of a real person to be photorealistically composited into such a scene with
correct illumination. Additional work has been undertaken to render reflectance
fields from arbitrary points of view in addition to under arbitrary illumination.

An advantage of this technique for capturing and rendering objects is that the
object need not have well-defined surfaces or easy to model reflectance proper-
ties. The object can have arbitrary translucency, self-shadowing, interreflection,
subsurface scattering, and fine surface detail. This is helpful for modeling and
rendering human faces which exhibit all of these properties, as well as for most
of the objects that we encounter in our everyday lives.

Fig. 7. Light Stage 1.0. The Light Stage [3] is designed to illuminate an object or
a person’s face all possible directions in a short period of time. This allows a digital
video camera to directly capture the subject’s reflectance field: how they transform
incident illumination into radiant illumination. As a result, we can then syntheti-
cally illuminate the subject under any form of complex illumination directly from
this captured data. Renderings of synthetically illuminated faces can be found at
http://www.debevec.org/Research/LS/ .
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8 Conclusion

The advent of image-based techniques have made this an exciting time for re-
search in computer vision and computer graphics, as our ability to model and
render aspects of the real world has evolved from approximate models of sim-
ple objects to detailed models of complex scenes. Such techniques are already
making an impact in the motion picture industry, as image-based modeling, ren-
dering, and lighting has played a role in the most prominent visual effects films
of 1999 and 2000. In the next decade we’ll be able to capture and display larger
data sets, recompute lighting in real time, view scenes as immersive 3D spaces,
and populate these recreated spaces with photorealistic digital humans. Some of
the most exciting applications of this technology will be for independent film-
makers, as soon it will be possible for a small team of talented people to create
a movie with all the visual richness of Star Wars, Titanic, or Lawrence of Ara-
bia, without spending hundreds of millions of dollars – perhaps even opening
these techniques for use in education as well as entertainment. What is certain
is that image-based techniques will allow us to look forward to a great many
new creative visual experiences.

References

1. Addison, A. C., MacLeod, D., Margolis, G., Naimark, M., and Schwartz,
H.-P. Museums without walls: New media for new museums. In Computer
Graphics annual Conference Series (SIGGRAPH 95) (August 1995), R. Cook,
Ed., pp. 480–481.

2. Debevec, P. Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography. In SIGGRAPH 98 (July 1998).

3. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and
Sagar, M. Acquiring the reflectance field of a human face. Proceedings of SIG-
GRAPH 2000 (July 2000), 145–156. ISBN 1-58113-208-5.

4. Debevec, P. E. Modeling and Rendering Architecture from Photographs. PhD
thesis, University of California at Berkeley, Computer Science Division, Berkeley
CA, 1996. http://www.debevec.org/Thesis.

5. Debevec, P. E., and Malik, J. Recovering high dynamic range radiance maps
from photographs. In SIGGRAPH 97 (August 1997), pp. 369–378.

6. Debevec, P. E., Taylor, C. J., and Malik, J. Modeling and rendering ar-
chitecture from photographs: A hybrid geometry- and image-based approach. In
SIGGRAPH 96 (August 1996), pp. 11–20.

7. Debevec, P. E., Yu, Y., and Borshukov, G. D. Efficient view-dependent
image-based rendering with projective texture-mapping. In 9th Eurographics work-
shop on Rendering (June 1998), pp. 105–116.

8. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. The Lumi-
graph. In SIGGRAPH 96 (1996), pp. 43–54.

9. Levoy, M., and Hanrahan, P. Light field rendering. In SIGGRAPH 96 (1996),
pp. 31–42.

10. Naimark, M., Woodfill, J., Debevec, P., and Villareal, L. Immersion ’94.
http://www.debevec.org/Immersion/, 1994.



14 P. Debevec

11. Taylor, C. J., and Kriegman, D. J. Structure and motion from line segments
in multiple images. IEEE Trans. Pattern Anal. Machine Intell. (November 1995).

12. Yu, Y., Debevec, P., Malik, J., and Hawkins, T. Inverse global illumination:
Recovering reflectance models of real scenes from photographs. In SIGGRAPH 99
(August 1999).

13. Zabih, R., and Woodfill, J. Non-parametric local transforms for computing
visual correspondence. In European Conference on Computer Vision (May 1994),
pp. 151–158.

Discussion

1. Andrew Fitzgibbon, University of Oxford: A frivolous question: In
“The Matrix”, the general appearance is “greeny-grainy”, was that colour
scheme chosen to simplify the special effects?
Paul Debevec: That was interesting; they definitely went for a grainy look
through the whole film including all of the non-computer graphics non-action
shots. That was basically the aesthetic that the Wachowski brothers were
going for with their art direction. But as it turns out that’s actually a conve-
nient effect for the computer graphics as well, especially since the actors are
shot on green screen and often it’s difficult to realistically integrate actors
shot on green screen into scenes—there is some green spill from the back-
ground onto the actors. Of course, there are techniques to get rid of that. I
think that the choices made in The Matrix represented a very good marriage
of practical limitations and artistic expression. The effects end up looking
perhaps a little wrong which totally works in the context of the film’s story;
the characters are supposed to be in a strange computer-generated world
where everything is not quite right.

2. Hans-Helmut Nagel, Universität Karlsruhe: Do you have any idea how
long it will be before photographic evidence will be banned from court?
Paul Debevec: Hasn’t it been already? I think that any photograph that
you bring in is immediately suspect. For example in traffic cases it is quite
easy to produce photographic evidence that the stop sign wasn’t there. Any-
one can perform such fakery with the software that ships with an inexpensive
scanner. I would guess photos in criminal cases are scrutinized very heav-
ily, by looking at the original negatives and such. I think video is still used
without much question. For example, for the famous video of Rodney King
being beaten by the Los Angeles police, nobody questioned whether it was
real or not. Today I do not think we could realistically fake such a video
even though it was grainy and black-and-white and dark. But I am sure that
eventually we will be able to do things like that – probably in five years. It
is going to be a matter as much of developing the artistry as of developing
the technology. The artists are learning how to make such things happen.

3. Stefan Heuel, Bonn University: How long does it take you to acquire
3D models like the campanile or Saint-Peters Basilica?
Paul Debevec: The first model of the Campanile took me an afternoon
to put together. But the version in the film that actually has the arches
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and columns was actually built by undergraduates. I had one undergraduate
build the lower eighty metres of the tower and the other build the top twenty.
It took them about a week, but they were of course learning the system and
what the parameters are and things like that. St. Peter’s Basilica, I put
together in two evenings and the Berkeley campus model was constructed
by myself and George Borshukov working about a week each. Much of this
time consisted in improving the software which we won’t have to do for
future projects.

4. Richard Morris, NASA: The system you show is very good in terms of
computer assisted design. What do you think of more automatic stuff such
as techniques from structure from motion?
Paul Debevec: For the kind of photographic datasets that we have been
taking, where the range of different viewpoints is very wide, there is a lot of
high-level knowledge that the user gives to the computer that I can’t imagine
the computer being able to figure out for itself. If you have a view looking
down from the tower on the top and a view looking from the side, it is only
from our great degree of experience with towers and architectural scenes that
we can figure out what corresponds to what. But for systems that use live
video as input, there are relatively small motions between the frames and the
computer can reasonably figure out what moves to what. We are now seeing
some reconstructions from video in, for example, Marc Pollefeys’ work [2]
that I am very impressed with. It is a little unclear how this could be done
if you wanted to perform a reconstruction based on a video of the Berkeley
tower. Getting a live video camera up on a kite – that might be difficult.
And I think for a pretty wide class of problems (such as building digital sets
for movies), it is OK to have it take a while to put the model together. It’s
usually a very small portion of the total effort on a project; The Campanile
Movie involved eight weeks of production of which about a week and a half
was putting the model together. So it wasn’t on the critical path to getting
the film done more quickly, and we had a very fine level of control over the
quality of the model, which we needed in making the film look the way we
wanted to. So for Hollywood applications there are a lot of things where
interactive model-building techniques are going to remain appropriate. But
I think there is a whole host of other applications – ones in the film industry
as well – that will benefit from the more automatic techniques.
Andrew Fitzgibbon, University of Oxford: I think one of the interesting
messages to the computer vision community—essentially from Paul’s Facade
work—is to resist the dogma of full automation. There are some cases where
manual interaction is useful, and the science remains interesting.

5. Richard Szeliski, Microsoft: Now that you are at the new Institute for
Creative Technologies, what kind of things do you and the other people in
the institute plan to work on?
Paul Debevec: I’m going to Disneyland! We are basically looking at trying
to model very realistic immersive virtual environments. We are going to look
into active sensing techniques for that. Basically dealing with large quantities
of data. Better quality inverse global illumination for lighting independent
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models. We are hoping to have some activity in our group that will be looking
at the forward rendering problems in global illumination as well. Trying to
get those things to be much more efficient – there are several tantalizing
systems out there that have solved a part of the global illumination problem
nicely such as Hendrik von Jensen’s and Eric Veach’s system. There is a
renderer called ”Arnold” that has just been produced by some independents
that performs global illumination quite quickly and yields renderings with
area light sources which simply no longer look like computer graphics. We
want to get some of those things going on. We also want to be able to
populate these virtual scenes with people and so some of the work that
we did in the waning days of Berkeley was to investigate skin reflectance
properties and render virtual faces. We are not animating them yet, but
we have some renderings of the faces that seem to have relatively good
reflections of the skin, see Debevec et al [1]. What we want to do is to get
some animated virtual people (hopefully wearing realistic virtual clothing)
that can actually go around in these realistic virtual environments . . . then
we can put something other than big black blocks in them.
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Abstract. A frame decimation scheme is proposed that makes automatic
extraction of Structure and Motion (SaM) from handheld sequences
more practical. Decimation of the number of frames used for the actual
SaM calculations keeps the size of the problem manageable, regardless
of the input frame rate. The proposed preprocessor is based upon global
motion estimation between frames and a sharpness measure. With these
tools, shot boundary detection is first performed followed by the removal
of redundant frames. The frame decimation makes it feasible to feed the
system with a high frame rate, which in turn avoids loss of connectivity
due to matching difficulties. A high input frame rate also enables robust
automatic detection of shot boundaries. The development of the
preprocessor was prompted by experience with a number of test
sequences, acquired directly from a handheld camera. The preprocessor
was tested on this material together with a SaM algorithm. The scheme is
conceptually simple and still has clear benefits.

1 Introduction
Recently, the Structure and Motion (SaM) branch of computer vision has matured
enough to shift some of the interest to building reliable and practical algorithms and
systems. The context considered here is the task of recovering camera positions and
structure seen in a large number of views of a video sequence. Special interest is
devoted to a system that processes video directly from an initially uncalibrated
camera, to produce a three-dimensional graphical model completely automatically.
Great advances have been made towards this goal and a number of algorithms have
been developed [4,8,10,11,15,18,24,26]. However, several additional pieces are
necessary for an algorithm to become a full working system and these issues have
been relatively neglected in the literature. One such piece, which is proposed here, is a
preprocessing mechanism able to produce a sparse but sufficient set of views suitable
for SaM. This mechanism has several benefits. The most important benefit is that the
relatively expensive SaM processing can be performed on a smaller number of views.
Another benefit is that video sequences with different amounts of motion per frame
become more isotropic after frame decimation. The SaM system can therefore expect
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an input motion per frame that is governed by the characteristics of the preprocessor
and not by the grabbing frequency or camera movement. Furthermore, problems
caused by insufficient motion or bad focus can sometimes be avoided.
The development of the preprocessor was prompted by experience with a number of
test sequences, acquired by a non-professional photographer with a handheld camera.
It is relatively easy to acquire large amounts of video, which is an important reason for
the large interest in structure from motion [1,5,6,7,9,10,12,14,18,20,22,23]. However,
obtaining the camera positions in a sequence that covers a lot of ground quickly
becomes an awkwardly large problem. Figure 1 has been provided to illustrate the size
of the problems that we are interested in. Frame decimation helps reducing the size of
these problems.
One way to obtain a smaller set of views is to simply use a lower frame rate than the
one produced by the camera. However, this is inadequate for several reasons. First, it
can lead to unsharp frames being selected over sharp ones. Second, it typically means
that an appropriate frame rate for a particular shot has to be guessed by the user or
even worse, predefined by the system. In general, the motion between frames has to be
fairly small to allow automatic matching, while significant parallax and large baseline
is desirable to get a well-conditioned problem. With high frame rate, an unnecessarily
large problem is produced and with low frame rate, the connectivity between frames is
jeopardised. In fact, the appropriate frame rate depends on the motion and parallax
and can therefore vary over a sequence. Automatic processing can adapt to the motion
and avoid any undue assumptions about the input frame rate. Furthermore, unsharp
frames caused by bad focus, motion blur etc or series of frames with low interdisparity
can be discarded at an early stage.  Many algorithms for SaM perform their best on a
set of sharp, moderately interspaced still images, rather than on a raw video sequence.
A good choice of frames from a video sequence can produce a more appropriate input
to these algorithms and thereby improve the final result. In summary, the goal of the
preprocessing is to select a minimal subsequence of sharp views from the video
sequence, such that correspondence matching still works for all pairs of adjacent
frames in the subsequence.
It is possible to identify some desirable properties of a preprocessor. In general, an

ideal preprocessor is idempotent. An operator T  is called idempotent if TT =2 . In
other words, applying the preprocessor twice should yield the same result as applying
it once. This is a quality possessed by, for example, ideal histogram equalisation or
ideal bandpass filtering. Another desirable property, applicable in this case, is that the
algorithm should give similar output at all sufficiently high input frame rates.
Furthermore, the algorithm should not significantly affect data that does not need
preprocessing.
With large amounts of video, it is rather tedious to start and stop frame grabbing to
partition the material into shots. This information should therefore be provided
directly from the camera or be derived automatically with image processing. A bonus
of being able to handle a high input frame rate is that segmentation of the raw video
material into shots can be robustly automated. Automatic detection of shot boundaries
can be done rather reliably at high frame rates, while the difference between a discrete
swap of camera or view and a large motion diminishes towards lower frame rates. The
preprocessing approach is therefore divided into two parts. First, shot boundary
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detection, which is preferably performed at the output frame rate of the camera.
Second, the selection of a subsequence of sharp views representing every shot. The
processing is based on a rough global estimation of the rotational camera motion
between frames and a sharpness measure. These tools are described in the following
two paragraphs. Then, shot boundary detection and the selection of a subsequence of
frames are outlined. Finally, some results are presented and conclusions are drawn.

Fig. 1. Examples of large reconstructions. Top left: A birds perspective on a car (Volvo). Top
right: Five bicycles (Bikes). Bottom left: Four girls standing in a half-circle (Girlsstatue).
Bottom right: The author’s breakfast table (Swedish Breakfast). Some frames from each
sequence can be found in Figures 17-20

2 Global Motion Estimation
The global motion estimation is done using the initial step of a coarse to fine, optical
flow based, video mosaicing algorithm [13,17,21,25]. The motivations behind using a
flow based approach over a feature based (such as e.g. [3]) in this case were that the
behaviour is good also for gravely unsharp frames and that it is easy to obtain fast
approximations by downsampling. The motion model is an arbitrary rotation of the
camera around the centre of projection and an arbitrary change of linear calibration.
Assuming also a rigid world, this is equivalent to a homographic mapping H ,

represented by a 3x3 matrix, between the homogenous image coordinates 1x  and 2x
of the first and second frame as

12 Hxx ≅  , (1)
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where ≅  denotes equality up to scale. Both the images are downsampled to a small
size of, for example, 50x50 pixels. To avoid problems due to altered lighting and
overall brightness, both images are also normalised to have zero mean and unit
standard deviation. The mapping H  has eight degrees of freedom and should be
minimally parameterized. As only small rotation is expected, this can be done safely

by setting 133 =H . The minimisation criterion applied to the estimation of H  is the

mean square residual. Better measures exist [13], but here the objective is only to
obtain a rough estimation quickly. The mean square residual R  between the image

functions 1f  and 2f , using H  for the correspondence is
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Here, Θ  is all or a subset of the set AΘ  of pixels in the first image that are mapped

into the second image and ( )Θ#  is the number of elements of Θ . Larger sets than

AΘ  are also possible if the image functions are defined beyond the true image

domain by some extension scheme. In this case, Θ  was chosen to be the whole

image, except for a border of width d , which is a maximal expected disparity. The

unit matrix is used as the initial estimate of H . Then, R  is minimised by a non-linear
least squares algorithm such as Levenberg-Marquardt [19].

3 Sharpness Measure
The measure of image sharpness is a mean square of the horizontal and vertical
derivatives, evaluated as finite differences. More exactly
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where I  is the whole image domain except for the image boundaries. This measure is
not used in any absolute sense, but only to measure the relative sharpness of similar
images.

4 Shot Boundary Detection
The first step of the preprocessor is to detect shot boundaries. These occur when the
camera has been stopped and then started again at a new position. This information
could of course be provided from the camera, but in practice this is not always the
case. It should be mentioned that since a video sequence is discretely sampled in time,
a shot boundary is not strictly defined. With high frame rate material, the shot
boundaries can be detected rather reliably. At lower frame rates however, the
distinction between a shot boundary and a large camera motion becomes somewhat
arbitrary. Shot boundaries are detected by evaluating the correlation between adjacent
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frames after global motion compensation. If the correlation is below a threshold, the
second image is declared the beginning of a new shot. The correlation could be
measured by the same mean square measure that was used for the motion estimation,
but here it was preferred to use the normalised correlation coefficient, as this yields a

more intuitively interpretable value. The threshold is currently set to 75.01 =t .

5 Selection of a Subsequence of Frames

Once the shot boundaries are detected, processing proceeds independently for each
shot. While the shot boundary detection is performed in a purely sequential manner,
the algorithm for selecting key frames operates in a batch mode. The algorithm was
tested and will be described with each shot as one batch. The algorithm is
conceptually simple and can almost be summarised in a single sentence:

Traverse all frames in order of increasing sharpness and delete redundant frames.

To avoid confusion, this is rephrased in algorithmic form. The letter Ω  will be used
to denote the subsequence of frames that remain at a particular time.

1. Set Ω  to the sequence of all frames. Create a list L
with the frames of Ω  in order of increasing
sharpness.

2. For all frames iF  in L  do:

If iF  is redundant in Ω , then remove iF  from Ω .

It remains to define when a frame is redundant in the subsequence Ω . A frame is
redundant in Ω  if it is not essential for the connectivity of Ω , as follows. Consider

the frame iF , belonging to the subsequence { }N

nnF 1==Ω  of frames that remain at

this particular time. If 1=i  or Ni = , the frame is not redundant. Otherwise, global

motion estimation is performed past the frame, i.e. between frame 1−iF  and frame

1+iF . If this motion estimation yields a final correlation coefficient above a threshold,

currently set to 95.02 =t  and the estimated mapping H  does not violate the

maximum expected disparity d  at any point, the frame iF  is redundant. The value of

d  is currently set to ten percent of the image size, which is half of the maximum
disparity expected by the SaM algorithm.
With the above scheme, frames are deleted until further deletions would cause too
high discrepancies between neighbouring frames. Observe that frames that are
considered early for deletion are more likely to become removed, since the
subsequence Ω  is then very dense. The traversal in order of increasing sharpness
therefore ensures that the preprocessor prefers keeping sharp frames. The discrepancy
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that prevents a deletion can be either a violation of the disparity constraint or
significant parallax that causes the global motion estimation, with the assumption of
camera rotation, to break down. In the latter case, the material has become suitable for
a SaM algorithm. In the former case, the material is ready for SaM or possibly
mosaicing.

6 Results

Attention is first turned to a theoretical result. The preprocessing algorithm is
approximately idempotent and can be made perfectly idempotent by a modification.
Instead of only executing one run over all frames to perform deletions, this run is
repeated until no additional deletions occur. The algorithm is now perfectly
idempotent. To see why, consider application of the preprocessor a second time. No
shot boundaries will be detected, because all adjacent frames with a correlation less

than 1t  after motion compensation were detected during the first pass and no new

such pairs have been created by frame deletion, since 12 tt > . Neither do any frame

deletions occur during the second pass, since this was the stopping criterion for the
first pass.
Let us now turn to the practical experiments. The results of a preprocessor are not
strictly measurable unless the type of subsequent processing is defined. The
experiments were performed in conjunction with a feature based SaM algorithm,
similar in spirit to, for instance [1,2,8,10,18,27]. Details can be found in [16]. The
algorithm takes a video sequence and automatically extracts a sparse representation in
terms of points and lines of the observed structure. It also estimates camera position,
rotation and calibration for all frames. The preprocessor was tested on approximately
50 sequences, most of them handheld with jerky motion and imperfect focus. In this
paper, results from the sequences listed in Table 1 have been or will be cited. Some
frames from the sequences are shown in Figures 10-21.
As was mentioned in the introduction, the preprocessor should not significantly
change data that does not need preprocessing. This was tested in practice by applying
the preprocessor and subsequent SaM system to sequences with sharp, nicely
separated frames and no shot boundaries. Final reconstruction results for the
sequences House and Basement are shown in Figure 2. For the House sequence, the
preprocessor does not falsely detect any shot boundaries, nor does it remove any
frames. In other words, it just propagates the input data to its output, which is exactly
the desired behaviour. In the final reconstruction, three camera views are missing at
the end of the camera trajectory, but these views are removed by the SaM algorithm
and not by the preprocessor. The textures shown in this paper are created with a very
tentative algorithm using only one of the camera views. The textures are included to
facilitate interpretation of the reconstructions. A dense reconstruction scheme is under
development.
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Table 1. Data for test sequences

Name Length Resolution Type
House 10 768 x 576 Turntable
Basement 11 512 x 512 Autonom. Vehicle

Sceneswap 748 352 x 288 Handheld
TriScene 315 “ “
Room 99 “ “
Stove 107 “ “
David 19 “ “
Volvo 525 “ “
Bikes 161 “ “
Girlsstatue 541 “ “
Swedish Breakfast 363 “ “
Nissan Micra 340 “ “

Fig. 2. Final reconstructions from the sequences House and Basement

The preprocessor did not falsely detect any shot boundaries in the sequence Basement
either. However, it deleted frames 3 and 7, which can in fact be seen as larger gaps in
the camera trajectory. This happens because the forward motion does not cause
enough parallax. It does not negatively affect the final result.
Experimental results of shot boundary detection on the sequence Sceneswap is shown
in Figure 3. This sequence consists of eleven shots, separated by shot boundaries after
frame 72, 164, 223, 349, 423, 465, 519, 583, 619 and 681 (found manually). The
threshold at 0.75 is shown as a solid line. Results are given at frame rates 25, 6.25 and
3.125 Hz. At all frame rates, the ten boundaries are found successfully and can be seen
as ten groups of three markers below the detection threshold at the above mentioned
frame numbers. At 25 and 6.25 Hz the detection is stable, with a correlation above
0.95 and 0.9, respectively, for all non-boundaries. This can be seen as a pattern at the
top of the figure. At 3.125 Hz however, the frame rate has dropped too low and five
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false responses occur, all marked with an arrowhead. Thus the importance of a high
input frame rate is illustrated.

Fig. 3. Result of shot boundary detection on the sequence Sceneswap

A typical preprocessor result is shown in Figure 4 for the 25 Hz sequence TriScene,
with two correctly detected shot boundaries. The frames surviving the decimation are
marked by triangles. Sharpness is on the vertical axis. Observe that local sharpness
minima are avoided.
In Figure 5, it is illustrated how the preprocessor manages to make the system
independent of the input frame rate, provided that this is sufficiently high. The result is
for the 12.5 Hz sequence Stove, with a total of 107 frames. The sequence is handheld,
with the camera moving in an arc in front of a kitchen stove. The sequence was
subsampled to 50 lower frame rates and fed into the preprocessor. With very few input
frames (<12), shot boundaries are falsely detected. With the number of input frames
higher than 30 however, this is no longer a problem and the number of output frames
remains fairly constant at about 20. When fed with the full frame rate, the
preprocessor removes about 80% of the frames and the SaM algorithm can then carry
on to produce the reconstruction shown in Figure 6.
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Fig. 4. Preprocessor result for the sequence TriScene

Fig. 5. Frame rate independence for the sequence Stove
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Fig. 6. Final reconstruction of Stove

In order to characterise the behaviour of the frame decimation algorithm for various
amounts of decimation, the frame decimation was performed on the complete video

material with a number of choices for the redundancy correlation threshold 2t  and the

maximum expected disparity d . The result for the sequence Stove is shown in Table

2. The left column shows the decimation thresholds with d  in parts of the image size.
The column ‘Frames’ shows the number of frames that are left after decimation with
these thresholds. The columns ‘Time’ and ‘Mem’ indicate the running time and the
maximum memory usage of the SaM algorithm. The code is not optimised for speed
or low memory usage, but the data still gives an indication of how the problem grows.
The number of points and lines in the reconstruction are displayed in the columns
’Points’ and ‘Lines’. ‘P_error’ is the root mean square point reprojection error in
number of pixels. ‘L_error’ is the root mean square line reprojection error. The line

reprojection error is measured as the length of the vector ll ˆ− , where l  and l̂  are
the observed and reprojected line, represented as homogenous line vectors normalised
to hit the unit cube. Observe that some results are marked with a *. This means that the
SaM algorithm did not manage to build a complete Euclidian reconstruction of the
decimated sequence. With decimation down to only 9 frames, the connectivity of the
sequence is lost. With very little decimation, the problem is very large and many
unfocused frames are still included. Therefore, at 103 frames the reconstruction fails
for the second part of the sequence and at 107 frames the reconstruction fails
completely. In figure 7 the reconstructions corresponding to all rows of the table,
except the first and last row, are shown visually. Note that the camera trajectory
displays the same characteristics in all cases except the last, where the reconstruction
failed.
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Table 2. Variable amount of frame decimation on the sequence Stove. The table is explained
above.

2t ; d Frames Time(s) Mem Points Lines P_error L_error

0.4;0.35 9 3986* 15M* 146* 3* 0.771* 0.071*
0.7;0.3 12 4340 15M 469 26 0.652 0.016

0.8;0.15 16 6580 16M 823 41 0.672 0.018
0.9;0.125 18 11827 16M 988 70 0.688 0.019
0.95;0.1 20 11016 16M 1017 63 0.674 0.021

0.975;0.075 25 18647 17M 1301 92 0.722 0.022
0.982;0.062 32 12269 17M 1634 97 0.762 0.022

0.99;0.05 61 31623 26M 2632 166 0.809 0.020
0.992;0.042 76 88123 32M 3047 196 0.820 0.013
0.9935;0.04 91 123120 35M 3466 210 0.831 0.015
0.995;0.037 103 93255* 31M* 1315* 66* 0.597* 0.026*
0.999;0.025 107 103874* 51M* * * * *

Fig. 7. Variable amount of frame decimation on the sequence Stove
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In Figure 8, the reconstruction from the sequence Room is shown. This is a handheld
sequence, where the camera moves forward through an office. Many frames are out of
focus. At the beginning and the end of the sequence, the camera moves very little and
only rotates slightly back and forth, which is not uncommon in raw video material.
The preprocessor successfully removes most of these frames, which enables a
reasonable trajectory of camera views to be extracted, although the structure for this
sequence is still very poor.

Fig. 8. Final reconstruction of Room

In Figure 9 reconstructions from the sequences Nissan Micra and David are shown.
The sequence David was acquired by holding the camera with a stretched arm and
performing an arched motion. Again, the motion of the centre of projection is
negligible between a couple of frames near the end of the arc. Depending on the SaM
system, this can sometimes cause problems with degeneracy. With frame decimation,
the troublesome frames are removed.

7 Conclusions
A preprocessor that performs shot boundary detection followed by frame decimation
has been proposed. The results show that using this preprocessor in a SaM system has
several benefits. By an automatic decimation of the number of frames used for the
actual SaM calculations, it is possible to keep the size of the problem manageable,
independently of the input frame rate. This makes it feasible to use a high input frame
rate, which in turn avoids loss of connectivity due to matching difficulties. The high
input frame rate also enables robust detection of shot boundaries. Indications have
been given that the proposed type of preprocessor sometimes can eliminate problems
of degeneracy or near degeneracy due to insufficient motion. It has been discussed
why the preprocessor algorithm is approximately idempotent and how it can be made
exactly idempotent by a modification. It was also shown that the preprocessor does not
have a negative impact on material that already represents good input to a SaM
algorithm. In summary, the proposed frame decimation makes automatic extraction of
SaM from handheld video sequences more practical.
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Fig. 9. Reconstruction results from the sequences Nissan Micra and David
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Fig. 10. Some frames from House

Fig. 11. Some frames from Basement

Fig. 12. One frame from each shot of the sequence Sceneswap

Fig. 13. Two frames from each shot of the sequence TriScene

Fig. 14. Some frames from Room

Fig. 15. Some frames from Stove

Fig. 16. Some frames from David
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Fig. 17. Some frames from Volvo

Fig. 18. Some frames from Bikes

Fig. 19. Some frames from Girlsstatue

Fig. 20. Some frames from Swedish Breakfast

Fig. 21. Some frames from Nissan Micra

Discussion

1. Hans-Helmut Nagel, Universität Karlsruhe: I wonder to what extent you could
use techniques in video compression to detect shot boundaries.  They have the
same problem if they do high compression: they want to detect shot boundaries in
order to set-up their system anew. So, could you use these techniques and, if not, I
would be interested to learn the reasons.
David Nister: Do you mean the work that has been done on shot detection and
reference view selection in for example MPEG-related activities? Well, certainly
there has been a lot of work done on that and the motive is usually to segment and
summarize the material. For example you want to send just a few frames of a
news sequence to a mobile terminal.  I think that the shot detection techniques
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will translate pretty well to my application. However, the reference view selection
is not tuned to structure and motion. It gives too disparate views and it is not
concerned about matching.  I want output that can be subsequently matched and I
tend to keep many more frames than is done in that context.  There is also work
done on reference view selection for view synthesis, but it is then usually assumed
that the cameras are calibrated extrinsically and intrinsically beforehand and I do
not want to do this since my main motive is to limit the computational complexity
and as a consequence, view selection is the first thing I do.

2. Rick Szeliski, Microsoft: I like the idea that you have of not keeping the motion
blurred frames. That seems like a good idea although for feature tracking it may
not be that important.  It is a nice framework.  The one thing I am a little puzzled
by is that you tend to keep more frames when the camera motion is large and most
of that motion, which you call jerkiness, is due to pure rotation.  So, if you are
already computing the homographies, why not map the images through the
homographies before running your feature tracker.  I realize that feature trackers
break down when the motion is large, but if you just warp the two images that you
are tracking by the homography it is only the total amount of parallax (in other
words, large translational motion) were you need dense sampling and the
rotational motion almost irrelevant, just as Bill Triggs showed [1]. You just want
to get rid of the rotation.  You want to stabilize the sequence.  So, why not
stabilize before running the rest of your algorithm?
David Nister: It is a good point that the homographies that are estimated could be
used to stabilize by removing undesired rotational motion. My motivation for not
doing this is the following. I use the homography motion model to quickly verify
that some frames are redundant so that I can dispose of them. However, I want to
be able to handle all types of sequences, including ones where there is a large
amount of parallax between consecutive frames. The homography model does not
fit well to that type of sequence. The accuracy of the homographies might
therefore be impaired. As I do things now, this will result in most frames being
forwarded to the structure from motion system, which can handle the parallax.
This is the desired behavior and will not cause any problems. If, on the other
hand, the inaccurate homographies were used for stabilization, it might cause
more problems than it solves.

3. Paul Debevec, University of Southern California: I was wondering if on your
video camera you could not set the shutter to thousandths of a second so that you
do not get motion blurring.  Does that not work because you still get the
interlacing with the two fields not matching up?
David Nister: I guess that changing the shutter speed will definitely help if only
one field is used. However, I believe that blurring is inevitable in the type of
amateur material that I want to be able to handle. I also think the blurring in my
sequences is not always motion blur. It is rather common with jerky camera
motion that the auto-focus loses track of things and it then takes a while before it
finds its way.

4. Tomas Pajdla, Czech Technical University: Is it a good idea to make your
selection more dependent on the amount of occlusion in the scene or is this
somehow implicitly taken into account by correlation, which you use?  Because if
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you have more occlusion, you probably need more frames to get through the
structure.
David Nister: The frame decimation is the first processing I do on a sequence, so
I do not know the structure or the occlusions.
Tomas Pajdla: Yes, I know that you do not know it, but you estimate it.  If you
have more occlusion, more complex structure, you will probably have to use more
frames.
David Nister: That is right, and this is taken into account in the sense that if there
is a lot of occlusion, the homography is not enough to compensate between
frames, leading to a low correlation and thus also more frames. The selection
would of course benefit from more precise knowledge of the structure, but this is
estimated much higher up in the system. The frame decimation requires on the
order of a second per frame, while the structure and motion system uses on the
order of minutes per frame, so I do not know the exact occlusions until much
later.
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Abstract. The computation for image mosaicing using homographies is numeri-
cally unstable and causes large image distortions if the matching points are small
in number and concentrated in a small region in each image. This instability stems
from the fact that actual transformations of images are usually in a small sub-
group of the group of homographies. It is shown that such undesirable distortions
can be removed bymodel selectionusing the geometric AIC without introducing
any empirical thresholds. It is shown that the accuracy of image mosaicing can
be improvedbeyondthe theoretical bound imposed on statistical optimization.
This is made possible by ourknowledgeabout probable subgroups of the group
of homographies. We demonstrate the effectiveness of our method by real image
examples.

1 Introduction

Image mosaicingis a technique for integrating multiple images into one continuous
image, a typical one being apanoramic image[10,13,15,16]. This technique has long
been used for creating terrain maps from aerial images or analyzing remote sensing
satellite images, but recently its applications to virtual reality creation from multiple
scene images are attracting much attention. Image mosaicing also plays an important
role in automatic surveillance using camera images.

The basic principle underlying image mosaicing is the computation of ahomography,
which is a mapping that typically occurs between two perspective images of a planar
surface in the scene [3]. Since faraway scenes can effectively be regarded as planar
surfaces, we can register one image to another by computing the homography between
them.

If the images have very small overlaps between them, as is often the case for remote
sensing images and aerial images, only a small number of matching points are available.
In such a case, the selected points in one image may be mapped to the corresponding
points in the other image fairly accurately, but if we extrapolate this mapping to portions
apart from the matching points, a large distortion may occur even in the presence of very
small noise (Fig. 1(a)). Since a homography may map some points to infinity, the part
beyond those points can appear from the other side of the image frame (Fig. 1(b)).

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 35–51, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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(a) (b)

Fig. 1.(a) If images with a very small overlap are used for mosaicing, a large distortion may result
even in the presence of small noise. (b) Some part of the image may appear from the other side of
the frame.

In [7] this instability was demonstrated by using real images. An accurate algorithm
was also presented for computing a homography from point correspondences using a
technique calledrenormalization, which not only produces a statistically optimal solu-
tion but also evaluates the reliability of the computed solution in quantitative terms. The
algorithm is implemented in C++ and publicly available via the Web1. A theoretical ac-
curacy bound was also derived for the homography computation. It was experimentally
confirmed that the renormalization algorithm indeed produces estimates in the vicinity
of that bound.

Although the renormalization algorithm dramatically reduces the instability of the
mapping, as demonstrated in [7], it cannot remove the distortion completely. However,
further improvement is theoretically impossible with this technique. In this paper, we will
show that this limitationcanbe broken through by incorporating ourknowledgeabout
the source of the instability. The instability stems from the fact that while homographies
constitute an 8-parameter group of transformations, actual transformations are usually in
a small subgroup, e.g., the group of translations, the group of rigid motions, the group of
similarities, or the group of affine transformations. In the presence of noise, the computed
solution moves out of the subgroup to which it should belong, causing a large image
distortion.

In the following, we show that such undesirable distortions can be removed bymodel
selectionusing thegeometricAIC[4,5] without introducing any empirical thresholds.We
also present a Levenberg-Marquardt scheme for optimization and an analytical procedure
for computing an initial guess. We demonstrate the effectiveness of our method by real
image examples.

1 http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html
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2 Representation of Homography

A homographyis an image mapping expressed in the following form:

x′ =
Ax + By + C

Px + Qy + R
, y′ =

Dx + Ey + F

Px + Qy + R
. (1)

If we define vectorsx andx′ and matrixH by

x =


x/f0

y/f0
1


 , x′ =


x′/f0

y′/f0
1


 , H =


A B C/f0

D E F/f0
P/f0 Q/f0 R/f2

0


 , (2)

eq. (1) can be written as
x′ = Z[Hx]. (3)

Here,Z[ · ] denotes normalization to make the third element 1;f0 is a scale factor chosen
so thatx/f0 andy/f0 have order 1.

Given two images, we choose matching points from them. Let{(xα, yα)} and
{(x′

α, y′
α)} be the coordinates of the points chosen from the first and the second im-

ages, respectively. Let{xα} and{x′
α} be their vector representations. We regard them

as random Gaussian variables with covariance matricesV [xα] andV [x′
α].

The absolute magnitude of noise is difficult to predict a priori, but its geometric char-
acteristics such as homogeneity/inhomogeneity and isotropy/anisotropy can be relatively
easily predicted. For example, if we use template matching for finding corresponding
points, the uncertainty of matching is measured by the Hessian of the residual surface
around the detected point [2,9,11,12]. Here, we assume that the covariance matrices
V [xα] andV [x′

α] are knownup to scaleand write

V [xα] = ε2V0[xα], V [x′
α] = ε2V0[x′

α]. (4)

We call the unknown magnitudeε the noise level. The matricesV0[xα] andV0[x′
α],

which we call thenormalized covariance matrices, specify the relative dependence of
noise occurrence on positions and orientations. If no a priori knowledge is available for
them, we simply assume isotropy and homogeneity and input the default valuesV0[xα]
= V0[x′

α] = diag(1, 1, 0) (the diagonal matrix whose diagonal elements are 1, 1, and 0
in that order).

3 Optimal Homography Estimation

Eq. (3) can equivalently be written in the formx′ × Hx = 0. Hence, the task is to
estimateH from noisy data{xα} and{x′

α} with the knowledge that their true values
{x̄α} and{x̄′

α} satisfy
x̄′

α ×Hx̄α = 0. (5)

The reliability of an estimatêH of H can be measured by itscovariance tensorV[Ĥ].
A theoretical lower bound on it can be derived in analytical terms [7].
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It is well known [4] that an optimal estimate ofH which attains the accuracy bound in
the first order (i.e., if terms ofO(ε4) are ignored) can be obtained bymaximum likelihood
estimation, minimizing the squaredMahalanobis distances

J =
1
N

N∑
α=1

(xα−x̄α, V0[xα]−2 (xα−x̄α))+
1
N

N∑
α=1

(x′
α−x̄′

α, V0[x′
α]−2 (x′

α−x̄′
α)), (6)

subject to the constraint (5). Here and throughout this paper,(a, b) denotes the inner
product of vectorsa andb. The super script( · )−

r denotes the (Moore-Penrose) gener-
alized inverse computed after replacing the smallestn− r eigenvalues by zeros.

Using Lagrange multipliers and introducing first order approximation, we can elim-
inate the constraint (5) and express eq. (6) in the following form [4]:

J =
1
N

N∑
α=1

(x′
α ×Hxα,Wα(x′

α ×Hxα)), (7)

Wα =
(
x′

α ×HV0[xα]H> × x′
α + (Hxα)× V0[x′

α]× (Hxα)
)−

2
. (8)

Let Ĵ be the residual, i.e., the minimum of the functionJ . It can be shown that̂J/ε2 is
subject to aχ2 distribution with2(N − 4) degrees of freedom to a first approximation
[4]. Hence, an unbiased estimator ofε2 is obtained in the form

ε̂2 =
Ĵ

2(1− 4/N)
. (9)

In [7] a computational technique calledrenormalizationwas presented. It was experi-
mentally confirmed that the solution practically falls on the theoretical accuracy bound.

4 Models of Image Transformations

Since the elements ofH have scale indeterminacy (see eq. (3)), a homography has eight
degrees of freedom. However, image transformations that we often encounter have much
smaller degrees of freedom. For example, if a moving camera takes images of a faraway
scene with varying zooming, the translation of the camera causes no visible changes, so
the image transformation is parameterized by the camera rotationR (three degrees of
freedom) and the focal lengthsf andf ′ of the two frames (Fig. 2). Such transformations
constitute a 5-parameter subgroup of the 8-parameter group of homographies. If the
focal length is fixed, we obtain a 4-parameter subgroup.

If the camera translates relative to a nearby scene, we have the group of translations
with two degrees of freedom (Fig. 3(b)). If the camera is allowed to rotate around
its optical axis, we have the group of 2-D rigid motions with three degrees of freedom
(Fig. 3(c)). If the focal length is also allowed to change, we have the group of similarities
with four degrees of freedom (Fig. 3(d)). If the object is a planar surface in the distance,
the image transformation can be viewed as an affine transformation with six degrees of
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Fig. 2. Image transformation due to camera rotation.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Original image. (b) Translation. (c) Rigid motion. (d) Similarity. (e) Affine transforma-
tion. (f) Homography.

freedom (Fig. 3(e)). All these image transformations belong to a subgroup of the group
of general homographies (Fig. 3(f)).

Thus, we have a hierarchy of image transformations (Fig. 4). In the presence of
noise, however, the computed homography need not necessarily belong to the required
subgroup, resulting in a large image distortion that cannot be attributed to any camera
motion. Such a distortion can be removed if we find a homography within the required
subgroup ormodel. For example, if the image transformation is known to be a 2-D rigid
motion, we only need to compute the image rotation and translation optimally. However,
we do not knowa priori to which model the observed transformation should belong.

A naive idea is to choose from among candidate models the one that gives the smallest
residual. This does not work, however, because the 8-parameter homography group is
always chosen: a model with more degrees of freedom has a smaller residual. For a
fair comparison, we need to compensate for the overfit caused by excessive degrees of
freedom. Here, we measure the goodness of a model by thegeometric AIC[4,5,6], which
is a special form of Akaike’sAIC [1]. The model with the smallest geometric AIC is
preferred. See [14] for other model selection criteria.
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homographies

affine transformations

similarities

rigid motions

translations

........

........

Fig. 4.Hierarchy of image transformations.

5 Subgroup Hierarchy

5.1 8-Parameter Homographies

Let ĴH8 be the resulting residual of eq. (7). The geometric AIC is given by

G-AICH8 = ĴH8 +
16
N

ε2, (10)

where the square noise levelε2 is estimated by eq. (9).

5.2 5-Parameter Homographies

If the camera rotates byR around the center of the lens and changes the focal length
from f to f ′, the resulting homography has the form

H = F ′−1R>F , (11)

where

F = diag(1, 1,
f

f0
), F ′ = diag(1, 1,

f ′

f0
). (12)

We use the Levenberg-Marquardt method (LM method) for minimizing eq. (7). First,
we define the following non-dimensional variables:

φ =
f

f0
, φ′ =

f ′

f0
. (13)

The minimization procedure goes as follows:

1. Let c=0.001. Analytically compute initial guesses ofφ, φ′, andR (see Appendix
A), and evaluate the residualJ = J(φ, φ′,R).
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2. Compute the gradient∇J and Hessian∇2J (see Appendix B for the detailed ex-
pressions):

∇J =


 ∂J/∂φ

∂J/∂φ′

∇ΩJ


 , (14)

∇2J =


 ∂2J/∂φ2 ∂2J/∂φ∂φ′ (∇Ω∂J/∂φ)>

∂2J/∂φ′∂φ ∂2J/∂φ′2 (∇Ω∂J/∂φ′)>

∇Ω∂J/∂φ ∇Ω∂J/∂φ′ ∇2
ΩJ


 . (15)

3. LetD be the diagonal matrix consisting of the diagonal elements of∇2J , and solve
the following simultaneous linear equation:

(∇2J + cD)


 ∆φ

∆φ′

∆Ω


 = −∇J. (16)

4. Compute the residualJ ′ = J(φ + ∆φ, φ′ + ∆φ′,R(∆Ω)R).
– If J > J ′, let c← 10c and go back to Step 3.
– If J < J ′ and|J − J ′|/J < εJ , returnφ, φ′, andR and stop.
– Else, letc← c/10, updateφ, φ′, andR in the form

φ← φ + ∆φ, φ′ ← φ′ + ∆φ′, R← R(∆Ω)R, (17)

and go back to Step 2.

Here,εJ is a threshold for convergence, andR(∆Ω) denotes the rotation around∆Ω
by an angle‖∆Ω‖. Let ĴH5 be the resulting residual. The geometric AIC is given by

G-AICH5 = ĴH5 +
10
N

ε2, (18)

where the square noise levelε2 is estimated by eq. (9).

5.3 4-Parameter Homographies

If we let f = f ′ in eq. (11), we obtain the 4-parameter group of homographies, for which
optimal values ofφ andR are obtained by slightly modifying the LM method described
above. LetĴH4 be the resulting residual. The geometric AIC is given by

G-AICH4 = ĴH4 +
8
N

ε2. (19)

5.4 Similarities

A similarity is a special homography that has the following form:

H =


s cos θ −s sin θ t1/f0

s sin θ s cos θ t2/f0
0 0 1


 . (20)
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By this transformation, the image is rotated by angleθ around the origin, scaled bys,
and translated by(t1, t2). If we define

→
xα=

(
xα/f0
yα/f0

)
,

→
x′

α =
(

x′
α/f0

y′
α/f0

)
, (21)

R =
(

cos θ − sin θ
sin θ cos θ

)
,

→
τ =

(
t1/f0
t2/f0

)
, (22)

eq. (7) is rewritten in the following form:

J =
1
N

N∑
α=1

(
→
x′

α − sR
→
xα − →

τ , Wα(
→
x′

α − sR
→
xα − →

τ )), (23)

Wα =
(
s2RV0[

→
xα]R> + V0[

→
x′

α]
)−1

. (24)

This is minimized by the LM method (we omit the details). See Appendix C for the
procedure for computing an initial guess. LetĴS be the resulting residual. The geometric
AIC is given by

G-AICS = ĴS +
8
N

ε2. (25)

5.5 Rigid Motions

The image transformation reduces to a 2-D rigid motion if we lets = 1 in eq. (20). We
can apply the same LM method for minimizingJ and the procedure for computing an
initial guess after an appropriate modification. LetĴM be the resulting residual. The
geometric AIC is given by

G-AICM = ĴM +
6
N

ε2. (26)

5.6 Translations

A 2-D rigid motion reduces to a translation if we letθ = 0. Let ĴT be the resulting
residual. The geometric AIC is given by

G-AICT = ĴT +
4
N

ε2. (27)

5.7 Affine Transformations

An affine transformation is a special homography that has the form

H =


a11 a12 t1/f0

a21 a22 t2/f0
0 0 1


 . (28)

Optimal values of{aij} and{ti} are obtained by the LM method, and an initial guess
can be computed analytically (we omit the details). LetĴA be the resulting residual. The
geometric AIC is given by

G-AICA = ĴA +
12
N

ε2. (29)
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(a) (b)

Fig. 5.Real images of an outdoor scene and the selected points.

(a) (b)

Fig. 6. (a) The image mapping computed by an optimal homography. (b) The image mapping by
model selection.

5.8 Principle of Model Selection

The geometric AIC consists of the residual and the penalty term that is proportional to
the degree of freedom of the model. The penalty term is determined by analyzing the
decrease of the residual caused by overfitting the model parameters to noisy data [1,4,
5]. Adopting the model with the smallest geometric AIC is equivalent to checking how
much the residual will increase if the degree of the freedom of the model is reduced and
adopting the simpler modelif the resulting increase of the residual is comparable to the
decrease of the degree of freedom, which can be interpreted as a symptom of overfitting.

6 Real Image Experiments

Fig. 5(a) is an image of an outdoor scene. Fig. 5(b) is a zoomed image of the same
scene corresponding to the white frame in Fig. 5(a). We manually selected the seven
points marked in the images and computed the homography for each of the candidate
models described in the preceding section, using the default noise model. The computed
geometric AICs of the candidate models are listed in Table 1. As we can see, the sim-
ilarity model is preferred. Fig. 6(a) shows the resulting superimposed image using the
homography computed by the optimal algorithm given in [7]. Fig. 6(b) is the result using
the selected similarity.
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Fig. 7.Two images of an outdoor scene and the selected points.

(a) (b)

Fig. 8. (a) Mosaicing by an optimally computed homography. (b) Mosaicing by model selection.

Fig. 7 is a pair of images of an outdoor scene with a small overlap. Using the six
points marked in the images, we computed the geometric AICs of the candidate models
as shown in Table 1. Again, the similarity model is preferred. Fig. 8(a) is the mosaiced
image using the homography computed by the optimal algorithm. Fig. 8(b) is the result
using the selected similarity.

Fig. 9 shows a different pair of images. Using the five points marked there, we
computed the geometric AICs shown in Table 1, which indicate that the translation
model is preferred. Fig. 10(a) is the mosaiced image using the optimal homography;
Fig. 10(b) is the result using the selected translation.

Fig. 11 shows the same scene as Fig. 7. This time, we used twenty two points
distributed over a large region. The resulting geometric AICs are listed in Table 1. The
best model is the 8-parameter homography; the second best model is the 5-parameter
homography. The difference between their geometric AICs is very small, indicating
that the image transformation can be viewed almost as the 5-parameter homography.
Fig. 12(a) is the mosaiced image using the best model; Fig. 12(b) is the result using the
second best model.

7 Concluding Remarks

As we can see from Figs. 8(a) and 10(a), the image mapping defined by the optimally
computed homography is very unstable and can cause a large unnatural distortion if the
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Fig. 9.Two images of an outdoor scene and the selected points.

(a)

(b)

Fig. 10.(a) Mosaicing by an optimally computed homography. (b) Mosaicing by model selection.

matching points are small in number and concentrated in a small region in each image.
Theoretically, the accuracy cannot be improved any further. We have shown that the
accuracycanbe improved nonetheless if we incorporate ourknowledgeabout source of
the instability.

The instability stems from the fact that actual transformations of images are usually
in a small subgroup of the group of homographies. It follows that undesirable distortions
can be removed by selecting an appropriate model by using the geometric AIC. The
improvement is dramatic as demonstrated in Figs. 8(b) and 10(b). As Fig. 12 shows,
model selection is not necessary if a large number of matching points are distributed
over a large region, and the general 8-parameter homography is chosen if model selection
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Fig. 11.Matching many points.

(a) (b)

Fig. 12.(a) Mosaicing using the best model. (b) Mosaicing using the second best model.

Table 1.The geometric AICs and the selected models.

Model Fig. 5 Fig. 7 Fig. 9 Fig. 11
8-parameter homography 9.92E − 06 1.25E − 05 4.01E − 05 © 2.946E − 06
5-parameter homography 4.80E − 02 3.65E − 03 4.69E − 05 2.954E − 06
4-parameter homography 1.57E − 02 4.39E − 02 4.45E − 05 2.976E − 03

affine transformation 8.92E − 06 1.08E − 05 4.10E − 05 3.507E − 06
similarity © 7.32E − 06 © 8.54E − 06 4.38E − 05 4.887E − 06

rigid motion 1.57E − 02 3.55E − 04 4.00E − 05 2.976E − 03
translation 1.57E − 02 3.53E − 04 © 3.65E − 05 2.990E − 03

is applied. Thus, an appropriate mapping is always selected whether a sufficient number
of matching points are available or not. This selection process does not require any
empirical thresholds to adjust. Our technique is very general and can be applied to a
wide range of vision applications for increasing accuracy and preventing computational
instability (e.g., [8]).

Acknowledgments.This work was in part supported by the Ministry of Education,
Science, Sports and Culture, Japan under a Grant in Aid for Scientific Research C(2)
(No. 11680377).
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A Analytical Decomposition

We first compute the homographyH = (Hij) (up to scale) that maps{xα} to{x′
α}, say,

by the optimal algorithm given in [7] or simply by least squares. The non-dimensional
focal lengthsφ′ andφ and the rotation matrixR that satisfy eq. (11) are computed
analytically by the following procedure. First,φ′ andφ are given by

φ′ =

√
−A

B
, φ =

√
H2

13 + H2
23 + H2

33φ
′2

K
, (30)
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where

A = (H11H12 + H21H22)H31H32 + (H12H13 + H22H23)H32H33

+(H13H11 + H23H21)H33H31, (31)

B = H2
31H

2
32 + H2

32H
2
33 + H2

33H
2
31, (32)

K =
H2

11 + H2
21 + H2

12 + H2
22 + (H2

31 + H2
32)φ

′2

2
. (33)

Then, compute the following singular value decomposition:

F −1H>F ′ = V


σ1

σ2
σ3


 U>. (34)

Here,σ1 ≥ σ2 ≥ σ3 (≥ 0) are the singular values, andU andV are orthogonal matrices.
The rotation matrixR is given by

R = V


1

1
det(VU>)


 U>. (35)

This procedure produces an exact solution if noise does not exist. In the presence of
noise, the solution is optimal in the least squares sense.

B Gradient and Hessian

We put
eα = x′

α ×Hxα. (36)

In computing the gradient∇J of eq. (7), we ignore terms ofO(eα)2 (O( · · · )n de-
notes terms of ordern or higher in · · ·). This is justified becauseJ has the form∑N

α=1(eα,Wαeα)/N and hence∇J is O(eα). In particular,Wα can be regarded
as a constant matrix, since the terms involving derivatives ofW in∇J areO(eα)2. This
approximation causes only higher order errors in the solution of∇J = 0.

Under this approximation, the gradient ofJ with respect toφ, φ′, andR is given by

∂J

∂φ
= − 2

φN

N∑
α=1

(Hk,x′
α ×Wαeα), (37)

∂J

∂φ′ =
2

φ′N

N∑
α=1

(k,Hxα)(k,x′
α ×Wαeα), (38)

∇ΩJ =
2
N

N∑
α=1

(Fxα)× F −1H>(x′
α ×Wαeα), (39)

wherek = (0, 0, 1)>.
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In computing the Hessian of∇2J of eq. (7), we ignore terms ofO(eα). This is
justified becauseJ has the form

∑N
α=1(eα,Wαeα)/N and hence∇2J is O(1). In par-

ticular,Wα can be regarded as a constant matrix, since the terms involving derivatives
of W in ∇2J areO(eα). This approximation does not affect the accuracy of Newton
iterations, since the Hessian∇2J controls merely the speed of convergence, not the ac-
curacy of the solution. Newton iterations with this approximation, calledGauss-Newton
iterations, are known to be almost as efficient as Newton iterations.

Under this approximation, the individual elements of the Hessian∇2J are given as
follows:

∂2J

∂φ2 =
2

φ2N

N∑
α=1

(Hk, (x′
α ×Wα × x′

α)Hk), (40)

∂2J

∂φ′2 =
2

φ′2N

N∑
α=1

(k,Hxα)2(k, (x′
α ×Wα × x′

α)k), (41)

∂2J

∂φ∂φ′ = − 2
φφ′N

N∑
α=1

(k,Hxα)(Hk, (x′
α ×Wα × x′

α)k), (42)

∇Ω
∂J

∂φ
= − 2

φN

N∑
α=1

(Fxα)× F −1H>(x′
α ×Wα × x′

α)Hk, (43)

∇Ω
∂J

∂φ′ =
2

φN

N∑
α=1

(k,Hk)(Fxα)× F −1H>(x′
α ×Wα × x′

α)k, (44)

∇2
ΩJ =

2
N

N∑
α=1

(Fxα)× F −1H>(x′
α ×Wα × x′

α)HF −1 × (Fxα). (45)

Here, the producta× T × a of a vectora = (ai) and matrixT = (Tij) is a symmetric
matrix whose(ij) element is

∑
εiklεjmnakamTln, whereεijk is the Eddington epsilon,

taking 1,−1, and 0 when(ijk) is an even permutation of (123), an odd permutation of
it, and otherwise, respectively.

C Analytical Similarity Solution

We represent the coordinates(xα, yα) and(x′
α, y′

α) and the translation
→
τ = (τ1, τ2)> by

the following complex numbers:

zα =
xα

f0
+ i

yα

f0
, z′

α =
x′

α

f0
+ i

y′
α

f0
, τ = τ1 + iτ2. (46)

Let zC andz′
C be the centroids of the feature points:

zC =
1
N

N∑
α=1

zα, z′
C =

1
N

N∑
α=1

z′
α. (47)
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Compute the deviations of the individual feature points from the centroids:

z̃α = zα − zC , z̃′
α = z′

α − z′
C . (48)

The scales and the angleθ of rotation are given by

s =
1
N

N∑
α=1

abs[
z̃′
α

z̃α
], θ = arg[

1
N

N∑
α=1

S[
z̃′
α

z̃α
]], (49)

where we define

S[Z] =
Z

abs[Z]
. (50)

The translationτ is given by
τ = z′

C − seiθzC . (51)

Discussion

1. Fabian Ernst, Philips Research:You say there is no empirically adjustable thresh-
old involved in your criterion, but you have to make a trade-off between the number
of degrees of freedom you have in your homography on the one hand, and residu-
als on the other hand. Therefore you have implicitly made a trade-off: you have a
threshold in the weighting between these two criteria. Could you comment on how
sensitive the model selection is to this trade-off?
Kenichi Kanatani :Yes, we are effectively using some kind of threshold determined
by the penalty term for the model complexity, but the penalty term was derived by
the theory of Akaike based on statistical principles, not the user. Akaike based his
derivation on asymptotic evaluation of the Kullback-Liebler information, but we
adopt a different interpretation.
At any rate, there have been heated arguments among statisticians about how the
model complexity should be weighted, and other criteria such as MDL and BIC
have also been proposed. In fact, the model selection is a very subtle issue, and we
leave it to professionals. If we use other criteria, we may obtain a slightly different
result in general. For this mosaicing application, however, we tried other criteria,
too, but the result was always the same: the same model was chosen.

2. Peter Vanroose, Katholieke Universiteit Leuven: You mention five specific sub-
groups of the homographies. There are other possible subgroups, did you consider
them as well? Would it be worthwhile doing so?
Kenichi Kanatani : If we would exhaust all possibilities and do model selection, we
would end up with something, but this does not make much sense. The success of our
method comes from the use of our knowledge that a certain class of transformations
is very likely to occur. In this sense, we are implicitly taking the Bayesian approach,
since we rely on our prior knowledge about the solution. But we do not explicitly
assign any a priori probability to the individual candidate models. I think this is the
essence of all techniques using model selection criteria.
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3. Mathias Muehlich, Frankfurt University : I want to make a comment on your use
of the term ‘optimal’.You showed that you had to talk about ‘optimal’with respect to
the model you use, because optimal estimation of your full eight degrees of freedom
homography is not optimal for every situation. I would like to add that you should
also consider the method you use and the model of errors you use. Because you
assume isotropic error, I think that is a rather strong restriction within your model. I
would think that if you consider covariances of your input data many strong or severe
distortions would not appear. I would not talk about ‘optimal’ if your renormalization
scheme only uses first order approximation. Could you comment on this?
Kenichi Kanatani : Theoretically, the renormalization solution is optimal in the first
order. The second order effects are very small, so it is practically optimal. In fact,
there exists a theoretical bound beyond which the accuracy cannot be improved, and
we have experimentally confirmed that the renormalization solution always falls in
the vicinity of that bound.
The next issue is the covariance matrices. Of course, we can adopt anisotropic and
inhomogeneous covariance matrices, which can be given by the Hessian of the
residual surface of template matching for feature matching. Actually, we did that,
but the difference was invisible. We studied the reason carefully. It has turned out
that this is because we selected feature points by hand. Humans usually choose very
good, salient, features. We do not usually select a point in the sky or on walls of
uniform gray levels. If we did, we would have to give such a point a large covariance
to compensate for its ambiguity. We also tried automatic feature detectors, but the
result was the same. As long as feature detectors or humans eyes are involved,
our experience tells us that the assumption of isotropic and homogeneous noise is
sufficient and no improvement would result by simply modifying the covariance
matrices.
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Abstract. This paper shows how to upgrade the projective reconstruction of a
scene to a metric one in the case where the only assumption made about the
cameras observing that scene is that they have rectangular pixels (zero-skew cam-
eras). The proposed approach is based on a simple characterization of zero-skew
projection matrices in terms of line geometry, and it handles zero-skew cameras
with arbitrary or known aspect ratios in a unified framework. The metric upgrade
computation is decomposed into a sequence of linear operations, including lin-
ear least-squares parameter estimation and eigenvalue-based symmetric matrix
factorization, followed by an optional non-linear least-squares refinement step. A
few classes of critical motions for which a unique solution cannot be found are
spelled out. A MATLAB implementation has been constructed and preliminary
experiments with real data are presented.

1 Introduction

The past ten years have witnessed very impressive progress in motion analysis. Keys to
this progress have been the emergence of reliable interest-point detectors (e.g., [11]) and
feature trackers (e.g., [31]); a shift from methods relying on a minimum number of images
(e.g., [33]) to techniques using a large number of pictures (e.g., [24,30,31]), facilitated
by the decrease in price of image acquisition and storage hardware; and a vastly im-
proved understanding of the geometric, statistical and numerical issues involved (e.g.,
[5,6,14,15,19,24,30,31]). For example, Tomasi and Kanade [30] and their colleagues
[2,22] have shown that the motion of a calibrated orthographic, weak perspective or
paraperspective image can be estimated by first using singular value decomposition to
compute an affine reconstruction of the observed scene, then upgrading this reconstruc-
tion to a full metric one using the Euclidean constraints available from the calibration
parameters [19,25]. We consider in this paper the more complicated case of perspec-
tive projection, wheren fixed pointsPj (j = 1, . . . , n) are observed bym perspective
cameras. Given some fixed world coordinate system, we can write

pij = MiP j for i = 1, . . . , m and j = 1, . . . , n, (1)

wherepij denotes the (homogeneous) coordinate vector of the projection of the point
j in the imagei expressed in the corresponding camera’s coordinate system,Mi is the

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 52–67, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



On Computing Metric Upgrades of Projective Reconstructions 53

3 × 4 projection matrix associated with this camera in the world coordinate system, and
P j is the homogeneous coordinate vector of the pointPj in that coordinate system.

We address the problem of reconstructing both the matricesMi (i = 1, . . . , m)
and the vectorsP j (j = 1, . . . , n) from the image correspondencespij . Faugeras [5]
and Hartleyet al. [15] have shown that when no assumption is made about the internal
parameters of the cameras, such a reconstruction can only be done up to an arbitrary
projective transformation, i.e., ifMi andP j are solutions of (1), so areMiQ and
Q−1P j for any nonsingular4 × 4 matrix Q. Several effective techniques for comput-
ing a projective scene representation from multiple images have been proposed (e.g.,
[5,12,15,21,27,28,35]). As in the affine case, the projective reconstruction can be up-
graded to a full metric model [7] by exploiting a priori knowledge of camera calibration
parameters (e.g., [8,9,13,20,23,24]) or scene geometry (e.g., [1]).

Now, although the internal parameters of a camera may certainly be unknown (e.g.,
when stock footage is used) or change from one image to the next (e.g., when several
different cameras are used to film a video clip, or when a camera zooms, which will
change both its focal length and the position of its principal point), there is one parameter
that will, in practice, never change: it is the skew of the camera, i.e., the difference
betweenπ/2 and the angle actually separating the rows and columns of an image. Except
possibly for minute manufacturing errors, the skew will always be zero. Likewise, the
aspect ratio of a camera will never change, and it may be known a priori. Zero-skew
perspective projection matrices have been characterized by Faugeras [6, Theorems 3.1
and 3.2] and Heyden [16] as follows.

Lemma 1. A necessary and sufficient condition for a rank-3 3 × 4 matrix

M =


 mT

1 m14
mT

2 m24
mT

3 m34




to be a zero-skew perspective projection matrix is that

(m1 × m3) · (m2 × m3) = 0, (2)

and a necessary and sufficient condition for a zero-skew perspective projection matrix
M to have unit aspect ratio is that

|m1 × m3|2 = |m2 × m3|2. (3)

Let us follow Faugeras [6] and give a geometric interpretation of this lemma: the
rows of the matrixM are associated with the planesΠi : mi ·x+mi4 = 0 (i = 1, 2, 3),
calledprojection planesin [4]. The image coordinate axisu = 0 of the image is parallel
to the lineλ whereΠ1 intersects the focal plane (i.e., the plane parallel to the retina that
passes through the optical center)Π3, and its direction is the cross productm1 × m2
of the two plane normals. Likewise, the coordinate axisv = 0 is parallel to the line
µ = Π2 ∩ Π3 and its direction ism2 × m3. Equation (2) simply expresses the fact that
these two lines are perpendicular. The additional condition in (3) expresses the fact that
the scales of the two image coordinate axes are the same.
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Lemma 1 shows that arbitrary3×4 matrices are not zero-skew perspective projection
matrices. It can therefore be hoped that better-than-projective reconstructions of the
world can be achieved for zero-skew cameras (and a fortiori for cameras with zero skew
and unit aspect ratio). We will say that a projective transformationQ preserves zero
skew when, foranyzero-skew perspective projection matrixM, the matrixMQ is also
a zero-skew perspective projection matrix. Heyden andÅström [17] and Pollefeyset al.
[24] have independently shown the following important result.

Lemma 2. The class of transformations that preserve zero skew is the group of similarity
transformations.

Similarity transformations obviously preserve the aspect ratio of a camera so the
above result also holds for zero-skew cameras with unit aspect ratio.

The proof of this lemma is constructive: for example, Pollefeyset al. [24] exhibit a
set of eight camera positions and orientations that constrain the transformation to be a
similarity. In this setting, Heyden and̊Aström [18] have also given a bundle-adjustment
method for estimating the calibration parameters as well as the metric structure and
motion parameters. Their method is not linear and it relies on the algorithm proposed by
Pollefeyset al. [24] to find an initial guess assuming known principal point and aspect
ratio. We use line geometry to derive in the rest of this paper a quasi-linear alternative
to that technique that does not require any initial guess and handles both arbitrary zero-
skew matrices and zero-skew matrices with unit aspect ratio in a unified framework.
In addition, we spell out a few classes of critical motions for which a unique solution
cannot be found, and present some preliminary experiments with real data.

2 A Characterization of Metric Upgrades for Zero-Skew Cameras

Suppose that some projective reconstruction technique (e.g., [5,15]) has been used to
estimate the projection matricesMi (i = 1, . . . , m) and the point positionsP j (j =
1, . . . , n) from m images of these points. We know that any other reconstructionand in
particular a metric onewill be separated from this one by a projective transformation.
This section provides an algebraic and geometric characterization of the4 × 4 matrices
Q such that, ifM̂ = MQ, the rows ofM̂ satisfy the condition of Lemma 2. These
transformations are called zero-skew metric upgrades in the sequel. To characterize these
transformations in a simple manner, it is useful to recall some elementary notions of line
geometry (see [3,4] for related applications to motion analysis). Let us first introduce the
operator “∧” that associates with two 4-vectorsa andb their exterior productdefined
as the 6-vector

a ∧ b
def=




a1b2 − a2b1
a1b3 − a3b1
a1b4 − a4b1
a2b3 − a3b2
a2b4 − a4b2
a3b4 − a4b3


 .

Note the similarity with the cross product operator that also associates with two
vectors (3-vectors of course, instead of 4-vectors)a andb the vector formed by all the
2 × 2 minors of the matrix(a, b).
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Geometrically, the exterior product associates with the homogeneous coordinate
vectors of two points in IP3 the so-calledPlücker coordinatesof the line joining them.
In a dual sense, it also associates with two planes in IP3 the line where these planes
intersect. Pl¨ucker coordinates are homogeneous and lines form a subspace of dimension
4 of the projective space IP5: indeed, it follows immediately from the definition of the
exterior product that the Pl¨ucker coordinate vectorl = (l1, l2, l3, l4, l5, l6)T of a line
obeys the quadratic constraint

l1l6 − l2l5 + l3l4 = 0. (4)

It is also possible to define an inner product on the set of all lines by the formula

(l|l′) def= l1l
′
6 + l6l

′
1 − l2l

′
5 − l5l

′
2 + l3l

′
4 + l4l

′
3.

Clearly, a 6-vectorl represents a line if and only if(l|l) = 0, and it can also be shown
that a necessary and sufficient condition for two lines to be coplanar is that(l|l′) = 0. It
will also prove convenient in the sequel to define the vectorl̄ = (l6,−l5, l4, l3,−l2, l1)T ,

so that(l|l′) = lT l̄
′ = l̄

T
l′.

We are now in a position to characterize zero-skew metric upgrades. We write the
matricesM̂, M andQ as

M̂ =


 m̂T

1 m̂14
m̂T

2 m̂24
m̂T

3 m̂34


 , M =


 mT

1
mT

2
mT

3


 and Q = ( q1 q2 q3 q4 ) .

Note that the vectorsmi andqi are elements of IR4 but the vectorŝmi are elements
of IR3. With this notation, we have the following result.

Lemma 3. Given a projection matrixM and a projective transformationQ, a necessary
and sufficient condition for the matrix̂M = MQ to satisfy the zero-skew constraint

(m̂1 × m̂3) · (m̂2 × m̂3) = 0

is that

λT RT Rµ = 0, (5)

where

R def=


 (q2 ∧ q3)T

(q3 ∧ q1)T

(q1 ∧ q2)T


 , λ

def= m1 ∧ m3 and µ
def= m2 ∧ m3.

In addition, a necessary and sufficient condition for the zero-skew perspective pro-
jection matrixM̂ to have unit aspect ratio is that

λT RT Rλ = µtRT Rµ. (6)
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The proof of this lemma relies on elementary properties of the exterior product to
show thatm̂1 × m̂3 = Rλ andm̂2 × m̂3 = Rµ, from which the result immediately
follows. Its geometric interpretation is simple as well: obviously, the vectorλ is the
vector of Plücker coordinates of the lineλ formed by the intersection of the planesΠ1
andΠ3 associated with the projection matrixM. Likewise,µ is the vector of Pl¨ucker
coordinates of the lineµ = Π2∩Π3. When the transformationQ is applied to the matrix
M, these two lines map onto lineŝλ andµ̂ parallel to the coordinate axeŝu = 0 and
v̂ = 0 of the zero-skew image. As shown in Appendix A, the matrixR maps lines onto
the direction of their image underQ, thus (5) simply expresses the fact that the lines
û = 0 and v̂ = 0 are perpendicular. As before, the additional condition (6) expresses
that the scales of the two image coordinate axes are the same.

3 Computing the Upgrade

We show in this section that a matrixQ satisfying (5) can be estimated from at least
19 images using linear methods: we first use linear least squares to estimate the matrix

S def= RT R, then take advantage of elementary properties of symmetric (but possibly
indefinite) matrices to factorS and computeR. OnceR is known, it is a simple matter
to determine the matrixQ using once again linear least squares. The proposed approach
linearizes the estimation process since (5) is an equation of degree 4 in the coefficients
of Q. The following lemma clarifies the corresponding properties of the matricesR and
S.

Lemma 4. The matricesR andS have the following properties:

1. The columnsR1, R2 andR3 of the matrixRT satisfy the6 quadratic constraints


(R1|R1) = 0,
(R2|R2) = 0,
(R3|R3) = 0,

and




(R1|R2) = 0,
(R2|R3) = 0,
(R3|R1) = 0.

2. The coefficientsSij of the matrixS satisfy the linear constraint

S16 − S25 + S34 = 0.

3. The columnsSi (i = 1, . . . , 6) of S satisfy the12 quadratic constraints


(S1|S1) = 0,
(S1|S2) = 0,
(S1|S3) = 0,
(S2|S2) = 0,
(S2|S3) = 0,
(S3|S3) = 0,

and




(S4|S1) = 0,
(S4|S2) = 0,
(S4|S3) = 0,
(S5|S1) = 0,
(S5|S2) = 0,
(S6|S1) = 0.

The proof of this lemma is simple and it can be found in Appendix B. It relies on
showing that the columns of these two matrices are the Pl¨ucker coordinates of a certain
number of lines. Note that the quadratic constraints satisfied by the entries of the matrix
S capture the linear dependency of its columns and the fact that it has (at most) rank 3.
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3.1 ComputingS: Linear Least Squares

We are now ready to present our method for estimating the matricesS, R andQ as-
sociated with zero-skew cameras. Let us first note that (5) is a linear constraint on the
coefficients ofS, that can be rewritten as

6∑
i=1

λiµiSii +
∑

1≤i<j≤6

(λiµj + λjµi)Sij = 0 (7)

where the coefficientsλi andµi denote the coordinates of the vectorsλ andµ and the
20 coefficientsSij denote the entries ofS.

According to Property 2 in Lemma 4, we haveS16 − S25 + S34 = 0. In addition,
since the lines associated with the vectorsλ andµ both lie in the focal plane, we have
(λ|µ) = 0. This allows us to eliminate the unknownS16 and rewrite (7) as

6∑
i=1

λiµiSii +
∑

1≤i<j≤6

i+j 6=7

(λiµj + λjµi)Sij + a25S25 + a34S34 = 0, (8)

where {
a25 = 2(λ2µ5 + λ5µ2) − (λ3µ4 + λ4µ3),
a34 = 2(λ3µ4 + λ4µ3) − (λ2µ5 + λ5µ2),

and the missing elements in the second sum in (8) correspond to the termsS16, S25 and
S34.

With only 20 out of the 21 original unknown coefficients left, writing (8) form ≥ 19
images yields an overdetermined homogeneous system of linear equations of the form
As = 0, whereA is anm × 20 data matrix ands is the vector formed by the 20
independent coefficients ofS. The least-squares solution of this system is computed
(up to an irrelevant scale factor) as the rightmost column of the20 × 20 matrixV in the
singular value decompositionUDVT of A. TheS16 entry is then computed asS25−S34.
Note that this linear process ignores the 12 quadratic equations satisfied by the entries of
the matrixS according to Lemma 4. This suggests a two-pass estimation process, where
the coefficients ofS are first estimated using linear least squares and then refined using
constrained optimization.

The method is readily adapted to the case of zero-skew matrices with unit (or, equiv-
alently, known) aspect ratio by adding to the linear constraint (8) associated with (5) the
linear constraint

6∑
i=1

(λ2
i − µ2

i )Sii +
∑

1≤i<j≤6

i+j 6=7

2(λiλj − µiµj)Sij + 2b25S25 + 2b34S34 = 0 (9)

associated with (6), where{
b25 = 2(λ2λ5 − µ2µ5) − (λ3λ4 − µ3µ4),
b34 = 2(λ3λ4 − µ3µ4) − (λ2λ5 − µ2µ5).
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3.2 ComputingR: Factorization of Symmetric Matrices

In both cases, once the symmetric matrixS is known, it can be used to estimate the matrix
R: for example, ifS is positive (semidefinite by construction in the noiseless case, but
possibly definite in the presence of noise), its singular value decomposition has the form
S = UDUT andRT can be taken equal toU3

√D3, whereU3 is the matrix formed by the
three columns ofU associated with the largest singular values ofS. This construction
relies on the well-known fact that the closest rank-3 approximation to a given matrix in
the sense of the Frobenius form is obtained by zeroing its three smallest singular values,
and it has been used in various contexts in computer vision (e.g., [14,32,34]).

Unfortunatey, in the presence of noise,S is not guaranteed (and in fact is unlikely)
to be positive, and the above method does not apply (see, for example, [25,34] for a
discussion of this problem). To tackle this difficulty, we will use an elementary property
of symmetric matrices: let us consider an arbitraryn × n symmetric matrixS with real
coefficients, and diagonalize this matrix in an orthonormal basis asS = UDUT , where
D is the diagonal matrix formed by the (possibly negative) eigenvalues ofS andU is
the orthogonal matrix formed by its eigenvectors. We seek then×n symmetric positive
semidefinite matrix̂S that best approximatesS in the sense of the Frobenius form, i.e.,
minimizes

E2 = |S − Ŝ|22 =
n∑

i,j=1

(Sij − Ŝij)2.

Property 1. The symmetric definite semipositive matrix̂S minimizing E2 is UD0UT ,
whereD0 is the diagonal matrix obtained by setting all negative entries ofD to zero.

The proof of this property is simple and it is given in Appendix C.1

In our setting, we first compute the eigenvectors and eigenvalues ofS, then zero the
negative eigenvalues.At this point it is still possible because of noise that more than three
of the eigenvalues be positive. To enforce the rank-3 constraint we use the property of sin-
gular value decomposition mentioned before and zero all remaining eigenvalues but the
three largest ones. This step is justified by the fact that the singular values of a symmetric
matrix are the absolute values of its eigenvalues. Finally, we setRT = U3

√D3, where
U3 is the matrix formed by the columns ofU associated with the remaining eigenvalues
of S.

Note that this process only determinesR up to an arbitrary3 × 3 orthogonal matrix
A since, ifS = RT R, then we also haveS = R′T R′, whereR′ = AR. Conversely,
althoughR can only be estimated up to an arbitrary orthogonal transformationA, the
coefficients of the matrixS are by construction invariant underA. It should also be
noted that this factorization approach ignores the 6 quadratic constraints satisfied by the
entries of the matrixR according to Lemma 4. Again, this suggests a two-pass process
using the result of factorization as a seed for a second constrained optimization stage.

1 This is for completeness only since we have not been able to find the appropriate reference yet. It
should be noted that optimization algorithms routinely rely on positive definite approximations
of indefinite symmetric matrices to improve the numerical stability of their output (e.g., [10,26]).
The problem is a bit different here since we seek a positivesemidefiniteapproximation.
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3.3 ComputingQ: Linear Least Squares

OnceR is known, we can estimate the vectorsq1, q2 andq3 using linear least squares
thanks to the following classical property of Pl¨ucker coordinates, given here without
proof.

Property 2. Given a linel with Plücker coordinate vectorl = (l1, l2, l3, l4, l5, l6)T and a
point (resp. plane)P with homogeneous coordinate vectorP , a necessary and sufficient
condition forP to lie onl (resp. forl to lie in P ) is that

LP = 0, where L def=




0 l6 −l5 l4
−l6 0 l3 −l2
l5 −l3 0 l1

−l4 l2 −l1 0


 ,

and the planeΠ spanned by the linel and the pointP (resp. the pointΠ where the line
l and the planeP intersect) has homogeneous coordinatesΠ = LP .

This result allows us to write constraints such asL12q1 = 0 andL12q3 = L23q1,
whereLij denotes theL matrix associated with the estimated value ofqi ∧ qj for
i, j = 1, 2, 3.2 Collecting the6 × 3 + 3 × 4 = 30 different equations of this type
obtained by permuting the appropriate subscripts yields a systems of linear equations in
the coordinates of the vectorsqi that can be solved once again using linear least squares
(at most 11 of the 30 equations are independent in the noise-free case).

Once the vectorsqi are known, we can complete the construction ofQ by imposing,
for example, that the optical center of the first camera be used as origin of the world
coordinate system. This translates into the fourth column ofM̂1 being zero, and allows
us to computeq4 (up to scale) as the solution ofM1q4 = 0. This unknown scale factor
reflects the fact that we have a metric but not Euclidean reconstruction, i.e., absolute
scale cannot be recovered.

3.4 RefiningQ: Non-Linear Least Squares

Let us conclude by noting that, givenm projection matricesMi, the estimates of the
vectorsqi (i = 1, 2, 3) obtained from the linear least-squares process can be refined
using non-linear least-squares to minimize the average squared skew of the projection
matrices, i.e.,

1
m

m∑
i=1

[
arcsin

(Rλi) · (Rµi)
|Rλi| |Rµi|

]2

, (10)

with respect to the vectorsqi (i = 1, 2, 3). The vectorq4 can then be computed as before.
We have implemented this method and present a comparison with linear least squares in
Section 5.

2 This is true despite the fact that the homogeneous coordinate vectorΠ in Property 2 is only
defined up to scale: it is indeed easy to show that we can writeL12q3 = L23q1 instead of
L12q3 = ρL23q1 because of the particular method used to construct the vectorsLij .
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4 Degenerate Motions

It is of course important to understand the conditions under which the proposed method
will fail. Let us consider first the case of arbitrary zero-skew cameras. We assume that
our data consist ofm ≥ 19 matricesMi (1 = 1, . . . , m) and denote byλi andµi the
associated vectors of Pl¨ucker coordinates. The matrixS we seek is a solution of the
linear system of equations

λT
i Xµi = 0 for i = 1, . . . , m. (11)

The linear least-squares estimation ofS will fail when the associatedm × 20 data
matrix has rank less than 19, or, more directly, when (11) does not admit a unique
solution.

The equationλT Xµ = 0 defines a quadric surface in the space spanned by the
vectorsλ andµ and a quartic surface in the space of all projection matrices. WhenX
is equal toS, this quartic surface is precisely the 10-dimensional set of all zero-skew
projection matrices. For a motion sequence to be degenerate, the projection matrices
must lie on a second quartic surface as well, which will never occur for general enough
motions. When the camera motion is sufficiently restricted, however, (11) may admit
several solutions. Identifying all possible cases is difficult, but we can spell out a few
simple ones. Suppose for instance that there exists some fixed lineξ such thatλ and
ξ remain coplanar during the whole motion sequence. In this case we obviously have
(λ|ξ) = λT ξ̄ = 0, thusλT Xµ = 0 with X = ξ̄ξ̄

T
, and the method will fail. The same

is of course true when there exists a fixed lineξ such thatξ andµ are coplanar for every
image in the sequence. The following lemma identifies a few classes of such degenerate
motion sequences.

Lemma 5. The following classes of motions of an arbitrary zero-skew camera do not de-
termine a unique metric reconstruction (independently of the estimation method actually
used):

1. Pure translations: the optical center of the camera may change in an arbitrary
manner but the camera’s orientation is held constant.

2. Planar motions: the optical center is held in the planey = 0 and the camera is
allowed to rotate about they axis.

3. Straight-line motions: the optical center of the camera moves along a straight line
but the orientation of the camera is allowed to change arbitrarily.

These are well-known degenerate motions for several self-calibration methods (e.g.,
[23,29,31]). Note that straight-line motions include pure rotations. The lemma is proven
by choosing an appropriate lineξ for each motion class: for pure translations, the image
coordinate axes translate parallel to themselves, and we can pickξ to be some fixed line
parallel toλ or toµ. For planar motions, the lineµ remains in the planey = 0 and we can
pick any fixed line in this plane forξ. In the case of a straight-line optical center motion,
we can pickξ to be the trajectory of the optical center, since it will always intersect both
λ andµ. Note that the motions identified by Lemma 5 will remain degenerate even if we
impose that the entries of the matrixS satisfy the 12 quadratic constraints of Lemma 4:
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indeed, the columns of̄ξξ̄
T

are scaled versions of the same Pl¨ucker coordinate vector
and they satisfy these constraints.

The case of zero-skew cameras with unit aspect ratio is a bit different since in this
caseξ must intersect (or be parallel to)bothλ andµ. In particular translations and planar
motions are not obviously degenerate motions in this case (they still may be since the
existence of the lineξ intersectingλ andµ is only asufficientcondition for degeneracy),
but straight-line motions remain degenerate.Additional work is needed to give necessary
and sufficient conditions for degeneracy.

5 Implementation and Results

A preliminary MATLAB implementation of the proposed approach has been constructed,
and tested with real data kindly provided by Marc Pollefeys. The linear least-squares
estimation ofS andQ has been implemented by the MATLABsvd routine for singu-
lar value decomposition. The factorization ofS has been implemented using theeig
function for eigenvalue and eigenvector computation, and thelsqnonlin routine has
been used to perform the non-linear least-squares refinement ofQ. The constrained
optimization processes for estimatingS andR mentioned in Section 3 have not been
implemented. Our data consist of projective reconstructions of 182 projection matrices
and 3506 points from a sequence of images of a desk scene featuring a volleyball and
a cylindrical box. We have assumed in our experiments that all cameras have zero skew
but arbitrary aspect ratio.

Figure 1 shows our results, including plots of the original projective reconstruction
(Figure 1(a)), the metric reconstruction obtained using the self-calibration method pro-
posed by Pollefeyset al. [23,24] (Figure 1(b)), and the metric reconstructions using our
method and both linear least squares (Figure 1(c)) and non-linear optimization (Figure
1(d)). These results are a bit difficult to evaluate objectively since (1) ground truth is
not available, (2) the data points in the metric reconstruction of Pollefeyset al.are sam-
pled quite differently from those used in the projective reconstruction and our metric
upgrades, and (3) the results are not shown from the same viewpoints (due to the facts
that the reconstruction is only done up to an arbitrary rigid transformation plus scaling
and that we have not yet implemented an automatic registration program). Still, the two
parallel planes and the spherical shape of the ball seem to be rather well preserved in
our reconstructions. The linear estimation ofQ takes 0.5s on a Pentium II 450MHz
machine, and yields an average skew of5.68◦ over the 182 input matrices. Starting from
the linear estimate, the non-linear least-squares functionlsqnonlin converges in 9s
after 16 iterations and yields an average skew of0.46◦. More experiments are of course
necessary to validate our approach.

Acknowledgments. I would like to thank Marc Pollefeys for providing the data used in
our experiments, and Mike Heath, Martial Hebert, Seth Hutchinson, David Kriegman,
Pierre Moulin, Bob Skeel and Eric de Sturler for useful discussions and comments.
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Fig. 1. Experimental results: (a) projective reconstruction; (b) metric reconstruction using the
method described in [23,24]; (c) metric reconstruction obtained by the method presented in this
paper using linear least squares; (d) metric reconstruction using non-linear least squares.

Appendix

Appendix A: Proof of Lemma 3

Let us consider a linel defined by the intersection of two arbitrary planes with coordinate
vectorsm andn. The Plücker coordinate vectorl of this line is equal tom ∧ n, and its
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image under the transformationQ is

l̂ = (QT m) ∧ (QT n) =




(q1 · m)(q2 · n) − (q2 · m)(q1 · n)
(q1 · m)(q3 · n) − (q3 · m)(q1 · n)
(q1 · m)(q4 · n) − (q4 · m)(q1 · n)
(q2 · m)(q3 · n) − (q3 · m)(q2 · n)
(q2 · m)(q4 · n) − (q4 · m)(q2 · n)
(q3 · m)(q4 · n) − (q4 · m)(q2 · n)


 .

Now, note that the direction of any linel is the cross product of the normals of the
two planes defining it. In other words, ifl = (l1, l2, l3, l4, l5, l6)T is the line’s vector of
Plücker coordinates, then its direction isv = (l4,−l2, l1)T . Applying this result to the
line l̂ yields

v̂ =


 (q2 · m)(q3 · n) − (q3 · m)(q2 · n)

(q3 · m)(q1 · n) − (q1 · m)(q3 · n)
(q1 · m)(q2 · n) − (q2 · m)(q1 · n)


 . (12)

It is easy to check analytically that the following identity holds for any 4-vectorsa,
b, c andd:

(a ∧ b) · (c ∧ d) = (a · c)(b · d) − (a · d)(b · c),

and applying this identity to (12) yields

v̂ =


 (q2 ∧ q3) · (m ∧ n)

(q3 ∧ q1) · (m ∧ n)
(q1 ∧ q2) · (m ∧ n)


 =


 (q2 ∧ q3)T

(q3 ∧ q1)T

(q1 ∧ q2)T


 l.

In other words, we have just shown that the matrixR defined in Section 2 maps lines
onto the direction of their image underQ.

Applying this result to the linesλ andµ shows that the directions of the linesλ̂ and
µ̂ are given respectively by {

m̂1 × m̂3 = Rλ,
m̂2 × m̂3 = Rµ,

and the lemma immediately follows.

Appendix B: Proof of Lemma 4

Here we establish the properties of the matricesR andS. Let us define the column
vectors ofRT asR1 = q2 ∧ q3, R2 = q3 ∧ q1, andR3 = q1 ∧ q2.

These vectors are the Pl¨ucker coordinates of three linesR1, R2 andR3 that intersect
at the point of intersection of the three planes associated with the vectorsq1, q2 andq3.
In particular we have the constraints


(R1|R1) = 0,
(R2|R2) = 0,
(R3|R3) = 0,

and




(R1|R2) = 0,
(R2|R3) = 0,
(R3|R1) = 0.
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Let us now turn our attention toS. We have

S = (R1 R2 R3 )


 RT

1
RT

2
RT

3


 = R1R

T
1 + R2R

T
2 + R3R

T
3 .

In particular,

S16 − S25 + S34 = (R11R16 + R21R26 + R31R36) − (R12R15 + R22R25 + R32R35)
+(R13R14 + R23R24 + R33R34)

= (R1|R1) + (R2|R2) + (R3|R3) = 0.

If we denote byS1 to S6 the columns of the matrixS, we haveSi = R1iR1 +
R2iR2+R3iR3. In particular, this means that the columns ofS are the Pl¨ucker coordinate
vectors of six lines, and these lines are all pairwise coplanar (in fact, they belong to the
pencil generated by the linesR1, R2 andR3). This yields 21 quadratic constraints of
the form(Si|Sj) = 0 (i, j = 1, . . . , 6) on the entries of the matrixS. Note that these
equations capture the linear dependency of the columnsSi and the fact that the matrix
S has (at most) rank 3.

It is easily shown that only 12 of the quadratic constraints are linearly independent:


(S1|S1) = 0,
(S1|S2) = 0,
(S1|S3) = 0,
(S2|S2) = 0,
(S2|S3) = 0,
(S3|S3) = 0,




(S4|S1) = 0,
(S4|S2) = 0,
(S4|S3) = 0,
(S5|S1) = 0,
(S5|S2) = 0,
(S6|S1) = 0,

and that all other constraints are identical to one of these or its opposite (this is due to
the symmetry to the matrixS).

It may also be of interest to note that the matrixS = RT R maps lines onto lines:
the fact that the vectorSl verifies the Pl¨ucker constraint (4) for any Pl¨ucker vectorl
is easily verified analytically by using elementary properties of the cross product. IfP
denotes the3 × 4 matrix formed by the top three rows ofQT , it is also interesting to
note thatR is the matrix calledP̃ by Faugeras and Papadopoulo [4], that maps lines
in space onto the corresponding image lines under the perspective projection associated
with the matrixP. As shown by these authors,P̃T maps points in the image plane onto
the corresponding visual rays, yielding a different proof thatS maps lines onto lines.

Appendix C: Proof of Property 1

We consider an arbitraryn×n symmetric matrixS with real coefficients, and diagonalize
this matrix in an orthonormal basis asS = UDUT , whereD is the diagonal matrix
formed by the (possibly negative) eigenvalues ofS and U is the orthogonal matrix
formed by its eigenvectors. We seek the symmetric positive semidefinite (orsps) matrix
Ŝ that minimizesE2 = |S − Ŝ|22. Let us defineD̂ = UT ŜU , and note that̂D is by
construction positive semidefinite as well. Observing thatŜ = UD̂UT , and using the
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invariance of the Frobenius form under orthogonal transformations reduces our original
problem to minimizingE2 = |D − D̂|22 over all sps matriceŝD.

SinceD is diagonal, it is clear that among all matricesD̂ having the same diagonal
(and in particular among all sps matrices having the same diagonal), the matrix mini-
mizingE2 must have zero off-diagonal entries. Our problem thus reduces to finding the
sps diagonal matrix̂D that minimizes

E2 =
n∑

i=1

(Di − D̂i)2,

whereDi (resp.D̂i) denotes theith diagonal entry ofD (resp.D̂). The sps matrixD̂
has positive or zero diagonal elements. For entriesDi ≥ 0, the value of(Di − D̂i)2 is
clearly minimized byD̂i = Di. On the other hand, whenDi < 0, (Di − D̂i)2 is clearly
minimized byD̂i = 0. The result follows immediately.

References

1. B. Boufama, R. Mohr, and F. Veillon. Euclidian constraints for uncalibrated reconstruction.
In Proc. Int. Conf. Comp. Vision, pages 466–470, Berlin, Germany, May 1993.

2. J. Costeira and T. Kanade. A multi-body factorization method for motion analysis.Int. J. of
Comp. Vision, 29(3):159–180, September 1998.

3. O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line correspon-
dences betweenn images. Technical Report 2665, INRIA Sophia-Antipolis, 1995.

4. O. Faugeras and T. Papadopoulo. Gaussman-Caylay algebra for modeling systems of cameras
and the algebraic equations of the manifold of trifocal tensors. Technical Report 3225, INRIA
Sophia-Antipolis, 1997.

5. O.D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In
G. Sandini, editor,Proc. European Conf. Comp. Vision, volume 588 ofLecture Notes in
Computer Science, pages 563–578, Santa Margherita, Italy, 1992. Springer-Verlag.

6. O.D. Faugeras.Three-Dimensional Computer Vision. MIT Press, 1993.
7. O.D. Faugeras. Stratification of 3D vision: projective, affine and metric representations.J.

Opt. Soc. Am. A, 12(3):465–484, March 1995.
8. O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: theory and exper-

iments. In G. Sandini, editor,Proc. European Conf. Comp. Vision, volume 588 ofLecture
Notes in Computer Science, pages 321–334, Santa Margherita, Italy, 1992. Springer-Verlag.

9. A. Fitzgibbon and A. Zisserman. Automatic 3D model acquisition and generation of new
images from video sequences. InEuropean Signal Processing Conference, pages 311–326,
Rhodes, Greece, 1998.

10. P.E. Gill and W. Murray. Newton-type methods for unconstrained and linearly constrained
optimization.Math. Programming, 28:311–350, 1974.

11. C. Harris and M. Stephens. A combined edge and corner detector. In4th Alvey Vision
Conference, pages 189–192, Manchester, UK, 1988.

12. R. Hartley. Lines and points in three views and the trifocal tensor.Int. J. of Comp. Vision,
22(2):125–140, March 1997.

13. R.I. Hartley. An algorithm for self calibration from several views. InProc. IEEE Conf. Comp.
Vision Patt. Recog., pages 908–912, Seattle, WA, June 1994.

14. R.I. Hartley. In defence of the 8-point algorithm. InProc. Int. Conf. Comp. Vision, pages
1064–1070, Boston, MA, 1995.



66 J. Ponce

15. R.I. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. InProc. IEEE Conf.
Comp. Vision Patt. Recog., pages 761–764, Champaign, IL, 1992.

16. A. Heyden.Geometry and algebra of multiple projective transformations. PhD thesis, Lund
University, Sweden, 1995.

17. A. Heyden and K.̊Aström. Minimal conditions on intrinsic parameters for Euclidean recon-
struction. InAsian Conference on Computer Vision, Hong Kong, 1998.

18. A. Heyden and K.̊Aström. Flexible calibration: minimal cases for auto-calibration. InProc.
Int. Conf. Comp. Vision, pages 350–355, Kerkyra, Greece, September 1999.

19. J.J. Koenderink and A.J. Van Doorn. Affine structure from motion.J. Opt. Soc. Am. A,
8:377–385, 1990.

20. S.J. Maybank and O.D. Faugeras. A theory of self-calibration of a moving camera.Int. J. of
Comp. Vision, 8(2):123–151, 1992.

21. R. Mohr, L. Quan, F. Veillon, and B. Boufama. Relative 3D reconstruction using multiple
uncalibrated images. Technical Report RT 84-IMAG 12-LIFIA, LIFIA-IRIMAG, June 1992.

22. C.J. Poelman and T. Kanade. A paraperspective factorization method for shape and motion
recovery.IEEE Trans. Patt. Anal. Mach. Intell., 19(3):206–218, March 1997.

23. M. Pollefeys. Self-calibration and metric 3D reconstruction from uncalibrated image se-
quences. PhD thesis, Katholieke Universiteit Leuven, 1999.

24. M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction in spite
of varying and unknown internal camera parameters.Int. J. of Comp. Vision, 32(1):7–26,
August 1999.

25. L. Quan. Self-calibration of an affine cameras from multiple views.Int. J. of Comp. Vision,
19:93–110, 1996.

26. R.B. Schnabel and E. Eskow. A new modified Cholesky factorization.SIAM J. Sci. Comput.,
11:1136–1158, 1990.

27. A. Shashua. Projective depth: a geometric invariant for 3D reconstruction from two perspec-
tive/orthographic views and for visual recognition. InProc. Int. Conf. Comp. Vision, pages
583–590, Berlin, Germany, 1993.

28. A. Shashua. Trilinearity in visual recognition by alignment. In J.-O. Eklundh, editor,Proc.
European Conf. Comp. Vision, volume 800 ofLecture Notes in Computer Science, pages
479–484. Springer-Verlag, 1994.

29. P. Sturm. Critical motion sequences for monocular self-calibration and uncalibrated Euclidean
reconstruction. InProc. IEEE Conf. Comp. Vision Patt. Recog., pages 1100–1105, San Juan,
Puerto Rico, June 1997.

30. C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: a
factorization method.Int. J. of Comp. Vision, 9(2):137–154, 1992.

31. P.H.S. Torr, A.W. Fitzgibbon, and A. Zisserman. The problem of degeneracy in structure and
motion estimation from uncalibrated motion sequences.Int. J. of Comp. Vision, 32(1):27–44,
August 1999.

32. R.Y. Tsai and T.S. Huang. Uniqueness and estimation of 3D motion parameters of rigid bodies
with curved surfaces.IEEE Trans. Patt. Anal. Mach. Intell., 6:13–27, 1984.

33. S. Ullman.The Interpretation of Visual Motion. The MIT Press, Cambridge, MA, 1979.
34. D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape models

from image sequences.IEEE Trans. Patt. Anal. Mach. Intell., 17(5), May 1995.
35. Z. Zhang, R. Deriche, O.D. Faugeras, and Q.-T. Luong. A robust technique for matching

two uncalibrated images through the recovery of the unknown epipolar geometry.Artificial
Intelligence Journal, 78:87–119, October 1995.



On Computing Metric Upgrades of Projective Reconstructions 67

Discussion

1. Rudolphe Mester, Frankfurt university : I have two comments. The first comment
is not only related to your work, but to a lot of other papers which have been
presented. If you are talking about linear least squares, I think this is something that
is relatively different from the normal usage of that term. What you have here is
some kind of eigensystem problem as in Papadopoulo and Lourakis [1], not a linear
equation system with errors. There are totally different mathematical methods used
to describe perturbations of such systems.
Secondly I refer to those normalizations that you need in order to consider the
statistical structure of the errors in the input data, which might be very significant.
These can be performed using some rather well known techniques from numerical
linear algebra, such as equilibration, where the normalization techniques proposed
by Richard Hartley in 1995 and other proposals are just special cases. So, partially
at least, I think there are techniques available to improve the robustness of your
method against these errors.
Jean Ponce: I know that these methods exist and I did some work in the past with
Peter Meer and used some of his techniques. We did it for bilinear systems where it
worked very well. But for more complex systems like this one that may not be the
case.
Bill Triggs, INRIA Rhˆone-Alpes: Just a comment. Normalization and total least
squares work well for some problems, but for multiresultant style polynomial solvers
we found that total least squares reweighting (pre- and post-multiplying the multire-
sultant matrix with weighting matrices) made essentially no difference. The problem
is that the errors come from the polynomial coefficients, which are repeated many
times in the multiresultant matrix in a patterned structure. So the matrix coefficient
error model is sparse and very highly structured and correlated, and it seems to
be poorly approximated by the left-and-right-rescaled-Frobenius-norm error model
that total least squares normalization assumes. Jean’s technique also involves quasi-
linearization of a polynomial system, so it is likely to have similar problems.
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Abstract. Brute-force dense matching is usually not satisfactory
because the same search range is used for the entire image, yielding
potentially many false matches. In this paper, we propose a progressive
scheme for stereo matching which uses two fundamental concepts: the
disparity gradient limit principle and the least commitment strategy.
The first states that the disparity should vary smoothly almost every-
where, and the disparity gradient should not exceed a certain limit.
The second states that we should first select only the most reliable
matches and therefore postpone unreliable decisions until enough
confidence is accumulated. Our technique starts with a few reliable
point matches obtained automatically via feature correspondence or
through user input. New matches are progressively added during an
iterative matching process. At each stage, the current reliable matches
constrain the search range for their neighbors according to the disparity
gradient limit, thereby reducing potential matching ambiguities of those
neighbors. Only unambiguous matches are selected and added to the set
of reliable matches in accordance with the least commitment strategy. In
addition, a correlation match measure that allows rotation of the match
template is used to provide a more robust estimate. The entire process
is cast within a Bayesian inference framework. Experimental results
illustrate the robustness of our proposed dense stereo matching approach.

Keywords: Stereo vision, Stereo matching, Disparity gradient limit,
Least commitment, Progressive matching, Bayesian inference, Correla-
tion, Image registration.

1 Introduction

Over the years numerous algorithms for image matching have been proposed.
They can roughly be classified into two categories:

Feature matching. They first extract salient primitives from the images, such
as corners and edge segments, and match them across two or more views. An
image can then be described by a graph with primitives defining the nodes
and geometric relations defining the links. Matching becomes finding the
mapping of graphs: subgraph isomorphism. Some heuristics such as assuming
affine transformation between images are usually introduced to reduce the
complexity. These methods are fast because only a small subset of the image
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pixels are used, but may fail if the chosen primitives cannot be reliably
detected in the images. They only produce a very coarse 3D model of the
actual scene. The following list of references is by no means exhaustive: [9,
13,15,1,5]

Template matching. They attempt to correlate image patches across views,
assuming that they present some similarity [8,10,7,18,20]. The underlying
assumption appears to be a valid one for relatively textured areas and for
image pairs with small difference; however it may be wrong at occlusion
boundaries and within featureless regions. Although these algorithms pro-
duce a dense 3D reconstruction of the actual scene, brute-force matching is
usually not satisfying because of potentially many false matches.

All above stereo matching algorithms suffer from the difficulty in specifying an
appropriate search range and the inability to adapt the search range depending
on the observed scene structure.

In this paper, we propose a progressive scheme that, to some extent, com-
bines these two approaches. It starts with a few reliable point matches obtained
automatically via feature correspondence or through user input. It then tries
to find progressively more pixel matches based on two fundamental concepts:
disparity gradient limit principle and least commitment strategy. The disparity
gradient limit principle states that the disparity should vary smoothly almost
everywhere, and the disparity gradient should not exceed a certain value. This
defines the search range for candidate matches. The least commitment strategy
states that we should first select only the most reliable matches and therefore
postpone an unreliable decision until enough confidence is accumulated. New
matches are progressively added during an iterative matching process. At each
stage, the current reliable matches constrain the search range for their neighbors
according to the disparity gradient limit, thereby reducing potential matching
ambiguities of those neighbors. Only unambiguous matches are selected and
added to the set of reliable matches in accordance with the least commitment
strategy.

Lhuillier and Quan recently reported a matching algorithm using a similar
idea [11]. They also start with a few reliable point matches, but the technique to
find more matches is very different from ours. They first choose the best match,
and look for additional matches in their 5×5 neighborhood. Therefore, they only
consider one match each time and propagate it in a very small area, while we
consider all current matches simultaneously and do not restrict the propagation
within a very small area. Chen and Medioni [3] uses a very similar strategy to
that of Lhuillier and Quan, but work with a volumetric representation.

The paper is organized as follows. Section 2 presents the disparity gradient
limit principle and the least commitment strategy, and introduces a scheme for
progressive matching. Section 3 describes the implementation details on how
disparities are predicted and estimated, which is formulated within a Bayesian
inference framework. Section 4 proposes a new correlation technique designed for
cameras in general position. Section 5 provides experimental results, including
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intermediate ones, with two sets of real data. Section 6 concludes the paper with
a discussion on future work.

2 A Progressive Scheme

We first describe the two fundamental concepts, namely the disparity gradient
limit principle and the least commitment strategy. We then present a simple
progressive scheme which starts a few seed matches and then tries to find pro-
gressively more pixel matches based on these two concepts.

2.1 Disparity Gradient Limit Principle

Disparity is directly related to depth. Disparity changes coincide with depth
changes. The disparity gradient limit principle states that the disparity should
vary smoothly almost everywhere, and the disparity gradient should not exceed
a certain value. Psychophysical studies have provided evidence that in order for
the human visual system to binocularly fuse two dots of a simple stereogram,
the disparity gradient (ratio of the disparity difference) between the dots to their
cyclopean separation must not exceed a limit of 1 [2,16]. Objects in the world
are usually bounded by continuous opaque surfaces, and disparity gradient can
be considered as a simple measure of continuity. The disparity gradient limit
principle provides a constraint on scene jaggedness embracing simultaneously
the ideas of opacity, scene continuity, and continuity between views [14]. It has
been used in several successful stereo matching algorithms including the PMF
algorithm [15] to resolve matching ambiguity.

The disparity gradient limit principle is used differently in our work, as we
will explain in details in Section 3.1. It is exploited to estimate the uncertainty
of the predicted disparity for a particular pixel, and the uncertainty is then used
to define the search ranges for candidate matches.

2.2 Least Commitment Strategy

The least commitment strategy states that we should first select only the most
reliable decisions and therefore postpone an unreliable decision until enough
confidence is accumulated. It is a powerful strategy used in Artificial Intelligence,
especially in action planning [22,19]. Since no irreversible decision is made (i.e. all
decisions made are reliable), this principle offers significant flexibility in avoiding
locking search into a possibly incorrect step where an expensive refinement such
as backtracking has to be exploited.

The least commitment strategy is explored in our algorithm in four ways
(abbreviated as STAB):

Search range. Matching criterion such as correlation is local and heuristic. If
the match of a pixel has to be searched in a wide range, there is a high
probability that the found match is not a correct one. It is preferable to
defer matching of these pixels as late as possible because the search range
may be reduced later after more reliable matches are established.
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Texture. A pixel is more discriminating in a highly textured neighborhood than
others. It is difficult to distinguish pixels in the same neighborhood having
similar intensity. Therefore, we can expect to have more reliable matches for
pixels in areas with strong textures, and thus try to match them first.

Ambiguity. We may find several candidate matches for a pixel. Rather than
using expensive techniques such as dynamic programming to resolve the
ambiguity, we simply defer the decision. Once more reliable matches are
found in the future, the ambiguity will become lower because of a better
disparity estimate with smaller uncertainty.

Bookkeeping. If a pixel does not have any candidate match, it is probably
occluded by others or is not in the field of view of the other camera, then
we do not need to search for its match in the future. Similar, if a pixel has
already found a match, further search is not necessary. We bookkeep both
types of pixels for efficiency.

2.3 A Progressive Stereo Matching Algorithm

We can now outline the proposed progressive algorithm. Details will be given in
the following sections.

A pixel in the first image has three labels: MATCHED (already matched),
NOMATCH (no candidate matches found), and UNKNOWN (not yet decided). All
pixels are initially labeled as UNKNOWN.

For a pixel which is labeled UNKNOWN, we compute a list of candidate pixels
in the second image which satisfy the epipolar constraint and disparity gradi-
ent limit constraint. We use the normalized cross correlation as our matching
criterion. For a pair of pixels between two images, we compute the normalized
cross correlation score between two small windows, called correlation windows,
centered at the pixels. The correlation score ranges from −1, for two correla-
tion windows which are not similar at all, to +1, for two correlation windows
which are identical. The pair of pixels are considered as a potential match if the
correlation score is larger than a predefined threshold TC . The list of candidate
pixels are ordered on the epipolar line, and the correlation scores form a curve. If
there is only one peak on the correlation curve exceeding the threshold TC , then
the pixel at the peak is considered as the match of the given pixel in the first
image, and the given pixel is labeled as MATCHED. If there is no peak exceeding
the threshold TC , we label the given pixel as NOMATCH, as we mentioned earlier.
If there are two or more peaks exceeding TC , the matching is ambiguous, and
according to the least commitment principle, we simply leave it as is. We iterate
this procedure until no more matches can be found or the maximum number of
iteration is attained.

As we described earlier, pixels in highly textured areas are considered first.
Textureness is measured as the sample deviation of the intensity within a corre-
lation window. In order for a pixel in the first image to be considered, its sample
deviation must be larger than a threshold TσI

. The threshold TσI
evolves with

iteration. It is given by a monotonic function ThresholdSigmaIntensity which
never increases with iteration.
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Similarly, if a given pixel in the first image has a large uncertainty of its
disparity vector, this pixel should be considered as late as possible. In order
for a pixel to be considered, the standard deviation of its predicted disparity
vector must be smaller than a threshold TσD

. The threshold TσD
evolves with

iteration. It is given by a monotonic function ThresholdSigmaDisparity which
never decreases with iteration. That is, we, at the beginning, only considered
pixels that have a good prediction of the disparity vector.

Please note that the above description is outlined only to present the essen-
tial ideas. The actual implementation of several components such as correlation
computation is different, as we will describe in the next section.

The pseudo C++ code of the algorithm is summarized in Figure 1.

iteration = 0;
while (the maximum number of iterations is not reached)

and (more matches are found) {
TσI = ThresholdSigmaIntensity (iteration);
TσD = ThresholdSigmaDisparity (iteration);
for (every pixel labeled UNKNOWN in the first image) {

estimate the disparity vector and its uncertainty;
if (σI_of_the_pixel < TσI)

continue; // not enough textured
if (σD_of_the_pixel < TσD)

continue; // too much uncertainty for its match
compute the list of candidate pixels in the second image;
compute the correlation score C for each candidate pixel;
if (there is one peak on the correlation curve)

and (its C > TC) {
update its disparity vector;
label the pixel as MATCHED.

}
else if (there is no candidate whose C > TC) {

label the pixel as NOMATCH.
}

}
}

Fig. 1. Pseudo C++ code of the progressive stereo matching algorithm.

The above algorithm has a number of important properties:

Progressiveness. Because of bookkeeping, the number of pixels examined in
each iteration becomes smaller. Also, as we will show later, the search range
for a pixel is reduced when we update the disparity with more matched pixels.
This property guarantees that the iterative procedure is actually making
some progress and that the search space is being reduced.

Monotonicity. Because of the monotonicity of functions ThresholdSigmaIn-
tensity and ThresholdSigmaDisparity, threshold TσI

is getting smaller and
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threshold TσD
is getting larger with the progress of the algorithm. This

means that the probability that a pixel labeled as UNKNOWN is selected for
matching test becomes higher, eventually resulting more MATCHED/NOMATCH
pixels. Together with the update of disparity vectors and their uncertainty,
this property guarantees that the set of UNKNOWN pixels considered is truly
different from that prior to refinement, “different” in the sense of the actual
pixels considered and also of their candidate pixels to match in the other
image.

Completeness. This property says that adding more MATCHED/NOMATCH pix-
els will not lose any potential matches. This is desirable because it means
that an expensive refinement such as backtracking is never performed. The
above proposed algorithm clearly satisfies this property because of the least
commitment strategy, provided that the disparity gradient limit constraint
is satisfied over the entire observed scene.

The completeness property of our algorithm does not imply that as the final
result each pixel must be labeled either MATCHED or NOMATCH. Indeed, pixels
within a uniform color region may still be labeled as UNKNOWN. However, from
the neighboring matched pixels, these pixels have an estimate of their disparity
vectors that can be used if necessary, for example, for image-based rendering.

3 Implementation Details

In this section, we provide the details in implementing the progressive algorithm
described in the last section. Basically, for each pixel labeled UNKNOWN, we need
to do two things: prediction the disparity and its uncertainty, based on the infor-
mation provided by the neighboring matched pixels; estimation of its disparity
based on the information contained in the images.

If we formulate the problem in terms of Bayesian inference (see e.g. [21]), the
first corresponds to the prior density distribution of the disparity, p(d|m, B),
where d is the disparity of the given pixel m, and B denote the relevant back-
ground information at hand such as the epipolar geometry and the set of al-
ready matched pixels. The second corresponds to the sampling distribution
p(I ′|d,m, B), or the likelihood of the observed data (i.e., the second image I ′)
given d, m and B. Bayes’ rule can then be used to combine the information in the
data with the prior probability, which yields the posterior density distribution

p(d|I ′,m, B) =
p(I ′|d,m, B)p(d|m, B)

p(I ′|m, B)
, (1)

where p(I ′|m, B) does not depend on d and can be considered as a constant
because the second image I ′ is fixed. We can thus omit the factor p(I ′|m, B) and
work on the unnormalized posterior density distribution p(I ′|d,m, B)p(d|m, B),
still denoted by p(d|I ′,m, B) to abuse the notation. Appropriate computations
to summarize p(d|I ′,m, B) are finally performed in order to decide whether the
pixel under consideration should be labeled MATCHED or NOMATCH, or kept as
UNKNOWN for future decision.
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3.1 Prediction of the Disparity and Its Uncertainty

Before introducing our work, it is helpful to define disparity and disparity gra-
dient and summarize the related results obtained by others.

Disparity is well defined for parallel cameras (i.e., the two image planes are
the same) [6]. Without loss of generality, the horizontal axis is assumed to be
aligned in both images. Given a pixel of coordinates (u, v) in the first image and
its corresponding pixel of coordinates (u′, v′) in the second image, disparity is
defined as the difference d = v′ − v. Disparity is inversely proportional to the
distance of the 3D point to the cameras. A disparity of 0 implies that the 3D
point is at infinity.

Consider now two 3D points whose projections are m1 = [u1, v1]T and m2 =
[u2, v2]T in the first image, and m′

1 = [u′
1, v

′
1]

T and m′
2 = [u′

2, v
′
2]

T in the second
image (u′

1 = u1 and u′
2 = u2 in the parallel cameras case). Their disparity

gradient is defined to be the ratio of their difference in disparity to their distance
in the cyclopean image.1 In the first image, the disparity gradient is given by

DG =
∣∣∣∣ d2 − d1

v2 − v1 + (d2 − d1)/2

∣∣∣∣ . (2)

Experiments in psychophysics have provided evidence that human perception
imposes the constraint that the disparity gradient DG is upper-bounded by
a limit K. That is, if a point on an object is perceived, neighboring points
having DG > K are simply not perceived correctly. The limit K = 1 was
reported in [2]. The theoretical limit for opaque surfaces is K = 2 to ensure
that the surfaces are visible to both eyes [14]. Although the range of allowable
surfaces is large with K = 2, disambiguating power is weak because false matches
receive and exchange as much support as correct ones. Another extreme limit
is K ≈ 0, which allows only nearly front-parallel surfaces, and this has been
used locally in the stereogram matching algorithm described in [12]. In the PMF
algorithm, the disparity gradient limit K is a free parameter, which can be varied
over range (0, 2). An intermediate value, e.g., between 0.5 and 1, allow selection
of a convenient trade-off point between allowable scene surface jaggedness and
disambiguating power because it turns out that most false matches produce
relatively high disparity gradients [14]. Again, as reported in [14], less than 10%
of world surfaces viewed at more than 26cm with 6.5cm of eye separation will
present with disparity gradient larger than 0.5. This justifies use of a disparity
gradient limit well below the theoretical value (of 2) without imposing strong
restrictions on the world surfaces that can be fused by the stereo algorithm.

When the cameras are in general position, it is not reasonable to hope to
define a scalar disparity as a simple function of the image coordinates of two
pixels in correspondence [6]. In this work, we simply use a vector d = [u′ −
u, v′ − v]T , called the disparity vector. This is the same as the flow vector used
in optical flow computation. If a scalar value is necessary, we use d = ‖d‖ and
call it the disparity. If we look at objects that are smooth almost everywhere,
both d and d should vary smoothly. Similar to (2), for two points m1 and m2

1 For a pair of pixels in correspondence with coordinates (u, v) and (u′, v′), the cyclo-
pean image point is at ((u + u′)/2, (v + v′)/2)
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in the first image, we define the disparity gradient as

DG =
‖d2 − d1‖

‖m2 − m1 + (d2 − d1)/2‖ . (3)

Imposing the gradient limit constraint DG ≤ K, we have

‖d2 − d1‖ ≤ K‖m2 − m1 + (d2 − d1)/2‖ .

Using inequality ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ for any vectors v1 and v2, we obtain

‖d2 − d1‖ ≤ K‖m2 − m1‖ + K‖(d2 − d1)/2‖
which leads immediately, for K < 2, to

‖d2 − d1‖ ≤ 2K

2 − K
D , (4)

where D = ‖m2 − m1‖ is the distance between m1 and m2. We immediately
have the following result:

Lemma 1. Given a pair of matched points (m1,m′
1) and a point m2 in the

neighborhood of m1, the corresponding point m′
2 that satisfies the disparity gra-

dient constraint with limit K must be inside a disk centered at m2 + d1 with
radius equal to 2K

2−K D, which we call the continuity disk.

In other words, in absence of other knowledge, the best prediction of the disparity
of m2 is equal to d1 with the continuity disk defining its uncertainty.

We may want to favorite the actual disparity to be at the central part of the
continuity disk. We may also want to consider a small probability that the actual
disparity is outside of the continuity disk, due to occlusion or surface disconti-
nuity. We therefore model the uncertainty as an isotropic Gaussian distribution
with standard deviation equal to half of the radius of the continuity disk. More
precisely, given a pair of matched points (mi,m′

i), the disparity of a point m is
modeled as

d = di + Dini , (5)

where di = m′
i −mi, Di = ‖m−mi‖, and ni ∼ N(0, σ2

i I) with σi = K/(2−K).
Note that disparity di also has its own uncertainty due to limited image resolu-
tion. The density distribution of di is also modeled in our work as a Gaussian,
i.e., p(di) = N(di|d̄i, σ

2
di

I). It follows that the density distribution of disparity
d is given by

p(d|(mi,m′
i),m) = N(d|d̄i, (σ2

di
+ D2

i σ2
i )I) . (6)

If we are given a set of point matches {(mi,m′
i)|i = 1, . . . , n}, we then

have n independent predictions of disparity d as given by (6). The prior density
distribution of the disparity, p(d|m, B), can be obtained by combining these
predictions with the minimum variance estimator, i.e.,

p(d|m, B) = N(d|d̄, σ2I) , (7)
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where

d̄ =
( n∑

i=1

1
σ2

di
+ D2

i σ2
i

)−1 n∑
i=1

1
σ2

di
+ D2

i σ2
i

d̄i

σ2 =
( n∑

i=1

1
σ2

di
+ D2

i σ2
i

)−1
.

A more robust version is first to identify the Gaussian with smallest variance,
and then to combine it with those Gaussians whose means fall within two or
three standard deviations.
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Fig. 2. Function of σi (related to the disparity gradient limit) w.r.t. the distance to a
matched pixel. See (8).

It remains the problem of choosing σi, which as mentioned earlier is related
to the disparity gradient limit K. In the PMF algorithm, K is set to a value
between 0.5 and 1, which is equivalent to a value between 1/3 and 1/2 for our σi.
Considering that the disparity gradient constraint is still a local one, it should
become less restrictive when the point being considered is away from a matched
point. Hence, we specify a range [σmin, σmax], and σi is given by

σi = (σmax − σmin)(1 − exp(−D2
i /τ2)) + σmin . (8)

When Di = 0, σi = σmin; when Di = ∞, σi = σmax. The parameter τ controls
how fast the transition from σmin to σmax is expected. In our implementation,
σmin = 0.3 pixels, σmax = 1.0 pixel, and τ = 30. This is equivalent to Kmin = 0.52
and Kmax = 1.34. Figure 2 displays how σi varies with respect to the distance
Di. From many images we have tried, this strategy works well.

3.2 Computation of the Disparity Likelihood

We now proceed to compute the sampling distribution p(I ′|d,m, B), or the like-
lihood of the observed data (i.e., the second image I ′) given d, m and B.
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Because of the epipolar constraint, we do not need to compute the density
for each pixel in I ′. Furthermore, we do not even need to compute the density for
each pixel on the epipolar line of m because of the prior density computed in (7).
The list of pixels of interest, called the candidate pixels and denoted by Q(m),
is the intersection of the epipolar line of m with the continuity disk defined in
Lemma 1.

The densities are related to the correlation scores Cj between m in the first
image and each candidate pixel m′

j ∈ Q(m) in the second image. Instead of using
the standard correlation technique based on two rectangular windows, we have
developed a new one which is well adapted for two images in general position.
We defer its presentation to Section 4. For the moment, it suffices to say that
the correlation score C is between −1 (when they are not similar at all) and +1
(when they are identical). Finally, correlation scores are mapped to densities by
adding 1 followed by a normalization. More precisely, the correlation score Cj of
a pixel m′

j is converted into a density as

p(I ′(m′
j)|d(j),m, B) =

Cj + 1∑
k∈Q(m)(Ck + 1)

, (9)

where d(j) = m′
j − m.

3.3 Inference from the Posterior Density

The posterior density distribution p(d|I ′,m, B) is simply multiplication of
p(I ′(m′

j)|d(j),m, B) in (9) with p(d(j)|m, B) in (7) for each candidate pixel
m′

j .
Based on p(d|I ′,m, B), we can do a number of things. If there is only one

prominent peak, the probability that this is a correct match is very high, and
we thus make the decision and label the pixel in the first image MATCHED. If
there are two or more prominent peak, the matching ambiguity is high, i.e., the
probability of making a wrong decision is high. Following the least commitment
principle, we leave this pixel to evolve. If there is no prominent peak at all, the
probability that the corresponding point in the second image is not visible is
very high (either occluded by others or out of the field of view), and we label
the pixel in the first image NOMATCH.

In order to facilitate the task of choosing an appropriate threshold on the
posterior density distribution, and since anyway we are working with the un-
normalized posterior density distribution, we normalize the prior and likelihood
functions differently. The prior in (7) is multiplied by σ

√
2π so that the maxi-

mum is equal to one. The likelihood in (9) is changed to (Cj + 1)/2 so that it
is equal to 1 for identical pixels and 0 for completely different pixels. A peak in
the posterior density distribution is considered as a prominent one if its value is
larger than 0.3, which corresponds to, e.g., the situation where Cj = 0.866 and
the disparity is at 1.5σ.

4 A New Correlation Technique

The correlation technique described in this section is designed for stereo cameras
in general position.
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Table 1. Number of matched pixels in each iteration

iteration 0 1 2 3 4 5 6
TσI 7 6 5 4 3 2
TσD 12 14 16 18 20 20

Books 141 455 712 939 1239 1440 1500
NMars 153 421 1249 2036 2360 2651 2741

Consider a pair of points m and m′ as shown in Fig. 3, where the correspond-
ing epipolar lines l and l′ are also drawn. We can easily compute a Euclidean
transformation

m′
i = R(θ)(mi − m) + m , (10)

where R(θ) is a 2D rotation matrix with rotation angle equal to θ, the angle
between the two epipolar lines. It sends m to m′ and a point on l to a point on
l′.

Choose a rectangular window centered at m with one side parallel to the
epipolar line. A point mi corresponds to a point m′

i given by (10). Point m′
i

is usually not on the pixel grid, and its intensity is computed through bilinear
interpolation from its four neighboring pixels. Correlation score is then computed
between points mi in the correlation window and points m′

i according to (10).
We use the normalized cross correlation [6] which is equal to 1 for two identical
sets of pixels and -1 for two completely different sets.

If two epipolar lines are both horizontal or vertical, the new technique will
be equivalent to the standard one.

An even more elaborate way to compute the correlation is to weight differ-
ently each point: Pixels in the central part have more weights than those near the
border. In our implementation, the size of correlation window is 11 pixels along
the epipolar line and 9 pixels in the other direction. The pixels are weighted by
a 2D Gaussian with standard deviation equal to 11 pixels along the epipolar line
and 9 pixels in the other direction.

5 Experimental Results

We have conducted experiments with several sets of real data, and very promising
results have been obtained. In this section, we report two of them: one is an office
scene with books, called Scene Books (see Fig. 4); another is a scene with rocks

Fig. 3. The new correlation technique for stereo cameras in general position.
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Fig. 4. Scene Books: Initial point matches indicated by the disparity vectors together
with the Delaunay triangulation in the first image.

from INRIA, call Scene NMars (see Fig. 9). Although the images in Scene Books
are color, only black/white information is used. The image resolution is 740×480
for Scene Books, and 512 × 512 for Scene NMars.

To reduce computation cost, instead of using all previously found matches
in predicting disparities and their uncertainties, we only use three neighboring
points defined by the Delaunay triangulation [17]. The dynamic Delaunay trian-
gulation algorithm described in [4] is used because of its efficiency in updating
the triangulation when more point matches are available. It is reasonable to
use only three neighboring points because other points are usually much farther
away, resulting in a larger uncertainty in its predicted disparity, hence contribut-
ing little to the combined prediction of the disparity given in (7).

The initial set of point matches, together with the fundamental matrix, were
obtained automatically using the robust image matching technique described
in [23]. All parameters are the same for both data sets. The search range was
[−60, 60] (pixels) for both horizontal and vertical directions.

All parameters in our algorithm are the same for both data sets. In particular,
the values of functions ThresholdSigmaIntensity and ThresholdSigmaDisparity
with respect to the iteration number are given in the second and third rows of
Table 1. For example, for iteration 4, TσI

= 4 and TσI
= 18. In Table 1, we also

provide the number of matches after each iteration. The number of matches for
iteration 0 indicates the number of initial matches found by the robust matching
algorithm. Note that instead of working on each pixel, we actually consider
only one every four pixels because of the memory limitation in our Delaunay
triangulation algorithm.

The initial set of point matches for Scene Books is shown in Fig. 4. Based
on these, the disparity and its uncertainty were predicted, which are shown in
Fig. 5. On the left, the disparity vectors are displayed for every 10 pixels and their
lengths are half of their actual magnitudes. On the right, the standard deviation
of the predicted disparities is shown in gray levels after having multiplied by
5 and truncated at 255. Therefore, “black” pixels in that image mean that the
predicted disparities are quite reliable, while “white” pixels implies that the
predicted disparities are very uncertain. The intermediate results after iteration
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(a) (b)

Fig. 5. Scene Books: Results with the initial point matches. (a) Delaunay triangulation
and the predicted disparity vectors; (b) Predicted deviation of the disparity vectors.

(a) (b)

Fig. 6. Scene Books: Results after the second iteration. (a) Delaunay triangulation and
the predicted disparity vectors; (b) Predicted deviation of the disparity vectors.

(a) (b)

Fig. 7. Scene Books: Results after the sixth iteration. (a) Delaunay triangulation and
the predicted disparity vectors; (b) Predicted deviation of the disparity vectors.
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Fig. 8. Scene Books: Views of the 3D reconstruction with texture mapped from the 1st
image.

Fig. 9. Scene NMars: Initial point matches indicated by the disparity vectors together
with the Delaunay triangulation in the first image.

2, and 6 are shown in Fig. 6, and Fig. 7. We can observe clearly the fast evolution
of the matching result. The uncertainty image becomes darker quickly. As we
know the intrinsic parameters of the camera with which the images were taken,
3D Euclidean reconstruction can be obtained, two views of which are shown in
Fig. 8. We can see that the book structure has been precisely recovered.

Similar results have been obtained with Scene NMars. As can be observed
from Fig. 9, the lower part of the scene cannot be matched because the disparity
is larger than the prefixed range (plus/minus a quarter of the image width). The
predicted disparity vectors and their uncertainty computed from the initial set
of matches are shown in Fig. 10, while those after iteration 6 are shown Fig. 12.
It is clear that our progressive stereo algorithm is capable of finding matches
with large disparity, the lower part of the scene in our case, even if the initial
search range is large enough. 3D Euclidean reconstruction was also computed,
two views of which are shown in Fig. 13.
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Fig. 10. Scene NMars: Results with the initial point matches. (left) Delaunay triangu-
lation and the predicted disparity vectors; (right) Predicted deviation of the disparity
vectors.

Fig. 11. Scene NMars: Results after the third iteration.

Fig. 12. Scene NMars: Results after the sixth iteration.
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Fig. 13. Scene NMars: Views of the 3D reconstruction with texture mapped from the
1st image.

6 Conclusions

In this paper, we have proposed a progressive scheme for stereo matching. It
starts with a few reliable point matches obtained either manually from user
input or automatically with feature-based stereo matching. It then tries to find
progressively more pixel matches based on two fundamental concepts: disparity
gradient limit principle and least commitment strategy. Experimental results
have proven the robustness of our proposed dense stereo matching approach.

We have also cast the disparity estimation in the framework of Bayesian infer-
ence, and have developed a new correlation technique well adapted for cameras
in general position.

There are a number of ways to extend the current algorithm. For example,
the current implementation only estimate disparities with pixel precision. One
of our future work consists in produce disparities with subpixel precision. We
will also investigate in an even more efficient implementation.
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Discussion

1. Bill Triggs, INRIA Rhône-Alpes: At each step your matching scheme
permanently commits to matches that may be globally suboptimal. How
much do you think is lost by this, compared to a scheme with back-tracking,
or with optimal look-ahead like dynamic programming?
Zhengyou Zhang: We do lose if we make a wrong decision. This could
happen in areas where there is a discontinuity in depth because my cur-
rent implementation is mainly based on continuity (the disparity gradient
limit principle). Otherwise it will not happen, because based on the least-
commitment strategy, I do not make any decision if there is any ambiguity.
In terms of number of iterations, my technique may need more than a back-
tracking technique; in terms of computation time, I do not know, in fact I
have never compared this method to backtracking. The problem with back-
tracking is that you have to keep in memory all the previous decisions, and
that is not very efficient in terms of implementation. My technique is very
simple, and can be easily parallelized.

2. Andrew Zisserman, University of Oxford: It is interesting that you use
the disparity gradient limit constraint. I would like to know how invariant it
is to large camera rotations. Because when it was originally introduced, from
the psychophysics literature, they were not considering very severe motions
of the camera as it was just for stereo applications.
Zhengyou Zhang: That is a very good question. In this work I use σi to
define the uncertainty of the predicted disparity, and it is difficult to know its
optimal value, because the disparity gradient limit principle studied in psy-
chology is a beautiful tool for parallel images separated by a fixed distance,
say, 10 cm. Here I consider a general configuration so it is an important
problem. If σi is set to quite a large value many ambiguous solutions can be
found and decisions have to be delayed, which implies a slow convergence.
If σi is set too small, we will not be able to account for enough depth varia-
tion and selected matches could be wrong. In the PMF algorithm, K is set
to a value between 0.5 and 1, which is equivalent to a value between 1/3
and 1/2 for our σi. In our implementation, σi is a curve, and varies from
0.3 to 1 depending on the distance to a given point match. This is to con-
sider the fact that the disparity gradient constraint is a local one, and that
it should become less restrictive when the point being considered is away
from a matched point. From the many images I have tried it on, it works
quite well. Note that the disparity for any given match is also assumed to
be uncertain. Because when a match is selected the precision is limited, an
uncertainty of 0.5 pixels is taken into account in the disparity prediction.
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1 Introduction

The topic of this first panel session was algorithms and computations. Bill Triggs
chaired the discussion and David Nister, Kenichi Kanatani, Jean Ponce and
Zhengyou Zhang also participated. Each panelist discussed the issues that he
felt were going to be important in the future. The panel session was followed by
some questions and discussions which are also reported here.

2 Bill Triggs

We asked each panelist to give his views on the following question: What are the
most important open areas for research in multi-image algorithms over the next
five years?

My own view is as follows. Consider a few typical applications of visual
modeling: modeling of buildings or sites, from the interior of a room to city-
scale modeling; image-based rendering; and the modeling of human motion and
appearance. These are some of the problems for which we would like to be able
to build models of some sort from images. These problems have a number of
common properties, and I want to emphasize these because I think that the
commonality is suggestive of where we are heading.

Firstly, all of these problems are large, sparse and highly structured. They
have many parameters, but each couples to only a few of the others in an or-
derly way that reflects the physical structure of the problem. Examples of order
are: geometric and temporal locality; causal chains from light source to reflect-
ing surface to camera; visibility constraints that leave only a small proportion of
the model visible to any one camera; articulated models of human motion; and
Markov state models of scene dynamics. Often there are multiple overlapping

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 86–93, 2001.
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levels of such structure. Also, all of these models are predictive in the sense that,
with some uncertainty, they predict the images or observations from their param-
eters. To estimate the model, we need to work backwards, inducing parameter
values from sets of observations.

Secondly, the models that we need to reconstruct are both multimodal and
domain specific. Pure structure from motion is almost never enough. For graphics
applications we need to add appearance and photometric models. For architec-
tural modeling we want higher level geometric primitives (boxes, cylinders), and
usually also more semantic information (this room is carpeted with a plaster wall,
here is a power point, a door, a light fitting, the desk is a mess so I didn’t model
it). For human modeling we need to make some sense of a subtly-articulated
compound of non-rigid muscle, skin, hair and clothing, to whose minor details
we humans are quite extraordinarily sensitive. For scene or motion understand-
ing, we need to add discrete-valued logical state variables, e.g. describing action
type and phase, scene interpretation in a probabilistic network framework. Often
several different sensing modalities are used, so our models need to support more
than just conventional camera sensors.

Finally, in all of these problems there is a rich body of prior knowledge that
must somehow be incorporated into the system to get reasonable performance.
Increasingly, this implies some sort of “learning”, or more prosaically, prior es-
timation of background parameters. Recently very interesting results have been
obtained by patching or “mosaicing” together learned local appearance models,
e.g. in face modeling work from A.T.&T., Berkeley and Manchester and motion
work from MERL. I think that we will see a lot more of such composites of local
models over the next few years. But with or without them, representing, learning
and using prior information is still a major problem.

So these are the main areas where I think that general multi-image modeling
research could be profitably focused over the next few years: representing, initial-
izing and optimizing large, complex, highly structured models of mixed character
(multimodal, both discrete and continuous parameters); extending our expertise
on SFM to richer types of models; and learning, representing and using complex
prior domain information.

The models that I am thinking of often have a strong semantic component,
and in some sense this is a return to the bad old days of AI “scene under-
standing”. But I think that we will see a great deal of progress in many of
these applications over the next decade. For one thing, with appearance based
approaches, a much improved understanding of structured probabilistic models
(HMM’s, Bayesian networks), and far more sophisticated structured learning
methods, our nonlinear modeling tools are almost immeasurably more flexible
and powerful than they were only a decade ago. We are only beginning to tap
the potential of this. Moreover, we are in the middle of the wired society boom:
the necessary computing power and storage are now there for the asking, and
any progress that we make feeds very rapidly into practical applications. In all,
I think that computational vision is in for a vibrant, exciting period over the
next few years.
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3 David Nistér

I have just read Shimon Ullman’s book [1] on recognition and I find it very
interesting to combine bottom-up with top-down. To obtain a model bottom up
from real data and then use the model you have and render it down the pipeline
to meet with new bottom-up estimations. But what I want to do is promote the
system approach. Maybe you have noticed by now that I am a system person
and naturally I will promote this viewpoint.

My experience from building a whole system is the following. There were a
number of stages in the development when the results of the components were
very discouraging. I was close at these times to concentrating on that component,
trying to make it better. But since I was so determined to build the whole system
I moved on anyway and what I learned from this is that we can actually make
quite decent systems out of components which are not perfect. There will always
be outliers. It is just that they have to be taken into account all the time and
everywhere in a system. Always expect that your data is bad. I do not want
to pin down one thing that would be the research topic for the next five years
since I think that that is as difficult as predicting the weather. Instead, I want
to propose that some of the things that we have been missing and calling for
during the last few years, some of the things that we do not even know that
we need, are missing as a symptom of the fact that we are not looking at the
full stretch of the problem that we want to solve. A system view might shift the
emphasis of the research to new topics as some things do not make sense until
you try to build a system. I will give some examples of this:

1. Synergy effects. For example, there is a synergy effect between geometry
and matching that actually makes matching work. It is not seen when match-
ing is attempted separately from the geometry estimation. Synergy effects
like that will only be found when the problem is attacked as a whole.

2. Accumulation of data. Accumulation of data is one of the reasons why
components with sub-perfect output can still make a good system. For ex-
ample, if you have two hours of video from the same camera, the information
about the calibration is in there, but we can not handle and integrate the
sometimes contradictory data from this huge thing. Instead we are often only
working on a few images at a time, worrying about degeneracy, which is of
course important for a thorough theoretical understanding, but which does
not paint a complete picture.

3. Uncertainty estimates. Richard Hartley was speaking about uncertainty
estimation at ICCV last year and I think he is completely right. This is very
important and in all forms of science, something is said about the confidence
in a result. Again, I think that the reason why this subject has been lagging
in computer vision is that confidence estimates only become necessary when
there are other components in a system or a user that demand a confidence
estimate. Perturbation analysis is not the whole picture here either, we want
to know the cases where the results are a disaster. I would rather have a
system that works 50% of the time and tells me that the result is useless
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and preferably why, the other 50%, rather than having a system that is right
95% of the times, but presents a disastrous result to the user the other 5%.

4 Jean Ponce

I think that structure from motion has been on the right track. I do not think
many fundamental problems remain to be solved. I still think that modeling
shape, reflectance and illumination all together is a very hard problem. Illumi-
nation is a global process that is extremely hard to analyze and understand. I
think that is why people have been focusing on geometry since that is a much
more local process. So I think people have to do that. I am kind of naive so I
imagine that we still do not deal very well with multiple moving rigid objects,
but I may be wrong. I do not think it is very fundamental either. I think on the
other hand that one of the interesting points in Paul Debevec’s talk was the sense
that we are now in the process of moving to applications, but we do not under-
stand the applications very well. We do not understand the market—whatever
the market is. People are starting companies, are building products but I am not
sure they know who their customers are. I think they should understand what
all this stuff is for. We build all these models: what are they for? For the movie
industry it is not exactly clear that you want a black box that runs automati-
cally and that will build your model. It is not clear to me at all. I think that
at some point we need to acknowledge how—and again this goes back to Paul’s
talk—to get the person in the loop because I think that a lot of applications
want something that always work, rather than something that works in 50% or
60% of the cases. I think it is then quite complicated to understand the user
interface process.

5 Kenichi Kanatani

There is one point on which I do not agree with Bill Triggs. He says that we
have to integrate prior knowledge in a complicated way. In the 1980s there were
lots of discussions about the future of computer vision: people were talking
about integrating knowledge in complicated ways. However, recent progress in
structure from motion is perhaps because we have avoided involving complicated
knowledge. I think that will also be true for some time to come.

Now, I want to make a different point. Nowadays, structure from motion
means multiple image reconstruction thanks to today’s computing power, and
effective 3D reconstruction techniques have successfully been developed based
on geometric constraints, such as rigidity, planarity, and various camera models,
that govern the images. This means that for 3D reconstruction we need to know
geometric constraints to exploit, but we are not always sure if the geometric
constraint that we impose is correct, which among possible constraints really
exists, or if the constraint happens to be degenerate. As is well known, degeneracy
frequently occurs even when the camera motion is very natural, and we cannot
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retrieve the 3D shape in such critical configurations. In this context, model
selection emerges as a new challenge.

I have been studying this problem for some time, and I have realized that
we cannot always use stochastic model selection criteria, by which I mean those
found in textbooks on statistics. Textbooks on statistics are written by statis-
ticians, who deal with traditional statistics: they talk about Akaike’s AIC, Ris-
sanen’s MDL, Schwarz’ BIC, and other criteria. My conclusion is that 3D re-
construction is not a statistical problem. It appears to be a statistical problem,
but it is a geometric problem. We must make a distinction between statistical
inference and geometric inference.

In statistical inference, the accuracy of estimation increases as the number
of observations increases. So, if we are asked how we can maximize the accuracy
of estimation for a limited number of observations. The answer is to choose the
one for which accuracy increases most rapidly as the number of observations
increases. In geometric inference, on the other hand, we are dealing with errors
and noise, and we are interested in maximizing the accuracy of estimation for
limited resolution. So, we choose the one for which accuracy increases most
rapidly as the noise level decreases. Thus, we need a new model selection theory
different from the traditional one, which only very few people seem to have
realized. This may be one of our main challenges.

6 Zhengyou Zhang

I will talk more on the algorithmic aspects instead of research topics. I think vi-
sion is currently at a stage where it can be useful in many applications. There are
several factors which contribute to this achievement. One thing is that when we
develop algorithms we should take into account the uncertainty of the data. This
is very important. Twenty years ago people usually looked for linear algorithms
which discarded the noise property of data, and they did not give good results.
About fifteen years ago, people realized the importance of taking account of data
uncertainty, and both analytical and nonlinear algorithms have been designed
which give much superior results. So to keep vision successful we need to take
into account the data uncertainty. Bundle adjustment is a good example of this:
it says basically that image points are detected with similar uncertainty and we
should minimize an error function defined in the image space. Gradient-weighted
least-squares is another example.

The second success factor consists in developing robust techniques, because
there are always outliers present in the data. RANSAC, M-estimators, LMedS
are becoming standard tools. We should certainly continue to use them. There
are also a lot of studies on the stability of the algorithms, i.e. degenerate con-
figurations. At the moment this is carried out on the noise-free situation. So in
the future we need to study the stability in the case where the data is noisy. An-
other factor that I want to mention is that the vision algorithms are successful
when we incorporate, as much as possible, prior knowledge, e.g. special camera
models, domain knowledge or parallelism. I see several topics that will become
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increasingly important in the future: how to systematically asses the usefulness
of the obtained results and how to detect systematically when an algorithm fails
and suggest what to do alternatively. Because vision is often used as a compo-
nent or module of a larger system, we need to know when it fails and how to do
things differently.

The third point is how to systematically improve the algorithm when it fails.
When the algorithm fails it should learn from that failure in an automatic,
intelligent, way so that a better algorithm is obtained. The last point I want
to mention is that we should try to automatically incorporate prior knowledge
instead of hard coding it. Visual learning is a very useful and important area to
explore.

Discussion

1. Daniel Cremers, University of Mannheim: I have a question about
the different methods to reconstruct 3D structure, mainly in how you can
compare the different results that they give. I have the impression that you
have two steps. First you reconstruct the scene and then you map texture
on it. Then the quality always seems to be mostly determined by visual
inspection. I have the impression that these steps, especially the texture
mapping, somewhat occludes the results of comparing the methods. How do
you go about comparing them?
Rick Szeliski, Microsoft: I think first of all we have to specify what the
problem domain is. If the application would be robotics, the goal is to not
run into things or break stuff. Let us assume that we are working on the
general category of pretty things we do with image, in which I would include
visual effects you have in movies and image-based rendering. Then, say we
constructed a model, the final output you want is for it to look acceptable.
The measure of success is that you have produced something that would
be acceptable to an audience watching a movie. So it has to be basically
visually perfect. There is a systematic way of doing that. If you take a large
collection of images and you hold some of the images out of the reconstruction
(this is what people in machine learning have been doing for decades with
great success) you can basically evaluate the quality of the reconstruction by
testing against the images you have held out. This test can be used both for
interpolating or extrapolating. The one open problem I think we do not know
how to solve yet is how to accurately model visual quality and perception. I
do not think we have good models of that. That is one potential answer to
your question.
Jean Ponce: If I may comment on your question. I agree with you. For
those of us who have been around for a fairly long time: stereo used to stink.
The results were awful. Then, starting in the mid-eighties, people started to
texture map the results and suddenly stereo looked beautiful. The results
are just as bad as they used to be, but when you paint a picture on the
surface it looks good. There is a problem with that.
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Rick Szeliski: Why is it that it is a bad result if it looks beautiful? At least
if you do not try avoiding running into something.
Jean Ponce: It depends on the application, of course. At the time it was
not clear at all what the stereo applications were. It was done mostly for the
sake of it.
Daniel Cremers: What I want to criticize is the system aspect. If you put
a lot of modules together and then look at the final result, you can not tell
how good each step is. I assume that for example various people use the
same texture mapping routine, so they should compare the results before
doing that.
David Nister: What I wanted to say was not that everybody here should
take the system approach. We would get nowhere then. I am just saying
that it is good if everybody has a wider perspective and knows where their
research comes into the big picture. And also, we all know that vision is
inference with uncertainty. There will always be bad results for some kinds
of input and you might end up banging your head at some problem where
you can not really get better results (not that I think we are there yet). And
then I would also like to add to what Rick says: you need to take out views to
verify with those. I think that provided that you have restricted your model
reasonably, in many cases it is not even necessary to take out views, you can
just try to reproject your views and that is difficult as it is.
Hans-Helmut Nagel: I just want to comment on that. I take the opposite
point of view. If you evaluate a component in a system environment, you can
modify the component and the system reaction is a much more appropriate
assessment than if you make up an individual test environment for that
component. So I would rather go for the system and modify the component,
check its reaction than testing each individual component in its own testing
environment.

2. Henrik Aanaes, Technical University of Denmark: Maybe I have mis-
understood something, since I am a bit of a novice in this. Prof. Kanatani
seems to see geometry and statistics as two distinct things. My intuition
would be to see geometry in a statistical setting, because then you would
also be able to have a much better evaluation and a much better under-
standing of the stability of your solution. More than you would be able to
get from your perturbation analyses. And then you would be able to be in
David Nister’s ball park. Maybe that would be where you would be able
to see large uncertainties on your solutions and thus be able to infer if you
actually had a stable solution.
Kenichi Kanatani: Yes, that is right. What I wanted to point out is that
you have to have a statistical sense and analyze geometric problems with
statistical principles, but so far people are too slow to understand this, merely
interested in picking out methods from textbooks. My message is that you
should rather throw away textbooks and think about the problem on your
own.

3. Rick Szeliski: Unless somebody wants to continue along these lines I want
to introduce a new point. It is actually a restatement of one of the points
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that Bill Triggs made. I love working in this field, I think we have great
results, but I am struck from time to time how still and dead our worlds are.
Everything we reconstruct is static. And yet a lot of the action out there in
terms of graphics and that is character animation and things like dynamic
visual effects. There are two ways of going after dynamic models. You can
go build a large video rig, like those which Kanade and other people have
made. I think that is going to be a fruitful area of research since you don’t
want to get just a collection of independent static models. The other one
that is more challenging—and I throw it as an open gauntlet since I am not
sure I can even solve it—is to take a moving camera in a moving world and
see how much of it you can reconstruct. Take a video camera walking down
the streets of Dublin and come back to me in three years and show me how
much of that you have reconstructed. That is certainly an open challenge to
our community.

4. Zhengyou Zhang: I would like to say a few words about an open challenge,
related to the first question, about the evaluation of the algorithms. This
needs a common database of software. Everybody should publish his/her
software (at least in executable form) in order to allow others to try it on
more data. If you are the only user you can just tune it to a small set of data
and get a very good result, but this does not make sense. The algorithm
should be verified on a variety of data. We would thus also need to have
some image databases to compare our algorithms on.

5. Jean Ponce: A last challenge is maybe that apparently there are really good
range finders that are really cheap and that give you 512 × 512 pictures in
real-time with millimeter type resolution. And so, what is going to happen
to this community when those come around? I must say honestly, of course
there is already existing footage that you want to analyze, but if you can
really buy for only $50 an add-on for your video camera that does the job
for you. So I don’t know but I think it is interesting to see what people think
about these things.
Paul Debevec: I think that in response to that there are still going to
be a lot of issues involved once we have the “Zcam” that 3DV Systems is
working on in Israel. I will be extremely excited when that is available, but
there are still a lot more issues that are to be solved which have to do with
the reflectance, photometry, registering all of the views, dealing with noise,
integrating it with things that are beyond the range the camera can recover
(i.e. the deeper environment). Hopefully this is the community right here
that can answer those challenges.
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Abstract. In this paper, we explore the more practical aspects of build-
ing and rendering concentric mosaics. First, we use images captured with
only approximately circular camera trajectories. The image sequence cap-
ture can be achieved by holding a camcorder in position and rotating the
body all around. In addition, we investigate the use of variable input sam-
pling and fidelity of scene geometry based on the level of interest (and
hence quality of view synthesized) on the objects in the scene. We achieve
the tolerance for minor perturbations about the exact circular camera
path and variable input sampling by using and analyzing a variant of the
Hough space of all captured rays. Examples using real scenes are shown
to validate our approach.

1 Introduction

Image-based rendering (IBR) has become a popular approach for modeling and
rendering a virtual environment. While the conventional means of rendering
uses a 3D model (with possibly a complicated photometric model), image-based
rendering directly interpolates novel views from captured images. If the input
images are captured sparsely in the space, establishing correspondences may
still be necessary. However, if the input images are densely captured, direct view
interpolation will suffice.

In theory, one needs only to capture a complete plenoptic function [1,7] in
order to synthesize a novel image from any viewpoint and at any viewing di-
rection. However, a complete plenoptic function is at least 5D, which includes
3D spatial location and 2D ray directions at any point. If free space is assumed,
the plenoptic function can be reduced to 4D, as shown in the lumigraph [2] and
light field rendering [6]. However, for modeling a virtual environment, the size of
the database for the light field is usually massive because it has to sample four
dimensions.

Recently, concentric mosaics [11] has been proposed to sample a virtual en-
vironment where the viewpoints are constrained on a planar surface. It has been
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shown in [11] that a novel view can be generated from a sequence of images cap-
tured from a camera rotated off-center along a circular path. A linear pushbroom
camera model is assumed [3] (as is with our work). In other words, the camera
model used comprises a stack of parallel perspective views perpendicular to the
y-axis, with each perspective view representing a horizontal scanline. While ver-
tical distortion exists as a result of using this camera model, the synthesized
images show good rendering quality with the help of constant depth correction
and bilinear interpolation.

However, there are at least two disadvantages associated with the current
concentric mosaics work. First, it requires a capturing rig that is bulky. It is
much more practical if a user can hold a camcorder in a position and rotate his
body around to capture the necessary images. Second, it is desirable to capture
the environment with variable sampling rates and fidelities. For example, it is
intuitive that more samples should be taken at regions that are deemed more
interesting. It also makes more sense to make more samples at areas that is
highly textured and where depth variation is significant.

This paper addresses the above two practical issues in concentric mosaic
building and rendering, namely using hand-held camera to acquire images and
variable input sampling. The input sequences of images are captured using a
hand-held camera, and recovery of the camera pose is accomplished using a
structure from motion algorithm. However, we do not explicitly build a 3D model
from the input images (e.g., generate 3D panoramic models from stereo [4]).
To handle the variable sampling resolution, we propose a new representation
we call called signed Hough space that enables uniform sampling and efficient
computation in the ray space.

1.1 Previous Work

There has been significant work done on image-based rendering using large quan-
tities of input images. The pioneering work on the lumigraph [2] and light-field
rendering work [6] have spawned a number of related work. Two of the more
notable ones are the concentric mosaic [11] and the stereo panorama [8]. There
are also others who use the approach of generating 3D panoramic models [4], or
computing panoramic depth as a means for rendering [7,12].

1.2 Outline of Paper

The remainder of this paper is organized as follows. We describe our new repre-
sentation called signed Hough space in Section 2. In Section 3, we give a summary
of the least-squares method to extract camera pose from a sequence of tracked
images. Once camera poses are known, the input data is mapped to the new
representation space. Issues with rendering with approximate concentric mosaics
using the new representation is discussed in Section 4. Experimental results us-
ing synthetic and real images are shown in Section 5. We conclude this paper in
Section 6.
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2 Signed Hough Space

Our image-based approach is based on reusing captured rays from input images
to reconstruct an image at a novel viewpoint. An important problem in image-
based rendering is the representation, namely, how to represent the rays that are
captured. For example, the lumigraph is a particular way of sampling the ray
space using a 4D two-plane parameterization. Concentric mosaics sample the
space using three parameters, i.e., the rotation angle, radius and vertical field
of view. In this section, we present a new approach to represent non-uniform
concentric mosaics from a large collection of images taken along an approximate
circle. The major issue in choosing a representation for non-uniform plenoptic
sampling is how to parameterize the space of oriented lines. We consider a good
choice of parameterization of oriented rays to have the following characteristics:

– Efficient calculation. The computation of the position of oriented ray from
its parameter space, and vice versa, should be fast.

– Uniform sampling. The sampling within the spatial and directional spaces
should be uniform. This is to avoid potential problems in rendering.

– All inclusive. All possible oriented rays in the space should be represented,
with no exceptions.

Note 1.
Duality. Reciprocal behavior should exist between the destination (within a
panorama in view space), and source (a geometric point with its radiance in
Cartesian space). In other words, analysis would proceed exactly the same if the
destination and source are switched. It is obvious that light field representation
using the two-plane parameterization cannot satisfy the third item. Rays that
are parallel or do not intersect the slabs are not represented. In our case, rays
at all orientations and positions can be included in our representation.

Note 2. For simplicity, we first describe the representation of oriented rays in
2D Cartesian space, and then we will extend it to 3D space for the representa-
tion of approximate concentric mosaics. One of the ways that we can visualize
the population of rays available is to construct the usual Hough space which
uses the normal (r, θ) parameterization. However, rays are directional, and the
conventional Hough space is unable to distinguish rays that have the same equa-
tion by are of opposite directions. We solve this by using the right-hand rule: A
ray that is directed in an anti-clockwise fashion about the coordinate center is
labeled positive, otherwise it is labeled negative. “Positive” rays have positive r
values, i.e., (r, θ), while “negative” rays have negative r values, i.e., (−r, π + θ).
Figure 1 shows four different rays in 2D space and their corresponding points in
the signed Hough space.

An attractive feature of this representation is the duality between points and
sinusoids in both Cartesian and signed Hough space. Figure 2 shows examples
of common projections are represented in signed Hough space. For example,
panoramic visibility at a point in Cartesian space (Figure 2(a)) is represented
as a sampled sinusoidal curve in the parameter space. A concentric mosaic (Fig-
ure 2(b)) is mapped to a horizontal line in the signed Hough space, while parallel
projections (Figure 2(c)) are mapped to a vertical line in the signed Hough space.
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Fig. 1. Definition of the ray space we captured to reconstruct the 3D geometry. Each
oriented ray in Cartesian space (at left) is represented by a sampled point in the signed
Hough space.

(a) (b) (c)

(d)

Fig. 2. Three typical viewing setups and their associate sampled curve in signed Hough
space. (a) Panoramic visibility at a point in 2D Cartesian space, (b) A concentric
mosaic, (c) Parallel projection, and (d) Their respective sampled curves in the signed
Hough space.

Note 3. Specifically, the bundle of all rays emitted by a 3D geometric point in
Cartesian space also takes the shape of a sampled sinusoidal curve featured by
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its space location (r0, θ0). Thus, the captured perspective scene can be easily
transformed into the parameter space. Rendering a novel view in the scene is
equivalent to extracting a partial sinusoidal curve from the signed Hough space.
Interestingly, computing the depth of scene can also be defined as a curve fitting
problem that is constrained by a specific BRDF model.

3 Rendering Using Handheld Sequential Images as Input

The previous work on concentric mosaic [11] uses images from a camera with
a perfectly circular trajectory using a motorized setup. We extend this work
to a more practical level by allowing visualization from approximate concentric
mosaics. The input images can be captured from a hand-held camera that is
moved through an approxiately circular trajectory.

3.1 Computing Structure from Motion

Building the approximate concentric mosaic requires accurate camera poses asso-
ciated with the input images. To do this, we first calibrate the camera to extract
intrinsic parameters using the method described in [15]. Subsequently, we au-
tomatically track point features in the image sequence using Shi and Tomasi’s
tracker [10]. Their tracker uses an affine model and a Hessian-based measure of
the local texturedness to determine removal and addition of point features at
each frame.

Once the point tracks are available, we apply the iterative least-squares min-
imization technique based on Levenberg-Marquardt on these point tracks [14] to
recover camera motion. For completeness, we provide a brief description of this
algorithm.

Structure and motion are solved simultaneously to minimize the difference
between the 2-D track points and the 3-D object points projected into 2-D. The
Levenberg-Marquardt algorithm [9], a standard iterative least-squares solver, is
used to minimize the objective function

C(a) =
∑

i

∑
j

cij |uij − f(aij)|2, (1)

where uij is the measured point feature location, f(aij) is the predicted projected
point,

aij = (pT
i ,mT

j ,mT
g ) (2)

and cij is a measure of confidence of the position, based on the amount of local
texture at the point.

The vector a contains the 3-D points pi for each point i, the local motion
parameters mj for each frame j, and the global motion and camera intrinsic
parameters mg. The function f(aij) is the projective function that maps the
point pi to the image j, using the camera position and the camera intrinsic
parameters.
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For each iteration, the Levenberg-Marquardt algorithm finds an approximate
Hessian matrix A and gradient vector b, which is used to solve for an increment
δa towards the minimum. The equation solved is

(A + λI)δa = −b, (3)

where λ is a time-varying stabilization factor and I is the identity matrix.
The elements of the Hessian A are approximated as the product of partial

derivatives with respect to a:

A =
∑

i

∑
j

2cij
∂fT(aij)

∂aij

∂f(aij)
∂aT

ij

, (4)

and the gradient vector b is

b =
∑

i

∑
j

2cij
∂fT(aij)

∂aij
eij , (5)

where eij = uij − f(aij) is the position error.

Note 4. For our application of rendering with approximate concentric mosaics,
we would also like to constrain the camera motion to a simple planar motion
from general rigid motion. The structure from motion algorithms would be more
robust with the reduction in the number of parameters.

Once we have obtained the camera poses using the tracker and subsequent
structure from motion algorithm, we can then map all the input rays associated
with the cameras to the signed Hough space for subsequent rendering.

4 Rendering from the Signed Hough Space

By resampling the input rays into the signed Hough space, we can achieve the
tolerance for minor perturbations about the exact camera poses. These camera
parameters may not be perfectly recovered from the above structure from mo-
tion algorithms. In the new space, we improve rendering quality by designing
optimal interpolation filters. We analyze various interpolation filters, including
parallel interpolation and constant depth interpolation along r and θ directions.
Furthermore, multi-resolution rendering (i.e., zoom in and out of objects/regions
of interest) can also be easily implemented in the new representation space.

Given a set of non-uniform concentric mosaics collected from a camera mov-
ing non-uniformly along an approximately circular path, we can render any novel
view. The rendered views are constrained by the camera trajectory, similar to
concentric mosaics where viewpoints of the rendering camera are constrained by
the capturing circle.

Rendering a new image at any viewpoint becomes the problem of extracting a
sinusoidal curve in the signed Hough volume. However, due to the discretization
of the signed Hough volume, interpolation techniques have to be carefully chosen
in order to obtain high quality rendering results.

Before we describe the interpolation techniques, let us make a couple of
definitions, with the help of Figure 4. All the rays for a given virtual camera
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Fig. 3. Ambiguous definition of closest ray.

Fig. 4. Rendering and depth correction curves.

map into what we call a rendering curve. If the depth correction is specified, any
given ray will intersect at a known point, say P. P then maps onto the depth
correction curve in ray space.

To continue, a good interpolation filter should make use of depth information.
However, when no information about the scene geometry is available, the parallel
bilinear filter (e.g., [11]) is commonly used to interpolate the rendering rays. It
works by assuming all of the scene points are located in infinity, as shown in
Figure 5(a). In this particular case, the four closest ray bins I1, I2, I3, and I4

are used to compute the color of the virtual ray indicated by Ĩm,n.
Bilinear interpolation and constant depth assumption can be used to improve

the quality of rendered images. With the constant depth assumption, all of the
objects seen by the camera are deemed to be located along a simple surface such
as a cylinder. As with any assumption on scene depth, the issue is how to choose
the closest points to reconstruct the rendered point.
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(a) (b)

(c) (d)

Fig. 5. Different bilinear interpolation filters. (a) Parallel bilinear interpolation, (b) Bi-
linear interpolation with constant depth correction along angular direction, (c) Bilinear
interpolation with constant depth correction along radius direction, and (d) Bilinear
interpolation with constant depth correction along both directions. Note that the hor-
izontal axis is that of θ while the vertical axis is that of r.

The definition of “closest” points is ambiguous if no accurate depth informa-
tion is known. Consider, for example, the question as to which of the rays, l2 or
l3, is ”closer” to ray l1? The notion of closeness makes sense only if the object
distance is known, even approximately. The interpolation techniques shown in
Figure 5(b)-(d) uses specified depth corrections to decide which ray bins to use.
As an example as to how the ray bins are chosen for interpolation, consider
the case of constant depth correction along the angular direction, as shown in
Figure 5(b). First, the intersections between the depth correction curve and hor-
izontal rows closest to the virtual ray Ĩm,n are computed. The sampling ray bins
are those just on each horizontal side of these intersections. Similar reasoning
can be applied to Figure 5(c) and (d).

5 Experiments

Unlike most capture setups for image-based rendering, the image capture process
here is very simple. Specifically, a single camera is moved by hand to rotate along
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an approximate circular path. In our experiments, a total number of 1864 images
of a real scene is captured. The image size is 360 × 288. Only 530 frames are
used to recover camera poses using our SFM algorithm. Two input images are
shown in Figure 7(a)(b) where a number of feature points are tracked for the
SFM algorithm. As shown in Figure 6, the rotation and translation parameters
are recovered fairly well.

Using the estimated camera motion, we transform the input images into our
signed Hough space. The binning process is based on nearest neighborhood.
The new parameter space has the resolution of 230 × 310 in radial and angular
dimensions. The signed Hough space can also be examined to see if it can be
represented with coarser discretization by checking the density of ray occupancy.
Downsampling has the benefit of compactness. In addition, we have applied
vector quantization compression to our database to further reduce its size; in
our example, the reduced size is about 4MB.

Figure 7(c,d) show two rendered images. Note the significant parallax changes
around the monitor in the middle and through the window on the right. Four
different interpolation techniques have been applied to render the new images, as
shown in Figure 8. These techniques are parallel interpolation, depth correction
around radial direction, depth correction around angular direction, and depth
correction with both radial and angular directions, respectively. Among these
techniques, depth correction along radial direction produces the best rendering
result, whereas depth correction along angular direction is the worst. Because
angular sampling is much denser than radial sampling in the original images,
interpolation along radial direction is effective. In fact, the angular direction
is over-sampled. Depth correction along both directions produces comparable
rendering result as with depth correction along radial direction only. Parallel
interpolation has better rendering result than depth correction along angular
direction because parallel interpolation is in fact along the radial direction, albeit
at the infinite radius.

With the new parameter space, we can also render images in different reso-
lutions. Figure 9 shows the results of zooming in and zooming out. Notice the
appropriate changes in apparent size of the bunny. In general, there are two
approaches to obtain the zoom-in effect. First, we can sample the areas of in-
terest more densely than others. But multi-resolution representations should be
applied for efficiently storing the data. Second, depth information can be used
to improve the resolution. Higher resolution of output images can be achieved
with more accurate depth information. The depth information can be obtained
by either vision reconstruction techniques or human interaction. For example,
Figure 9(b) is obtained with a different depth specified by the user than the
depth used in Figure 9(a).

6 Discussion

Database acquisition for light-field-based IBR is usually a very laborious process
and often require specialized (and thus expensive) equipment. Until drastic sim-
plications are made to the acquisition process, IBR will remain beyond the reach
of ordinary consumers. With our technique, however, such specialized equipment
is not necessary. We have shown that we can provide high-quality visualization
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Fig. 6. Camera poses estimated using structure from motion algorithms. Left: Graph
depicting the variation in rotation (in degrees) about the y, x, and z axes (curves from
top to bottom). Right: Graph depicting the variation in translation along the x, y, and
z axes (curves from top to bottom).

from a database created from images taken using just a hand-held camera that
is manually moved along an approximately circular path.

We have also used the notion of variable sampling in our work. In areas
where objects are less interesting to us, we can afford sparser input sampling
and without (or with less accurate) depth information. This may not be very
evident in our results, because our overall sampling is actually rather dense, even
in the least densely sampled areas.

While the camera motion parameters are required to build the database for
the concentric mosaic, absolute accuracy of these parameters are, in practice,
not necessary. This is evidenced by our results. There are enhancements to our
current SFM algorithm that we can make. Our SFM algorithm is currently
too general. If we know that the motion is planar (or assumed planar), we can
impose additional constraints in our algorithm, so that fewer parameters need to
be computed. (In the handheld camera case, this may or may not be applicable.)
Parameter recovery will be faster as well, especially when we are dealing with a
large number of images and tracks.

7 Conclusions and Future Work

In this paper, we have proposed a practical method for capturing and rendering
approximate and non-uniform concentric mosaics. The method does not require
a specialized rig for image capture; manually moving a hand-held camera along
an approximately circular path is sufficient. In addition, we introduced the signed
Hough space to represent the captured rays. The extension to the conventional
Hough space is necessary in order to encode rays with direction. For full 3D space
of rays (i.e., using a normal perspective camera model instead of a pushbroom
camera model), we can use an alternative representation based on oriented pro-
jective geometry [13]. This representation has been used to recover shape from
silhouettes [5].
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(a) (b)

(c) (d)

Fig. 7. Rendering with non-uniform concentric mosaics. (a,b) Two frames in the input
image sequence, and (c,d) Two rendered images with significant parallax change.

Judicious use of variable input sampling can be effective in making more op-
timal use of the available limited manual and rendering resources. This basically
trades off fidelity of output with the level of interest. We intend to investigate
this aspect more thoroughly.

Finally, we have describe different interpolation regimes and show the results
of applying them. The bilinear interpolation with depth correction seems to work
the best.
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(a) (b)

(c) (d)

Fig. 8. Results of using different bilinear interpolation filters. (a) Parallel bilinear inter-
polation, (b) Bilinear interpolation with constant depth correction along angular direc-
tion, (c) Bilinear interpolation with constant depth correction along radius direction,
and (d) Bilinear interpolation with constant depth correction along both directions.

(a) (b) (c)

Fig. 9. Results of zooming in and out. (a) No zoom, (b) Zooming in with a factor of
0.75, and (c) Zooming out with a factor of 1.25. Note the size of change of the bunny.
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Discussion

1. Kyros Kutulakos, University of Rochester: I have a couple of com-
ments regarding related work. There was a paper by Wright et al [3]. They
use something very similar to the signed Hough space which seems to be quite
related. Also I should point out that this idea of the signed Hough space is
actually closely related to oriented projected representations of the space
of lines. Mainly, any line on the plane can be projected onto the oriented
projective sphere. The sinusoids, that you describe, map to great circles on
that sphere. This has two advantages over the representation that you de-
scribe. First of all, it is not sinusoids but great circles, which makes for a
more structured distribution of points or pixel values over the sphere. The
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other advantage is that you can use that representation even if you don’t
have exact calibration. The Hough space representation requires that you
know the angles. You can create these lightfields purely projectively as long
as you know the projective calibration of your camera. This is something
we investigated in CVPR’97, how you can actually represent slices of light-
field on a single epipolar plane by mapping pixels in that lightfield onto the
oriented projective sphere.
Sing Bing Kang: Those are good points. I am not aware of the first work
that you have just mentioned, and I appreciate your pointing that out. To
address the second part of your question, each row basically has a dimen-
sionality of two. I think that Hough space in 2D is more compact than a 2D
(spherical) manifold in 3D.
Kyros Kutulakos: That sphere can be mapped stereo-graphically onto a
plane as in Geyer and Daniilidis [1]. That allows you to map points to lines
and lines to points.
Sing Bing Kang: Yes, but then the stereographic transformation that maps
a sphere to a flat 2D surface is non-uniform.
Kyros Kutulakos: That is true. I’m just saying that when you describe
things on the sphere you can use a spherical quadtree or something similar
to better get a handle on the structure of the space. When you do things on
a plane you have indeed these warpings.
Sing Bing Kang: We want the interpolation to be accomplished in a uni-
form manner in whatever parametric space we choose. Using the sphere and
stereographic projection would lead to non-uniform grids, and so, to us, it
may not be that effective.

2. Richard Szeliski, Microsoft: You described the interpolation, but you
didn’t say how the original images or rays are put into your Hough data
structure. Is there resampling involved?
Sing Bing Kang: Yes, and the resampling is based on just the closest point.
In other words, we use bins to store the colour of the rays, and each sampling
ray is mapped to the closest bin. Rays that happen to map to the same bin
have the average of their colours stored instead.

3. Bill Triggs, INRIA Rhône-Alpes: Just a comment. The camera model
that you’re assuming, with affine layers vertically but perspective projection
horizontally, is called a linear pushbroom camera. I’m not sure whether it
will help you, but you can read about it in Gupta and Hartley [2].

4. Paul Debevec, University of Southern California: In the demo you
said you were zooming the camera in and out. Were you actually physically
moving the camera in and out or were you just changing the focal length?
When I hear of zooming, I think of just changing the focal length.
Sing Bing Kang: Yes, the focal length is merely changed under zooming.
Paul Debevec: So there is no parallax going on there. So you’re just making
the image that we are seeing bigger and smaller.
Sing Bing Kang: There is actually a mode in the demo where you can
translate forwards and backwards, but the problem is that you cannot see
much of the resulting parallax. That is why I did not show it. I have instead
demonstrated the effect of translating sideways.
Paul Debevec: I just couldn’t quite tell if there was parallax or just aliasing
that made it look like parallax.
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Sing Bing Kang: There is a pure zooming mode which does not provide
any parallax; as I have mentioned before, there is also another mode which
allows you to translate forwards and backwards. In the latter mode, you
should get parallax, but not much. That is why I did not demonstrate this
latter mode.
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Abstract. Starting with a set of calibrated photographs taken of a
scene, voxel coloring algorithms reconstruct three-dimensional surface
models on a finite spatial domain. In this paper, we present a method
that warps the voxel space, so that the domain of the reconstruction ex-
tends to an infinite or semi-infinite volume. Doing so enables the recon-
struction of objects far away from the cameras, as well as reconstruction
of a background environment. New views synthesized using the warped
voxel space have improved photo-realism.

1 Introduction

Voxel coloring algorithms [7] [5] [2] reconstruct three-dimensional surfaces us-
ing a set of calibrated photographs taken of a scene. When working with such
algorithms, one typically defines a reconstruction volume, which is a bounding
volume containing the scene that is to be reconstructed. Once defined, the re-
construction volume is divided into voxels, forming the voxel space in which the
reconstruction will occur. Voxels that are consistent with the photographs are
assigned a color, and inconsistent voxels are removed (carved) from the voxel
space [7].

These algorithms have been particularly successful in reconstructing small-
scale scenes that are restricted to a finite domain. Applying them to large-scale
scenes can become challenging, since one must use a large reconstruction vol-
ume to contain the scene. Such a large reconstruction volume can consist of an
unwieldy number of voxels that becomes prohibitive to process. In addition, it is
unnecessary to model far away objects with high resolution voxels. Ideally, one
would like a spatially adaptive voxel size that increases away from the cameras.

Furthermore, voxel coloring algorithms are not well suited to capturing the
environment (sky, background objects, etc.) of a scene. Typical reconstructions
are photo-realistic in the foreground, which is modeled, but empty in the back-
ground, which is unmodeled. As a result, synthesized new views can have large

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 109–123, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



110 G.G. Slabaugh, T. Malzbender, and W.B. Culbertson

“unknown” regions, as shown in black in Figure 1. For some scenes, such as an
outdoor scene, we might like to reconstruct the background as well, yielding a
more photo-realistic reconstruction.

(a) (b)

Fig. 1. Unknown regions due to reconstruction on a finite domain. A photograph of
our “bench” scene is shown in (a), with the reconstruction volume superimposed. Only
voxels within the reconstruction volume are considered in voxel coloring algorithms.
The scene contains many objects outside of the reconstruction volume that are not
reconstructed, resulting in unknown regions that appear as black in a projection of the
reconstruction, shown in (b). The ideas presented in this paper warp the voxel space,
so that the reconstruction volume can become infinite, and the background scene and
environment can be reconstructed.

To address these issues, we propose a warping of the voxel space so that
surfaces farther away from the cameras can be modeled without an excessive
number of voxels. In addition, our proposed warping of the voxel space can
extend to infinity along any dimension, so that infinite (all of R3), or semi-
infinite (such as a hemisphere with infinite radius) reconstruction volumes can
be defined. The latter might best model an outdoor scene. As will be shown in
subsequent sections of this paper, we develop a hybrid voxel space consisting of
an interior space in which voxels are not warped, and an exterior space in which
voxels are warped. The voxels are warped so that the following criteria are met:

1. No warped voxels overlap.
2. No gaps form between warped voxels.
3. The warped reconstruction volume is at least semi-infinite.

A voxel coloring algorithm is then executed using the warped reconstruction
volume.

The layout of this paper is as follows. First, we explore some related work.
Then, we introduce a function that warps the voxel space subject to the crite-
ria enumerated above. Next, we discuss some implementation details that arise
when performing a reconstruction in warped space. We then present results that
demonstrate the effectiveness of our approach.
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2 Related Work

The work presented in this paper is an extension to recent volumetric solutions to
the three-dimensional scene reconstruction problem. Seitz and Dyer’s [7] voxel
coloring technique exploits color correlation of surfaces to find a set of vox-
els that are consistent with the photographs taken of a scene. Kutulakos and
Seitz [5] develop a space carving method that extends voxel coloring to support
arbitrary camera placement via a multi-sweep algorithm. Culbertson, Malzben-
der, and Slabaugh [2] present two generalized voxel coloring (GVC) algorithms,
which, like [5] allow for arbitrary camera placement, and in addition use the
exact visibility of the scene when determining if a voxel is consistent with the
photographs. These three methods, referred to collectively as “voxel coloring al-
gorithms”, have been quite successful in reconstructing three-dimensional scenes
on a finite spatial domain. In this paper, we extend these three methods in order
to reconstruct scenes on an infinite or semi-infinite domain by warping the voxel
space used in the reconstruction. Doing so enables the reconstruction of nearby
objects, far-away objects, and everything in between.

Saito and Kanade [6], and later Kimura, Saito, and Kanade [4] specify a voxel
space using the epipolar geometry relating two [6] or three [4] basis views, for
volumetric reconstruction using weakly calibrated cameras. In their approach, a
voxel takes on an arbitrary hexahedral shape, a consequence of their projective
space. In our approach, we intentionally warp exterior voxels into arbitrarily
shaped hexahedra. In [6] and [4], a voxel’s size is solely based on its location
relative to the cameras that form the basis. In our approach, a voxel’s size is
instead based on its location in a user-defined voxel space. In [6] and [4], the
reconstruction volume is finite, and only foreground surfaces are reconstructed.
In contrast, our method warps the voxel space to infinity so that objects far from
the cameras can be reconstructed, in addition to foreground surfaces.

In the computer graphics domain, infinite scenes have been modeled and ren-
dered using environment mapping. This method projects the background onto
the interior of a sphere or cube that surrounds the foreground scene. Blinn and
Newell [1] use such a technique to synthesize reflections of the environment off
of shiny foreground surfaces, a procedure also known as reflection mapping.
Greene [3] additionally renders the environment map directly to generate views
of the background. This approach is quite effective at producing convincing syn-
thetic images. However, since the foreground and background are modeled dif-
ferently, separate mechanisms must be provided to create and render each. Fur-
thermore, the three-dimensionality of the environment is lost, as the background
is represented as a texture-map. Like environment mapping, the techniques de-
scribed in this paper seek an efficient mechanism to represent the background
scene. Our warped volumetric space provides this in a single framework that can
more easily accommodate surfaces that appear both in the foreground and back-
ground. In addition, we reconstruct the background scene three-dimensionally
using computer vision methods.
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3 Volumetric Warping

The goal of a volumetric warping function is to represent an infinite or semi-
infinite volume with a finite number of voxels, while satisfying the requirement
that no voxels overlap and no gaps exist between voxels. There are many possible
ways to achieve this goal. In this section, we use the term pre-warped to refer to
the volume before the volumetric warping function is applied.

The volumetric warping method presented here separates the voxel space into
an interior space used to model foreground surfaces, and an exterior space used
to model background surfaces, as shown in Figure 2 (a). The volumetric warp
does not affect the voxels in the interior space, providing backward compatibility
with previous voxel coloring algorithms, and allowing reconstruction of objects
in the foreground at a fixed voxel resolution.

(a) (b)

Fig. 2. Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In (a),
the voxel space is divided into two regions; an interior space shown with dark gray
voxels, and an exterior space shown with light gray voxels. Both regions consist of
voxels of uniform size. The warped voxel space is shown in (b). The warping does not
affect the voxels in the interior space, while the voxels in the exterior space increase
in size further from the interior space. The outer shell of voxels in (b) are warped to
infinity, and are represented with arrows in the figure.

Voxels in the exterior space are warped according to a warping function that
changes the size of the voxel based on its distance from the interior space. The
further a voxel in the exterior space is located from the interior space, the larger
its size, as shown in Figure 2 (b). Voxels on the outer shell of the exterior space
have coordinates warped to infinity, and have infinite volume. Note that while
the voxels in the warped space have a variable size, the voxel space still has a
regular 3D lattice topology.
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To help further limit the class of possible warping functions, we introduce
the following desirable property of a warped voxel space:

Constant footprint property: For each image, voxels project to the same
number of pixels, independent of depth.

Figure 3 shows an example of a voxel space that satisfies the constant footprint
property for two cameras. Assuming perspective projection, a voxel space that
satisfies this property has a spatially adaptive voxel size that increases away from
the cameras, in a manner perfectly matched with the images. While a useful con-
ceptual construct, the constant footprint property cannot in general be satisfied
when more than n cameras are present in Rn space. Thus, for three-dimensional
scenes, a voxel space cannot be constructed that satisfies the property for general
camera placement when there are more than three cameras. Since reconstruction
using three or less cameras is limiting, we instead design our volumetric warping
function to approximate the constant footprint property for an arbitrary number
of images.

Fig. 3. Example of a 2D voxel space that satisfies the constant footprint property for
two images. Notice that the two filled in voxels project to the same number of pixels
in the right image, regardless of their respective distance from the camera. Note that
this figure is solely used to illustrate the constant footprint property; the warped voxel
space developed and used in this paper actually looks like that of Figure 2 (b).

3.1 Frustum Warp

In this subsection, we describe a frustum warp function that is used to warp
the exterior space. We develop the equations and figures in two dimensions for
simplicity; the idea easily extends to three dimensions.

The frustum warp assumes that both the interior space and the pre-warped
exterior space have rectangular shaped outer boundaries, as shown in Figure 4.
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The pre-warped exterior space is divided into four trapezoidal regions, bounded
by (1) lines l connecting the four corners of the interior space to their respective
corners of the exterior pre-warped space, (2) the boundary of the interior space,
and (3) the boundary of the pre-warped exterior space. We denote these trape-
zoidal regions as ±x, and ±y, based on the region’s relative position to center
of the interior space. These regions are also shown in Figure 4.

Let (x, y) be a pre-warped point in the exterior space, and let (xw, yw) be the
point after warping. To warp (x, y), we first apply a warping function based on
the region in which the point is located. This warping function is applied only
to one coordinate of (x, y). For example, suppose that the point is located in the
+x region, as depicted in Figure 5. Points in the +x and −x regions are warped
using the x-warping function,

xw = x
xe − xi

xe − |x| , (1)

where xe is the distance along the x-axis from the center of the interior space to
the outer boundary of the exterior space, and xi is the distance along the x-axis
from the center of the interior space to the outer boundary of the interior space,
shown in (a) of Figure 5. A quick inspection of this warping equation reveals its
behavior. For a point on the boundary of the interior space, x = xi, and thus
xw = xi, so the point does not move. However, points outside of the boundary
get warped according to their proximity to the boundary of the exterior space.
For a point on the boundary of the exterior space, x = xe, and so xw = ∞.

Fig. 4. Boundaries and regions. The outer boundaries of both the interior and exterior
space are shown in the figure. The four trapezoidal regions, ±x and ±y are also shown.

Continuing with the above example, once xw is computed, we find the other
coordinate yw by solving a line equation,

yw = y + m(xw − x), (2)

where m is the slope of the line connecting the point (x, y) with the point a,
shown in (b) of Figure 5. Point a is located at the intersection of the line parallel
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to the x-axis and running through the center of the interior space, with the
nearest line l, as shown in the figure. Note that in general, point a is not equal
to the center of the interior space.

(a)

(b)

Fig. 5. Finding the warped point. The x-warping function is applied to the x-coordinate
of the point (x, y), as the point is located in the +x region. This yields the coordinate
xw, shown in (a). In (b), the other coordinate yw is found by solving the line equation
using the coordinate xw found in (a).

As shown above, the exterior space is divided into four trapezoidal regions for
the two-dimensional case. In three dimensions, this generalizes to six frustum-
shaped regions, ±x, ±y, ±z; hence the term frustum warp. There are three
warping functions, namely the x-warping function as given above, and y- and
z-warping functions,

yw = y
ye − yi

ye − |y| (3)

zw = z
ze − zi

ze − |z| , (4)
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In general, the procedure to warp a point in the pre-warped exterior space is as
follows.

1. Determine in which frustum-shaped region the point is located.
2. Apply the appropriate warping function to one of the coordinates. If the

point is the in ±x region, apply the x-warping function, if the point is in the
±y region, apply the y-warping function, and if the point is the ±z region,
apply the z-warping function.

3. Find the other two coordinates by solving line equations using the warped
coordinate.

After reconstruction, we intend the model to be viewed from near or within
the interior space. For such viewpoints, voxels will project to approximately the
same footprint in each image.

3.2 Other Warping Functions

The frustum warp presented above is not the only possible warp. Any warp
that does not move the outer boundary of the interior space, and warps the
outer boundary of the pre-warped exterior space to infinity, while satisfying the
criteria that no gaps form between voxels, and that no voxels overlap, is valid.
Furthermore, it is desirable to choose a warping function that approximates the
constant footprint property for the cameras used in the reconstruction as well as
the camera placements during new view synthesis. An example of an alternative
warping function is one that warps radially with distance from the center of the
reconstruction volume.

4 Implementation Issues

Reconstructing a scene using a warped reconstruction volume poses some new
challenges, described in this section.

4.1 Cameras Inside Volume

Perhaps the most difficult challenge is that of having the cameras embedded
inside the reconstruction volume. Typically, when one uses a standard voxel
coloring algorithm, the cameras used to take the photographs of the scene are
placed outside of the reconstruction volume, so that at least two cameras have
visibility of each voxel. The photo-consistency measure used in voxel coloring
algorithms, qualitatively, determines if all the cameras that can see a voxel agree
on its color. This photo-consistency is poorly defined when a voxel is visible from
only one camera.

Since the warped reconstruction volume can occupy all space, cameras get
embedded inside the voxel space, as shown in (a) of Figure 6. Our reconstruction
algorithm initially assumes that all voxels are opaque. Therefore, camera views
are obscured, and the cameras cannot work together to carve the volume. This
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poses a problem, since to be properly defined, the photo-consistency measure
requires that at least two cameras have visibility of a voxel. Consequently, the
voxel coloring algorithm cannot proceed, and terminates without removing any
voxels from the volume.

To address this issue, we must remove (pre-carve) a section of the voxel
space so that initially, each surface voxel is observed by at least two cameras,
validating the photo-consistency measure, as shown in (b) of Figure 6. There are
a variety of possible methods to achieve this result. A generic method is to have
a user identify regions of the voxel space to pre-carve. Obviously, the pre-carved
regions must only consist of empty space, i.e. not contain any scene surfaces
to be reconstructed. While effective, this method precludes a fully automatic
reconstruction. Alternatively, one can pre-carve the volume using a heuristic. For
example, if appropriate, one could require that the cameras have visibility of the
boundary between the interior space and the exterior space. Other heuristics are
possible. Once the pre-carving is complete, we execute a standard voxel coloring
algorithm using the warped voxel space.

(a) (b)

Fig. 6. Pre-carving operation. Reconstruction in the warped space causes the cameras
to be embedded in the voxel space, as shown in (a). For many camera placements, it
would be impossible to carve any voxels, since no voxel is visible to more than one
camera. We execute a pre-carving step in (b) so that cameras can work together to
carve the volume.

4.2 Preventing Visible Holes in the Outer Shell

Due to errors in camera calibration, image noise, inaccurate color threshold etc.,
voxel coloring sometimes removes voxels that should remain in the volume. Thus,
it is possible that voxels on the outer shell of the voxel space will be deemed



118 G.G. Slabaugh, T. Malzbender, and W.B. Culbertson

inconsistent. Removing such voxels can result in unknown black regions similar
to those in Figure 1 during new view synthesis, as no voxel would project onto the
camera for some pixels in the image plane. Since one cannot see beyond infinity,
we do not carve voxels on the outer shell of the voxel space, independent of the
photo-consistency measure.

5 Results

We have modified the GVC and GVC-LDI algorithms [2] to utilize the warped
voxel space. We created a synthetic data set, called “marbles”, consisting of
twelve 320 x 240 images of five small texture mapped spheres inside a much
larger sphere textured with a rainbow-like image. We reconstructed the scene
using a voxel space that consisted of 48 x 48 x 48 voxels, of which the inner 32
x 32 x 32 were in the interior space and unwarped. The voxel space was set up
so that the five small texture mapped spheres were reconstructed in the interior
space, while the larger sphere, making up the background, was reconstructed in
the exterior warped space. Sample images from the data set are shown in (a) and
(b) of Figure 7. A reconstruction was performed using the warped voxel space.
The reconstruction was projected to the viewpoints of (a) and (b), yielding (c)
and (d). Note that the background environment was reconstructed using our
warped voxel space.

Next, we took a series of ten panoramic (360 degree field of view) photographs
of a quadrangle at Stanford University, using a Panoscan1 digital camera. These
photographs had resolution of about 2502 x 884 pixels. One photograph from
the set is shown in Figure 8 (a). We have found that when reconstructing an
environment, it is preferable to use large field of view images, as objects far
from the cameras are visible in many photographs. This achieves a sufficient
sampling of the scene with fewer photographs. A voxel space of resolution 300
x 300 x 200 voxels, of which the inner 200 x 200 x 100 were interior voxels, was
pre-carved manually by removing part of the voxel space that containing the
cameras. Then, the GVC algorithm was used to reconstruct the scene. Figure 8
(b) shows the reconstructed model reprojected to the same viewpoint as in (a).
Note that objects far away from the cameras, such as many of the buildings and
trees, have been accurately reconstructed. New synthesized views are shown in
(c) and (d) of the figure.

Despite the successes of this reconstruction, it is not perfect. The sky is very
far away from the cameras (for practical purposes, at infinity), and should there-
fore be represented with voxels on the outer shell of the voxel space. However,
since the sky is nearly textureless, cusping [7] occurs, resulting in inaccurate
computed geometry, apparent in an animated sequence of new views of the re-
construction. Reconstruction of outdoor scenes is challenging, as surfaces often
do not satisfy the Lambertian assumption. To compensate, we used a higher con-
sistency threshold [7], also resulting in some inaccurate geometry. On the whole,

1 www.panoscan.com
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though, the reconstruction is reasonably accurate and produces convincing new
views2.

6 Conclusion

In this paper we have proposed extensions to voxel coloring that permit recon-
struction of a scene using a warped voxel space, in an effort to comprehensively
reconstruct objects both near and far away from the cameras used to photo-
graph the scene. We have presented a frustum warp function, which describes a
method to warp the voxel space to model infinite volumes while maintaining the
requirements that no voxels overlap and no gaps form between the warped vox-
els. We have presented results showing the ability of this approach to reconstruct
a background environment, in addition to a foreground scene.

(a) (b)

(c) (d)

Fig. 7. Original images of the marbles data set are shown in (a) and (b), and a re-
construction projected to the same viewpoints of (a) and (b) is shown in (c) and (d),
respectively.

2 An animation showing new synthesized views of our Stanford scene is available online
at www.ece.gatech.edu/users/slabaugh/projects/warp.
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(a)

(b)

(c)

(d)

Fig. 8. Results for the Stanford scene. One of the ten panoramic photographs is shown
in (a). The reconstructed model, projected to the same viewpoint as that of (a) is
shown in (b). New synthesized panoramic views are shown in (c) and (d).
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7 Future Work

Since voxels can warp to points infinitely far from the camera centers, using
z-values (such as in a z-buffer) to establish depth order can be problematic
due to a computer’s finite precision. We are interested in exploring alternate
methods, such as painter’s algorithms, to determine depth order of voxels during
reconstruction and rendering.
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Discussion

1. David Nister, Ericsson: If you know the cameras and the resolution of
all the images, you can determine for every point in space what intrinsic
resolution you have there. I was wondering if you could comment on if your
warping function corresponds to that?
Gregory Slabaugh: If one did such an analysis, at each point in space one
would find a different intrinsic spatial resolution resulting from each camera.
In general, there is no voxel space that perfectly matches the intrinsic reso-
lution (i.e. satisfies the constant footprint property discussed in our paper,
with a footprint of one pixel) for all cameras, when the number of cameras
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is greater than three. So instead, our warping function approximates this
property, by requiring that an exterior voxel’s size increases linearly with
distance from the interior region. Thus, exterior voxels will project to ap-
proximately the same number of pixels in an image, regardless of the voxel’s
distance from the camera. In order for this to work properly, it is necessary
that both the reference and the virtual viewpoints are in or near the interior
region of the warped voxel space.

2. Bill Triggs, INRIA Rhône-Alpes: Two questions. Firstly, how do you
decide how many voxels to devote to modelling the exterior?
Gregory Slabaugh: That is a good question. How far you move in each
slice is a function of how many voxels are used to model the scene. For
example, in the Stanford data set we have 300 × 300 × 200 voxels of which
the inner 200 × 200 × 100 are interior. So we set up the voxel space so that
in each direction there are 100 voxels in the exterior region, 50 of which are
on either side of the reconstruction volume. Now if you have more voxels in
this exterior space you are going to get a better resolution as you go out to
infinity.

3. Bill Triggs: Secondly, you said that you have problems with Z-buffer reso-
lution for distant points. Would it be possible to prewarp the depths in some
way to avoid this problem?
Gregory Slabaugh: That’s a great observation. We have looked into that
a little bit and we are still working on it.

4. Paul Debevec, University of Southern California (comment): Specif-
ically on the Z-buffer, I know that like in OpenGL the Z-buffer is in pro-
jective coordinates anyway. So you can have things go out to infinity. The
problem is you have a near clipping plane and a far clipping plane. There
is no problem with putting the far clipping plane at infinity as long as the
near clipping plane isn’t at zero.
Gregory Slabaugh: We have done all our rendering in software we coded
ourselves, so maybe we should take a look at OpenGL. The problem is that
of representing a huge dynamic range of Z values with a finite precision
(32-bit) Z-buffer; there isn’t enough resolution.

5. Kyros Kutulakos, University of Rochester: You suggested there are
many different warping functions, one of which involves choosing a warp-
ing function where the number of pixels contained in a voxel projection is
constant. I wonder why you didn’t choose that particular warping function
given that when you don’t obey that particular constraint, if you move far-
ther and farther away, your voxels will project onto more and more pixels.
Making it more difficult to establish consistency given that there going to
be different colours and intensities that lie inside the voxel projections. And
in relation to that could you say a little bit about what thresholds you use
for this particular scene?
Gregory Slabaugh: I don’t have the numbers for the thresholds right off
the top of my head and they probably wouldn’t be too interesting. But what
we saw when doing our consistency measure, we take a voxel and project
it into all the images that can see that voxel and collect the pixels in these
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views. Then what we do, just as in some of your work, is we take the mean
and the standard deviation and threshold the standard deviation. If a voxel is
large in one particular image, it can bias the consistency measure. To avoid
this, we want the voxels to project onto approximately the same number
of pixels. In general, no voxel space exists for which voxel footprints are
constant when more than three cameras are used to photograph the scene.
So instead our warping function tries to approximate this constant footprint
property, for viewpoints in or near the interior region. Thus, we require
that the cameras used to photograph the scene, and the new synthesized
viewpoints, are located in or near the interior region.

6. Andrew Fitzgibbon, University of Oxford: This may be naive, I have
never tried to code one of these things, but if you used something like an
octree, then it would be easy to devise a partitioning strategy that starts
infinitely large and adapts its resolution. Is that not an option?
Gregory Slabaugh: Yes, that is a great question. That is certainly a pos-
sibility that we haven’t implemented. Andrew Prock at Wisconsin has done
some great work for hierarchical voxel colouring and we are interested in
using their techniques and adapting them to ours. I think that could be
fruitful.

7. Michal Irani, The Weizmann Institute of Science: When you showed
the video sequence at the end, there seems to be some non-rigidity. I was
wondering if it was 3D but non-rigid, or if it was a particular artifact of this
warping technique that made it look this way, or if it is a problem with the
epipolar constraint estimation.
Gregory Slabaugh: When we reconstructed this scene we used panoramic
images and we re-rendered the reconstruction using a panoramic transform
as well. So you will notice that objects at the right edge of the image loop
around to the left edge. So that might be producing some of the effects that
you’re describing.

8. Marc Pollefeys, K.U.Leuven: Would it be possible to extend this repre-
sentation so that it allows walk-through applications? In this case one would
probably have to be able to switch between different models.
Gregory Slabaugh: One weakness of our approach, at least in the way
we presented it here, is that we have just one interior space. To do what
you’re describing, we might want to have multiple interior spaces and a
way to combine warped voxel spaces together, this being interesting future
research.
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Abstract. A texture synthesis method is presented that generates similar texture
from an example image. It is based on the emulation of simple but rather
carefully chosen image intensity statistics. The resulting texture models are
compact and no longer require the example image from which they were
derived. They make explicit some structural aspects of the textures and the
modeling allows knitting together different textures with convincingly looking
transition zones. As textures are seldom flat, it is important to also model 3D
effects when textures change under changing viewpoint. The simulation of such
changes is supported by the model, assuming examples for the different
viewpoints are given.

1 Introduction

Increasingly, the computer vision and graphics communities turn toward the 3D
reconstruction of large scenes. Not all parts of such scenes are equally interesting. An
architectural highlight like a monument may be surrounded by streets with hundreds
of normal houses. An archaeological site may contain interesting ruins that are
dispersed in the landscape. Realistic visualization nevertheless imposes that the “less
interesting” parts are displayed at the same resolution as the interesting ones. The
synthesis of realistic textures can be part of the solution. Brick walls, grass, rocks,
sand, concrete, vegetation, … can be emulated based on a compact model of these
textures.

Several powerful texture synthesis methods have been proposed over the last
couple of years [3, 4, 7, 11, 15, 19]. The realism of synthesized textures has gone up
dramatically. With this paper we hope to contribute in a number of respects:

� The texture models are very compact, yielding excellent compression. In contrast
to several recent methods, the model doesn’t contain an example image of the
texture.

� No verbatim repetitions of parts in stochastic textures. There is no copying of
patterns from the example image involved.

� Perceptually convincing transitions where textures meet. Seams between similar or
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different textures can be eliminated through the similar procedures as those used
for texture synthesis.
� Fast and compact inclusion of 3D effects. The very existence of texture is usually

due to the fact that the surface is not really flat. Hence, changing viewpoint entails
more than simple foreshortening, although this is common practice in texture
mapping. Effects like self-occlusion and different changes in the angle between the
normals and the viewing directions are not taken into account through
foreshortening. Our model can be adapted quickly to include these effects.

2 Clique Selection

Our approach extracts statistical properties from an example texture, which are then
combined into a texture model. From this model more of the same texture is
generated, i.e., textures that have similar statistics. Such texture synthesis methods
differ in the properties that they extract and the algorithms to generate images with
the prescribed statistics. The following sections describe these aspects for our
approach.

2.1 Extracted Statistical Properties

The method extracts only first- and second-order statistics. This is in line with Julesz’s
observation that first and second-order statistics govern to a large extent our
perception of textures. Yet, Julesz also demonstrated that third and higher order
statistics couldn’t be neglected just like that, mainly because of figural patterns that
are not preserved [12]. As we will demonstrate, quite a broad range of textures can be
synthesized nevertheless and in fact higher-order statistics can be included in the
model, at the expense of computation time.

The first order statistics are characterized through the intensity histogram ( )f q ,

where q  is intensity.

The second-order statistics draw upon the cooccurrence principle: for point pairs at
fixed relative positions the intensities are compared. The point pairs are called cliques
and pairs with the same relative positions (translation invariance) form a clique type
(Fig. 1). Individual cliques of type α  will be denoted as ακ .

 

Cliques of the same type

 

Cliques of different types

Fig. 1. Cliques and clique types.
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The cliques are ordered sets. Hence, a “tail” and “head” pixel can be distinguished.
Instead of storing the complete joint probability distributions for the different clique
types, our model only stores the distribution of the intensity differences between the
head and tail pixels. The original intensities are requantized into 32 levels, leading to
63 signed difference values. For a clique of type α  the distribution of these signed
difference values ∆  is denoted as ( )fα ∆ .

The texture model consists of two parts. A first part specifies the clique types that
are used to describe the texture. Including all possible clique types would make the
texture model prohibitively large, hence, a limited number of them will be selected.
The set of these clique types is called the neighborhood system. A second part is the
statistical parameter set: the distributions ( )f q  and ( )fα ∆  for the selected clique

types. The next section proposes a strategy to select only a few clique types, but with
maximal effect.

2.2 Clique Type Selection

Textures are synthesized by mimicking the statistics of the example texture for the
different clique types. As including all clique types in the model is not a viable option,
a good selection needs to be made. One criterion is to consider all clique types up to a
maximum head-tail length [5]. The maximum length is then quite low by necessity,
excluding longer-range interactions. We put this maximum rather high (45) but only
select a subset of the corresponding clique types. The selection is based on their
impact on the target statistics as explained next. Clique types are added one by one to
the model, through the following algorithm:

step 1. Collect the complete 2nd-order statistics for the example texture, i.e., the
intensity difference distributions of all clique types up to a maximum length.
After this step the example texture is no longer needed.

step 2. Generate an image filled with independent noise with values uniformly
distributed in the range of the example texture. This noise image serves as the
initial synthesized texture, to be refined in subsequent steps.

step 3. Collect the pairwise statistics of all clique types (up to the same maximal
length) for the current synthesized image (initially noise).

step 4. For each clique type, compare the difference distributions of the example
texture and the synthesized texture by calculating the Euclidean distance.

step 5. Select the clique type with the maximal distance. If this distance is less than
some threshold go to step 8 - the end of the algorithm. Otherwise, add the
clique type to the (initially empty) neighborhood system and its difference
distribution to the (initially empty) parameter set.

step 6. Synthesize a new texture using the updated neighborhood system and
parameter set. The texture should have the prescribed statistics for all clique
types in the neighborhood system.

step 7. Go to step 3.
step 8. End of the algorithm.

The distribution distances that are compared between clique types in step 4 are
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weighted with the number of cliques. This should prevent unstable statistical behavior
when there are only few cliques (typical for long clique types).

Gimel’farb [6] uses a similar approach, but selects all clique types simultaneously
and independently. To get at the same quality of the synthesized textures about 5
times as many clique types need to be included. Texture analysis is faster but - and
this is more critical - texture synthesis is about 5 times slower.

For this texture analysis algorithm, repeated texture synthesis is necessary (step 6).
We use the same algorithm as for the synthesis from the final texture model. This
algorithm is described in the next section. First, the above analysis algorithm is
illustrated and its extension to color images is discussed.

Fig. 2 left shows an example texture. A model of this texture has been built. Fig. 2
right shows the synthesis result. The left column in Fig. 3 shows a series of
intermediate, synthesized textures as new clique types are added to the neighborhood
system, shown in the right column.

Fig. 2. Left: an example texture (straw cloth, Brodatz D53) that is to be modeled. Right:
final synthesis.

The neighborhood systems show, which cliques the central pixel is a member of.
Note that every clique type adds two such cliques: the central pixel can play the role
of both head and tail, hence, the point symmetry. In these schematic drawings of the
neighborhood systems one also notices that the central pixel itself is included. This is
to indicate that also first-order statistics about the intensity of individual pixels is part
of the statistical parameter set.

In the case of color images, separate neighborhood systems are selected for each of
the three color bands. Besides these within-band statistics, pairwise interactions
between the color bands have to be included. An example of such within-band + inter-
band neighborhood system is shown in Fig. 4. The three (R, G, and B) intensity
histograms and some interactions are always included into the neighborhood system.
These are the interactions with the four nearest neighbors within the bands and the
“vertical” connections between bands (i.e., between identical pixels). Experiments
have shown that they had to be included almost without exception in the different
texture models. Their automatic inclusion helps to speed up the modeling.

After the 8-step texture modeling algorithm we have the final neighborhood
system of the texture and its parameter set. This model is very compact compared to
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the complete 2nd-order statistics extracted in step 1. Typically, only 10 to 40 clique
types (20 to 80 neighbors of a pixel) are included. The model size amounts to a few
hundred or maximally a few thousand bytes. Nevertheless, the differences between
synthesized and example statistics are very small for all clique types, including the
ones that have not been selected.

Fig. 3. Left: subsequent synthesized textures for the example texture in Fig. 2. Right:
selected clique types after 2, 6, and 9 analysis iterations.
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red 

green 

blue 

red-green 

green-blue 

red-blue 

Fig. 4. Complete neighborhood system for a color texture. Left column: separate
neighborhood systems for the 3 color bands Red, Green, and Blue. Second and third columns:
neighborhood systems for pairwise interactions between the R-G, G-B, and R-B bands.

2.3 Texture Synthesis

For texture synthesis, the images are treated as a realization from the family of
Markov random fields with the extracted neighborhood system. For notational
simplicity we will drop 1st order statistics terms from the formulas in the sequel. The
intensity histograms are used in exactly the same way as the second order difference
distributions and the corresponding cliques can be thought to collapse to a single
pixel.

The synthesis proceeds iteratively to obtain the same parameter set as the example
texture. To that end, the Gibbs potentials in the exponential representation of the
field’s probability distribution are iteratively updated. The joint probability ( )sP  of

an image s  is expressed as

, ,( ) exp exp ( )s g n g
α

α α α
α κ α

∆ ∆
∆

∝ = ∆∑∑ ∑∑P (1)

with ,gα ∆  the Gibbs potential for the clique type α  and the intensity difference ∆ ,

and ( )nα ∆  the number of cliques of clique type α  with intensity difference ∆ . The

double sum adds the potentials for all cliques of the different clique types present in
the neighborhood system.

The Gibbs potentials are real numbers that have to be manipulated in order to
approach the target statistics. This iterative process has two components: 1) modify
the texture synthesized so far based on the latest potentials, and 2) update the
potentials according to the deviations of the modified texture from the target.
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For the first part, pixels are selected randomly. The Metropolis stochastic
relaxation procedure is used [14] to update the intensity value of a selected pixel.
Given the neighborhood system and the current Gibbs potentials the probability of
having intensity is  at a pixel i  is given by the single-point Markov conditional

probability

, ( )

, ( )

exp

( | )
exp

i

i
i

s i

g

p s neighbors
g

α
α

α
α

α κ
α κ

α κ
α κ

∆
∋

′∆
′ ∋

=
∑∑

∑ ∑∑
(2)

where { }: iα ακ κ∈  are the cliques of type α  that contain pixel i  (usually 2, once as

head and once as tail) and where ( )ακ′∆  each time denotes the signal difference

corresponding to an intensity is′  at the pixel position. The new signal level is selected

uniform-randomly from the given range. Then according to the transition probability
(2) the Metropolis updating rule is as follows:

1, ( | ) ( | ),

( ) ( | )
, .

( | )

i i

i i

i

p new neighbors p old neighbors

p new p new neighbors
otherwise

p old neighbors

≥
= 


(3)

Within one “Metropolis iteration” all points are visited once and updated in this way.
Then the new statistics are derived and the Gibbs potentials are updated as:

( )1
, ,, ( ) ( )g g c f fτ τ τ

α α α αα +
∆ ∆∀ ∆ = + ∆ − ∆ (4)

where τ  is the iteration number, c  is a small constant, and the expression between
parentheses is the difference between the target difference distribution and the one
realized at iteration τ  for the difference ∆  and clique type α . The Gibbs potential

and hence, the probabilities for a specific ∆  and α  increase if ( )f τ
α ∆  is too low.

They are seen to decrease in the opposite case, again pushing intensities in the right
direction.

The overall synthesis algorithm then goes as follows:

step 1. Put the initial Gibbs potentials to zero, fill the initial synthesized image with
white noise.

step 2. Calculate the new statistics and update the Gibbs potentials accordingly.
step 3. Update the image by performing a Metropolis iteration. If the iteration

number surpasses a limit, go to step 5.
step 4. Go to step 2.
step 5. End of the algorithm.

The convergence of this relaxation procedure has been proven [18].
This procedure is also used in step 6 of the texture analysis algorithm but the

potentials are not reset to zero and the image is not reset to noise on the intermediate
analysis stages, which have then about 10 times smaller iteration number.
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2.4 Examples of Synthesized Textures

This section shows a few examples, obtained with the proposed Clique Selection
Method. Fig. 5 and Fig. 6 show example textures on the left and synthesized textures
on the right. On the whole, the synthesized textures are perceptually similar to the
examples for both regular and stochastic textures. Nevertheless, some of the examples
indicate that our approach finds it difficult to capture complex orderings and the
precise shapes of texels. The structure in Fig. 5 d) is not completely preserved and the
texels in Fig. 6 d) are deformed. This is a consequence of only considering pairwise
pixel interactions.

a) b)

c) d)

Fig. 5. Left: originals; right: synthetic; a) Brodatz D77, cotton canvas; b) Brodatz D50,
raffia woven with cotton threads; c) Brodatz D55, straw matting; d) Brodatz D11, homespun
woolen cloth.

Fig. 7 shows two more examples, where the method fails dramatically. Again, this
is due to the presence of precisely shaped texels placed irregularly in the first case,
and the complex mix of curvilinear and blob-like structures in the second case.
The synthesis of textures is useful when reconstructing large-scale environments. As
already mentioned in the introduction, many parts will not have to be modeled in
great detail, yet have to be visualized at the same high resolution as the objects of
interest. In the context of the European project Murale, we are in the process of
building an extensive 3D model of the archaeological site at Sagalassos in Turkey.
Ruins are dispersed in a landscape of many squared kilometers. Only the ruins are
modeled in detail, the mixture of grass, sand, and rocks in between should look real,
without a need to precisely reflect reality. Even if one wanted to model these vast
parts based on images, this would take an awful lot of time and memory. Texture
synthesis is more viable option. Fig. 8 shows an example image of Sagalassos
landscape texture. The figure also shows texture synthesized from this example. This
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texture was modeled and then large patches of similar texture were synthesized. The
synthesized texture was then mapped onto the 3D landscape model. Fig. 9 shows a
fragment of the 3D model. The top image shows part of a 3D building model, inserted
in the 3D model of the landscape, which has much lower resolution, both in terms of
the geometry and in terms of the texture. The bottom image shows the result when the
synthesized texture is mapped onto the landscape model. The result looks better,
although now the coarseness of the geometry becomes more salient. Of course it
could be smoothed.

Brodatz D66. Plastic pellets. Brodatz D87. Sea fan.

Fig. 7. Textures that cannot be reproduced with only pairwise interactions.

The example of the archaeological site automatically leads to two further
considerations:
texture knitting: natural textures will not be sharply delineated and we need to

provide naturally looking transitions between different textures. Also, when
mapping synthesized textures onto the 3D model, seams will show up, even
between similar textures. These have to be removed.

a) b)

c) d)

Fig. 6. Left: originals; right: synthetic; a) aerial photograph of forest; b) coffee grounds
(MIT VisTex); c) algae (MIT VisTex); d) ceiling tile (MIT VisTex).
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3D effects: textures are not flat and will often have to be mapped on curved surfaces.
Simple foreshortening of a texture will not generate the required 3D effects. The
synthetic texture will only look natural from viewpoints similar as that of the
example image from which it was generated. Solving this shortcoming calls for
models that take 3D effects like viewpoint dependent degrees of self-occlusion
and reflectance characteristics into account.

These are the subjects of the next section.

Fig. 8. Left: Image showing terrain texture at the archaeological site of Sagalassos. Right:
synthetic texture based on the texture example.

Fig. 9. Top: part of the 3D terrain model, with low-resolution, original texture. Bottom: the
same scene with synthetic texture mapped on. The resolution of the landscape texture now better
matches that of the building.
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3 Texture Knitting and 3D Effects

Often more than one texture has to be mapped onto a surface. In the example of the
archaeological site, this could be a texture for rock and a texture for grass. Example
textures for both are shown in Fig. 10, on the left. The central area that contains both
types of textures was analyzed with the modeling algorithm. Then, the colors of the
pixels in a central area (not necessarily the same) were replaced by colors synthesized
based on this model. The result is that automatically on the grass side a texture is
generated that looks more like grass with a little bit of rock and v.v. This effect is
much desirable and follows automatically from the fact that the clique types with
shorter lengths prescribe colors more similar to those of the unmixed texture a pixel is
closest to.

Fig. 10. Left: two example textures (rock and grass). Right: the same two textures, but with a
gradual transition inserted for an area around the textures’ boundary.

A similar procedure is useful for the seamless knitting of patches of the same
texture. Fig. 11 left shows four patches of the same texture. One can see sharp
unnatural boundaries between the patches. New texture was synthesized in a region
around the boundaries, using the model of this texture. The left figure was used as the
initial texture to start the synthesis iterations from. The result is shown in Fig. 11,
right. The seams disappear because the newly generated intensities are based on
information from either side.

Another issue is the emulation of 3D effects. As most textures are not flat,
changing the viewpoint will have a more drastic effect than just a foreshortening of
the texture along the direction of the slant [1, 2]. Occlusions are only one example of
the phenomena that defy such simple model. In our work we have chosen a simple
modification of the texture synthesis algorithm that avoids the need for a complete
analysis for all the viewpoints. In particular, we avoid extracting a new neighborhood
system for every viewpoint. The texture is modeled for one viewpoint, typically for a
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fronto-parallel one. The neighborhood system for that viewpoint is then deformed by
contraction or stretching in the direction of the slant change for other viewpoints. This
does not provide for the required 3D effects per se, but already yields a first
approximation that is modified further. These further modifications – necessary to
capture 3D effects other than foreshortening - are obtained from the second
component of the texture model: the intensity statistics. The intensity histograms and
difference distributions for the affinely deformed neighborhood system are learned
anew from an example image for the new viewpoint. This process is very fast
(milliseconds compared to the tens of minutes required for the extraction of a new
neighborhood system). As a consequence, building a texture model that includes 3D
effects takes virtually no additional time compared to the extraction of a model for a
single viewpoint.

Fig. 12 shows in its top row three original images of the same texture, but viewed
from three different angles (Columbia-Utrecht image database, CUReT [2]). Image b)
was used to extract a complete texture model, i.e., a neighborhood system and the
corresponding difference distributions. Image e) shows a texture that has been
synthesized on the basis of this model. The flanking images d) and f) have been
created by the method that has just been described. The neighborhood system of the
middle image (shown in h)) has been stretched as a first step in the generation of d)
and has been contracted for f). These deformed neighborhood systems are shown in g)
and i) respectively. Then, from the images a) and c) new intensity statistics
(difference distributions and intensity histograms) are extracted. Textures d) and f)
have been generated from the deformed neighborhood systems g) and i) in
combination with the difference distributions and intensity histograms of a) and c). As
can be seen, the similarity is quite good. As is also clear from inspection, an image
like a) cannot be produced from b) through simple stretching alone.

0 shows a second example. Image a) shows texture of straw. Image b) shows a
result obtained with the texture synthesis algorithm based on a neighborhood system
and intensity statistics extracted from a). Image c) shows a real image of the same
straw structure for an oblique view. Image d) shows what happens if one would
simply contract the image b). As can be seen, this simple procedure leads to strong
perceptual differences. Image e) is the result of texture synthesis based on a model
extracted from c), i.e., a completely new neighborhood system and its intensity
statistics. Image f) finally shows the result of texture synthesis based on a deformed

Fig. 11. Left: four patches of the same texture. Right: seamless knitting of patches.
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(contracted) version of the neighborhood system of b) combined with intensity
statistics for this contracted neighborhood system extracted from image c). This result
seems as good as e) but is obtained much faster.

Fig. 14 gives more examples of texture synthesis based on deformed neighborhood
systems. The oblique, synthesized texture in every block was synthesized by
deforming the neighborhood system of the head-on views (top left) combined with the
corresponding intensity statistics as extracted from the original oblique views (top
right).

4 Conclusions and Future Work

A texture synthesis method was proposed that builds compact texture models based
on 1st and 2nd-order statistics. This method is a further development and
specialization of earlier work [8- 10, 17, 18], which partly targeted other applications
like texture based segmentation and image retrieval.

Examples show that it is able to produce textures that look very similar to the
example textures from which the models are learned and this for a rather broad class

a) b) c)

d) e) f)

g) h) i)

Fig. 12. Three oblique views of a real texture (CUReT); a) original image for a viewing
angle 11� away from perpendicular; b) same for 56�; c) same for 79�; e) synthetic texture
based on a neighborhood system - h) - and difference distributions learned from b); d) and f)
synthetic results based on neighborhood systems g) and i), which are transformed versions of
h).
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of textures. Random field theory is used “only” as a tool for generating the
synthesized texture sequences with gradually changing Gibbsian transition
probabilities. In this respect, the work is similar to that reported in [16, 19].

Fig. 13. Straw (CUReT, 40b); a) original image for a perpendicular view; b) synthesized
texture based on a model for a); c) original image for an oblique view (68�); d) result of
contracting b); e) texture synthesis based on a completely new model extracted from c); f)
texture synthesis based on a transformed neighborhood system for b) and new difference
distributions from c).

a) b)

c) d) e) f)
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Fig. 14. Different textures (CUReT) viewed perpendicularly and obliquely. Original
images in the top rows and synthetic images in the bottom rows of each frame. The bottom
right images were synthesized from deformed neighborhoods.

Nice features of the proposed approach are that the original texture is not needed
for synthesis and that no disturbing repetitions of patterns occur, even if large areas of
synthetic texture are produced. These aspects may be an advantage with respect to the
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texture synthesis method of De Bonet [3]. The latter also has difficulties when the
raster size of the synthesized image is not a multiple of the period of the textural
pattern (Fig. 15) or if the main structural elements of the texture are slightly rotated
with respect to horizontal and vertical directions, which have a special status for the
underlying pyramid used by this method (Fig. 16). The original texture patch was
taken from the De Bonet’s web site [3], zoomed in to 120% in the first case or rotated
to 30 degree in the second case.

a)

b)

c)

Fig. 15. a) original texture; b) texture synthesized by our method; c) texture synthesized by
De Bonet’s algorithm for 9 different parameter settings (from high regularity – bottom left – to
high randomness – top right).

Limiting the modeling to 1st and 2nd order statistics restricts the class of textures
that can be handled successfully. Future work will be aimed to include at least part of
the higher order statistics, without increasing computer time too much. Similarly, the
second-order statistics are characterized through simple difference distributions. It
will be worthwhile to consider more sophisticated features. Also, the current analysis
is based on raw intensity data, whereas the responses of filters could be used as input.
The promise held by adding filter responses was clearly illustrated by recent work of
Leung and Malik [13], who could replicate textures convincingly including 3D
effects. Our work differs in that the focus is on the synthesis of new texture rather
than precisely replicating textures presented to the system.
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Computation time currently is quite high, especially for the texture modeling and
may go up to more than one hour CPU time for a 200x200 image on an SGI O2.
Fortunately, the modeling needs to be done only once. Texture synthesis is much
faster, but also takes tens of minutes. The typical amount of synthesis iterations lies
between 1000 and 3000. Increasing the speed is another topic for future research.

a)

b) c)

Fig. 16. a) original texture; b) texture synthesized by our method; c) texture synthesized by
De Bonet’s algorithm for 9 different parameter settings (from high regularity – bottom left – to
high randomness – top right).

The paper also presented work to generate natural transitions between different
textures and to mimic 3D effects based on a purely 2D representation. The latter work
can be further refined, e.g. by investigating into the evolution of the difference
distributions in the model with changing viewing angle. It is to be expected that the
distributions can be expressed more concisely through principal components. The
approach we used is slightly similar to that of Hsu and Wilson [11] who combined
affinely distorted texels with statistical variations. However, that work also builds a
replica of a given texture, rather than generating new, but similar texture. It also is not
based on Gibbs models.
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Discussion

1. Andrew Fitzgibbon, University of Oxford: To compare your distributions you
use the Euclidean distance, does it make any difference if you use something
else?
Alexey Zalesny: We tried also a weighted distance. In the beginning, we
worked together with Georgyi Gimel’farb and he used another distance, but it
was not critical. The results were stable.

2. Bill Triggs, INRIA Rhône-Alpes: Can you give us some intuition about the
number of cliques that are needed to model typical natural textures?
Alexey Zalesny: We tried to stop clique selection automatically. Sometimes we
can do that during our stochastic probability synthesis. We can easily tell when
to stop the generation. We can compare the biggest distance of the next not-
selected clique type.  If this is approximately the same as we already have, we
can stop clique selection. We need about 40 cliques.
Bill Triggs:  So you can model almost any natural texture with about 40 cliques,
at least at a single scale?
Alexey Zalesny: Yes, even for colored texture it will be around 40 cliques
distributed on 3 rasters. It means that for 32 gray level images we have 63 signal
differences and 63x40 parameters.  Typically, there are 1000, 2000, or 3000
parameters.

3. Bill Triggs:  Secondly, how sensitive is the texture generation to the positions of
the selected points? If you moved the points around locally and re-learned the
statistics, would the generated textures change very much?
Alexey Zalesny: The stability of this system is good. The sequential analysis of
the algorithm is very good. When selecting the mutually dependent cliques we
minimize the distance for all cliques. There is only a restriction on the maximal
clique length. That is why if the points are moved slightly we get the same
texture. We might find another neighborhood system, but this new system would
give us the same result. We could still generate a similar texture.

4. Andrew Fitzgibbon, University of Oxford:  You’re using a greedy algorithm,
selecting cliques sequentially.  Would you expect to do better with a more global
algorithm?
Alexey Zalesny: At first, we tried to select simultaneously all cliques with the
biggest histogram distance between the reference texture and independent
random noise.  However, the results of this synthesis were very bad. For this
kind of analysis, we only need some milliseconds but the results were poor.

5. Kyros Kutulakos, University of Rochester: Can you say a little bit more about
what you assume about the geometry of the surface over which you impose the
texture when you try to change the viewpoint? Or if you wanted to texture map
onto a curved surface and you wanted to change viewpoint, how would that
change your warping function.
Alexey Zalesny: For each additional view, we should know the geometry
coefficients for a model of the translation invariance. Of course, we only
introduce affine texture without perspective distortion. If you want to generate
an orange, you should divide your orange into a finite number of oblique views,
make a full analysis for one view and than quickly re-analyze for all the other
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views.  Now we need only the brightness information, not the height of the
surface.  The framework allows us to also use the height or other information.
For example, for texture segmentation we just re-synthesize our map using the
labels instead of the gray levels.

6. Rudolf Mester, Frankfurt University: You made a short reference to color
texture synthesis and you mentioned that you were going to search for
interactions between the RGB-planes. Because you want to keep the interactions
as low as possible, wouldn’t it be better to look for interactions in another color
space like HSV or so?
Alexey Zalesny: I tried this but the results were not so good. We had some
artifacts like unnatural spots of different colors. It was not so disturbing but
nevertheless interesting to try. I tried in other color spaces like using two color
difference signals and brightness but then the global colors were shifted.



Augmented Reality Using Uncalibrated Video
Sequences

Kurt Cornelis?, Marc Pollefeys∗, Maarten Vergauwen, and Luc Van Gool

K. U. Leuven, ESAT-PSI
Kardinaal Mercierlaan 94, B-3000 Leuven, Belgium

kcorneli | pollefey | vergauwe | vangool@esat.kuleuven.ac.be
WWW home page:http://www.esat.kuleuven.ac.be/˜ kcorneli

Abstract. Augmented Reality(AR) aims at merging the real and the
virtual in order to enrich a real environment with virtual information.
Augmentations range from simple text annotations accompanying real
objects to virtual mimics of real-life objects inserted into a real envi-
ronment. In the latter case the ultimate goal is to make it impossible
to differentiate between real and virtual objects. Several problems need
to be overcome before realizing this goal. Amongst them are the rigid
registration of virtual objects into the real environment, the problem of
mutual occlusion of real and virtual objects and the extraction of the
illumination distribution of the real environment in order to render the
virtual objects with this illumination model. This paper will unfold how
we proceeded to implement an Augmented Reality System that registers
virtual objects into a totally uncalibrated video sequence of a real en-
vironment that may contain some moving parts. The other problems of
occlusion and illumination will not be discussed in this paper but are left
as future research topics.

1 Introduction

1.1 Previous Work

Accurate registration of virtual objects into a real environment is an outspoken
problem in Augmented Reality(AR). This problem needs to be solved regardless
of the complexity of the virtual objects one wishes to enhance the real environ-
ment with. Both simple text annotations and complex virtual mimics of real-life
objects need to be placed rigidly into the real environment. Augmented Reality
Systems that lack this requirement will demonstrate serious ‘jittering’ of virtual
objects in the real environment and will therefore fail to give the user a real-life
impression of the augmented outcome.

The registration problem has already been tackled by several researchers in
the AR-domain. A general discussion of all coordinate frames that need to be
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registered with each other can be found in [25]. Some researchers use prede-
fined geometric models of real objects in the environment to obtain vision-based
object registration [15,22,27]. However, this delimits the application of such sys-
tems because geometric models of real objects in a general scene are not always
readily available. Other techniques have been devised to make the calibration
of the video camera obsolete by using affine object representations [16]. These
techniques are simple and fast but fail to provide a real impression when pro-
jective skew is dominant in the video images. Therefore virtual objects can be
viewed correctly only from large distances where the affine projection model is
almost valid. So it seems that the most flexible registration solutions are those
that don’t depend on any a priori knowledge of the real environment and use
the full perspective projection model. Our AR-System belongs to this class of
flexible solutions.

To further enhance the real-life impression of an augmentation the occlu-
sion and illumination problems need to be solved. The solutions to the occlusion
problem are versatile. They differ in whether a 3D reconstruction of the real
environment is needed or not [3,5]. Also the illumination problem has been han-
dled in different ways. A first method uses an image of a reflective object at the
place of insertion of the virtual object to get an idea of the incoming light at
that point [6]. A second approach obtains the total reconstruction of a 3D ra-
diance distribution by the same methods used to reconstruct a 3D scene [19].
Another approach consists of the approximation of the illumination distribution
by a sphere of illumination directions at infinity [20].

As Computer Generated Graphics of virtual objects are mostly created with
non physically-based rendering methods, techniques that use image-based ren-
dering can be applied to incorporate real objects into another real environ-
ment [23] to obtain realistic results. Image-based rendering is explained in [7].

However, the ‘jittering’ of virtual objects in the real environment can de-
grade severely the final augmented result, even if problems of occlusion and
illumination can be resolved exactly. We focussed on developing an AR-System
that solves the registration problem as a prerequisite. It is based primarily on a
3D reconstruction scheme that extracts motion and structure from uncalibrated
video images and uses the results to incorporate virtual objects into the real
environment.

1.2 Overview

In the first upcoming section we will describe the motion and structure recovery
algorithm of the AR-System. Although the main goal is the recovery of mo-
tion of the camera throughout the video sequence, the system also recovers a
crude 3D structure of the real environment. This can be useful to handle future
problems like resolving occlusions and extracting the illumination distribution
of the real environment. We will focus on the motion recovery abilities of the
AR-System.

In a following section we will discuss the use of the recovered motion parame-
ters and the 3D structure to register virtual objects within the real environment.
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This involves using the crude 3D representation of the real environment which we
obtain as an extra from the motion recovery algorithm. Dense 3D reconstruction
of the real environment is not necessary but may prove useful for future solutions
to the occlusion problem.

Another section will give an overview of the final AR-algorithm. We will finish
by showing results of the AR-System on some applications and by indicating
future work to be done in order to upgrade the AR-System.

2 Motion and Structure Recovery

2.1 Preliminaries

As input to the AR-System we can take totally uncalibrated video sequences.
The video sequences are neither preprocessed nor set up to contain calibration
frames or fiducial markers in order to simplify motion and structure recovery.
Extra knowledge on calibration parameters of the video camera can be used to
help the AR-System to recover motion and structure but is not necessary to
obtain good results.

The video sequences are not required to be taken from a purely static envi-
ronment. As long as the moving parts in the real environment are small in the
video sequence the algorithm will still be able to recover motion and structure.

2.2 Motion and Structure Recovery Algorithm

Image Features Selection and Matching Recovery of motion in Computer
Vision is almost always based on tracking of features throughout images and
uses these to determine motion parameters of the camera viewing the real envi-
ronment. Features come in all flavours like points, lines, curves [4] or regions [26].
The features we use are the result of the Harris Corner Detector algorithm [9]
applied to each image of our input video sequence. The result consists of points
or corners in the images determining where the image intensity changes signifi-
cantly in two orthogonal directions.

We end up with corners in each image of the video sequence but these are
still unmatched from one image to another. We need to match them in differ-
ent images in order to extract motion information. An initial set of possible
matching corners is constructed using a small search region around each corner
looking for corners in other images which have a large normalized intensity cross-
correlation with the corner under scrutiny. Corresponding or matching corners
are constrained through epipolar geometry to lie on each others epipolar line.
This constraint can be expressed in terms of a linear equation between the two
images one wishes to match the corners from:

x1
T F12x2 = 0 (1)

where x1 = (u1, v1, 1)T and x2 = (u2, v2, 1)T denote homogeneous image
coordinates of matching corners in the first and second image. F12 is a 3 × 3
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singular matrix which describes the epipolar geometry between the two images.
The epipolar line from corner x1 in image 2 and from corner x2 in image 1 can
be written down respectively as:

FT
12x1 = 0 and (2)

F12x2 = 0 (3)

Using equation (1) each possible match between corners from the two im-
ages adds a constraint on the elements of the matrix F12. Extra constraints can
be superimposed on F12 due to its singular nature and because it can only be
determined up to a scalefactor as we are working with homogeneous image co-
ordinates. Several algorithms have been devised to determine reliable matches
between the corners of two images. These matches lead to a reasonable consis-
tent F12, which means that equation (1) returns a small residual error for an
important fraction of the presumed matches. The determination of this partic-
ular set of matches is achieved by a RANSAC algorithm [12] which determines
F12 from trial matches and additional constraints of singularity and scalability.
Once a good initial F12 is obtained it is optimized using all consistent matches
and a Levenberg-Marquardt optimization technique.

As long as the moving parts in the real environment are small in the video
sequence the RANSAC algorithm will treat corners belonging to these moving
parts as outliers. They will be properly discarded in the determination of the
matrix F12 and the matching corners.

Initializing Motion and Structure Recovery Once corner matches between
two initial images are found, they can be used to initialize motion and structure
recovery from the video sequence.

The relation between a 3D structure point and its projection onto an image
can be described by a linear relationship in homogeneous coordinates:

mk ∼ PkM (4)

in which M = (X, Y, Z, 1) and mk = (xk, yk, 1)T are the homogeneous coor-
dinates of the 3D structure point and its projection onto image k respectively.
Pk is a 3 × 4 matrix which describes the projection operation and ‘∼’ denotes
that this equality is valid up to a scalefactor.

The two initial images of the sequence are used to determine a reference
frame. The world frame is aligned with the camera of the first image. The second
camera is chosen so that the epipolar geometry corresponds to the retrieved F12.

P1 = [ I3×3 | 03 ]
P2 = [ [e12]×F12 + e12π

> | σe12 ] (5)

where [e12]× indicates the vector product with e12. Equation (5) is not com-
pletely determined by the epipolar geometry (i.e. F12 and e12), but has 4 more
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degrees of freedom (i.e. π and σ). π determines the position of the reference
plane (this corresponds to the plane at infinity in an affine or metric frame) and
σ determines the global scale of the reconstruction. To avoid some problems dur-
ing the reconstruction it is recommended to determine π in such a way that the
reference plane does not cross the scene. Our implementation uses an approach
similar to the quasi-Euclidean approach proposed in [2], but the focal length is
chosen so that most of the points are reconstructed in front of the cameras1.
This approach was inspired by Hartley’s cheirality [10]. Since there is no way to
determine the global scale from the images, σ can arbitrarily be chosen to σ = 1.

Once the cameras have been fully determined the matches can be recon-
structed through triangulation. The optimal method for this is given in [11].
This gives us a preliminary reconstruction.

Updating Motion and Structure Recovery To obtain the matrix P or the
corresponding motion of the camera for all other images in the video sequence
a different strategy is used than the one described in the previous section.

First we take an image for which the corresponding matrix P has already
been computed and retrieve the 2D-3D matches between corners in that image
and the reconstructed 3D structure points. Secondly we take another image of
which we only have the corners. With our RANSAC algorithm we compute
the matrix F and corner matches between both images. Using corner matches
between corners in image k − 1 and image k and matches between corners in
image k − 1 and 3D structure points, we obtain matches between corners in
image k and 3D structure points. See figure 1.

Knowing these 2D-3D matches we can apply a similar technique as we used
to estimate F, to determine P taking into account equation (4) and a similar
RANSAC algorithm. It is important to notice that the matrix F serves no longer
to extract matrices P, but merely to identify corner matches between different
images.

Using the previously reconstructed 3D structure points to determine P for the
next image, we ensure that this matrix P is situated in the same projective frame
as all previously reconstructed P’s. New 3D structure points can be initialized
with the newly obtained matrix P. In this way the reconstructed 3D environment
which one needs to compute P of the next image is updated on each step,
enabling us to move all around a real object in a 3D environment if necessary.

In this manner motion and structure can be updated iteratively. However
the next image to be calibrated cannot be chosen without care. Suppose one
1 The quasi-Euclidean approach computes the plane at infinity based on an approxi-

mate calibration. Although this can be assumed for most intrinsic parameters, this is
not the case for the focal length. Several values of the focal length are tried out and
for each of them the algorithm computes the ratio of reconstructed points that are
in front of the camera. If the computed plane at infinity –based on a wrong estimate
of the focal length– passes through the object, then many points will end up behind
the cameras. This procedure allows us to obtain a rough estimate of the focal length
for the initial views.
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Fig. 1. Knowing the corner matches between image k-1 and image k (mk−1, mk) and
the 2D-3D matches for image k-1 (mk−1, M), the 2D-3D matches for image k can be
deduced (mk, M).

chooses two images between which one wants to determine corner matches. If
these images are ‘too close’ to each other, e.g. two consecutive images in a video
sequence, the computation of the matrix F and therefore the determination of
the corner matches between the two images becomes an ill-conditioned problem.
Even if the matches could be found exactly the updating of motion and structure
is ill-conditioned as the triangulation of newly reconstructed 3D points is very
inaccurate as depicted in figure 2.

We resolved this problem by running through the video sequence a first time
to build up an accurate but crude 3D reconstruction of the real environment. Ac-
curacy is obtained by using keyframes which are separated sufficiently from each
other in the video sequence. See figure 3. Structure and motion are extracted
for these keyframes. In the next step each unprocessed image is calibrated using
corner matches with the two keyframes between which it is positioned in the
video sequence. For these new images no new 3D structure points are recon-
structed as they will probably be ill-conditioned due to the closeness of the new
image under scrutiny and its neighbouring keyframes. In this way a crude but
accurate 3D structure is built up in a first pass along with the calibration of the
keyframes. In a second pass, every other image is calibrated using the 2D-3D
corner matches it has with its neighbouring keyframes. This leads to both a ro-
bust determination of the reconstructed 3D environment and the calibration of
each image within the video sequence.
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f1 f2

1 2

f2f1

21

Fig. 2. left: If the images are chosen too close to each other the position and orientation
of the camera hasn’t changed much. Uncertainties in the image corners lead to a large
uncertainty ellipsoid around the reconstructed point. Right: If images are taken further
apart the camera position and orientation may differ more from one image to the next,
leading to smaller uncertainty on the position of the reconstructed point.

Fig. 3. The small dots on the background represent the recovered crude 3D envi-
ronment. The larger dark spots represent camera positions of keyframes in the video
stream. The lighter spots represent the camera positions of the remaining frames.
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Metric Structure and Motion Even for an uncalibrated camera some con-
straints on the intrinsic camera parameters are often available. For example, if
the camera settings are not changed during recording, the intrinsic parameters
will be constant over the sequence. In general, there is no skew on the image,
the principal point is close to the center of the image and the aspect ratio is
fixed (and often close to one). For a metric calibration the factorization of the
P-matrices should yield intrinsic parameters which satisfy these constraints.

Self-calibration therefore consists of finding a transformation which allows
the P-matrices to satisfy as much as possible these constraints. Most algorithms
described in the literature are based on the concept of the absolute conic [8,24,
18].

The presented approach uses the method described in [18]. The absolute conic
ω is an imaginary conic located in the plane at infinity Π∞. Both entities are the
only geometric entities which are invariant under all Euclidean transformations.
The plane at infinity and the absolute conic respectively encode the affine and
metric properties of space. This means that when the position of Π∞ is known
in a projective framework, affine invariants can be measured. Since the absolute
conic is invariant under Euclidean transformations its image only depends on the
intrinsic camera parameters (focal length, ...) and not on the extrinsic camera
parameters (camera pose). The following equation applies for the dual image of
the absolute conic:

ω∗
k ∝ KkK>

k (6)

where Kk is an upper triangular matrix containing the camera intrinsics for
image k. Equation (6) shows that constraints on the intrinsic camera parameters
are readily translated to constraints on the dual image of the absolute conic.
This image is obtained from the absolute conic through the following projection
equation:

ω∗
k ∝ PkΩ∗P>

k (7)

where Ω∗ is the dual absolute quadric which encodes both the absolute conic and
its supporting plane, the plane at infinity. The constraints on ω∗

k can therefore
be back-projected through this equation. The result is a set of constraints on
the position of the absolute conic (and the plane at infinity).

Our systems first uses a linear method to obtain an approximate calibration.
This calibration is then refined through a non-linear optimization step in a second
phase. More details on this approach can be found in [17].

3 Augmented Video

3.1 Virtual Object Embedding

Results obtained in the previous section can be used to merge virtual objects
with the input video sequence. One can import the final calibration of each single
image of the video sequence and the reconstructed crude 3D environment into a
Computer Graphics System to generate augmented images.
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In a Computer Graphics System virtual cameras can be instantiated which
correspond to the retrieved calibrations of each image. The image calibrations
include translation, rotation, focal length, principal point and skew of the actual
real camera that took the image at that time. Typically Computer Graphics
Systems do not support skew of the camera. This can easily be adapted in the
software of the Computer Graphics System by including a skew transformation
after performing the typical perspective transformation as explained in [13]. We
use VTK [21] as our Computer Graphics Package. The virtual cameras can now
be used to create images of virtual objects.

These virtual objects need to be properly registered with the real 3D en-
vironment. This is achieved in the following manner. First virtual objects are
placed roughly within the 3D environment using its crude reconstruction. Fine-
tuning of the position is achieved by viewing the result of a rough positioning by
several virtual cameras and overlaying the rendering results from these virtual
cameras on their corresponding real images in the video sequence. See figure 4.
Using specific features in the real video images that were not reconstructed in
the crude 3D environment a better and final placement of all virtual objects can
be obtained. Note that at this stage of the implementation we don’t take into
account occlusions when rendering virtual objects.

3.2 Virtual Object Merging

After satisfactory placement of each single virtual object the virtual camera
corresponding to each image is used to produce a virtual image. The virtual
objects are rendered against a background that consists of the original real image.
By doing so the virtual objects can be rendered with anti-aliasing techniques
using the correct background for mixing.

4 Algorithm Overview

In this section the different steps taken by our AR-System are summarized :

step 1 : The initialization step. Take two images from the video sequence to
initialize a projective frame in which both motion and structure will be
reconstructed. During this initialization phase both images are registered
within this frame and part of the 3D environment is reconstructed. One has
to make sure these images are not taken too close or too far apart as this will
lead to ill conditions. This is done by imposing a maximum and a minimum
separation(counting number of frames) between the two images. The first
image pair conforming to these bounds that leads to a good F-matrix is
selected.

step 2 : Take the last image processed and another image further into the video
sequence that still needs registering. Again these images are taken not too
close or too far apart with the same heuristic method as applied in step 1.
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Fig. 4. The AR-interface : In the top right the virtual objects can be roughly placed
within the crude reconstructed 3D environment. The result of this placement can be
viewed instantaneously on some selected images.

step 3 : Corner matches between these images and the 2D-3D matches from the
already processed image are used to construct 2D-3D matches for the image
being registered.

step 4 : Using these new 2D-3D matches the matrix P for this image can be
determined.

step 5 : Using P new 3D structure points can be reconstructed for later use.
step 6 : If the end of the video sequence is not reached, return to step 2.

Now only keyframes that are quite well separated have been processed. The
remaining frames are processed in a manner similar to step 3 and 4.

step 7 : For each remaining frame the corner matches of the keyframes between
which it lies and their 2D-3D matches are used to obtain 2D-3D matches for
this frame.
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step 8 : Similar to step 4, the matrix P of these frames can be calculated.
However no additional 3D structure points are reconstructed.

Now all frames are registered and virtual objects can be placed into the real
environment as described in section 3.

step 9 : First the virtual objects are roughly placed within the real environment
using its crude 3D reconstruction obtained in previous steps.

step 10 : Finetuning of the positions of the virtual objects is done by seeing
the result overlaid on some selected images and adjusting the virtual objects
until satisfactory placement is obtained.

5 Examples

We filmed a sequence of a pillar standing in front of our department. Using the
AR-System we placed a virtual box on top of this pillar. Note that by doing
so we didn’t have to solve the occlusion problem for now as the box was never
occluded since we were looking down onto the pillar. The AR-System performed
quite well. The ‘jittering’ of the virtual box on top of the pillar is still noticeable
but very small. See figure 5.

Fig. 5. A virtual box is placed on top of a real pillar. ‘Jittering’ is still noticeable in
the augmented video sequence but is very small.
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Another example shows a walk through a street. The camera motion of the
person taking the film was far from smooth. However the AR-System managed
to register each camera position quite well. See figure 6.

Fig. 6. A street scene: The virtual box seems to stay firmly in place despite the jagged
nature of the camera trajectory.

A third example shows another street scene but with a person walking around
in it. Despite this moving real object the motion and structure recovery algorithm
extracted the correct camera motion. See figure 7.

All video examples can be found at
http://www.esat.kuleuven.ac.be/∼kcorneli/smile2.

6 Future Research

It is clear that the proposed AR-System can be further enhanced. One can try
to reduce the ‘jittering’ of virtual objects by considering different techniques.
E.g. incorporation of restrictions on the path followed by the real camera can
be used to obtain a smoother path outlined by the virtual cameras. This leads
to a smoother motion of the virtual objects in the augmented video and can
therefore give more appealing results than the abrupt jumps in motion of noisy
virtual camera positions. Another approach to reduce ‘jittering’ uses real image
information in the neighbourhood of the virtual objects to lock it onto a real
object. The latter technique is not useful in the case when virtual objects are
meant to fly, float or move around in the real environment.
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Fig. 7. Another street scene: Despite the moving person the motion of the camera can
be extracted and used for augmenting the real environment with virtual objects.

The virtual objects used to augment the real environment can be the result
of an earlier 3D reconstruction of real objects. A real vase could be modeled
in a first 3D reconstruction step and the result used as virtual object to be
placed on top of the real pillar. In this way expensive or fragile objects don’t
need to be handled physically to obtain the desired video. One can just use its
3D model instead and place it anywhere one wants in a real environment. E.g.
relics or statues presently preserved in musea can be placed back in their original
surrounding without endangering the precious original. This can be applied in
producing documentaries or even a real-time AR-System at the archaeological
site itself.

After the registration problem is solved in a satisfactory way we will dive
into the occlusion and illumination problems which are still left to be solved and
prove to be very challenging.

A topic which seems interesting is to simulate physical interactions between
real and virtual objects. A simple form may be to implement a collision detection
algorithm which can help us when placing virtual objects onto a surface of the
real environment for easy positioning of the virtual objects.

7 Conclusion

In this paper we presented an AR-System which solves the registration problem
of virtual objects into a video sequence of a real environment. It consists of two
main parts.
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The first part tries to recover motion and structure from the images in the
video sequence. This motion and structure can be projective but is upgraded to
metric by self-calibration. In this way the registration of the virtual objects in
the scene is reduced from 15 to 7 degrees of freedom. The second part uses the
results of the first part to configure a Computer Graphics System in order to
place virtual objects into the input video sequence.

The input to the AR-System is a video sequence which can be totally uncali-
brated. No special calibration frames or fiducial markers are used in the retrieval
of motion and structure from the video sequence. Also the video sequence does
not have to be one of a purely static real environment. As long as the moving
parts in the video sequence are small the motion and structure recovery algo-
rithm will treat these parts as outliers(RANSAC) and therefore will discard them
correctly in the determination of motion and structure. The Computer Graphics
System used for rendering the virtual objects is adapted to use general cameras
that include skew of image pixels.

The present AR-System is far from complete. Future research efforts will
be made to solve occlusion and illumination problems which are common in
Augmented Reality.
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Discussion

1. Kostas Daniilidis, University of Pennsylvania: When you have a simple
task, like in your case inserting a cube, it is not necessary to compute a
Euclidean reconstruction. There is other work, see Kutulakos and Vallino [1],
which describes systems that just assume scaled orthographic projections.
Kurt Cornelis: I think that’s true, but we are also aiming at building a
Euclidean reconstruction with which we can finally interact in a way that
we are used to in the real world. We might want to compute a trajectory of
an object in a real-life manner. I don’t see how you can easily calculate the
equivalent trajectory in a projective reconstruction. We are thinking now
of future applications, so we want to obtain a Euclidean reconstruction in
advance.
Marc Pollefeys: It is simpler to put a virtual object in the scene when the
metric structure is available. In this case only 7 parameters (corresponding
to a similarity transformation) have to be adjusted, while for insertion in a
projective reconstruction 15 parameters need to be adjusted. Some of these
parameters are not as intuitive to adjust as rotations, translation and scale.
So if the information for a metric upgrade is in the images, it is better to
take advantage of it.

2. Kyros Kutulakos, University of Rochester: I definitely agree with you
that Euclidean reconstruction is very important. But I think you should dis-
tinguish between augmented reality systems where the input is live video,
real-time, and systems where you are working on recorded video. I’m won-
dering if you could comment on how easy it would be to do this in real-time?
Kurt Cornelis: The system has been designed for off-line processing of
recorded video. The computational requirements to deal with hand-held
markerless video data exceed the capabilities of real-time systems. Further-
more the current implementation is working with keyframes and relies on
their availability from the start. The proposed approach would thus not be
simple to adapt to work with real-time video streams.

3. Andrew Fitzgibbon, University of Oxford: You note that jitter is low,
but in a system such as this, you wouldn’t expect to get jitter because you
are fitting into the image. However, you would expect to get drift because
errors are being accumulated over time. To what extent is drift an issue?
Kurt Cornelis: I haven’t really considered drift. The video sequences you
saw were actually quite short. So I think there was not enough time to
experience drift. I think it is good to investigate this for longer sequences
and see what it gives. Thank you for the comment.

4. Richard Szeliski, Microsoft: It was interesting to hear that you thought
you had to model skew. You couldn’t live with a computer graphics package
that didn’t allow that. I thought I heard the other speakers say that we agree
the skew is zero for all practical purposes. That’s why I wanted to hear your
comment.
Kurt Cornelis: As I said, the metric update is not going to be perfect. The
cameras obtained after this update are still going to have some small skew
and we want to be able to model this.
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Marc Pollefeys: We plan to put a bundle adjustment in the system and
enforce the skew to be zero. This was just a first implementation and it was
easier to twist VTK to handle skew than to implement bundle adjustment
just to see if the system is working well. If zero-skew is enforced without
bundle adjustment, it will introduce jitter in the augmented video, because
the projection matrices are modified without taking the effect on the repro-
jection error into account. The metric reconstruction can be off by a few
degrees compared to the true scene but this is in general not visible. Note
that bundle adjustment will probably reduce this error, but there will always
be some error.

5. Jean Ponce, University of Illiniois at Urbana-Champaign: Concern-
ing projective versus metric reconstruction, I think it depends on the appli-
cation. For example, with your cube that you are placing against the wall,
you can just put some markers on the wall and track them. They form a nat-
ural way to do the interface. But maybe for medical application like surgery,
a metric reconstruction is more needed.
Kurt Cornelis: I totally agree, it depends on the application at hand.

6. Kyros Kutulakos, University of Rochester: I don’t think I agree with
Jean or Kostas, you can certainly put objects in the scene projectively but
you cannot do shading projectively. So unless you want to render images
where you have surfaces that have flat texture, which was what I did, ren-
dering a mirroring sphere would be very hard to do projectively.
Andrew Zisserman, University of Oxford (comment): After auto-
calibration there may be some slight residual projective skew in 3D (between
the reconstruction and ground-truth). The effect of this is that objects in-
serted into the images will have a slight skew, but this might not be very
noticeable. The same with lighting errors, a small error in the normals be-
cause of projective skew may not be very noticeable.
Marc Pollefeys: In this case I do not fully agree with Kyros. We certainly
need metric structure to get the lighting and other things correct, but by
correctly inserting a virtual object (which is a metric object) in a projective
reconstruction we do in fact carry out a calibration.
Kostas Daniilidis, University of Pennsylvania: I talked about affine
and not projective reconstruction which comes to what Rick Szeliski indi-
cated earlier—that we should establish some metrics for the people for whom
we are going to solve these things, whether affine reconstruction is important,
whether the drift is important, whether the jittering is the most important
aspect? This would be nice to quantify somehow.
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1 Introduction

The topic of this panel session was visual scene representation. Marc Pollefeys
chaired the discussion and Sing Bing Kang, Greg Slabaugh, Kurt Cornelis and
Paul Debevec also participated. Each panelist discussed different important as-
pects of visual representations of scenes. The panel session was followed by some
questions and discussions which are also reported here.

2 Marc Pollefeys

The topic of this discussion is visual scene representations. The goal is to discuss
existing representations and to explore new representations. At this point most
representations can be classified into image-based and geometry-based represen-
tations, more in general one could also say raw versus structured representations.
Another important aspect is how general a certain representations is, i.e. can we
move? in all directions? is it possible to change the lighting? move objects? etc.

A single image can be seen as a representation of the scene from a single
viewpoint under a specific illumination. This is a 2D representation. It is even
possible to generate new views as long as the virtual camera is undergoing pure
rotation (and the field of view for the original image is sufficiently large). To gen-
erate correct novel views some calibration information is required. If more images
are available from the same position, these can be combined in a panoramic im-
age allowing more efficient rendering and data compression. However, in this
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case the exact relative rotation between the views are also needed. There exist
commercial systems that use this representation, e.g Quicktime VR.

Through this simple example most of the important aspects of visual scene
representations have been illustrated. We will list them explicitly here:

– amount of images to acquire
– additional information required for generating novel views
– possibility to extract this from images
– amount of data required by the representation
– possibilities to navigate and alter the scene
– computations needed for rendering new views

Currently there are two types of approaches. The first type is often referred
to as image-based. This representation mainly consist of the raw image data to-
gether with some extra information such as the pose of the camera for each view.
Each image can be seen as a set of samples of the plenoptic function (i.e. a func-
tion giving the light intensity and color in any point in space in any direction).
Generating a new image then consists of interpolating the available data. An im-
portant advantage of this type of approach is that there is no need for a model
of the interaction of incoming light with the scene. Through interpolation, even
the most complex visual effects can be correctly re-rendered, at least as long as
the plenoptic function was sampled sufficiently densely. The disadvantage of this
approach is that a lot of data is required to render new views without artifacts.
This has implications for both model acquisition and model storage.

The second approach is in general termed geometry-based. In this case there
is an explicit model for the interaction of light with the scene. Identifying the
parameters of this model (i.e. computing the structure of the scene) is however
a very difficult task. Even most state-of-the-art algorithms can only deal with
diffuse piecewise-continuous surfaces. There are however also some important
advantages to this approach. These models are in general much more compact
and allow extrapolation. In addition, explicit models allow interaction with the
scenes, combinations with other scenes or objects and make it possible to obtain
measurements from the scene.

Some representation combine aspects of both approaches. In these cases part
of the appearance is represented through geometry (e.g. approximate 3D model)
and part is represented through images (e.g. view-dependent texturing). This is
for example the approach followed by Façade [1]. Another interesting hybrid ap-
proach consists of having view-dependent geometry and texture [3]. This allows
to avoid the construction of a consistent global 3D model and does not require
a prohibitive amount of images to yield visually convincing results. In Figure 1
a scene is rendered using an image-based, a geometry-based and the hybrid ap-
proach. This illustrated that there are probably interesting new visual scene
representations to be developed that combine geometry-based and image-based
concepts.

I think that in the coming years we will be able to see an interesting synergy
between sample-based and model-based representations. There is an ongoing ef-
fort to model more and more of the complexity of the visual world. Sample-based
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Fig. 1. Lightfield (left), view-dependent geometry/texture (middle) and textured 3D
model (right).

approaches need to sample densely the degrees of freedom that are considered.
This restricts the complexity of the phenomena that can practically be modeled
this way. However, once a satisfying model-based representation is developed
-which allows a much lower sampling rate- it becomes possible to explore other
degrees of freedom of the visual world by combining this model with a sample-
based approach.

An important aspect of model-based approaches is, of course, that algorithms
are needed that can identify the parameters of the model. At this point powerful
approaches exist for structure and motion computation, but a lot remains to
be done to deal with all possible types of scene. Although computer graphics
can describe complex lighting, (inter)reflections and transparency, not much has
been achieved in terms of extracting these properties for general scenes from
images. Another important area of future developments consists of being able to
describe dynamic scenes from video images.

3 Sing Bing Kang

There are many representations that people have devised for visualization pur-
poses. One can categorize each method based on the degree to which it is image-
based or geometry-based. It is common knowledge that geometry is a compact
representation. However, you have a better chance of providing more photoreal-
istic visualization with image-based methods.

At one end of the spectrum of representations, you have lightfield rendering.
At the other end, you have texture-mapped 3D modeling. In between them you
have the lumigraph, sprites, and so on. For all these models, you have different
dominant methods for rendering, with the conventional graphics pipeline for
3D models, warping for sprites, and interpolation for lumigraph and lightfield
rendering.

One should note that there are different incarnations of 3D modeling (see
Figure 2, Kang et al [2]). Most people use a single global geometry with a single
texture, while others use a single geometry with view-dependent textures, the
most famous example being Facade. However, not many people have looked at
the issue of view-dependency in geometry in conjunction with texture view-
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Fig. 2. Continuum of 3D modeling representations

dependence. I find Rademacher’s work [4] to be particularly interesting. That
work is on view-dependent geometry in the context of 3D cartooning. It showed
that when you are presented with inconsistent geometries at different views, you
can actually warp between these geometries and still provide a believable change
in object orientation.

Perhaps we should worry more about the fidelity of view synthesis than we
should about the fidelity of the 3D reconstruction itself. It is common knowledge
that stereo has problems with complex lighting effects such as specularities and
varying levels of opacity. Why not just compute local geometries (inaccurate as
they may be) and interpolate between them in order to generate photorealistic
views? After all, each view-dependent geometry is presumably locally photocon-
sistent.

Unfortunately, at this point, I have more questions than answers in this area.
Hopefully, by expressing them, we will generate some kind of discussion. For
example, how would you determine the number of view-dependent geometries
you should use for a scene? When would you use view-dependent geometries
as opposed to the more traditional image-based representations? How would we
interpolate between geometries of views? The issues that has to be considered
include compactness of representation, photorealism, and rendering speed. Per-
haps a mixture of image-based and geometry-based rendering is needed in future
rendering architectures.

4 Gregory Slabaugh

A nice framework for thinking about image-based rendering is that of sampling
the plenoptic function. Basically we get a set of samples of the plenoptic function
and then the goal is to infer new samples either by interpolation or extrapola-
tion of those samples. I also have more questions than answers and one question
that you might ask is: what visual scene representation is appropriate or ideal
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for sampling the plenoptic function? Also you can ask if there is a sampling
theorem, analogous to the Shannon sampling theorem in signal processing, that
states if we sample our scene properly we can reconstruct continuous represen-
tations. Typically assumptions are made in order to approach this in a tractable
fashion. Often people will assume static or Lambertian scenes. Interesting topics
for future work would be trying to represent more dimensions of the plenoptic
function. With 3D representations there is often a trade off between geometric
complexity and applicability. You can have a low level of primitives like points or
voxels that can be applied to a wide variety of scenes. One could have higher level
objects like polyhedra as was done in Paul Debevec’s work and as you go higher
in complexity of primitives you can get better reconstructions. There might be
some synergy between different representations. In our generalized voxel col-
oring approach we combined layered depth images with voxel coloring and we
found that by combining these two ideas together we could come up with some
interesting results.

5 Kurt Cornelis

As you have seen, there are different kinds of visual representations of scenes. On
one end the image-based and on the other the geometry-based. I think, but I’m
strictly speaking from my domain and I don’t want to be narrowminded, that
geometry-based modeling is more important when it comes to interacting with
the visualized scene in a realistic way. Although some good 3D reconstruction
programs already exist, all too often the final picture is made good just by
covering up all the geometry flaws with texture. The texture covers the geometric
inaccuracies. However, lighting and collision detection algorithms depend more
on the geometry of the scene than they do on the texture of the scene. So I think
that in the future we have to keep looking for methods that more accurately
reconstruct geometry from images as this will benefit the real-life appearance of
our interactions with these reconstructions.

6 Paul Debevec

I think I will talk about a number of things that we have been hearing today. One
of the interesting features of the “going through the forest” project that I showed
earlier is the discussion we had about using semantic versus non-semantic models,
which means if it is completely modeled by data or if there is some underlying
model that you can represent in a relatively compact text file. We were excited
about the fact that we were taking these images of the forest and representing
them as a whole bunch of stereo pairs of images. We got a lot of benefit from
this because there wasn’t any integration of geometry between various stereo
pairs. You saw that once you get too far away from a particular stereo pair its
information is essentially worthless. So as a result by using just local geometry,
as Sing Bing Kang was saying, for generating these reconstructions we got better
results than we would have if we had tried to integrate all these things together.
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The downside is that we had more data and less freedom to extrapolate from
the points as far as possible.

As you are moving around the “Peterhouse” facade, we had a different depth
map for each of the images that was taken and then we did view-dependent
texture mapping onto view-dependent geometry. That increased the accuracy of
our results given that there were errors in every single one of those depth maps.

I went to work with polygonal models, actual surfaces on which you can map
images. That seemed to make a lot of sense since when you have a structure
on which you can map lots of different views, you can have the views much
further apart. I don’t think we could have created the results of Campus without
including some geometry. But obviously there are benefits to both approaches
depending on the context.

I think we need to get away from just having these textured mapped models.
Texture mapping is just a terribly confused concept. In one way it is used to
determine spatially invariant radiance of a surface. The other way is to represent
spatially varying albedo. These are 2 different things: one is the product of light
and reflectance, the other one is just reflectance. Part of the confusion comes
from the fact that our brain is looking at light and interpreting it as reflectance.
We are always seeing things in an unlit way to our minds eye and so we get
sometimes confused whether things are lit or not. That means we have to get
these reflectance parameters and we have been doing initial research in that
direction.

The question then is if we are going to stick to geometry for our scenes.
Geometry is a bit of a sketchy notion itself. One thing that we have been looking
at recently is human faces and human heads to make virtual actors. What is the
geometry of hair? There is also skin. The reflectance from skin is not right on
the surface of the skin. Most of the reflectance models work right at the surface.
All of the computer renderings of people with skin looked very plastic. But there
is some subsurface scattering going on in skin. There is really good work on
this a while ago by Wolfgang Kreiter who started to look into these effects.
Unless you model it, you don’t get good skin reflectance. Also there is no way
to scan hair, there is no device with which you can get down to that resolution.
So we need other ways for representing lots of objects. Or for instance with
other cultural objects like grass skirts, just using geometry and spatially varying
surface reflectance properties just ain’t going to cut it.

Even if you are able to unlight the scene, that means you have to render it
with a global illumination method in order to get a realistic rendering which is
a difficult thing as well.

What we have been looking at recently is directly capturing reflectance fields
of objects, which are completely non-semantic ways of capturing how an object
interacts with light. You have your object, you light it from all possible directions
and get a database. You can then render the object for any lighting and from any
direction which is a six dimensional function. If you really want to consider an
arbitrary incident lightfield with parallax, it becomes an 8 dimensional function
which we call a reflectance field. I can show a video of a person from a static
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viewpoint. We light a persons face from all different directions as quickly as
possible using a spiraling light source on a 2-axis mechanism. In the course
of a minute we get 2000 light directions. Suppose you want to illuminate the
person with the illumination we extracted using our light-probe technique. You
basically take these measurements of incident illumination, resample them to
the granularity of the data set, modulate the two by each other and add all of
the images together. So we just use image-based techniques to render the person
under arbitrary illuminations like in Saint Peter’s Basilica or in the forest. This
is illustrated in Figure 3

Fig. 3. Lightstage (left) and illumination modulated reflectance field (right).

That is a scene representation which allows you to illuminate a person quite
efficiently. It doesn’t require geometry of hair, or reflectance modeling of skin
nor does it need global illumination algorithms. One question that arises when
you wish to acquire a large scale environment with a technique like this is how
to densely position light sources in 2D or 3D. I don’t know about this yet.

Discussion

Jean Ponce, University of Illinois at Urbana-Champaign: I think
there is a slight confusion. The lightfield is a geometric concept as well. I
don’t think you have to move away from geometry.
Paul Debevec: By geometry I mean surfaces, shapes. A lightfield doesn’t
assume shape. But it is a geometric concept because there are x,y,z-axes and
things like that.
Kyros Kutulakos, University of Rochester (comment): I would like
to give a comment on that. With a lightfield you cannot avoid the real
problems, e.g. unless you have a good identification of shape, you need a
huge amount of samples of the lightfield in order to create new photo-realistic
pictures. So I’m not sure if you can clearly separate all these visual scene
representations and choose one or the other. I think we’re coming back to
the same issue which is that while for years they are claiming that shape is
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not really required, in realistic situations we might have to start reasoning
about shape again because it would help us with some practical issues.
Paul Debevec: That is exactly what saved us with ‘Facade’. We were doing
view-dependent texture mapping, which is a sparsely sampled lightfield. The
only reason why it works with such sparsely sampled views is that we are
assuming we have geometry. So that point is not lost. The question is if you
are going to use the shape information in an explicit way. In a way that
when you generate the renderings we can actually sense that that shape
information is there. Or are you going to use the shape information to control
the number of images you need to begin with or to do compression of the
lightfield.
Andrew Fitzgibbon, University of Oxford: Let’s look at what happens:
you take say 100 images of the world to acquire some information. You then
have a dataset and what you want to do is to exercise some degrees of freedom
of that dataset. The one that we commonly exercise is camera position: we
move the camera to different viewpoints. So the lightfield, which represents
the world in terms of the camera viewpoints, allows you to index from that.
So it is an ideal representation if your task is to change viewpoint.
But if you want to do something that interacts with the shape of the world,
like putting an object on the table and then replaying the video, you do begin
to require some representation of what the table was or what the depth was
at that point in the images.
Marc Pollefeys: The first thing to do to tackle a problem is to acquire a
huge amount of data and then you need some way to recombine the data
to acquire the results you want. That’s basically the lumigraph and plenop-
tic approach, and these are the simplest approaches in general. Then if you
wanted to do more, you would have to recover the structure that is in the
data. Like geometry, it is a structure that is present in the images. But
the structure you find will never perfectly cover all the aspects of the phe-
nomenon you want to describe. We will develop methods and insights to get
to these structures which are intrinsically present within the data. This will
allow us to do more things with the data than we can presently. We can
extrapolate views when we have geometry.
Paul Debevec: Just to expand on that. Being able to extrapolate the
plenoptic function is one thing, which is great because you then can fly
around in the scene. Being able to delight the scene is another thing and we
are not there yet. That means there will be many exciting results that we
will be able to get as we become more able to do that with more and more
complex scenes. But then we want to do more, like moving objects around
in the scene. There is so much more to objects, like how much they weigh,
how they feel when you hold them, what they smell like. As soon as we have
systems that can display these things, we are becoming interested in these.
So maybe we should start to think about a couple of things right now.
Hans-Helmut Nagel, Universität Karlsruhe: I wonder about the fol-
lowing question. The problem seems to be that you can completely make
explicit many different properties in addition to the geometry and the re-
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flection field for each point. But then the problem seems to be to determine
the particular applications for which it may be more useful to keep some in-
formation implicit, and discover what does need to be explicit. The tradeoff
is not yet clear to me. That is part of my question. Can we clearly state the
conditions or tasks in which it is preferable that the data are implicit rather
than making the data explicit and being able to interact with it?
The other point which came to me is that the topic of this discussion seems
to be retrieval of the structure of the environment. I wonder to what extent
the problem will shift again once you concentrate on people acting in that
environment. Because then the attention of the viewer will be more on those
people rather than on whether the environment is truly realistic. So it may
be that the topic of this workshop will shift within the next decade. Studying
the emphasis between acting people and how well they have to be represented
versus how well we have to model the environment for a particular activity.
Sing Bing Kang: I would like to address your first question. I think that
the representation should be a function of how complicated the object is. Say,
for example, you want to model the interior of this theater, including this
flat wall. I think it would be extremely wasteful if you used a purely image-
based representation to do that when you can actually represent it by a
simple planar surface, possibly with view-dependent textures. On the other
hand, suppose you also have a very complicated object (such as a plant)
whose geometry cannot be extracted accurately using stereo methods. It
is probably best that you represent it using an image-based representation
instead. As such, you can imagine an optimal rendering system being one
that is capable of both model-based and image-based rendering, in order to
take advantage of the merits of both representations.
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Abstract. This paper presents a novel method for automatically recov-
ering dense surface patches using large sets (1000’s) of calibrated images
taken from arbitrary positions within the scene. Physical instruments,
such as Global Positioning System (GPS), inertial sensors, and incli-
nometers, are used to estimate the position and orientation of each image.
Some of the most important characteristics of our approach are that it:
1) uses and refines noisy calibration estimates; 2) compensates for large
variations in illumination; 3) tolerates significant soft occlusion (e.g. tree
branches); and 4) associates, at a fundamental level, an estimated nor-
mal (eliminating the frontal-planar assumption) and texture with each
surface patch.

1 Introduction

The problem of recovering three-dimensional information from a set of pho-
tographs or images is essentially the correspondence problem: Given a point in
one image, find the corresponding point in each of the other images. Typically,
photogrammetric approaches (Section 1.1) require manual identification of cor-
respondences, while computer vision approaches (Section 1.2) rely on automatic
identification of correspondences. If the images are from nearby positions and
similar orientations (short baseline), they often vary only slightly, simplifying
the identification of correspondences. Once sufficient correspondences have been
identified, solving for the depth is simply a matter of geometry.

1.1 Photogrammetry

A number of the recent interactive modeling systems are based upon photogram-
metry. Research projects such as RADIUS [2] and commercial systems such as
FotoG are commonly used to extract three-dimensional models from images.
Good results have been achieved with these systems, however the requirement
? This paper describes research done at the Artificial Intelligence Laboratory of the
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for human input limits the size and complexity of the recovered model. One
approach to reducing the amount of human input is to exploit geometric con-
straints. The geometric structure typical of urban environments can be used to
constrain the modeling process such as Becker and Bove [1], Shum et al.[14],
and Debevec et al. [7]. In spite of this reduction, each image must be processed
individually by a human to produce a three-dimensional model, making it diffi-
cult to extend these systems to large sets of images. The major strength of these
systems is the textured three-dimensional model produced.

1.2 Computer Vision

One approach to automatically solving the correspondence problem is to use
multiple images such as Collins [3] and Seitz and Dyer [13] (neither of these
approaches is suitable for reconstructions using images acquired from within the
scene) or Kutulakos and Seitz [9,8] (which is not well suited to images acquired
in outdoor urban environments).

1.3 Discussion

Photogrammetric methods produce high quality models, but require human in-
put. Computer vision techniques function automatically, but generally do not
produce usable models, operate on small sets of images and frequently are frag-
ile with respect to occlusion and changes in illumination 1. The work presented
here draws from both photogrammetry and computer vision. Like photogram-
metric methods we produce high quality textured models and like computer
vision techniques our method is fully automatic.

Our approach is valid for arbitrary camera positions within the scene and
is capable of analyzing very large sets of images. Our focus is recovering built
geometry (architectural facades) in an urban environment. However, the algo-
rithms presented are generally applicable to objects that can be modeled by
small planar patches. Surface patches (geometry and texture) or surfels are re-
covered directly from the image data. In most cases, three-dimensional position
and orientation can be recovered using purely local information, avoiding the
computational costs of global constraints. Some of the significant characteristics
of this approach are:

– Large sets of images contain both long and short baseline images and exhibit
the benefits of both (accuracy and ease of matching). It also makes our
method robust to sensor noise and occlusion, and provides the information
content required to construct complex models.

– Each image is calibrated - its position and orientation in a single global
coordinate system is estimated. The use of a global coordinate system allows
data to be easily merged and facilitates geometric constraints. The camera’s
internal parameters are also known.

1 For a more complete discussion of related work see [10].
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– The fundamental unit is a textured surface patch and matching is done in
three-dimensional space. This eliminates the need for the frontal-planar as-
sumption made by many computer vision techniques and provides robustness
to soft occlusion (e.g. tree branches). Also, the surface patches are immedi-
ately useful as a rough model and readily lend themselves to aggregation to
form more refined models. The textured surface patch or surface element is
referred to as a surfel. This definition differs from Szeliski’s [15] in that it
refers to a finite sized patch which includes both geometry and texture.

– The algorithm tolerates significant noise in the calibration estimates and
produces updates to those estimates.

– The algorithm corrects for changes in illumination. This allows raw image
properties (e.g. pixel values) to be used, avoiding the errors and ambiguities
associated with higher level constructs such as edges or corners.

– The algorithm scales well. The initial stage is completely local and scales
linearly with the number of images. Subsequent stages are global in nature,
exploit geometric constraints, and scale quadratically with the complexity
of the underlying scene 2.

Not all of these characteristics are unique, but their combination produces a
novel method of automatically recovering three-dimensional geometry and tex-
ture from large sets of images.

1.4 City Scanning Project

The work presented in this paper is part of the MIT City Scanning project whose
primary focus is the Automatic Population of Geospatial Databases (APGD).
A self contained image acquisition platform called Argus is used to acquire cali-
brated images [6]. At each location or node images are acquired in a hemispheri-
cal tiling. The position and orientation estimates obtained during the acquisition
phase are good, but contain a significant amount of error. The estimates are re-
fined using techniques described in [5,4]. For a more complete description of the
project see [16,17].

1.5 Overview

Figure 1 shows an overview of the reconstruction pipeline described in this paper.
The calibrated imagery described above serves as input to the pipeline. The left
hand column shows the major steps of our approach; the right hand side shows
example output at various stages. The output of the pipeline is a textured three-
dimensional model. Our approach can be generally characterized as hypothesize
and test. We hypothesize a surfel and then test whether it is consistent with
the data. Section 2 describes the dataset used for this paper. Section 3 briefly
reviews our approach. Section 4 introduces several techniques to remove false
2 This is the worst case complexity. With spatial hashing the expected complexity is

linear in the number of reconstructed surfels.
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positives and fill in the missing parts. Finally we discuss fitting simple models
and extracting textures. We present the results of applying our method to a
large dataset.

2 The Dataset

A Kodak DCS 420 digital camera mounted on an instrumented platform was
used to acquire a set of calibrated images in and around Technology Square [6].
Nearly 4000 images were collected from 81 node points. Other than avoiding
inclement weather and darkness, no restrictions were placed on the day and
time of, or weather conditions during, acquisition. The location of each node is
shown in figure 2. At each node, the camera was rotated about the focal point
collecting images in a hemispherical mosaic. Most nodes are tiled with 47 images.
The raw images are 1524×1012 pixels and cover a field of view of 41◦×28◦. Each
node contains approximately 70 million pixels. After acquisition, the images are
reduced to quarter resolution (381× 253 pixels) and mosaiced [5,4]. Equal area
projections of the spherical mosaic from two nodes are shown in Figure 3. The
node on the left was acquired on an overcast day and has a distinct reddish tint.
The one on the right was acquired on a bright clear day. Significant shadows are
present in the right image whereas the left has fairly uniform lighting. Following
mosaicing, the estimated camera calibrations are refined.

Fig. 2. Node locations. Fig. 3. Example nodes.
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After refinement, the calibration data is good, but not perfect. The pose
estimates are within about 1◦ and 1 meter of the actual values. These errors
produce an offset between corresponding points in different images. A 1◦ pose
error will displace a feature by over 8 pixels. Our calibration estimates are in an
absolute coordinate frame which allows us to integrate images regardless of when
or from what source they were collected. This greatly increases the quantity and
quality of available data, but because of variations in illumination condition also
complicates the analysis.

Fig. 4. Reprojection onto surfel
1 coincident with actual surface.

Fig. 5. Source images for selected regions of surfel 1.

Figures 4 and 6 show several images from our dataset reprojected (using
the estimated camera calibration) onto a surfel which is coincident with an ac-
tual surface. The location, orientation, and size of the surfels used are shown
in Table 1. Surfel 1 was used to generate the collection of images in Figure 4
and surfel 2 those in Figure 6. If the camera calibration estimates were perfect
and the illumination was constant, the regions in each figure should (ignoring
errors introduced during image formation and resampling) be identical. The mis-
alignment present in both sets is the result of error in the calibration estimates.
Figure 4 is representative of the best in the dataset. A large number of the source
images have high contrast and none of the regions are occluded. The third row
has a distinct reddish tint. The four images in the center of the last row were
collected under direct sunlight. And, the last two images were taken near dusk.
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Fig. 6. Reprojection onto surfel
2 coincident with actual surface.

Fig. 7. Source images for selected regions of surfel 2.

Figure 6 is more typical of the dataset. It is lower in contrast and some of the
regions are partially occluded by trees. Figures 5 and 7 show source images with
the reprojected area marked by a circle for several of the regions shown in Fig-
ures 4 and 6. In the worst cases all views of a surfel are similar to the upper left
image of Figure 7.

3 Images to Surfels

Ideally, if a hypothesized surfel is coincident with an actual surface, reprojecting
images onto the surfel should produce a set of regions which are highly correlated.
On the other hand, if the surfel is not coincident with a surface, the subimages
should not be correlated. This is the basic idea behind our approach [11]. As
shown in Figures 4 and 6, noisy data is not quite this simple and we must
extend our algorithm to handle camera calibration error, significant variation in
illumination condition, and image noise (e.g. soft occlusion from tree branches)
[12]. To compensate for camera calibration error we allow the source images to be
shifted in the image plane prior to reprojection. We use optimization techniques
to find the best alignment and the maximum shift is a function of the bound on
calibration error. Illumination condition is normalized using a linear correction
for each color channel. Finally, noisy pixels in the reprojection may individually
be rejected as outliers. Figures 8 and 9 show the regions from Figures 4 and 6
after compensating for camera calibration error and illumination condition.
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Fig. 8. Aligned and corrected
regions for surfel 1.

Fig. 9. Aligned and corrected
regions for surfel 2.

Our extensions to handle camera calibration error, significant variation in
illumination condition, and image noise add additional degrees of freedom to the
problem making over-fitting a concern. Section 4 introduces several geometric
constraints to prune false positives. One beneficial side effect is that surfels can
be detected if they are simply near an actual surface. For hypothesized surfels
which are within ±30 ◦ and ±100 units 3 of and actual surface, the detection rate
is nearly 100%. We use the following algorithm to detect surfels.

1. Hypothesize a surfel in world coordinates.
2. Select images from cameras which can image the surfel.
3. Reproject the selected images onto the surfel.
4. Select one of the reprojected regions as a key region to match the others against.
5. For each region:

a) Determine the shift which best aligns the region with the key region.
b) Estimate color correction which produces the best match with the key region.
c) Calculate best match with the key region.

6. Evaluate match set:
– If good enough ⇒ done.
– If not ⇒ goto 4.

Once a surface has been detected, the hypothesized position and orientation
can be updated using the geometry of the matching regions and gradient infor-
mation in the regions respectively. Detected surfels which are not false positives
3 One unit is 0.1 foot.
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typically converge to within 1 unit and a few degrees 4. The detected surfel’s
position and orientation are localized using the following algorithm.

1. Until convergence:
a) Update the surfel’s position.
b) Update surfel’s orientation.
c) Reevaluate the match set.

Fig. 10. Raw surfels.
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Fig. 11. Distance to near-
est model surface.

Figure 10 shows the results of applying the detection and localization algo-
rithms to the dataset described in Section 2. Figure 11 shows the distribution of
distances to the nearest model surfaces. Notice that while there are a significant
number of false positives, most of the detected surfels are near actual surfaces.

4 Surfels to Surfaces

The results presented in the last section are purely local and make no attempt to
reject false positives. This section explores several geometric constraints which
together eliminate nearly all false positives.

4.1 Camera Updates

The shifts introduced in the last section are unconstrained. The actual image
displacements caused by camera calibration error should be consistent with a
translation of the camera center and a rotation about it. To enforce this con-
straint we use the following algorithm:
4 For a more complete discussion of detection and localization see [10].
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1. For each camera:
a) Collect the shifts used to detect surfels.
b) Calculate a first-order camera calibration update using these shifts and a linear

least-squares solution.
c) Use the first-order solution to filter the shifts.
d) Calculate the final camera calibration update using non-linear optimization

techniques.
e) Remove matching regions with shifts that are not consistent with the final

update.
2. Prune surfels which no longer meet the match criteria (i.e. too many matching

regions have been removed because of inconsistent shifts).

This simple algorithm significantly improves the camera calibration (on aver-
age greater than a 3 fold improvement is achieved) and the remaining residuals
are consistent with the nonlinear distortion which we have not modeled or cor-
rected for. Figure 12 shows the consistent surfels remaining after applying this
algorithm to the raw reconstruction shown in Figure 10 and Figure 13 shows the
distribution of distances to the nearest model surface. A number of the consis-
tent surfels come from objects which are not in the reference model. The cluster
of surfels between the building outlines near the top center of Figure 12 is one
example. These surfels come from a nearby building.

Fig. 12. Consistent surfels.
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Fig. 13. Distribution of er-
ror for consistent surfels.

4.2 One Pixel One Surfel

Each pixel in each image should contribute to at most one surfel. Deciding which
surfel is the hard part. Detection and localization as described in the last section
do not enforce this constraint and as a result even after enforcing a consistent
calibration update there are many image regions which contribute to multiple
surfels. We eliminate them in a soft manner using the following algorithm.
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1. Score each surfel based on the number of contributing cameras and the number of
neighbors.

2. For each surfel Sa.
a) For each region which contributes to Sa.

i. For each surfel Sb with a score higher than Sa, if the region also contributes
to Sb.
A. De-weight the regions contribution to Sa.

b) If the match score is no longer sufficient, prune Sa.

A surfel Sa is considered a neighbor of Sb if 1) the distance from the center
of Sb to the plane containing Sa (the normal distance); 2) the distance from the
projection of the center of Sb onto the plane containing Sa and the center of
Sa (the tangential distance); and, 3) the angle between two orientations are all
small enough. This notion of neighbors is essentially a smoothness constraint and
is also used to group surfels. Figure 14 shows the reconstruction after pruning
multiple contributions and Figure 15 shows the distribution of distances to the
nearest model surface.

Fig. 14. Surfels after pruning multiple contributions.

0
20

40
60

80
10

0
D

is
ta

nc
e 

to
 m

od
el

 (u
ni

ts
)

02040608010
0

Points (%)

Fig. 15. Distribution of er-
ror for pruned surfels.

4.3 Grouping Surfels

The buildings we are trying to model are much larger than an individual surfel.
Therefore, a large number of surfels should be reconstructed for each actual sur-
face. Using the notion of neighbors described above, we group the reconstructed
surfels as follows:

1. For each surfel Sa.
a) For each surfel Sb already assigned a group.
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i. If Sa and Sb are neighbors.
A. If Sa has not already been assigned to a group, then assign Sa to the

group containing Sb.
B. Otherwise merge the groups containing Sa and Sb.

b) If Sa has not been assigned to a group, then create a new group and assign Sa

to it.

In practice we retain only groups which have at least a minimum number
of (typically four) surfels. All of the surfels in a group should come from the
same surface. This notion of grouping places no restriction on the underlying
surface other than smoothness (e.g. it may contain compound curves). Figure 16
shows the reconstruction after grouping and removing groups with fewer than
four surfels. Nearly all of the surfaces in the reference model have at least one
corresponding group. Figure 17 shows the distribution of distances to the nearest
model surface.

Fig. 16. Surfels after grouping.

0
20

40
60

80
10

0
D

is
ta

nc
e 

to
 m

od
el

 (u
ni

ts
)

02040608010
0

Points (%)

Fig. 17. Distribution of er-
ror for grouped surfels.

4.4 Growing Surfaces

Many of the groups shown in figure 16 do not completely cover the underlying
surface. There are several reasons why surfels corresponding to actual surfaces
might not produce a valid match set. The main one is soft occlusion from tree
branches. Another is local maxima encountered while finding the best shifts and
updating the surfel’s normal. We use the following algorithm to grow surfaces:

1. For each group.
a) Create an empty list of hypothesized surfels.
b) For each hypothesized surfel.
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i. Test using the detection and localization algorithms.
ii. If a match.

A. Add to the group.
B. Test against each surfel in each of the other groups.

If a neighbor, merge the two groups.
c) Use the next surfel in the group Sa to generate new hypotheses

and goto Step 1b.

The hypotheses in Step 1c are generated from Sa by considering the eight
nearest neighbors in the plane containing Sa. The shifts and illumination cor-
rections associated with Sa are used as initial values for each hypothesis in
Step 1(b)i. Figure 18 shows the reconstruction after growing. After growing, the
coverage of each surface is nearly complete. Figure 19 shows the distribution of
distances to the nearest model surface.

4.5 Extracting Models and Textures

So far, the only assumption we have made about the structure of the world is
that locally it can be approximated by a plane. All of the buildings imaged in
our dataset are composed of planar faces, therefore we simply fit planes to the
groups identified in the previous section. In this case, a face is equivalent to
a large surfel. Figure 20 shows the reconstructed faces. A total of 15 surfaces
were recovered. Figure 21 shows the distribution of distances to the nearest
model surface. As noted previously, many surfels come from structures not in
the reference model. Three of the reconstructed surfaces fall into this category,
hence Figure 21 has a maximum of 80.

Using the illumination corrections calculated during detection and localiza-
tion we can transform the images which contribute to a face into a common
color space. To obtain the texture associated with each face, we simply reproject
the color corrected images and average the results. Figure 22 shows two views
of the reconstructed textures. Notice that the rows of window in adjacent faces
are properly aligned. This occurs even though no constraints between faces are
imposed.

4.6 Discussion

This section uses several simple geometric constraints to remove virtually all
false positives from the purely local reconstruction described in Section 3. After
imposing consistent calibration updates, removing multiple contributions and
grouping, the remaining surfels are excellent seeds for growing surfaces. Of the 16
surfaces in the reference model, 12 were recovered. All of the remaining surfaces
are severely occluded by trees. Nearly all of the images are similar to the upper
left-hand image of Figures 6 and 7. In spite of this several surfels were recovered
on two of these surfaces, however they did not survive the grouping process. In
addition to being severely occluded by trees, the other two surfaces have very
little texture and one of them suffers from a lack of data. Three surfaces from
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Fig. 18. Surfels after growing.
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Fig. 19. Distribution of er-
ror for grown surfels.

Fig. 20. Raw model surfaces.
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Fig. 22. Textured model surfaces.
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adjacent buildings not contained in the model were also recovered. The face near
the top center of the upper image in Figure 22 is from the Parson’s lab. The
surfaces on the left of the upper and the right of the lower image is from Draper
lab.

5 Conclusions

This paper presents a novel method for automatically recovering dense surfels us-
ing large sets (1000’s) of calibrated images taken from arbitrary positions within
the scene. Physical instruments, such as Global Positioning System (GPS), iner-
tial sensors, and inclinometers, are used to estimate the position and orientation
of each image. Long baseline images improve the accuracy; short baselines and
the large number of images simplify the correspondence problem. The initial
stage of the algorithm is completely local enabling parallelization and scales
linearly with the number of images. Subsequent stages are global in nature, ex-
ploit geometric constraints, and scale quadratically with the complexity of the
underlying scene 5.

We describe techniques for:

– Detecting and localizing surfels.
– Refining camera calibration estimates and rejecting false positive surfels.
– Grouping surfels into surfaces.
– Growing surfaces along a two-dimensional manifold.
– Producing high quality, textured three-dimensional models from surfaces.

Some of our approach’s most important characteristics are:

– It is fully automatic.
– It uses and refines noisy calibration estimates.
– It compensates for large variations in illumination.
– It matches image data directly in three-dimensional space.
– It tolerates significant soft occlusion (e.g. tree branches).
– It associates, at a fundamental level, an estimated normal (eliminating the

frontal-planar assumption) and texture with each surfel.

Our algorithms also exploit several geometric constraints inherent in three-
dimensional environments and scales well to large sets of images. We believe that
these characteristics will be important for systems which automatically recover
large-scale high-quality three-dimensional models. A set of about 4000 calibrated
images was used to test our algorithms. The results presented demonstrate that
they can be used for three-dimensional reconstruction. To our knowledge, the
City Scanning project (e.g. [4] and the work presented in this paper) is the first
to produce high-quality textured models from such large image sets. The image
sets used are nearly two orders of magnitude larger than the largest sets used by
other approaches. The approach presented in this paper, recovering dense sur-
fels by matching raw image data directly in three-dimensional space, is unique
among the City Scanning approaches.
5 For a complete discussion of complexity and future work see [10].
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Discussion

1. Stephan Heuel, Bonn University: I have a question about the grouping
stage and the rejection stage: If you consider not only orthogonal walls but
walls which have different angles, like 40 or 30 degrees, what happens to the
rejection and the grouping ?
J. P. Mellor: Outliers are pruned at several stages. The angle between two
walls has no direct effect on the pruning. For example, most of the outliers
are rejected during the camera calibration update. This is accomplished by
imposing a consistent camera calibration and makes no assumptions about
the structure of the world. Grouping, on the other hand, is essentially a
smoothness constraint. We consider surfels which are spatially close to each
other and have orientations within about 20 degrees to come from the same
surface. The only other constraint imposed by grouping is that valid surfaces
must contain at least four surfels. The smoothness constraint of the grouping
stage is actually imposed during model fitting. In this stage we simply fit
planes to the groups. Clearly, if two walls are within about 20 degrees this
simplistic modeling will fail. More sophisticated modeling may help and I
should point out that the raw surfels (after grouping) could be used as a
rough model.

2. Andrew Davison, University of Oxford: How do you actually determine
the orientation of your patches?
J. P. Mellor: We took the brute force approach—we simply voxelize the
area of interest and test them all. Our surfel detection technique can detect
and localize surfaces that are within about 100 units (10 feet) and 30 de-
grees of the test point. So we sample every 100 units and 45 degrees. There
certainly are smarter ways of generating test points and this is an area we
are exploring.
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Abstract. This paper describes an approach to capturing the appear-
ance and structure of immersive environments based on the video im-
agery obtained with an omnidirectional camera system. The scheme pro-
ceeds by recovering the 3D positions of a set of point and line features in
the world from image correspondences in a small set of key frames in the
image sequence. Once the locations of these features have been recovered
the position of the camera during every frame in the sequence can be de-
termined by using these recovered features as fiducials and estimating
camera pose based on the location of corresponding image features in
each frame. The end result of the procedure is an omnidirectional video
sequence where every frame is augmented with its pose with respect to an
absolute reference frame and a 3D model of the environment composed
of point and line features in the scene.
By augmenting the video clip with pose information we provide the
viewer with the ability to navigate the image sequence in new and in-
teresting ways. More specifically the user can use the pose information
to travel through the video sequence with a trajectory different from the
one taken by the original camera operator. This freedom presents the
end user with an opportunity to immerse themselves within a remote
environment.

1 Introduction

This paper describes an approach to capturing the appearance and structure of
immersive environments based on the video imagery obtained with an omnidi-
rectional camera system such as the one proposed by Nayar [15]. The scheme
proceeds by recovering the 3D positions of a set of point and line features in
the world from image correspondences in a small set of key frames in the image
sequence. Once the locations of these features have been recovered the position
of the camera during every frame in the sequence can be determined by using

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 187–203, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



188 C.J. Taylor

these recovered features as fiducials and estimating camera pose based on the
location of corresponding image features in each frame. The end result of the
procedure is an omnidirectional video sequence where every frame is augmented
with its pose with respect to an absolute reference frame and a 3D model of the
environment composed of point and line features in the scene.

One area of application for the proposed reconstruction techniques is in the
field of virtual tourism. By augmenting the video clip with pose information
we provide the viewer with the ability to navigate the image sequence in new
and interesting ways. More specifically the user can use the pose information to
travel through the video sequence with a trajectory different from the one taken
by the original camera operator. This freedom presents the end user with an
opportunity to immerse themselves within a remote environment and to control
what they see.

Another interesting application of the proposed technique is in the field of
robotics since it allows us to construct 3D models of remote environments based
on the video imagery acquired by a mobile robot. For example, the model of an
indoor environment shown in Figure 5 was constructed from the video imagery
acquired by the mobile robot shown in Figure 14c as it roamed through the
scene.

Such a model would allow the remote operator to visualize the robots op-
erating environment. It could also be used as the basis for an advanced human
robot interface where the robot could be tasked by pointing to a location on the
map and instructing it to move to that position. The robot would be able to
automatically plan and execute a collision free path to the destination based on
the information contained in the map.

The rest of this paper is arranged as follows Section 2 describes the pro-
cess whereby the 3D locations of the model features and the locations of the
cameras are estimated from image measurements. Results obtained by applying
these techniques to actual video sequences are presented in Section 3. Section 4
discusses the relationship between this research and previously published work.
Section 5 briefly describes future directions of this research and section 6 presents
some of the conclusions that have been drawn so far.

2 Reconstruction

This section describes how the 3D structure of the scene and the locations of
the camera positions are recovered from image correspondences in the video
sequence. The basic approach is similar in spirit to the reconstruction schemes
described in [20] and [4]. The reconstruction problem is posed as an optimization
problem where the goal is to minimize an objective function which indicates
the discrepancy between the predicted image features and the observed image
features as a function of the model parameters and the camera locations.

In order to carry out this procedure it is important to understand the rela-
tionship between the locations of features in the world and the coordinates of the
corresponding image features in the omnidirectional imagery. The catadioptric
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camera system proposed by Nayar [15] consists of a parabolic mirror imaged by
an orthographic lens. With this imaging model there is an effective single point
of projection located at the focus of the parabola as shown in Figure 1.

(u, v)

υ

x

y

z

Fig. 1. The relationship between a point feature in the omnidirectional image and the
ray between the center of projection and the imaged point.

Given a point with coordinates (u, v) in the omnidirectional image we can
construct a vector, υ, which is aligned with the ray connecting the imaged point
and the center of projection of the camera system.

υ =


 sx(u − cx)

sy(v − cy)
(sx(u − cx))2 + (sy(v − cy))2 − 1


 (1)

This vector is expressed in terms of a coordinate frame of reference with its
origin at the center of projection and with the z-axis aligned with the optical
axis of the device as shown in Figure 1.

The calibration parameters, sx, sy, cx and cy associated with the imagery
can be obtained in a separate calibration procedure [5]. It is assumed that these
calibration parameters remain constant throughout the video sequence.

Note that since the catadioptric camera system has a single point of pro-
jection it is possible to resample the resulting imagery to produce “normal”
perspective with arbitrary viewing directions [15]. The current system exploits
this capability by providing a mechanism which allows the user to create a virtual
viewpoint which she can pan and tilt interactively.

The current implementation of the reconstruction system allows the user to
model two types of features: point features and straight lines aligned with one
of the vertical or horizontal axes of the global frame of reference. These types
of features were chosen because they are particularly prevalent and salient in
man-made immersive environments but other types of features, such as lines at
arbitrary orientations, could easily be included. The locations of point features
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can be represented in the usual manner by three vectors (Xi, Yi, Zi) 1 while the
locations of the straight lines can be denoted with only two parameters. For
example, the location of a vertical line can be specified by parameterizing the
location of its intercept with the xy-plane (Xi, Yi) since the vertical axis corre-
sponds to the z-axis of the global coordinate frame. Note that for the purposes
of reconstruction the lines are considered to have infinite length so no attempt
is made to represent their endpoints.

The position and orientation of the camera with respect to the world frame
of reference during frame j of the sequence is captured by two parameters, a
rotation Rj ∈ SO(3) and a translation Tj ∈ R

3. This means that given the
coordinates of a point in the global coordinate frame, Piw ∈ R

3 we can compute
its coordinates with respect to camera frame j, Pij from the following expression.

Pij = Rj(Piw − Tj) (2)

The reconstruction program takes as input a set of correspondences between
features in the omnidirectional imagery and features in the model. For corre-
spondences between point features in the image and point features in the model
we can construct an expression which measures the discrepancy between the
predicted projection of the point and the vector obtained from the image mea-
surement, υij , where Pij is computed from equation 2.

‖(υij × Pij)‖2/(‖Pij‖2‖υij‖2) (3)

This expression yields a result equivalent to the square of the sine of the
angle between the two vectors, υij and Pij shown in Figure 2.

For correspondences between point features in the image and line features in
the model we consider the plane containing the line and the center of projection
of the image. The normal to this plane, mij can be computed from the following
expression.

mij = Rj(vi × (di − Tj)) (4)

Where the vector vi denotes the direction of the line in space and the vector
di denotes an arbitrary point on the line. As an example, for vertical lines the
vector vi will be aligned with the z axis (0, 0, 1)T and the vector di will have
the form (Xi, Yi, 0)T .

The following expression measures the extent to which the vector obtained
from the point feature in the omnidirectional imagery, υij , deviates from the
plane defined by the vector mij .

(mT υij)2/(‖mij‖2‖υij‖2) (5)
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υij
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Pij

Fig. 2. Given a correspondence between a point feature in the omnidirectional image
and a point feature in the model we can construct an objective function by considering
the disparity between the predicted ray between the camera center and the point
feature, Pij , and the vector υij computed from the image measurement.

υ

x

y

z mij

Rj(di - Tj)

Rjvi

Fig. 3. Given a correspondence between a point feature in the omnidirectional image
and a line feature in the model we can construct an objective function by considering
the disparity between the predicted normal vector to the plane containing the center
of projection and the model line, mij , and the vector, υij , computed from the image
measurement.

A global objective function is constructed by considering all of the correspon-
dences in the data set and summing the resulting expressions together. Estimates
for the structure of the scene and the locations of the cameras are obtained by
minimizing this objective function with respect to the unknown parameters,
Rj , Tj , Xi, Yi and Zi. This minimization is carried out using a variant of the
Newton-Raphson method [19,20,10].

1 the subscript i serves to remind us that these parameters describe the position of
the ith feature in the model.
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An initial estimate for the orientation of the camera frames, Rj , can be
obtained by considering the lines in the scene with known orientation such as
lines parallel to the x, y, or z axes of the environment. If υ1 and υ2 represent
the vectors corresponding to two points along the projection of a line in the
image plane then the normal to the plane between them in the cameras frame of
reference can be computed as follows n = υ1×υ2. If Rj represents the rotation of
the camera frame and v represents the direction of the line in world coordinates
then the following objective function represents the fact that the normal to the
plane should be perpendicular to the direction of the line in the coordinates of
the camera frame.

(nT Rjv)2 (6)

An objective function can be created by considering all such lines in an image
and summing these penalty terms. The obvious advantage of this expression is
that the only unknown parameter is the camera rotation Rj which means that
we can minimize the expression with respect to this parameter in isolation to
obtain an initial estimate for the camera orientation.

The current implementation of the reconstruction system also allows the
user to specify constraints that relate the features in the model. For example
the user would be able to specify that two or more features share the same z-
coordinate which would force them to lie on the same horizontal plane. This
constraint is maintained by reparameterizing the reconstruction problem such
that the z-coordinates of the points in question all refer to the same variable in
the parameter vector.

The ability to specify these relationships is particularly useful in indoor envi-
ronments since it allows the user to exploit common constraints among features
such as two features belonging to the same wall or multiple features lying on a
ground plane. These constraints reduce the number of free parameters that the
system must recover and improve the coherence of the model when the camera
moves large distances in the world.

Using the procedure outlined above we were able to reconstruct the model
shown in Figure 5 from 14 images taken from a video sequence of an indoor
scene.

The polyhedral model is constructed by manually attaching surfaces to the
reconstructed features. Texture maps for these surfaces are obtained by sampling
the original imagery.

An important practical advantage of using omnidirectional imagery in this
application is that the 3D structure can be recovered from a smaller number of
images since the features of interest are more likely to remain in view as the
camera moves from one location to another.

Once the locations of a set of model features have been reconstructed using
the image measurements obtained from a set of keyframes in the sequence, these
features can then be used as fiducials to recover the pose of the camera at other
frames in the sequence.
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a. b.

c.

Fig. 4. Two of the omnidirectional images from a set of 14 keyframes are shown in a
and b. A panoramic version of another keyframe is shown in c.

a. b.

Fig. 5. a. 3D model of the environment constructed from the data set shown in Figure
4. b. Floor plan view showing the estimated location of all the images and an overhead
view of the feature locations. The circles correspond to the recovered camera positions
while the dots and crosses correspond to vertical line and point features.

For example, if frame number 1000 and frame number 1500 were used as
keyframes in the reconstruction process then we know where a subset of the
model features appears in these frames. Correspondences between features in
the intervening images and features in the model can be obtained by applying
applying standard feature tracking algorithms to the data set. The current sys-
tem employs a variant of the Lucas and Kanade [14] algorithm to localize and
track feature points through intervening frames.

Based on these correspondences, the pose of the camera during these inter-
mediate frames can be estimated by simply minimizing the objective function
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described previously with respect to the pose parameters of the camera. The lo-
cations of the feature points are held constant during this pose estimation step.
Initial estimates for the camera pose can be obtained from the estimates for the
locations of the keyframes that were produced during the reconstruction process.

Another approach to estimating the pose of the camera during the intervening
frames is to simply interpolate the pose parameters through the frames of the
subsequence. That is, given that the camera pose in frames 1000 and 1500 is
known we could simply estimate the roll, pitch and yaw angles of the intervening
frames along with the translational position by interpolating these parameter
values linearly. This approach is most appropriate in situations where the camera
is moving with an approximately constant translational and angular velocity
between keyframes.

Once the video sequence has been fully annotated with camera pose infor-
mation the user is able index the data set spatially as well as temporally. In
the current implementation the user is able to navigate through an immersive
environment such as the office complex shown in Figure 6 in a natural manner
by panning and tilting his virtual viewpoint and moving forward and backward.
As the user changes the location of her viewpoint the system simply selects the
closest view in the omnidirectional video sequence and generates an image in
the approriate viewing direction.

The system also allows the user to generate movies by specifying a sequence
of keyframes. The system automatically creates the sequence of images that cor-
respond to a smooth camera trajectory passing through the specified positions.
This provides the user with the capability of reshooting the scene with a camera
trajectory which differs from the one that was used to capture the video initially.

3 Results

In order to illustrate what can be achieved with the proposed techniques we
present results obtained from three different immersive environments.

a. b. c.

Fig. 6. Three images taken from a video sequence obtained as the camera is moved
through the library.

Figure 6 shows three images taken from a video sequence acquired in the
Fine Arts Library at the University of Pennsylvania. This building was designed
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a. b. c.

Fig. 7. Images of the Fine Arts library at the University of Pennsylvania. The building
was designed by Frank Furness in 1891 and remains one of the most distinctive and
most photographed buildings on campus.

a. b.

Fig. 8. a. A floor plan view of the library showing the locations of the features recovered
from 9 keyframes in the video sequence.The circles correspond to the recovered camera
positions while the dots and crosses correspond to line and point features. b. Based
on these fiducials the system is able to estimate the location of the camera for all the
intervening frames.

a. b. c.

d. e. f.

Fig. 9. Views generated by the system as the user conducts a virtual tour of the
library.
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by Frank Furness in 1891 and refurbished on its centenary in 1991, images of
the interior and exterior of the building are shown in Figure 7.

The reconstruction of this environment was carried out using approximately
100 model features viewed in 9 frames of the video sequence. Figure 8a shows
a floor plan view of the resulting reconstruction. The reconstructed feature lo-
cations were then used as fiducials to recover the position of 15 other frames
in the sequence. Pose interpolation was employed to estimate the position and
orientation of the camera during intervening frames. Figure 8b shows the result-
ing estimates for the camera position during the entire sequence. The original
video sequence was 55 seconds long and consisted of 550 frames. During the se-
quence the camera traveled a distance of approximately 150 feet. Figure 9 shows
viewpoints generated by the system as the user conducts a virtual tour of this
environment.

a. b. c.

Fig. 10. Three images taken from a video sequence obtained as the camera is moved
through the GRASP laboratory.

a. b. c.

Fig. 11. Images of the GRASP laboratory at the University of Pennsylvania.

Figure 10 shows three images taken from a video sequence acquired in the
GRASP laboratory at the University of Pennsylvania; snapshots of the lab are
shown in Figure 11. In this case the video imagery was obtained in a sequence
of short segments as the camera was moved through various sections of the
laboratory. The entire video sequence was 154 seconds long and consisted of 4646
frames. The approximate dimensions of the region of the laboratory explored are
36 feet by 56 feet and the camera moved over 250 feet during the exploration.
The reconstruction of this scene was carried out using approximately 50 model
features viewed in 16 images of the sequence. The resulting model is shown
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a. b.

Fig. 12. a. A floor plan view of the laboratory showing the locations of the features
recovered from 17 keyframes in the video sequence. The circles correspond to the recov-
ered camera positions while the dots and crosses correspond to line and point features.
b. Based on these fiducials the system is able to estimate the location of the camera
for all the intervening frames. Notice that during the exploration the camera is moved
into two side rooms that are accessed from the corridor surrounding the laboratory;
these are represented by the two excursions at the bottom of this figure.

a. b. c.

d. e. f.

Fig. 13. Views generated by the system as the user conducts a virtual tour of the
library.

in Figure 12a, Figure 12b shows the result of applying pose estimation and
interpolation to the rest of the video sequence. Figure 13 shows some samples of
images created as the user explores this environment interactively. Notice that
the user can freely enter and exit various rooms and alcoves in the laboratory.

Figure 5 shows the results of applying the reconstruction procedure to 14
images acquired from a sequence taken inside an abandoned hospital building.
This figure demonstrates the capability of constructing polyhedral models from
the recovered model features.

The fact that the reconstruction process can be carried out entirely from
the video sequence simplifies the process of data collection. Figure 14c shows a
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mobile platform outfitted with an omnidirectional camera system produced by
Remote Reality inc.. This system was used to acquire the imagery that was used
to construct the model shown in Figure 5. Note that the only sensor carried by
this robot is the omnidirectional camera it does not have any odometry or range
sensors. During the data collection process the system was piloted by a remote
operator using an RC link.

The video data that was used to construct the models shown in Figures 8
and 12 was collected with a handheld omnidirectional camera system as shown in
Figure 14. In both cases the video data was captured on a Sony Digital camcorder
and transferred to a PC for processing using an IEEE 1394 Firewire link. The
images were digitized at a resolution of 720x480 at 24 bits per pixel.

a. b. c.

Fig. 14. a. The video imagery used to produce the reconstructions of the library and
the laboratory environments was acquired using a handheld omnidirectional camera
system b. The equipment used to acquire the data c. Mobile platform equipped with
an omnidirectional camera system that was used to acquire video imagery of an indoor
environment.

4 Related Work

The idea of using omnidirectional camera system for reconstructing environ-
ments from video imagery in the context of robotic applications has been ex-
plored by Yagi, Kawato, Tsuji and Ishiguro [21,8,7,9]. These authors presented
an omnidirectional camera system based on a conical mirror and described how
the measurements obtained from the video imagery acquired with their camera
system could be combined with odometry measurements from the robot plat-
form to construct maps of the robots environment. The techniques described in
this paper do not require odometry information which means that they can be
employed on simpler platforms like the one shown in Figure 14c which are not
equipped with odometers. It also simplifies the data acquisition process since we
do not have to calibrate the relationship between the camera system the robots
odometry system.

Szeliski and Shum [18] describe an interactive approach to reconstructing
scenes from panoramic imagery which is constructed by stitching together video
frames that are acquired as a camera is spun around its center of projection.
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Coorg and Teller [3] describe a system which is able to automatically extract
building models from a data set of panoramic images augmented with pose
information which they refer to as pose imagery

From the point of view of robotic applications, reconstruction techniques
based on omnidirectional imagery are more attractive than those that involve
constructing panoramas from standard video imagery since they do not involve
moving the camera and since the omnidirectional imagery can be acquired as
the robot moves through the environment.

The process of acquiring omnidirectional video imagery of an immersive en-
vironment is much simpler than the process of acquiring panoramic images. One
would not really consider constructing a sequence of tightly spaced panoramic
images of an environment because of the time required to acquire the imagery
and stitch it together. However, this is precisely the type of data contained in an
omnidirectional video sequence. By estimating the pose at every location in the
sequence the Video Plus system is able to fully exploit the range of viewpoints
represented in the image sequence.

Boult [1] describes an interesting system which allows a user to experience
remote environments by viewing video imagery acquired with an omnidirectional
camera. During playback the user can control the direction from which she views
the scene interactively. The VideoPlus system described in this paper provides
the end user with the ability to control her viewing position as well as her viewing
direction. This flexibility is made possible by the fact that the video imagery is
augmented with pose information which allows the user to navigate the sequence
in an order that is completely different from the temporal ordering of the original
sequence.

The VideoPlus system in similar in spirit to the Movie Map system described
by Lippman [13] and to the QuickTime VR system developed by Chen [2] in that
the end result of the analysis is a set of omnidirectional images annotated with
position. The user is able to navigate through the scene by jumping from one
image to another. The contribution of this work is to propose a simple and
effective way of recovering the positions of the omnidirectional views from image
measurements without having to place artificial fiducials in the environment or
requiring a separate pose estimation system.

Shum and He [16] describe an innovative approach to generating novel views
of an environment based on a set of images acquired while the camera is rotated
around a set of concentric circles. This system builds on the plenoptic sampling
ideas described by Levoy and Hanrahan [11] and Gortler, Grzeszczuk, Szeliski
and Cohen [6]. The presented approach shares the advantage of these image
based rendering techniques since the VideoPlus scheme allows you to explore
arbitrarily complex environments without having to model the geometric and
photometric properties of all of the surfaces in the scene. The rerendered images
are essentially resampled versions of the original imagery. However, the scheme
presented in this paper dispenses with the need for a specific camera trajectory
and it can be used to capture the appearance of extended environments such as
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office complexes which involve walls and other occluding features which are not
accounted for by these plenoptic sampling schemes.

5 Future Work

The scheme used to generate views of an environment during a walkthrough is
currently quite simple. Given the users desired viewpoint the system selects the
omnidirectional image that is closest to that location and generates an image
with the appropriate viewing direction. The obvious limitation of this approach
is that the viewing position is restricted to locations which were imaged in the
original video sequence.

This limitation can be removed by applying image based rendering tech-
niques. One approach to generating novel images is to resample the intensity
data from other images depending on the hypothesized structure of the scene.
The video plus system has access to the positions of all of the frames in the
sequence along with a coarse polyhedral model of the environment which could
be used to transfer pixel data from the original views to the virtual view.

Another approach to generating novel views would be to find correspondences
between salient image features in nearby omnidirectional images in the sequence
and to use these correspondences to construct a warping function which would
map pixels from the original images to the virtual viewpoint [12].

The success of any view generation technique will depend upon having a set
of images taken from a sufficiently representative set of viewpoints. A better
understanding of how to go about capturing such a data set taking into account
the structure of the scene and the viewpoints that are likely to be of most interest
is needed. The ultimate goal would be to produce a system where the user could
arbitrarily select the desired viewpoint and viewing direction so as to explore
the environment in an unconstrained manner.

The largest drawbacks to using omnidirectional video imagery is the reduced
image resolution. This effect can be mitigated by employing higher resolution
video cameras. One of the tradeoffs that is currently being explored is the pos-
sibility of acquiring higher resolution imagery at a lower frame rate. This would
allow us to produce sharper images of the scene but would either slow down the
data acquisition process or require better interpolation strategies.

6 Conclusions

This paper presents a simple approach to capturing the appearance of immersive
scenes based on an omnidirectional video sequence. The system proceeds by
combining techniques from structure from motion with ideas from image based
rendering. An interactive photogrammetric modeling scheme is used to recover
the positions of a set of salient features in the scene (points and lines) from a
small set of keyframe images. These features are then used as fiducials to estimate
the position and orientation of the omnidirectional camera at every frame in the
video clip.
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By augmenting the video sequence with pose information we provide the end
user with the capability of indexing the video sequence spatially as opposed to
temporally. This means that the user can explore the image sequence in ways
that were not envisioned when the sequence was initially collected.

The cost of augmenting the video sequence with pose information is very
slight since it only involves storing six numbers per frame. The hardware require-
ments of the proposed scheme are also quite modest since the reconstruction is
performed entirely from the image data. It does not involve a specific camera
trajectory or a separate sensor for measuring the camera position. As such, the
method is particularly appropriate for immersive man-made structures where
GPS data is often unavailable.

We envision that this system could be used to acquire representations of
immersive environments, like museums, that users could then explore interac-
tively. It might also be appropriate for acquiring immersive backgrounds for
video games or training simulators.

Future work will address the problem of generating imagery from novel view-
points and improving the resolution of the imagery generated by the system.
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Discussion

1. Marc Pollefeys, K.U.Leuven: How do you get yourself out of the video ?
C. J. Taylor: Because I choose the camera trajectory, I just don’t look at
me: I’m behind the camera.

2. Andrew Fitzgibbon, University of Oxford: When you say you couldn’t
automatically determine the camera motion, was that a problem with track-
ing 2D points?
C. J. Taylor: Yes and no. I suspect that if I bang a little harder I could
get the performance up. It works about 90 to 95 percent of the time but
it’s sometimes just not good enough. The other issue is of course occlusion.
You’re walking in and out of rooms, you’re walking around and things dis-
appear. The question is how far you want to be able to track and estimate
pose. I’d be delighted if somebody gave me a really good industrial strength
extended tracker: something that’s gonna work if I walk 20 or 30 feet.

3. Bill Triggs, INRIA Rhône-Alpes: A lot of us have worked hard on meth-
ods to calibrate perspective cameras, which turns out to be quite a delicate
problem. Have you noticed that the calibration problem for omni-directional
cameras is less severe ?
C. J. Taylor: The nice thing about omni-directional imagery is that they’re
very easy to calibrate, at least to get a rough calibration out. The trick
that Geyer and Daniilidis [1] demonstrated: to use straight lines to improve
calibration actually works pretty well. I haven’t seen significant calibration
problems, yet. Maybe if I try to do much finer, detailed work they may show
up.

4. Kenichi Kanatani, Gunma University: I am worrying about the res-
olution inhomogeneity of omni-directional lenses. Don’t you think this is a
problem?
C. J. Taylor: Yes, I’m just using essentially an off-the-shelf camera and
there is some resolution inhomogeneity. The easy fix is to increase the res-
olution of your sensor. If you have more pixels, you can do a better job
interpolating. There have been some people who have looked at changing
mirror geometry and things but for what I want to do, the central projec-
tion property is very useful and I don’t want to sacrifice that.
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Abstract. We describe a family of new imaging systems, called Argus
eyes, that consist of common video cameras arranged in some network.
The system we built consists of six cameras arranged so that they sample
different parts of the visual sphere. This system has the capability of very
accurately estimating its own 3D motion and consequently estimating
shape models from the individual videos. The reason is that inherent
ambiguities of confusion between translation and rotation disappear in
this case. We provide an algorithm and several experiments using real
outdoor or indoor images demonstrating the superiority of the new sensor
with regard to 3D motion estimation.

1 Introduction

Technological advances make it possible to arrange video cameras in some con-
figuration, connect them with a high-speed network and collect synchronized
video. Such developments open new avenues in many areas, making it possible
to address, for the first time, a variety of applications in surveillance and mon-
itoring, graphics and visualization, robotics and augmented reality. But as the
need for applications grows, there does not yet exist a clear idea on how to put
together many cameras for solving specific problems. That is, the mathematics
of multiple-view vision is not yet understood in a way that relates the configura-
tion of the camera network to the task under consideration. Existing approaches
treat almost all problems as multiple stereo problems, thus missing important
information hidden in the multiple videos. The goal of this paper is to provide
the first steps in filling the gap described above. We consider a multi-camera
network as a new eye We studied and built one such eye, consisting of cam-
eras which sample parts of the visual sphere, for the purpose of reconstructing
models of space. The motivation for this eye stems from a theoretical study ana-
lyzing the influence of the field of view on the accuracy of motion estimation and
thus in turn shape reconstruction. The exposition continues by first describing
the problems of developing models of shape using a common video camera and
pointing out inherent difficulties.

In general, when a scene is viewed from two positions, there are two concepts
of interest: (a) The 3D transformation relating the two viewpoints. This is a
? Patent pending
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rigid motion transformation, consisting of a translation and a rotation (six de-
grees of freedom). When the viewpoints are close together, this transformation
is modeled by the 3D motion of the eye (or camera). (b) The 2D transformation
relating the pixels in the two images, i.e., a transformation that given a point in
the first image maps it onto its corresponding one in the second image (that is,
these two points are the projections of the same scene point). When the view-
points are close together, this transformation amounts to a vector field denoting
the velocity of each pixel, called an image motion field. Perfect knowledge of
both transformations described above leads to perfect knowledge of models of
space, since knowing exactly how the two viewpoints and the images are related
provides the exact position of each scene point in space. Thus, a key to the basic
problem of building models of space is the recovery of the two transformations
described before and any difficulty in building such models can be traced to the
difficulty of estimating these two transformations. What are the limitations in
achieving this task?

2 Inherent Limitations

Images, for a standard pinhole camera, are formed by central projection on a
plane (Figure 1). The focal length is f and the coordinate system OXY Z is
attached to the camera, with Z being the optical axis, perpendicular to the
image plane.

Scene points R are projected onto image points r. Let the camera move in a
static environment with instantaneous translation t and instantaneous rotation
ω. The image motion field is described by the following equation:

ṙ = − 1
(R · ẑ)

(ẑ × (t × r)) +
1
f
ẑ × (r × (ω × r))

where ẑ is a unit vector in the direction of the Z axis.
There exists a veritable cornucopia of techniques for finding 3D motion from

a video sequence. Most techniques are based on minimizing the deviation from
the epipolar constraint. In the continuous case the epipolar constraint takes the
following form: (t × r) · (ṙ + ω × r) = 0 [4].

One is interested in the estimates of translation t̂ and rotation ω̂ which best
satisfy the epipolar constraint at every point r according to some criteria of
deviation. Usually the Euclidean norm is considered leading to the minimization
of function.1

Eep =
∫ ∫
image

[(
t̂ × r

) · (ṙ + ω̂ × r)
]2

dr (1)

Solving accurately for 3D motion parameters turned out to be a very difficult
problem. The main reason for this has to do with the apparent confusion between
1 Other norms (weighted epipolar deviation) have better performance but still suffer

from the rotation/translation confusion problem.
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Fig. 1. Image formation on the plane. The system moves with a rigid motion with
translational velocity t and rotational velocity ω. Scene points R project onto image
points r and the 3D velocity Ṙ of a scene point is observed in the image as image
velocity ṙ.

translation and rotation in the motion field. This is easy to understand at an
intuitive level. If we look straight ahead at a shallow scene, whether we rotate
around our vertical axis or translate parallel to the scene, the motion field at
the center of the image is very similar in the two cases. Thus, for example,
translation along the x axis is confused with rotation around the y axis. The
basic understanding of this confusion has attracted few investigators over the
years [3,4].

Our work is motivated by some recent results analyzing this confusion. In [6,
7] a geometrical statistical analysis of the problem has been conducted. On the
basis of (1) the expected value of Eep has been formulated as a five-dimensional
function of the motion parameters (two dimensions for t/|t| and three for ω).
Independent of specific estimators the topographic structure of the surface de-
fined by this function explains the behavior of 3D-motion estimation. Intuitively
speaking, it turns out that the minima of this function lie in a valley. This is
a cause for inherent instability because, in a real situation, any point on that
valley or flat area could serve as the minimum, thus introducing errors in the
computation (See Figure 2a).

In particular, the result obtained are as follows: Denote the five unknown
motion parameters as (x0, y0) (direction of translation) and (α, β, γ) (rotation).
Then, if the camera has a limited field of view, no matter how 3D motion is esti-
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mated from the motion field, the expected solution will contain errors (x0ε
, y0ε

),
(αε, βε, γε) that satisfy two constraints:

(a) The orthogonality constraint:
x0ε

y0ε

= −βε

αε

(b) The line constraint:
x0

y0
=

x0ε

y0ε

In addition, γε = 0. The result states that the solution contains errors that are
mingled and create a confusion between rotation and translation that cannot
be cleared up, with the exception of the rotation around the optical axis (γ).
The errors may be small or large, but their expected value will always satisfy
the above conditions. Although the 3D-motion estimation approaches described
above may provide answers that could be sufficient for various navigation tasks,
they cannot be used for deriving object models because the depth Z that is
computed will be distorted [2].

The proof in [6,7] is of a statistical nature. Nevertheless, we found exper-
imentally that there were valleys in the function minimized for any indoor or
outdoor sequence we worked on. Often we found the valley to be rather wide,
but in many cases it was close in position to the predicted one.

(a) (b)

Fig. 2. Schematic illustration of error function in the space of the direction of trans-
lation. (a) A valley for a planar surface with limited field of view. (b) Clearly defined
minimum for a spherical field of view.

The error function, however, changes as the field of view changes. The re-
markable discovery in [6,7] is that when the field of view becomes 360◦ the ambi-
guity disappears. This means that there are no more valleys, but a well defined
minimum, as shown in Figure 2b. This constitutes the basis of our approach.

Our interest is to develop techniques that, given video data, yield models of
the shape of the imaged scene. Since conventional video cameras have an inherent
problem, we should perhaps utilize different eyes. If, for example, we had a sensor
with a 360◦ field of view, we should be able to accurately recover 3D motion and
subsequently shape. Catadioptric sensors could provide the field of view but
they have poor resolution, making it difficult to recover shape models. Thus we
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built the Argus eye, a construction consisting of six cameras pointing outwards
(Figure 3). Clearly, only parts of the sphere are imaged. When this structure is
moved arbitrarily in space, then data from all six cameras can be used to very
accurately recover 3D motion, which can then be used in the individual videos
to recover shape. The next section shows how we calibrated the Argus eye and
the final section describes how 3D motion was estimated.

3 Calibration

In order to calibrate the Argus Eye, it is not possible to use ordinary stereo
calibration methods, because the fields of view do not overlap. Mechanical cali-
bration is difficult and expensive, so we would like to use an image based method.
There are a few possibilities for image based calibration, listed below.

Grid Calibration Construct a precisely measured calibration grid which sur-
rounds the Argus eye, and then use standard calibration methods (such as [8]
or [5]) from this. This method is difficult and expensive and we would prefer
not to have to implement it.

Self Calibration Use a self-calibration algorithm to obtain the calibration pa-
rameters. By matching the axes of rotation in the various cameras, this
method should be able to obtain the rotation between the cameras. An esti-
mate of the translation between the cameras would require the computation
of depth, which is sensitive to noise, so that it would be difficult to self
calibrate the translation between the cameras.

Many Camera Calibration If additional cameras were placed around the Ar-
gus eye pointing inwards in such a way that the cones of view of the cameras

(a) (b)

Fig. 3. (a) A compound-like eye composed of conventional video cameras, and a
schematic description of the Argus eye. (b) The actual Argus eye. The cameras are
attached to diagonals of a polyhedron made out of wooden sticks.
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intersected with each other and with those of the Argus eye, then those
cameras, properly calibrated, can be used to calibrate as will be shown. See
Figure 4 for a diagram.

Cam 1

Cam 2
Cam 3

Cam  F

Cam A

Cam B

Cam C

Cam D

Cam E

Fig. 4. Arrangement of the cameras for calibration purposes. Cameras 1 to 3 make up
an Argus eye. Cameras A-F are auxiliary surrounding cameras.

In order to obtain the most accuracy with the least cost, we decided to
implement the solution of calibrating with auxiliary cameras, since we have at our
disposal a multi-camera laboratory, which has 64 synchronized cameras arranged
so that they all point inward toward the center of the room. This idea of using
auxiliary cameras, that is, cameras not actually involved in taking the data but
integral to the calibration, is an important one. This concept is applicable not
only to the task at hand, but to other situations such as stereo calibration, since
it can give a much larger depth of field for corresponding points than a grid.

3.1 Method Overview

The Argus eye is calibrated by putting it in the middle of a collection of inward
pointing cameras, all synchronized together, as shown in Figure 4. In the dark-
ness an LED wand is waved in a manner so as to fill the cones of view of all
the cameras with points. The cameras in this way obtain many accurate point
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correspondences using simple background subtraction and thresholding to ex-
tract the points. The point correspondences, while not between the Argus Eye
cameras, serve to transfer the calibration from the auxiliary cameras.

The Argus eye can then be taken away, and a calibration grid put in its
place, so that all the inward pointing cameras can be intrinsically and extrin-
sically calibrated. Using these projection matrices, the actual point location of
the LED can be calculated. Since we have the LED world point locations and
their projections on the Argus eye, it is as if we had a calibration grid, and we
can use any standard algorithm to obtain the projection matrices. From these
the rotational matrices are easily obtained using the QR decomposition.

3.2 Method Specifics

There are two complications to implementing this method in a straightforward
manner. First, the cameras need to be radially calibrated. Second, the way that
the Argus Eye is constructed makes it impossible to place the device in a way
so that more than four cameras can see a significant distance at any one time.

Radial calibration. The lenses we use cause a radial distortion of about four
pixels on the edges of the image, which needs be corrected. We use this model
of radial calibration, where xn and yn are the coordinates corrected from the
measured xm and ym.

xn = (1 + κ((xm − xc)2 + (ym − yc)2))(xm − xc) + xc (2)

yn = (1 + κ((xm − xc)2 + (ym − yc)2))(ym − yc) + yc (3)

where (xc, yc) is the center of radial calibration. In our 644 × 484 images, we
measured the κ parameter at approximately 1e− 7 for our lenses and the center
of radial calibration at the approximate image center.

The cameras were radially calibrated with a grid pattern shown to every
camera. The points of intersection were extracted from the grid images, and
are made homogeneous with r = [xn, yn, f ]. Then for every set of three points
ri,1, ri,2, ri,3 which are supposed to be collinear, we use the triple product as
error measure:

Ei = (ri,1 × ri,2) · ri,3

We minimize: ∑
i

Ei

over κ and xc, yc. The results of this radial calibration were very satisfactory,
and no other calibration (such as tangential) was necessary.
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Room calibration. While we could obtain some calibration by using the cali-
bration frame, it would be more desirable to use all the point correspondences
to obtain an accurate calibration throughout the whole room. To begin with,
we used a measured calibration frame to obtain projection matrices using the
following algorithm.

To start, we use a standard technique in which a calibration frame with
known points is set up in the middle of the room. The known world points
together with known image points (located by the user) are used in a nonlinear
minimization to find the projection matrices. If the world points in the fiducial
coordinate system are R1,R2, . . . ,RN , and the hypothesized projection matrix
is P , then the world point Ri should project to

ri = P
[
Ri
1

]
(4)

If the measured image points are r̂1, r̂2, . . . , r̂N , then we can measure the error
in the projection matrix by the following sum:

∑
i

(
r̂i

ˆri,3
− r̂i

ri,3
)2 (5)

A nonlinear minimization run on this error measure is sufficient to find the
projection matrices.

However, this calibration uses a small number of white balls which are dif-
ficult to localize properly. Note that it is necessary to use a frame rather than
a grid with more easily localizable line intersections, because the world points
must be visible from all directions. Thus, we would like to improve this cali-
bration significantly. We can do this by using the LED data which is, after all,
a collection of point correspondences, though we don’t know where the world
points themselves are.

Given the projection matrices obtained from the calibration frame, we can
reconstruct world points given the point correspondences. These calculated world
points can then be used as a calibration frame to compute the projection matrices
as above.

Argus calibration. As we stated earlier, the calibration was made trickier by the
fact that the Argus Eye could not be placed so that all cameras had a significant
depth of field. This is because the cameras point in six directions, so at any time,
one of them is pointing predominantly towards the floor. Thus the Argus system
needed to be calibrated multiple times in order to obtain the most accurate
calibration. More specifically, if the Argus Eye is rotated three times, then we
need to form an error measure over all six cameras plus the two displacements
of the whole Argus Eye from the initial position.
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Let the Ri,Rj ,Rk be the world points generated in positions 1, 2, and 3,
respectively. Then we can form:

ri = Pl

[
Ri
1

]
(6)

rj = Pl

[
Q2T2

0T1

] [ Rj

1

]
(7)

rk = Pl

[
Q3T3

0T1

] [
Rk
1

]
(8)

where the Qi and the Ti specify the rotation and translation in the displacement
to the two Argus Eye positions. Then we can optimize over the Q2, Q3, T2, T3
and Pl as specified above, and throw away the Q’s and T ’s. We are left with just
the Pl, which are the projection matrices for the cameras in the Argus system.
These projection matrices can then be used in our egomotion algorithms.

4 3D Motion from the Argus Eye

Consider a calibrated Argus eye moving in an unrestricted manner in space,
collecting synchronized video from each of the video cameras. We would like to
find the 3D motion of the whole system. Given that motion and the calibration,
we can then determine the motion of each individual camera so that we can
reconstruct shape.

An important aspect of the results in [6,7] is that they are algorithm indepen-
dent. Simply put, whatever the objective function one minimizes, the minima
will lie along valleys. The data is not sufficient to disambiguate further. Let us
look at pictures of these ambiguities. We constructed a six camera Argus Eye
and processed each of the six sequences with state-of-the-art algorithms in mo-
tion analysis. Figure 5 shows (on the sphere of possible translations) the valleys
obtained when minimizing the epipolar deviation. Noting that the red areas are
all the points within a small percentage of the minimum, we can see clearly the
ambiguity theoretically shown in the proofs. Our translation could be anywhere
in the red area. With such a strong ambiguity, it’s no wonder that shape models
are difficult to construct.

We now show how to use the images from all the cameras in order to resolve
these ambiguities. Let us assume that for every camera i, its projection matrix
is:

Pi = RT
i [Ki | − ci] (9)

where Ki is the calibration matrix, ci is the position of the camera, and Ri is
the rotation of the camera.

Note that when cameras are mounted rigidly together, and if the rotation
of each camera i is ωi , then the rotation ω = RT

i ωi should be the same for
every camera. Now for each camera i, let us consider the set of translations
{ti,j} with error close to the minimum. Given a translational estimate ti,j , it
is easy to estimate the rotation ωi,j of the camera using any of a variety of



Eyes from Eyes 213

Fig. 5. Valleys obtained on the sphere of possible translations when minimizing the
epipolar deviation.

techniques. Here we use a technique by Brodsky in [1], using the minimization
of the depth variability constraint: call it f : T → Ω, a function from the set
of translations to the set of rotations. This function f is a diffeomorphism, so
that given the 2D manifold of candidate translations (the ones with low error),
we have a 2D manifold of candidate rotations, which we can derotate by RT

i , to
obtain a 2D manifold of rotational estimates in the fiducial coordinate system.
Significantly, the rotations exist in 3D space, so that from six cameras, we have
six 2D manifolds of candidate rotations in the 3D space of possible rotations.
We can then find their intersection, which in general should be a single point.

This video confirms two basic tenets of this paper. First, it shows that the
motion estimates of lowest error in individual cameras are not the correct mo-
tions, since if they were, the lowest error points would be coincident in rotation
space. Thus even though we are using state-of-the-art algorithms, it is not pos-
sible to extract the correct motion from a single camera with limited field of
view, as is shown in the proof. Second, the video shows that if we look at all the
motion candidates of low error, the correct motion is in that set, shown by the
intersection of the six manifolds at a single point.

That the manifolds intersect so closely shows we can find the rotation well.
Since we know the rotation, the translation is much easier to find. Let us first
look at what the translations are in each camera. Given this accurate rotation,
the translational ambiguity is confined to a very thin valley, shown in Figure 6.
If we can find a way to intersect the translations represented by these valleys,
then we can find the complete 3D translation.

We must look more closely at how the fiducial motion is related to the in-
dividual camera motion. Each camera’s translation consists of the translation
of the system added to the translation due to the rotation of the whole system
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Fig. 6. Valleys obtained on the sphere of possible translations once an accurate estimate
of the rotation is obtained.

crossed with the camera position.

ti = Ri(t + ω × ci) (10)

We need to search the 3D space of possible system translations to minimize the
sum of the epipolar deviations from all cameras using the translation derived
from the above equation and the rotation derived earlier. In Figure 7 we see
the location of the low error translations in a spherical slice 3D translation
space. Notice the well-defined minimum (in red), indicating the direction of the
translation obtained is not ambiguous, so that a minimization procedure like
Levenberg-Marquardt will be able to find a unique minimum for the direction
of translation.

Looking at (10), we notice something interesting, if not necessarily surpris-
ing. If the fiducial translation were 0, then each camera translation would be
completely a function of the calibration and the rotation ω. But since we know
the rotation exactly, we can know the translation in each camera without the
scale ambiguity. In the case where the translation is not much larger than the
rotation and the distance between the cameras is significant, it is possible to
calculate the absolute translation. Thus camera construction techniques which
force the centers of projection to be coincident may have simpler algorithms, but
the data is not as rich. Here we can obtain metric depth without using stereo
techniques.

The preceding discussion showed how, by utilizing all video sequences, a
very accurate estimate for the 3D motion can be obtained. This motion can now
be utilized to obtain shape models. Figure 8 shows a sequence taken by one
of the cameras of the Argus eye. By utilizing all six videos an estimate of the
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Fig. 7. Location of low error translations in a spherical slice 3D translation space.

3D motion is computed from two frames in the sequence. Figure 9 shows the
recovered model.

Fig. 8. A few frames from a sequence taken by one of the cameras of the argus eye

5 Conclusions

Our work is based on recent theoretical results in the literature that established
the robustness of 3D motion estimation as a function of the field of view. We
built a new imaging system, called the Argus eye, consisting of six high-resolution
cameras sampling a part of the plenoptic function. We calibrated the system and
developed an algorithm for recovering the system’s 3D motion by processing all
synchronized videos. Our solution provides remarkably accurate results that can
be used for building models from video, for use in a variety of applications.
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Discussion

1. Luc Van Gool, Katholieke Universiteit Leuven: You take 6 images
now instead of only having 1. In that sense you lose a lot of the available
resolution which is not focussed on the object of interest but rather on the



Eyes from Eyes 217

environment to have a more stable estimation of the camera motion. But is
the comparison really fair in the sense that the sequence of the leopard you
showed is actually very short. It is almost close to a pure translation which is
close to a degenerate case anyway. Normally you would rather move around
the object, have more different views from a wider gamut of orientations.
Is that still not a better alternative, because then the image information is
used to a fuller extent for the real reconstruction?
Tomas Brodsky: Yes, certainly. Maybe the sequence of the leopard is not
the best example to show the power of this. If you take it in a room, then
even though the views see different parts, they basically give you information
about the same geometry. You could patch them together. I think we’ll see
better results as time progresses because this is really a fairly new device.
Again, this is the difference: if you do point correspondences you have to work
on matching but then you easily get wide baseline views so your structure
estimates tend to be better. Here, if you look at ten sequences you still have
to work on linking many frames together.

2. Bill Triggs, INRIA Rhône-Alpes: A comment and then a question. My
intuition suggests that the ill-conditioning is caused by the rotation versus
translation ambiguity. If your scene is a small compact object with little
relief, there is little residual parallax, so it is difficult to tell tracking from
panning (sideways translation from sideways rotation). But another camera
at right angles to the first sees a completely different motion in the two cases
(e.g., if it is looking in the tracking direction, forward translation versus
sideways rotation). So the question is: why use six cameras, when two would
have been enough to break the ambiguity ?
Tomas Brodsky: I don’t know why 6 cameras. I’m not sure if two or three
would have been enough. It’s possible that two would be sufficient.
Bill Triggs: You can think of the ambiguity as being caused by not having
enough parallax to tell that you have moved sideways, provided that you also
rotate to continued to fixate on the same object. But you can only fixate on
a single 3D point at a time—any camera looking in another direction will
not be fixated, which will break the ambiguity.
Tomas Brodsky: What I like in using 6 cameras is the robustness because
then you combine six different inputs. I wasn’t really involved in the design
of the device, so I’m not sure why they used 6 cameras and not 4 or fewer.

3. Hans-Helmut Nagel, University of Karlsruhe: If you capture an entire
room, you don’t necessarily know in advance where your problem arises.
If you have 6 cameras, you then have additional information, even if the
two cameras you focus on first will not be the most appropriate in order to
disambiguate.
Tomas Brodsky: If I may add, if you look at the theory and have two
cameras looking 90 degrees apart, there still might be certain motions which
give you problems. You certainly get no ambiguities for a full field of view.
If you want to approximate fly-vision, you will want to use as many cameras
as you can.
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Abstract. Reviewing the important problem of sequential localisation
and map-building, we emphasize its genericity and in particular draw
parallels between the often divided fields of computer vision and robot
navigation. We compare sequential techniques with the batch method-
ologies currently prevalent in computer vision, and explain the additional
challenges presented by real-time constraints which mean that there is
still much work to be done in the sequential case, which when solved will
lead to impressive and useful applications. In a detailed tutorial on map-
building using first-order error propagation, particular attention is drawn
to the roles of modelling and an active methodology. Finally, recognising
the critical role of software in tackling a generic problem such as this, we
announce the distribution of a proven and carefully designed open-source
software framework which is intended for use in a wide range of robot
and vision applications: http://www.robots.ox.ac.uk/˜ajd/

1 Introduction

Structure from motion in computer vision and simultaneous map building and
localisation for mobile robots are two views of the same problem. The situation
under consideration is that of a body which moves through a static environment
about which it has little or no prior knowledge, and measurements from its
sensors are used to provide information about its motion and the structure of
the world. This body could be a single camera, a robot with various sensors, or
any other moving object able to sense its surroundings. Nevertheless, in recent
years research has taken many paths to solving this problem with a lack of
acknowledgement of its general nature, with a particular divide arising between
robotic and “pure vision” approaches.

Crucially, in this paper we are interested in the sequential case, where map-
building and localisation are able to proceed in a step-by-step fashion as move-
ment occurs. We will contrast this with situations where the batch methods
currently prevalent in computer vision (and their cousins in robot map-building)
can be applied, where measurements from different time steps are used in par-
allel after the event. Despite renewed interest in sequential map-building from
the robotics community, in computer vision recent successful work in off-line re-
construction from image sequences has conspicuously not been accompanied by
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advances in real-time methods. Sequential map-building is a problem which is
far from being solved, and we will look at the state of the art and its limitations.

1.1 Applications

In map-building applications where localisation or map estimates are needed
quickly and successively, either to supply data to external processes in real-time
or to feed back into determining future actions, only sequential methods can
be used. For instance:

– Camera-based structure from motion methods that need to update in real-
time, like in an inside-out head-tracking application, where an outward-
looking camera attached to a head-mounted display user’s head identifies
and tracks arbitrary features in the surroundings to calculate head move-
ment, or in live virtual studio applications, where the movement of television
cameras needs to be known precisely so that live and computer-generated
images can be fused to form composite output.

– Autonomous robot navigation in unknown environments, where sensor read-
ings are used to build and update maps, and continually estimate the robot’s
movement through the world.

1.2 Aims of This Paper

1. To review and clarify the status of the sequential map-building problem, and
emphasize its genericity within robotics and computer vision.

2. In a detailed tutorial on map-building using first-order error propagation, to
discuss a number of details about implementing real sequential systems and
explain the approaches our experience has led to.

3. To announce the distribution of an open-source software package for sequen-
tial localisation and map-building, designed with a realisation of the general
nature of this class of problems and therefore readily applicable in many
applications, and already proven in two research projects [7,6],

2 The Challenges of Sequential Map-Building

2.1 The Main Point

Thinking first not of actively adding to a map, but of updating uncertain esti-
mates of the locations of various features and that of a moving sensor platform
measuring them in a sequential, real-time sense: the amount of computation
which can be carried out in each time-step is bounded by a constant.
This follows simply from thinking of implementing such a system: however fast
the processor available, it can only do so much in a certain time-step.

A major implication of this is that at a given time, we must express all
our knowledge of the evolution of the system up to that time with an
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amount of information bounded by a constant. The previous knowledge
must be combined with any new information from the current time step to
produce updated estimates within the finite processing time available.

In the following sections, we will look at the approach we are forced to take to
fit this constraint and the difficulties this presents, since in sequential processing
compromises must be made to maintain processing speed.

2.2 Approaching Sequential Map-Building

There would seem to be a difference between robot map-building for localisa-
tion, where the goal is to determine the robot’s motion making use of arbitrary
features in the environment as landmarks, and structure from motion, where the
interest is in the scene structure and not in the arbitrary path of the camera
used to study it. However, it is necessary, explicitly or implicitly, to estimate
both sensor motion and scene structure together if either is to be determined.

Batch Methods: The optimal way to build maps from measurements from a
moving robot or sensor is to take all the data obtained over a motion sequence
and analyse it at once. Estimates of where the robot was at each measurement
location are calculated altogether, along with the locations of the features ob-
served, and then adjusted until they best fit all the data. This is the batch
methodology which is used in state of the art geometrical vision to recover 3D
structure maps from video sequences and auto-calibrate cameras (e.g. [20,17]).
In robot navigation, batch methods have a shorter history but have appeared
recently under the banner EM [19], where maps of natural features were formed
from a data set collected in an initial guided robot tour of an area; afterwards the
robot could use the map during autonomous navigation. However, while batch
methods can build optimal maps from previously acquired data sets, they do
not offer a way to incrementally change maps in the way required by real-time
applications as new data is acquired. The key to why not is that the processing
effort needed to calculate an estimate for each robot or camera location on a
trajectory depends on the total number of locations. If the robot or camera
moves to a new location and we wish to combine new measurement data with
an existing map, all previous estimates must be revised. This does not fit our
requirement for constant processing cost for sequential applications.

A comment on uncalibrated methods, which have become closely intertwined
with batch estimation in computer vision: most advanced structure from motion
approaches operate by assuming that certain parameters defining the camera’s
operation (such as the focal length) are completely unknown, and calculations
take place in versions of the world which are warped in some unknown way
relative to reality via the mathematics of projective geometry. Resolution to real
Euclidean estimates only happens as a final step, often after an auto-calibration
procedure. It should be remembered that estimating the unknown calibration
parameters of a camera in this way is somewhat of a detail when it comes to the
general problem of reconstructing the world from uncertain sensor measurements
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These warped worlds are of no use when we wish to incorporate other types
of information; this could be data from other sensors, but most importantly
we mean motion information. Motion models are inextricably tied to the real,
Euclidean world — the argument may be made that things such as straight
line motion are preserved under projective transformation, but physics is also
about rotations and scales (such as that provided by the constant of gravitational
acceleration). We argue that the best course for sequential methods is to place
estimates in a Euclidean frame straight away. Of course some things may be
uncertain, such as absolute scales or calibration parameters, but this uncertainty
can be included explicitly in estimates and reduced as more data is acquired.
We do not lose any deductive power by doing this: we only add it. As will
be explained below, when the interdependence between estimates is propagated
properly, we retain the ability to, for instance, estimate the ratio of the depths
of two features with a high precision, even if either individually is poorly known.

Doing Things Sequentially: To tackle the sequential case, we need a rep-
resentation of the current “state” of the system whose size does not vary over
time. Then, this state can be updated in a constant time when new information
arrives. Both the state and the new information will be accompanied by uncer-
tainty, and we must take account of this when weighting the old and new data to
produce updates. We are taken unavoidably into the domain of time-dependent
statistics, whereas the optimisation approach used in batch methods permits a
more lax handling of uncertainty.

Something to clarify early on is that when we talk here about a state being
of constant size, we mean that for a map with a given number of features the
state size does not change with time. The fact that the state size, and therefore
processing burden, will increase as the number of features grows seems unavoid-
able. So to process maps in real-time, we will be limited to a finite number of
features. How to deal with more features than this limit is the main challenge of
sequential map-building research, and we will look at this further in Section 2.4.

Many early authors [8,11,1] took simple approaches to representing the state
and its uncertainty; the locations of the moving robot in the world and features
were stored and updated independently. However, if any type of long-term mo-
tion is attempted, these methods prove to be deficient: though they produce
good estimates of instantaneous motion, they do not take account of the inter-
dependence of the estimates of different quantities, and maps are seen to drift
away from ground truth in a systematic way, as can be seen in the experiments
of the authors referenced above. They are not able to produce sensible estimates
for long runs where previously seen features may be revisited after periods of
neglect, an action that allows drifting estimates to be corrected [7].

To give a flavour of the interdependence of estimates in sequential map-
building, and emphasize that it is important to estimate robot and feature po-
sitions together, steps from a simple scenario are depicted in Figure 1. The
sequence of robot behaviour here is not intended to be optimal; the point is
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A

B
C

(1) Initialise feature A. (2) Drive forward. (3) Initialise B. and C.

(4) Drive back. (5) Re-measure A. (6) Re-measure B.

Fig. 1. Six steps in a example of sequential map-building, where a robot moving
in two dimensions is assumed to have a fairly accurate sensor allowing it to detect
the relative location of point features, and less accurate odometry for dead-reckoning
motion estimation. Black points are the true locations of environmental features, and
grey areas represent uncertain estimates of the feature and robot positions.

that a map-building algorithm should be able to cope with arbitrary actions
and make use of all the information it obtains.

In (1), a robot is dropped into an environment of which it has no prior
knowledge. Defining a coordinate frame at this starting position, it uses a sensor
to identify feature A and measure its position. The sensor is quite accurate, but
there is some uncertainty in this measurement which transposes into the small
grey area representing the uncertainty in the estimate of the feature’s position.

The robot drives forward in (2), during this time making an estimate of
its motion using dead-reckoning (for instance counting the turns of its wheels).
This type of motion estimation is notoriously inaccurate and causes motion
uncertainties which grow without bound over time, and this is reflected in the
large uncertainty region around the robot representing its estimate of its position.
In (3), the robot makes initial measurements of features B and C. Since the
robot’s own position estimate is uncertain at this time, its estimates of the
locations of B and C have large uncertainty regions, equivalent to the robot
position uncertainty plus the smaller sensor measurement uncertainty. However,
although it cannot be represented in the diagram, the estimates in the locations
of the robot, B and C are all coupled at this point. Their relative positions are
quite well known; what is uncertain is the position of the group as a whole.

The robot turns and drives back to near its starting position in (4). During
this motion its estimate of its own position, again updated with dead-reckoning,
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grows even more uncertain. In (5) though, re-measuring feature A, whose abso-
lute location is well known, allows the robot dramatically to improve its position
estimate. The important thing to notice is that this measurement also improves
the estimate of the locations of features B and C. Although the robot
had driven farther since first measuring them, estimates of these feature po-
sitions were still partially coupled to the robot state, so improving the robot
estimate also upgrades the feature estimates. The feature estimates are further
improved in (6), where the robot directly re-measures feature B. This measure-
ment, while of course improving the estimate of B, also improves C due to their
interdependence (the relative locations of B and C are well known).

At this stage, all estimates are quite good and the robot has built a useful
map. It is important to understand that this has happened with a small number
of measurements because use has been made of the coupling between estimates.

2.3 Propagating Coupled Estimates

To work with coupled estimates, it is necessary to propagate not only each esti-
mated quantity and its uncertainty, but also how this relates to the uncertainties
of other estimates. Generally, a group of uncertain quantities is represented by
a probability distribution in multiple dimensions, the form of which will de-
pend on the specific agents of uncertainty in the system. Representing arbitrary
probability distributions is not straightforward: one approach uses many random
samples (sometimes called particles) to build up the shape, and has recently suc-
cessfully been seen in vision in the form of the Condensation algorithm [12] for
robust contour tracking. This approach has also been used in robot navigation
for the problem of localisation using a known map [10], performing extremely
well even for the difficult problem of re-localising a robot which is completely
lost. However, these Monte Carlo methods are computationally expensive, and
particularly are not applicable to the very high-dimensional map-building prob-
lem, since the number of particles N , and therefore the computational burden,
needed to represent fairly a probability distribution in dimension d varies as:

N ≥ Dmin

αd
,

where Dmin and α are constants with α << 1. In modern Condensation appli-
cations, the number of dimensions under consideration is limited by computing
power to perhaps something less than 10 if realtime operation is desired. This
is of course sufficient for estimating the location of a robot with a known map,
but not when we simultaneously need to estimate map parameters.

Currently more feasible is to propagate first order approximations to proba-
bility distributions. Each estimated parameter is accompanied by single numbers
representing its variance and covariance with other parameters — a vector of pa-
rameters has a covariance matrix filled with these elements. The Kalman Filter
is an optimal solution to linear problems in which all noise sources are gaus-
sian in profile; however, most map-building scenarios are not linear so in these
cases the Extended Kalman Filter provides an approximation which in general
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has been found to perform very well. Called “Stochastic Mapping” in its first
correctly-formulated application to robot map-building [18], the EKF has been
implemented successfully in different scenarios by other researchers [2,4,5,7,9,
14]. Its main weakness compared to the Monte Carlo methods is its inability to
represent multi-modal distributions — where an estimate has two or more peak
values that are most likely, with unlikely regions in between. The Monte Carlo
methods gain greatly in robustness through this ability. In first order approaches,
multiple hypotheses must be considered externally and explicitly.

2.4 The Problems

We consider that there are two main challenges in sequential map-building using
first order uncertainty — they are both things we have already touched on:

1. The growth of computational complexity with the number of map features.
2. Coping with mismatches (sometimes known as data association).

We will see in Section 3 that correctly propagating the interdependence of map
estimates requires a covariance matrix to be updated whose number of elements
grows as the square of the number of estimated parameters. Clearly, the pro-
cessing requirements quickly get out of hand as the map grows.

The first approach which can be taken is to keep the number of features
low using sensible map management. With today’s processing power, there need
be little trouble with maintaining maps with features in the 50–100 range at
decent update rates. This is quite sufficient for many localisation tasks within
confined areas: the emphasis should be on using a small number of high-quality
features, and on map using rather than wasteful map building. For the situation
in question, the question “how many features need to be measurable at any
given time?” can be asked. The answer will depend on the localising power of a
single feature measurement, which depends on the sensor and feature types (for
instance, for a camera moving in 3D, seeing just a single point feature will not
improve estimates along the several degrees of freedom which that measurement
does not constrain, whereas for a robot moving in one dimension with a range
sensor, measuring one feature tells it all it needs to know), as well as potential
desires for redundant measurements to improve robustness (see Section 3.5). A
management algorithm can then add new features to the map only in places
where less than this desired number is available.

For applications where the number of features must be larger, various au-
thors have looked at ways to relieve the complexity of large maps. One simple
approach, similar to the map management above, is to delete features from the
map which do not provide much information[9]: for instance, if two features
lie close together, and their estimates have become closely coupled, one can
be deleted without sacrificing much information. This opens up the question
of which features provide the best localisation information — something also
looked at in [5] with regard to active choice among candidate measurements.

Other approaches split a large map into sub-maps, within each of which fully-
coupled map-building goes on as normal but between which full coupling is not
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maintained [4,15]. While in a certain area, the robot will only observe features
in the current submap and only update estimates for this submap in real-time.
This is an approximation, since in truth each feature estimate is related to every
other in the world map, but can be effective when the coupling between submaps
can be represented as a single parameter: all the estimates in submap A have
a similar dependence on all of those in submap B. This is likely to be the case
if the robot spends long periods of time confined to each submap region, rather
than frequently moving between them. There are still many issues to settle with
these approaches, such as how submap areas should be delineated.

McLauchlan’s VSDF [16] is a powerful framework which marries sequential
and batch methods, and has been used in several different vision applications.
It is based on the propagation of inverse covariance matrices (called information
matrices), a strategy which provides some computational advantages, and offers
an efficient sequential mode, though this mode makes implicit approximations
by ignoring some non-diagonal matrix elements and it is not clear how these
approximations compare with other possibilities. Covariance Intersection [23], a
general tool for distributed estimation, has also been touted as suitable for map-
building, though its generalisations may be too forgiving to produce estimates
as good as other more specific methods.

A final approach [5] suggests that while maintaining a full single map, current
active parts can be kept fully up to date while currently uninteresting regions are
kept on “the back burner” — or perhaps in a hierarchy of updatedness — and
proves that it is possible to bring these back up to date at a later stage with no
loss of information. This method is certainly interesting, particularly because the
hierarchy idea provides possibilities for multiple-hypothesis branching at various
levels, but presents large challenges in terms of management: deciding which
parts should be updated or left to simmer.

We will look in Section 3.5 at how it is possible to use redundancy and
methods like RANSAC to reduce the chance of falling prey to mismatches at
the measurement stage, but more generally dealing with this problem requires
a multiple-hypothesis approach where estimates fork and the decision on which
branch is correct is postponed until more evidence is available. There have yet to
be any convincing demonstrations of how this can be incorporated into rigorous
sequential map-building. This should be a major focus of future research, since
there is no point in improving efficiency with methods which are still prone
to instant failure at a mismatch. In our experience, map-building of the type
described in Section 3 often can survive a mismatch, though this is by luck since
the method includes no model of these events.

3 Map-Building with First Order Uncertainty
Propagation: Details and Insights

In the following section we will look in detail at sequential map-building using
first-order uncertainty propagation. On its own this represents an obvious and
rigorous approach to map-building, but it is also the backbone of the methods



226 A.J. Davison and N. Kita

described in the previous section for improving efficiency. We will refer through-
out to the moving sensor body as “the robot”, but this can apply to a single
camera or other unrobotlike object. “Feature” is also a general term referring
to any object the robot is capable of observing. Features can be points, lines,
planes, cylinders or any other type of geometrical object.

3.1 The State Vector and Its Covariance

Current estimates of the state of the robot and the scene features which are
known about are stored in the system state vector x̂, and the uncertainty of the
estimates in the covariance matrix P. x̂ and P will change in size dynamically as
features are added to or deleted from the map. They are partitioned as follows:

x̂ =




x̂v

ŷ1
ŷ2
...


 , P =



Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...


 .

x̂v is the robot state estimate, and ŷi the estimated state of the ith feature.
By the “state” of the robot and features, generally we mean a vector of all
the parameters in which we are interested relating to those objects. Of course
this means their positions, which can be defined by a number of parameters
depending on the geometrical type of the object and dimensionality of the map;
but also, there may be other parameters which we would like the estimate,
usually because they will affect future motion or measurements.

For dynamically moving objects it is necessary to estimate higher-order mo-
tion parameters (velocity, acceleration, etc.). The number of derivatives needed
depends on the expected motion (see Section 3.3 about Motion). As another
example, a robot may have redundant axes of movement whose status is im-
portant but which are not uniquely defined by the robot’s geometrical position.
These extra parameters can also be used for calibration constants, which are
initially only approximately known but whose accuracy will improve with the
evolution of the system.

3.2 Coordinate Frames and Initialisation

When a robot moves in surroundings which are initially completely unknown,
the choice of a world coordinate frame is arbitrary. The only things that can be
reported on are the location of the robot relative to any features detected. Indeed,
one possible approach is to do away with a world coordinate frame altogether
and estimate just the locations of features in a frame which it fixed to the robot;
robot motions appear simply as backward feature movements. However, there is
not a large computational penalty in including an explicit robot state, and more
importantly in most applications of map-building there will be some interaction
with information from other sources, which could be in the form of some prior-
known feature positions, or maybe simply metric way-points through which the
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robot is required to move — a world coordinate frame is necessary to interact
with information of this kind.

If there is no prior knowledge of the environment, the coordinate frame can
be defined to have its origin at the robot’s starting position, and the initial
uncertainty relating to the robot’s position in Pxx is set to zero. If there is prior
knowledge of some feature locations, this is put into the map explicitly and it is
this which defines the coordinate frame. The robot’s starting position relative to
these features must also be input, and both robot and feature positions should
be assigned suitable initial covariance values. It is not reasonable to set both
robot and feature covariances to zero, because their relative locations can never
be perfectly known; a typical initial situation would be to have several very
well known feature positions with low covariance effectively pinning down the
coordinate frame, with a more uncertain robot starting location.

3.3 Motion

What happens to the estimate of the robot’s position during a movement? The
answer is that we should model its movement as well as we can with a motion
model fv(xv,u), and add to the system covariance to account for our uncertainty
in this motion estimate (the process noise Q).

In batch structure from motion, there is typically no motion modelling. The
assumption made is that at each new camera position, there is no prior location
knowledge; that is to say there is infinite uncertainty (though there may be
constraints on some movement dimensions in certain scenarios). In the quasi-
static case that these methods are applied to this is sensible. However, when
working in the time domain there is always extra information to be had by
modelling motion. This model may be very simple or vague, but the best thing
to do is to set it up as honestly as possible and make use of it. Quoting from
Torr et al. [21], who in turn cite Jaynes [13]:

Some will complain that to use Bayesian methods one must introduce
arbitrary priors on the parameters. However, far from being a disadvan-
tage, this is a tremendous advantage as it forces open acknowledgement
of what assumptions were used in designing the algorithm, which all too
often are hidden away beneath the veneer of equations.

There are many types of motion model depending on the level of our knowl-
edge about the system. In the case that we have knowledge of the control pa-
rameters of a robot (such as “drive forward at 1ms−1 for one second with a
steering angle of 5◦”), which is the case for a robot which is controlling its own
navigation, we can potentially make quite an accurate motion estimate and the
process noise covariance will be small. However, if we want to estimate the mo-
tion of a camera strapped to an independently manoeuvring human head, we
can make much less precise assumptions: for instance, that the head will keep
moving more or less at it’s current speed, or maybe that it is slightly more likely
to slow down than speed up, given that the person is probably moving within a
confined space (see the auto-regressive models of [12]).
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Process noise accounts for the things that we don’t attempt to model.
There is of course no such thing as random noise in (classical!) physics: bodies
move deterministically. It is just that we can’t know all the details of what is
happening to them, though in theory we could model everything (slipping wheels;
human joints, muscles, chemical reactions!). Models have to stop somewhere: the
rest of what is going on we call process noise, and estimate the size of its effect.

The robot’s motion is discretised into finite steps, with an incrementing label
k affixed to each. There is no need for the length of these steps to be equal in
time, though this will often be the case. (One point we would like to highlight is
that many navigation researchers have used unnecessarily simple motion models
for their mobile robots; e.g. [8], where a model for car-like motion is used which
is an approximation for small ∆t: in this case it is quite straightforward to
construct a motion models which does not require short time steps [5].) In a
Jacobian calculation, we change the state and covariance as follows:

x̂(k + 1|k) =




fv(xv(k|k),u(k)
ŷ1(k|k)
ŷ2(k|k)

...


 (1)

P(k + 1|k) =




∂fv
∂xv

Pxx(k|k) ∂fv
∂xv

>
+ Q(k) ∂fv

∂xv
Pxy1(k|k) ∂fv

∂xv
Pxy2(k|k) . . .

Py1x(k|k) ∂fv
∂xv

>
Py1y1(k|k) Py1y2(k|k) . . .

Py2x(k|k) ∂fv
∂xv

>
Py2y1(k|k) Py2y2(k|k) . . .

...
...

...


 (2)

3.4 Measurements: Selection, Prediction and Searching

The way to measure a particular feature i is determined by its feature mea-
surement model hi(xv,yi), and the measurement noise R. Analogous to process
noise, measurement noise takes account of the things we don’t model in the fea-
ture measurement model. Whenever we wish to measure a particular feature, the
value of the measurement can be predicted by substituting current estimates x̂v

and ŷi into the expression for hi. From the predicted value of a measurement, we
can calculate, based on knowledge about the particular feature type and saved
information on what the first initialisation measurement of this feature was,
whether it is worth trying to measure it. For instance, when measuring point
features visually with correlation, there is little chance of a successful match if
the current viewpoint is far from the original viewpoint. In this way, regions
of measurability can be defined for each feature, and aid robustness by only
allowing match attempts from positions where the chances are good.

The innovation covariance Si is how much the actual measurement zi is
expected to deviate from this prediction:
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Si =
∂hi

∂xv
Pxx

∂hi

∂xv

>
+

∂hi

∂xv
Pxyi

∂hi

∂yi

>
+

∂hi

∂yi
Pyix

∂hi

∂xv

>
+

∂hi

∂yi
Pyiyi

∂hi

∂yi

>
+ R . (3)

Calculating Si before making measurements allows us to form a search re-
gion in measurement space for each feature, at a chosen number of standard
deviations. This is a large advantage because it allows the adoption of an active
approach: we need only direct searching attention to the this area, maximising
computational resources and minimising the chance of obtaining a mismatch.

It is also possible to make decisions on which of several potentially measurable
features to observe as a priority based on Si: if the measurement cost for each
candidate is similar, it is favourable to make a measurement where Si has a high
value because there is the most information to be gained here. There is no point
in making a measurement when the result is predictable [7]. If measurements
are continually chosen like this, the uncertainty in any particular part of the
map can be stopped from getting out of control, a situation which would lead to
large search regions and the high possibility of mismatches, and to the potential
breaking of the linearisation approximations of the EKF.

3.5 Updating After a Measurement

After attempting measurements, those that were successful are used to update
the state estimates. How do we know which were successful? Clearly there are
some cases where failures are apparent, by matching scores below a given thresh-
old for instance. However, in other cases we won’t know: something has been
found within the innovation covariance-bounded search region, but is it the fea-
ture we were looking for or just something else that looks the same?

One way to pick the good measurements from the bad is make a lot of
measurements at the same time, and then look for sets among them which agree
with each other: these are likely to be the correct matches, since no correlation is
expected amongst the failures — this algorithm, RANSAC, is commonly used to
lend robustness to batch methods [22]. To use RANSAC here, we try the update
with randomly selected subsets of the measurements, and look for updated robot
position estimates which agree. The bad matches can then be marked as such
and the update performed with just the good ones.

To update the map based on a set of measurements zi, we perform EKF
updates as below. Because the measurements are independent, these updates
can be done in sequence, rather than stacking all the measurements into one
large vector and doing everything at once (this is computationally beneficial
because smaller S matrices are inverted). Note further that if a particular zi

has diagonal measurement noise R we can further subdivide to the individual
measurement parameters for sequential updates.



230 A.J. Davison and N. Kita

For each independent measurement hi, the Kalman gain W can be calculated
and the state updated as follows:

W = P
∂hi

∂x

>
S−1

i =




Pxx

Py1x

Py2x

...


 ∂hi

∂xv

>
S−1

i +




Pxyi

Py1yi

Py2yi

...


 ∂hi

∂yi

>
S−1

i (4)

x̂new = x̂old + W(zi − hi) (5)
Pnew = Pold − WSiW

> . (6)

3.6 Initialising a New Feature

When an unknown feature is first observed, a measurement zi is obtained of its
position relative to the robot. If the measurement function hi(xv,yi) is invertible
to yi(xv,hi), we can initialise the feature state as follows (assuming here that
two features are known and the new one becomes the third):

xnew =




xv

y1
y2
yi


 (7)

Pnew =




Pxx Pxy1 Pxy2 Pxx
∂yi

∂xv

>

Py1x Py1y1 Py1y2 Py1x
∂yi

∂xv

>

Py2x Py2y1 Py2y2 Py2x
∂yi

∂xv

>

∂yi

∂xv
Pxx

∂yi

∂xv
Pxy1

∂yi

∂xv
Pxy2

∂yi

∂xv
Pxx

∂yi

∂xv

>
+ ∂yi

∂hi
R ∂yi

∂hi

>


 (8)

It should be noted that some bias is introduced into the map in initialising
features in this way if (as is usual) the measurement process is non-linear.

If hi is not invertible, it means that a single measurement does not give
enough information to pinpoint the feature location (for instance a single view
of a point feature from a single camera only defines a ray on which it lies).
The approach that must be followed here is to initialise it into the map as
a partially initialised feature ypi, with a different geometrical type (e.g. a
line feature to represent the ray we know a point must lie on), and wait until
another measurement from a different viewpoint allows resolution. At this stage
a special second initialisation function yi(xv,ypi, zi) allows the actual state yi to
be determined from the partially initialised state and new measurement (feature
types which require more than two steps for initialisation are also possible).

Once initialised, a feature has exactly the same status in the map as those
whose positions may have been give as prior knowledge.
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3.7 Deleting a Feature

Deleting a feature from the state vector and covariance matrix is a simple case
of removing the rows and columns which contain it. An example in a system
where the second of three known features is deleted would be:


xv

y1
y2
y3


 →


xv

y1
y3


 ,



Pxx Pxy1 Pxy2 Pxy3

Py1x Py1y1 Py1y2 Py1y3

Py2x Py2y1 Py2y2 Py2y3

Py3x Py3y1 Py3y2 Py3y3


 →


 Pxx Pxy1 Pxy3

Py1x Py1y1 Py1y3

Py3x Py3y1 Py3y3


 . (9)

In automated map-maintenance, features can be deleted if a large proportion
of attempted measurements fail when the feature is expected to be measurable.
This could be due to features not fitting the assumptions of their model (an
assumed point feature which in fact contains regions of different depths and
therefore appears very different from a new viewpoint for instance), or possibly
occlusion — leading to the survival of features which do not suffer these fates.

4 Software and Implementations

Realisation of the generic properties of the sequential map-building problem and
experience with different robot systems has led to the evolution of our original
application-specific software into a general framework called Scene, efficiently
implemented in C++ and designed with orthogonal axes of flexibility in mind:

1. Use in many different application domains; from multiple robots navigating
in 1D, 2D or 3D with arbitrary sensing capabilities, to single cameras.

2. Implementation of different mapping algorithms and approaches to dealing
with the complexity of sequential map-building.

Scene is now available with full source code (under the GNU Lesser Gen-
eral Public License), at http://www.robots.ox.ac.uk/˜ajd/ . The distribu-
tion package includes interactive simulations precompiled for Linux which allow
immediate hands-on experience of sequential map-building in several real and
simplified problem domains, the additional tools which turn these into systems
operating with real hardware, and substantial documentation.

To give an impression of how the general framework can be applied to vari-
ous systems, details of some current and planned implementations, differentiated
by motion and feature measurement models plugged in as modules, are given
in Table 1. The simplest is a one-dimensional test-bed, which is very useful for
looking at what happens to robot and feature covariances in various situations
and under different algorithms. Our main work to date has been on robot nav-
igation using active vision [5,7,6], using mobile platforms which move in 2D
and are equipped with steerable camera platforms which make measurements of
point features in 3D with stereo vision. As detailed in [6], the software’s motion
model formulation is flexible enough to permit cooperative position estimation
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Table 1. Specifications for various implementations.

1D Test-bed Nomad Robot with Camera Position
Stereo Active Vision Tracking

World Dimension 1 3 3
Position Dimension 1 2 3
Motion Model Velocity Only Steer and Drive General Motion in 3D
State Size 1 5 12
Control Size 1 3 0
Feature Measurement Point Range 3D Stereo Point Single Image Point
Model Measurement Measurement Measurement
Feature Dimension 1 3 3
Measurement Size 1 4 2

by cooperating robots, where one has stereo active vision and the other is blind,
navigating primarily by odometry.

Current PC computers are powerful enough to perform correlation searches
for many features at video frame rate. Our current goal is to apply the Scene li-
brary to real-time camera position tracking using just inside-out image measure-
ments, potentially the “killer app” of sequential localisation and map-building,
which would be useful in applications such as inside-out head tracking or the
real-time virtual studio. The first demonstrations of this type have just started
to appear [3]. To be successful, it will be necessary to make use of many of the
details explained in this paper. For instance, RANSAC or similar must be used to
detect failed matches fast because there will not be enough processing time avail-
able to propagate multiple hypothesis. A full 3D motion model must be used,
and finally, it will be necessary to use partially initialised feature representations
to bootstrap features in 3D from multiple views.

Acknowledgements. The authors are grateful to Philip McLauchlan, Simon
Julier and John Leonard for discussions.
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Discussion

1. Daniel Cremers, University of Mannheim: I have one question about
the term “process noise”. You mentioned that you think about it as process
noise rather than random noise. I was wondering if that’s just terminology
or does it help you in solving the problems that you want to solve ?
Andrew Davison: Maybe not, I think it’s just something I realized. Noise
accounts for the things you don’t attempt to model in your system rather
than actual random events. People always talk about noise and it makes you
think of random things going on in the world but if you wanted to, you could
model things better. For instance in our robot application you have process
noise which represents the uncertainty in where the robot is after it’s moved
somewhere measuring its position by counting the number of times its wheels
have turned. Something that leads to uncertainty in that situation is that the
wheels sometimes slip on the floor. If we wanted to we could have a model
of the floor, the wheel and the tyre and we could actually make that so that
it wasn’t uncertain but something that was modeled. We always model up
to a certain level and then the rest we don’t model, we choose not to. That’s
the role of process noise as I see it.
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1 Introduction

The topic of the third panel session was extended environments. Tomas Pajdla
chaired the discussion and J.P.Mellor, C.J.Taylor, Tomas Brodsky and Andrew
Davision also participated. Each panelist discussed the issues that he felt were
going to be important for further developments in the modeling of extended
environments. The panel session was followed by some questions and discussions
which are also reported here.

2 Tomas Pajdla

Let me start the discussion about extended environments by saying a few words
as the introduction. I will give my view. What are “extended environments”?
We have seen examples of large outdoor environments or complex indoor envi-
ronments (which we have not actually seen but which relates maybe to the last
talk). We have also heard about some intrinsic problems, related to extended
environments, like the reconstruction of large structures and building maps and
navigation.

Actually it is interesting to see that there was a unifying theme about all the
presentations. This was the use of certain non-classical cameras. In particular
omnidirectional sensors. We saw the use of a catadioptric omnidirectional sensor,
a special compound eye which can be also considered to be omnidirectional, and
also the use of mosaicing which produces images that could be obtained from an
omnidirectional sensor.

Having in mind these specifics of extended environments and the sensors
which are used, we can ask which are the existing techniques which we should

M. Pollefeys et al. (Eds.): SMILE 2000, LNCS 2018, pp. 235–241, 2001.
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use and how to deal with extended environments using them. And then of course,
what are new techniques which we don’t know yet and also what are the main
challenges?

I think that there are two important issues to address. First is error accu-
mulation because the environment is large and we have many images, so we
accumulate errors. We saw that there was a successful use of omnidirectional
images in order to help stabilize ego-motion and camera localization. Of course
it is a question of whether this is enough or if we still need some GPS.

Secondly, we need to work with a very large amount of imagery and complex
models. So the question is if, for example, omnidirectional images can help us
in this. They probably can but we still face the problem that we either have
high frame-rates and low resolution (for catadioptric) or high resolution but low
frame-rate (for mosaics).

(a)

(b)

Fig. 1. (a) An original image of a mirror. (b) The warped image. Resolution in the
upper part of the image (b) is lower because the upper part is transformed from the
center of the image (a) where a small number of pixels covers a large view angle.

I would like to show two challenges which I believe are related to catadioptric
sensors because this is my field and I can comment on that. One is related to
a question which has been asked already: what about changing the resolution
over the catadioptric sensor? Figure 1(a) shows an image of a mirror, taken by
an ordinary CCD camera. In this case, in the center of the image, fewer pixels—
which are in a square raster—cover the same view angle as do more pixels at
the periphery. Therefore, in the center, we get rather low resolution compared
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(a) (b) (c)

Fig. 2. A curved mirror (a) and a variant-resolution vision sensor (Courtesy of Giulio
Sandini, Lira Lab, Genoa) (b) can provide even-resolution omnidirectional catadioptric
cameras (c).

to the periphery as may be observed in the upper part of the warped image
in Figure 1(b) and this, of course, may be not desirable. So the hope and the
challenge is to build a sensor which will somehow combine a catadioptric camera
with a special CMOS sensor with varying resolution and these two components
may be matched together, as shown on Figure 2, so we get even resolution.

There is another thing I believe which may be seen as a challenge and this is
to combine omnidirectional and ordinary images to make more complete recon-
structions of environments. In order to do so, we have to model omnidirectional
images correctly. The reason why they do not have the same model as normal
images—and here of course we assume we have an omnidirectional camera with
one center of projection—is that an omnidirectional image actually can’t be mod-
eled as a projective plane. In a projective plane, each ray is modeled by one line.
However, in an omnidirectional image each line is covered by two opposite rays.
Each ray may see a different point in space and therefore cannot be modeled by
the same line. Another representation of an omnidirectional image, an oriented
projective plane, is called for to do reconstructions from omnidirectional images
correctly.

3 J. P. Mellor

I see four areas that I think will have a significant impact on how we approach
extended environments. Some of these came up a bit earlier.

First, one of the most exciting developments are the new sources of data
that are appearing. The omnidirectional image can be considered a new source
of data that we are just now exploring. The work I presented uses both omnidi-
rectional images (created by mosaicing individual images with the same center of
projection) and GPS which is also becoming practical. Other interesting devices
such as inertial sensors and Z-cam are getting small enough and cheap enough
that they can be practically used. There are lots of exciting sensing technolo-
gies on the horizon and we should combine them with our vision work. They
complement each other well.
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Second is the amount of data versus the complexity of the system. This was
mentioned briefly earlier. There is a trade-off between the amount of data and
the complexity of the system (i.e. knowledge that you need to pour into it). The
work that I did falls very much on the “large quantities of data, dumb systems”
side. I’m not sure where we should be along this continuum, but I think we
certainly need to explore the trade-offs.

Third is modeling. We heard, in Paul Debevec’s work, some of the emphasis
on reality. We also heard about the trade-off between geometry and image-based
rendering. There are some interesting ways to do modeling that need to be
explored. Perhaps a combination of geometric and procedural graphics. The
graphics community has a lot to offer in this area.

Finally, systems. We need to put all these things together and get useful
tools. David Nister is very interested in having a commercial product that the
average person can just plug into his PC and use. A person who would know how
to use a mouse, but probably doesn’t know anything about computer vision. I
think that if we just push in this direction, we’ll get usable, robust systems and
that’s a good direction for us to be headed.

4 C. J. Taylor

Just two things I would like to mention:
The number one thing on my wish list is a decent real-time tracker for large

environments. One of the things you see in extended environments is that they
really push the state of the art of what you can do. We’re not talking about
a hundred frames, we’re talking about thousands of frames. We’re not talking
about one foot, we’re talking about a hundred feet. I think it could be interesting
to see if we can extend our methods to deal with this.

The other thing that is important for immersive environments in particular
is the issue of detail. What I did was to start of with a plenoptic approach. It’s
the easiest way to get the fine details. Of course, we would like to be able to do
interpolation and fly around a bit. But I think in design and representations it
is important to keep in mind that recovering and representing detail is probably
going to be the most important part. People will live with large areas being
modeled as flat walls, but if you miss some important details they start killing
you. I think it will be interesting to go forward.

5 Tomas Brodsky

I’d like to mention several things. One, alternative models of space. The strat-
ification into projective, affine and Euclidean spaces yielded many interesting
results, but it is well known that humans do not build Euclidean models. For ex-
ample, the visual space gets distorted by Cremona transformations. What might
be interesting for the future is to study what models of space should be used.

Other things we want to look at are new camera models, similar to what I
showed today. Especially if you synchronize camera networks, you can do many
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interesting things. For example, many people are interested in modeling dynamic
human motion. Figure 3 shows some recent results from Maryland. In the input
videos Brad Stuart shows off his martial arts skills. He’s working on building
dynamic models from many views. The first result uses space carving for each
frame separately, but the second model in addition considers 3D motion fields
and motion constraints in many views and you can see that the second model
looks much better.

Fig. 3. Building dynamic models from many views

6 Andrew Davison

Maybe I can say something briefly about extended environments with respect
to localization rather than map-building. If you’re interested in, for instance,
the position of a camera as it moves through the world, then, obviously, you’re
always going to be drifting away from your original coordinate frame if you’re
only ever measuring new features. For instance if you can see a certain number
of features when you turn your system on and then when you move your camera
a little bit, those features go out of view. Now your camera’s position is some-
what uncertain and you initialize new features. The positions of those features
are also going to be uncertain about the amount your camera is uncertain. By
measuring those features as many times as you like, you’ll never improve beyond
that uncertainty. So you move on again and find some more new features. Your
uncertainty is always going to grow. The only way you can reduce that is if you
come back and look at the features you saw originally. Let’s think about the
system of head-tracking where you mount a camera on someone’s head. If you
just have a small field-of-view (normal camera), then if the person’s going to
move significantly, you’re probably going to lose those features. I think it would
be quite advantageous in that situation to use a wide-angle fish-eye camera or
something like that, because from my work in active vision I’ve found that the
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big advantage active vision gives you is this huge field of view, you can match
things over well over 180 degrees. You can see a feature, turn your robot 180
degrees and still see the same feature. So you can measure your rotation very
accurately, which you couldn’t do with a narrow field-of-view camera.

In active vision we get the best of both worlds. We can have very wide field-of-
view and high resolution at every point because we just move our normal camera
to look at each point. But if you had a fish-eye camera there’s going to be some
kind of trade-off. The disadvantage of active vision is that it’s not efficient. You
have to always move your cameras to look at different things whereas with a
fish-eye camera you can look at everything at the same time. I think on the
whole, the thing about being able to see features for longer is more important
than the resolution issue.

Discussion

1. Joss Knight, University of Oxford: I wonder if there isn’t a bigger gap
between SFM and sequential localization than map building? I personally
can not think of a huge number of applications in which you want to acquire
dense structure models in real time. Usually what you want to do in real time
is some kind of AI task. Mostly you want to localize yourself which we’ve
established only needs a very small amount of data to do well. It doesn’t
need dense models and if you want to interact with something, you might
need more dense information about your environment but not about things
you’re not currently interested in.
Andrew Davison: I think that’s a good point. I’ve always been more inter-
ested in localization. You can construct a kind of map maintenance criterion
in which you’re interested. For instance in my active vision localization: the
robot should always be able to see at least two different features from where
it is. If at a certain position it couldn’t see two, then it would initialize a new
one into its map. That’s probably enough information for localization. Obvi-
ously it’s a different problem if you try to build dense maps. The uncertainty
information is still the same stuff but your focus is elsewhere. Maybe the big
difference is that in localization you are potentially interested in extended
times of driftless operation rather than extended environments.
Joss Knight: I guess it’s also worth pointing out that you have to remember
that problems like getting pose for augmented reality is really a localization
problem, not a dense SFM problem. Perhaps we try to use too much infor-
mation for things like AR because all you really want to know is, say, the
position of a couple of planes where you want to place your object and be
well localized in terms of pose.

2. Andrew Fitzgibbon, University of Oxford: I think the question is more
that if we’re dealing with huge sequences, we have to deal with the issue of
“forgetting”. Andrew Davison is limited to, say, 100 features that can be
tracked, and at some point he must forget some of his features in order to
maintain constant speed. If you’re going to take 20000 images, do you think
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that the model should use all of those images or are you going to drop some,
at some stage?
Andrew Davison: About forgetting, that’s certainly important! You will
always have an upper limit on the amount of features you can keep in your
proper full covariance, good quality map. There have been many approaches
suggested, like splitting up a big map in submaps. Then you can do good
quality localization within that submap when you’re in the area. You can
keep the information about the other maps on some kind of back burner or
you just store approximate information on how those submaps relate to each
other.
C.J. Taylor: What I really want to do is solve the recognition problem in-
stead of the reconstruction problem, the reason being that the environments
we are dealing with are highly structured. It is really about recognizing that
there are planes, that there are geometric surfaces. And if you could somehow
get the system to do that automatically, that would solve your problem. You
really start cutting down your number of parameters drastically. It would be
great, tracking a wall rather than a cloud of points. When new features are
coming out, you would test against this hypothesis.

3. Marc Pollefeys: I’d like to raise another issue: when you model large en-
vironments, some parts are not interesting and you can model them very
roughly. Other parts are very interesting and you don’t want to miss them
and you want to model them on a higher resolution maybe. There are also
issues about representation. You’re not in a homogeneous representation
anymore. Are there comments on this?
Tomas Brodsky: The question is: how do you recognize which parts are
interesting?
Marc Pollefeys: Not only that. That’s even harder if the computer has to
recognize this. But what if you want to model a monument for instance and
there is a main statue. Then you want to model this statue in a lot of detail,
so you’re going to acquire more data there. How to deal with that in your
modeling efficiently and have this kind of representation which at some level
is more accurate than at another ? I think these issues are very important
for extended environments.
J. P. Mellor: You’re right—it’s very important. We assumed that somebody
smart was taking the images. The density of the data affects the density of
the sampling in the model that you get out. It would be very nice to have
some automatic scheme for this. If the level-of-detail for a certain part was
not sufficient, the system would say: go out and get some more data, more
photographs.
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