A Complete
Guide to

A Complete Guide to
Programming in C++

Ulla Kirch-Prinz
Peter Prinz

JONES AND BARTLETT PUBLISHERS

A Complete Guide to
Programming in C++

Ulla Kirch-Prinz

Peter Prinz

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
OOOOOOOOOOOOOOOOOOOOOOOOOOOO

World Headquarters

Jones and Bartlett Publishers Jones and Bartlett Publishers Jones and Bartlett Publishers
40 Tall Pine Drive Canada International

Sudbury, MA 01776 2406 Nikanna Road Barb House, Barb Mews
978-443-5000 Mississauga, ON L5C 2W6 London W6 7PA
info@jbpub.com CANADA UK

www.jbpub.com

Copyright © 2002 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in
any form, electronic or mechanical, including photocopying, recording, or any information storage or retrieval
system, without written permission from the copyright owner.

Cover Image: Stones on shore-line and yellow leaf, Bjorkliden, Sweden, by Peter Lilja

Library of Congress Cataloging-in-Publication Data

Prinz, Peter.
[C++ Lernen und professionell anwenden. English]
A complete guide to programming in C++ / Peter Prinz, Ulla Kirch-Prinz; translated by lan Travis.
p. cm.
ISBN: 0-7637-1817-3
1. C++ (Computer program language) I. Kirch-Prinz, Ulla. II. Title.

QA76.73.C153 P73713 2001
005.13'3—dc21 2001029617
2090

Chief Executive Officer: Clayton Jones

Chief Operating Officer: Don W. Jones, Jr.
V.P., Managing Editor: Judith H. Hauck

V.P., Design and Production: Anne Spencer
V.P., Manufacturing and Inventory Control: Therese Briuer
Editor-in-Chief: Michael Stranz

Development and Product Manager: Amy Rose
Marketing Manager: Nathan Schultz
Production Assistant: Tara McCormick

Cover Design: Night & Day Design
Composition: Northeast Compositors

Text Design: Mary McKeon

Printing and Binding: Courier Westford

Cover printing: John Pow Company, Inc.

This book was typeset in QuarkXpress 4.11 on a Macintosh G4. The font families used were Goudy, Gill Sans,
Courier, Rubino Serif, and Seven Sans. The first printing was printed on 50 lb. Finch Opaque.

Printed in the United States of America

05 04 03 02 01 109876543121

www.jbpub.com

Dedicated to our children, Vivi and Jeany

This page intentionally left blank

preface

This book was written for readers interested in learning the C++ programming
language from scratch, and for both novice and advanced C++ programmers
wishing to enhance their knowledge of C++. It was our goal from the begin-
ning to design this text with the capabilities of serving dual markets, as a text-
book for students and as a holistic reference manual for professionals.

The C++ language definition is based on the American National Stan-
dards Institute ANSI Standard X3]J16. This standard also complies with ISO
norm 14882, which was ratified by the International Standardization Organi-
zation in 1998. The C++ programming language is thus platform-independent
in the main with a majority of C++ compilers providing ANSI support. New
elements of the C++ language, such as exception handling and templates, are
supported by most of the major compilers. Visit the Jones and Bartlett web site
at www.jbpub.com for a listing of compilers available for this text.

The chapters in this book are organized to guide the reader from elemen-
tary language concepts to professional software development, with in-depth
coverage of all the C++ language elements en route. The order in which these
elements are discussed reflects our goal of helping the reader to create useful
programs at every step of the way.

www.jbpub.com

vi

PREFACE

Each double-page spread in the book is organized to provide a description of the lan-
guage elements on the right-hand page while illustrating them by means of graphics and
sample programs on the left-hand page. This type of visual representation offered by each
spread will provide students and professionals with an unmatched guide throughout the
text. The sample programs were chosen to illustrate a typical application for each lan-
guage element. In addition, filter programs and case studies introduce the reader to a
wide range of application scenarios.

To gain command over a programming language, students need a lot of experience in
developing programs. Thus, each chapter includes exercises followed by sample solu-
tions, allowing the reader to test and enhance his or her performance and understanding
of C++.

The appendix provides further useful information, such as binary number representa-
tion, pre-processor directives, and operator precedence tables, making this book a well-
structured and intelligible reference guide for C++ programmers.

In order to test and expand your acquired knowledge, you can download sample pro-
grams and solutions to the exercises at:

http://completecpp.jbpub.com

Content Organization

Chapter 1 gives a thorough description of the fundamental characteristics of the object-
oriented C++ programming language. In addition, students are introduced to the steps
necessary for creating a fully functional C++ program. Many examples are provided to
help enforce these steps and to demonstrate the basic structure of a C++ program.

Chapter 2 provides a complete introduction to the basic types and objects used by
C++ programs. Integral types and constants, fundamental types, and Boolean constants
are just a few of the topics discussed.

Chapter 3 describes how to declare and call standard functions. This chapter also
teaches students to use standard classes, including standard header files. In addition, stu-
dents work with string variables for the first time in this chapter.

Chapter 4 explains the use of streams for input and output, with a focus on formatting
techniques. Formatting flags and manipulators are discussed, as are field width, fill char-
acters, and alignment.

Chapter 5 introduces operators needed for calculations and selections. Binary, unary,
relational, and logical operators are all examined in detail.

Chapter 6 describes the statements needed to control the flow of a program. These
include loops with while, do-while, and for; selections with if-else, switch, and the condi-
tional operator; and jumps with goto, continue, and break.

Chapter 7 provides a thorough introduction to the definition of symbolic constants
and macros, illustrating their significance and use. Furthermore, a comprehensive exami-
nation of standard macros for character handling is included.

Chapter 8 introduces implicit type conversions, which are performed in C++ when-
ever different arithmetic types occur in expressions. Additionally, the chapter explores
an operator for explicit type conversion.

http://completecpp.jbpub.com

PREFACE vii

Chapter 9 takes an in-depth look at the standard class string, which is used to repre-
sent strings. In addition to defining strings, the chapter looks at the various methods of
string manipulation. These include inserting and erasing, searching and replacing, com-
paring, and concatenating strings.

Chapter 10 describes how to write functions of your own. The basic rules are covered,
as are passing arguments, the definition of inline functions, overloading functions and
default arguments, and the principle of recursion.

Chapter 11 gives a thorough explanation of storage classes for objects and functions.
Object lifetime and scope are discussed, along with global, static, and auto objects.
Namespaces and external and static functions are also included in the discussion.

Chapter 12 explains how to define references and pointers and how to use them as
parameters and/or return values of functions. In this context, passing by reference and
read-only access to arguments are introduced.

Chapter 13 provides a complete description of how classes are defined and how
instances of classes, or objects, are used. In addition, structs and unions are introduced as
examples of special classes.

Chapter 14 describes how constructors and destructors are defined to create and
destroy objects. Also discussed are how inline methods, access methods, and read-only
methods can be used. Furthermore, the chapter explains the pointer this, which is avail-
able for all methods, and what you need to pay attention to when passing objects as argu-
ments or returning objects.

Chapter 15 gives a complete explanation of member objects and how they are initial-
ized, and of data members that are created only once for all the objects in a class. In addi-
tion, this chapter describes constant members and enumerated types.

Chapter 16 takes an in-depth look at how to define and use arrays. Of particular inter-
est are one-dimensional and multidimensional arrays, C strings, and class arrays.

Chapter 17 describes the relationship between pointers and arrays. This includes
pointer arithmetic, pointer versions of functions, pointers as return values and read-only
pointers, and pointer arrays. Students learn that operations that use C strings illustrate
how to use pointers for efficient programming, and that string access via the command
line of an application program is used to illustrate pointer arrays.

Chapter 18 explains sequential file access using file streams. Students will develop an
understanding of how file streams provide simple and portable file handling techniques.

Chapter 19 provides a complete description of the various uses of overloaded opera-
tors. Arithmetic operators, comparisons, the subscript operator, and the shift operators
for input and output are overloaded to illustrate the appropriate techniques. In addition,
the concept of friend functions, which is introduced in this context, is particularly
important for overloading operators. Students learn how overloading operators allows
them to apply existing operators to objects of class type.

Chapter 20 discusses how implicit type conversion occurs in C++ when an expression
cannot be compiled directly but can be compiled after applying a conversion rule. The
programmer can stipulate how the compiler will perform implicit type conversion for
classes by defining conversion constructors and functions. Finally, the chapter discusses
ambiguity that occurs due to type conversion and how to avoid it.

viii

PREFACE

Chapter 21 describes how a program can allocate and release memory dynamically in
line with current memory requirements. Dynamic memory allocation is an important fac-
tor in many C++ programs, and the following chapters contain several case studies to
help students review the subject.

Chapter 22 explains how to implement classes containing pointers to dynamically
allocated memory. These include your own copy constructor definition and overloading
the assignment operator. A class designed to represent arrays of any given length is used
as a sample application.

Chapter 23 provides a thorough description of how derived classes can be constructed
from existing classes by inheritance. In addition to defining derived classes, this chapter
discusses how members are redefined, how objects are constructed and destroyed, and
how access control to base classes can be realized.

Chapter 24 discusses implicit type conversion within class hierarchies, which occurs
in the context of assignments and function calls. Explicit type casting in class hierar-
chies is also described, paying particular attention to upcasting and downcasting.

Chapter 25 gives a complete explanation of how to develop and manage polymorphic
classes. In addition to defining virtual functions, dynamic downcasting in polymorphic
class hierarchies is introduced.

Chapter 26 describes how defining pure virtual methods can create abstract classes
and how you can use abstract classes at a polymorphic interface for derived classes. To
illustrate this, an inhomogeneous list, that is, a linked list whose elements can be of vari-
ous class types, is implemented.

Chapter 27 describes how new classes are created by multiple inheritance and
explains their uses. Besides introducing students to the creation and destruction of
objects in multiply-derived classes, virtual base classes are depicted to avoid ambiguity in
multiple inheritance.

Chapter 28 explains how a C++ program uses error-handling techniques to resolve
error conditions. In addition to throwing and catching exceptions, the chapter also
examines how exception specifications are declared and exception classes are defined. In
addition, the use of standard exception classes is discussed.

Chapter 29 examines random access to files based on file streams, and options for
querying file state. Exception handling for files is discussed as well. The chapter illus-
trates how to make objects in polymorphic classes persistent, that is, how to save them in
files. The applications introduced in this chapter include simple index files and hash
tables.

Chapter 30 provides a thorough explanation of the advanced uses of pointers. These
include pointers to pointers, functions with a variable number of arguments, and pointers
to functions. In addition, an application that defines a class used to represent dynamic
matrices is introduced.

Chapter 31 describes bitwise operators and how to use bit masks. The applications
included demonstrate calculations with parity bits, conversion of lowercase and capital
letters, and converting binary numbers. Finally, the definition of bit-fields is introduced.

Chapter 32 discusses how to define and use function and class templates. In addition,
special options, such as default arguments, specialization, and explicit instantiation, are

PREFACE ix

discussed. Students learn that templates allow the construction of functions and classes
based on types that have not yet been stated. Thus, templates are a powerful tool for
automating program code generation.

Chapter 33 explains standard class templates used to represent containers for more
efficient management of object collections. These include sequences, such as lists and
double ended queues; container adapters, such as stacks, queues, and priority queues;
associative containers, such as sets and maps; and bitsets. In addition to discussing how
to manage containers, the chapter also looks at sample applications, such as bitmaps for
raster images, and routing techniques.

Additional Features

Chapter Goals A concise chapter introduction, which contains a description of the
chapter’s contents, is presented at the beginning of each chapter. These summaries also
provide students with an idea of the key points to look for throughout the chapter.

Chapter Exercises Each chapter contains exercises, including programming problems,
designed to test students’ knowledge and understanding of the main ideas. The exercises
also provide reinforcement for key chapter concepts. Solutions are included to allow
students to check their work immediately and correct any possible mistakes.

(ase Studies Every chapter contains a number of case studies that were designed to
introduce the reader to a wide range of application scenarios.

Notes This feature provides students with helpful tips and information useful to learning
C++. Important concepts and rules are highlighted for additional emphasis and easy
access.

Hints These are informative suggestions for easier programming. Also included are
common mistakes and how to avoid making them.

Acknowledgements

Our thanks go out to everyone who helped produce this book, particularly to

Ian Travis, for his valuable contributions to the development of this book.

Alexa Doehring, who reviewed all samples and program listings, and gave many valuable
hints from the American perspective.

Michael Stranz and Amy Rose at Jones and Bartlett Publishers, who managed the pub-
lishing agreement and the production process so smoothly.

Our children, Vivi and Jeany, who left us in peace long enough to get things finished!
And now all that remains is to wish you, Dear Reader, lots of fun with C++!

Ulla Kirch-Prinz

Peter Prinz

This page intentionally left blank

contents

Chapter |

Chapter 2

Fundamentals |

Development and Properties of C++ 2
Object-Oriented Programming 4
Developing a C++ Program 6

A Beginner’s C++ Program 8
Structure of Simple C++ Programs 10
Exercises 12

Solutions 14

Fundamental Types, Constants, and Variables

Fundamental Types 16

Constants 22

Escape Sequences 26

Names 28

Variables 30

The Keywords const and volatile 32
Exercises 34

Solutions 36

15

Xi

Xii CONTENTS

Chapter 3 Using Functions and Classes 39

Declaring Functions 40
Function Calls 42

Type void for Functions 44
Header Files 46

Standard Header Files 48
Using Standard Classes 50
Exercises 52

Solutions 54

Chapter 4 Input and Output with Streams 57

Streams 58

Formatting and Manipulators 60

Formatted Output of Integers 62

Formatted Output of Floating-Point Numbers 64
Output in Fields 66

Output of Characters, Strings, and Boolean Values 68
Formatted Input 70

Formatted Input of Numbers 72

Unformatted Input/Output 74

Exercises 76

Solutions 78

Chapter 5 Operators for Fundamental Types 8l

Binary Arithmetic Operators 82
Unary Arithmetic Operators 84
Assignments 86

Relational Operators 88
Logical Operators 90
Exercises 92

Solutions 94

Chapter 6 Control Flow 95

The while Statement 96

The for Statement 98

The do-while Statement 102

Selections with if-else 104

Else-if Chains 106

Conditional Expressions 108

Selecting with switch 110

Jumps with break, continue, and goto 112

Exercises 114
Solutions 116

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

CONTENTS

Symbolic Constants and Macros 119
Macros 120

Macros with Parameters 122

Working with the #define Directive 124
Conditional Inclusion 126

Standard Macros for Character Manipulation 128
Redirecting Standard Input and Output 130
Exercises 132

Solutions 134

Converting Arithmetic Types 139

Implicit Type Conversions 140

Performing Usual Arithmetic Type Conversions 142
Implicit Type Conversions in Assignments 144
More Type Conversions 146

Exercises 148

Solutions 150

The Standard Class string 153

Defining and Assigning Strings 154
Concatenating Strings 156

Comparing Strings 158

Inserting and Erasing in Strings 160
Searching and Replacing in Strings 162
Accessing Characters in Strings 164
Exercises 166

Solutions 168

Functions 171

Significance of Functions in C++ 172
Defining Functions 174

Return Value of Functions 176
Passing Arguments 178

Inline Functions 180

Default Arguments 182

Overloading Functions 184

Recursive Functions 186

Exercises 188

Solutions 191

Storage Classes and Namespaces 197

Storage Classes of Objects 198
The Storage Class extern 200

xiii

Xiv

CONTENTS

Chapter 12

Chapter 13

Chapter 14

The Storage Class static 202

The Specifiers auto and register 204
The Storage Classes of Functions 206
Namespaces 208

The Keyword using 210

Exercises 212

Solutions 216

References and Pointers 221

Defining References 222

References as Parameters 224
References as Return Value 226
Expressions with Reference Type 228
Defining Pointers 230

The Indirection Operator 232
Pointers as Parameters 234

Exercises 236

Solutions 238

Defining Classes 243

The Class Concept 244
Defining Classes 246
Defining Methods 248
Defining Objects 250
Using Objects 252
Pointers to Objects 254
Structs 256

Unions 258

Exercise 260
Solution 262

Methods 265

Constructors 266

Constructor Calls 268
Destructors 270

Inline Methods 272

Access Methods 274

const Objects and Methods 276
Standard Methods 278

this Pointer 280

Passing Objects as Arguments 282
Returning Objects 284
Exercises 286

Solutions 290

Chapter 15

Chapter 16

Chapter 17

Chapter 18

CONTENTS

Member Objects and Static Members 297

Member Objects 298

Member Initializers 300

Constant Member Objects 302
Static Data Members 304
Accessing Static Data Members 306
Enumeration 308

Exercises 310

Solutions 314

Arrays 321

Defining Arrays 322
Initializing Arrays 324
Arrays 326

Class Arrays 328
Multidimensional Arrays 330
Member Arrays 332
Exercises 334

Solutions 338

Arrays and Pointers 349

Arrays and Pointers (1) 350
Arrays and Pointers (2) 352
Pointer Arithmetic 354

Arrays as Arguments 356
Pointer Versions of Functions 358
Read-Only Pointers 360
Returning Pointers 362

Arrays of Pointers 364
Command Line Arguments 366
Exercises 368

Solutions 372

Fundamentals of File Input and Output 379

Files 380

File Streams 382

Creating File Streams 384

Open Modes 386

Closing Files 388

Reading and Writing Blocks 390
Object Persistence 392
Exercises 394

Solutions 398

XV

Xvi

CONTENTS

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Overloading Operators 411

Generals 412

Operator Functions (1) 414
Operator Functions (2) 416

Using Overloaded Operators 418
Global Operator Functions 420
Friend Functions 422

Friend Classes 424

Overloading Subscript Operators 426
Overloading Shift-Operators for [/O 428
Exercises 430

Solutions 432

Type Conversion for Classes 441

Conversion Constructors 442
Conversion Functions 444
Ambiguities of Type Conversions 446
Exercise 448

Solution 450

Dynamic Memory Allocation 453

The Operator new 454
The Operator delete 456
Dynamic Storage Allocation for Classes

458

Dynamic Storage Allocation for Arrays 460

Application: Linked Lists 462
Representing a Linked List 464
Exercises 466

Solutions 468

Dynamic Members 477

Members of Varying Length 478
Classes with a Dynamic Member 480
Creating and Destroying Objects 482
Implementing Methods 484

Copy Constructor 486

Assignment 488

Exercises 490

Solutions 492

Inheritance 499

Concept of Inheritance 500
Derived Classes 502

Chapter 24

Chapter 25

Chapter 26

Chapter 27

CONTENTS

Members of Derived Classes 504

Member Access 506

Redefining Members 508

Constructing and Destroying Derived Classes 510
Objects of Derived Classes 512

Protected Members 514

Exercises 516

Solutions 520

Type Conversion in Class Hierarchies 529

Converting to Base Classes 530

Type Conversions and Assignments 532
Converting References and Pointers 534
Explicit Type Conversions 536
Exercises 538

Solutions 540

Polymorphism 543

Concept of Polymorphism 544

Virtual Methods 546

Destroying Dynamically Allocated Objects 548
Virtual Method Table 550

Dynamic Casts 552

Exercises 554

Solutions 558

Abstract Classes 565

Pure Virtual Methods 566

Abstract and Concrete Classes 568

Pointers and References to Abstract Classes 570
Virtual Assignment 572

Application: Inhomogeneous Lists 574
Implementing an Inhomogeneous List 576
Exercises 578

Solutions 580

Multiple Inheritance 587

Multiply-Derived Classes 588
Multiple Indirect Base Classes 590
Virtual Base Classes 592
Constructor Calls 594

Initializing Virtual Base Classes 596
Exercises 598

Solutions 602

xvii

xviii

CONTENTS

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Exception Handling 607

Traditional Error Handling 608
Exception Handling 610

Exception Handlers 612

Throwing and Catching Exceptions 614
Nesting Exception Handling 616
Defining Your Own Error Classes 618
Standard Exception Classes 620
Exercises 622

Solutions 626

More About Files 637

Opening a File for Random Access 638
Positioning for Random Access 640
File State 644

Exception Handling for Files 646
Persistence of Polymorphic Objects 648
Application: Index Files 652
Implementing an Index File 654
Exercises 656

Solutions 660

More About Pointers 681

Pointer to Pointers 682

Variable Number of Arguments 684
Pointers to Functions 688

Complex Declarations 690
Defining Typenames 692
Application: Dynamic Matrices 694
Exercises 696

Solutions 698

Manipulating Bits 705

Bitwise Operators 706
Bitwise Shift Operators 708
Bit Masks 710

Using Bit Masks 712
Bit-Fields 714

Exercises 716

Solutions 718

Templates 721

Function and Class Templates 722
Defining Templates 724

Chapter 33

CONTENTS

Template Instantiation 726
Template Parameters 728

Template Arguments 730
Specialization 732

Default Arguments of Templates 734
Explicit Instantiation 736

Exercises 738

Solutions 742

Containers 749

Container Types 750
Sequences 752

[terators 754

Declaring Sequences 756
Inserting in Sequences 758
Accessing Objects 760
Length and Capacity 762
Deleting in Sequences 764
List Operations 766
Associative Containers 768
Sets and Multisets 770
Maps and Multimaps 772
Bitsets 774

Exercise 778

Solution 780

Appendix 783
Binary Numbers 784

Preprocessor Directives 787
Pre-Defined Standard Macros 792
Binding C Functions 793
Operators Overview 795
Operator Precedence Table 797
ASCII Code Table 798

Screen Control Sequences 800
Literature 801

Index 803

Xix

This page intentionally left blank

chapter

Fundamentals

This chapter describes the fundamental characteristics of the object-
oriented C++ programming language. In addition, you will be introduced
to the steps necessary for creating a fully functional C++ program.The
examples provided will help you retrace these steps and also

demonstrate the basic structure of a C++ program.

2 = CHAPTER | FUNDAMENTALS

® DEVELOPMENT AND PROPERTIES OF C++

Characteristics

C++

Cc

-universal

-efficient

-close to the machine
-portable

OOP

-data abstraction
-data hiding
-inheritance
-polymorphism

Extensions

-exception handling
-templates

DEVELOPMENT AND PROPERTIES OF C++ 3

[1 Historical Perspective

The C++ programming language was created by Bjarne Stroustrup and his team at Bell
Laboratories (AT&T, USA) to help implement simulation projects in an object-ori-
ented and efficient way. The earliest versions, which were originally referred to as “C
with classes,” date back to 1980. As the name C++ implies, C++ was derived from the C
programming language: ++ is the increment operator in C.

As early as 1989 an ANSI Committee (American National Standards Institute) was
founded to standardize the C++ programming language. The aim was to have as many
compiler vendors and software developers as possible agree on a unified description of
the language in order to avoid the confusion caused by a variety of dialects.

In 1998 the ISO (International Organization for Standardization) approved a stan-
dard for C++ (ISO/IEC 14882).

[1 Characteristics of C++

C++ is not a purely object-oriented language but a hybrid that contains the functionality

of the C programming language. This means that you have all the features that are avail-
able in C:

® universally usable modular programs
m efficient, close to the machine programming
m portable programs for various platforms.

The large quantities of existing C source code can also be used in C++ programs.
C++ supports the concepts of object-oriented programming (or OOP for short),
which are:

data abstraction, that is, the creation of classes to describe objects
data encapsulation for controlled access to object data
inheritance by creating derived classes (including multiple derived classes)

polymorphism (Greek for multiform), that is, the implementation of instructions
that can have varying effects during program execution.

Various language elements were added to C++, such as references, templates, and excep-
tion handling. Even though these elements of the language are not strictly object-ori-
ented programming features, they are important for efficient program implementation.

4 = CHAPTER | FUNDAMENTALS

m OBJECT-ORIENTED PROGRAMMING

Traditional concept

function1 \
/ -
function2
function3 /
IR
Object-oriented concept
object1 object2

Properties

Capacities

Properties

Capacities

OBJECT-ORIENTED PROGRAMMING 5

[Traditional Procedural Programming

In traditional, procedural programming, data and functions (subroutines, procedures) are
kept separate from the data they process. This has a significant effect on the way a pro-
gram handles data:

m the programmer must ensure that data are initialized with suitable values before
use and that suitable data are passed to a function when it is called

m if the data representation is changed, e.g. if a record is extended, the correspon-
ding functions must also be modified.

Both of these points can lead to errors and neither support low program maintenance
requirements.

[1 Objects

Object-oriented programming shifts the focus of attention to the objects, that is, to the
aspects on which the problem is centered. A program designed to maintain bank
accounts would work with data such as balances, credit limits, transfers, interest calcula-
tions, and so on. An object representing an account in a program will have properties
and capacities that are important for account management.

OOP objects combine data (properties) and functions (capacities). A class defines a
certain object type by defining both the properties and the capacities of the objects of
that type. Objects communicate by sending each other “messages,” which in turn acti-
vate another object’s capacities.

[1 Advantages of OOP

Object-oriented programming offers several major advantages to software development:

m reduced susceptibility to errors: an object controls access to its own data. More
specifically, an object can reject erroneous access attempts

m easy re-use: objects maintain themselves and can therefore be used as building
blocks for other programs

= low maintenance requirement: an object type can modify its own internal data
representation without requiring changes to the application.

6 = CHAPTER | FUNDAMENTALS

m DEVELOPING A C++ PROGRAM

Translating a C++ program

Editor l

Source file

Header file

|

file

Compiler
A
Object file
Standard
/ Iibrary
Linker
\ Other
libraries,
object files
\ 4
Executable

DEVELOPING A C++ PROGRAM 7

The following three steps are required to create and translate a C++ program:

1. First, a text editor is used to save the C++ program in a text file. In other words,
the source code is saved to a source file. In larger projects the programmer will nor-
mally use modular programming. This means that the source code will be stored in
several source files that are edited and translated separately.

2. The source file is put through a compiler for translation. If everything works as
planned, an object file made up of machine code is created. The object file is also
referred to as a module.

3. Finally, the linker combines the object file with other modules to form an exe-
cutable file. These further modules contain functions from standard libraries or
parts of the program that have been compiled previously.

It is important to use the correct file extension for the source file’s name. Although
the file extension depends on the compiler you use, the most commonly found file exten-
sions are . cpp and .cc.

Prior to compilation, header files, which are also referred to as include files, can be
copied to the source file. Header files are text files containing information needed by var-
ious source files, for example, type definitions or declarations of variables and functions.
Header files can have the file extension .h, but they may not have any file extension.

The C++ standard library contains predefined and standardized functions that are
available for any compiler.

Modern compilers normally offer an integrated software development environment, which
combines the steps mentioned previously into a single task. A graphical user interface is
available for editing, compiling, linking, and running the application. Moreover, addi-
tional tools, such as a debugger, can be launched.

If the source file contains just one syntax error, the compiler will report an error. Additional error
messages may be shown if the compiler attempts to continue despite having found an error. So when
you are troubleshooting a program, be sure to start with the first error shown.

In addition to error messages, the compiler will also issue warnings. A warning does
not indicate a syntax error but merely draws your attention to a possible error in the pro-
gram’s logic, such as the use of a non-initialized variable.

8

CHAPTER |

FUNDAMENTALS

m A BEGINNER’S C++ PROGRAM

Sample program

#include <iostream>
using namespace std;

int main()

{

cout << "Enjoy yourself with C++!" << endl;

return 0;

Screen output

Enjoy yourself with C++!

Structure of function main ()

Function name

Type of function —|int main()
Beginning of —»| {
function

What the program does

(statements) ~ Function block

End of function —| } -

A BEGINNER’S C++ PROGRAM 9

A C++ program is made up of objects with their accompanying member functions and
global functions, which do not belong to any single particular class. Each function fulfills
its own particular task and can also call other functions. You can create functions your-
self or use ready-made functions from the standard library. You will always need to write
the global function main () yourself since it has a special role to play; in fact it is the
main program.

The short programming example on the opposite page demonstrates two of the most
important elements of a C++ program. The program contains only the function main ()
and displays a message.

The first line begins with the number symbol, #, which indicates that the line is
intended for the preprocessor. The preprocessor is just one step in the first translation
phase and no object code is created at this time. You can type

#include <filename>

to have the preprocessor copy the quoted file to this position in the source code. This
allows the program access to all the information contained in the header file. The header
file iostream comprises conventions for input and output streams. The word stream
indicates that the information involved will be treated as a flow of data.

Predefined names in C++ are to be found in the std (standard) namespace. The
using directive allows direct access to the names of the std namespace.

Program execution begins with the first instruction in function main (), and this is
why each C++ program must have a main function. The structure of the function is
shown on the opposite page. Apart from the fact that the name cannot be changed, this
function’s structure is not different from that of any other C++ function.

In our example the function main () contains two statements. The first statement

cout << "Enjoy yourself with C++!" << endl;

outputs the text string Enjoy yourself with C++! on the screen. The name cout
(console output) designates an object responsible for output.

The two less-than symbols, <<, indicate that characters are being “pushed” to the out-
put stream. Finally endl (end of line) causes a line feed. The statement

return 0;

terminates the function main () and also the program, returning a value of 0 as an exit
code to the calling program. It is standard practice to use the exit code 0 to indicate that
a program has terminated correctly.

Note that statements are followed by a semicolon. By the way, the shortest statement
comprises only a semicolon and does nothing.

Administrator
a

Administrator
its own particular task and can also call other functions. You can create functions yourself
or use ready-made functions from the standard library. You

Administrator
or use ready-made functions from the standard library. You will always need to write
the global function

10

CHAPTER

| FUNDAMENTALS

® STRUCTURE OF SIMPLE C++ PROGRAMS

A C++ program with several functions

A program with some functions and comments

#include <iostream>
using namespace std;

void line(), message() ; // Prototypes

int main()
{
cout << "Hello! The program starts in main()."
<< endl;
line () ;
message () ;
line () ;
cout << "At the end of main()." << endl;

return 0;

}

void line () // To draw a line.

void message () // To display a message.

{
}

cout << "In function message()." << endl;

/**

**/

Screen output

Hello! The program starts in main() .

At the end of main().

STRUCTURE OF SIMPLE C++ PROGRAMS 11

The example on the opposite page shows the structure of a C++ program containing
multiple functions. In C++, functions do not need to be defined in any fixed order. For
example, you could define the function message () first, followed by the function
line (), and finally the main () function.

However, it is more common to start with the main () function as this function con-
trols the program flow. In other words, main () calls functions that have yet to be
defined. This is made possible by supplying the compiler with a function prototype that
includes all the information the compiler needs.

This example also introduces comments. Strings enclosed in /* . . . */ or start-
ing with // are interpreted as comments.

EXAMPLES:

/* 1 can cover
several lines */
// I can cover just one line

In single-line comments the compiler ignores any characters following the // signs up
to the end of the line. Comments that cover several lines are useful when troubleshoot-
ing, as you can use them to mask complete sections of your program. Both comment
types can be used to comment out the other type.

As to the layout of source files, the compiler parses each source file sequentially,
breaking the contents down into tokens, such as function names and operators. Tokens
can be separated by any number of whitespace characters, that is, by spaces, tabs, or
new line characters. The order of the source code is important but it is not important
to adhere to a specific layout, such as organizing your code in rows and columns. For
example

void message
(){ cout <<
"In function message()." <<
endl;}

might be difficult to read, but it is a correct definition of the function message ().
Preprocessor directives are one exception to the layout rule since they always occupy a
single line. The number sign, #, at the beginning of a line can be preceded only by a
space or a tab character.
To improve the legibility of your C++ programs you should adopt a consistent style,
using indentation and blank lines to reflect the structure of your program. In addition,
make generous use of comments.

I2 = CHAPTER | FUNDAMENTALS

= EXERCISES

Program listing of exercise 3

#include <iostream>
using namespace std;

void pause() ; // Prototype

int main ()

{

cout << endl << "Dear reader, "
<< endl << "have a ";

pause () ;

cout << "I" << endl;

return 0;

void pause ()

{

cout << "BREAK";

Exercise |

EXERCISES

Write a C++ program that outputs the following text on screen:

Oh what

a happy day!

Oh vyes,

what a happy day!

Use the manipulator endl where appropriate.

Exercise 2

The following program contains several errors:

*/ Now you should not forget your glasses //
#include <stream>

int main

{

cout
cout
cout
cout

<<

>>

<<

<<

<<

"If this text",
" appears on your display, ";

" endl;"
'you can pat yourself on '
" the back!" << endl.

return 0;

Resolve the errors and run the program to test your changes.

Exercise 3

What does the C++ program on the opposite page output on screen?

CHAPTER | FUNDAMENTALS

SOLUTIONS

Exercise |
// Let's go !

#include <iostream>
using namespace std;

solutions

int main()
{
cout << " Oh what " << endl;
cout << " a happy day! " << endl;
cout << " Oh yes, " << endl;
cout << " what a happy day! " << endl;
return O0;
}
Exercise 2

The corrected places are underlined.

/* Now you should not forget your glasses */
#include <iostreams>
using namespace std;
int main()
{
cout << " If this text ";
cout << " appears on your display, ";
cout << endl;

cout << " you can pat yourself on "
<< " the back!" << endl;
return 0O;
Exercise 3

The screen output begins on a new line:

Dear reader,
have a BREAK!

chapter

Fundamental Types,
Constants, and Variables

This chapter introduces you to the basic types and objects used by C++

programs.

16 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES

Overview"
For boolean values » bool
/ char
For characters
/ short
For integers > int

\ long
/ Frost
For floating-point > double

values \
long double

* without type void, which will be introduced later.

FUNDAMENTAL TYPES 17

A program can use several data to solve a given problem, for example, characters, inte-
gers, or floating-point numbers. Since a computer uses different methods for processing
and saving data, the data type must be known. The type defines

1. the internal representation of the data, and

2. the amount of memory to allocate.

A number such as -1000 can be stored in either 2 or 4 bytes. When accessing the
part of memory in which the number is stored, it is important to read the correct number
of bytes. Moreover, the memory content, that is the bit sequence being read, must be
interpreted correctly as a signed integer.

The C++ compiler recognizes the fundamental types, also referred to as built-in types,
shown on the opposite page, on which all other types (vectors, pointers, classes, ...) are

based.

[l The Type bool

The result of a comparison or a logical association using AND or OR is a boolean value,
which can be true or false. C++ uses the bool type to represent boolean values. An
expression of the type bool can either be true or false, where the internal value for
true will be represented as the numerical value 1 and false by a zero.

[The char and wchar t Types

These types are used for saving character codes. A character code is an integer associated
with each character. The letter A is represented by code 65, for example. The character
set defines which code represents a certain character. When displaying characters on
screen, the applicable character codes are transmitted and the “receiver,” that is the
screen, is responsible for correctly interpreting the codes.

The C++ language does not stipulate any particular characters set, although in gen-
eral a character set that contains the ASCII code (American Standard Code for Informa-
tion Interchange) is used. This 7-bit code contains definitions for 32 control characters
(codes 0 —31) and 96 printable characters (codes 32 — 127).

The char (character) type is used to store character codes in one byte (8 bits). This
amount of storage is sufficient for extended character sets, for example, the ANSI char-
acter set that contains the ASCII codes and additional characters such as German
umlauts.

The wchar t (wide character type) type comprises at least 2 bytes (16 bits) and is
thus capable of storing modern Unicode characters. Unicode is a 16-bit code also used in
Windows NT and containing codes for approximately 35,000 characters in 24 languages.

18 CHAPTER 2

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES (CONTINUED)
Integral types

Type Size Range of Values (decimal)
char 1 byte 428 to +127 or 0 to 255
unsigned char 1 byte 0 to 255
signed char 1 byte 128 to +127
int 2 byte resp. -32768 to +32767 resp.
4 byte 2147483648 to +2147483647
unsigned int 2 byte resp. 0 to 65535 resp.
4 byte 0 to 4294967295
short 2 byte -32768 to +32767
unsigned short 2 byte 0 to 65535
long 4 byte 2147483648 to +2147483647
unsigned long 4 byte 0 to 4294967295

Sample program

{

#include <iostream>
#include <climits>

using namespace std;

int main ()

€ M e m— o

cout <<
<< endl << endl;
cout << "Type
<< endl
<< endl;
cout << "int
cout << "unsigned int

return 0O;

// Definition of INT MIN,

"Range of types int and unsigned

Minimum

int"

Maximum"

L

n

<< INT MAX <<
<< n

<< UINT MAX <<

INT MIN << " "

FUNDAMENTAL TYPES (CONTINUED) 19

[Integral Types

The types short, int, and 1ong are available for operations with integers. These types
are distinguished by their ranges of values. The table on the opposite page shows the
integer types, which are also referred to as integral types, with their typical storage
requirements and ranges of values.

The int (integer) type is tailor-made for computers and adapts to the length of a reg-
ister on the computer. For 16-bit computers, int is thus equivalent to short, whereas
for 32-bit computers int will be equivalent to long.

C++ treats character codes just like normal integers. This means you can perform cal-
culations with variables belonging to the char or wchar t types in exactly the same
way as with int type variables. char is an integral type with a size of one byte. The
range of values is thus =128 to +127 or from O to 255, depending on whether the com-
piler interprets the char type as signed or unsigned. This can vary in C++.

The wchar t type is a further integral type and is normally defined as unsigned
short.

[l The signed and unsigned Modifiers

The short, int, and 1ong types are normally interpreted as signed with the highest bit
representing the sign. However, integral types can be preceded by the keyword
unsigned. The amount of memory required remains unaltered but the range of values
changes due to the highest bit no longer being required as a sign. The keyword
unsigned can be used as an abbreviation for unsigned int.

The char type is also normally interpreted as signed. Since this is merely a conven-
tion and not mandatory, the signed keyword is available. Thus three types are avail-
able: char, signed char,and unsigned char.

In ANSI C++ the size of integer types is not preset. However, the following order applies:

char <= short <= int <= long

Moreover, the short type comprises at least 2 bytes and the 1ong type at least 4 bytes.

The current value ranges are available in the climits header file. This file defines
constants such as CHAR MIN, CHAR MAX, INT MIN, and INT MAX, which represent
the smallest and greatest possible values. The program on the opposite page outputs the
value of these constants for the int and unsigned int types.

20 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES (CONTINUED)

Floating-point types

Type Size Range of Lowest Positive Accuracy
Values Value (decimal)
float 4 bytes —3.4E+38 1.2E—38 6 digits
double 8 bytes —1.7E+308 2.3E—308 15 digits
long double 10 bytes -1.1E+4932 3.4E—4932 19 digits

IEEE format (IEEE = Institute of Electrical and Electronic Engineers) is normally used to represent
floating-point types. The table above makes use of this representation.

Arithmetic types

Integral types
bool

char, signed char, unsigned char, wchar t
short, unsigned short

int, unsigned int

long, unsigned long

Floating-point types

float
double
long double

Arithmetic operators are defined for arithmetic types, i.e. you can perform calculations with variables of
this type.

FUNDAMENTAL TYPES (CONTINUED) 21

[1 Floating-Point Types

Numbers with a fraction part are indicated by a decimal point in C++ and are referred to
as floating-point numbers. In contrast to integers, floating-point numbers must be stored
to a preset accuracy. The following three types are available for calculations involving
floating-point numbers:

float for simple accuracy
double for double accuracy
long double for high accuracy

The value range and accuracy of a type are derived from the amount of memory allocated
and the internal representation of the type.

Accuracy is expressed in decimal places. This means that “six decimal places” allows a
programmer to store two floating-point numbers that differ within the first six decimal
places as separate numbers. In reverse, there is no guarantee that the figures 12.3456 and
12.34561 will be distinguished when working to a accuracy of six decimal places. And
remember, it is not a question of the position of the decimal point, but merely of the
numerical sequence.

If it is important for your program to display floating-point numbers with an accuracy
supported by a particular machine, you should refer to the values defined in the cfloat
header file.

Readers interested in additional material on this subject should refer to the Appendix,
which contains a section on the representation of binary numbers on computers for both
integers and floating-point numbers.

[] The sizeof Operator

The amount of memory needed to store an object of a certain type can be ascertained
using the sizeof operator:

sizeof (name)

yields the size of an object in bytes, and the parameter name indicates the object type or
the object itself. For example, sizeof (int) represents a value of 2 or 4 depending on
the machine. In contrast, sizeof (float) will always equal 4.

[] Classification

The fundamental types in C++ are integer types, floating-point types, and the void type.
The types used for integers and floating-point numbers are collectively referred to as
arithmetic types, as arithmetic operators are defined for them.

The void type is used for expressions that do not represent a value. A function call
can thus take a void type.

22 CHAPTER 2

m CONSTANTS

Examples for integral constants

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

Decimal Octal Hexadecimal Type

16 020 0x10 int

255 0377 OXff int

32767 077777 0x7FFF int

32768U 0100000U 0x8000U unsigned int

100000 0303240 0x186A0 int (32 bit-)
long (16 bit-

CPU)

10L 012L OxAL long

27UL 033UL Ox1bUL unsigned long

2147483648 020000000000 0x80000000 unsigned long

In each line of the above table, the same value is presented in a different way.

Sample program

//

// decimal integer literals.

#include <iostream>
using namespace std;

// To display hexadecimal integer literals and

int main()
// cout outputs integers as decimal integers:
cout << "Value of O0xFF = " << OxFF << " decimal"
<< endl; // Output: 255 decimal

// The manipulator hex changes output to hexadecimal

// format (dec changes to decimal format) :

cout << "Value of 27 = " << hex << 27 <<" hexadecimal"
<< endl; // Output: 1b hexadecimal

return O;

CONSTANTS 23

The boolean keywords true and false, a number, a character, or a character sequence
(string) are all constants, which are also referred to as a literals. Constants can thus be
subdivided into

boolean constants
numerical constants
character constants

string constants.

Every constant represents a value and thus a type—as does every expression in C++. The
type is defined by the way the constant is written.

[1 Boolean Constants

A boolean expression can have two values that are identified by the keywords true and
false. Both constants are of the bool type. They can be used, for example, to set flags
representing just two states.

[] Integral Constants

Integral numerical constants can be represented as simple decimal numbers, octals, or
hexadecimals:

m a decimal constant (base 10) begins with a decimal number other than zero, such
as 109 or 987650

m an octal constant (base 8) begins with a leading 0, for example 077 or 01234567

m a hexadecimal constant (base 16) begins with the character pair Ox or 0X, for
example 0x2A0 or 0X4b1C. Hexadecimal numbers can be capitalized or non-
capitalized.

Integral constants are normally of type int. If the value of the constant is too large
for the int type, a type capable of representing larger values will be applied. The ranking
for decimal constants is as follows:

int, long, unsigned long

You can designate the type of a constant by adding the letter L or 1 (for long), or U
or u (for unsigned). For example,

12L and 121 correspond to the type 1long
120 and 12u correspond to the type unsigned int
12UL and 12ul correspond to the type unsigned long

CHAPTER 2

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m CONSTANTS (CONTINUED)

Examples for floating-point constants

5.19

0.519E1

0.0519e2

519.0E-2

12 0.75 0.00004

12.0 <75 0.4e-4
.12E+2 7.5e-1 .4E-4

12e0 75E-2 4E-5

Examples for character constants

Constant Character Constant Value
(ASCII code decimal)
'A’ Capital A 65
'a' Lowercase a 97
v Blank 32
050 Dot 46
‘0" Digit 0 48
'\0"' Terminating null character 0

Internal representation of a string literal

String literal: "Hello!"

Stored byte sequence:

'o! L I\OI

CONSTANTS (CONTINUED) 25

[] Floating-Point Constants

Floating-point numbers are always represented as decimals, a decimal point being used to
distinguish the fraction part from the integer part. However, exponential notation is also
permissible.

EXAMPLES: 27.1 1.8E-2 // Type: double

Here, 1.8E-2 represents a value of 1.8*1072. E can also be written with a small letter
e. A decimal point or E (e) must always be used to distinguish floating-point constants
from integer constants.

Floating-point constants are of type double by default. However, you can add F or £
to designate the f1loat type, or add L or 1 for the 1ong double type.

[] Character Constants

A character constant is a character enclosed in single quotes. Character constants take
the type char.

EXAMPLE: ' // Type: char

The numerical value is the character code representing the character. The constant 'A!

thus has a value of 65 in ASCII code.

[1 String Constants

You already know string constants, which were introduced for text output using the
cout stream. A string constant consists of a sequence of characters enclosed in double
quotes.

EXAMPLE: rToday is a beautiful day!"

A string constant is stored internally without the quotes but terminated with a null char-
acter, \ 0, represented by a byte with a numerical value of 0 — that is, all the bits in this
byte are set to 0. Thus, a string occupies one byte more in memory than the number of
characters it contains. An empty string, " ", therefore occupies a single byte.

The terminating null character \ 0 is not the same as the number zero and has a differ-
ent character code than zero. Thus, the string

EXAMPLE: o

comprises two bytes, the first byte containing the code for the character zero 0 (ASCII
code 48) and the second byte the value 0.

The terminating null character \0 is an example of an escape sequence. Escape
sequences are described in the following section.

26 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m ESCAPE SEQUENCES

Overview
Single character Meaning ASCII code
(decimal)
\a alert (BEL) 7
\b backspace (BS) 8
\t horizontal tab (HT) 9
\n line feed (LF) 10
\v vertical tab (VT) 11
\f form feed (FF) 12
\r carriage return (CR) 13
\" " (double quote) 34
\' ' (single quote) 39
\? ? (question mark) 63
A\ \ (backslash) 92
\0 string terminating character 0
\ooo numerical value of a character 000 (octal!)
(up to 3 octal digits)
\xhh numerical value of a character hh (hexadecimall)
(hexadecimal digits)

Sample program

#include <iostream>
using namespace std;
int main()
{
cout << "\nThis is\t a string\n\t\t"
" with \"many\" escape sequences!\n";
return 0;

Program output:

This is a string
with "many" escape sequences!

ESCAPE SEQUENCES 27

[1 Using Control and Special Characters

Nongraphic characters can be expressed by means of escape sequences, for example \t,
which represents a tab.

The effect of an escape sequence will depend on the device concerned. The sequence
\t, for example, depends on the setting for the tab width, which defaults to eight blanks
but can be any value.

An escape sequence always begins with a \ (backslash) and represents a single charac-
ter. The table on the opposite page shows the standard escape sequences, their decimal
values, and effects.

You can use octal and hexadecimal escape sequences to create any character code.
Thus, the letter A (decimal 65) in ASCII code can also be expressed as \101 (three
octals) or \x41 (two hexadecimals). Traditionally, escape sequences are used only to
represent non-printable characters and special characters. The control sequences for
screen and printer drivers are, for example, initiated by the ESC character (decimal 27),
which can be represented as \ 33 or \x1b.

Escape sequences are used in character and string constants.

EXAMPLES: '\t' "\tHello\n\tMike!™

The characters ', ", and \ have no special significance when preceded by a backslash, i.e.
they can be represented as \ ', \ ", and \\ respectively.

When using octal numbers for escape sequences in strings, be sure to use three digits,
for example, \ 033 and not \33. This helps to avoid any subsequent numbers being eval-
uated as part of the escape sequence. There is no maximum number of digits in a hexa-
decimal escape sequence. The sequence of hex numbers automatically terminates with
the first character that is not a valid hex number.

The sample program on the opposite page demonstrates the use of escape sequences in
strings. The fact that a string can occupy two lines is another new feature. String
constants separated only by white spaces will be concatenated to form a single string.

To continue a string in the next line you can also use a backslash \ as the last
character in a line, and then press the Enter key to begin a new line, where you can
continue typing the string.

EXAMPLE: "I am a very, very \
long string"
Please note, however, that the leading spaces in the second line will be evaluated as part

of the string. It is thus generally preferable to use the first method, that is, to terminate
the string with " and reopen it with ".

28 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m NAMES

Keywords in C++

asm do inline short typeid
auto double int signed typename
bool dynamic_cast | long sizeof union
break else mutable static unsigned
case enum namespace static_cast using
catch explicit new struct virtual
char extern operator switch void
class false private template volatile
const float protected this wchar_t
const_cast for public throw while
continue friend register true

default goto reinterpret_cast | try

delete if return typedef

Examples for names

valid:
a Uus us VOID
_var SetTextColor
B12 top_of window

a_very long namel23467890

invalid:
goto 586_cpu object-oriented
Uss true écu

NAMES 29

[] Valid Names

Within a program names are used to designate variables and functions. The following
rules apply when creating names, which are also known as identifiers:

B aname contains a series of letters, numbers, or underscore characters (_). Ger-
man umlauts and accented letters are invalid. C++ is case sensitive; that is,
upper- and lowercase letters are different.
the first character must be a letter or underscore
there are no restrictions on the length of a name and all the characters in the
name are significant

m C++ keywords are reserved and cannot be used as names.

The opposite page shows C++ keywords and some examples of valid and invalid names.
The C++ compiler uses internal names that begin with one or two underscores fol-
lowed by a capital letter. To avoid confusion with these names, avoid use of the under-
score at the beginning of a name.
Under normal circumstances the linker only evaluates a set number of characters, for
example, the first 8 characters of a name. For this reason names of global objects, such as
functions, should be chosen so that the first eight characters are significant.

[1 Conventions

In C++ it is standard practice to use small letters for the names of variables and func-
tions. The names of some variables tend to be associated with a specific use.

EXAMPLES:
c, ch for characters
i, j, k, 1, m, n for integers, in particular indices
X, vV, 2 for floating-point numbers

To improve the readability of your programs you should choose longer and more self-
explanatory names, such as start index or startIndex for the first index in a range
of index values.

In the case of software projects, naming conventions will normally apply. For exam-
ple, prefixes that indicate the type of the variable may be assigned when naming vari-

ables.

30 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

= VARIABLES

Sample program

// Definition and use of variables
#include <iostream>
using namespace std;

int gVarl; // Global wvariables,
int gvar2 = 2; // explicit initialization
int main()
{
char ch('A'); // Local variable being initialized

// or: char ch = 'A';

cout << "Value of gVarl: " << gVarl << endl;
cout << "Value of gVar2: " << gVar2 << endl;
cout << "Character in ch: " << ch << endl;

int sum, number = 3; // Local variables with

// and without initialization
sum = number + 5;
cout << "Value of sum: " << sum << endl;

return 0;

Both strings and all other values of fundamental types can be output with cout. Integers are printed in
decimal format by default.

Screen output

Value of gvVarl: O
Value of gvVar2: 2
Character in ch: A
Value of sum: 8

VARIABLES 31

Data such as numbers, characters, or even complete records are stored in wvariables to
enable their processing by a program. Variables are also referred to as objects, particularly
if they belong to a class.

[1 Defining Variables

A variable must be defined before you can use it in a program. When you define a vari-
able the type is specified and an appropriate amount of memory reserved. This memory
space is addressed by reference to the name of the variable. A simple definition has the
following syntax:

SYNTAX: typ namel [name2 ...];
This defines the names of the variables in the list name1 [, name2 ...] as variables
of the type type. The parentheses [... 1 in the syntax description indicate that this

part is optional and can be omitted. Thus, one or more variables can be stated within a
single definition.

EXAMPLES: char c;

int i, counter;
double x, y, size;

In a program, variables can be defined either within the program’s functions or out-
side of them. This has the following effect:

m a variable defined outside of each function is globdl, i.e. it can be used by all func-
tions

m a variable defined within a function is local, i.e. it can be used only in that func-
tion.

Local variables are normally defined immediately after the first brace—for example at
the beginning of a function. However, they can be defined wherever a statement is per-
mitted. This means that variables can be defined immediately before they are used by the
program.

L1 Initialization

A variable can be initialized, i.e. a value can be assigned to the variable, during its defini-
tion. Initialization is achieved by placing the following immediately after the name of
the variable:

® an equals sign (=) and an initial value for the variable or
m round brackets containing the value of the variable.

EXAMPLES: char ¢ = 'a';
float x(1.875);

Any global variables not explicitly initialized default to zero. In contrast, the initial
value for any local variables that you fail to initialize will have an undefined initial value.

32 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® THE KEYWORDS const AND volatile

Sample program

// Circumference and area of a circle with radius 2.5

#include <iostream>
using namespace std;

const double pi = 3.141593;
int main()
{

double area, circuit, radius = 1.5;

area = pi * radius * radius;
circuit = 2 * pi * radius;

cout << "\nTo Evaluate a Circle\n" << endl;

cout << "Radius: " << radius << endl
<< "Circumference: " << circuit << endl
<< "Area: " << area << endl;
return O;

By default cout outputs a floating-point number with a maximum of 6 decimal places without trailing
zeros.

Screen output
To Evaluate a Circle
Radius: 1.5

Circumference: 9.42478
Area: 7.06858

THE KEYWORDS CONST AND VOLATILE 33

A type can be modified using the const and volatile keywords.

[1 Constant Objects

The const keyword is used to create a “read only” object. As an object of this type is
constant, it cannot be modified at a later stage and must be initialized during its defini-
tion.

EXAMPLE: const double pi = 3.1415947;

Thus the value of pi cannot be modified by the program. Even a statement such as the
following will merely result in an error message:

pi = pi + 2.0; // invalid

[1 Volatile Objects

The keyword volatile, which is rarely used, creates variables that can be modified not
only by the program but also by other programs and external events. Events can be initi-
ated by interrupts or by a hardware clock, for example.

EXAMPLE: volatile unsigned long clock ticks;

Even if the program itself does not modify the variable, the compiler must assume that
the value of the variable has changed since it was last accessed. The compiler therefore
creates machine code to read the value of the variable whenever it is accessed instead of
repeatedly using a value that has been read at a prior stage.

It is also possible to combine the keywords const and volatile when declaring a
variable.

EXAMPLE: volatile const unsigned time to live;

Based on this declaration, the variable time to live cannot be modified by the pro-
gram but by external events.

34 = CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

= EXERCISES

Screen output for exercise 2

n RUSH n
\TO\

For exercise 3

Defining and initializing variables:

int a(2.5); const long large;

int b = '?"'; char c('\'");

char z(500) ; unsigned char ch = '\201';
int big = 40000; unsigned size (40000) ;

double he's (1.2E+5) ; float val = 12345.12345;

EXERCISES 35

Exercise |

The sizeof operator can be used to determine the number of bytes occupied
in memory by a variable of a certain type. For example, sizeof (short) is
equivalent to 2.

Write a C++ program that displays the memory space required by each
fundamental type on screen.

Exercise 2

Write a C++ program to generate the screen output shown on the opposite
page.

Exercise 3

Which of the variable definitions shown on the opposite page is invalid or does
not make sense?

Exercise 4

Write a C++ program that two defines variables for floating-point numbers and
initializes them with the values

123.456 and 76.543

Then display the sum and the difference of these two numbers on screen.

36

CHAPTER 2

solutions

SOLUTIONS

Exercise |

#include <iostream>
using namespace std;

int main ()

{

cout

cout
cout
cout
cout
cout
cout
cout

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

"\nSize of Fundamental Types\n"

" Type Number of Bytes\n"

B e — e —— - " << endl;
" char: " << gizeof (char) << endl;
" short: " << gizeof (short)<< endl;
" int: " << gizeof (int) << endl;
" long: " << gsizeof (long) << endl;
" float: " << gizeof (float)<< endl;
" double: " << gizeof (double) <<endl;
" long double: " << sizeof (long double)
endl;

return 0O;

}

Exercise 2

// Usage of escape sequences

#include <iostream>
using namespace std;

int main|()

{

cout

<<

"\n\n\t I"

"\n\n\t\t \"RUSH\""
"\n\n\t\t\t \\TO\\"
"\n\n\t\t AND"

"\n\n\t /FRO/" << endl;

return O0;

// Instead of tabs
// you can send the
// suited number

// of blanks to

// the output.

Exercise 3

Incorrect:

int a(2.5); //

const long large; //

char z(500) ; //
//

int big = 40000; //
//

double he's(1.2E+5) ; //
//

float val = 12345.12345; //
//

Exercise 4

// Defining and initializing

#include <iostream>
using namespace std;

int main ()

{

float x = 123.456F,
y = 76.543F,
sum;
sum = X + Y;
cout << "Total: "
<< X << "+ " << ¥ <<
cout << "Difference: "
<< X << " =" << ¥y <<
return 0;

SOLUTIONS

2.5 is not an integer value
Without initialization

The value 500 is too large
to fit in a byte

Attention! On 16-bit systems
32767

is not

int values are <=
The character '
allowed in names
The accuracy of float
is only 6 digits

variables

// or double

" = " << gum << endl;

"= " << (x — vy) << endl;

37

This page intentionally left blank

chapter

Using Functions and
Classes

This chapter describes how to

m declare and call standard functions and

m use standard classes.
This includes using standard header files. In addition, we will be working
with string variables, i.e. objects belonging to the standard class string
for the first time.

Functions and classes that you define on your own will not be

introduced until later in the book.

39

40 CHAPTER 3 USING FUNCTIONS AND CLASSES

m DECLARING FUNCTIONS

Example of a function prototype

Function name

long func (int, double);
Types of arguments

Function type
= type of return value

The prototype above yields the following information to the compiler:

® func is the function name

m the function is called with two arguments: the first argument is of type int, the
second of type double

m the return value of the function is of type 1ong.

Mathematical standard functions

double sin (double); // Sine

double cos (double); // Cosine

double tan (double); // Tangent

double atan (double); // Arc tangent

double cosh (double); // Hyperbolic Cosine
double sqgrt (double); // Square Root

double pow (double, double); // Power

double exp (double); // Exponential Function
double log (double); // Natural Logarithm

double logl0 (double); // Base-ten Logarithm

DECLARING FUNCTIONS 41

[Declarations

Each name (identifier) occurring in a program must be known to the compiler or it will
cause an error message. That means any names apart from keywords must be declared, i.e.
introduced to the compiler, before they are used.

Each time a variable or a function is defined it is also declared. But conversely, not
every declaration needs to be a definition. If you need to use a function that has already
been introduced in a library, you must declare the function but you do not need to rede-
fine it.

[1 Declaring Functions

A function has a name and a type, much like a variable. The function’s type is defined by
its return value, that is, the value the function passes back to the program. In addition,
the type of arguments required by a function is important. When a function is declared,
the compiler must therefore be provided with information on

m the name and type of the function and
m the type of each argument.

This is also referred to as the function prototype.

Examples: int toupper (int);

double pow(double, double) ;

This informs the compiler that the function toupper () is of type int, i.e. its return
value is of type int, and it expects an argument of type int. The second function
pow () is of type double and two arguments of type double must be passed to the
function when it is called. The types of the arguments may be followed by names, how-
ever, the names are viewed as a comment only.

Examples: int toupper (int c);

double pow (double base, double exponent) ;

From the compiler’s point of view, these prototypes are equivalent to the prototypes
in the previous example. Both junctions are standard junctions.

Standard function prototypes do not need to be declared, nor should they be, as they
have already been declared in standard header files. If the header file is included in the
program’s source code by means of the #include directive, the function can be used
immediately.

Example: #include <cmaths
Following this directive, the mathematical standard functions, such as sin (), cos (),

and pow (), are available. Additional details on header files can be found later in this
chapter.

42 CHAPTER 3 USING FUNCTIONS AND CLASSES

® FUNCTION CALLS

Sample program

// Calculating powers with
// the standard function pow ()

#include <iostreams> // Declaration of cout
#include <cmaths> // Prototype of pow(), thus:

// double pow(double, double) ;
using namespace std;

int main ()
{

double x = 2.5, vy;

// By means of a prototype, the compiler generates
// the correct call or an error message!

// Computes x raised to the power 3:

y = pow("x", 3.0); // Error! String is not a number
y = pow(x + 3.0); // Error! Just one argument

y = pow(x, 3.0); // ok!

y = pow(x, 3); // ok! The compiler converts the

// int value 3 to double.

cout << "2.5 raised to 3 yields: "
<< y << endl;

// Calculating with pow() is possible:
cout << "2 + (5 raised to the power 2.5) yields: "

<< 2.0 + pow(5.0, x) << endl;

return 0;

Screen output

2.5 raised to the power 3 yields: 15.625
2 + (5 raised to the power 2.5) yields: 57.9017

FUNCTION CALLS 43

[Function Calls

A function call is an expression of the same type as the function and whose value corre-
sponds to the return value. The return value is commonly passed to a suitable variable.

Example: y = pow(x, 3.0);

In this example the function pow () is first called using the arguments x and 3.0, and
the result, the power x, is assigned to y.

As the function call represents a value, other operations are also possible. Thus, the
function pow () can be used to perform calculations for double values.

Example: cout << 2.0 + pow(5.0, x);

This expression first adds the number 2.0 to the return value of pow (5.0, x), then
outputs the result using cout.

Any expression can be passed to a function as an argument, such as a constant or an
arithmetical expression. However, it is important that the types of the arguments corre-
spond to those expected by the function.

The compiler refers to the prototype to check that the function has been called cor-
rectly. If the argument type does not match exactly to the type defined in the prototype,
the compiler performs type conversion, if possible.

Example: vy = pow(x, 3); // also ok!

The value 3 of type int is passed to the function as a second argument. But since the
function expects a double value, the compiler will perform type conversion from int
to double.

If a function is called with the wrong number of arguments, or if type conversion
proves impossible, the compiler generates an error message. This allows you to recognize
and correct errors caused by calling functions at the development stage instead of causing
runtime errors.

Example: float x = pow (3.0 + 4.7); // Error!

The compiler recognizes that the number of arguments is incorrect. In addition, the
compiler will issue a warning, since a double, i.e. the return value of pow (), is assigned
to a float type variable.

44 CHAPTER 3 USING FUNCTIONS AND CLASSES

B TYPE void FOR FUNCTIONS

Sample program

// Outputs three random numbers

#include <iostream> // Declaration of cin and cout
#include <cstdlib> // Prototypes of srand(), rand():
// void srand(unsigned int seed);
// int rand(void) ;
using namespace std;
int main ()
{
unsigned int seed;
int zl, z2, z3;

cout << " --- Random Numbers --- \n" << endl;

cout << "To initialize the random number generator, "
<< "\n please enter an integer value: ";

cin >> seed; // Input an integer

srand(seed) ; // and use it as argument for a
// new sequence of random numbers.

z1l = rand() ; // Compute three random numbers.
z2 = rand() ;
z3 = rand() ;

cout << "\nThree random numbers: "
<< zl1 << " " << z22 << " " << z3 << endl;

return 0;

The statement cin >> seed; reads an integer from the keyboard, because seed is of the
unsigned int type.

Sample screen output

--- Random Numbers ---

To initialize the random number generator,
please enter an integer value: 7777

Three random numbers: 25435 6908 14579

TYPE VOID FOR FUNCTIONS 45

[Functions without Return Value

You can also write functions that perform a certain action but do not return a value to
the function that called them. The type void is available for functions of this type,
which are also referred to as procedures in other programming languages.

Example: void srand(unsigned int seed);

The standard function srand () initializes an algorithm that generates random num-
bers. Since the function does not return a value, it is of type void. An unsigned value
is passed to the function as an argument to seed the random number generator. The
value is used to create a series of random numbers.

[1 Functions without Arguments

If a function does not expect an argument, the function prototype must be declared as
void or the braces following the function name must be left empty.

Example: int rand(void); // or int rand() ;

The standard function rand () is called without any arguments and returns a random
number between 0 and 32767. A series of random numbers can be generated by repeating
the function call.

L] Usage of srand () and rand ()

The function prototypes for srand () and rand () can be found in both the cstdlib
and stdlib.h header files.

Calling the function rand () without previously having called srand () creates the
same sequence of numbers as if the following statement would have been proceeded:

srand (1) ;

If you want to avoid generating the same sequence of random numbers whenever the
program is executed, you must call srand () with a different value for the argument
whenever the program is run.

It is common to use the current time to initialize a random number generator. See
Chapter 6 for an example of this technique.

46 CHAPTER 3 USING FUNCTIONS AND CLASSES

m HEADER FILES

Using header files

v

int main()

{
int a;

cin >> a;

return 0;

#include "myheader.h" |«

cout << myfunc (a);

Header file Header file
iostream myheader.h
// Declaration // Declaration
// of cin, cout, // of self-defined
/! . . // functions
// and classes
long myfunc(int);
Source file
application.cpp
Copy
#include <iostream> Copy

HEADER FILES 47

[1 Using Header Files

Header files are text files containing declarations and macros. By using an #include
directive these declarations and macros can be made available to any other source file,
even in other header files.

Pay attention to the following points when using header files:

m header files should generally be included at the start of a program before any
other declarations

® you can only name one header file per #include directive

m the file name must be enclosed in angled brackets < ... > or double quotes

[1 Searching for Header Files

The header files that accompany your compiler will tend to be stored in a folder of their
own—normally called include. If the name of the header file is enclosed by angled
brackets < ... >, itis common to search for header files in the include folder only.
The current directory is not searched to increase the speed when searching for header
files.

C++ programmers commonly write their own header files and store them in the cur-
rent project folder. To enable the compiler to find these header files, the #include
directive must state the name of the header files in double quotes.

Example: #include "project.h"

The compiler will then also search the current folder. The file suffix .h is normally used
for user-defined header files.

[Standard Class Definitions

In addition to standard function prototypes, the header files also contain standard class
definitions. When a header file is included, the classes defined and any objects declared
in the file are available to the program.

Example: #include <iostreams>
using namespace std;

Following these directives, the classes istream and ostream can be used with the cin
and cout streams. cin is an object of the istream class and cout an object of the
ostream class.

48 CHAPTER 3 USING FUNCTIONS AND CLASSES

m STANDARD HEADER FILES

Header files of the C++ standard library

algorithm ios map stack
bitset iosfwd memory stdexcept
complex iostream new streambuf
dequeue istream numeric string
exception iterator ostream typeinfo
fstream limits queue utility
functional list set valarray
iomanip locale sstream vector

Some IDFE’s put the old-fashioned iostream.h and iomanip.h header files at your disposal. Within
these header files the identifiers of iostream and iomanip are not contained in the std namespace
but are declared globally.

Header files of the C standard library

assert.h limits.h stdarg.h time.h
ctype.h locale.h stddef.h wchar.h
errno.h math.h stdio.h wctype.h
float.h setjmp.h stdlib.h

iso0646.h signal.h string.h

STANDARD HEADER FILES 49

The C++ standard library header files are shown opposite. They are not indicated by the
file extension .h and contain all the declarations in their own namespace, std. Name-
spaces will be introduced in a later chapter. For now, it is sufficient to know that identi-
fiers from other namespaces cannot be referred to directly. If you merely stipulate the
directive

Example: #include <iostreams>

the compiler would not be aware of the cin and cout streams. In order to use the iden-
tifiers of the std namespace globally, you must add a using directive.

Example: #include <iostreams>
#include <string>
using namespace std;

You can then use cin and cout without any additional syntax. The header file
string has also been included. This makes the string class available and allows user-
friendly string manipulations in C++. The following pages contain further details on this
topic.

[1 Header Files in the C Programming Language

The header files standardized for the C programming language were adopted for the C++
standard and, thus, the complete functionality of the standard C libraries is available to
C++ programs.

Example: #include <math.hs>

Mathematical functions are made available by this statement.

The identifiers declared in C header files are globally visible. This can cause name
conflicts in large programs. For this reason each C header file, for example name . h, is
accompanied in C++ by a second header file, cname, which declares the same identifiers
in the std namespace. Including the file math.h is thus equivalent to

Example: #include <cmath>

using namespace std;

The string.h or cstring files must be included in programs that use standard func-
tions to manipulate C strings. These header files grant access to the functionality of the
C string library and are to be distinguished from the string header file that defines the
string class.

Each compiler offers additional header files for platform dependent functionalities.
These may be graphics libraries or database interfaces.

50 CHAPTER 3 USING FUNCTIONS AND CLASSES

B USING STANDARD CLASSES

Sample program using class string

// To use strings.

#include <iostreams> // Declaration of cin, cout
#include <strings> // Declaration of class string
using namespace std;

int main ()

// Defines four strings:

string prompt ("What is your name: "),
name, // An empty
line(40, '-'), // string with 40 '-'
total = "Hello "; // 1s possible!
cout << prompt; // Request for input.
getline(cin, name) ; // Inputs a name in one line
total = total + name; // Concatenates and

// assigns strings.

cout << line << endl // Outputs line and name
<< total << endl;
cout << " Your name is " // Outputs length
<< name.length() << " characters long!" << endl;
cout << line << endl;
return O;
}
Both the operators + and += for concatenation and the relational operators <, <=, >, >=, ==, and

! = are defined for objects of class st ring. Strings can be printed with cout and the operator <<.
The class string will be introduced in detail later on.

Sample screen output

What is your name: Rose Summer
Hello Rose Summer
Your name is 11 characters long!

USING STANDARD CLASSES 51

Several classes are defined in the C++ standard library. These include stream classes for
input and output, but also classes for representing strings or handling error conditions.

Each class is a type with certain properties and capacities. As previously mentioned,
the properties of a class are defined by its data members and the class’s capacities are
defined by its methods. Methods are functions that belong to a class and cooperate with
the members to perform certain operations. Methods are also referred to as member func-
tions.

[1 Creating Objects

An object is a variable of a class type, also referred to as an instance of the class. When an
object is created, memory is allocated to the data members and initialized with suitable
values.

Example: string s("I am a string");

In this example the object s, an instance of the standard class string (or simply a
string), is defined and initialized with the string constant that follows. Objects of the
string class manage the memory space required for the string themselves.

In general, there are several ways of initializing an object of a class. A string can thus
be initialized with a certain number of identical characters, as the example on the oppo-
site page illustrates.

[1 Calling Methods

All the methods defined as public within the corresponding class can be called for an
object. In contrast to calling a global function, a method is always called for one particular
object. The name of the object precedes the method and is separated from the method by
a period.

Example: s.length(); // object.method () ;

The method 1ength () supplies the length of a string, i.e. the number of characters in a
string. This results in a value of 13 for the string s defined above.

[] Classes and Global Functions

Globally defined functions exist for some standard classes. These functions perform certain
operations for objects passed as arguments. The global function getline (), for exam-
ple, stores a line of keyboard input in a string.

Example: getline(cin, s);

The keyboard input is terminated by pressing the return key to create a new-line charac-
ter, '\n"', which is not stored in the string.

52 © CHAPTER 3 USING FUNCTIONS AND CLASSES

= EXERCISES

Screen output for exercise |

Number Square Root
4 2

12.25 3.5
0.0121 0.11

Listing for exercise 2

// A program containing errors!
include <iostream>, <string>
include <stdlib>

void srand(seed) ;

int main ()

string message "\nLearn from your mistakes!";
cout << message << endl;

int len = length(message) ;
cout << "Length of the string: " << len << endl;

// And a random number in addition:

int a, b;

a = srand(12.5);

b = rand(a);

cout << "\nRandom number: " << b << endl;

return O;

EXERCISES 53

Exercise |
Create a program to calculate the square roots of the numbers

4 12.25 0.0121

and output them as shown opposite. Then read a number from the keyboard and
output the square root of this number.

To calculate the square root, use the function sqrt (), which is defined by the
following prototype in the math.h (or cmath) header file:

double sqgrt(double x);
The return value of the sqrt () function is the square root of x.

Exercise 2

The program on the opposite page contains several errors! Correct the errors
and ensure that the program can be executed.

Exercise 3

Create a C++ program that defines a string containing the following character
sequence:

I have learned something new again!
and displays the length of the string on screen.

Read two lines of text from the keyboard. Concatenate the strings using " * "
to separate the two parts of the string. Output the new string on screen.

CHAPTER 3 USING FUNCTIONS AND CLASSES

SOLUTIONS

Exercise |

// Compute square roots

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

double x1 = 4.0, x2 = 12.25, x3 = 0.0121;

cout << "\n Number \t Square Root" << endl;

solutions

cout << "\n "< x1 << " \t " << sqgrt(xl)
<< "\n "o<< X2 << " \t " << sqgrt(x2)
<< "\n " << xX3 << " \t " << sqgrt(x3) << endl;

cout << "\nType a number whose square root is to be"
" computed. ";
cin >> x1;

cout << "\n Number \t Square Root" << endl;

cout << "\n " << x1 << "\t " << sgrt(xl) << endl;
return 0O;
Exercise 2

// The corrected program:

#include <iostreams // Just one header file in a line
#include <strings>

#include <cstdlib»> // Prototypes of functions
// void srand(unsigned int seed) ;
// int rand(void) ;

// or:

// #include <stdlib.h>

using namespace std; // Introduces all names of namespace
// std into the global scope.

int main()

{

string message = "\nLearn from your mistakes!";...// =
cout << message << endl;

SOLUTIONS

int len = message.length() ;
// instead of: length(message) ;
cout << "Length of the string: " << len << endl;

// And another random number:

int b; // Variable a is not needed.
srand (12) ; // instead of: a = srand(12.5);
b = rand () ; // instead of: b = rand(a);
cout << "\nRandom number: " << b << endl;
return 0O;

1

Exercise 3

#include <iostreams // Declaration of cin, cout

#include <strings> // Declaration of class string

using namespace std;

int main()
string message ("I have learned something new again!\n"),
prompt ("Please input two lines of text:"),
strl, str2, sum;

cout << message << endl; // Outputs the message

cout << prompt << endl; // Request for input

getline(cin, strl); // Reads the first

getline(cin, str2); // and the second line of text
sum = strl + " * " 4 str2; // Concatenates, assigns
cout << sum << endl; // and outputs strings.
return 0;

55

This page intentionally left blank

chapter

Input and Qutput with
Streams

This chapter describes the use of streams for input and output, focusing

on formatting techniques.

57

58 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

m STREAMS

Stream classes for input and output

ios
istream ostream
iostream
The four standard streams
® cin Object of class istream to control standard input
® cout Object of class ostream to control standard output
m cerr Object of class ostream to control unbuffered error output
m clog Object of class ostream to control buffered error output

STREAMS 59

L] 1/0 Stream Classes

During the development of C++ a new class-based input/output system was imple-
mented. This gave rise to the I/O stream classes, which are now available in a library of
their own, the so-called iostream library.

The diagram on the opposite page shows how a so-called class hierarchy develops due
to inheritance. The class 10s is the base class of all other stream classes. It contains the
attributes and abilities common to all streams. Effectively, the ios class

B manages the connection to the physical data stream that writes your program’s
data to a file or outputs the data on screen

m contains the basic functions needed for formatting data. A number of flags that
determine how character input is interpreted have been defined for this purpose.

The istream and ostream classes derived from ios form a user-friendly interface
for stream manipulation. The istream class is used for reading streams and the
ostream class is used for writing to streams. The operator >> is defined in istream
and << is defined in ostream, for example.

The iostream class is derived by multiple inheritance from istream and ostream
and thus offers the functionality of both classes.

Further stream classes, a file management class, for example, are derived from the
classes mentioned above. This allows the developer to use the techniques described for
file manipulation. These classes, which also contain methods for opening and closing
files, will be discussed in a later chapter.

[] Standard Streams

The streams cin and cout, which were mentioned earlier, are instances of the
istream or ostream classes. When a program is launched these objects are automati-
cally created to read standard input or write to standard output.

Standard input is normally the keyboard and standard output the screen. However,
standard input and output can be redirected to files. In this case, data is not read from
the keyboard but from a file, or data is not displayed on screen but written to a file.

The other two standard streams cerr and clog are used to display messages when
errors occur. Error messages are displayed on screen even if standard output has been
redirected to a file.

60 CHAPTER 4

INPUT AND OUTPUT WITH STREAMS

® FORMATTING AND MANIPULATORS

Example: Calling a manipulator

Here the manipulator showpos is called.

l

cout << showpos << 123; // Output: +123
The above statement is equivalent to

cout.setf (ios::showpos) ;
cout << 123;

The other positive numbers are printed with their sign as well:
cout << 22; // Output: +22

The output of a positive sign can be canceled by the manipulator
noshowpos:

cout << noshowpos << 123; // Output: 123
The last statement is equivalent to

cout.unsetf (ios::showpos) ;
cout << 123;

m The operators >> and << format the input and/or output according to how the flags in the base class
ios are set

B The manipulator showpos is a function that calls the method cout . setf (ios: : showpos) ;,
ios: : showpos being the flag showpos belonging to the ios class

m Using manipulators is easier than directly accessing flags. For this reason, manipulators are described in
the following section, whereas the methods setf () and unsetf () are used only under exceptional
circumstances.

m Old compilers only supply some of the manipulators. In this case, you have to use the methods setf ()
and unsetf ().

FORMATTING AND MANIPULATORS 61

[] Formatting

When reading keyboard input, a valid input format must be used to determine how input
is to be interpreted. Similarly, screen output adheres to set of rules governing how, for
example, floating-point numbers are displayed.

The stream classes 1stream and ostream offer various options for performing these
tasks. For example, you can display a table of numeric values in a simple way.

In previous chapters we have looked at the cin and cout streams in statements such
as:

cout << "Please enter a number: ";
cin >> X;

The following sections systematically describe the abilities of the stream classes. This
includes:

m the >> and << operators for formatted input and output. These operators are
defined for expressions with fundamental types—that is, for characters, boolean
values, numbers and strings.

® manipulators, which can be inserted into the input or output stream. Manipula-
tors can be used to generate formats for subsequent input/output. One manipula-
tor that you are already familiar with is end1, which generates a line feed at the
end of a line.

m other methods for determining or modifying the state of a stream and unformat-
ted input and output.

[] Flags and Manipulators

Formatting flags defined in the parent class ios determine how characters are input or
output. In general, flags are represented by individual bits within a special integral vari-
able. For example, depending on whether a bit is set or not, a positive number can be
output with or without a plus sign.

Each flag has a default setting. For example, integral numbers are output as decimals by
default, and positive numbers are output without a plus sign.

It is possible to modify individual formatting flags. The methods setf () and
unsetf () can be used for this purpose. However, the same effect can be achieved sim-
ply by using so-called manipulators, which are defined for all important flags. Manipula-
tors are functions that can be inserted into the input or output stream and thus be called.

62

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED OUTPUT OF INTEGERS

Manipulators formatting integers

Manipulator Effects
oct Octal base
hex Hexadecimal base
dec Decimal base (by default)
showpos Generates a + sign in non-negative numeric
output.
noshowpos Generates non-negative numeric output

without a + sign (by default).

uppercase Generates capital letters in hexadecimal
output.
nouppercase Generates lowercase letters in hexadecimal

output (by default).

Sample program

{

// Reads integral decimal values and
// generates octal, decimal, and hexadecimal output.

#include <iostreams> // Declarations of cin, cout and
using namespace std; // manipulators oct, hex,

int main ()

int number;
cout << "Please enter an integer: ";
cin >> number;

cout << uppercase // for hex-digits
<< " octal \t decimal \t hexadecimal\n "
<< oct << number << " \t "
<< dec << number << " \t "
<< hex << number << endl;

return 0;

FORMATTED OUTPUT OF INTEGERS 63

[1 Formatting Options

The << operator can output values of type short, int, long or a corresponding
unsigned type. The following formatting options are available:

m define the numeric system in which to display the number: decimal, octal, or
hexadecimal

m use capitals instead of small letters for hexadecimals

m display a sign for positive numbers.

In addition, the field width can be defined for the above types. The field width can
also be defined for characters, strings, and floating-point numbers, and will be discussed
in the following sections.

[Numeric System

Integral numbers are displayed as decimals by default. The manipulators oct, hex, and
dec can be used for switching from and to decimal display mode.

Example: cout << hex << 11; // Output: b

Hexadecimals are displayed in small letters by default, that is, using a, b, ..., £. The
manipulator uppercase allows you to use capitals.

Example: cout << hex << uppercase << 11; //Output: B

The manipulator nouppercase returns the output format to small letters.

[] Negative Numbers

When negative numbers are output as decimals, the output will always include a sign.
You can use the showpos manipulator to output signed positive numbers.

Example: cout << dec << showpos << 11; //Output: +11
You can use noshowpos to revert to the original display mode.

When octal or hexadecimal numbers are output, the bits of the number to be output are
always interpreted as unsigned! In other words, the output shows the bit pattern of a
number in octal or hexadecimal format.

Exannﬂe: cout << dec << -1 << " " << hex << -1;

This statement causes the following output on a 32-bit system:

-1 fEEEFFFE

64 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED OUTPUT OF FLOATING-POINT NUMBERS

Manipulators formatting floating-point numbers

Manipulator Effects

showpoint Generates a decimal point character
shown in floating-point output. The
number of digits after the decimal point
corresponds to the used precision.

noshowpoint Trailing zeroes after the decimal point
are not printed.

If there are no digits after the decimal
point, the decimal point is not printed

(by default).
fixed Output in fixed point notation
scientific Output in scientific notation
setprecision (int n) Sets the precisionto n.
Methods for precision
Manipulator Effects
int precision (int n); Sets the precision to n.
int precision() const; Returns the used precision.

The key word const within the prototype of precision () signifies that the method performs only
read operations.

Sample program

#include <iostream>
using namespace std;

int main ()

{
double x = 12.0;
cout.precision(2) ; // Precision 2
cout << " By default: " << X << endl;
cout << " showpoint: " << showpoint << x << endl;
cout << " fixed: " << fixed << X << endl;
cout << " scientific: " << scientific << x << endl;
return 0O;

FORMATTED OUTPUT OF FLOATING-POINT NUMBERS 65

[1 Standard Settings

Floating-points are displayed to six digits by default. Decimals are separated from the
integral part of the number by a decimal point. Trailing zeroes behind the decimal point
are not printed. If there are no digits after the decimal point, the decimal point is not
printed (by default).

Examples: cout << 1.0; // Output: 1
cout << 1.234; // Output: 1.234
cout << 1.234567; // Output: 1.23457

The last statement shows that the seventh digit is not simply truncated but rounded.
Very large and very small numbers are displayed in exponential notation.

Example: cout << 1234567.8; // Output: 1.23457e+06

[Formatting
The standard settings can be modified in several ways. You can
m change the precision, i.e. the number of digits to be output

m force output of the decimal point and trailing zeroes
m stipulate the display mode (fixed point or exponential).

Both the manipulator setprecision () and the method precision () can be used to
redefine precision to be used.

Example: cout << setprecision(3); // Precision: 3
// or: cout.precision(3);
cout << 12.34; // Output: 12.3

Note that the header file iomanip must be included when using the manipulator set -
precision (). This also applies to all standard manipulators called with at least one
argument.

The manipulator showpoint outputs the decimal point and trailing zeroes. The
number of digits being output (e.g. 6) equals the current precision.

Example: cout << showpoint << 1.0; // Output: 1.00000

However, fixed point output with a predetermined number of decimal places is often more
useful. In this case, you can use the fixed manipulator with the precision defining the
number of decimal places. The default value of 6 is assumed in the following example.

Example: cout << fixed << 66.0; // Output: 66.000000

In contrast, you can use the scientific manipulator to specify that floating-point
numbers are output as exponential expressions.

66 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® OUTPUT IN FIELDS

Element functions for output in fields

Method Effects
int width() const; Returns the minimum field width used
int width(int n); Sets the minimum field width to n
int f£ill() const; Returns the fill character used
int fill(int ch); Sets the fill character to ch

Manipulators for output in fields

Manipulator Effects
setw(int n) Sets the minimum field width to n
setfill(int ch) Sets the fill character to ch
left Left-aligns output in fields
right Right-aligns output in fields
internal Left-aligns output of the sign and

right-aligns output of the numeric
value

The manipulators setw () and set£ill () are declared in the header file iomanip .

Examples
#include <iostream> // Obligatory
#include <iomanip> // declarations

using namespace std;

1st Example: cout << '|' << setw(6) << 'X' << '|';
Output: | X| // Field width 6
2nd Example: cout << fixed << setprecision(2)
<< setw(10) << 123.4 << endl
<< "1234567890" << endl;
Output: 123.40 // Field width 10
1234567890

OUTPUT IN FIELDS 67

The << operator can be used to generate formatted output in fields. You can

m specify the field width
m set the alignment of the output to right- or left-justified
m specify a fill-character with which to fill the field.

[1 Field Width

The field width is the number of characters that can be written to a field. If the output

string is larger than the field width, the output is not truncated but the field is extended.

The output will always contain at least the number of digits specified as the field width.
You can either use the width () method or the setw () manipulator to define field

width.
Example: cout.width(s6); // or: cout << setw(6);

One special attribute of the field width is the fact that this value is non-permanent:
the field width specified applies to the next output only, as is illustrated by the examples
on the opposite page. The first example outputs the character 'X' to a field with width
of 6, but does not output the ' | ' character.

The default field width is 0. You can also use the width () method to get the current
field width. To do so, call width () without any other arguments.

Example: int fieldwidth = cout.width();

L1 Fill Characters and Alignment

If a field is larger than the string you need to output, blanks are used by default to fill the
field. You can either use the £i11 () method or the set£fi11 () manipulator to specify
another fill character.

Example: cout << setfill('*') << setw(5) << 12;
// Output: ***12

The fill character applies until another character is defined.

As the previous example shows, output to fields is normally right-aligned. The other
options available are left-aligned and internal, which can be set by using the manipula-
tors left and internal. The manipulator internal left-justifies the sign and right-
justifies the number within a field.

Example: cout.width(6); cout.fill('0');
cout << internal << -123; // Output: -00123

68 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® OUTPUT OF CHARACTERS, STRINGS, AND BOOLEAN VALUES

Sample program

// Enters a character and outputs its
// octal, decimal, and hexadecimal code.

#include <iostream> // Declaration of cin, cout

#include <iomanip> // For manipulators being called
// with arguments.

#include <strings

using namespace std;

int main()

{

int number = ' ';

cout << "The white space code is as follows: "
<< number << endl;

char ch;
string prompt =
"\nPlease enter a character followed by "
" <return>: ";

cout << prompt;

cin >> ch; // Read a character
number = ch;

cout << "The character " << ch
<< " has code" << number << endl;

cout << uppercase // For hex-digits
<< " octal decimal hexadecimal\n "
<< oct << setw(8) << number
<< dec << setw(8) << number
<< hex << setw(8) << number << endl;

return 0O;

OUTPUT OF CHARACTERS, STRINGS, AND BOOLEAN VALUES 69

[] Outputting Characters and Character Codes

The >> operator interprets a number of type char as the character code and outputs the
corresponding character:

Example: char ch = '0';
cout << ch << ' ' << 'A';
// Outputs three characters: 0 A

[t is also possible to output the character code for a character. In this case the character
code is stored in an int variable and the variable is then output.

Example: int code = '0';
cout << code; // Output: 48

The '0' character is represented by ASCII Code 48. The program on the opposite page
contains further examples.

[] Outputting Strings
You can use the >> operator both to output string literals, such as "Hello", and string

variables, as was illustrated in previous examples. As in the case of other types, strings
can be positioned within output fields.

Example: string s("spring flowers ") ;
cout << left // Left-aligned
<< setfill('?") // Fill character ?
<< setw(20) << s ; // Field width 20

This example outputs the string "spring flowers??????". The manipulator
right can be used to right-justify the output within the field.

[1 Outputting Boolean Values

By default the << operator outputs boolean values as integers, with the value 0 represent-
ing false and 1 true. If you need to output the strings true or false instead, the
flag ios: :boolalpha must be set. To do so, use either the setf () method or the
manipulator boolalpha.

Example: bool ok = true;
cout << ok << endl // 1

<< boolalpha << ok << endl; // true

You can revert this setting using the noboolalpha manipulator.

70 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED INPUT

Sample program

// Inputs an article label and a price

#include <iostream> // Declarations of cin, cout, ...
#include <iomanips> // Manipulator setw()

#include <strings>

using namespace std;

int main()

{
string label;
double price;

cout << "\nPlease enter an article label: ";

// Input the label (15 characters maximum) :
cin >> setw(16) ; // or: cin.width(16) ;
cin >> label;

cin.sync() ; // Clears the buffer and resets
cin.clear() ; // any error flags that may be set

cout << "\nEnter the price of the article: ";
cin >> price; // Input the price

// Controlling output:
cout << fixed << setprecision(2)
<< "\nArticle:"

<< "\n Label: " << label

<< "\n Price: " << price << endl;
// ... The program to be continued
return 0;

The input buffer is cleared and error flags are reset by calling the sync () and clear () methods. This
ensures that the program will wait for new input for the price, even if more than |5 characters have
been entered for the label.

FORMATTED INPUT 71

The >> operator, which belongs to the istream class, takes the current number base
and field width flags into account when reading input:

m the number base specifies whether an integer will be read as a decimal, octal, or
hexadecimal

m the field width specifies the maximum number of characters to be read for a
string.

When reading from standard input, cin is buffered by lines. Keyboard input is thus
not read until confirmed by pressing the <Return> key. This allows the user to press the
backspace key and correct any input errors, provided the return key has not been pressed.
Input is displayed on screen by default.

[1 Input Fields

The >> operator will normally read the next input field, convert the input by reference to
the type of the supplied variable, and write the result to the variable. Any white space
characters (such as blanks, tabs, and new lines) are ignored by default.

Example: char ch;
cin >> ch; // Enter a character

When the following keys are pressed
<return> <tab> <blank> <X> <returns

the character ' X' is stored in the variable ch.
An input field is terminated by the first white space character or by the first character
that cannot be processed.

Example: int i;
cin >> 1i;

Typing 123FF<Returns stores the decimal value 123 in the variable i. However, the
characters that follow, FF and the newline character, remain in the input buffer and will
be read first during the next read operation.

When reading strings, only one word is read since the first white space character will
begin a new input field.

Example: string city;
cin >> city; // To read just one word!

If Lao Kai is input, only Lao will be written to the city string. The number of charac-
ters to be read can also be limited by specifying the field width. For a given field width of
n, a maximum of n—-1 characters will be read, as one byte is required for the null charac-
ter. Any initial white space will be ignored. The program on the opposite page illustrates
this point and also shows how to clear the input buffer.

72 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED INPUT OF NUMBERS

Sample program

// Enter hexadecimal digits and a floating-point number

//

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

int number = 0;

cout << "\nEnter a hexadecimal number: "

<< endl;
cin >> hex >> number; // Input hex-number
cout << "Your decimal input: " << number << endl;

// If an invalid input occurred:

cin.sync() ; // Clears the buffer
cin.clear () ; // Reset error flags
double x1 = 0.0, x2 = 0.0;

cout << "\nNow enter two floating-point values: "
<< endl;

cout << "1. number: ";

cin >> x1; // Read first number
cout << "2. number: ";
cin >> x2; // Read second number

cout << fixed << setprecision(2)
<< "\nThe sum of both numbers: n
<< setw(10) << x1 + x2 << endl;

cout << "\nThe product of both numbers: "
<< setw(1l0) << x1 * X2 << endl;

return 0;

FORMATTED INPUT OF NUMBERS 73

[] Inputting Integers

You can use the hex, oct, and dec manipulators to stipulate that any character
sequence input is to processed as a hexadecimal, octal, or decimal number.

Example: int n;
cin >> oct >> n;

An input value of 10 will be interpreted as an octal, which corresponds to a decimal
value of 8.

Example: cin >> hex >> n;

Here, any input will be interpreted as a hexadecimal, enabling input such as f0a or -F7.

[] Inputting Floating-Point Numbers

The >> operator interprets any input as a decimal floating-point number if the variable is
a floating-point type, i.e. float, double, or long double. The floating-point num-
ber can be entered in fixed point or exponential notation.

Example: double x;
cin >> x;

The character input is converted to a double value in this case. Input, such as 123,
-22.0, or 3e10 is valid.

[1 Input Errors
But what happens if the input does not match the type of variable defined?

Example: int i, j; cin >> i >> j;

Given input of 1A5 the digit 1 will be stored in the variable i. The next input field
begins with A. But since a decimal input type is required, the input sequence will not be
processed beyond the letter A. If, as in our example, no type conversion is performed, the
variable is not written to and an internal error flag is raised.

It normally makes more sense to read numerical values individually, and clear the
input buffer and any error flags that may have been set after each entry.

Chapter 6, “Control Flow,” and Chapter 28, “Exception Handling,” show how a pro-
gram can react to input errors.

74

2. The sample program requires that at least one word and a following white space are entered.

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® UNFORMATTED INPUT/OUTPUT

Sample program

// Reads a text with the operator >>
// and the function getline() .

#include <iostream>
#include <strings
using namespace std;

string header =
" --- Demonstrates Unformatted Input ---";

int main ()

{

string word, rest;
cout << header

<< "\n\nPress <return> to go on" << endl;
cin.get () ; // Read the new line

// without saving.

cout << "\nPlease enter a sentence with several words!"
<< "\nEnd with <!> and <return>."

<< endl;
cin >> word; // Read the first word
getline(cin, rest, '!'); // and the remaining text
// up to the character !
cout << "\nThe first word: " << word
<< "\nRemaining text: " << rest << endl;
return 0;

A text of more than one line can be entered.

UNFORMATTED INPUT/OUTPUT 75

Unformatted input and output does not use fields, and any formatting flags that have
been set are ignored. The bytes read from a stream are passed to the program “as is.”
More specifically, you should be aware that any white space characters preceding the
input will be processed.

[] Reading and Writing Characters

You can use the methods get () and put () to read or write single characters. The
get () method reads the next character from a stream and stores it in the given char
variable.

Example: char ch;
cin.get (ch) ;

If the character is a white space character, such as a newline, it will still be stored in the
ch variable. To prevent this from happening you can use

cin >> ch;

to read the first non-white space character.
The get () method can also be called without any arguments. In this case, get ()
returns the character code of type int.

Example: int c¢ = cin.get();

The put () method can be used for unformatted output of a character. The character to
be output is passed to put () as an argument.

Example: cout.put('a');

This statement is equivalent to cout << 'A'; , where the field width is undefined or
has been set to 1.

[1 Reading a Line

The >> operator can only be used to read one word into a string. If you need to read a
whole line of text, you can use the global function getline (), which was introduced
earlier in this chapter.

Example: getline(cin, text);

This statement reads characters from cin and stores them in the string variable text
until a new line character occurs. However, you can specify a different delimiting charac-
ter by passing the character to the get1line () function as a third argument.

Example: getline(cin, s, '.');

The delimiting character is read, but not stored in the string. Any characters subsequent
to the first period will remain in the input buffer of the stream.

76 = CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

= EXERCISES

Screen output for exercise 3

Article Number Number of Pieces Price per piece
................... Dollar

Program listing for exercise 5

// A program with resistant mistakes

#include <iostream>
using namespace std;

int main()

{

char ch;
string word;

cin >> "Let's go! Press the return key: " >> ch;

cout << "Enter a word containing
three characters at most: ";

cin >> setprecision(3) >> word;
cout >> "Your input: " >> ch >> endl;

return 0;

EXERCISES 77

Exercise |

What output is generated by the program on the page entitled “Formatted output
of floating-point numbers” in this chapter?

Exercise 2
Formulate statements to perform the following:

a. Left-justify the number 0.123456 in an output field with a width of 15.

Output the number 23.987 as a fixed point number rounded to two dec-
imal places, right-justifying the output in a field with a width of 12.

c. Output the number —123.456 as an exponential and with four decimal
spaces. How useful is a field width of 10?

Exercise 3

Write a C++ program that reads an article number, a quantity, and a unit price
from the keyboard and outputs the data on screen as displayed on the opposite

page.

Exercise 4

Write a C++ program that reads any given character code (a positive integer)
from the keyboard and displays the corresponding character and the character
code as a decimal, an octal, and a hexadecimal on screen.

TIP

The variable type defines whether a character or a number is to be read or output.

Why do you think the character P is output when the number 336 is entered?

Exercise 5

Correct the mistakes in the program on the opposite page.

78

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

solutions

SOLUTIONS

Exercise |
Output of a sample program formatting floating-point numbers:

By default: 12
showpoint: 12.
fixed: 12.00
scientific: 1.20e+001

Exercise 2

#include <iostream>
#include <iomanip> // For setw() and setprecision|()
using namespace std;

int main()
{
double x1 = 0.123456, x2 = 23.987, x3 = -123.456;
// a)
cout << left << setw(1l5) << x1 << endl;
// b)

cout << fixed << setprecision(2) << right << setw(12)
<< X2 << endl;
// e)
cout << scientific << setprecision(4) << x3 << endl;
// Output: -1.2346e+002
// A field width of 12 or more would be convenient!

return 0;

}

Exercise 3

// Input and formatted output of article characteristics.
#include <iostreams
#include <iomanip>
using namespace std;
int main()
{
long number = 0;
int count = 0;
double price = 0.0;

// Input:
cout << "\nPlease enter article characteristics.\n";
cout << "Article number: ",
cin >> number;

}

SOLUTIONS

cout << "Number of pieces: ",
cin >> count;

cout << "Price per piece: ",
cin >> price;

// Output:

cout <<
"\n\tArticle Number Quantity Price per piece ";
cout << "\n\t"

<< setw(8) << number

<< setw(1l6) << count

<< fixed << setprecision(2)

<< setw(1l6) << price << " Dollar" << endl;

return 0O;

Exercise 4

#include <iostream>
#include <iomanip> // Manipulator setw/()
using namespace std;

int main ()

{

unsigned char ¢ = 0;
unsigned int code = 0;

cout << "\nPlease enter a decimal character code: ";
cin >> code;

c = code; // Save for output
cout << "\nThe corresponding character: " << ¢ << endl;
code = c; // Character code. Is only

// necessary, if input is > 255.
cout << "\nCharacter codes"

<< "\n decimal: " << sgsetw(3) << dec << code
<< "\n octal: " << setw(3) << oct << code
<< "\n hexadecimal: " << setw(3) << hex << code
<< endl;

return O;

79

80

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

When entering 336, the value 80 is stored in the low byte of variable code
(336 = 256 + 80).Thus after the assignment, the variable c contains the value
80, representing the character P.

Exercise 5

The corrected program:

// Corrections are commented.

//

#include <iostream>

#include <iomanip> // Manipulator setw ()
#include <strings> // Class string
using namespace std;

int main ()

{

string word; // To read a word.
// char ch; is not needed.

// cout << ...instead of cin >>
cout << "Let's go! Press the return key: ";

cin.get () ; // Input newline character

cout << " Enter a word " // "
"containing three characters at the most: ";// "

cin >> setw(3) >> word; // setw(3) instead of

// setprecision (3)

cout << "Your input: " // <<
<< word << endl; // instead of >> ch

return 0O;

chapter

Operators for
Fundamental Types

In this chapter, operators needed for calculations and selections are
introduced. Overloading and other operators, such as those needed for

bit manipulations, are introduced in later chapters.

81

82 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

= BINARY ARITHMETIC OPERATORS

Binary operator and operands

Operator

v

a + b

Left operand —T T— Right operand

The binary arithmetic operators

Operator Significance

+ Addition

= Subraction
& Multiplication
Division
Remainder

Sample program

#include <iostream>
using namespace std;
int main ()
{
double x, y;
cout << "\nEnter two floating-point values: ";
cin >> x >> y;
cout << "The average of the two numbers is: "
<< (x + y)/2.0 << endl;
return 0;
}

Sample output for the program

Enter two floating-point values: 4.75 12.3456
The average of the two numbers is: 8.5478

BINARY ARITHMETIC OPERATORS 83

If a program is to be able to process the data input it receives, you must define the opera-
tions to be performed for that data. The operations being executed will depend on the
type of data — you could add, multiply, or compare numbers, for example. However, it
would make no sense at all to multiply strings.

The following sections introduce you to the most important operators that can be
used for arithmetic types. A distinction is made between unary and binary operators. A
unary operator has only one operand, whereas a binary operator has two.

[1 Binary Arithmetic Operators

Arithmetic operators are used to perform calculations. The opposite page shows an
overview. You should be aware of the following:

m Divisions performed with integral operands will produce integral results; for exam-
ple, 7/2 computes to 3. If at least one of the operands is a floating-point number,
the result will also be a floating-point number; e.g., the division 7. 0/2 produces
an exact result of 3. 5.

m Remainder division is only applicable to integral operands and returns the remain-
der of an integral division. For example, 7%2 computes to 1.

[1 Expressions

In its simplest form an expression consists of only one constant, one variable, or one
function call. Expressions can be used as the operands of operators to form more complex
expressions. An expression will generally tend to be a combination of operators and
operands.

Each expression that is not a void type returns a value. In the case of arithmetic
expressions, the operands define the type of the expression.

Examples: int a(4); double x(7.9);

a * 512 // Type int
1.0 + sin(x) // Type double
x - 3 // Type double, since one

// operand is of type double
An expression can be used as an operand in another expression.
Example: 2 + 7 * 3 // Adds 2 and 21

Normal mathematical rules (multiplication before addition) apply when evaluating an
expression, i.e. the *, /, % operators have higher precedence than + and -. In our exam-
ple, 7*3 is first calculated before adding 2. However, you can use parentheses to apply a
different precedence order.

Example: (2 + 7) * 3 // Multiplies 9 by 3.

84 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

® UNARY ARITHMETIC OPERATORS

The unary arithmetic operators

Operator Significance
+ = Unary sign operators
++ Increment operator
- Decrement operator

Precedence of arithmetic operators

Precedence Operator Grouping
High ++ —— (postfix) left to right
++ —— (prefix) right to left
+ - (sign)
@ / % left to right
Low + (addition) left to right
— (subtraction)

Effects of prefix and postfix notation

#include <iostream>
using namespace std;
int main()

{
int 1(2), j(8);
cout << 1++ << endl; // Output: 2
cout << i << endl; // Output: 3
cout << j-- << endl; // Output: 8
cout << --j << endl; // Output: 6
return O;

UNARY ARITHMETIC OPERATORS 85

There are four unary arithmetic operators: the sign operators + and -, the increment
operator ++, and the decrement operator - -.

[1 Sign Operators

The sign operator - returns the value of the operand but inverts the sign.
Example: int n = -5; cout << -n; // Output: 5

The sign operator + performs no useful operation, simply returning the value of its
operand.

[J Increment / Decrement Operators

The increment operator ++ modifies the operand by adding 1 to its value and cannot be
used with constants for this reason.

Given that i is a variable, both i++ (postfix notation) and ++1i (prefix notation) raise
the value of i by 1. In both cases the operation 1 = i + 1 is performed.

However, prefix ++ and postfix ++ are two different operators. The difference
becomes apparent when you look at the value of the expression; ++i means that the
value of i has already been incremented by 1, whereas the expression i++ retains the
original value of i. This is an important difference if ++1i or i++ forms part of a more
complex expression:

++1 i is incremented first and the new value of i is then applied,
i+ the original value of i is applied before i is incremented.
The decrement operator -- modifies the operand by reducing the value of the

operand by 1. As the sample program opposite shows, prefix or postfix notation can be
used with --.

[] Precedence

How is an expression with multiple operators evaluated?
Example: float val(5.0); cout << val++ - 7.0/2.0;

Operator precedence determines the order of evaluation, i.e. how operators and
operands are grouped. As you can see from the table opposite, ++ has the highest prece-
dence and / has a higher precedence than -. The example is evaluated as follows:
(val++) — (7.0/2.0). Theresultis 1.5, as val is incremented later.

If two operators have equal precedence, the expression will be evaluated as shown in
column three of the table.

Example: 3 * 5 % 2 is equivalent to (3 * 5) %2

86 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m ASSIGNMENTS

Sample program

// Demonstration of compound assignments

#include <iostreams>
#include <iomanip>
using namespace std;

int main ()

{

float x, vy;

cout << "\n Please enter a starting value: ",
cin >> X;

cout << "\n Please enter the increment value: ";
cin >> vy;

cout << "\n And now multiplication! ";
cout << "\n Please enter a factor: "

cout << "\n Finally division.";
cout << "\n Please supply a divisor: ";
cin >> vy;

x /=v;

cout << "\n And this is "
<< "your current lucky number: "
// without digits after
// the decimal point:
<< fixed << setprecision(0)
<< X << endl;

return 0;

ASSIGNMENTS 87

[1 Simple Assignments
A simple assignment uses the assignment operator = to assign the value of a variable to an

expression. In expressions of this type the variable must be placed on the left and the
assigned value on the right of the assignment operator.

Examples: z 7.5;
Yy = Z;
X 2.0 + 4.2 * z;

The assignment operator has low precedence. In the case of the last example, the right
side of the expression is first evaluated and the result is assigned to the variable on the
left.

Each assignment is an expression in its own right, and its value is the value assigned.
Example: sin(x = 2.5);
In this assignment the number 2. 5 is assigned to x and then passed to the function as an
argument.

Multiple assignments, which are always evaluated from right to left, are also possible.
Example: i = j = 9;
In this case the value 9 is first assigned to j and then to 1.

[1 Compound Assignments

In addition to simple assignment operators there are also compound assignment opera-
tors that simultaneously perform an arithmetic operation and an assignment, for exam-
ple.

Examples. i += 3; is equivalent to i =
i *= j + 2; isequivalentto i

[
S

The second example shows that compound assignments are implicitly placed in paren-
theses, as is demonstrated by the fact that the precedence of the compound assignment is
just as low as that of the simple assignment.

Compound assignment operators can be composed from any binary arithmetic opera-
tor (and, as we will see later, with bit operators). The following compound operators are
thus available: +=, -=, *=, /=, and %=.

You can modify a variable when evaluating a complex expression by means of an
assignment or the ++, - - operators. This technique is referred to as a side effect. Avoid
use of side effects if possible, as they often lead to errors and can impair the readability of
your programs.

88 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m RELATIONAL OPERATORS

The relational operators

Operator Significance
< less than
S= less than or equal to
> greater than
>= geater than or equal to
== equal
1= unequal

Precedence of relational operators

Precedence Operator
High arithmetic operators
< <= > >=
== =]
Low assignment operators

Examples for comparisons:

Comparison Result

5 >= 6 false
1.7 < 1.8 true
4 + 2 == false
2 * 4 1=7 true

RELATIONAL OPERATORS 89

[] The Result of Comparisons

Each comparison in C++ is a bool type expression with a value of true or false,
where true means that the comparison is correct and false means that the compari-
son is incorrect.

Example: length == circuit // false or true

If the variables length and circuit contain the same number, the comparison is
true and the value of the relational expression is true. But if the expressions contain
different values, the value of the expression will be false.

When individual characters are compared, the character codes are compared. The
result therefore depends on the character set you are using. The following expression
results in the value true when ASCII code is used.

Example: 'a' < 'a // true, since 65 < 97

[] Precedence of Relational Operators

Relational operators have lower precedence than arithmetic operators but higher prece-
dence than assignment operators.

Example: bool flag = index < max - 1;

In our example, max — 1 is evaluated first, then the result is compared to index, and the
value of the relational expression (false or true) is assigned to the flag variable.
Similarly, in the following

Example: int result;
result = length + 1 == limit;

length + 1 is evaluated first, then the result is compared to 1imit, and the value of
the relational expression is assigned to the result variable. Since result is an int
type, a numerical value is assigned instead of false or true, i.e. 0 for false and 1 for
true.

It is quite common to assign a value before performing a comparison, and parentheses
must be used in this case.

Example: (result = length + 1) == limit

Our example stores the result of length + 1 in the variable result and then compares
this expression with 1imit.

You cannot use the assignment operator = to compare two expressions. The compiler will not generate
an error message if the value on the left is a variable. This mistake has caused headaches for lots of
beginners when troubleshooting their programs.

90 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m LOGICAL OPERATORS

“Truth” table for logical operators

A B A && B A ||l B
true true true true
true false false true
false true false true
false false false false

A 1A
true false
false true

Examples for logical expressions
X y Logical Expression Result
1 -1 x <=y || y >=0 false
0 0 X > -2 && y == 0 true
-1 0 X && ly true
0 1 1(x+1) || y-1>0 false

A numeric value, such as x or x+1, is interpreted as “false” if its value is 0. Any value other than 0 is

interpreted as “true.”

LOGICAL OPERATORS 91

The logical operators comprise the boolean operators && (AND), | | (OR), and ! (NOT).
They can be used to create compound conditions and perform conditional execution of a
program depending on multiple conditions.

A logical expression results in a value false or true, depending on whether the log-
ical expression is correct or incorrect, just like a relational expression.

[1 Operands and Order of Evaluation

The operands for boolean type operators are of the bool type. However, operands of any
type that can be converted to bool can also be used, including any arithmetic types. In
this case the operand is interpreted as false, or converted to false, if it has a value of
0. Any other value than 0 is interpreted as t rue.

The OR operator | | will return true only if at least one operand is true, so the value
of the expression

Example: (length < 0.2) || (length > 9.8)

is true if length is less than 0.2 or greater than 9. 8.
The AND operator && will return true only if both operands are true, so the logical
expression

Example: (index < max) && (cin >> number)

is true, provided index is less than max and a number is successfully input. If the con-
dition index < max is not met, the program will not attempt to read a number! One
important feature of the logical operators && and | | is the fact that there is a fixed order
of evaluation. The left operand is evaluated first and if a result has already been ascer-
tained, the right operand will not be evaluated!

The NOT operator ! will return true only if its operand is false. If the variable f1ag
contains the value false (or the value 0), ! £1ag returns the boolean value true.

[1 Precedence of Boolean Operators

The && operator has higher precedence than | |. The precedence of both these operators
is higher than the precedence of an assignment operator, but lower than the precedence
of all previously used operators. This is why it was permissible to omit the parentheses in
the examples earlier on in this chapter.

The ! operator is a unary operator and thus has higher precedence. Refer to the table
of precedence in the Appendix for further details.

92 = CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

= EXERCISES

Program listing for exercise 4

// Evaluating operands in logical expressions.

#include <iostream>
using namespace std;
int main/()
{
cout << boolalpha; // Outputs boolean values
// as true or false
bool res = false;

int y = 5;

res = 7 || (y = 0);

cout << "Result of (7 || (y = 0)): " << res
<< endl;

cout << "Value of y: " << y << endl;

int a, b, c¢;

a=Db=c¢c=0;

res = ++a || ++b && ++c;
cout << '\n'
<< " res =" << res
<< ", a =" << a
<< ", b="<<b
<< ", c =" << c << endl;

a=Db=c¢c=0;

res = ++a && ++b || ++c;
cout << " res = " << res
<< ", a =" << a
<< ", b ="+<<Db
<< ", c =" << ¢ << endl;

return 0;

EXERCISES 93

Exercise |
What values do the following arithmetic expressions have?

a. 3/10 b. 1134 c. 15/2.0
d 3 +4 %5 e. 3 * 7 % 4 f. 7 %4 * 3
Exercise 2

a. How are operands and operators in the following expression associated?
X = -4 * i++ - 6 % 4;

Insert parentheses to form equivalent expressions.
b. What value will be assigned in part a to the variable x if the variable i has a
value of -2?

Exercise 3

The int variable x contains the number 7. Calculate the value of the following
logical expressions:

a. X < 10 && x >= -1
b. !x && x >= 3

C. X++ == 8 || x == 7

Exercise 4

What screen output does the program on the opposite page generate!

94 = CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

® SOLUTIONS

Exercise |
a. o0 b. 3 c. 7.5
d 7 e. 1 f. o
Exercise 2
A x = (((-4) * (i++)) - (6 % 4))

b. The value 6 will be assigned to the variable x.

Exercise 3

a. true
b. false
c. false

Exercise 4

Result of (7 || (y = 0)): true
Value of y: 5

true, a =1, b =0, c =0
true, a =1, b =1, c =0

res
res

chapter

Control Flow

This chapter introduces the statements needed to control the flow of a
program. These are

m loops with while, do-while, and for

m selections with if-else, switch, and the conditional operator

B jumps with goto, continue, and break.

95

96

CHAPTER 6 CONTROL FLOW

B THE while STATEMENT

Structogram for while

As long as the expression is true

statement

Sample program

// average.cpp
// Computing the average of numbers

#include <iostream>
using namespace std;

int main ()
int x, count = 0;
float sum = 0.0;

cout << "Please enter some integers
" (Break with any letter)"
<< endl;
while(cin >> x)
{
sum += X;
++count;

}

<< sum / count << endl;
return 0;

cout << "The average of the numbers:

\n"

Sample output from the above program

Please enter some integers:

(Break with any letter)

9 10 12g

The average of the numbers: 10.3333

THE WHILE STATEMENT 97

Loops are used to perform a set of instructions repeatedly. The set of instructions to be
iterated is called the loop body. C++ offers three language elements to formulate iteration
statements: while, do-while, and for. The number of times a loop is repeated is
defined by a controlling expression. In the case of while and for statements this expres-
sion is verified before the loop body is executed, whereas a do-while loop is performed
once before testing.

The while statement takes the following format:

Syntax: while(expression)
statement // loop body

When entering the loop, the controlling expression is verified, i.e. the expression is
evaluated. If this value is true, the loop body is then executed before the controlling
expression is evaluated once more.

If the controlling expression is false, i.e. expression evaluates to false, the pro-
gram goes on to execute the statement following the while loop.

[t is common practice to place the loop body in a new line of the source code and to
indent the statement to improve the readability of the program.

Example: int count = 0;
while(count < 10)
cout << ++count << endl;

As this example illustrates, the controlling expression is normally a boolean expression.
However, the controlling expression might be any expression that can be converted to
the bool type including any arithmetic expressions. As we already learned from the sec-
tion on boolean operators, the value 0 converts to false and all other values convert to
true.

[] Building Blocks

If you need to repeat more than one statement in a program loop, you must place the
statements in a block marked by parentheses { }. A block is syntactically equivalent to a
statement, so you can use a block wherever the syntax requires a statement.

The program on the opposite page calculates the average of a sequence of integers
input via the keyboard. Since the loops contains two statements, the statements must be
placed in a block.

The controlling expression cin >> x is true provided the user inputs an integer.
The result of converting the expression cin >> x to a bool type will be true for any
valid input and false in any other case. Invalid input, if the user types a letter instead
of an integer, for example, terminates the loop and executes the next statement.

98

CHAPTER 6 CONTROL FLOW

B THE for STATEMENT

Structogram for for

expressionl

As long as expression2 is true

statement
expression3
Sample program

// Eurol.cpp

#include <iostream>

#include <iomanip>

using namespace std;

int main()

double rate = 1.15; // Exchange rate:

// one Euro to one Dollar

cout << fixed << setprecision(2);

cout << "\tEuro \tDollar\n";
for(int euro = 1; euro <= 5; ++euro)
cout << "\t " << euro
<< "\t " << euro*rate << endl;
return 0;

Screen output

Euro
1

(62 B VNI \V]

Dollar
0.95

B W N R

.90
.85
.80
.75

THE FOR STATEMENT 99

[Initializing and Reinitializing
A typical loop uses a counter that is initialized, tested by the controlling expression and
reinitialized at the end of the loop.

Example: int count = 1; // Initialization
while(count <= 10) // Controlling
{ // expression
cout << count
<< ". loop" << endl;
++count; // Reinitialization

}

In the case of a for statement the elements that control the loop can be found in the
loop header. The above example can also be expressed as a for loop:

Example: int count;
for(count = 1; count <= 10; ++count)
cout << count
<< ". loop" << endl;

Any expression can be used to initialize and reinitialize the loop. Thus, a for loop has
the following form:

Syntax: for(expressionl; expression2; expression3)
statement

expressioni is executed first and only once to initialize the loop. expression2 is
the controlling expression, which is always evaluated prior to executing the loop body:

m if expression2 is false, the loop is terminated
m if expression2 is true, the loop body is executed. Subsequently, the loop is
reinitialized by executing expression3 and expression?2 is re-tested.

You can also define the loop counter in expressionl. Doing so means that the
counter can be used within the loop, but not after leaving the loop.

Example: for(int 1 = 0; i < 10; cout << i++)

As this example illustrates, the loop body can be an empty statement. This is always the
case if the loop header contains all necessary statements. However, to improve readabil-
ity, even the empty statement should occupy a line of its own.

100

CHAPTER 6

CONTROL FLOW

B THE for STATEMENT (CONTINUED)

Sample program

// EuroDoll.cpp
// Outputs a table of exchange: Euro and US-$

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
long euro, maxEuro; // Amount in Euros
double rate; // Exchange rate Euro <-> $

cout << "\n* * * TABLE OF EXCHANGE "
<< " Euro - US-$ * * *\n\n";

cout << "\nPlease give the rate of exchange: "
" one Euro in US-S$: ";

cin >> rate;

cout << "\nPlease enter the maximum euro: ";

cin >> maxEuro;

// --- Outputs the table ---
// Titles of columns:
cout << '\n'
<< setw(l2) << "Euro" << setw(20) << "US-g"
<< "\t\tRate: " << rate << endl;

// Formatting US-$:
cout << fixed << setprecision(2) << endl;

long lower, upper, // Lower and upper limit
step; // Step width

// The outer loop determines the actual
// lower limit and the step width:
for(lower=1, step=1l; lower <= maxEuro;
step*= 10, lower = 2*step)
// The inner loop outputs a "block":
for(euro = lower, upper = step*10;
euro <= upper && euro <= maxEuro; euro+=step)
cout << setw(1l2) << euro
<< setw(20) << euro*rate << endl;
return O;

THE FOR STATEMENT (CONTINUED) 101

Any of the three expressions in a for statement can be omitted, however, you must type
at least two semicolons. The shortest loop header is therefore:

Example: for(;;)

This statement causes an infinite loop, since the controlling expression is assumed to be
true if expression2 is missing. In the following

Example: for(; expression;)

the loop header is equivalent to while (expression). The loop body is executed as
long as the test expression is true.

[1 The Comma Operator

You can use the comma operator to include several expressions where a single expression
is syntactically correct. For example, several variables can be initialized in the loop
header of a for statement. The following syntax applies for the comma operator

Syntax: expressionl, expression2 [, expression3 ...]
The expressions separated by commas are evaluated from left to right.

Example: int x, i, limit;
for(i=0, 1limit=8; i < limit; 1 += 2)
x =1 * i, cout << setw(1l0) << X;

The comma operator separates the assignments for the variables i and 1imit and is
then used to calculate and output the value of x in a single statement.

The comma operator has the lowest precedence of all operators — even lower than
the assignment operators. This means you can leave out the parentheses in the above
example.

Like any other C++ expression, an expression containing the comma operator has a
value and belongs to a certain type. The type and value are defined by the last expression
in a statement separated by commas.

Example: x = (a =3, b =5, a * b);

In this example the statements in brackets are executed before the value of the product
ofa * b isassigned to x.

102

CHAPTER 6 CONTROL FLOW

B THE do-while STATEMENT

Structogram for do-while

statement

As long as the expression is true

Sample program

// tone.cpp
#include <iostream>

using namespa