

by Alan Simpson

Access VBA
Programming

FOR

DUMmIES
‰

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page i

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page iv

by Alan Simpson

Access VBA
Programming

FOR

DUMmIES
‰

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page i

Access VBA Programming For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@
wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004104566

ISBN: 0-7645-7411-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RT/QY/QU/IN

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page ii

About the Author
Alan Simpson is the author of over 90 computer books on databases,
Windows, Web site design and development, programming, and networking.
His books are published throughout the world in over a dozen languages
and have millions of copies. Alan has also taught introductory and advanced
computer programming courses at San Diego State University and the UCSD
Extension. He has served as a consultant on high-technology, education-
oriented projects for the United States Navy and Air Force. Despite that,
Alan has no fancy job title because he has never had a real job.

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page iii

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page iv

Dedication
To Susan, Ashley, and Alec, as always.

Author’s Acknowledgments
Even though only one author’s name appears on the cover, every book
is a team project. This author would like to thank the many people who
contributed to this book. To Matt Wagner and all the folks at Waterside
Productions, a big thanks for helping to make it all happen. Many thanks
to Terry Varveris and Christopher Morris at Wiley for their enduring
patience (and Terry’s relentless friendly reminders). And of course,
thanks to all the people at home for putting up with the neglect while
Daddy cranked out yet another book.

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Christopher Morris

Acquisitions Editor: Terri Varveris

Senior Copy Editor: Teresa Artman

Technical Editor: Wiley-Dreamtech India
Pvt Ltd

Editorial Manager: Kevin Kirschner

Media Development Specialist: Angela Denny

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Composition

Project Coordinator: Courtney MacIntyre

Layout and Graphics: Andrea Dahl,
Denny Hager, Joyce Haughey,
Michael Kruzil, Lynsey Osborn,
Melanee Prendergast, Jacque Roth,
Heather Ryan, Mary Gillot Virgin

Proofreaders: Laura Albert,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Editorial Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

00a_574116_ffirs.qxd 7/27/04 9:03 PM Page vi

Contents at a Glance
Introduction ...1

Part I: Introducing VBA Programming7
Chapter 1: Where VBA Fits In..9
Chapter 2: Your VBA Toolkit ...21
Chapter 3: Jumpstart: Creating a Simple VBA Program ..35

Part II: VBA Tools and Techniques49
Chapter 4: Understanding Your VBA Building Blocks ...51
Chapter 5: Controlling Access through VBA...71
Chapter 6: Programming Access Forms ..87

Part III: VBA, Recordsets, and SQL115
Chapter 7: The Scoop on SQL and Recordsets...117
Chapter 8: Putting Recordsets to Work ...147

Part IV: Applying VBA in the Real World173
Chapter 9: Creating Your Own Dialog Boxes...175
Chapter 10: Customizing Lists and Drop-Down Menus ...201
Chapter 11: Creating Your Own Functions..241
Chapter 12: Testing and Debugging Your Code ..267

Part V: Reaching Out with VBA295
Chapter 13: Using VBA with Multiple Databases..297
Chapter 14: Integrating with Other Office Applications..317

Part VI: The Part of Tens ...349
Chapter 15: Ten Commandments of Writing VBA ..351
Chapter 16: Top Ten Nerdy VBA Tricks...357
Chapter 17: (Way More Than) Ten Shortcut Keys ...367

Index ...371

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page vii

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page viii

Table of Contents
Introduction..1

About This Book...2
Conventions Used in This Book ...2
What You’re Not to Read...3
Foolish Assumptions ...3
How This Book Is Organized...3

Part I: Introducing VBA Programming ...3
Part II: VBA Tools and Techniques...4
Part III: VBA, Recordsets, and SQL...4
Part IV: Applying VBA in the Real World ...4
Part V: Reaching Out with VBA...4
Part VI: The Part of Tens ...4

Icons Used in This Book..5
Web Site for This Book ..5
Where to Go from Here..6

Part I: Introducing VBA Programming.............................7

Chapter 1: Where VBA Fits In .9
Taking a Look at Access ..10
Understanding VBA..11
Seeing Where VBA Lurks...12

Finding standard modules...13
Finding class modules ...13
From VBA to Access...15

Finding Out How VBA Works ..17
Discovering VBA procedures..17
Recognizing VBA procedures..18

Chapter 2: Your VBA Toolkit .21
Using the Visual Basic Editor..21

Using Project Explorer...23
Using the Properties window..24
Using the Immediate window..25
Using the Code window ...26

Referring to Objects from VBA...28
Setting References to Object Libraries..29
Using the Object Browser ...30
Searching the Object Library ...32

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page ix

Chapter 3: Jumpstart: Creating a Simple VBA Program 35
Creating a Standard Module ...35
Creating a Procedure ...36
Understanding Syntax ...38

Getting keyword help...39
Help with arguments..43
About named arguments ...45

Modifying Existing Code..46
Copy-and-paste code from the Web ...46
Importing standard modules ..47
Modifying existing code...48

Part II: VBA Tools and Techniques49

Chapter 4: Understanding Your VBA Building Blocks 51
Commenting Your Code ..52
Understanding VBA Data Types ...53
Passing Data to Procedures ..55

Storing data in variables and constants ..57
Storing data in arrays...58
Module-level versus procedure-level...60
Naming conventions for variables ...61

Repeating Chunks of Code with Loops..62
Using Do...Loop to create a loop ..62
Using While...Wend to create a loop ..64
Using For...Next to create a loop...64

Making Decisions in VBA Code...66
Using If...End If statements..67
Using a Select Case block ..68

Chapter 5: Controlling Access through VBA .71
Understanding Object Models..72

Distinguishing between objects and collections..............................72
Understanding properties and methods ...75
Identifying the icons for objects, properties, and methods77

Manipulating Properties and Methods..78
Getting the value of a property...79
Changing the value of a property...80
Using an object’s methods ..81
Seeking help with properties and methods82

Chapter 6: Programming Access Forms .87
Working with Class Procedures..87
Enabling Disabling Form Controls ...90

Using VBA to position the cursor...91
Choosing an object and event for the code92

Access VBA Programming For Dummies x

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page x

Showing and hiding controls ..95
Making controls read-only...96

Responding to Form Events..96
Changing the Appearance of Objects ..99

Changing colors..99
Controlling boldface, italics, and such ..103
Changing special effects ..103
Using the With...End With statements ...104
Filling form controls with data ...105

Opening and Closing Forms..107
Closing a form...109
Adding a related record to another table..109
More DoCmd methods for forms..111

Part III: VBA, Recordsets, and SQL.............................115

Chapter 7: The Scoop on SQL and Recordsets 117
What the Heck is SQL?...117

Writing SQL without knowing SQL ...120
Select queries versus action queries ...121
Getting SQL into VBA ...123
Hiding warning messages..125
Storing SQL statements in variables ..126

Creating Tables from VBA ...128
Creating new tables from existing tables ..128
Creating a new, empty table from VBA ..129
Closing and deleting tables through VBA130

Adding Records to a Table..131
Appending a single record with SQL..132
Query to append one record ..133

Changing and Deleting Table Records...134
Doing an Action Query on One Record ...136
Working with Select Queries and Recordsets...137

Defining a connection ..140
Defining the recordset and data source ..141
Filling the recordset with data..142
Methods for managing recordsets ...144
Referring to fields in a recordset..145
Closing RecordSets and collections...146

Chapter 8: Putting Recordsets to Work .147
Looping through Collections ..147

Using For Each loops ...149
Using shorter names for objects ..152

xiTable of Contents

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page xi

Tips on Reading and Modifying Code..153
Square brackets represent names..154
Other ways to refer to objects..155
Using the continuation character ..156

Skipping Over Used Mailing Labels ...158
How SkipLabels Works ..162

Passing data to SkipLabels..164
Declaring variables...165
Copying the label report..165
Getting a report’s record source ..165
Creating the recordset ...166
Creating LabelsTempTable from MyRecordSet166

Calling a Procedure from an Event ..170

Part IV: Applying VBA in the Real World173

Chapter 9: Creating Your Own Dialog Boxes .175
Displaying and Responding to Messages..176

Asking a question ...176
Designing a message box...177
Responding to a MsgBox button click ...180

Converting Forms to Dialog Boxes ..182
Storing dialog box settings..183
Setting form properties ...184
Adding controls to the dialog box..186

Creating Custom Combo Boxes..188
Creating a Spin Box Control..195
Detecting a Right-Click ..198

Chapter 10: Customizing Lists and Drop-Down Menus 201
Programming Combo and List Boxes ..202

Listing field names ...204
Listing text options ..207
Listing Table/Query field values...213

Linking Lists..217
Running code when a form opens..219
Running code when the user makes a choice.................................220

Linking Lists across Forms ...223
Updating a combo box or a list box...224
Open a form to enter a new record..226
Seeing whether a form is open ...227
Getting forms in sync...228

More Combo Box Tricks..229
Hidden values in combo and list boxes...229
Giving users a quick find ...233
Avoid retyping common entries ...237

Access VBA Programming For Dummies xii

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page xii

Chapter 11: Creating Your Own Functions .241
The Role of Functions in VBA...241
Creating Your Own Functions...243

Passing data to a function ...244
Returning a value from a function..245
Testing a custom function...246

A Proper Case Function...247
How PCase() works ...249
Using the PCase() function...250

A Function to Print Check Amounts ..253
Using the NumWord function..255
How NumWord() works...258

Chapter 12: Testing and Debugging Your Code 267
Understanding Compilation and Runtime ..268
Considering Types of Program Errors...270
Conquering Compile Errors ..271

Expected: expression...273
Expected: end of statement ..274
Expected: list separator or) ...274

Dealing with Logical Errors...276
Checking on variables with Debug.Print ...277
Slowing down code ..280
Getting back to normal in the Code window284

Wrestling Runtime Errors..285
Responding to a runtime error ...286
Trapping runtime errors..287
Writing your own error handlers..290

Part V: Reaching Out with VBA..................................295

Chapter 13: Using VBA with Multiple Databases 297
Client-Server Microsoft Access ..297
Importing from External Databases...303
Linking to External Data through Code ...305
Avoiding Multiple Tables and Links...307
Creating Recordsets from External Tables ...309
Importing/Exporting/Linking to Anything ..311

Using a macro to write the code ..311
Quick and easy import/export..313

Chapter 14: Integrating with Other Office Applications317
Accessing the Object Library ...317

Exploring a program’s object model..319
Meet the Application object..319
Connecting to other programs ...321

xiiiTable of Contents

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page xiii

Sending E-mail via Outlook ...322
Sending Data to Microsoft Word ..326

Creating the Word template ..327
Creating the Access form ..329
Writing the merge code ...330

Interacting with Microsoft Excel ..336
Creating the worksheet..336
Creating a query and a form ...337
Writing the Excel code...338
Running Excel macros from Access ...347

Part VI: The Part of Tens..349

Chapter 15: Ten Commandments of Writing VBA351
I. Thou Shalt Not Harbor Strange Beliefs about Microsoft Access351
II. Thou Shalt Not Use VBA Statements in Vain ..351
III. Remember to Keep Holy VBA Syntax...352
IV. Honor Thy Parens and Quotation Marks ...353
V. Thou Shalt Not Guess ..354
VI. Thou Shalt Not Commit Help Adultery..354
VII. Thou Shalt Steal Whenever Possible ..355
VIII. Thou Shalt Not Bear False Witness against Thy Object Browser....355
IX. Thou Shalt Not Covet Thy Neighbor’s Knowledge.............................356
X. Thou Shalt Not Scream356

Chapter 16: Top Ten Nerdy VBA Tricks .357
1. Open a Form from VBA..357
2. See Whether a Form Is Already Open..358
3. Refer to an Open Form ..358
4. Move the Cursor to a Control...359
5. Change the Contents of a Control ..360
6. Update a List Box or Combo Box ...361
7. Show a Custom Message ...361
8. Ask the User a Question..362
9. Print a Report ...363
10. Get to Know the DoCmd Object ...364

Chapter 17: (Way More Than) Ten Shortcut Keys 367
Code and Immediate Window Shortcuts...367
General VBA Editor Shortcut Keys ..369
Debug Shortcut Keys ...369

Index..371

Access VBA Programming For Dummies xiv

00b_574116_ftoc.qxd 7/27/04 9:03 PM Page xiv

Introduction

Welcome to Access VBA Programming For Dummies. As you (hopefully)
already know, Microsoft Access is a huge database management pro-

gram, offering lots of ways to manage data (information). Common uses of
Access include managing mailing lists, memberships, scientific and statistical
data, an entire small business, and just about anything else that involves stor-
ing and managing large amounts of information.

As the title implies, this is a book about using Visual Basic for Applications
(VBA) to enhance the power of Access databases. It’s not a book about creat-
ing Access tables, queries, forms, reports, and such. To stay focused on VBA,
I need to assume that you already know all that. Furthermore, there’s really
no point in even using VBA until you’ve already created a database with at
least some tables and forms in it. In fact, writing VBA code is usually the last
step in creating a custom Access database.

Unlike other programming books that you might have seen, this one doesn’t
assume that you’re already a programmer. I don’t even assume that you’re
already an accomplished programmer who is just picking up a new program-
ming language. Rather, I assume that you’ve never written any programming
code in your life — and maybe aren’t even all that sure what programming
code means or how it relates to Microsoft Access.

By the time you finish this book, you’ll know exactly what VBA is all about
and you’ll know how it fits into Access. You’ll discover the meanings of all
those obscure terms that programmers throw around — code, variable, array,
loop, object — as though they were common knowledge. You’ll be able to
write and use your own custom code, just like programmers do.

You might have noticed there is no version number in this book’s title: That
is, it’s not Access 2002 VBA or Access 2003 VBA. Here’s why: Although many
changes and improvements to Access have occurred in all the versions that
Microsoft has released, the VBA programming language has hardly changed a
bit over the years. The code that you see here should work as-is in Access
2000, 2002, 2003, and any subsequent versions released. The vast majority of
the code in this book will also work just fine even in last century’s versions,
such as Access 97.

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 1

About This Book
I wish I could say that this book is exactly like a coffee-table book, where you
could just pick it up, flip to any page, and have everything make perfect sense
to you. Well, I could say that, but I’d be lying if I did. It’s not because I wanted
to break from the coffee-table book idea. It’s really more because some stuff in
life doesn’t make much sense until after you already know something else.

Here, it’s not really possible to make much sense of VBA code until you
understand what VBA code is and why it exists. And, we are talking about
Microsoft Access VBA here. To make sense of much of anything in this book,
you have to already be familiar with Microsoft Access tables, queries, forms,
and reports. There just isn’t enough room in this book to explain all that stuff
from scratch and still have enough pages left over to talk about VBA.

On the bright side, I did everything I could to make it easy to find what you
need to know, when you need to know it. It’s certainly not necessary to read
this book cover to cover to make sense of things. After you find the topic
you’re looking for, you should be able to read through the section and be
done with it quickly. Often, you’ll be able to skip reading altogether and get
all you need to know from the pictures in that section.

Conventions Used in This Book
While I’m on the topic of using this book without boring yourself to death
attempting to actually read it, I’ve also stuck with some conventions for dis-
playing text in these pages. For example, any actual VBA programming code
appears in a monospace font with a gray background, like this:

‘VBA code to say Hello World on the screen.
Sub Hello()

MsgBox “Hello World”
End Sub

When there’s just a little chunk of code to show in text, like this — Dim Wit
As Date — you can see what is and what isn’t VBA code.

The ➪ symbol that you see in text separates individual menu options (com-
mands) that you choose in sequence. For example, rather than saying Choose
New from the File menu or Click File in the menu bar and then click New in the
drop-down menu, I just say something like

Choose File➪New from the menu bar.

When you see something in bold, I want you to enter (type) that.

2 Access VBA Programming For Dummies

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 2

What You’re Not to Read
I don’t think there are many people in the world who would put reading
a computer book into their own personal Fun life-category. I think reading a
computer book is more likely to fall into the Work or Don’t category. To mini-
mize the time you have to spend away from Fun category things, I put some
information in sidebars noted with Technical Stuff icons. Those things are
definitely optional reading that you’re welcome to ignore.

Foolish Assumptions
I think I already covered the bases as far as foolish assumptions go in this
book. To assume that only true Microsoft Access experts would even attempt
to read these pages is about the most foolish assumption I could possibly
make. Let’s face it: Most people are totally clueless when it comes to anything
having to do with Microsoft Access. Access isn’t exactly an easy program for
most people to learn.

But whad’ya gonna do? The title of this book says it’s about Access VBA, so
that’s what the book is about. There just isn’t any way around the thorny fact
that Access VBA can only be explained to people who already know what
Microsoft Access is all about. Reality rears its ugly head and refuses to duck
back down.

How This Book Is Organized
All books contain a lot of information. That’s what makes them books. To
break things down into smaller, more manageable chunks, I split this book
into five main parts, as follows.

Part I: Introducing VBA Programming
This is all the information you need to get started. If you’ve already been
using VBA for a few months or years, you can skim this part. If you don’t
know a VBA procedure from a PTA Meeting, you might want to take a closer
look at Part I before venturing forth to the upcoming parts.

3Introduction

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 3

Part II: VBA Tools and Techniques
Here you discover how to write VBA code to make Access do things for you.
For example, you’ll see how you can make Access open forms, respond to
button clicks, change the appearance of objects, and more.

Part III: VBA, Recordsets, and SQL
Here you’ll get friendly with tools and techniques for managing your Access
tables using VBA with SQL (Structured Query Language) and recordsets. All
those buzzwords make this sound more technical than it really is. But as
you’ll see, if you’ve done anything at all with queries in the past, you’ve
already been working with SQL recordsets. The idea is the same. We just use
fancier terminology in the VBA world.

Part IV: Applying VBA in the Real World
Here you’ll get into some more advanced programming tricks, mostly by
using techniques presented in earlier parts in new and creative ways. You’ll
also see how to use VBA’s debugging techniques, which can be a real life-
saver when things go wrong and you just can’t figure out why the code you
wrote isn’t doing what you intended.

Part V: Reaching Out with VBA
VBA isn’t a programming language solely for Microsoft Access. You can
use VBA to customize all the Microsoft Offce application programs, including
Microsoft Word, Microsoft Excel, and Microsoft Access. Furthermore, VBA can
import data from, and export data to, a variety of formats that extend its reach
even beyond Microsoft Access. Part V will show you how that’s all done.

Part VI: The Part of Tens
What For Dummies book would complete without a Part of Tens? Ten is
such a nice number to work with, given our ten fingers and all. The Ten
Commandments of Writing VBA Code cover the main strategies that you can
adopt to avoid going crazy trying to get VBA to do your bidding. Then there’s
the top 10 nerdy programming things you’re most likely to want to do almost
from Day 1 of using VBA. Check out Chapter 17 for more than ten shortcut

4 Access VBA Programming For Dummies

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 4

keys. I figured that if I were gonna stick some shortcut keys here, why limit it
to ten? I’ll splurge on those because they’re easy.

Icons Used in This Book
As you flip through this book, you’ll notice little icons like these sprinkled
about its pages. These icons point out little chunks of text that either deserve
a little extra attention or deserve very little attention. For example, a Warning
points out places where being careless could cause real problems, whereas
Technical Stuff points out facts that are nice to know but not super-important.
The icons are

Tips point out handy tricks or techniques that can make things easier for you.

These icons point out techniques where if you do things wrong, you might
end up creating problems for yourself.

These icons point out tools and techniques that you’ll use every time you use
VBA. You’ll want to keep these in mind because you’ll use them often.

These icons point out text that describes how or why a thing works the way
it does from a technical standpoint. If you just want to get a thing to work and
don’t care about how or why it works, you can always skip these.

Web Site for This Book
If you can find a way to copy and paste — rather than type — VBA code into
your database, go for it. Much of the sample VBA code shown in this book is
the kind of thing you can just drop into an Access database and start using.
There’s no need to retype the whole thing. Anyway, I’ll post all the useful
code at these Web sites:

www.dummies.com/go/accessvbaprog

www.coolnerds.com/vba

When you get to either site, you’ll see where to find the code, how to copy
and paste it into your own database, and a link where you can send me your
questions.

5Introduction

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 5

Where to Go from Here
Now that you know what this book is about and how it’s organized, the next
question is, “Where do I start?” Your best bet, if you’re an absolute VBA
beginner, is at Chapter 1. Try to slog through the first three (short) chapters
to get your bearings.

Experienced VBA users can probably start anywhere that looks interesting. If
you get in over your head at some point, watch for cross-references to earlier
chapters where you can quickly fill in the knowledge gap that’s causing the
confusion.

6 Access VBA Programming For Dummies

00c_574116_cintro.qxd 7/27/04 9:04 PM Page 6

Part I
Introducing VBA

Programming

01a_574116_PP01.qxd 7/27/04 9:04 PM Page 7

In this part . . .

VBA lets you do some pretty amazing stuff in an Access
database. With VBA, you can make Access do boring

repetitive jobs that you might otherwise have to do on
your own. You can even get Access to do things that it
couldn’t possibly do on its own. Before you dive right
in and try to make such things happen, you need to step
back a moment and get a feel for how VBA fits into the
whole Microsoft Access scheme of things. Then you need
to get friendly with the tools available to you for turning
ideas into stuff that actually happens when you want it to
happen. I’ll get through all of that in Chapters 1 and 2.

With your roadmap and toolkit in hand, you’ll be ready
to get into what Access VBA is really all about — writing
code (also known as programming) — to make Access
do exactly what you want it to do. Yes, you actually write
code by typing it . . . unless, of course, you can just copy
and paste the code, as is often the case. Chapter 3 is about
both writing and swiping VBA code.

01a_574116_PP01.qxd 7/27/04 9:04 PM Page 8

Chapter 1

Where VBA Fits In
In This Chapter
� Describing Access

� Discovering VBA

� Seeing where VBA lurks

� Understanding how VBA works

This is a book about using Visual Basic for Applications (VBA), which is a
programming language that helps you program, tweak, and squeeze pro-

ductivity from Access. VBA, which is embedded in Access, is a sophisticated
set of programming tools that you can use to harness the power of a packaged
application like Access. Just like you need to know how to walk before you can
run, you need to know Access before you can start to use Access VBA.

Maybe you want to use Access to manage a large mailing list. Maybe you
need Access to manage your whole business, including customers, products,
and orders. Perhaps you need to manage enrollments in courses or events.
Whatever your reason for using Access, your first step will always be to
create the tables for storing your data. From there, you can then create
queries, forms, reports, and macros to help manage those data. All these
steps take place before you even get into VBA. So in this book, I have to
assume that you’re already an experienced Access user who needs more than
what queries, forms, reports, and macros can provide. If you’re new to
Access, this is not a good place to start. If you need to brush up further on
Access, Access 2003 For Dummies (John Kaufeld, Wiley) or Access 2003 All-in-
One Desk Reference For Dummies (Alan Simpson, Margaret Levine Young, and
Alison Barrows; Wiley) would be a good place to start.

Although Access has progressed through many versions over the years, VBA
has remained relatively unchanged. I used both Access 2002 and Access 2003
to create this book, but the code examples presented in this book should
work fine in just about any version of Access. So now, before launching into
VBA, take a moment to discuss what tables, queries, forms, and reports are
all about, and how VBA fits into the overall scheme of things.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 9

10 Part I: Introducing VBA Programming

Taking a Look at Access
Access, part of the Microsoft Office suite, is a huge database management
system that you work by using modern object-oriented methods. (The term
object-oriented stems from the fact that everything you create in Access — a
table, form, report, or whatever — is considered an object.

The Access database window, as shown in Figure 1-1, is the main container in
which you store all the main objects that make up a single database. The left
column of the database window is the Object list, and each name in the list
represents a type of object, as summarized here.

� Tables: Tables contain the raw data that all other object types display and
manage. Data in tables is stored in records (rows) and fields (columns).

� Queries: Use queries to sort and filter data as well as define relationships
among multiple related tables.

� Forms: Access forms are similar to printed fill-in-the-blank forms, but
they allow you to view and change data stored in Access tables.

� Reports: Reports are objects that define how data should be presented
on printed reports.

� Pages: Pages are similar to forms, but users can access data in tables
through a Web browser rather than directly through Access.

� Macros: Macros provide a means of automating certain aspects of
Access without programming.

The Modules container, as you’ll soon discover, is one of the places where
you store VBA code. If you’re not already familiar with modules, that’s fine.
Modules are what this book is really all about. Groups, of course, aren’t really
separate objects but rather just collections of existing objects. Sort of
Access’s version of Favorites.

Figure 1-1:
The Access

database
window.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 10

11Chapter 1: Where VBA Fits In

One of the most important things to understand is that you don’t use VBA
“instead of” other objects like tables and forms. You use VBA to enhance the
capabilities of other object types. Therefore, it makes no sense to even try
VBA until you have a firm grasp of the purpose and capabilities of those
other object types in Access.

Understanding VBA
Visual Basic is a programming language — a language for writing instructions
that a computer can read and process. VBA is a programming language that’s
specifically designed to work with the application programs in Microsoft
Office including Word, Excel, Outlook, and of course, Access.

When you write text in a programming language (as opposed to writing in
plan English), you’re writing code. Programmers use the term code to refer to
anything that’s written in a computer programming language. For example,
Figure 1-2 shows some sample VBA code. The whole trick to learning VBA is
learning what all the various words in the language mean so that you can
write code that tells Access exactly how to perform some task.

If the sample code shown in Figure 1-2 looks like meaningless gibberish to
you, don’t worry about it. People aren’t born knowing how to read and write
VBA code. Programming (writing code) is a skill you have to learn. For now,
it’s sufficient just to know what code looks like. Knowing what the code
means is one of the skills you’ll master in this book.

Because VBA code looks like a bunch of meaningless gibberish typed onto a
sheet of paper, this begs the question of why anybody would want to learn to
read and write some dreadful language like that. The answer to that question
lies in the role played by VBA in an application like an Access database.

Figure 1-2:
Some

sample VBA
code.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 11

12 Part I: Introducing VBA Programming

The ability to use the same code over and over again is key to automating
mundane tasks in Access. For example, if you used Access to print checks,
you might have to manually type the part of the check where you type the
amount in words, like Ninety-two and 99/100 Dollars for $92.99 because
Access can’t do that translation on its own. But if you could write some code
to translate a number like $92.99 into words, you wouldn’t need to type all
those dollar amounts. Access would just print the correct information as it
prints each check.

Access does indeed have a ton of tools that let you create a database without
any programming at all. You could easily spend months or years just learning
all the things you can do in Access without writing any VBA code. Yet despite
the huge number of things you can do without programming, sometimes you
will want your database to accomplish some task that’s not built into Access.
That’s where VBA comes in. When you want Access to perform a task that it
doesn’t already know how to perform, you write the steps to be performed in
the VBA programming language.

When you’re writing VBA code or just looking at some VBA code written by
someone else, Access doesn’t do anything. Access doesn’t actually perform
the steps described by that code until Access executes the code. When you
write VBA code, you’re actually writing a set of instructions that Access can
perform at any time, over and over again.

Seeing Where VBA Lurks
In an Access database, VBA code is stored in modules. Despite the fancy
name, a module is basically an electronic sheet of paper on which VBA code
is typed. The two types of modules in Access are

� Standard module: A page that contains VBA code that’s accessible to all
objects in the database.

� Class module: A page of code that’s attached to every form and report
you create. VBA code in the class module is accessible only to the form
or report to which the class module is attached.

Do, not die
Think of the term execute in the sense of to
carry out, as in execute a U-turn or execute the

procedure. Don’t think of execute in the sense
of terminate the life of.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 12

13Chapter 1: Where VBA Fits In

The main difference between a standard module and a class module is one of
scope. VBA code in a standard module has a global scope, which means that
the code can be accessed by every object in the database. A class module
has a local scope, meaning that its code is accessible only to one form or one
report in the database.

I talk about the issue of scope as it becomes relevant throughout this book.
Right now, it’s not terribly important. For now, the main thing to keep in mind
is that modules contain VBA code. Now take a look at where modules are
stored within an Access database.

Finding standard modules
A standard module contains VBA code that’s accessible to every table, query,
form, report, page, and macro within the current database. Like those other
objects, standard modules get their own button in the Object list at the left
side of the database window (refer to Figure 1-1). When you click the
Modules button, the main pane shows the names of standard modules (if
any) within the current database, as in the example shown in Figure 1-3.

Don’t be surprised if you click the Modules button in a database, and the main
pane is empty. Standard modules don’t just happen: You have to create them.

Finding class modules
Like standard modules, class modules contain VBA code that tells Access
what to do. Unlike standard modules, however, you won’t find any class mod-
ules in the database window. Class modules are hidden behind forms and
reports in your database.

Standard modules

Figure 1-3:
Standard

modules in a
database.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 13

14 Part I: Introducing VBA Programming

It might help to define the term class as a class of objects. In Access, tables
are one class of objects, queries are another class, forms are another class,
reports are another, and so forth. Or looking at it from the other direction, a
single form is an object within your database. That single form is also a
member of the class of objects known as forms.

Class modules are not global nor public like standard modules. To the con-
trary, class modules are very private beasts. They bring new meaning to the
concept of hermit. Not only are class modules invisible to you most of the
time, but they’re always invisible to each other. The VBA code in a class
module is visible (and usable) only to the form or report to which the class
module is attached.

I think that it helps to envision a class module as literally being hidden behind
its form, as in Figure 1-4. The VBA code in the class module is always hidden
from the other objects in the database. The class module might be hidden from
you as well if you don’t know how to find it.

You have several ways to get to a form or report’s class module, as you’ll dis-
cover in upcoming chapters. For now, if you just want to open a class module
and have a look, here’s one way to do it:

1. In the database window, click Forms or click Reports, depending on
which type of object you want to open.

Class module
behind form

Form

Figure 1-4:
Class

modules
hide behind

forms and
reports.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 14

15Chapter 1: Where VBA Fits In

2. Right-click the name of any form or report and choose Design View.

To see the class module for the open form or report, click the Code
button on the toolbar or choose View➪Code from the Access menu bar
(see Figure 1-5).

From VBA to Access
When you open a module, whether it’s a standard module or a class module,
your screen will change radically. That’s because the module opens in the
Visual Basic editor, which is a separate program window from Access. In fact,
if you look on the taskbar, you’ll still see a taskbar button for Access. You can
switch back and forth between Access and the editor just by clicking their
respective taskbar buttons, as shown in Figure 1-6.

If the module you open contains any VBA code, that code is visible in the
editor Code window, also shown in Figure 1-6. A class module might contain
VBA code even if you never wrote a line of VBA code in your life because some
of the control wizards in the form and report Design views automatically write
VBA code for you behind the scenes. But let’s not get ahead of ourselves.

The main thing to keep in mind here is that every time you open a module,
you will end up in that Visual Basic editor. You’ll discover how to use that
program in upcoming chapters. For now, the most important thing to know is
how to close it and get back to the more familiar Access program window.
Here are two easy ways to close the Visual Basic editor and get back to the
more familiar Access program window:

� Choose File➪Close and Return to Microsoft Office Access (see Figure 1-7).

� Press Alt+Q.

Form open in Design view

Figure 1-5:
Class

modules are
accessible
from form

and reports
Design
views.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 15

16 Part I: Introducing VBA Programming

You can press Alt+F11 to switch back and forth between Access and the VBA
editor at any time.

The Visual Basic editor closes, its taskbar button disappears, and you’re
returned to the Access program window.

Figure 1-7:
The VB

editor File
menu.

Taskbar buttons Visual Basic editor

Figure 1-6:
Move

between the
Visual Basic

editor and
Access.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 16

17Chapter 1: Where VBA Fits In

Finding Out How VBA Works
When you open a standard module or class module, there’s no telling exactly
what you’ll see inside. Some modules will be empty; others will already con-
tain some VBA code. It all depends on the life history of the module you
open. But one thing is for sure: If any VBA code is in the module, it will likely
be organized into one or more procedures.

The term procedure in everyday language usually refers to performing a
series of steps in order to achieve some goal. For example, the procedure of
getting to work every morning requires a certain series of steps. The same
definition holds true for VBA code. A procedure is a series of steps carried
out in a specific order to achieve some desired result.

Discovering VBA procedures
A VBA procedure is a series of instructions written in VBA code that tells
an application (like Access) exactly how to perform a specific task. In VBA
code, each step in the procedure is a single line of code: a statement. When
Access executes a VBA procedure, it does so step-by-step, from the top
down. Access does whatever the first statement tells it to do. Then it does
whatever the second statement tells it to do, and so forth, until it gets to the
end of the procedure.

Exactly when Access executes a procedure is entirely up to you. Typically,
you want to tie the procedure to some event that happens onscreen. For
example, you might want the procedure to do its task as soon as someone
clicks a button. Or perhaps you want your procedure to do its thing when-
ever someone types an e-mail address into a form. I talk about how that all
works in Chapter 6. For now, just realize you can tie any procedure you create
to any event you like.

Why would my database contain code?
Those of you who’ve never written any code
might be wondering how any database you’ve
created could possibly contain code. The answer
to that riddle lies in the Control Wizards button in
the forms and reports Design views.

When you use a Control Wizard to add a button
or certain other types of controls to a form, the
Control Wizard actually writes VBA code for
you. It stores that code in the class module
that’s hidden behind the form (or report) module.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 17

When the event to which you’ve tied your procedure occurs, Access calls
the procedure. What that really means is that Access does exactly what the
VBA code in the procedure tells it to do. You can envision the process as in
Figure 1-8 where

1. An event, such as clicking a button, calls a procedure.

2. Access executes the first line in the called procedure; then it executes
the second line in the procedure, and so on.

3. When Access encounters the end of the procedure (which will be
either End Sub or End Function), it just stops executing code and
returns to its normal state.

If you think of a line of VBA code as a sentence containing words, a procedure
would be a paragraph, containing more than one sentence.

Recognizing VBA procedures
VBA has two types of procedures. One type is a Sub procedure. A Sub proce-
dure is always contained within a pair of Sub...End Sub statements, as
follows:

Sub subName(...)
‘Any VBA code here

End Sub

The subName part of the example is the name of the procedure. The (...)
part after the name could be empty parentheses or a list of parameters and
data types. The ‘Any VBA code here part stands for one or more lines of
VBA code.

1) Access events calls procedure

2) Do this step
3) Do this step
4) Do this step
5) Do this step

Do no more

Figure 1-8:
Executing a
procedure.

18 Part I: Introducing VBA Programming

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 18

19Chapter 1: Where VBA Fits In

When looking at code that’s already been written, you’ll see that some Sub
procedures have the word Public or Private to the left of the word Sub, as
in these examples:

Private Sub subName(...)
‘Any VBA code here

End Sub

Public Sub subName(...)
‘Any VBA code here

End Sub

Public or Private defines the scope of the procedure. Neither is particularly
important right now. All that matters right now is that you know that a Sub
procedure is a chunk of VBA code that starts with Sub or Private Sub or
Public Sub statement and ends at the End Sub statement.

For those of you who must know right now, a Public procedure has global
scope (is available to all other objects). A Private procedure is visible to
only the procedure in which it’s defined. For example, Sub procedures in a
class module are private to the form or report to which the class module is
attached.

The second type of procedure that you can create in Access is a Function
procedure. Unlike a Sub procedure, which performs a task, a Function pro-
cedure generally does some sort of calculation and then returns the result of
that calculation. The first line of a Function procedure starts with the word
Function (or perhaps Private Function or Public Function) followed
by a name. The last line of a Function procedure reads End Function, as
illustrated here:

Function functionName(...)
‘Any VBA code here

End Function

A module can contain any number of procedures. When you open a module,
you might at first think you’re looking at one huge chunk of VBA code. But in
fact, you might be looking at several smaller procedures contained within the
module, as illustrated in the example shown in Figure 1-9. Notice how each
procedure within the module is separated by a black line that’s the width of
the page.

So that’s the bird’s-eye view of Microsoft Access and VBA from 30,000 feet.
Just remember that VBA is a programming language that allows you to write
instructions that Access can execute at any time. You can write different sets
of instructions for different events. Each set of instructions is a procedure,
which is a series of steps carried out in a particular sequence to achieve a
goal. You write and edit VBA code in the VBA editor.

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 19

The beauty of it all is that you can write lots of little procedures to handle
some of your more mundane tasks automatically and effortlessly. You can
also extend Access’s capabilities by writing procedures that do the tasks
Access can’t do on its own.

Procedure

Procedure

ProcedureFigure 1-9:
A module

containing
three

procedures.

20 Part I: Introducing VBA Programming

01b_574116 ch01.qxd 7/27/04 9:04 PM Page 20

Chapter 2

Your VBA Toolkit
In This Chapter
� Using the Visual Basic editor

� Understanding references and object libraries

� Using the Object Browser

As I discuss in Chapter 1, any time you want to work with Access VBA
code, you need to open (or create) a module. As soon as you open a

module, you’re taken to a program window that’s separate from the Access
program window. The program that opens and allows you to create or edit
VBA code is the Visual Basic editor (or VBA editor).

It might seem strange that a whole separate program window opens each time
you want to write or edit VBA code, but here is why: VBA is the programming
language for all the application programs in Microsoft Office. Whenever you
want to create or edit VBA code in any Microsoft Office program window, you
use the same Visual Basic editor. Read through this chapter for all the buzz-
words and skills needed to work in the Visual Basic editor.

Using the Visual Basic Editor
The Visual Basic editor — where you write, edit, and test your VBA code —
contains lots of optional tools and panes. There are so many of them, in fact,
that I can’t even tell you exactly how the editor will look on your screen the
first time you open it. However, it will likely contain at least some of the com-
ponents in Figure 2-1.

Like most program windows, the Visual Basic editor has a title bar and menu
bar at the top. Optional toolbars appear under the menu bar. You can hide or
show any toolbar at any time. Choose View➪Toolbars from the menu bar, and
then select the check box of the toolbar you want to show or hide.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 21

22 Part I: Introducing VBA Programming

The View menu also provides options for making the various panes shown in
Figure 2-1 visible. For example, if the Immediate window isn’t visible, choos-
ing View➪Immediate Window from the menu bar makes it show. To close an
open pane or window inside the VBA editor, click the Close (X) button in the
upper-right corner of the pane that you want to close.

In Figure 2-1, the optional panes are currently docked (attached) to the VBA
editor program window. You can undock any pane and change it to a free-
floating window. Just drag the item’s title bar toward the center of the pro-
gram window and release the mouse button. For example, Figure 2-2 shows
the Project Explorer pane still docked and the Properties window undocked.
The title bar for each item is also pointed out in the figure.

If you undock an item, you can generally re-dock it by dragging it back to any
edge of the VBA editor program window. If the item refuses to dock, try right-
clicking within the item and choosing Dockable from the contextual menu
that appears. Then drag the item to an edge or border if it doesn’t dock right
on the spot.

Project Explorer

Immediate windowProperties window Code window Standard toolbar

Figure 2-1:
Some of
the VBE
optional

panes.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 22

23Chapter 2: Your VBA Toolkit

You can size any pane (or free-floating window) by dragging any edge of the
item. For example, when both the Project Explorer and Properties panes are
docked, you can widen or narrow them both by dragging the right edge of the
pane. Drag the bottom edge of a pane to make it taller or shorter.

Whether you really need all the panes open depends on what you’re doing at
the moment within the VBA editor. You’ll probably spend the vast majority of
your time in the Code window. Before I discuss that window, take a quick look
at the optional Project Explorer and Properties window.

Using Project Explorer
Project Explorer provides a list of all the modules contained in the current
database (which is whatever database happens to be open in Access at the
moment). The Toggle Folders button in the Project Explorer toolbar deter-
mines how the module names are displayed. When the Toggle Folders button
is turned on, module names are shown in two separate folders as follows.

As in all programs, you can point to any button in Access to see its name. The
Toggle Folders button is the third one from the left in the Project Explorer’s
toolbar.

� Microsoft Office Access Class Objects: Lists the names of all class mod-
ules in the current database. The name of the class module is the same
as the form or report name, preceded by Form_ or Report_.

� Modules: Lists the names of all standard modules in the current database.

Docked Title bars Undocked

Figure 2-2:
Examples of
docked and

undocked
panes.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 23

24 Part I: Introducing VBA Programming

If either folder has a plus (+) sign next to its name, you can click that + to
view objects within the folder. Conversely, clicking the minus (–) sign next to
either folder name collapses the folder and hides its contents.

To open a module in the VBA editor, just double-click its name in Project
Explorer. Each module that you open will open within its own Code window
(described a little later in the section, “Using the Code window”).

For class modules, Project Explorer also provides quick access to the form or
report to which the module is attached. Just right-click any class module
name and choose View Object. The form or report opens in Design view in
Access. The VBA editor might then be covered by the Access window.
However, the editor is still open, so you can get back to it by clicking its
taskbar button.

The buttons to the left of the Toggle Folders button — View Code and View
Object — also provide a means of switching between a class module and the
object to which it’s attached. Press Alt+F11 to switch back and forth between
the Access and VBA editor program windows.

Using the Properties window
The Properties window in the VBA editor can be quite perplexing because it
displays the properties of whatever object is currently selected in Access. If
nothing is currently selected in Access, the Properties window might show
nothing. That’s often the case when you’re working with standard modules
because standard modules aren’t tied to any particular object or event.

To illustrate how things tie together, Figure 2-3 shows a portion of a form, in
Design view, in Access. One button on the form is currently selected. In the
VBA editor window, which also appears in Figure 2-3, the properties for that
selected button appear in the VBA editor Properties window.

In that same figure, you see an example of how Project Explorer might look in
a database that already contains some modules. The modules whose names
begin with the word Form_ are all class modules that are attached to forms in
that database. The names Module1 and My Standard Module refer to stan-
dard modules in that same database.

Perhaps the most important thing to remember about Project Explorer and
the Properties window is that they are optional, and you really don’t need
them taking up space in your VBA editor when you’re not using them. Most
of the time, you probably won’t use them. So feel free to close those panes
and forget about them if they just get in the way and confuse matters for you.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 24

Using the Immediate window
The Immediate window in the Visual Basic editor allows you to run code at
any time, right on the spot. It’s sometimes referred to as the debug window
because it’s mainly used for testing and debugging (removing errors from)
code. If the Immediate window isn’t open in the Visual Basic editor, you can
bring it out of hiding anytime by choosing View➪Immediate Window from the
editor’s menu bar.

When the Immediate window is open, you can anchor it to the bottom of the
Visual Basic editor by dragging its title bar to the bottom of the window.
Optionally, you can make the Immediate window free-floating by dragging its
title bar up and away from the bottom of the Visual Basic editor’s program
window. You can also dock and undock the Immediate window by right-click-
ing within the Immediate window and choosing Dockable.

Selected object
on an Access
form

VBA Properties window
shows properties of
selected Access object.

VBA Project Explorer
lists all modules in
the current database.

Figure 2-3:
A sample

Properties
window and

Project
Explorer.

25Chapter 2: Your VBA Toolkit

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 25

26 Part I: Introducing VBA Programming

The Immediate window allows you to test expressions, run VBA procedures
you’ve created, and more. You’ll see practical examples throughout this book.
But just to get your feet wet, test this simple expression in the Immediate
window. Just bear in mind that an Access expression is any formula. For exam-
ple, the simplest expression in the world is probably 1+1, which (as just about
everyone knows) results in 2.

To test an expression in the Immediate window, do the following:

1. Click inside the Immediate window.

You need your cursor in that pane.

2. Type a question mark (?) followed by a space and the expression you
want to test; then press Enter.

For example, click in the Immediate window and then type ? 1+1.

The Immediate window immediately shows you the result — 2 — as in
Figure 2-4.

You might think of the ? mark character at the start of the line as asking the
Immediate window “What is?” For example, if you think of ? 1+1 as meaning
“What is one plus one?”, then it stands to reason that the Immediate window
would return 2. After all, 1+1 is 2!

When you start actually writing VBA code, you’ll use the Immediate window
to test and debug your code. For now, just know that the Immediate window
is another optional pane in the Visual Basic editor that you can show and
hide on an as-needed basis.

Using the Code window
The VBA editor’s Code window is where you write, edit, and view VBA code.
The Code window is similar to a word processor or text editor in that it sup-
ports all the standard Windows text-editing techniques. For example, you can
type text or use the Backspace and Delete keys to delete text. And just like in

Figure 2-4:
Testing a

simple
expression

in the
Immediate

window.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 26

27Chapter 2: Your VBA Toolkit

Word, press the Tab key to indent text, select text by dragging the mouse
pointer through it, and copy and paste text (to and from the Code window).
In short, the Code window is a text editor.

Like all panes in the Visual Basic editor, the Code window can be docked or
undocked. Choosing one view or the other is just a matter of personal prefer-
ence and won’t affect how you write and edit VBA code. You can easily switch
between docked and undocked views.

When the Code window is undocked, it has its own title bar and can be
moved and sized independently. To dock an undocked Code window, click
the Code window’s Maximize button (as shown in Figure 2-5).

When the Code window is docked, it fills the available space in the VBA
editor window, and its Minimize, Restore, and Close buttons appear near the
upper-right corner of the VBA editor’s program window. Clicking the Code
window’s Restore Window button (also shown in Figure 2-5) undocks the
Code window and allows it to float freely.

As I mention earlier, the Code window is really a small word processor or text
editor. But word processors tend to be oriented around paragraphs of text,
whereas the Code window is built for typing individual lines of code. Unlike a
word processor — where you don’t press Enter until you get to the end of a
paragraph — in the Code window, you press Enter at the end of each line you
type.

Undocked
Code window

Docked Code window

Figure 2-5:
Code

window
Restore

Window
and

Maximize
buttons.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 27

28 Part I: Introducing VBA Programming

When you type a line of VBA code and press Enter, the VBE compiles that line
of code. For now, you can think of compiling as testing the line of code to see
whether it will work. If you just type some line at random in the Code window —
or even if you try to type a legitimate line of VBA code but make a mistake —
you’ll see a compile error message, as in Figure 2-6.

I talk about ways of dealing with compile errors when I really get into writing
code in Chapter 3. For now, just realize that if you type anything other than a
valid line of VBA code into the Code window, you’ll see a compile error mes-
sage as soon as you press Enter. So you don’t want to waste your time trying
to type text at random into the Code window.

Referring to Objects from VBA
VBA is able to control objects in Access (and other programs in Microsoft
Office) because of Automation (with a capital A) technology. The idea behind
Automation is this: A program, database, document, or some special capabil-
ity exposes (makes available) its objects through an object library. The object
library contains an organized set of names that VBA can refer to when it
wants to manipulate some object.

Think of an object library as sort of a steering wheel that’s sticking out of
some database or some program. When the steering wheel isn’t available,
VBA can’t manipulate objects in the program. However, when the steering
wheel is exposed, VBA can manipulate objects inside that program. As I dis-
cuss in a moment, you control which steering wheels are available by setting
references to object libraries.

Figure 2-7 shows a hypothetical example where the Access and Excel object
models (steering wheels) are exposed. VBA can therefore manipulate objects
in those programs. In that same figure, Word and PowerPoint aren’t exposing
their objects, so VBA can’t manipulate objects in those programs.

Figure 2-6:
Compile

error in the
Code

window.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 28

29Chapter 2: Your VBA Toolkit

Not all object libraries expose objects in specific Office programs. Some
object libraries expose programs; some object libraries expose documents.
Still others expose technologies that simply help you bridge the gaps between
programs. Access, by itself, offers several object models. The important point
is, though, that before you start writing VBA code, you need to know what
object libraries are available to you.

Setting References to Object Libraries
To manipulate the objects in an object model through VBA, you need to set a
reference to the appropriate object library. That part is easy because you just
have to put a check mark next to the appropriate object library’s name in the
References dialog box. To open the References dialog box and choose your
object libraries, follow these steps (in the Visual Basic editor program
window):

1. Choose Tools➪References from the Visual Basic editor menu bar.

The References dialog box, as shown in Figure 2-8, opens.

2. To set a reference to an object library, select its check box.

Some object libraries will already be selected (checked), as in Figure 2-8.
The selected object libraries in Figure 2-8 are typical and a good starting
point for any Access VBA programming.

3. When all the object libraries you need are marked, click OK to close
the dialog box.

Object libraries

VBA

Figure 2-7:
Object

libraries
expose

objects to
VBA.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 29

30 Part I: Introducing VBA Programming

Setting references to object libraries exposes objects to VBA immediately, but
it doesn’t expose anything to you. At least, not in a way that’s readily appar-
ent onscreen. To find out what objects are available to VBA (and you) at the
moment — and get help with them all — you need to use the Object Browser.

Using the Object Browser
Every object library provides VBA with a very large set of names that represent
objects that VBA can manipulate . . . so many names that I doubt anybody
would even attempt to remember them all. To make it easy to find names of
things on an as-needed basis, VBA provides the Object Browser tool.

In this context, browser has nothing to do with the Internet or the World Wide
Web. Rather, the Object Browser is a tool for browsing the contents of all
available object libraries. And those object libraries have no connection to
the Internet.

While you’re in the Visual Basic editor, you can do any of the following to
open the Object Browser:

� Choose View➪Object Browser from the Visual Basic editor menu bar.

� Press F2.

� Click the Object Browser button on the VBA editor’s Standard toolbar.

When the Object Browser opens, it won’t look like any big help, but there will
be plenty of times when you need to use it. Now is a good time to become
familiar with how you work that darn thing. Figure 2-9 points out the names
of various tools within the Object Browser. A brief description of each tool
follows.

Figure 2-8:
Set object

library
references

here.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 30

31Chapter 2: Your VBA Toolkit

� Project/Library list: From here, you choose either a single object library
to browse or <All Libraries> (where All Libraries really means all object
libraries that are selected in the Reference dialog box).

� Search box: Here you type or choose a name to search for.

� Classes list: This shows the names of all classes in the currently selected
object library or all available libraries if <All Libraries> is selected in the
Project/Library list. A class is any class or group of objects, such as
AllForms (all the forms in the current database).

� Members list: When you click a name in the Classes list, this pane shows
the members (objects, properties, methods, events, functions, and
objects) that belong to that class.

� Details pane: When you click a member name in the Members list, the
Details pane shows the syntax (rules) for using the item that’s selected
in the Members list, as well as the name of the library to which the
member belongs.

� Split bar: Drag the split bar left or right to adjust the size of the panes.
(Drag any edge or corner of the Object Browser window to size the
window as a whole.)

Clicking the Project/Library drop-down list displays the names of all cur-
rently loaded object libraries (all the object libraries to which you’ve set a
reference in the References dialog box; refer to Figure 2-8), as follows:

� Access: Refers to the Microsoft Access 11.0 Object Library. This lets you
control the Access program (menus bars and such) programmatically.

 Project/Library list Search box

Classes list

Split bars

Details pane

Members list

Figure 2-9:
The Object

Browser.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 31

32 Part I: Introducing VBA Programming

� ADODB: Refers to the Microsoft ActiveX Data Objects 2.1 Library. This
object library allows you to access all data in your database as well as
data from outside databases.

� DAO: Refers to the Microsoft DAO 3.6 Object Library. This is an older
version of ADODB, mainly used for compatibility with older versions of
Access.

� stdole: Refers to the OLE Automation object library (where stdole is short
for standard OLE). Provides programmable access to objects that use
object-linking and embedding technologies, such as pictures in tables.

� VBA: Refers to the Visual Basic for Applications object library. This
library contains programmable access to objects built into the VBA pro-
gramming language, such as functions for doing math with dates, times,
and dollar amounts.

In addition to the names of object libraries selected in the References dialog
box, the Project/Library list offers the name of the database you’re working in.
Consider the name of the current database to be the Project in the Project/
Library drop-down menu. You don’t need to set a reference to that object
library because it’s built into the database that’s currently open in Access.

Searching the Object Library
The real beauty of the Object Browser lies in its ability to help you find infor-
mation about an object on an as-needed basis. Because you probably won’t
know what library an object resides in, choose <All Libraries> from the
Project/Library drop-down list before you begin a search. Then you need to
know what name you’re searching for.

For example, as you can discover a little later in this book, Access offers a
DoCmd (do command) object that lets VBA perform any option (command) on
any menu in Access’s menu bar. Suppose you’re writing some code and need
some quick information about that object. You could get that information by
searching the Object Browser as follows:

1. In the Search box of the Object Browser, type the word you’re search-
ing for.

For example, to search for information on the DoCmd object, type the
word DoCmd as the word to search for.

2. Click the Search button (binoculars) next to the Search box.

The results of your search appear in a Search Results pane under the
Search box.

3. To get help with an item in the Search Results pane, click a name
there and then click the Help (question mark) button on the Object
Browser toolbar.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 32

33Chapter 2: Your VBA Toolkit

The Help text appears in a separate Help window, as in the example
shown in Figure 2-10.

Admittedly, the Help text is technical documentation, written more for pro-
grammers than for VBA beginners. But you won’t be a beginner for long, and
knowing how the search the Object Browser will soon become a valuable skill.

Like other tools that I describe in this chapter, you can close the Object
Browser (as well as any open Help window) at any time by clicking its Close
(X) button.

I suppose right about now you’re wondering how any of the tools in this
chapter will make your life easier. I’m working up to that. For now, just being
aware of the various panes and windows in the VBA is a good start. Knowing
that VBA works by manipulating objects in object libraries is a good thing
too. Even just being aware that the Object Browser and Help windows exist
will be valuable as you start writing code.

Writing code is the actual programming part of VBA. You write VBA code to
automate activities. And you automate activities by manipulating objects via
object libraries. It’s a lot of fancy buzzwords. But if you just think of object
libraries as steering wheels that VBA can grab onto and steer, you’ll be ahead
of the game. Hop to Chapter 3 to start writing code.

Search Results pane Help button Help window

Figure 2-10:
Search

the Object
Browser
for help.

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 33

34 Part I: Introducing VBA Programming

01c_574116 ch02.qxd 7/27/04 9:05 PM Page 34

Chapter 3

Jumpstart: Creating a Simple
VBA Program

In This Chapter
� Creating a standard module

� Creating procedures

� Getting help with VBA keywords

� Modifying existing code

Visual Basic for Applications (VBA) is a programming language for writing
instructions that tell Office applications — like Access — the steps

needed to perform a task. You store code in Access modules. The tool that
you use to create and edit VBA code is the Visual Basic editor, which opens
automatically whenever you open an Access module. (If you need a refresher
on the basics of the Visual Basic editor, hop back to Chapter 2.)

In this chapter, I get into some of the nitty-gritty of what’s really involved in
writing VBA code within Access. You’ll discover how to create a module in
Access and how to create procedures within a module. You’ll also read about
VBA syntax, which defines the rules you need to follow when writing a VBA
statement.

Creating a Standard Module
Before you start writing code, you need a place to put it. Putting your code in
standard modules is always a good bet because code in standard modules is
accessible to all objects within a database. Creating a new standard module
is easy. Just follow these steps:

1. In your Access database, click Modules at the left side of the database
window.

2. Click the New button, as shown in Figure 3-1.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 35

36 Part I: Introducing VBA Programming

The new module will open in the VBA Editor. Most likely, it will be empty
except for the words Option Compare Database at the top. That line, a
module-level declaration, just tells VBA that when comparing values, it
should use the same rules as the rest of the database. You don’t need to
change or remove that declaration line.

As I discuss in Chapter 1, a module contains VBA code that’s organized into
one or more procedures. A procedure is simply the set of steps needed to per-
form some task. A new standard module contains no procedures because it’s
empty. Thus, the first step to writing code is to create a procedure.

Creating a Procedure
Adding a procedure to a module is a fairly simple task. The procedure that
you create can be either a Sub procedure or a Function procedure. For now,
it’s sufficient to know that a Sub procedure is like a command on a menu:
When called, it just does its job and doesn’t return anything. A Function pro-
cedure, on the other hand, is more like a built-in function in that it returns a
value. However, the steps for creating either type of procedure are the same:

1. In the VBA editor, choose Insert➪Procedure.

The Add Procedure dialog box opens. All steps to follow take place in
the Add Procedure dialog box.

2. Type in a name for your procedure.

The name must begin with a letter and cannot contain any blank spaces
or punctuation marks. To create a practice procedure, enter a simple
name like mySub.

3. Choose the type of procedure you want to create (Sub or Function).

1. Click Modules 2. Click New

Figure 3-1:
Begin by

creating a
new

standard
module.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 36

37Chapter 3: Jumpstart: Creating a Simple VBA Program

For your first practice procedure, choose Sub. The remaining options
you can ignore; the default settings are fine.

4. Click OK.

The Add Procedure dialog box closes. Your module contains a new pro-
cedure with the name that you provided in Step 2.

The two lines of VBA code needed to define the new procedure are typed into
your module as soon as you click OK. The first line begins with Public Sub or
Public Function, followed by the procedure name and a pair of closed paren-
theses. For example, if (in the Add Procedure dialog box) you create a Sub pro-
cedure named mySub, the following VBA lines are added to your module:

Public Sub mySub()

End Sub

The Public keyword at the start of each procedure defines the scope of each
procedure. By default, procedures in a standard module are public, meaning
that they’re visible to all objects in the current database. In a standard
module, you can omit the Public keyword and just begin the line with the
Sub or Function keyword. Either way, the module will be public (visible to
all objects in the database).

In the module, the procedure name always ends in a pair of closed parenthe-
ses, as in mySub() or myFunc(). The parentheses are required, so they’re
typed in automatically when you click OK in the Add Procedure dialog box.
Each procedure ends with an End Sub or End Function statement.

Figure 3-2 shows an example where I used the Add Procedure dialog box
(twice) to create a Sub procedure named mySub and a Function procedure
named myFunc. The module is visible in the VBA editor’s Code window.

Procedure menu

Code window

mySub() procedure

myFunc() procedure

Figure 3-2:
Sub and

Function
procedures

in a
standard
module.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 37

38 Part I: Introducing VBA Programming

Any code that you type into the procedure must be typed between the two
lines that define the procedure. You can easily position the cursor within any
procedure by clicking within that procedure. You can also move the cursor
into a procedure just by choosing the procedure’s name from the Procedure
menu in the Code window.

Understanding Syntax
Writing code is the art of programming the computer to perform a specific
procedure by defining each step in the procedure as a single VBA statement.
For the code to work, every VBA statement must conform to rules of syntax,
which define exactly how the code is written. The syntax of a VBA statement
is the set of rules that define the exact order of words and where spaces,
commas, parentheses, and other punctuation marks are required.

Like a spoken language, the VBA language consists of words (keywords),
punctuation marks (for example, commas), and blank spaces. Keywords are
plentiful, and each has its own specific rules of syntax. The syntax rules are
so rigid that you’d never be able to figure them out by guessing. You have to
know how to get the information you need, when you need it.

The VBA editor provides several tools to help with syntax. For example, you
use the MsgBox() keyword in VBA to display a custom message onscreen.
Imagine that you already know about the MsgBox() function and were about
to use it in a program, and you type the following into a procedure:

x = MsgBox(

As soon as the VBA editor sees the MsgBox(part, it shows a Quick Info screen
tip for the MsgBox keyword, as in the example shown at the top of Figure 3-3.
The Quick Info tip is actually a small syntax chart showing you the rules for
using MsgBox correctly. Within the Quick Info tip, the bold-italic word Prompt
means that you’re expected to type a prompt next.

For the sake of example, suppose you type “Hello World” (with the quotation
marks) and a comma into the line:

x = MsgBox(“Hello World”,

The comma lets the VBA editor see that you’ve typed a valid first argument
and are now ready to type the second argument. The second argument in the
syntax chart ([Buttons As vbMsgBoxStyle = vbOKOnly]) is then bold-
faced to indicate that you now should type the second argument. Also, a list
of meaningless-looking names appears, called constants, as in the bottom half
of Figure 3-3.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 38

39Chapter 3: Jumpstart: Creating a Simple VBA Program

Okay, you gotta trust me on this one: The Quick Info and list of constants are
actually there to help. Unfortunately, they are only of help to those people
who’ve used the MsgBox() a zillion times in the past and need only brief
reminders on syntax and available constants. For someone who’s just learn-
ing, more in-depth information is needed. Fortunately, it’s always easy to get.

Getting keyword help
Whether you’re typing your own code or trying to modify someone else’s,
you can get information on any keyword at any time. Just select (double-
click) the keyword right in the Code window where it’s typed. Then press the
Help key (F1) on your keyboard. The Help window that opens describes the
command and its syntax.

After you type a keyword into a procedure, it’s very easy to get more detailed
help. Just select (double-click) the keyword, right where you typed it, and
press the Help key (F1). This is also a great way to learn more about code
other people have written because you can learn what each line of code does
by double-clicking the first word in the line and pressing F1.

When you press F1, the Help page that opens describes whatever keyword
you selected in your module. For example, if you double-click MsgBox in a
procedure (to select it) and then press F1, the Help page for the MsgBox key-
word opens, as in the example shown in Figure 3-4.

ConstantsQuick Info

Figure 3-3:
Quick Info

(top) and list
of Constants

(bottom).

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 39

40 Part I: Introducing VBA Programming

The Help window shows a ton of information about using the MsgBox key-
word. The first paragraph describes what the keyword does. Under the head-
ing, the syntax chart shows the same information that the Quick Info does
(namely, the arguments that you can use with the keyboard) as well as the
order in which you must use them. For example, the syntax chart for MsgBox
looks like this:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

The first word, MsgBox in this example, is the keyword. The text and symbols
enclosed in parentheses represent arguments that you can use with the
MsgBox keyword. An argument is a piece of information that you give to the
keyword to use for something. (More on that in the upcoming section, “Help
with arguments.”) The syntax chart uses square brackets, boldface, and italics
as follows:

� Bold: Represents a required keyword.

� Italic or bold italic: Represents an argument.

� []: Indicates that the argument is optional and can be omitted. Never
type the square brackets into your code, or the code won’t work.

Selected keyword (MsgBox) Help for MsgBox keyword

Figure 3-4:
Help for the

MsgBox
keyword.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 40

41Chapter 3: Jumpstart: Creating a Simple VBA Program

Beneath the syntax chart is a description of each argument that the keyword
supports. For example, scrolling down a short way through this Help page
reveals a description of each of the argument names that MsgBox supports,
as in Figure 3-5.

The description of an argument tells you whether the argument is required or
optional. If an argument is required, you must type an acceptable value for
that argument into your code (always within the parentheses that follow the
keyword). If an argument is optional, you can either type in an acceptable
value for the argument or just not use the argument at all.

Either way, remember that you never type square brackets into your VBA
code: The square brackets in the syntax chart are just there to indicate the
optional arguments.

The argument acts as a placeholder for some actual value that you’ll later
pass to the procedure. If you have any experience at all using Access expres-
sions, you’re familiar with arguments. For example, in the expression
Sqr(81), 81 is the value being passed to the Sqr() (square root) function.
When executed, the function returns 9 because 9 is the square root of 81.

Figure 3-5:
Find

argument
info in a

keyword
Help

window.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 41

42 Part I: Introducing VBA Programming

What constitutes an acceptable value for an argument is usually the second
thing listed in the Help chart. Typically, it will be one of the following:

� String expression: This can be literal text enclosed in quotation marks,
as in “Hello World”, or an expression that results in text.

� Numeric expression: This can be a number like 1 or 10, or it can be an
expression that results in a number.

That’s a lot to try to understand. Take it one step at a time, though, with an
example to try to make sense of it all. First, understand that the arguments of
a keyword are always typed within parentheses, after the keyword. And multi-
ple arguments are always separated by commas. So the most general view of
any keyword that accepts three arguments would be as follows:

keyword (argument1, argument2, argument3)

In other words, you don’t start typing the first argument until you’ve typed in
the keyword and opening parenthesis. After you type the first argument, you
have to type a comma before you start typing the second argument and so
forth. The VBA editor won’t know that you’re ready to type the next argu-
ment until you type that comma. And finally, you have to type the closing
parenthesis at the end of the statement. If you mess it up, you’ll get a compile
error as soon as you press the Enter key. All you can do is click OK and try
again. (Or delete the whole line.)

Getting back to the MsgBox() keyword and its arguments, you can see at the
top of the first Help page (refer to Figure 3-4) that MsgBox() is actually a
function that returns a value. Although it’s not specifically stated in the
syntax, it means that to use the command properly in a procedure, you need
to use this syntax:

x = Msgbox(prompt[, buttons][, title][,helpfile, context])

You can see in the Help page that the prompt argument is required and must
be a string expression. So if you want the message box to display Hello
World, you would type those words (remembering to enclose them in quota-
tion marks) as the first argument, as in the following example. Because the
remaining arguments are optional, you could omit them and just end the
whole line with a closing parenthesis, as follows:

x = MsgBox(“Hello World”)

The Immediate window that I discuss in Chapter 2 provides a handy means of
testing a VBA statement on-the-fly to see whether it will work when actually
executed in your code. For example, if you type (exactly) x=MsgBox(“Hello
World”) into the Immediate window and press Enter, VBA will execute the
statement. The result is a message box containing the words Hello World,
as in Figure 3-6. (You have to click the OK button in the message box to get
back to working in the Visual Basic editor.)

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 42

43Chapter 3: Jumpstart: Creating a Simple VBA Program

Help with arguments
Refer to Figure 3-5 (of the Help page for the MsgBox keyword) to see the
Settings section (below the argument descriptions) that provides some spe-
cific info on using the buttons argument. You can use either the constant or
the value in the command. For example, if you want the MsgBox statement to
show both an OK and a Cancel button (rather than just an OK button), you
would use either the value 1 or the constant vbOKCancel as the second argu-
ment in the MsgBox statement. Arguments are always separated by commas,
so the correct syntax would be either

x = MsgBox(“Hello World”,1)

or

x = MsgBox(“Hello World”,vbOKCancel)

A constant is a special word in VBA that’s been assigned some value that
never changes. For example, the constant vbOKOnly is always the same as
the value 0. You can use vbOKCancel (which is easier to remember) in place
of 0 in a MsgBox statement.

Statement entered in
Immediate window

Result of executing statement

Figure 3-6:
Test VBA

statements
in the

Immediate
window.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 43

44 Part I: Introducing VBA Programming

As instructed in the Help page, you can combine values (by using a + sign) in
the buttons argument to use multiple options. For example, the vbYesNo
setting (value = 4) displays Yes and No buttons in the message box. The
vbQuestion setting (value = 32) setting displays a question mark icon in the
message box. Thus, if you want to display a message box that displays the
question Are you there?, a question mark icon, and Yes and No buttons,
you could type any of the following statements. (The 36 is allowed because
the sum of the two settings’ values, 4 and 32, equals 36.)

x = MsgBox(“Are you there?”,vbQuestion+vbYesNo)

x = MsgBox(“Are you there?”,32+4)

x = MsgBox(“Are you there?”,36)

You can test out any of those VBA statements by typing it into the Immediate
window and pressing Enter. Because all three statements product the same
result, you’ll see a message box with the prompt Are you there?, a ques-
tion mark icon, and Yes and No buttons, as in Figure 3-7.

The third optional argument in the MsgBox keyword, title, allows you to
specify a title to display in the dialog box. If you omit that argument in
Access, the default title for all Access message boxes — Microsoft Office
Access — appears in the message box. If you include a title (as text in quota-
tion marks), that title replaces the default title. For example, if you test this
command

x = MsgBox(“Are you there?”,vbQuestion+vbYesNo,”Howdy”)

Statement typed into Immediate window Result of executing statement

Figure 3-7:
Test a

MsgBox
statement

in the
Immediate

window.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 44

in the Immediate window, the message box opens with the word Howdy, rather
than Microsoft Office Access, in its title bar.

The order of arguments in a VBA statement is critical. For example, the title
for a MsgBox must be the third argument in the statement. If you want to use
a title argument but not a buttons argument, you’d have to still include a
placeholder comma for the buttons argument and a similar comma for the
title argument, as in the following example:

x = MsgBox(“Hello World”, ,”Howdy”)

In this statement, the first argument (prompt) is “Hello World”, and the
second argument — which acts as a placeholder for the buttons argument —
is empty. Because you’ve omitted the argument, Access will use the default
value for that argument, which is vbOKOnly (0). Thus, when the statement
executes, the message box will appear with the default OK button only. The
third argument is “Howdy”, which will appear in the message box title bar.

About named arguments
Named arguments provide an alternative to putting arguments in a specific argu-
ment. With named arguments, you can just type the argument name followed
by a colon and an equal sign (:=) and the value you want for that argument.
For example, the following statement is equivalent to x = MsgBox(“Hello
World”, ,”Howdy”), but it uses argument names rather than commas to spec-
ify which argument is receiving which value.

x=MsgBox(prompt:=”Hello World”, title:=”Howdy”)

Unfortunately, it’s not always easy to tell whether a statement supports
named arguments. The Quick Info doesn’t provide any clues, and the Help
doesn’t often show the syntax with the optional names in place. About the
only clue you get as to whether a statement supports named arguments is
from the sentence above the argument descriptions in Help. For example,
refer to the Help for the MsgBox function in Figure 3-4: namely, the sentence
The MsgBox function syntax has these names arguments, just below
the syntax chart for MsgBox(). But because named arguments are entirely
optional, you don’t have to worry about accidentally excluding them when
writing your own code.

45Chapter 3: Jumpstart: Creating a Simple VBA Program

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 45

46 Part I: Introducing VBA Programming

Modifying Existing Code
Just knowing how to read the Help screens is a challenge in itself. It just takes
time to practice. Programming isn’t the kind of skill you learn overnight. It’s a
skill you acquire gradually by learning about one keyword, then another, then
another, and so forth. There are so many keywords that it would take years to
learn them all.

Fortunately, you don’t have to learn every keyword before you start writing
code. Most programmers actually learn to program by example. That is, they
see other peoples’ code, perhaps even use that same code themselves, or
modify that code to suit their own needs.

Using other peoples’ code, when possible, certainly offers some advantages
because at least some of the work is done for you. Switch gears for a moment
and look at ways in which you can get prewritten code into a module in your
own database.

Copy-and-paste code from the Web
Many programmers start their careers not so much by writing code from
scratch but rather by using code that others have written and adapting it to
their own needs. When that code is displayed onscreen, as in a Web page, the
first step is to copy and paste the code into a module, where you select what
you want to copy, copy it (press Ctrl+C), click in your module, and paste
(press Ctrl+V).

Suppose you’re browsing the Web, and you come across a sample procedure
in a Web page. You don’t want to retype the whole procedure into your own
module, so you need to copy it. First, you need to select the whole procedure
(and nothing but the procedure) by dragging the mouse pointer through the
whole procedure — from the starting Sub or Function statement to the
ending End Sub or End Function statement. After you select the code, press
Ctrl+C or right-click anywhere in the selected text and choose Copy, as in
Figure 3-8.

After you select and copy the code, just click anywhere in a standard module
and then choose Paste. The exact code you selected will appear in your
module.

You can find most of the code examples from this book at www.coolnerds.
com/vba. You can copy and paste any code from that site into any module in
your own database.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 46

47Chapter 3: Jumpstart: Creating a Simple VBA Program

Importing standard modules
The copy-and-paste method works best with code that’s displayed on your
screen like plain text, but it’s not the only way to get code into your database.
You can also import standard modules from other databases.

For example, suppose you have a database named myAccessDB.mdb, and
within that database is a module named myModule. At the moment, though,
you have some other database open, and you want to copy myModule from
myAccessDB.mdb into the current database. In that case, you use the Import
option on the Access File menu:

1. If you’re in the VB editor, press Alt+F11 to return to the Access pro-
gram window.

2. Choose File➪Get External Data➪Import (from the Access menu bar).

3. In the Import dialog box that opens, navigate to the folder that con-
tains the database from which you want to import code (myAccessDB
in this case).

4. When you find the icon for the database that contains the code you
want to import, double-click that icon.

Figure 3-8:
Use sample

VBA code
from a Web

page.

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 47

5. In the Import Objects dialog box that opens, click the Modules tab.

6. Click the name of the module you want to import; then click OK.

When you click Modules in the database window of your current data-
base, you’ll see the imported module’s name in the main pane. Double-
click the module’s name, as usual, to open that module in the VBA
editor.

Modifying existing code
Modifying existing code isn’t all that different from writing new code because
you still have to know the exact meaning and syntax of every keyword used
in the code. In some cases, the procedure might work as-is in your database.
In other cases, you might have to modify the code to get it to work.

If you need to modify the code, you can’t do so unless you understand what
the code is doing and how it works. Thus, you have to know the purposes of
each statement. If you need to modify a statement, you need to know the cor-
rect syntax. Like when writing code, you can get more information about
existing code by using either of these methods:

� To see the Quick Info for a line of code, right-click the line and choose
Quick Info.

� For detailed help with a keyword, select (double-click) that keyword and
press Help (F1).

Modifying existing code takes almost as much skill and knowledge as writing
your own code, so don’t expect to be able to get anything accomplished by
taking wild guesses. You can see examples of modifying existing code through-
out this book. For now, just be aware that you can copy and paste VBA code
into a module. Or, if the code is already in some other database’s module, you
can import that module into your current database.

In Chapter 4, you can pick up more advanced skills for creating procedures.
For now, be aware that every VBA keyword has certain rules of syntax, which
you must follow to a T if you expect your code to work. You can’t expect to
learn and memorize every keyword and its syntax in a short time because
there are just too darn many keywords. However, after you know how to get
help with keywords, you’ll always have the information that you need at your
fingertips.

48 Part I: Introducing VBA Programming

01d_574116 ch03.qxd 7/27/04 9:05 PM Page 48

Part II
VBA Tools and

Techniques

02a_574116_PP02.qxd 7/27/04 9:06 PM Page 49

In this part . . .

The only reason why you’d ever bother with VBA is to
make Access do stuff that it can’t do otherwise. Either

that or to make Access do something you’d otherwise have
to do yourself, over and over again. You coax Access into
doing stuff by writing VBA code that manipulates the
objects in your database automatically and behind the
scenes. That’s the short description of how it all works,
anyway. More detailed explanations and examples are in
the three chapters herein.

02a_574116_PP02.qxd 7/27/04 9:06 PM Page 50

Chapter 4

Understanding Your VBA
Building Blocks

In This Chapter
� Commenting your code

� Storing data in variables and constants

� Repeating chunks of code with loops

� Making decisions with If...End If statements

Many programmers begin their careers not so much by writing code
from scratch. Rather, they acquire bits of code from books, Web sites,

and other resources because that’s easier than trying to figure it out from
scratch. Plenty of sample code is made available through books and Web
sites. Don’t worry about “stealing” the code: If folks didn’t want you copying
their code, they wouldn’t have made it accessible to you in the first place!

Whether you plan to write your own code or tweak other peoples’ code, you
need to understand some fundamental programming concepts for any of the
code to make sense.

You can think of the various programming concepts described in this chapter
as the basic building blocks from which all programs are created. As you learn
more about Visual Basic for Applications (VBA), you’ll see the same building
blocks used to perform many different tasks, in many different settings. The
first step, though, is to just be aware that such things exist so that you’ll rec-
ognize them when you see them.

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 51

The variables, constants, arrays, loops, and decision-making techniques that I
present in this chapter are the basic building blocks from which all programs
are written. Writing VBA code in Access requires both a basic knowledge of
those programming techniques plus the ability to work with Access objects
(which I cover in Chapter 5).

Commenting Your Code
When you look at existing code, notice that some lines look like plain English
while others look like VBA code. The lines that look like English are program-
mer comments. Only humans see comments; the computer sees only the VBA
code. Thus, using comments is entirely optional to you, as a programmer.

Programmers add comments to their code for two reasons:

� To help others who are trying to understand how the code works.

� To jot down notes to yourself as you go — to remind yourself of the
purpose of different parts of your code.

When typing your own code, you’re welcome to type in your own com-
ments. They don’t have to be written for other programmers.

The first character of a comment must be an apostrophe (‘). The comment
ends where you press Enter to end the line. After you type the apostrophe,
you can type any text you want on that same line because VBA won’t treat it
as code. When viewing existing code, you’ll see the apostrophe at the start of
each comment within the code, as in the example shown in Figure 4-1. (In the
Code window, comments are also colored green.)

Comments

Figure 4-1:
Add

comments
to make

your code
clear.

52 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 52

When you’re modifying existing code, remember that the comments are for
human consumption only. Changing a comment won’t fix code or change how
it works at all. Comments are only notes jotted down within VBA code.

As I mention, writing comments is easy because after you type the initial
apostrophe, you can type anything you want. Writing code, though, is a lot
harder because of the rules of syntax (word order and punctuation). Plus,
there are lots of rules concerning the data on which VBA can operate. Like
when learning to create tables in Access, one of the first things that you need
to understand is that like tables in Access, VBA has data types.

Understanding VBA Data Types
When you create a table in Access, you need to define the data type of every
field in the table. Data types in tables include things like Text (for storing
short strings of text), Memo (larger chunks of text), Number (for numbers),
Date/Time (for dates and times), and so forth.

VBA can work with data stored in tables. But just like tables, VBA often needs
to know the type of information it’s working with. As you’ll see shortly, there
are a couple of places in VBA code where you can define data types. You
need to know what the various data types mean.

Table 4-1 lists the data types that you’ll work with in VBA. The data type names
are listed in the left column, each followed by a brief description. The Storage
Size column shows how many bytes each data type consumes. The Declaration
Character column shows an optional character that can be used at the end of a
name to specify a data type. That’s really more information than you need right
now. Just knowing the names of the various data types is sufficient for now.

Table 4-1 VBA Data Types
Data Type Acceptable Values Storage Declaration

Size Character

Boolean True (–1) or False (0) 2 bytes

Byte 0 to 255 1 byte

Currency –922,337,203,685,477.5808 to 8 bytes @
922,337,203,685,477.5807

Date January 1, 100 to 8 bytes
December 31, 9999

(continued)

53Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 53

Table 4-1 (continued)
Data Type Acceptable Values Storage Declaration

Size Character

Double –1.79769313486231E308 to 8 bytes #
–4.94065645841247E-324
for negative values;
4.94065645841247E-324 to
1.79769313486232E308
for positive values

Integer –32,768 to 32,767 2 bytes %

Long –2,147,483,648 to 2,147,483,647 4 bytes &

Object Name of any object 4 bytes

Single –3.402823E38 to –1.401298E-45 4 bytes !
for negative values;
1.401298E-45 to 3.402823E38
for positive values

String Any text from 0 to about 10 + string length $
2,000,000,000 characters
in length

Variant Any number up to the range 16 bytes
(no text) of the Double data type

Variant Any text up to 2,000,000,000 22 + string length
(with text) characters in length

54 Part II: VBA Tools and Techniques

Boring technical stuff on the Decimal data type
When perusing the VBA Help and drop-down menus, you might come across the
Decimal data type. I omitted the Decimal data type from Table 4-1 because it just flat-
out doesn’t work. If I had included the Decimal data type in the table, its accept-
able range would be +/–79,228,162,514,264,337,593,543,950,335 with no decimal point;
+/–7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest non-zero
number +/–0.0000000000000000000000000001. The Decimal data type’s storage size would be
14 bytes, and it would have no type declaration character.

The obscure Decimal data type does exist, but you can’t declare an item as being of that data
type. Instead, you have to declare the item as a Variant data type with a subtype of Decimal.
For example, Dim X as Variant defines a variable X as a variant; X = CDec(value) stores
value in X as a Decimal data type.

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 54

In VBA code, you’ll often use data types just to store little bits of information
for short periods of time. The reasons for storing data with VBA code vary.
One of the first places you’re likely to encounter data types in VBA is when
you want to pass data to, or from, your custom procedure.

Passing Data to Procedures
You write a procedure to perform a series of steps. The exact object on which
the procedure performs its task can vary. For example, suppose you inherit a
database table of names and addresses, with everything typed in uppercase
letters, as in JOHN SMITH. You want to convert all that text to proper case
(John Smith), but you don’t want to retype it all.

You could write a procedure to do the conversion for you, but you wouldn’t
want the procedure to fix just one name or one address. You want the proce-
dure to be flexible enough to fix all the names and addresses in the table with
the click of a button. In other words, you want Access to hand over some piece
of information, like JOHN SMITH, and then have the procedure return back
John Smith. However, you want it to do that with any text you pass to it,
including JANE DOE and P.O. BOX 123 and HANK R. MCDOUGAL.

If you want a procedure to accept information from the outside world (so to
speak), you have to tell the procedure what type of data to expect and where
to put the data. You do so within the parentheses that follow a procedure’s
name within a module. What you type is the argument list (or arglist, for
short). The syntax for each argument is

name As type

where name is any name of your choosing, and type is one of the data type
names listed in Table 4-1. For example, if you want to create a Sub procedure
named showMsgBox() and pass one parameter named msgText to it as text,
the first line of the procedure needs to contain msgText As String as an
argument, as in the following example:

Sub showMsg(msgText As String)

End Sub

The above lines define a Sub procedure named showMsg() that accepts one
argument: a string (text) named msgText. The msgText name I just made up
myself: I could have used any name I wanted. The As String tells the rest of
the procedure to expect text to be passed.

55Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 55

You can pass multiple bits of information to a procedure as long as each has
a unique name, and you give each a data type. Separate each name and type
with a comma. For example, the mySub() first line in Figure 4-2 defines a pro-
cedure named showMsg() that accepts three arguments: msgText, bttns,
and msgTitle (all names I made up off the top of my head). As you can see,
msgText and msgTitle are both declared as the String data type, and
bttns is declared as the Integer data type.

Although a Sub procedure can accept incoming data through its arguments,
it can’t return any data to Access or other VBA procedures. A Function pro-
cedure, on the other hand, can both accept incoming data and return a value.
Thus, a Function procedure is like any function that’s built into Access. For
example, the built-in Date() function always returns the current date.

To see for yourself that Date() always returns the current date, type ? Date()
into the Immediate window and press Enter. You’ll see today’s date.

When you want your own custom procedure to return a value, you have to
define the data type of the value being returned. The name of the return value
is always the same as the function name, so you don’t include a name. And
because you’re defining a return value, you place the declaration outside the
closing parenthesis, as follows:

Function name(arglist) As type

End Function

where name is the name of the function, arglist defines any incoming argu-
ments (exactly as it does in a Sub procedure), and type is the data type of the
value that the function returns. The type placeholder must match one of the
data type names listed in Table 4-1.

Figure 4-3 shows an example where the first line defines a Function proce-
dure named isOpen() that accepts a string as an argument and then returns
a True or False value. (Note: Those are only the first and last lines. The pro-
grammer would have to add more code between them for the procedure to
actually do anything.)

Sub procedure named showMsg()...

...accepts three arguments named

MsgText, btns,and msgTitle.

Figure 4-2:
A Sub

procedure
can accept

different
arguments.

56 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 56

From the standpoint of modifying existing code, the argument list inside the
parentheses tells you what data is passed to the procedure and as what data
type. Code within the procedure can then work on the data that was passed,
simply by referring to it by name. Within a procedure, you use variables to
store and manipulate little chunks of data, like the values passed to a proce-
dure. Variables are a big part of all programming languages, so spend some
time getting to know them.

Storing data in variables and constants
All programming languages, including VBA, have a means of storing little
chunks of information (data) in temporary little cubbyholes called variables.
Obviously, the contents of the cubbyhole can vary. For example, a variable
named LastName might contain Smith, Jones, McDougal, or whatever. The
VBA code can operate on whatever value happens to be in the variable at
the moment.

Creating a variable is a two-step process:

1. Declare the variable’s name and data type with a Dim statement.

2. Assign a value to the variable as needed.

The syntax usually involves two lines of code that follow this structure:

Dim name As type
name = value

where name is a name of your own choosing, type is one of the data types
listed in Table 4-1, and value is the data that you want to store in the vari-
able. When naming a variable, stick to using short names with no spaces or
punctuation. Also make sure the name starts with a letter. You can use either
letters or numbers as part of the name after the first character.

TheFunction procedure named isOpen()...

...accepts an argument frmName...
...and returns a True/False value.

Figure 4-3:
Functions

accept
arguments
and return

values.

57Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 57

Here’s an example of creating an Integer variable named x and storing the
number 10 in that variable:

Dim x As Integer
x = 10

Here’s an example of creating a string variable name LastName and putting
the name Jones in it:

Dim LastName As String
LastName = “Jones”

Note the use of the quotation marks around Jones. Like in Access expres-
sions, the quotation marks signify a literal text: That is, after the statement
LastName = Jones executes, the variable LastName will contain (literally)
the name Jones.

A constant is similar to a variable in that it’s a name that refers to some value.
However, after you assign a value to a variable, you can’t change it. Hence, the
value remains constant.

Lots of constants are built into VBA, as you’ll see in many examples through-
out this book. If you ever want to create your own constant, the syntax is the
following:

Const name As type = value

where, once again, name is a name of your choosing, type is a data type from
Table 4-1, and value is the data you want to store in the constant. For exam-
ple, the following VBA statement creates a constant named pi that stores the
number 3.14159265 as a double-precision number.

Const pi As Double = 3.14159265

Storing data in arrays
If you think of a variable or constant as one little cubbyhole in which you can
tuck away information, a collection of cubbyholes is an array. Each cubbyhole
is an element of the array, although each is actually just a variable in which you
can store information. The cubbyholes in an array, however, all have the same
name. You use a subscript in parentheses, which defines an elements position
in the array, to refer to a specific item in the array.

58 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 58

Declaring an array is a lot like declaring a single variable, but you have to tell
VBA how many items are in the array. The syntax looks like this:

Dim name(dimensions) As type

where name is a name that you give the array, dimensions specifies how many
items are in the array, and type is one of the data types listed in Table 4-1. For
example, the following VBA statement creates an array named shipOptions
that contains five elements (each element being one cubbyhole of information):

Dim shipOptions(5) As String

After VBA executes the above statement, five little cubbyholes, each capable
of storing any text (string), are available. The first array element is named
shipOptions(1) (pronounced shipOptions sub one). The second element
is named shipOptions(2) (pronounced shipOptions sub two), and so forth,
as follows:

shipOptions(1)
shipOptions(2)
shipOptions(3)
shipOptions(4)
shipOptions(5)

Because each of those array elements is actually a string variable, you could
assign a value to each by using the same syntax that you use to assign values
to individual variables, as follows:

shipOptions(1) = “USPS Media”
shipOptions(2) = “USPS Priority”
shipOptions(3) = “UPS Ground”
shipOptions(4) = “UPS Second Day”
shipOptions(5) = “UPS Overnight”

The shipOptions array is a one-dimensional array in that it only has one
dimension: length. Each item in the array contains exactly one subscript indi-
cating the item’s position in the one-dimensional list of items. You can also
declare multidimensional arrays. For example, a two-dimensional array has
two dimensions — length and width — like a table:

The following VBA statement declares a two-dimensional array named
miniTable that contains three rows and two columns:

Dim miniTable(3,2) As String

59Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 59

Each element in the two-dimensional name has two subscripts. The first sub-
script represents the row position of the element. The second subscript repre-
sents the column position of the element. Hence, you can envision the variable
names (cubbyholes) creates by that VBA statement as follows:

miniTable(1,1) miniTable(1,2)

miniTable(2,1) miniTable(2,2)

miniTable(3,1) miniTable(3,2)

In Access, where you already have tables to store all your data in rows and
columns, there’s rarely any need to use multidimensional arrays. However,
from the standpoint of modifying existing code, when you see a Dim state-
ment that declares some name followed by a number in parentheses, as in

Dim x(10) As String

you need to be aware that the statement is actually creating ten separate
variables names: x(1), x(2), x(3), and so forth up to x(10).

Module-level versus procedure-level
Unlike data stored in Access tables, data stored in VBA variables (including
arrays and constants) doesn’t last too long. Each variable has a lifetime that
defines how long it exists. Closely aligned with a variable’s lifetime is its scope,
which defines which objects in the database can and cannot access the vari-
able. The scope and lifetime of a variable depend on where you define the
variable within a module.

The top of a module, where you typically see Option Compare Database, is
the declarations area. Here you can declare (sort of like announcing) settings,
variables, constants, and arrays to all procedures in the module.

For example, the line Option Compare Database is a module-level declara-
tion that announces to all procedures in the module that this code is running
within the context of a database. When comparing values in code using logic
like equals or greater than, the code should use the same rules as the rest of
the database.

You can also declare and assign values to variables, arrays, and constants
in the declarations area of the module. Those variables have module-level
scope and lifetime. Thus, the variables are public in the sense that they are
visible to all procedures and exist as long as any procedure in the module is
running.

60 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 60

Variables, constants, and arrays declared inside a procedure have procedure-
level lifetime and scope. Thus, they are private to the procedure. Each variable
defined within a procedure is visible to only that procedure and exists only
while that procedure is running.

The significance of module-level versus procedure-level becomes more appar-
ent as you gain experience. For now, the main thing to keep in mind is that
module-levels variables, constants, and arrays are declared at the top of a
module, before the first procedure. Something that is procedure-level refers
to variables, constants, and arrays defined within a procedure. Figure 4-4
illustrates the difference.

Naming conventions for variables
Some programmers use naming conventions to identify the data type of a
variable as part of the variable or constant’s name. The naming conventions
are entirely optional; you don’t have to use them. A lot of VBA programmers
follow them, though, so you’re likely to see them in any code you happen to
come across.

The idea behind a naming convention is simple: When you define a new vari-
able, make the first three letters of the name (the tag) stand for the type of
variable or object. For example, the following line creates an Integer vari-
able named intMyVar, where int is short for integer.

Dim intMyVar as Integer

Module-level

Procedure-level

Procedure-level

Figure 4-4:
Module-
level and

procedure-
level

declarations.

61Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 61

The tag added to the front of the name (int) doesn’t affect how the variable
is stored nor how you can use it. The tag serves only as a reminder that MyVar
is an Integer. Table 4-2 summarizes the tags that you’ll most likely encounter
when reading other people’s code. In the Sample Declaration column of the
table, the Name means that you can put in any variable name of your own
choosing.

Table 4-2 Naming Conventions Used among VBA Programmers
Tag Stands For Sample Declaration

Byt Byte data type Dim bytName As Byte

Cur Currency data type Dim curName As Currency

Dtm Date/Time data type Dim dtmName As Date

Dbl Double data type Dim dblName As Double

Int Integer data type Dim intName As Integer

Lng Long integer data type Dim ingName As Long

Sng Single data type Dim sngName As Single

Bln Boolean data type Dim blnName As Boolean

str String data type Dim strName As String

var Variant data type Dim varName As Variant

Repeating Chunks of Code with Loops
Occasionally a situation occurs in which you want to execute one or more
VBA statements multiple times. Suppose you write some VBA statements
that need to operate on each record in a table, and the table holds 1,000
records. You have two choices: Write each set of statements 1,000 times or
create a loop that repeats the one set of statements 1,000 times. Needless to
say, typing the statements once rather than 1,000 times saves you a lot of
time. A loop is your best bet.

Using Do...Loop to create a loop
The Do...Loop block is one method of setting up a loop in code to execute
statements repeatedly. The loop requires two lines of code: one at the top and
one at the bottom. You have a lot of flexibility when defining a Do...Loop.

62 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 62

In fact, there are two syntaxes for creating these loops. The first is the
following:

Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]

Loop

The second syntax provides the option of defining the condition at the
bottom of the loop, using this syntax.

Do
[statements]
[Exit Do]
[statements]

Loop [{While | Until} condition]

In both syntaxes, statements refers to any number of VBA statements, and
condition is an expression that can result in either True or False. The ver-
tical bar (also called a pipe) indicates that you can use one word or the other.
For example, you can use the word While or the word Until, but you can’t
use both. Other types of loops use similar constructs. So rather than dwell
on this type of loop right now, look at some other ways to set up loops.

For now, just realize that when you look at existing code, any statements
between the Do and Loop statements will be executed repeatedly. Statements
outside the loop will still be executed once each, top to bottom. Only the
statements inside the loop will be executed repeatedly, as illustrated in
Figure 4-5.

Code execution

Figure 4-5:
Statements

inside a
loop are

executed
repeatedly.

63Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 63

Using While...Wend to create a loop
The While...Wend loop is similar to Do...Loop, but it uses the simpler (and
less flexible) syntax shown in the following code:

While condition
[statements]

Wend

where condition is an expression that results in a True or False value, and
statements are any number of VBA statements, all of which execute with
each pass through the loop.

The condition is evaluated at the top of the loop. If the condition proves
True, all lines within the loop execute (down to the Wend statement), and
then the condition at the top of the loop is evaluated again. If the condition
proves False, all statements within the loop are ignored, and processing
continues at the first line after the Wend statement.

Statements within a While...Wend loop execute repeatedly, just as they do
with a Do...Loop, as illustrated in Figure 4-6.

Using For...Next to create a loop
Yet a third pair of commands for creating loops in code is the For...Next
block of statements. The syntax for a For...Next loop is as follows:

Code execution

Figure 4-6:
Statements

inside this
loop

execute
repeatedly.

64 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 64

For counter = start To end [Step step]
[statements]
[Exit For]
[statements]

Next [counter]

where

� counter is any name that you want to give to the variable that keeps
track of passes through the loop.

� start is a number that indicates where the loop should start counting.

� end is a number that indicates when the loop should end.

� step is optional and indicates how much to increment or decrement
counter with each pass through the loop. If omitted, counter incre-
ments by 1 with each pass through the loop.

� statements are any number of VBA statements that execute with each
pass through the loop.

You can see many For...Next examples throughout this book. For now,
when you’re looking at existing code and see a For...Next pair of state-
ments, realize that the statements inside that loop will be executed repeat-
edly, as illustrated in Figure 4-7.

Code execution

Figure 4-7:
Statements

inside this
loop are

executed
repeatedly.

65Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 65

Making Decisions in VBA Code
Decision-making is a big part of programming because most programs need
to be smart enough to figure out what to do, depending on the circumstances.
Often, you want your code to do one thing if such-and-such is true but do
something else if such-and-such is false. You use conditional expressions to
determine whether something is true or false. A conditional expression is
one that generally follows this syntax:

Value ComparisonOperator Value

where Value is some chunk of information, and the ComparisonOperator is
one of those listed in Table 4-3.

Table 4-3 Comparison Operators
Operator Meaning

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

<> Not equal to

For example, the expression

[Last Name] = “Smith”

compares the contents of the Last Name field with the string “Smith”. If the
[Last Name] field does indeed contain the name Smith, the expression is
(returns) True. If the [Last Name] field contains anything other than Smith,
the expression returns False.

Another example is the following statement:

[Qty] >= 10

The contents of the Qty field are compared with the number 10. If the
number stored in the Qty field is 10 or greater, the expression returns True.
If the number stored in the Qty field is less than 10, the expression returns
False.

66 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 66

You can combine multiple conditional expressions into one by using the logi-
cal operators summarized in Table 4-4.

Table 4-4 Logical Operators
Operator Meaning

AND Both are true.

OR One or both are true.

NOT Is not true.

XOR Exclusive or: One — not both — is true.

The following conditional expression requires that the [Last Name] field
contain Smith and the [First Name] field contain Janet in order for the
entire expression to be True:

[Last Name]=”Smith” and [First Name]=”Janet”

You can include spaces on either side of the equal sign or not. Either way
works.

The following example is an expression that returns True if the State field
contains either NJ or NY:

[State]=”NJ” or [State]=”NY”

Using If...End If statements
You have a couple of ways to write VBA code that’s capable of making a
decision. The simplest — and by far most common — is the If...End If
block of code, which uses this syntax:

If condition Then
[statements]...

[Else]
[statements]...

End If

where condition is an expression that results in True or False, and
statements refers to any number of valid VBA statements. If the condi-
tion proves True, the statements between Then and Else execute, and
all other statements are ignored. If the condition proves False, only the
statements after the Else statement execute, as illustrated in Figure 4-8.

67Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 67

You have a little bit of flexibility when using If...End If. If only one line of
code executes for a True result and only one line executes for a False result,
you can put the whole statement on a single line and omit the End If state-
ment, as the following shows:

If State=”NY” Then TaxRate=0.075 Else TaxRate=0

Using a Select Case block
In some situations, you might need to have your code make a decision based
on several possibilities. For example, perhaps you need to perform different
statements depending on which of ten product types a person ordered. In that
case, you can set up a Select Case block of code, which performs a particu-
lar set of instructions depending on some value. Typically, the value is stored
in a variable or field in a table and is also a number that represents some pre-
viously made selection.

The basic syntax of a Select Case block of code looks like this:

Select Case value
[Case possibleValue [To possibleValue]

[statements]]
[Case possibleValue [To possibleValue]

[statements]]...
[Case Else

[statements]]
End Select

where value is some value (like a number), and possibleValue is any
value that could match the value. You can have any number of Case
possibleValue statements between the Select Case and End Select
statements. Optionally, you can include a Case Else statement, which
specifies statements that execute only if none of the preceding Case
possibleValue statements prove True.

If condition proves True,
only these statements are executed.

If condition proves False,
only these statements are executed.

Figure 4-8:
The basic

idea behind
the

If...End
If

statement.

68 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 68

Each Case statement can have any number of statements beneath it. When
the code executes, only those statements after the Case statement that
matches the value at the top of the block execute. Figure 4-9 shows the
general concept.

These statements executed only if
possibleValue2 equals value.

These statements executed only if
possibleValue1 equals value.

These statements executed only if
possibleValue3 equals value.

These statements executed only if no
possibleValue above equals value.

Figure 4-9:
A Select
Case block

runs only
certain lines

of code.

69Chapter 4: Understanding Your VBA Building Blocks

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 69

70 Part II: VBA Tools and Techniques

02b_574116 ch04.qxd 7/27/04 9:06 PM Page 70

Chapter 5

Controlling Access through VBA
In This Chapter
� Working with objects and collections

� Understanding properties and methods

� Using properties and methods in VBA code

� Help with objects, properties, and methods

Using Visual Basic for Applications (VBA) in Access is all about writing
code to manipulate Access objects, which is just about everything you

see on your screen in Access. Coming up with a simple example is difficult
because virtually everything is an object. Every table, query, form, report,
page, macro, and module is an object. Every record and field in every table
and query is an object. Every control on every form, report, and page is an
object. Even the Access menu bar and toolbars are objects that you can
manipulate with VBA. (See a pattern here?)

Every object in a database has a unique name. Most objects have properties
and methods that VBA can manipulate. The properties and methods exposed
by an object are the steering wheels, if you will, that allow VBA to grab hold
of an object and take control. The names that define all the objects that VBA
can manipulate are organized into an object model.

Using VBA in Access is largely a matter of manipulating database objects to
achieve some goal. In this chapter, I walk you through the basics of objects
that Access exposes to VBA. There are so many objects, properties, and meth-
ods in Access that there’s really no hope of explaining them all in a single book.
There’s really no hope of ever memorizing them all, either, because there’s
just too darn many of them. What you really need is the skill of being able to
find the information you need, exactly when you need it. Thus, much of this
chapter focuses on that skill.

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 71

Understanding Object Models
An object model is a road map, or a sort of the view-from-30,000-feet, of all the
objects and properties that VBA can manipulate. Because there are so many
thousands of objects, you need a sort of road map to find them, just like how
you need a map to navigate unfamiliar territory.

When you view an object model (or portion of an object model), all you see
is color-coded boxes arranged in a vertical hierarchy. For example, Figure 5-1
shows a small portion of the Access object model. Notice the legend in this
figure, which points out that some boxes represent an object only, yet others
represent both an object and a collection.

Distinguishing between objects
and collections
You’re no doubt wondering how (or why) a thing could be both an object
and a collection at the same time. Start with a simple, real world example: a
can of peas. The can of peas itself is an object — a unit — that you can buy
at most any store and easily carry in your hand. The can, however, is also a
collection — a repository — of individual peas. Thus, it’s both an object and
a collection. The same could be said for a carton of eggs: The carton itself is
an object, but it can also be a collection because it holds the eggs inside.

Figure 5-1:
Small

portion of
the Access

object
model.

72 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 72

Referring to Figure 5-1, take a look at what each box refers to. The Forms col-
lection is a collection of all the currently open forms in a database. When your
VBA code is running, it can access any form within that collection of open
forms. See how the word Form is indented under the word Forms. This illus-
trates that each object in the Forms collection is a Form. Seems reasonable.

In the object model hierarchy, a Form is color-coded as an object and a col-
lection. How can a form (an object) be a collection? If you look at just about
any form, you’ll see that it contains controls. In fact, a form is a collection of
controls. From a programming standpoint, a form is an object that you can
manipulate (open, close, print, and so forth) as a unit (an object). However,
it’s also a Controls collection, which contains smaller individual objects
(each called a control) that you can manipulate with VBA.

But wait a minute. According to the object model, a control is both an object
and a collection. What collection of things does a control contain? Each con-
trol has its own collection of properties that uniquely define its name and
many other properties. You can see those properties in form design when
you select a single control and view its Properties sheet. For example, in
Figure 5-2, the combo box control named Contact Type is currently selected
in Forms design. The Properties sheet in that same figure is showing the
properties for that one control.

When you’re in Access’s forms Design view, there are several ways to open
the Properties sheet. Use whatever method seems most convenient. Your
options are

� Double-click the control whose properties you want to view.

� Right-click a control and choose Properties.

Every form has its own
collection of controls.

Every control has its own
collection of properties.

Figure 5-2:
Forms hold

controls;
controls

hold
properties.

73Chapter 5: Controlling Access through VBA

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 73

� Press the F4 key.

� Choose View➪Properties from the Access toolbar.

As you work with VBA in Access, you’ll often see little chunks of object mod-
ules (like the example shown in Figure 5-1) and smaller. The complete Access
object model is too big to even fit onscreen and would be a tight squeeze on
a printed page in this book. However, you can always take a look at an entire
object model by following these steps:

1. If you’re currently in the Access program window, press Alt+F11 to
switch to the VBA editor.

2. In the VBA editor’s Type a Question for Help box, type object model.

3. Press Enter.

4. In the Help pane, click the name of an object model.

In this case, click Microsoft Access Object Model to see the highest-level
objects and collections in Access object model.

The selected object model appears in a separate Help window, as in the exam-
ple shown in Figure 5-3. For help with any object or collection that appears in
the model, just click its name in the Help window to see more specific help on
that particular object or collection.

Figure 5-3:
View an

object
model from

Help.

74 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 74

Understanding properties and methods
Every object and every collection exposes at least one property and method
to VBA. The difference between a property and a method is as follows:

� Property: A characteristic of an object, such as size, color, or font

� Method: An action that can be performed upon an object, such as open,
close, or copy

The standard syntax for referring to a specific object (or collection) property
is to follow the object/collection name with a period and the property name,
as follows:

ObjectCollectionName.property

where ObjectCollectionName is a name from the object model, and
property is a valid property name for that object.

When you type a valid object or collection name followed by a period into the
Code or Immediate window of the VB editor, it immediately displays a list of
properties and/or methods for that object. For example, if you type

Forms.

into the Code or Intermediate window, Access immediately displays a list
of properties supported by the Forms collection in a menu, as in the top of
Figure 5-4.

Figure 5-4:
Find

menus of
properties

and
methods.

75Chapter 5: Controlling Access through VBA

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 75

Look at the bottom half of Figure 5-4. DoCmd is another object in the Access
object model (which I haven’t mentioned yet) that offers many methods.
Type its name followed by a period

DoCmd.

into the Code window or Immediate window, and you see a list of methods
supported by the DoCmd object. After the menu is visible, you can just click
any property or method name to add it to the command.

The drop-down lists of property and method names serve as useful reminders
for experienced programmers, but beginners need more information than the
little lists provide. You can get help with objects and collections by using the
same basic techniques that you use for getting help with VBA statements. For
example, you can select (double-click) an object or collection name in your
code and then click Help (or press F1). Or, you can search the Object Browser
for the object/collection name and get help from there. Here’s how.

1. In the VBA editor, open the Object Browser by pressing F2 or by
choosing View➪Object Browser from the VBA editor’s menu bar.

2. In the left column, scroll to and then click the name for which you
want help.

For example, for help with the DoCmd object, scroll down through the left
column and then click DoCmd. Alternatively, you could use the Search
tool in the Object Browser to find a specific word. The pane on the right
changes to show only properties, methods, and events for the item that
you selected at the left.

3. Optionally, if you want Help for a name in the right-column, click the
name with which you want help.

4. Press F1 or click the Help button in the Object Browser.

For example, if you click DoCmd in the left column and then press F1 or
click the Object Browser’s Help button, you’ll get the Help page for the
DoCmd object, as in the right half of Figure 5-5.

When you’re viewing the help for an object or collection, be sure to look at
the headings under See Also. Those offer help with the specific properties
and methods exposed by the object.

76 Part II: VBA Tools and Techniques

Classes and members
Don’t let the Classes and Members Of headings
in the Object Browser confuse you. Think of a
class as anything that can act as a container

(an object or collection). Think of the members
of as things within the collection.

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 76

Identifying the icons for objects,
properties, and methods
The Object Browser, as well as the menus that appear in the Code and
Immediate windows, uses icons to help you visually discriminate between
objects, properties, methods, and other items in the object model. Table 5-1
briefly describes the meaning of each icon. Refer to the Object Browser in
Figure 5-5 (left side) to see some of the icons in action.

Table 5-1 Icons Used in the Object Browser and the Code Window
Icon Name

Property

Default Property

Method

(continued)

DoCmd is selected. Click for help with methods.

Methods of the DoCmd object Help for the DoCmd object

Figure 5-5:
Find help in
the Object

Browser.

77Chapter 5: Controlling Access through VBA

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 77

Table 5-1 (continued)
Icon Name

Default Method

Event

Constant

Module

Class (object or collection)

User Defined Type

Global

Object Library

Project

VBA Keyword or data

Enum

Manipulating Properties and Methods
When you write in any language, your ultimate goal is to be clearly understood.
You accomplish this by following basic rules of word order and punctuation
(syntax). In a sentence in English, for example, nouns, verbs, objects, articles,
modifiers, and punctuation fall (usually) in a set way. (my the ate. dog home-
work is unintelligible; The dog ate my homework. is correct.)

Likewise, when you write code, you’re manipulating the properties and meth-
ods exposed by that object, taking into consideration the basic rules of syntax
for how you refer to objects, properties, and methods. Understanding those

78 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 78

rules is critical to being able to write VBA code that works. Knowing how it
all works will also help you understand and modify existing code.

Getting the value of a property
The syntax for referring to an object (or collection) property follows the gen-
eral syntax:

objectCollectionName.property

where objectCollectionName is any valid object or collection name, and
property is any valid property for that object. The dot (.) is the delimiter
that separates the object name from the property name.

For example, all collections have a Count property that contains the number
of items in the collection. Remember that the Forms collection is an object
that contains all currently open forms in Access. Thus, Forms.Count returns
the number of open forms in the database. You could see this for yourself by
typing the following in the Immediate window and pressing Enter:

? Forms.Count

As always in the Immediate window, the question mark asks, “What is?” In
this case, you’re asking the Immediate window, “What is the forms count in
this database?” (or, “How many forms are open right now in this database?”).

If no forms are open in Access, Forms.Count returns 0 (zero). If you open a
form (in form view) in Access and then execute the ? Forms.Count statement
again, it returns 1. In other words, the value returned by Forms.Count is equal
to the number of forms that are currently open in Access — 0 (zero) if no forms
are open, 1 if one form is open, 2 if two forms are open, and so forth.

To re-execute a statement in the Immediate window, just move the cursor
back to the end of the statement that you want to execute and then press
Enter. To quickly delete text in the Immediate window, drag the mouse
pointer through it and press Delete.

Every control on every form has a Visible property that determines whether
the control is visible on the form. When Visible equals True (Yes), the control
is visible. Conversely, when the Visible property is False (No), the control
is not visible.

When creating your own forms, there might be instances when you want a
control to be visible to the user as well as instances when you don’t want
it to be visible. For example, on a form that allows a user to enter payment
information for an order, you might want to make controls for entering credit

79Chapter 5: Controlling Access through VBA

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 79

card information visible only when the customer is paying by credit card. If the
customer pays by check or cash, you might want to make those same controls
invisible so that the user doesn’t accidentally choose Cash or Check but then
type in credit card information.

The syntax for referring to the Visible property of a control named myButton
is myButton.Visible. However, like with Access expressions, getting to a spe-
cific object from outside its container requires using an identifier, which pro-
vides the complete path to the object. For example, the following line

Forms!myForm!myButton.Visible

refers specifically to the Visible property of a control named myButton on
a form named myForm. The Forms! part at the beginning refers to the Forms
collection, which contains all forms that are currently open in Access. Figure
5-6 illustrates how Forms!myForm!myButton.Visible refers to the Visible
property of the myButton control.

Changing the value of a property
To change the value of a property, follow the property name with an equal
sign and a valid value for the property. For example, the Visible property
of a control can be True (Yes) or False (No). For example, the following
statement makes invisible a control named myButton by setting its Visible
property to False (No):

Forms!myForm!myButton.Visible = False

To make that same control visible again from VBA, set its Visible property
back to True (Yes), as follows:

Forms!myForm!myButton.Visible = True

Forms collection (all open forms)

Property

MyButton

MyForm

Figure 5-6:
Forms!
myForm!

myButton.
Visible

from an
Access

viewpoint.

80 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 80

Using an object’s methods
Methods are actions that you can perform on objects. The syntax for referring
to an object’s methods in VBA varies. In some cases, referring to a method is
the same as referring to a property. You simply follow the object or collection
name with a period and the method that you want to apply.

For example, the DoCmd (do command) object in the Access object model
exposes commands on Access menus and other capabilities to VBA. One of
the simplest methods exposed by the DoCmd object is the Beep method. When
applied, it simply makes Access sound the default beep sound. In your own
code, you might use DoCmd.Beep to sound a beep when a form opens — or
when the user makes a mistake — to call attention to the screen.

You can try out the DoCmd.Beep method right now, though, via the Immediate
window. Just type the following into the Immediate window and then press
Enter:

DoCmd.Beep

81Chapter 5: Controlling Access through VBA

Bang (!) versus dot (.) in identifiers
To refer to specific objects in a database, VBA
uses the same identifier syntax used in Access
expressions. An identifier can use two different
characters as delimiters (separators) between
words: either an exclamation point (!) or a
period (.). Programmer lingo for these charac-
ters is bang and dot, respectively. The rules for
using them are as follows:

�! (bang): Use the bang character to precede
any name you made up yourself, such as
the name of a form you created or the name
of a control you created on the form.

�. (dot): Use a dot to precede a property name
or any “official” name that you didn’t make
up yourself.

For example, in Forms!myForm!myButton.
Visible, both myForm and myButton are

names that I made up. I did so while creating
those objects in Access. Those two names are
both preceded by a bang (!) character because
they’re both names I made up.

The final name in the identifier, Visible, is a
reference to the object’s Visible property. I
didn’t make up the name Visible myself:
Rather, that’s Access’s name for the property, as
you can see in the Properties sheet in Figure
5-6. Because Visible is an “official” property
name, its name is preceded with a dot (.) rather
than a bang (!).

For more information on identifiers, your best
bet is to consult an Access book (as opposed to
an Access VBA book, like this one). Or you can
just search Access’s Help (not VBA’s Help) for
identifier.

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 81

The Beep method is pretty straightforward in that it’s just one word: beep.
Some methods will support one or more arguments, acting as placeholders
for information that you want to pass to the statement later. For example, one
of the many methods offered by the DoCmd object is OpenForm. The syntax
for using the OpenForm method of the DoCmd object looks like this:

DoCmd.OpenForm FormName, [View], [FilterName],
[WhereCondition], [DataMode], [WindowMode],
[OpenArgs]

The first argument, FormName, is required. The remaining arguments, enclosed
in brackets, are all optional. (As in the syntax charts you see in Help and the
Quick Info, I’ll use square brackets to indicate optional parameters in this
book.) For example, if the current database contains a form named Customers,
the following VBA statement will open it:

DoCmd.OpenForm “Customers”

Multiple arguments must be separated by commas. For example, the follow-
ing VBA statement uses the View argument and the acDesign constant to
open the form named OpenForm in Design view:

DoCmd.OpenForm “Customers”, acDesign

If you want to use multiple arguments but skip over others, you need to
type enough commas to get the right place. For example, the optional
WhereCondition argument lets you specify records to display in the form.
The following VBA statement opens the Customers form, displaying only
records that have CA in the field named State:

DoCmd.OpenForm “Customers”, , ,”[State]=’CA’”

The empty commas leave the optional View and FilterName arguments
empty, ensuring that [State]=’CA’ is passed as the fourth argument,
WhereCondition.

Seeking help with properties
and methods
When you’re typing VBA statements that involve objects, properties, and meth-
ods, you get all the usual quick-reminder Help onscreen. You can always get
more help, though. For example, as soon as you type DoCmd. (remember to
type the period as per the syntax for DoCmd), you see a menu of methods that
DoCmd provides, as in Figure 5-7. It’s a lengthy menu, so you have to use the
scroll bar to see all the available methods of the DoCmd object.

82 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 82

After you type a method name and a blank space, you see the entire syntax
for the method in a Quick Info screen tip, as in Figure 5-8. For the lowdown
on how to read Quick Info tips (what all the brackets, bold, italics, and so on
mean), check out Chapter 3.

83Chapter 5: Controlling Access through VBA

Single versus double quotation marks
VBA uses the same syntax as Access expres-
sions, where literal numbers are just typed as
numbers (like 10), but literal text and dates must
be delimited (surrounded by characters). Literal
dates need to be enclosed in # characters. For
example, the date December 31, 2005 needs to
be expressed as #12/31/05# in an Access
expression as well as in VBA. Literal text like the
name Smith needs to be enclosed in either
double quotation marks (“Smith”) or single
quotation marks (‘Smith’).

When the syntax of a VBA statement
requires its own quotation marks, like the
WhereCondition argument in DoCmd.
OpenForm, the literal needs to be contained
within the entire argument. For example, the
following entire expression StartDate =
#12/31/05# is an entire WhereCondition,
enclosed within quotation marks to satisfy the
syntax rules:

“StartDate = #12/31/05# “

It gets tricky when the expression itself contains
quotation marks because you need one pair
to delimit the literal text and another pair to
delimit the entire expression. You need to use
single quotation marks for one pair and double
quotation marks for the other pair. Otherwise,
Access can’t tell which quotation mark belongs
to which chunk of text. For example, if the
WhereCondition is LastName = Smith
and that whole thing needs to be in quotation
marks, the following statement will not work:

“LastName = “Smith” “

The reason why it won’t work is that the com-
puter always reads one character at a time, left

to right. When it “sees” the first quotation mark,
to the left of LastName, it “knows” that this
is the start of some chunk of text enclosed in
quotation makes. It keeps reading one charac-
ter at a time, left to right. When it then “sees”
the double-quotation mark in front of Smith, it
“thinks” that’s the end of the whole chunk and
then gets all befuddled and stops working when
it sees more stuff after that second quotation
mark.

Alternating the single and double quotation
marks, as follows, solves the problem:

“LastName = ‘Smith’ “

When the computer reads the preceding line,
one character at a time left to right, it “sees” the
first quotation mark to the left of LastName, as
always. When it gets to the first single quotation
mark before Smith, there’s no confusion with
the first double quotation mark. Access just
“knows” that this single quotation mark is the
start of some new literal within the current
chunk of text.

As the computer continues through left to right,
it “sees” the second single quotation mark as
the end of the first one that started Smith. By
the time it gets to the second double quotation
mark, it really is at the end of the whole chunk of
text, so it doesn’t get befuddled and fail.

For more information on using literals in Access,
refer to a book on Access or search Access’s
Help (not VBA’s Help) for the keyword literal.
Optionally, you can search Access’s Help for the
word expressions and get more information
about literal values from the Help page titled
About Expressions.

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 83

As always, the quick reminders don’t provide any detail. When you’re first
learning, frequent visits to the VBA Help are necessary. There are far too many
objects, properties, methods, and keywords to list them all in this book (or
even a 1,000-page book). The best skill that you can learn in VBA is how to
get exactly the help you need, when you need it.

Fortunately, all the Help methods that work with other VBA keywords work
with objects, properties, and methods as well. For example, for help with the
OpenForm method of the DoCmd object, you can do the following:

� In the Code window: Type DoCmd.OpenForm into the Code window,
double-click OpenForm to select it, and then press F1 for Help.

� In the Object Browser: Find DoCmd in the left column, click OpenForm in
the right column, and click the Help (?) button in the Object Browser.

Figure 5-8:
Get Quick

Info syntax
help.

Figure 5-7:
Menu of

valid entries
for the first
word after
DoCmd.

84 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 84

As always, a Help window pops up, as in the example shown in Figure 5-9,
where you can get more information on the OpenForm method.

To summarize (once again), an Access database is a collection of many objects.
Most objects have properties (characteristics) and methods (acts that can be
performed on the object) that you can manipulate through VBA. To refer to an
object, property, or method from your VBA code, you must use exact names
and syntax provided by the application’s object model.

Trying to figure out how to write a line of new code, or modify an existing
line of code just by guessing, is likely to turn into an exercise in hair-pulling
frustration. Nobody was ever born already knowing VBA syntax, and even
the experts have to make frequent visits to Help to get specific information
when they need it. The Help in VBA is your best friend. Learn to use it well!

Selected keyword Help with selected keyword

Figure 5-9:
Help for the
OpenForm

method.

85Chapter 5: Controlling Access through VBA

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 85

86 Part II: VBA Tools and Techniques

02c_574116 ch05.qxd 7/27/04 9:07 PM Page 86

Chapter 6

Programming Access Forms
In This Chapter
� Using VBA with Access forms

� Enabling and disabling form controls

� Changing colors, fonts, and special effects

� Opening and closing forms from VBA

One of the most common uses of VBA is to make your Access forms better
and easier to use. As a database developer, you always want your forms

to make data entry as quick and error-free as possible. Although there’s plenty
that you can do in Access along those lines without using VBA, you can often
make things just a bit better by writing a little VBA code.

In this chapter, I focus on VBA programming techniques that apply specifi-
cally to forms. You’ll discover how to open forms, change things on a form,
and close a form automatically from VBA.

Working with Class Procedures
Every form in a database has a class module in which you can store code that’s
used only by that form. To get to a form’s class module, you first have to click
Forms in the database window and then open an existing form in Design view
or create a new form. Typically, you want to tie your code to an object and
event.

For example, a button on a form is an object. Every button has an On Click
event that occurs whenever a user clicks the button in Form view. If you want
to write code that runs every time someone clicks that button, you want to
tie the code to that button’s On Click event.

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 87

To see which events an object on a form offers, first select the object. The
name of the object appears in the Properties sheet. In the Properties sheet,
click the Events tab. All the events to which you can tie code appear in the
Properties sheet.

When you click an event name in the Properties sheet, a Build button (look
for an ellipsis) appears to the right (see Figure 6-1). To write code that will be
executed each time the event occurs, click that Build button. The first time
you do, you see a Choose Builder dialog box. Choose Code Builder and then
click OK. The form’s class module will open in the VBA editor Code window.

The first and last line of the procedure that will execute in response to the
event is already typed into the class module for you. The name of the proce-
dure is a combination of the object and event name, followed by a pair of
parentheses. For example, the procedure that executes whenever someone
clicks a button named myButton is myButton_OnClick(). The first and last
line of VBA code for that procedure looks like this in the class module:

Private Sub myButton_Click()

End Sub

Any VBA code that the event is to execute needs to be typed between those
two lines of code. After you write your code, choose File➪Save and Return to
Microsoft Access from the VBA editor menu bar. The VBA editor closes, and
you’ll be back to the form’s Design screen. There you’ll see these words:

[Event Procedure]

Selected object (MyButton)

Build buttonSelected event (OnClick)

Figure 6-1:
Sample
control,

event, and
Build button.

88 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 88

in the Properties sheet, next to the name of the property for which you wrote
the code. In the future, whenever you click that property and click the Build
button, you are taken straight to the form’s class module, with the cursor
already placed inside the procedure.

Every type of control has a unique combination of events to which you can tie
code. When you click a control in forms Design, the Event tab in the Properties
sheet shows you all the events the control exposes. Some controls offer quite
a few more events than the button control shown in Figure 6-1.

You don’t need to learn all the events supported by all the different controls
right now. There are too many of them, many of which you’ll probably never
use. But just to give you some examples of events to which you can tie code,
I offer the following quick list.

� On Click (Click): Occurs when the user clicks the control (points to
the control and clicks the left mouse button)

� On Mouse Down (MouseDown): Occurs when the user points to the con-
trol and then clicks either the left or right mouse button

� On Change (Change): Occurs when the contents of a TextBox or
ComboBox control changes, such as when the user edits the contents
of field

� Before Update (BeforeUpdate): Occurs after the user makes a change
to data in the control but before the new data is inspected and before
the underlying record is updated

� After Focus (AfterUpdate): Occurs after the user changes the con-
tents of the control, the new data has passed any data validation rules,
and the underlying record has been updated

Here’s the reason each item in the list above is shown with two names. The
first part outside parentheses is the name as it appears in the Properties sheet.
The name in parentheses (like Click) is the official VBA name and also the
name used in any VBA procedure that you tie to the event. For example, if you
tie a procedure to the On Change event of a control named PaymentMethod,
that procedure is automatically named PaymentMethod_Change().

So that, in a nutshell, is how you work with class procedures. Examples always
help, so your first forays into programming Access forms will all use class
procedures to illustrate their techniques.

Remember, a module is a container that contains VBA code, where that code
is organized into chunks called procedures. A class module is a module that
contains class procedures. The module and the procedures within it belong
to the form (or report) to which the class module is attached.

89Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 89

Enabling Disabling Form Controls
When you work in most programs and dialog boxes, Windows disables (dims)
controls that aren’t relevant at the moment. You can add that same capability
to your Access databases by using some VBA code. For example, you might
create a form that allows a user to choose from among different payment
options. When the user chooses Credit Card, you want all the fields for enter-
ing credit card information to be enabled. When the user selects any other
payment method, you want to disable those same controls, as illustrated in
Figure 6-2.

For the sake of example, assume that the controls in Figure 6-2 are named (top
to bottom) PaymentMethod, CCType, CCNameOnCard, CCNumber.Enabled,
CCExpireMonth, CCExpireYear, and ShippingMethod. I’ll refer to those
control names in the sections that follow.

Every control on a form has an Enabled property. When that property is
True (or Yes), the control looks normal. When the Enabled property is
False, the control is disabled and therefore appears dimmed on the form.

To enable or disable a control on a form through VBA, use the general syntax

controlName.Enabled = True|False

Controls
enabled

Controls
disabled

Figure 6-2:
Enabled and

disabled
controls.

90 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 90

where controlName is the name of the control and True|False means that
you can use True to enable the control and conversely use False to disable
the control.

For example, the following VBA statement enables a control named CCType:

[CCType].Enabled = True

The following VBA statement disables a control named CCType:

[CCType].Enabled = False

In a class module, any field names without identifiers refer to the current
form. For example, it’s sufficient to use a field name like [PaymentMethod]
rather than Forms![formName]![PaymentMethod] because the current
form is assumed.

Note this one catch to enabling and disabling controls from VBA: You can’t
disable a control if the cursor is in that control. So in addition to knowing
how to enable and disable controls, you also need to know how to position
the cursor with VBA. This brings me to the following section.

Using VBA to position the cursor
With VBA, you can move the cursor to any control on a form. In programmer
jargon, moving the cursor to a control is called giving that control the focus.
When you type, your text appears in whatever control on a form currently
has the focus.

91Chapter 6: Programming Access Forms

Square brackets and field names
VBA itself doesn’t actually use square brackets.
In fact, about the only time you see square
brackets in VBA is when you’re looking at a
syntax chart, where square brackets are used
to identify optional — as opposed to required —
arguments.

Access, however, does use square brackets
when an object name — such as a field, query,
form, control, or report name — contains one
or more blank spaces. Then, square brackets

around the name are required. If the name con-
tains no spaces, square brackets are optional.

Most VBA programmers use square brackets
around all Access object names even when
they’re not required, as in the case of the
[CCType].Enabled = False example.
Using the square brackets makes it easier to
distinguish between names that refer to Access
objects and words that belong to VBA.

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 91

You can have VBA automatically move the cursor to any control on your form.
This can be handy when your code can anticipate where the user is most likely
to type next. You can have VBA position the cursor to the appropriate control
automatically so that the user can just keep typing and not move the cursor
on his own.

The same technique also lets you avoid error messages caused by trying to
disable (or hide or lock) the control that currently has the focus. The VBA
syntax for setting the focus to a specific control is

controlName.SetFocus

where controlName is the name of the control to which you want to move
the cursor. For example, the following statement moves the cursor to a con-
trol named CCType on the form:

[CCType].SetFocus

Choosing an object and event for the code
Getting back to the example shown in Figure 6-2, assume that you want your
code to either enable or disable the various credit card-related controls
(CCType through CCExpireYear) depending on the current contents of the
PaymentMethod control. The AfterUpdate event of PaymentMethod occurs
whenever a user chooses a valid option from the PaymentMethod control,
so you want to tie the code to the PaymentMethod control’s AfterUpdate
event.

In forms Design view, click the PaymentMethod control to select it and then
click AfterUpdate on the Events tab of the Properties sheet. The next step
is to click the Build button, as shown in Figure 6-3. In the Choose Builder
dialog box that opens, choose Code Builder and then click OK.

The form’s class module opens, displaying a new, empty Sub procedure
named PaymentMethod_AfterUpdate(), based on the object and event
names. In the Code window, the empty procedure appears as below:

Private Sub PaymentMethod_AfterUpdate()

End Sub

Any VBA code that you place between those two lines is executed every time
a user changes the contents of the PaymentMethod control.

92 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 92

Every time the PaymentMethod_AfterUpdate() procedure executes, its code
needs to make a decision: Should it enable or disable the credit card controls?
You can use the VBA If...Else...End If keywords to make the decision.

See Chapter 4 for more information on the VBA If...Then...End If
keywords.

Within the If...Else...End If statements, the code will position the
cursor and enable or disable controls based on the current contents of the
PaymentMethod control. The logic of the procedure (not written in actual
VBA code yet) looks like this:

If “Credit Card” is selected in the PaymentMethod Field Then
Enable the various Credit Card Controls
Move the cursor to Credit Card Type (CCType) control

Else
Move the cursor to the ShippingMethod control
Disable the various Credit Card Controls

End If

Writing the code
For the procedure to actually work, that logic needs to be written in VBA lan-
guage and syntax. Listing 6-1 shows the procedure The sections that follow
will look at each step in the procedure more closely.

Selected control

Build buttonEvent

Figure 6-3:
The

Payment-
Method
control’s
After-
Update

event.

93Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 93

Listing 6-1: PaymentMethod_AfterUdate() Procedure

Private Sub PaymentMethod_AfterUpdate()

If [PaymentMethod] = “Credit Card” Then
‘Enable controls for entering credit card info.
CCType.Enabled = True
CCNameOnCard.Enabled = True
CCNumber.Enabled = True
CCExpireMonth.Enabled = True
CCExpireYear.Enabled = True

‘Move the cursor to the CCType control.
CCType.SetFocus

Else
‘Move the cursor to ShippingMethod control.
ShippingMethod.SetFocus

‘Disable controls for entering credit card info.
CCType.Enabled = False
CCNameOnCard.Enabled = False
CCNumber.Enabled = False
CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False

End If

End Sub

The first line of code in the PaymentMethod_AfterUpdate procedure com-
pares whatever is currently stored in the control named Payment Method.
That line, on its own, reads

If [PaymentMethod] = “Credit Card” Then

Translated to English, the line says, “If the control named PaymentMethod
contains the words Credit Card, then do the lines below up to Else; other-
wise, (else) skip the lines under Else.” The same statement also means, “If
the PaymentMethod field does not contain the words Credit Card, then only
do the lines between Else and End If.” Thus, if the PaymentMethod control
contains the words Credit Card, these lines of code execute:

‘Enable controls for entering credit card info.
CCType.Enabled = True
CCNameOnCard.Enabled = True
CCNumber.Enabled = True
CCExpireMonth.Enabled = True
CCExpireYear.Enabled = True

‘Move the cursor to the CCType control.
CCType.SetFocus

94 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 94

Those lines ensure that all the credit card controls are enabled and then posi-
tion the cursor to the CCType control (where the user is most likely to make
his or her next selection).

If the PaymentMethod control does not contain the words Credit Card,
only the following lines execute. Those lines first move the cursor to the
ShippingMethod control and then disable the various credit card controls.

‘Move the cursor to ShippingMethod control.
ShippingMethod.SetFocus
‘Disable controls for entering credit card info.
CCType.Enabled = False
CCNameOnCard.Enabled = False
CCNumber.Enabled = False
CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False

The code moves the cursor to the ShippingMethod control first to ensure
that the cursor is not in any control that’s about to be disabled. The
ShippingMethod control is also the next control that the user is most likely
to work in if he or she didn’t choose Credit Card as the payment method.

Saving the procedure
After you type your procedure, choose File➪Close and Return to Microsoft
Access. In the form’s Design Properties sheet, the words [Event Procedure]
appear as the property. To test the procedure, switch to Form view and choose
a different option from the Payment Method control.

Showing and hiding controls
Just like every control on a form has an Enabled property, every control also
has a Visible property. When the Visible property is True (Yes), the con-
trol is visible on the form. When the Visible property is False (No), the
control is invisible in Form view. You can use this property to make controls
appear or disappear on the form depending on values in other controls.

For example, the earlier PaymentMethod_AfterUpdate() procedure uses
the .Enabled property to make controls either enabled or disabled. If you
simply changed Enabled to Visible in that procedure, as here:

If [PaymentMethod] = “Credit Card” Then
‘Show controls for entering credit card info.
CCType.Visible = True
CCNameOnCard.Visible = True
CCNumber.Visible = True
CCExpireMonth.Visible = True
CCExpireYear.Visible = True

95Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 95

Else
‘Hide controls for entering credit card info.
CCType.Visible = False
CCNameOnCard.Visible = False
CCNumber.Visible = False
CCExpireMonth.Visible = False
CCExpireYear.Visible = False

End If

the preceding procedure causes the credit card controls to actually disap-
pear from the form when Credit Card is not selected in the PaymentMethod
field. The controls will be visible only when Credit Card is selected as the
PaymentMethod.

Making controls read-only
You can lock and unlock controls on a form by using the .Locked property.
When a control is locked, the user can see the data in the control but cannot
change the data. (Hence, you say that the information in the control is read-
only.) To lock a control from VBA, use the syntax

controlName.Locked=True

An unlocked control is a normal control in which you can see and change
the data (called a read/write control). To unlock a control from VBA, use the
syntax

controlName.Locked=False

Responding to Form Events
Your code isn’t limited to responding to events that happen in form controls.
You can also write code that responds to things that happen to the form as a
whole. Some common examples include writing code that executes as soon
as a form opens or each time the user scrolls from one record to the next in a
table. Things that happen to the event as a whole are form events.

You can see all the form events whenever you’re designing a form in Design
view. Choose Form from the drop-down list near the top of the Properties
sheet (as shown in Figure 6-4) and then click the Events tab. The On Current
event (also shown in Figure 6-4) occurs each time the user moves to another
record in the form. To write a procedure that executes each time the On
Current event occurs, click the On Current property and click the Build
(ellipsis) button that appears to the right. In the Choose Builder dialog box,
choose Code Builder and then click OK.

96 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 96

The VBA editor opens, and you see the form’s class module in the Code window.
The name of the event procedure that you created is Form_OnCurrent(). The
word Form in this context means the entire form, and OnCurrent refers to the
event. The lines that start and end the procedure look like these:

Private Sub Form_Current()

End Sub

Any code that you place between those lines is executed each time the user
scrolls to a new record in the form. As it turns out, this would be a handy
addition to the Payment Methods example described earlier. Currently, only
one event enables and disables credit card controls — changing the contents
of the PaymentMethod control. The controls won’t change when scrolling
through records, even when they should.

To remedy the situation, you can use the same code that you used in the
PaymentMethod_OnChange() procedure to enable and disable controls in
the Form_Current() procedure. Listing 6-2 shows an example where the
Form_Current() procedure moves the cursor to a control named
PaymentMethod and then enables or disables credit card controls on the
form based on the contents of the PaymentMethod control.

Form object selected

On current event

Figure 6-4:
Form events

in the
Properties

sheet.

97Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 97

Listing 6-2: Form_Current() Procedure

Private Sub Form_Current()
‘Move cursor to PaymentMethod field.
PaymentMethod.SetFocus

If [PaymentMethod] = “Credit Card” Then
‘Enable controls for entering credit card info.
CCType.Enabled = True
CCNameOnCard.Enabled = True
CCNumber.Enabled = True
CCExpireMonth.Enabled = True
CCExpireYear.Enabled = True

Else
‘Move the cursor to ShippingMethod control.
ShippingMethod.SetFocus

‘Disable controls for entering credit card info.
CCType.Enabled = False
CCNameOnCard.Enabled = False
CCNumber.Enabled = False
CCExpireMonth.Enabled = False
CCExpireYear.Enabled = False

End If
End Sub

After writing the code and choosing Close and Return to Microsoft Access,
the On Current event in the Properties sheet shows [Event Procedure].
To test the code, switch to Form view (assuming that the form was bound to
a table that contains multiple records).

You don’t need to study all the details of every event for every control.
There’s just too many of them. Here’s a quick rundown of some of the more
commonly used form events for executing VBA code:

� Load Event (On Load): Occurs as soon as a form opens in Form view
and displays the first record

� On Current (Current): Occurs when the form is open in Form view and
the user scrolls to a new record in the underlying table or query

� After Insert Event (AfterInsert): Occurs when the user adds a
new record to the underlying table (but not when code or a macro adds
a new record to the table)

� Delete Event (Delete): Occurs as soon as a user deletes a record

� On Close (Close): Occurs after a form is closed and cleared from the
screen

98 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 98

The first-listed name (like Load Event) in the preceding list is the name as it
appears in the Properties sheet. The second name (like On Load) is the VBA
name that’s added to the procedure name automatically when you tie code to
an event. For example, as you can read earlier in this chapter, tying code to a
form’s On Current event creates a procedure named Form_Current(). If
you create a procedure that executes as soon as a form loads, its name is
Form_Load().

Keep in mind that the event to which you tie a procedure simply defines
when the procedure runs. You define what the procedure does, when called,
by writing the VBA code within the procedure.

Changing the Appearance of Objects
A form, and each object on a form, contains certain properties that describe
the general appearance of the object. Different types of objects have different
combinations of appearance properties. When you’re working in forms
Design, the Format tab of the Properties sheet shows the properties that the
currently selected object (or objects) support. For example, Figure 6-5 shows
some of the appearance properties available for the selected TextBox con-
trol on the form.

Changing colors
Your VBA code can change the color of objects on forms. Such changes can be
handy when you use color-coding to call attention to specific items on a form.
For example, if your payment is more than 30 days overdue, you might want to
choose the amount due to show up in red (to call attention to the value).

Figure 6-5:
Some

appearance
properties

for a
TextBox

control.

99Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 99

The exact color properties available to you depend on the object for which
you’re writing code, but some common coloring properties include

� BackColor: Defines the background color of a text box, combo box, or
form section

� BorderColor: Sets the color of the border surrounding a control (pro-
viding that border isn’t transparent)

� ForeColor: Sets the color of text in controls that show text, such as a
text box, combo box, or label

When writing code to change the color of any property listed in the preced-
ing list, use the sytntax

objectName.property = rgbColor

where objectName is the name of the object to color, property is one of the
properties that accepts a color, and rgbColor is a color defined as a VBA
ColorConstant or expression that defines a color as a mixture of red, green,
and blue. ColorConstants are just predefined keywords that specify some of
the most basic colors, as shown in Table 6-1.

Table 6-1 Basic Color Constants and RGB Values
Color ColorConstant RGB Equivalent

Black vbBlack RGB(0,0,0)

Blue vbBlue RGB(0,0,255)

Cyan vbCyan RGB(0,255,255)

Green vbGreen RGB(0,255,0)

Magenta vbMagenta RGB(255,0,255)

Red vbRed RGB(255,0,0)

White vbWhite RGB(255,255,255)

Yellow vbYellow RGB(0,255,255)

The RGB() function allows you to express any of millions of colors. You can
use the Color Builder in Access to determine the correct RGB numbers to use
to express any color. In forms Design, click the BackColor, BorderColor, or
ForeColor property, and then click the Build (ellipsis) button that appears
next to the property name. The Color Builder opens, initially showing just the
basic colors. Click the Define Custom Colors button to see the whole Color
Builder.

100 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 100

To see the RGB numbers for a color, fist click one of the basic colors. Or, click
in the larger rainbow-looking area and then choose a brightness to the right
of that. The currently selected color will appear in the Color|Solid box, and
the RGB numbers for that color appear to the right. Figure 6-6 shows the
basic procedure for finding the three numbers necessary to define a color
from the Color Builder.

Notice in Figure 6-6 how the selected color is expressed as a mixture of Red
(238), Green (228), and Blue (45). The way to express that color using the RGB
function is simply RGB(238,228,45).

Be aware that backgrounds and borders can also be transparent, meaning
they’re not visible at all, no matter how you color them. Properties that
determine whether an item is transparent or opaque include

� BackStyle: When set to 0 (zero), the background is transparent. When
set to 1, the background is opaque and can therefore show color.

� BorderStyle: When set to 0 (zero), the background is transparent.
When set to 1, the background is opaque and can therefore show color.

As a simple example, suppose your form contains a control named DueDate
that contains the date when a payment is due. As you scroll through records in
the table, you want DueDate to appear in red whenever the payment is more
than 30 days past due. Because you want the control to change while you’re
scrolling through records on the form, you could attach the code to the form’s
On Currently event. The code would appear as below in a class module. (The
comment above each line of code tells what the line beneath does.)

Click a basic color... ...or click a color and brightness.

RGB of selected color

Selected color

Figure 6-6:
Use the

Color
Builder to
determine

RGB.

101Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 101

Private Sub Form_Current()
If Date - [DueDate] > 30 Then

‘Make control background opaque.
DueDate.BackStyle = 1
‘Make control background color white.
DueDate.BackColor = vbWhite
‘Make font color red.
DueDate.ForeColor = vbRed

Else
‘Make control background transparent.
DueDate.BackStyle = 1
‘Make font color black.
DueDate.ForeColor = vbBlack

End If
End Sub

When working with more than the basic colors, many programmers prefer to
define colors in advance by storing them in variables. To use this method, you
must first declare the variable or constant as a Long (long integer number),
and then use the RGB function to assign a value to the variable. For example,
the following Dim statements declare a bunch of color names as variables con-
taining Long Integer data. Lines below the Dim statements assign colors to
those names:

‘Delcare some color names as Long Integer variables.
Dim Beige, Brown, Chartreuse, DarkBlue, DarkGreen As Long
Dim Fuschia, Gold, Gray, HotPink As Long
Dim Lavender, Maroon, Navy, Olive, Orange As Long
Dim Pink, Purple, Salmon, Silver, Teal As Long

‘Assign colors to variables as RGB values.
Beige = RGB(245, 245, 220)
Brown = RGB(165, 33, 33)
Chartreuse = RGB(127, 255, 0)
DarkBlue = RGB(0, 0, 139)
DarkGreen = RGB(0, 100, 0)
Fuschia = RGB(255, 0, 255)
Gold = RGB(255, 215, 0)
GoldenRod = RGB(218, 165, 32)
Gray = RGB(128, 128, 128)
HotPink = RGB(255, 105, 180)
Lavender = RGB(230, 230, 250)
Maroon = RGB(255, 0, 255)
Navy = RGB(0, 0, 128)
Olive = RGB(128, 128, 0)
Orange = RGB(255, 165, 0)
Pink = RGB(255, 192, 203)
Purple = RGB(128, 0, 128)
Salmon = RGB(241, 128, 114)
Silver = RGB(192, 192, 192)
Teal = RGB(0, 192, 192)

102 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 102

After the color name has been assigned a value, you can use it in your code.
For example, the following sets the background color of the form’s Detail
band to a Salmon color:

Dim Salmon as Long
Salmon = RGB(241, 128, 114)
Forms!Form1.Detail.BackColor = Salmon

For details on creating variables, see Chapter 4.

Controlling boldface, italics, and such
If a control displays text or numbers, you can change the font or style of text
through VBA. The property names are self-explanatory, as are the settings for
most. As always, controlName stands for the name of a control on a form.
Where you see a pipe (|) separating options, you can use one or the other:

controlName.FontBold = True | False
controlName.FontItalic = True | False
controlName.FontName = stringExpression
controlName.FontSize = numberPoints
controlName.FontUnderline = True | False

The .ForeColor property described in the earlier section “Changing colors”
determines the color of text in a box. In other words, .ForeColor property
actually defines the font color.

For example, to set the font of a control named Notes to Courier New, 12 point,
with boldface, italics, and underline all turned on (and to make the text red, for
added overkill) use these statements:

Notes.FontName = “Courier New”
Notes.FontSize = 12
Notes.FontBold = True
Notes.FontItalic = True
Notes.FontUnderline = True
Notes.ForeColor = vbRed

Changing special effects
Text boxes and some other controls on forms have a Special Effect prop-
erty that define their general appearance on the form. When you’re creating a
form in forms Design, you set a control’s Special Effect property in the
Properties sheet. If you want your code to change a control’s special effect,
use the syntax

103Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 103

controlName.SpecialEffect = setting

where controlName is the name of the control whose effect you want to
change, and setting is either the number or constant as shown in Table 6-2.

Table 6-2 Using a Constant or Number as a SpecialEffect Setting
Appearance Number Constant

Flat 0 acEffectNormal

Raised 1 acEffectRaised

Sunken 2 acEffectSunken

Etched 3 acEffectEtched

Drop-shadowed 4 acEffectShadow

Chiseled 5 acEffectChisel

As an example, the following line of code sets the special effect of a control
named ContactID to the flat appearance:

ContactID.SpecialEffect = acEffectNormal

The following line achieves exactly the same result as the above line but uses
a number rather than the constant for the setting:

ContactID.SpecialEffect = 0

Using the With...End With statements
If you want your code to change several properties of a control, you can use a
With...End With block of code to make your code easier to read. For exam-
ple, suppose you want your code to change several properties of a control
named myControl on a form named myForm (and the code isn’t in a class
module), you could include that lengthy identifier on every line of code, as
follows:

Forms!myForm.myControl.BackStyle = 1
Forms!myForm.myControl.BackColor = vbWhite
Forms!myForm.myControl.ForeColor = vbRed
Forms!myForm.myControl.SpecialEffect = acEffectNormal
Forms!myForm.myControl.FontBold = True

104 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 104

Or, you can use a With...End With block of code as follows:

With Forms!myForm.myControl
.BackStyle = 1
.BackColor = vbWhite
.ForeColor = vbRed
.SpecialEffect = acEffectNormal
.FontBold = True

End With

Most programmers prefer to write using the latter format because it makes
the code easier to read. When executing the code, VBA understands that
With Forms!myForm!myControl means that all the property settings to
follow (up to the End With statement) are to be applied to the object named
Forms!myForm.myControl.

Filling form controls with data
Controls that can contain data, like TextBoxes, ComboBoxes, CheckBoxes,
and such, all have a .Value property that define the contents of the control.
To put data into a control, use the following syntax where controlName is
the name of the control, and value is the data you want to put in the control:

controlName.Value = value

If controlName refers to a control that’s bound to an underlying table, the
field in the current record of that table receives the same value as the control.

As an example, suppose you have a form that includes controls named
State, SalesTaxRate, OrderSubtotal, SalesTaxAmt, and GrandTotal, as
in Figure 6-7. You want to write some code that does the following:

1. If State is CA, put 0.725 (7.25%) in the SalesTaxRate control.

2. If State is not CA, put 0 (zero) in the SalesTaxRate control.

3. Calculate and display the SalesTaxAmt.

4. Calculate and display the GrandTotal amount.

105Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 105

You need an If...Then...Else block of code to make the decision in your
VBA code. For the calculations, just use the * (multiplication) and + (addition)
operators, as shown here:

If [State] = “CA” Then ‘If State is CA then...
‘...Set SalesTaxRate to 7.25% for CA
[SalesTaxRate].Value = 0.0725

Else
‘Otherwise, set SalesTaxRate to zero.
[SalesTaxRate].Value = 0

End If

‘Calculate and show SalesTaxAmt and GrandTotal
SalesTaxAmt.Value = [SalesTaxRate] * [OrderSubtotal]
GrandTotal.Value = [OrderSubtotal] + [SalesTaxAmt]

When assigning values to controls, you need to make sure you use the cor-
rect data type. For example, if you want to put text in a Text, Memo, or
Hyperlink control, enclose the text in quotation marks, as in the following
examples (all of which use completely hypothetical control names):

anyTextbox.Value = “Smith”
anyHyperlink.Value = “alan@coolnerds.com”
anyHyperlink.Value = “www.coolnerds.com”

To put a check mark into a check box, set the check box’s value to True, as in
anyCheckbox.Value = True. To clear a check box, set its value to False, as
in anyCheckbox.Value = False.

If you want to put a specific date into a Date/Time field on a form (or in a
table), enclose the date in pound signs (#). For example, the following line
assumes that DateEntered is the control for a field Date/Time field named
DateEntered. The code places the date 12/31/05 into that control:

[Date Entered].Value = #12/31/05#

OrderSubtotal
SalesTaxAmt
GrandTotal

SalesTaxRate State

Figure 6-7:
A sample
form with

calculated
sales tax.

106 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 106

To put today’s date into a Date/Time field, use the word Date, alone, to the
right of the equal sign, as in DateEntered.Value = Date.

Far be it for me to confuse things, but I should point out that for many con-
trols, the .Value property is assumed if you don’t include it in your code. It’s
important to understand this point when modifying existing code because
some programmers might prefer to omit the .Value property name. For
example, when you see something like this in code

[SalesTaxRate] = 0

that means exactly the same thing as

[SalesTaxRate].Value = 0

Both of the preceding VBA statements put the value zero into a control
named SalesTaxRate.

Opening and Closing Forms
VBA doesn’t limit you to working with individual controls on forms. You can
work with entire forms as objects, too. For example, VBA can open a closed
form and display it onscreen. The OpenForm method of the DoCmd (do com-
mand) object gives you great flexibility in exactly how VBA opens a form. The
syntax for using the OpenForm method of the DoCmd object is:

DoCmd.OpenForm formName, [View], [FilterName],
[WhereCondition], [DataMode], [WindowMode]
[OpenArgs]

Only the first argument, formName, is required. If you omit other arguments,
the form opens as it would when you just double-click the form’s name in the
database window, with all the property settings that are defined in the form’s
basic design. The optional arguments that allow you to change how the form
opens are as follows:

� View: Specify how you want to open the form displayed using any
of the following constants: acDesign, acFormDs (datasheet),
acFormPivotChart, acFormPivotTable, acNormal (the default),
acPreview.

� FilterName: If you’ve previously created and named a folder, use this
option to filter records that the form displays. If you haven’t created and
named a filter, you can use the optional WhereCondition argument
instead to filter records.

107Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 107

� WhereCondition: Use this option to specify a record or records without
using a named filter. For example, the WhereClause “[ContactID]=1001”
displays only records where the ContactID field contains 1001. The
WhereClause “[State]=’NY’” displays only records that have NY in a
field named State.

� DataMode: Determines how the form opens using the constants acFormAdd
(user can add new records but not edit existing records), acFormEdit
(users can add or edit data), and acFormReadOnly (users can view, but not
change, data). The default argument, acFormPropertySettings, is used if
you omit the argument and opens the form in normal view, honoring the
AllowEdits, AllowDeleteions, AllowAddItems, and DataEntry proper-
ties defined in the form’s properties.

� WindowMode: Specifies the style of the window when opened using one
of the following constants:

• acDialog (opens a dialog box with Modal and PopUp properties
set to True)

• acHidden (opens the form in Form view but isn’t visible onscreen)

• acIcon (opens the form minimized, leaving only its taskbar button
visible)

• acWindowNormal (opens the form with setting defined in its
Properties sheet).

Setting a form’s Modal and PopUp properties to True makes the
form open as a dialog box. When a form is modal, it must be closed
before the user can perform any other action. When the PopUp
property is enabled, the form stays on top of other open windows
on the desktop.

� OpenArgs: Specifies additional arguments that can be passed to the
form and then processed by other code that manipulates the form.

For example, to open a form named MyForm with no special settings (as though
you just double-clicked the form’s name in the database window), use the
simple syntax:

DoCmd.OpenForm “MyForm”

The following statement opens the form named myForm in Design view:

DoCmd.OpenForm (“myForm”),acDesign

The following statement opens the form named myForm in Form view but
limits the display of records to those that have (215) as the first five charac-
ters of the Phone field:

DoCmd.OpenForm (“myForm”),,,”Left(Phone,5)=’(215)’”

108 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 108

Closing a form
To close a form that’s already open, use the Close method of the DoCmd
object and the following syntax:

DoCmd.Close objectType, objectName, SaveOptions

where

� objectType: Describes the type of object being closed. Use acForm for
forms (acReport for reports).

� objectName: The name of the form (or other object) to close.

� SaveOptions: Specifies how to handle the record currently displayed by
the form using one of the following constants:

acSaveYes (the current record is saved automatically)

acSaveNo (the current record or any changes made to the record
are discarded and not saved)

acPrompt (displays a prompt asking the user whether he/she
wants to save the current record)

As an example, the following VBA statement closes a form named Address
Book Form and automatically saves the record currently displayed by that
form:

DoCmd.Close acForm,”Address Book Form”,acSaveYes

Adding a related record to another table
One of the most common uses of opening forms from VBA is to allow the user
to easily enter a record of information with some data already provided. For
example, Figure 6-8 shows a sample form named Address Book Form. It dis-
plays records from a table of names and addresses, where each customer has
a unique ContactID number.

Suppose that a user has just finished entering the name, address, and other
information for a new customer and now wants to switch over to an order
form and enter a new order for that customer. When the order form opens,
you want it to have already created a new record for the order, put the cur-
rent customer’s ContactID value into that order form, and position the
cursor to where the user is most likely to type next, such as the Payment
Method control, as shown in Figure 6-9.

109Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 109

Orders Main Form

ContactID

Payment
method

Figure 6-9:
Sample

order main
form.

Address Book Form

PlaceOrder button

ContactID

Figure 6-8:
Sample
address

book form
and place

order
button.

110 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 110

To make this work, you need to tie some code to the Place Order button’s On
Click event. That code needs to perform the following steps:

1. Open the order form ready to add a new record.

2. Copy customer’s ContactID to ContactID control on order form.

3. Move cursor to convenient control on order form.

4. Close the address book form and save its record.

To start this programming endeavor, open Address Book Form in Design
view, click the Place Order button, click the Event tab in the Properties sheet,
click the Build button in the Properties sheet, and choose Code Builder. As
always, you’ll be taken to the class module for the form. The cursor will be in
a new Sub procedure whose name reflects the button and On Click event, as
follows:

Private Sub PlaceOrder_Click()

End Sub

Next, you need to convert the plain-English steps that the procedure needs to
take into actual VBA code. The complete procedure, as it appears in the VBA
editor Code window, is shown in Listing 6-3.

Listing 6-3: Form_Address Book Form
Private Sub PlaceOrder_Click()

‘Open the order form ready to add a new record.
DoCmd.OpenForm “Orders Main Form”, acNormal, , , acFormAdd

‘Copy customer’s ContactID to ContactID control on order form.
Forms![Orders Main Form]!ContactID.Value = Me![ContactID].Value

‘Move cursor to convenient field in order form.
Forms![Orders Main Form]![Payment Method].SetFocus

‘Close the address book form and save its record.
DoCmd.Close acForm, “Address Book Form”, acSaveYes

End Sub

More DoCmd methods for forms
The DoCmd object used in the preceding example to open and close forms
provides many methods for working with data on forms. Table 6-3 summa-
rizes some of the more commonly used DoCmd methods for working with
forms and data in forms.

111Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 111

Table 6-3 Commonly Used DoCmd Methods
To Do This Use This

Move cursor to a specific control DoCmd.GoToControl

Select object DoCmd.SelectObject

Move to a specific record DoCmd.GoToRecord

Find a record DoCmd.FindRecord

Find next matching record DoCmd.FindNext

Filter records in a form DoCmd.ApplyFilter

Remove filter DoCmd.ShowAllRecords

Sound a beep DoCmd.Beep

Print form (or other object) DoCmd.PrintOut

Save form (or other object) DoCmd.Save

Perform a command from the menu bar DoCmd.RunCommand

Copy a form (or other object) DoCmd.CopyObject

Rename form (or other object) DoCmd.Rename

Delete a form (or other object) DoCmd.DeleteObject

Send object electronically DoCmd.SendObject

You don’t need to study and memorize them all now because you can easily
get detailed information on an as-needed basis. Just type the beginning of the
statement into your code, as follows:

DoCmd.GoToRecord

Just double-click the method name (such as GoToRecord) to select it and
then press F1.

The Object Browser, which is always available in the VBA editor, provides
another great resource for getting quick information on methods of the
DoCmd object (as well as every other object in your database). To open the
Object Browser in the VBA editor, choose View➪Object Browser from the
VBA editor’s menu bar or press F2 while you’re in the VBA editor.

See Chapter 2 for more information on using the Object Browser.

112 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 112

After the Object Browser is open, click DoCmd in the left column. The meth-
ods that DoCmd supports will be listed down the right pane. For help with a
particular method, click its name in the right column and then click the Help
button near the top of the Object Browser (see Figure 6-10).

DoCmd selected DoCmd methods

Help

Figure 6-10:
Methods of
the DoCmd

object in
the Object

Browser.

113Chapter 6: Programming Access Forms

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 113

114 Part II: VBA Tools and Techniques

02d_574116 ch06.qxd 7/27/04 9:13 PM Page 114

Part III
VBA, Recordsets,

and SQL

03a_574116_PP03.qxd 7/27/04 9:24 PM Page 115

In this part . . .

I suppose the first thing the title of this part brings to
mind is, “What is an SQL recordset (and why would I

care to know)?” If you’ve been faced with any VBA code in
the past, you’ve probably seen the word recordset sprin-
kled throughout many a VBA procedure. Either way, SQL
recordsets are basically a means of letting VBA work
directly with the data in your tables, where it can do all
kinds of useful work for you. This part is mostly about
managing data in Access tables with VBA and recordsets.

03a_574116_PP03.qxd 7/27/04 9:24 PM Page 116

Chapter 7

The Scoop on SQL and Recordsets
In This Chapter
� What SQL is and why it matters

� Writing SQL without knowing SQL

� Creating tables and deleting tables with VBA

� Adding, changing, and deleting table records with VBA

� Creating and using recordsets

You don’t have to be involved with database management for long before
the SQL acronym starts rearing its head. SQL (ess-cue-ell; often pronounced

SEE-quel) stands for Structured Query Language. As the name implies, SQL
is a language for defining which fields and records you want from a table.
Actually, it’s not just a language: It’s more like the language for getting data from
tables because it can be used in virtually all database management systems.

In this chapter, you’ll discover what SQL is all about, how it applies to Access,
and how you can use SQL in VBA to do the jobs that queries do in regular inter-
active Access. As you’ll see, a SQL statement is basically a query that’s been
converted to words. And although you can just drop the Query Design screen
into code (because it’s a screen and not words), you can certainly drop an SQL
statement (which is just words) into your code.

What the Heck is SQL?
Although you might not realize it, every time you create a query in Access,
you’re actually creating an SQL statement. This is a good thing because as a
rule, creating a query in Access is a lot easier than writing an SQL statement
from scratch.

To illustrate how every query is really a SQL statement in disguise, Figure 7-1
shows a basic Access Select query that (in Datasheet view) displays some
fields and records from a table.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 117

118 Part III: VBA, Recordsets, and SQL

So where’s the SQL statement in Figure 7-1? Well, it’s not visible when you’re
looking at the query in Design view. To see the SQL statement that defines a
query, right-click the title bar of the query Design screen and choose SQL
View. The whole window changes, hiding the QBE (Query-by-Example) grid
and displaying the SQL statement that the query actually performs, as in
Figure 7-2.

At first glance, the SQL statement and query might seem to be unrelated.
However, if you look closely at the SQL statement, you’ll see that it is indeed
a reflection of what the query says. The syntax of an SQL statement generally
looks like this:

SELECT fieldnames FROM tableName WHERE condition ORDER BY
field(s)

where

� fieldnames is a list of fields from the underlying table to be displayed
by the query (or SQL statement).

� FROM tableName specifies the name of the table from which the data is
being drawn.

Figure 7-2:
SQL

statement
for the

query in
Figure 7-1.

Figure 7-1:
Simple,
sample

select
query.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 118

119Chapter 7: The Scoop on SQL and Recordsets

� WHERE condition is an expression specifying which records to include
in the query.

� ORDER BY field(s) lists the names of used for sorting (alphabetizing)
records in the query results.

If I take the repetitive table name [Address Book] out of the sample SQL
statement shown in Figure 7-1 (just to make the statement a little easier to
read), the SQL statement is actually this:

SELECT [Last Name], [First Name], [StateProv], [Tax Exempt]
FROM [Address Book]
WHERE ((([Tax Exempt])=True))
ORDER BY [Last Name], [First Name];

Figure 7-3 shows how the various parts of the QBE grid in fact do correspond
to text in the SQL statement. Note the following:

� The fields listed across the Field row specify the fields to display (for
example, SELECT [Last Name], [First Name], [StateProv],
[Tax Exempt]).

� The table name in the top half of the grid specifies where the fields and
records will come from (for example, FROM [Address Book]).

� The WHERE clause gets its expression from the Criteria rows of the QBE
grid (for example, WHERE [TaxExempt] = True).

� The ORDER BY fields come from the Sort row in the grid (for example,
ORDER BY [Last Name], [First Name]).

FROM

SELECT

ORDER BY

WHERE...

Figure 7-3:
How parts
of a query

translate to
an SQL

statement.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 119

120 Part III: VBA, Recordsets, and SQL

Writing SQL without knowing SQL
The example I’ve shown you is just an example. Every query has a correspond-
ing SQL statement. You can prove this to yourself by opening any query in any
Access database, anywhere. Right-click that query’s title bar and choose SQL
View, and there you’ll see that query’s SQL statement. Right-click the title bar
again and choose Query Design, and you’re back to the Query Design grid.

The real beauty of it all is that you really don’t need to learn SQL to write SQL
statements. If you know how to create an Access query, you know how to
write SQL statements because you can just create your query to do whatever
you want it to do. Then right-click and choose SQL View, and there’s your
SQL statement. Drag the mouse pointer through that statement to select it,
press Ctrl+C to copy it, and then you can just paste the SQL statement wher-
ever you want.

You could even discard the original query after you have the SQL statement
because the SQL statement and query are essentially one in the same. The
only real difference is in how you use them. To do a query in Access, you
create the query and switch to Datasheet view to see the results. To do the
query from VBA, you execute the SQL statement instead.

The bond between Access queries and SQL is a two-way street. For example,
suppose that the current database has a table like Address Book shown in
earlier figures in this chapter, and I type the following SQL statement into
some text editor like Notepad:

SELECT [Last Name], [First Name], [City], [StateProv]
FROM [Address Book]
WHERE (((StateProv)=”CA”))
ORDER BY [Last Name], [First Name];

Now suppose I go into Access and create a new query but don’t add any tables
to it. I just have a blank QBE grid to start with. In that query, I right-click the title
bar and choose SQL View. Then, say I copy and paste (or type) the preceding
SQL statement into a window that displays the SQL statement. Intuitively, this
might seem weird because normally the query creates the SQL statement, not
the other way around. But given the two-way street of SQL and Access queries,
going back to Query Design view after entering the SQL statement almost mirac-
ulously translates the SQL statement into a QBE grid, as in Figure 7-4.

It’s a lot easier to create a query in the query Design grid and convert it to
SQL than it is to write an SQL statement and convert it to a query. If you put
an incorrectly written SQL statement into the query, it won’t translate. In

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 120

121Chapter 7: The Scoop on SQL and Recordsets

truth, I doubt anyone would ever go to the trouble of writing out a SQL state-
ment first to create a query. The point is that an SQL statement is an Access
query. It’s just that an SQL statement is a query expressed in words (which
can be placed in VBA code) rather than a query expressed as information in a
QBE grid (which can’t be dropped into VBA code).

Exactly how you use SQL in VBA is a long story, which this chapter and the
next will describe in detail. Also, not all SQL statements contain exactly the
words SELECT, FROM, WHERE, and ORDER BY. Although there are lots of differ-
ent words you can use in SQL to perform different kinds of tasks, the first
thing you need to realize is that an SQL statement is just an Access query
expressed as words rather than graphically on a grid.

Select queries versus action queries
So far in this chapter, I’ve really only talked about Access select queries. That
type of query gets its name from the fact that it only selects fields and records
from a table. A select query will never alter the contents of a table.

An action query is different from a select query in that an action query actu-
ally does change the contents of a table. In Access, you create action queries
in much the same way you create select queries. You start off by creating a
new, regular query, so you’re at the Query Design grid. Then you choose the
type of action query you want to create from the Access Query menu, shown
in Figure 7-5.

Figure 7-4:
Sample SQL

statement
translated to

an Access
query.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 121

122 Part III: VBA, Recordsets, and SQL

The main types of action queries that you can create, their purpose, and rele-
vant SQL buzzwords (described in the sections that follow) are summarized
in Table 7-1.

Table 7-1 Access Action Query Types and Corresponding SQL
Action Query Type Purpose Relevant SQL Buzzwords

Make-Table query Make a new table using SELECT...INTO
data from an existing table.

Update query Change multiple fields UPDATE...
and records within a table.

Append query Add records from one table INSERT INTO...
to the bottom of some other
table.

Delete query Delete multiple records from DELETE
a table.

The changes that an action query makes to a table can be extensive and per-
manent! Never test or play around with action queries on data you actually
need. It would be a shame (putting it mildly) to test out a delete query on your
only copy of 10,000 names and addresses, only to realize that it worked — and
now you have 11 names and addresses in your table and no backup.

After you create an action query in Access, you still have to run the query
before it will actually make any changes to your database. To run an action
query in Access, you need to have the action query open and visible onscreen

Figure 7-5:
The Query

menu in
Access.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 122

123Chapter 7: The Scoop on SQL and Recordsets

in Design view. From there, you click the Run (!) button on the Access toolbar
or choose Query➪Run from the Access menu bar to run the query.

Every action query that you create is also a SQL statement, just like when you
create select queries. You get to an action query’s SQL statement just like you
do a select query’s — by right-clicking the title bar in Query Design and choos-
ing SQL View. For example, Figure 7-6 shows an update query that changes the
value of a field named SentWelcome to True wherever that City field contains
“Houston”. (Note the words Update Query in the title bar and the Update To
row in the QBE grid.)

Right-clicking the title bar shown in Figure 7-6 and choosing SQL View reveals
the SQL version of the query. Because this is an update query, the SQL state-
ment doesn’t start with SELECT. Rather, it starts with UPDATE, as follows. But
still, the SQL statement is perfectly valid and will run just fine as VBA code.
You can select and copy the SQL statement just as you could any other.

UPDATE [Address Book] SET SentWelcome = True
WHERE (((City)=”Houston”));

Getting SQL into VBA
So the bottom line here, once again, is that if you know how to create queries
in Access, you know how to write (most) kinds of SQL statements. I mention
earlier that you can copy and paste a SQL statement just like you can copy
and paste any other hunk of text that you see onscreen. But I’d be lying if I
said you just have to drop the SQL statement into your VBA code to make it
work. Here are the reasons why it’s not that simple:

� You need to get rid of the semicolon (;) at the end of the SQL statement
in SQL view. (VBA doesn’t like that last semicolon.)

Figure 7-6:
Sample
update

query in
Query

Design.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 123

124 Part III: VBA, Recordsets, and SQL

� If the SQL statement is broken into multiple lines, you need to unbreak it
back to a single line (with exactly one blank space between each).

� The whole statement needs to be placed inside quotation marks (alter-
nating single and double quotation marks).

� If the SQL statement represents an action query, the whole SQL state-
ment needs to be preceded by DoCmd.RunSQL in your code.

Look at an example starting with the UPDATE SQL statement shown earlier.
When you copy and paste the statement into VBA code, the entire statement
will turn red, indicating a problem. The only real problem, though, is that
things do need to be reformatted a bit.

First, you need to unbreak the lines so that the whole SQL statement is on
one, long line in the code. Move the cursor to the end of the top line, press
Delete (Del) to unbreak the line, and then press the spacebar to insert a blank
space where the line break used to be.

Next, you need to get rid of the semicolon at the end of the statement and put
the whole statement into quotation marks. You can use either single (‘) or
double (“) quotation marks. However, if any quotation marks are already in
the statement, you can’t use the same type. For example, the sample SQL
statement has a pair of double-quotation marks around the word “Houston”,
as follows:

(City) = “Houston”

To avoid a conflict with the embedded quotation marks, you either have to
use single quotation marks to enclose the whole SQL statement, as follows:

‘UPDATE [Address Book] SET SentWelcome = True WHERE (((City)=”Houston”))’

Or, you have to change the inner quotation marks to single quotes, and then
use double quotation marks around the whole statement, as follows:

“UPDATE [Address Book] SET SentWelcome = True WHERE (((City)=’Houston’))”

Finally, VBA doesn’t recognize SQL as being different from any other code in
the procedure. So to tell VBA that the statement is SQL and that you want
VBA to execute the statement, add DoCmd.RunSQL to the start of the line:

DoCmd.RunSQL “SELECT [City], [StateProv] FROM [Address Book] WHERE
((([StateProv])=’CA’))”

The final statement in the VBA editor, after making all the necessary changes,
will look like this:

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 124

125Chapter 7: The Scoop on SQL and Recordsets

Sub whatever()

‘Set SentWelcome field to True for all Houston addresses.
DoCmd.RunSQL “UPDATE [Address Book] SET SentWelcome = True WHERE

(((City)=’Houston’))”

End Sub

Hiding warning messages
Typically when you run an action query — whether from Access or VBA —
you get a warning message about what the query is about to do. That gives you
a chance to change your mind before the query executes. However, when
you’re running action queries from VBA, you might want them to just do their
thing without displaying any warnings or asking the user for permission.

The DoCmd object provides a simple means of hiding those warning messages.
To prevent a warning message from appearing when your code runs an action
query, place the following line anywhere above the line that runs the action
query:

DoCmd.SetWarnings False

To get warning messages back to normal after the query runs, use this state-
ment in your code:

DoCmd.SetWarnings True

The following shows the sample procedure from the end of the preceding
section with appropriate code added to hide warning messages just before
the query runs and then set the warnings back to normal.

Sub whatever()

‘Hide warning messages presented by action queries.
DoCmd.SetWarnings False

‘Set SentWelcome field to True for all Houston addresses.
DoCmd.RunSQL “UPDATE [Address Book] SET SentWelcome = True WHERE

(((City)=’Houston’))”

‘Get warning messages back to normal.
DoCmd.SetWarnings True

End Sub

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 125

126 Part III: VBA, Recordsets, and SQL

In case you’re wondering . . . because select queries don’t actually change
data, do they show warnings? The answer to that is a definite no. In fact, if
you just run a select query by using DoCmd.RunSQL in code, absolutely noth-
ing happens onscreen at all. That’s because to use select queries in VBA, you
have to store the results of the query in a recordset. I talk about how record-
sets work in Chapter 8. In this chapter, I stay focused on action queries (and
SQL statements) that actually make changes to data stored in tables.

Storing SQL statements in variables
You can store SQL statements in variables, just as you can store text in vari-
ables. This can help with those extremely long SQL statements that seem to
extend out forever past the right margin of the Code window. Many program-
mers will use this technique of building a long SQL statement out of smaller
chunks, storing the statement in a variable. As an example, here is a series of
VBA statements that build and execute a single length SQL statement from
smaller chunks

‘Create string variable (storage place) named mySQL.
Dim mySQL As String

‘Add lengthy SQL statement to mySQL in chunks.
mySQL = “UPDATE Orders SET”

‘Leading spaces below ensure spaces between words.
mySQL = mySQL + “ InvRecPrinted = True, Label Printed = True”
mySQL = mySQL + “ WHERE (((PONumber) Is Null)”
mySQL = mySQL + “ AND ((CCType)=’MC’))”
‘Line above uses single quotation marks inside double quotation marks.

‘Now, mySQL contains the complete SQL statement,
‘so hide warnings and execute the SQL statement.
DoCmd.SetWarnings False
DoCmd.RunSQL mySQL

‘Update query has now been performed. Back to normal warnings.
DoCmd.SetWarnings True

For the goods on variables, read about storing data in variables and constants
in Chapter 4.

As daunting as the preceding code looks, it’s not so bad if you read it as it
would execute, one step at a time from top to bottom. The first statement,
Dim mySQL As String, sets aside a little cubbyhole of storage space in
which you can store some text. In code, refer to the contents of that cubby-
hole as mySQL (although I could have used any name here).

The next statement, mySQL = “UPDATE Orders SET”, stores the chunk of
text in the quotation marks in the mySQL variable. So now the cubbyhole con-
tains “UPDATE ORDERS SET”.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 126

127Chapter 7: The Scoop on SQL and Recordsets

The next statement changes the contents of that variable by creating a new
string that consists of the current contents of the variable (mySQL) plus (+)
the string “ InvRecPrinted = True, LabelPrinted = True”. By the time
that line is finished being executed, the mySQL variable contains UPDATE
Orders SET InvRecPrinted = True, LabelPrinted = True. Notice the
addition of the blank space at the start of the string. That blank space is also
added onto the string to make sure there’s a blank space between SET and
InvRecPrinted.

The following two lines of code do the same as the previous line in that each
adds more text to the string stored in MySQL. The mySQL = mySQL + “ WHERE
(((PONumber) Is Null)” statement tacks part of a WHERE clause (criterion)
onto the string (again preceded by a blank space). Then the statement mySQL
= mySQL + “ AND ((CCType)=’MC’))” tacks on a blank space and its chunk
of text.

The single quotation marks inside the string are required to avoid conflict
with the double quotation marks surrounding the whole string.

By the time that the final MySQL = MySQL + ... statement has executed, the
variable named mySQL contains the following SQL statement, which exactly
matches all the syntax required of a valid SQL statement. (The statement is
too lengthy to show on one line in this book, but in the mySQL variable, it defi-
nitely is one long valid SQL statement. (Like most SQL statements that you’ll
see in this book, the example below is just a copy-and-paste job from a query’s
SQL view.)

UPDATE Orders SET mySQL = mySQL + “ InvRecPrinted = True, LabelPrinted = True
WHERE (((PONumber) Is Null) AND ((CCType)=’MC’))

The next statement in the code, DoCmd.SetWarnings False, just hides the
warning message that action queries otherwise show. Then comes the actual
execution of the SQL statement in the following statement:

DoCmd.RunSQL mySQL

By the time VBA gets to this statement, it knows that the name mySQL refers
to a cubbyhole that I told it to create earlier. So it knows that it really needs
to replace the name mySQL with the contents of the variable named mySQL
before it does anything else. First, it does a quick substitution, replacing the
variable name with its contents, as follows:

DoCmd.RunSQL UPDATE Orders SET InvRecPrinted = True, LabelPrinted = True WHERE
(((PONumber) Is Null) AND ((CCType)=’MC’))

The preceding statement is what VBA actually does when it executes the state-
ment. It runs the update query specified in the SQL statement. (Technically, it’s
all executed as one long line — it’s just too wide to show it that way here in the
book.)

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 127

128 Part III: VBA, Recordsets, and SQL

With the action query finished, the next statement — DoCmd.SetWarnings
True — sets the warning messages back to their normal status.

Because code is building the SQL statement, the code can also make decisions
about how to build the statement along the way. Thus, a VBA procedure could
actually customize a SQL statement to a particular need or situation. In short,
a procedure can make decisions about how to “write itself” before it executes
itself. Funky but true.

Creating Tables from VBA
As you (hopefully) know, you can create tables in Access interactively, using
Table Design. If you’ve ever created a Make-Table action query, you know you
can build a new table from any existing table or query. VBA can also create
new tables, either from existing tables and queries or from scratch.

Creating new tables from existing tables
The easiest way to use VBA to create a new table from an existing table is to
first design a Make-Table query in Access. (In Query Design, choose Query➪
Make-Table Query from the Access menu bar, and then specify the name of the
table to create. Refer to Figure 7-5.) Figure 7-7 shows an example of a Make-
Table query that selects fields from a couple of related tables, where the Paid
fields contain False. Although not readily apparent just by looking at the
query, when run, this query actually creates a new table named
UnpaidOrdersSummaryTable.

Viewing the SQL statement for the Make-Table query shown in Figure 7-7
reveals the following SQL statement:

Figure 7-7:
Sample

Make-Table
query.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 128

129Chapter 7: The Scoop on SQL and Recordsets

SELECT Orders.OrderID, Orders.[Order Date], [Order Details].ProductID, [Order
Details].Qty, [Order Details].[Unit Price], Orders.Paid
INTO UnpaidOrdersSummaryTable FROM Orders INNER JOIN [Order
Details] ON Orders.OrderID = [Order Details].OrderID WHERE
(((Orders.Paid)=False));

Even in the SQL statement, the only indication that this is a Make-Table query
are the words INTO UnpaidOrdersSummaryTable, which tell the query to
store a copy of the records the query produces into a table named
UnpaidOrdersSummaryTable.

When a Make-Table query executes, it will first check whether the destination
table (UnPaidOrdersSummaryTable, in this example) exists. If that table does
exist, the table will be deleted before the new table is created. If you want to
add new records to an existing table, use an Append query rather than a
Make-Table query.

Of course, the Make-Table query shown here is just an example. The tech-
nique for converting the Make-Table query to code would be the same for any
query. It’s simply a matter of copying the SQL statement to the Code window
and tweaking the statement so it works in VBA. The following code shows
how the Make-Table query shown in Figure 7-7 looks after being properly for-
matted to work in a VBA procedure:

‘Declare a variable to store SQL statement.
Dim mySQL As String

‘Build mySQL string from query’s SQL statement.
mySQL = “SQLECT Orders.OrderID, Orders.[Order Date], [Order Details].ProductID,”
mySQL = mySQL + “ [Order Details].Qty, [Order Details].[Unit Price],

Orders.Paid”
mySQL = mySQL + “ INTO UnpaidOrdersSummaryTable”
mySQL = mySQL + “ FROM Orders INNER JOIN [Order Details]”
mySQL = mySQL + “ On Orders.OrderID=[Order Details].OrderID”
mySQL = mySQL + “ WHERE (((Orders.Paid)=False))”

‘Now turn off warning and execute the SQL statement.
DoCmd.SetWarnings False
DoCmd.RunSQL mySQL
DoCmd.SetWarnings True

Creating a new, empty table from VBA
You can also create tables programmatically from VBA by using an SQL
CREATE TABLE statement with the following syntax:

CREATE TABLE tableName (field type (size)) [, ...]”

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 129

130 Part III: VBA, Recordsets, and SQL

where

� tableName is the name of the table to create.

� field specifies the name of one field in the table.

� type specifies the data type of the field.

� size indicates the size of the field.

� ... indicates that you can repeat the field type (size) combination for
each field you want to define in the table.

For example, the SQL statement below creates a new, empty table named
myTable that contains a Text field named ProductID that’s 5 characters
wide and a field named Vendors that’s 255 characters wide:

CREATE TABLE myTable ([ProductID] text (20), [VendorList] text (255))

To create that table from within a procedure, use DoCmd.RunSQL to execute
the CREATE TABLE statement, as follows:

DoCmd.RunSQL “CREATE TABLE myTable ([ProductID] text (20), [VendorList] text
(255))”

as one long line in your code. As always, if the SQL statement is lengthy, you
can break it into chunks, as follows:

Dim mySQL As String
mySQL = “CREATE TABLE myTable”
mySQL = mySQL + “ ([ProductID] text (20),”
mySQL = mySQL + “ [VendorList] text (255))”

DoCmd.RunSQL mySQL

Closing and deleting tables through VBA
In some situations, you might want your VBA code to close a table if it’s open,
or even delete an entire table from the database. (You can’t close an open
object, so if you want to delete a table, you have to close it first.) As an exam-
ple, suppose you want to write a procedure that checks whether a table
named myTable already exists in the current database. If that table does
already exist and is open, you want the procedure to close it. And finally,
assuming that the table does exist, you want your code to delete the table.

You could write the procedure as follows. In your own code, replace the table
name myTable with the name of the table you want to close and delete, but
the rest of the code would work as it stands:

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 130

131Chapter 7: The Scoop on SQL and Recordsets

‘Look at each object in All Tables collection.
Dim obj As AccessObject
For Each obj In Application.CurrentData.AllTables

‘If the current table is named myTable...
If obj.Name = “myTable” Then

‘and if MyTable is open (loaded)...
If obj.IsLoaded Then

‘...close myTable
DoCmd.Close acTable, “myTable”, acSaveNo

End If

‘Now delete the closed myTable table.
DoCmd.DeleteObject acTable, “myTable”
End If

Next obj

‘By the time execution gets here, the table named
‘myTable no longer exists in the current database.

To close the open table, the code uses the Close method of the DoCmd
object. To delete the table, the code uses the DeleteObject method of the
DoCmd object. All the rest of the code is really about finding out whether the
table already exists and is open to make sure that the code doesn’t attempt
to close an open or a nonexistent table. Those steps are necessary because if
the code attempts to close an open or nonexistent table, the code will fail and
throw an error message onscreen.

Adding Records to a Table
VBA can also append (add) records to any table that already exists in the
database without deleting or changing any records that might already be in
the table. If the records to be appended to the table already exist in some
other table, you can use a simple append query (in Access) to generate the
appropriate SQL statement.

For example, Figure 7-8 shows an append query that selects several fields
and records from two related tables in a database. The name of the destina-
tion table, PaidOrderSummary, isn’t visible in the query. You specify that
after choosing Query➪Append Query from Access’s menu bar. When you
view the SQL statement for the query, you’ll see the destination table’s name
there, as follows.

INSERT INTO PaidOrderSummary (OrderID, [Order Date], ProductID, Qty, [Unit
Price]) SELECT Orders.OrderID, Orders.[Order Date], [Order
Details].ProductID, [Order Details].Qty, [Order Details].[Unit
Price] FROM Orders INNER JOIN [Order Details] ON Orders.OrderID =
[Order Details].OrderID WHERE (((Orders.Paid)=True));

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 131

132 Part III: VBA, Recordsets, and SQL

Because an append query is an action query, you can execute it by using
DoCmd.RunSQL just as you can other action queries shown in this chapter.
You can add the various portions of the lengthy SQL statement to a variable
and then execute the statement in the variable, as follows:

‘Declare a string variable named mySQL.
Dim mySQL As String

‘Put a lengthy SQL statement into mySQL (in chunks).
mySQL = “INSERT INTO PaidOrderSummary”
mySQL = mySQL + “ (OrderID, [Order Date], ProductID, Qty, [Unit Price]) “
mySQL = mySQL + “ SELECT Orders.OrderID, Orders.[Order Date], “
mySQL = mySQL + “ [Order Details].ProductID, [Order Details].Qty,”
mySQL = mySQL + “ [Order Details].[Unit Price]”
mySQL = mySQL + “ FROM Orders INNER JOIN [Order Details]”
mySQL = mySQL + “ ON Orders.OrderID = [Order Details].OrderID”
mySQL = mySQL + “ WHERE (((Orders.Paid)=True))”

‘Turn off warnings and append the records as specified in by SQL.
DoCmd.SetWarnings False
DoCmd.RunSQL mySQL
DoCmd.SetWarnings True

Appending a single record with SQL
You can also use the SQL INSERT INTO statement to add a single record to a
table. However, the syntax is a little tricky as are the rules that determine
how you do it. For example, you can’t append an entirely blank record to a
table that contains required fields because the table won’t accept the record
until all requirements have been met.

The basic syntax for inserting a single record into a table in SQL is

INSERT INTO tblName [(fldName [,...]) VALUES (value [,...])

Figure 7-8:
A sample

append
query in
Access

Query
Design.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 132

133Chapter 7: The Scoop on SQL and Recordsets

where

� tblName is the name of the table to which the record should be
appended.

� fldName is the name of the field that will be assigned a value.

� value is the value you want to store in the field.

� [,...] means that you can list multiple fields and values, if you wish, as
long as you separate their names with commas.

The order of values being assigned to fields must match the order of the field
names in the statement. For example, suppose the database contains a table
named Stats that contains a Date/Time field named Submitted, a Yes/No
field named Paid, and a Text field named Status (among other fields). The
following SQL statement adds one record to that table, placing the current
date in the Submitted field, False in the Paid field, and No Reply in the
Status field:

INSERT INTO Stats (Submitted, Paid, Status) VALUES (Date(), False, ‘No Reply’)

To execute the statement from VBA, just put the whole SQL statement in quo-
tation marks next to a DoCmd.RunSQL statement, as usual. Or you can build it
from shorter lines, as follows:

Dim mySQL As String
mySQL = “INSERT INTO Stats (Submitted, Paid, Status)”
mySQL = mySQL + “ VALUES (Date(), False, ‘No Reply’)”
DoCmd.RunSQL mySQL

Query to append one record
You can actually create a query that appends a single record to a table, but
the way you create the query is a little weird. The resulting SQL statement
doesn’t exactly match the syntax that I described earlier, either. But it all
works and would definitely be easier than trying to write a lengthy SQL state-
ment by hand.

The trick is to create a new query that doesn’t have any tables up top. Or if
there is a table at the top of the query, right-click it and choose Delete so that
there are no tables up top. Then choose Query➪Append Query to change the
query to an append query and specify the name of the table into which the
query should append its record.

In the Field row of the QBE grid, you need to provide a value for at least one
field in the table. The syntax will be name:value, where name could be any
name, and value is the value that you want to store in a field. Then, in the
Append To row, choose the field into which you want to place the value. For

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 133

134 Part III: VBA, Recordsets, and SQL

example, the query in Figure 7-9 will append a single record with the current
date in the Submitted field, False in the Paid field, and No Reply in the
Status field. The figure also shows the SQL statement for the query.

Even though the syntax of the SQL statement for the query doesn’t look like
the syntax that I describe earlier, the statement will execute just fine in VBA.
Here’s how you could write the code to execute that statement (and tem-
porarily turn off warning messages):

Dim mySQL As String
mySQL = “INSERT INTO Stats (Submitted, Paid, Status)”
mySQL = mySQL + “ SELECT Date() AS Submitted, False AS Paid,”
mySQL = mySQL + “ ‘No Reply’ AS Status”
‘Note single quotation marks inside double quotation marks above.

DoCmd.SetWarnings False
DoCmd.RunSQL mySQL
DoCmd.SetWarnings True

Changing and Deleting Table Records
Any Access update query or delete query will also convert nicely to VBA. For
example, suppose you keep track of which new customers you’ve sent e-mail to
by using a Yes/No field named SentWelcome in a table. Customers who have
been sent the message have True in that field; customers who haven’t been
sent the message have False in that field. For the sake of example, say that
this table also has a field named Email that’s either the Text or Hyperlink
data type that contains each customer’s e-mail address.

Figure 7-9:
Sample
append

query and
its SQL

view.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 134

135Chapter 7: The Scoop on SQL and Recordsets

Now suppose you want to write some code that automatically changes the con-
tents of the SentWelcome field to True for all AOL customers. You create an
update query that includes the SentWelcome field and set its Update To row to
True to change the contents of that field to True. Then you also need a criterion
to prevent the change from occurring in all records. In this case, where you
want to update only records that have @aol.com in the Email address field, the
criterion expression would be InStr([Email],’@aol.com’)>0. The entire
update query would look like Figure 7-10. (Because it’s a small query, I managed
to fit both the Query Design and SQL views of the query into one figure.)

Don’t experiment with a delete query or an update query against a table that
contains data that you can’t afford to lose or ruin. Your best bet would be to
work in a copy of your database so that you don’t have to worry about losing
any important information.

By using the standard method of getting a SQL statement into a variable and
executed from VBA, the code that’s needed to turn off warnings, do the
update, and turn warnings back on looks like this:

‘Build SQL statement into string variable named mySQL.
Dim mySQL As String
mySQL = “UPDATE Customers”
mySQL = mySQL + “ SET Customers.SentWelcome = True”
mySQL = mySQL + “ WHERE (InStr([Email],’@aol.com’)>0)”

‘Hide warning and do the update.
DoCmd.SetWarnings False
DoCmd.RunSQL mySQL
DoCmd.SetWarnings True

Figure 7-10:
A sample

update
query (two

views).

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 135

136 Part III: VBA, Recordsets, and SQL

If you want your code to delete records from a table, just create a delete
query that specifies the records to be deleted and put its SQL statement into
VBA code. For example, Figure 7-11 shows an Access delete query in both
Query Design view and SQL view. That particular query deletes all records
from a table named PaidOrderSummary.

As with any action query, to get the SQL statement to execute from VBA and
delete all records from the table, you need to execute the SQL statement with
DoCmd.RunSQL. Because this particular SQL statement is so short, there’s no
need to store it in a variable in chunks. The following statement is sufficient:

DoCmd.RunSQL “DELETE PaidOrderSummary.* FROM PaidOrderSummary”

Doing an Action Query on One Record
No rule says that an action query must work on multiple records in a table.
Any action query can perform its task on just one record in the table, pro-
vided that there’s a way to uniquely identify the record. If the table has a pri-
mary key, isolating a record by a value in that field is simple.

For example, suppose that you have a table named Customers that contains an
AutoNumber field named CustID that acts as the primary key. You can easily
isolate any customer in the table by using the customer’s CustID value as the
Criteria entry for the CustID field. Figure 7-12 shows a delete query that

Figure 7-11:
A sample

delete
query.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 136

uses such a criterion to delete only Customer #14 from the Customers table.
The SQL statement reflects the criterion that the CustID field equals 14 by the
addition of WHERE (((Customers.CustID)=14)) to the SQL statement.

All the parentheses in that WHERE clause aren’t really necessary, nor is the
table name Customers. The WHERE clause could be written more simply as
WHERE CustID=14 or with the field name in square brackets, as in WHERE
[CustID]=14.

Working with Select Queries
and Recordsets

So far in this chapter, I’ve focused mainly on Access action queries that you
execute from VBA by using DoCmd.RunSQL. Select queries, which only display
data (and never change the contents of a table), are a completely different
story. In Access, you don’t run a select query. You simply switch from Query
Design view to Datasheet view to see the records returned by that query. And
in VBA, you don’t use DoCmd.RunSQL to execute a select query. Rather, you
store the results of the query in a weird, invisible thing called a recordset.

Figure 7-12:
Sample

query to
delete one

record.

137Chapter 7: The Scoop on SQL and Recordsets

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 137

138 Part III: VBA, Recordsets, and SQL

When you click Queries in the Access database window, icons for saved
action queries will generally include an exclamation point (!), and icons for
saved select queries have no exclamation point.

Look at an example, starting in Access. The left side of Figure 7-13 shows a
fairly simple select query (in Query Design) that will display the fields named
FirstName, LastName, and Email from a table named Customers. The weird-
looking criteria expression, InStr([Email],’@aol.com’)>”1”, limits the
display to those records that have the characters @aol.com somewhere in
the e-mail address. Switching that query to Datasheet view shows the query
results, as in the lower right half of that same figure.

In VBA, that Datasheet view of the query shows exactly what a recordset that
uses the same SQL statement of the query will produce. As with any query, you
can easily view (and copy) a select query’s SQL statement by right-clicking the
query’s title bar and choosing SQL View. However, unlike the Datasheet view of
a query, which is plainly visible onscreen, a recordset will be visible only to
VBA, not to humans.

Creating a recordset in VBA usually takes several lines of code. As always,
there are a ton of options for how you write the code. In general, the syntax
of statements that you need to create a recordset from one or more tables in
the current database is as follows:

Figure 7-13:
Simple

select query
and its

datasheet
results.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 138

139Chapter 7: The Scoop on SQL and Recordsets

Dim cnnX As ADODB.Connection
Set cnnX = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnnX

myRecordSet.Open SQLstatement

where

� cnn is a variable name of your choosing that defines the connection.

� myRecordSet is the name that you want to give to your recordset.
(You’ll use whatever name you put here to refer to the recordset from
elsewhere in the procedure.)

� SQLstatement is a valid SQL statement that isn’t an action query (for
example, the SQL from any select query’s SQL view, or the name of a
table in the current database).

Start with a simple example. Suppose that you want to create a recordset
named myRecordSet that contained all the fields and records from a table
named Customers. In that case, you wouldn’t need SQL at all because using
the table name in the myRecordSet.Open statement is sufficient, as follows:

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1

myRecordSet.Open “[Customers]”

If you want the recordset to contain only some fields and/or records from
the Customers table, use a valid SQL statement in place of the whole table
name. For example, the SQL statement SELECT FirstName, LastName
FROM Customers creates a recordset that contains only the FirstName and
LastName fields from the Customers table. Using that SQL statement in place
of the table name in the code looks like this:

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1

myRecordSet.Open “SELECT FirstName, LastName FROM Customers”

Like with action queries, the SQL statement for a select query can be very
long. To prevent super-wide lines in your code, you can store the SQL state-
ment in a variable in chunks. Then use the variable name in place of a table
name or SQL statement in the myRecordSet.Open statement. For example,
the following SQL statement is from a query that shows the CustID,

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 139

140 Part III: VBA, Recordsets, and SQL

FirstName, LastName, and Email fields from a table named Customers but
only for records where the Email address field is currently empty (or null in
programmer lingo):

SELECT Customers.CustID, Customers.FirstName,
Customers.LastName, Customers.Email

FROM Customers
WHERE (((Customers.Email) Is Null));

To use that SQL statement in VBA, you could write the code as follows:

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1

‘We’ll put lengthy SQL statement in variable named mySQL.
Dim mySQL As String
mySQL = “SELECT Customers.CustID, Customers.FirstName,”
mySQL = mySQL + “ Customers.LastName, Customers.Email”
mySQL = mySQL + “ FROM Customers”
mySQL = mySQL + “ WHERE (((Customers.Email) Is Null))”

‘Now we use mySQL variable name in statement below.
myRecordSet.Open mySQL

I suppose that anyway you slice it, the code needed to create a recordset is
just plain ugly and intimidating. All those Dim and Set statements at the top
of each example shown so far in this section need to be executed before the
recordset is created with the .Open method. You wouldn’t have to use those
exact lines: They’re just the standard lines that you use to build a recordset
from a table or query in the current database. However, you do have to define
a connection and name for a recordset before you can open it.

Defining a connection
Although invisible to a human, a recordset is an actual object that VBA can
manipulate. You can think of a recordset as sort of an invisible, ghost image
of a datasheet that invisible VBA can manipulate (at lightning speeds, I might
add). But before VBA can even create such a ghost, it needs to know where
the actual tables for the ghost reside. And that’s where the first two state-
ments, shown as follows, come in:

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection

The first line declares to all VBA statements to all lines of code that follow
that it is creating a thing named cnn1 that will be an ADODB connection.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 140

ADO, which stands for ActiveX Data Objects, is the object model I’ll be using
to create recordsets throughout this book. ADO isn’t built into Access: It’s
actually an object library that many programs can use to manipulate data in
Access tables. For example, you could write VBA code in a Microsoft Excel or
Word macro to grab data out of an Access table, provided that you use ADO.

To use ADO in VBA, you need to set a reference to Microsoft ActiveX Data
Object Library in References. Like all object libraries, ADO is a highly orga-
nized collection of objects, properties, and methods that you can boss
around with VBA to make databases do things. And like all other things you
can manipulate with VBA, you’ll find ADO objects, properties, and methods in
the Object Browser and also in VBA’s Help.

So, what the heck does Dim cnn1 As ADODB.Connection mean? Well, the
Dim statement is declaring to the rest of the code that From this point on in this
procedure, the name cnn1 shall refer to an ActiveX Data Objects Database con-
nection. The part is just a name I made up, like a c=variable name. It could
be any valid variable name, including X, myConnection, Connection01 . . .
whatever you want it to be.

The next line of code, Set cnn1 = CurrentProject.Connection, gets
more specific about what cnn1 is all about. It says, More specifically, cnn1 is
the connection to that data in the database I’m currently working on. Both lines
are required because there are lots of other things to which you can set a
connection (none of which is particularly relevant to this book, though).

Defining the recordset and data source
Referring to most of the previous recordset examples, the second two lines of
code declare what the recordset is and from where it gets its data, as follows:

Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1

The first line declares to all the code that follows (within the current procedure)
that the name myRecordSet will, from here on out, refer to an ActiveX Data
Objects Database recordset. That tells the rest of the code a lot about what
myRecordSet is, but it doesn’t say anything about where this myRecordSet
thing is going to find data from which it can create recordsets. The next line of
code, myRecordSet.ActiveConnection = cnn1, takes care of that problem
though by setting the myRecordSet active connection to that connection I
already defined as cnn1.

141Chapter 7: The Scoop on SQL and Recordsets

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 141

142 Part III: VBA, Recordsets, and SQL

Filling the recordset with data
With the VBA statements that define a connection and name for the recordset
out of the way, you can finally write the code that actually adds data to the
table. That’s where the .Open method comes into play. In all the earlier exam-
ples, I used a relatively simple statement to fill the recordset. The full syntax
for creating an ADO recordset looks like this:

myRecordSet.Open SQLStatement [,Connection] [,CursorType] [,LockType]

All the arguments after SQL statements are optional, so that’s why you didn’t
see them used in any of the preceding myRecordSet.Open statements in
this chapter. Chances are that if you omit those arguments in your own
myRecordSet.Open statements, your recordsets will work just fine, too. Just
so you know that there are other options available, which can be particularly
useful when modifying code written by other people. Here’s what each of the
optional arguments allows you to specify:

� Connection is the connection (not required if you already defined the
connection by using myRecordSet.ActiveConnection in code already).

� CursorType defines how VBA can access records in the recordset, and
how simultaneous changes to the recordsets underlying data will affect
the contents of the recordset by using any of the following constants:

• adOpenDynamic: Code can freely move the cursor through the
records. Other users’ additions, changes, and deletions carry over
to the recordset.

• adOpenKeyset: Code can freely move the cursor through the
records. Other users’ additions, changes, and deletions do not
carry over to the recordset.

Boring, ignorable stuff about DAO and DBEngine
Originally, Access offered only one way to create
a recordset: DAO (for Data Access Objects). DAO
used different words like DBEngine and
WorkSpace to create recordsets. You might still
see that in older code examples (but not in this
book). In this book, I use the new-and-improved
ADO (ActiveX Data Objects) technology to create
and manipulate recordsets.

As a technology, DAO has been demoted to a
maintenance mode technology, which means
that Microsoft isn’t going to be making any future
improvements to the technology. If DAO were a
living organism, maintenance mode would trans-
late to somewhere between doomed and dead.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 142

143Chapter 7: The Scoop on SQL and Recordsets

• adOpenStatic: The recordset contains a snapshot of data that’s
no longer connected to the live data in any way, so other user’s
changes to the underlying table or query have no effect on the
recordset. VBA can move the cursor freely through the recordset.

• adOpenForwardOnly: Cursor can scroll down through records only;
additions, changes, and deletions from other users are ignored.
This is preferred when VBA just needs quick brief access to a table
to search for something or to count things (and also the default set-
ting if you don’t include this argument in your .Open statement).

� LockType: Determines how other users’ simultaneous changes to the
table or query are handled. The more commonly used constant names
and lock types are listed here:

• adLockOptimistic: Indicates optimistic locking, where records are
locked only when you call the .Update method in your VBA code.

• adLockPessimistic: Indicates pessimistic locking, where records
are locked automatically after a change (without calling the .Update
method).

• adLockReadOnly: Indicates read-only records, whereby no changes
at all are allowed to data in the recordset (default setting if omitted).

As an example of using a couple argument in a recordset’s .Open method, the
following code creates a forward-only, read-only recordset that gets its records
from a table named Customers:

Dim myRecordSet As New ADODB.Recordset

myRecordSet.Open “[Customers]”, CurrentProject.Connection, adOpenForwardOnly,
adLockReadOnly

The syntax for ADO recordsets also allows you to specify optional arguments
individually, using the syntax recordSetName.property = value. For
example, the following lines create a recordset that connects to the current
database (CurrentProject.CurrentConnection), sets the cursor type to
adOpenDynamic, and sets the LockType to adLockOptimistic:

‘Set up the connection, name it cnn1.
Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection

‘Define a new recordset and pre-define optional arguments.
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1
myRecordSet.CursorType = adOpenDynamic
myRecordSet.LockType = adLockOptimistic

‘Fill recordset with data from Customers table
myRecordSet.Open “SELECT * FROM Customers”

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 143

144 Part III: VBA, Recordsets, and SQL

Methods for managing recordsets
After a recordset’s .Open method has been executed, the recordset will con-
tain the fields and records specified by the table or SQL statement in the
.Open statement. You won’t see this recordset anywhere onscreen, but your
VBA code will be able to see and move through the records in the recordset.

For example, assuming that the current database contains a table named
Customers — which in turn contains fields named LastName, FirstName,
and Email (among other fields) — the following statements create a record-
set of records from that table that have @aol.com in the Email field.

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection

Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1

‘Store the SQL statement in a variable.
Dim mySQL As String
mySQL = “SELECT FirstName, LastName, Email”
mySQL = mySQL + “ FROM Customers”
mySQL = mySQL + “ WHERE ((InStr([Email],’@aol.com’)>1))”

myRecordSet.Open mySQL

Assume that the table named Customers contains four records that have
@aol.com in the recordset. The invisible recordset named myRecordSet
that’s created in the above code would look something like Figure 7-14 (if you
could see it).

After the recordset exists in code, you can use numerous methods of the
ADODB recordsets to move the cursor through the recordset. (Like the record-
set itself, the cursor is invisible, but VBA can still move that invisible cursor into
any record in the recordset.) The syntax is generally myRecordSet.method
where myRecordSet is the name of the recordset on which the method should
be performed followed by a dot (.) and a valid method.

Figure 7-14:
What a

recordset
would look

like if you
could see it.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 144

145Chapter 7: The Scoop on SQL and Recordsets

The cursor type of the recordset puts severe restrictions on which methods
you can use. For maximum flexibility, use the AdOpenDynamic cursor type
option described earlier in this chapter.

� myRecordSet.MoveFirst: Moves the cursor to the first record in the
recordset.

� myRecordSet.MoveNext: Moves the cursor to the next record in the
recordset.

� myRecordSet.MovePrevious: Moves the cursor to the previous record
in the recordset.

� myRecordSet.MoveLast: Moves the cursor to the last record in the
recordset.

In addition to the preceding methods, you can use the BOF (Beginning of File)
and EOF (End of File) properties to determine whether the cursor is currently
pointing at a specific record. For example, the following statement returns
True only if the cursor is sitting above the first record in the recordset:

myRecordSet.BOF

The following statement returns True only if the cursor is already past the
last record in the set (pointing at nothing):

myRecordSet.EOF

You’ll often see these properties used in code that loops through records in a
set one record at a time. For now, it’s sufficient to know that the properties
exist. Take a look next at how you can refer to fields in a record from VBA.

Referring to fields in a recordset
The columns (fields) in a recordset all have names, just as they do in tables.
However, in VBA, each record is also a collection of fields, with the first (left-
most) field being numbered 0, the next being 1, the next being 2, and so forth.
The full reference to a field by its number is myRecordSet.Fields(x) where x
is a number. For example, VBA can refer to the columns in the recordset named
myRecordSet as myRecordSet.Fields(0), myRecordSet.Fields(1), and
myRecordSet.Fields(2), as illustrated in Figure 7-15.

Each field has properties and methods, too — for example, the Name property.
When used as follows, it returns the name of the field at that position:

myRecordSet.Fields(0).Name

The Value property of a field, when used as follows, returns the field’s contents:

myRecordSet.Fields(0).Value

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 145

146 Part III: VBA, Recordsets, and SQL

You can refer to a field in a recordset by its name rather than by its number.
To refer to a field by its name, replace the number in the preceding syntax
with the name of the field enclosed in quotation marks. For example, the fol-
lowing statement below returns the value of the field named Email in the cur-
rent record in the recordset:

myRecordSet.Fields(“Email”).Value

Closing RecordSets and collections
To close an open recordset, use the Close method with the recordset name. For
example, to close an open recordset named myRecordSet, use the statement

myRecordSet.Close

The preceding statement closes the recordset only in terms of being able to
manipulate its data from VBA. The recordset and its connection, which you
originally defined by using Dim and Set statements, should be closed out,
too. Any time you use a Set keyword to define something, you can undefine
that something by setting it to the keyword Nothing. For example, the follow-
ing statements close the connection between myRecordSet and the cnn1
connection, and then get rid of the cnn1 connection altogether:

Set myRecordSet = Nothing
Set cnn1 = Nothing

Recordsets are not the easiest things in the world to create and manipulate.
Fortunately, you can often avoid creating and using recordsets to get a job
done just by creating an action query to perform the job and executing the
query’s SQL statement by using DoCmd.RunSQL.

But when an action query just won’t cut it, you can always fall back on creat-
ing and manipulating table data through a recordset. You’ll see a practical
example of using recordsets in the next chapter.

myRecordSet.Fields(0)

myRecordSet.Fields(1)

myRecordSet.Fields(2)

Figure 7-15:
Referring to

recordset
fields by
position.

03b_574116 ch07.qxd 7/27/04 9:25 PM Page 146

Chapter 8

Putting Recordsets to Work
In This Chapter
� More working with objects and collections

� General tips for reading and modifying existing code

� Creating a procedure to skip over used mailing labels

� Typing a Sub procedure to a form event

In this chapter, you’ll put to work many of the concepts and techniques from
earlier chapters by creating a custom procedure named SkipLabels().

This procedure is handy for anyone who prints mailing labels on individual
label sheets by printing on sheets that are missing some labels.

Before you get into writing SkipLabels(), though, you need to know a few
more general techniques. In particular, you need to discover what program-
mers call looping through collections or enumerating, for short. You’ll also look
at some general info on reading and modifying existing code.

Looping through Collections
As I mention in Chapter 5, Access contains objects and collections whose
properties and methods can be controlled through VBA. Each collection has
a specific name. For example, the CurrentProject.AllForms collection
contains the names of every form in the current database.

Every collection has a .Count property that describes how many objects are
currently in the collection. For example, CurrentProject.AllForms.Count
represents the number of forms in the current database. For example, if you
type ? CurrentProject.AllForms.Count into the VBA editor’s Immediate window
and press Enter, you’ll see the number of forms contained within the database.

Objects within a collection are always enumerated (numbered), starting with 0
(zero). For example, the first item in the AllForms collection is AllForms(0)
(pronounced all forms sub zero). The second item in the AllForms collection is
AllForms(1). The next is AllForms(2), and so on, as illustrated in Figure 8-1.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 147

148 Part III: VBA, Recordsets, and SQL

As discussed in Chapter 5, an object can also be a collection. That is, it can
be both an object and a collection at the same time. For example, a form is an
object, but a form is also a collection of controls. From VBA (or an Access
expression), you refer to an open form’s Controls collection by using the
syntax

Forms!(“formName”).Controls

where formName is the name of an open form. As with any collection, the con-
trols in a form are enumerated (numbered starting with zero). For example,
the first control on a form is formName.Controls(0), the next is formName.
Controls(1), and so forth. Figure 8-2 shows an example using a form named
MyForm that contains nine controls numbered 0–8.

MyForm.Controls(1)
MyForm.Controls(3)
MyForm.Controls(5)
MyForm.Controls(7)

MyForm.Controls(6)

MyForm.Controls(8)

MyForm MyForm.Controls(0)

MyForm.Controls(2)

MyForm.Controls(4)

Figure 8-2:
A form as a

collection of
controls.

AllForms(0)
AllForms(1)
AllForms(2)
AllForms(3)
AllForms(4)
AllForms(5)
AllForms(6)
AllForms(7)
AllForms(8)

CurrentProject.AllForms collection

Figure 8-1:
Current-
Project.
AllForms

collection
and

members.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 148

149Chapter 8: Putting Recordsets to Work

Using For Each loops
The specific number assigned to each item in a collection isn’t terribly impor-
tant. What is important is the fact that VBA provides some special commands
for looping through a collection (also called enumerating a collection), where
the code looks at each object in a collection either to get information about it
or to change it. The special code is a slight variation on the For...Next loop
called a For Each...Next loop. The basic syntax for the For Each...Next
loop is

For Each objectType in collectionName
‘...code to be performed on each object

Next

where objectType is one of the object type names listed in the second column
of Table 8-1, and collectionName is the name of a collection from the third
column in that same table. Note that some collections are actually specific
objects as well. For example, in Table 8-1, formName needs to be replaced with
the name of an open form, and ctrlName needs to be replaced with the name
of a specific control on an open form.

Table 8-1 Object Types and Collection Names for For Each...
Next Loops

Object Object Type Collection Name

Table AccessObject CurrentData.AllTables

Query AccessObject CurrentData.AllQueries

Form AccessObject CurrentProject.AllForms

Report AccessObject CurrentProject.AllReports

Open form Form Application.Forms (Open forms)

Open report Report Application.Reports
(Open reports)

Control Control Forms!(“formName”).Controls

Property Property Forms![formName]![ctrl
Name].Properties

Recordset field ADODB.Field recordsetName.Fields

The Forms collection refers to all forms that are currently open. The
AllForms collection refers to all forms in the current database, whether
they’re open or not.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 149

150 Part III: VBA, Recordsets, and SQL

For example, here’s a For Each...Next loop that looks at each object in the
Forms collection.

For Each AccessObject in CurrentProject.AllForms
‘...code to act on each form goes here

Next

Here’s a For Each...Next loop that looks at each control on an open form
named MyForm:

For Each Control in Forms!MyForm.Controls
‘...code to act on each control goes here

Next

Look at an example you can actually try out. You’ll want to open some data-
base that already contains some tables and forms to try this out. Within that
database, click the Modules button in the database window and then click
New to create a new, empty module. Now you’re in the VBA editor.

From the menu bar in the VBA editor, choose Insert➪Procedure. In the Add
Procedure dialog box that opens, type some simple name (like test), choose
Sub as the function procedure type, and click OK. You see the lines Public
Sub test() and End Sub in the Code window.

With the procedure, type some code to test. For example, you could type the
following For Each loop to try out looping through the AllForms collection:

For Each AccessObject In CurrentProject.AllForms
Debug.Print AccessObject.Name

Next

When executed, the For Each...Next loop will repeat once for each form
that’s contained within the current database. Within the loop, the Debug.
Print statement just prints the name of the current object in the collection
(using its Name property).

As you can read in Chapter 12, Debug.Print is often used as a debugging
tool. Here, you use Debug.Print just to see the name of each object that the
For Each...Next loop encounters.

Any time that you add a Sub procedure to a module, you can test it out just
by typing its name (without the following parentheses). In this case, the pro-
cedure is named test. So after you get the whole procedure typed into the
Code window, as in the top of Figure 8-3, you can type test into the Immediate
window and press Enter. That causes the code to run. With each pass
through the loop, the code prints the name of the next form in the database.
For example, Figure 8-3 shows the results of running the test procedure in
one of my databases.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 150

151Chapter 8: Putting Recordsets to Work

If you change the name CurrentProject.AllForms to CurrentData.
AllTables in the test procedure shown in Figure 8-3 and then run the proce-
dure again, the code lists the name of every table in the current database.
Likewise, changing CurrentData.AllTables to CurrentData.AllQueries
lists all the queries in the current database.

Assume now that you want to create a For Each loop that looks at each con-
trol on an open form named Products Form. (This code works only in a
database that has a form named Product Form and when that form is open.)
In this case, Forms![Products Form].Controls is the name of the collec-
tion, and each object in the collection is a control. Thus, a For Each loop to
display the name of each control in the Immediate window looks like this:

For Each Control In Forms![Products Form].Controls
Debug.Print Control.Name

Next

Procedure named test

Type test and press Enter to run procedure.

Name of each form in the current database.

Figure 8-3:
Testing

some code
in the

Immediate
window.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 151

152 Part III: VBA, Recordsets, and SQL

All objects in Access have a .Name property that returns the name of that
particular object. All collections have a .Count property that reflects the
number of items in the collection.

Using shorter names for objects
When you look at code written by other people, you’ll often see a slight varia-
tion on the For Each loop where programmers use Dim statements to assign
an object to some short variable name. Then they use that short name in the
For Each loop. This helps prevent big, long lines of code that are hard to read.

Even though you use a Dim statement to create a short name, you don’t
assign a data type to the variable. Rather, you assign an object type. For
example, each of the following Dim statements is perfectly valid. The com-
ment after each Dim statement describes what that Dim statement declares:

Dim myObject As AccessObject ‘MyObject is placeholder for any object
Dim myForm As Form ‘MyForm is a placeholder for any form
Dim myReport As Report ‘MyReport is a placeholder for any report
Dim myControl As Control ‘MyControl is a placeholder for any control
Dim MyProp As Property ‘MyProp is a placeholder for any property

Each Dim statement in the preceding is actually declaring what is called an
object variable. The difference between a regular variable and an object vari-
able is that a regular variable just stores some number or text in a cubbyhole.
An object variable refers to an entire object. The syntax for assigning an
object to an object variable is

Set name = object

For example, the following lines of code declare the short name Ctrl as a
placeholder for any control object and the short name Frm as a placeholder
for any form. The Set statement then assigns the open form named
Products Form to the Frm object variable name:

Dim Ctrl As Control
Dim Frm As Form
Set Frm = Forms![Products Form]

In a loop that looks at each control of the form, you can use the short name
Ctrl where you would have used the full word Control. And you can use
Frm where otherwise you would have had to type Forms![Products Form], as
follows:

For Each Ctrl In Frm.Controls
Debug.Print Ctrl.Name

Next

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 152

153Chapter 8: Putting Recordsets to Work

Look at another example. Suppose that you have an open form named
Products Form, and on that form is a control named Selling Price.
Remember that every control has its own unique set of properties. To create
a For Each loop that lists the name of every property for the Selling
Price control on Products Form, you could use this syntax:

For Each Property In Forms![Products Form].[Selling Price].Properties
Debug.Print Property.Name

Next

or you could write the code as follows. The end result is the same either
way — the name of each property for the control named Selling Price
appears in the Immediate window:

Dim ctrl As Control
Dim prp As Property
Set ctrl = Forms![Products Form].[Selling Price]
For Each prp In ctrl.Properties

Debug.Print prp.Name
Next

In real life, you wouldn’t create such loops just to have them print out names
of objects in the Debug window. More likely, you’ll do other types of opera-
tions on objects in a collection. You can place as many statements as you
wish between the For Each and Next statements. Any code between those
statements is executed once for each object in the collection, just like the
Debug.Print statement is executed once for every object in each preceding
collection example.

One of the main reasons why I even mention all this business with For Each
loops and Dim statements is because when you try to modify existing code,
you’re likely to come across many situations where the programmer uses a
For Each loop to look at each object in a collection. While I’m on the topic of
reading other peoples’ code, look at some more VBA rules and how you can
use those rules to make more sense of any VBA code that you ever choose to
read or modify.

Tips on Reading and Modifying Code
Many programmers start their careers by trying to modify existing code
rather than trying to write their own code from scratch. Before you can
modify existing code to suit your purposes, though, you need to be able to
read and understand what the existing code is doing.

When you’re viewing existing code in the Code window, it’s easy to get help
with any keyword in that code. Just select (double-click) the keyword with
which you need help. Then press Help (F1). However, not every single word in

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 153

154 Part III: VBA, Recordsets, and SQL

VBA code is a VBA keyword. For example, variables’ names and field names —
which you make up on your own — aren’t part of the VBA language, so you
can’t get any help with those in the VBA editor. For example, in the statement

Dim X As String

X is just a made-up variable name, not a keyword that’s built into VBA. You
could, though, select either the Dim or String term and press Help to get
help with either of those keywords.

Square brackets represent names
The rules for referring to field names in VBA are the same rules used in
Access expressions. When referring to a field name that contains blank
spaces, you must enclose the field name in square brackets, like this: [Sales
Tax Rate]. If the field name contains no blank spaces, the square brackets
are optional. For example, the name SalesTaxRates in VBA refers to a field
named SalesTaxRates, even without the square brackets.

Many programmers put square brackets around all field names for a couple
of reasons. For one, it’s a good habit to get into so that you don’t forget to
use the square brackets when you need them. Secondly, the square brackets
visually identify which parts of a statement are names, thus making it easier
to read the code. For example, you can tell that SalesTaxRate and State are
names of things just by looking at the following.

If [State]=”CA” Then
[SalesTaxRate] = 0.0775

Else
[SalesTaxRate] = 0

End If

The square brackets around names apply to form names and object names,
too. For example, in the following statement, Products Form is the name of a
form, and Selling Price is the name of a field on that form. Both names are
enclosed in square brackets because each name contains a blank space:

Forms![Products Form].[Selling Price]

Some programmers put square brackets around every part of an identifier,
even parts of the name that don’t require square brackets. For example, nei-
ther the following form name nor field name contains a space — neither does
the word Forms. But because square brackets are optional when there’s no
space in the name, you can include them or not. Because none of the follow-
ing hypothetical names contain a space, either version of the statement is
perfectly okay (provided that there really is an open form named ProdForm
that contains a control named SellPrice in the current database):

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 154

155Chapter 8: Putting Recordsets to Work

[Forms]![ProdForm].[SellPrice]

Forms!ProdForm.SellPrice

Use the exclamation point (!), also called a bang character by programmers,
to separate object names in an identifier. For example, Me!MyCombo refers to
the object named MyCombo on the current form. Use the period to precede a
property or method name, such as Controls.Count. For more information,
search the Access Help (not VBA’s Help) for identifier.

Other ways to refer to objects
You don’t always have to refer to an object by its specific name. You can use
some special names in code to refer to objects in Access, as follows:

� Me: In a class module, the term Me refers to the form to which the class
module is attached. For example, Me![Selling Price] is short for The
control named Selling Price on the form to which this code is attached.

� CodeContextObject: This refers to the name of the object in which the
code is running. (In a class module, this is always the same as the form
to which the class module is attached.)

� Screen.ActiveControl: This refers to whatever control has the focus
right now.

Each of the preceding names supports a Name property, which you can use to
determine the name of the control. For example, take a look at the sample
form named MyForm in Figure 8-4. Note the names of the controls on the form.

The class module shown in Figure 8-4 is the class module for that tiny MyForm
form in the same figure. Note the use of various names in the code. Here’s
what each of those names returns when the module is run:

� Me.Name: Displays MyForm because MyForm is the name of the form to
which the module is attached.

� Me.Controls.Count: Displays 3 because there are three controls on
MyForm — the MyCombo label, the MyCombo combo box, and the MyBttn
button. Note that Me.Controls refers to the current form’s Controls
collection. The .Count property returns the number of items in the
collection.

� Me!MyCombo.Value: Displays Artichoke, which is the value of the con-
trol named MyCombo on the current form.

� CodeContext.Name: Returns MyForm in this example because the class
module always runs within the context of the current form, whose name
in this case is MyForm.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 155

156 Part III: VBA, Recordsets, and SQL

� Screen.ActiveControl.Name: When executed in this example, returns
MyBttn because the user clicks MyBttn to execute the code. However,
Screen.ActiveControl actually refers to whichever form on
whichever control currently has the focus.

Screen.ActiveControl.Value returns whatever value is stored in what-
ever control onscreen currently has the focus.

Using the continuation character
When writing VBA code, you can break a long line into two lines by using a
continuation character, which is just an underscore (_). Many programmers
use continuation characters to break lengthy VBA statements into two or
more lines. This is especially true with code you see printed in books and
such because the code needs to fit within the margins of the book.

For example, here’s a fairly long line of code that barely fits within the margins
in this book:

Public Sub MySum(anyName As String, anyNum as Number)

MyForm

MyForm‘s class module

MyBttn

MyCombo

Figure 8-4:
A form,

some
controls,

and a class
procedure.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 156

157Chapter 8: Putting Recordsets to Work

Here’s the same line broken into two lines by using a continuation character:

Public Sub MySum(anyName As String, _
anyNum as Number)

When VBA sees the continuation character at the end of a statement, it
knows that the line to follow is a continuation of the current statement, so it
treats the two (or however many lines) as one long line.

If you want to use the continuation character when writing your own code, be
aware that the continuation character never inserts blank spaces. If you need
a blank space before the next word in a broken line, put a blank space in front
of the continuation character. For example, the preceding example actually
ends with a blank space and then the continuation character.

Also, be aware that you can’t use a continuation character within a literal
string in code. A literal string is any text that’s enclosed in quotation marks.
For example, the following line assigns a fairly long line of literal text to a con-
trol named MyCombo on the current form:

Me!MyCombo.Value = “Literal text in quotation marks”

It would be perfectly okay to break the preceding line as follows because the
continuation character isn’t inside the literal text:

Me.MyCombo.Value = _
“Literal text in quotation marks”

However, if you try to break the line within the literal text as follows:

Me.MyCombo.Value = “Literal text _
in quotation marks”

the code will fail when executed, and you’ll get a syntax error.

I should mention, though, that there are a couple of ways to break long strings
of literal text in code. One is to just keep adding chunks of text to a string vari-
able by using variableName = variableName + “nextString”. You can
see an example of that when building the mySql variable in Chapter 7.

The other way in which you can use an alternative to building a variable is to
break the large literal into smaller literals, each surrounded by quotation
marks. Concatenate (join) the strings by using the + sign, breaking the line
with a continuation character immediately after the + sign. For example, you
could break the long literal, shown in the previous example, as follows:

Me.MyCombo.Value = “Literal text” + _
“ in quotation marks”

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 157

158 Part III: VBA, Recordsets, and SQL

Don’t forget to include any blank spaces between words inside your quota-
tion marks. For example, the space before in in the preceding line is the
blank space between the words text and in.

When VBA “unbreaks” the line, as follows:

Me.MyCombo.Value = “Literal text” + “ in quotation marks”

the whole line still makes sense and executes perfectly, placing the words
Literal text in quotation marks inside a control named MyCombo on
the currently open form.

The first line in the following declares a string variable named SomeString.
The next four lines are actually one long line that stores a lengthy chunk of
text in the variable. Again, notice how each portion is contained within its
own quotation marks. Each broken line ends with a + sign (to join strings)
and an underscore (to continue the same line):

Dim SomeString As String
SomeString = “You can break VBA statements using “ + _

“ an underscore, but not inside a literal. If” + _
“ you want to break a long literal, you have to” + _
“ enclose each chunk in its own quotation marks.”

Okay, enough talk about general VBA stuff. The title of this chapter is “Putting
Recordsets to Work,” and you’re going to do that right now. Next you’ll create
a real solution to a real problem (for some people, anyway) using VBA, some
recordsets, and a little bit of everything else described in previous chapters.

Skipping Over Used Mailing Labels
Suppose that you often use Access to print mailing labels on individual
sheets. Each time you print a partial sheet of labels, you end up with some
extra unused labels on the sheet. If you reuse that sheet of labels in the
printer, Access will print right on the missing labels. Basically, you can’t
reuse a sheet of labels that’s already partially used. That’s not good because
labels aren’t cheap.

A solution to the problem is to pop up a dialog box like the one shown in
Figure 8-5 just before Access is about to print the labels. There, the user can
specify how many empty places are on the first sheet. Then the user clicks
the Print button. Access prints the labels, skipping over the places left
behind by used labels. No more wasted labels!

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 158

159Chapter 8: Putting Recordsets to Work

The solution to the problem requires a form and some VBA code. The form is
needed because you need some way of telling the procedure how many labels
to skip. In the example shown in Figure 8-5, the form itself is named Skip-
LabelsForm. The control in which the user types the number of labels to skip
is named LabelsToSkip. The form also contains a couple of buttons named
CancelBttn and PrintBttn, to which you can tie code later. Figure 8-6 shows
the exact name of the form and controls in Design view.

You don’t need to type any code or create any forms if you just download
SkipLabels from www.coolnerds.com/vba.

The procedure that you’re about to create doesn’t actually print labels. Your
database needs a report format for that. You can easily create a report for
printing labels via the Access Label Wizard. In Access, click Reports in the
database window and then click New on the toolbar. Choose Label Wizard
and choose the table or query from which the report will get names and
addresses. Then click Next and follow the instructions presented by the
Label Wizard.

SkipLabelsForm

LabelsToSkip

PrintBttnCancelBttn

Figure 8-6:
Names of

some
objects

referred to
in code.

Figure 8-5:
Skip-

Labels-
Form form.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 159

160 Part III: VBA, Recordsets, and SQL

For this example, I created a label format report named Avery 8462 Labels
that’s bound to a query named SkipLabelsSampleQry. However, you won’t
use those names in the VBA code because you want your SkipLabels proce-
dure to work with any label-printing report, regardless of what table or query
that report is bound to. So within the VBA code, refer to the report that
prints the labels as ReportName and the reports underlying table or query as
RecSource (see Figure 8-7).

For SkipLabels to work, it needs to pad the top of the record source for the
report with one blank record for each label to be skipped over. For example,
if SkipLabels needs to skip over seven empty spots on a sheet of labels, it
inserts seven blank records at the top of the label report’s record source.
That way, when the sheet actually prints, the empty records get “printed”
first (on the empty spots), and real data starts printing on the first available
label. Figure 8-8 illustrates the basic idea.

Getting those blank records to the top of the report’s record source is no
small feat. Plus, you don’t want SkipLabels to insert blank records into any
real tables or make changes to any real reports in your database. SkipLabels
will create and work with copies of the necessary objects: It always creates
a report named TempLabels report that prints data from a table named
LabelsTempReport. It creates both of those objects, on-the-fly, each time.

ReportName

RecSource

Figure 8-7:
Label report
and record

source.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 160

Of course, you can’t write SkipLabels in such a way that it always skips the
same number of labels on the same report. You need to make it flexible enough
to work with any number of empty labels on any label report. To provide flexi-
bility, treat the number of labels to skip and the report names as parameters
(values that get passed to an argument). In other words, write the SkipLabels
procedure so that it can be executed at any time, using the following syntax:

SkipLabels(ReportName, LabelsToSkip)

where ReportName is the name of the report to print, and LabelsToSkip is a
number indicating the number of blank labels at the top of the page. For exam-
ple, the following statement tells SkipLabels to print the report named Avery
8462 Labels, skipping over the first seven used labels on the first page:

SkipLabels(“Avery 8462 Labels”,7)

The code required to meet all these goals isn’t brief, but you don’t even need
to look at it if you don’t want to. All you need to really know about SkipLabels
is how to get it into a standard module in your own database and how to call it
to work with your own labels. You can skip to the section, “Calling a Procedure
from an Event,” later in this chapter if you’d rather skip the morbid details
for now.

Empty records become
empty labels.

Figure 8-8:
Blank

records
equal

skipped-
over labels.

161Chapter 8: Putting Recordsets to Work

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 161

162 Part III: VBA, Recordsets, and SQL

How SkipLabels Works
Those of you who are ready to look at some VBA code in detail can continue
reading here. Be forewarned that the SkipLabels procedure (Listing 8-1),
which you’re about to see in its entirety, is not short. It probably looks more
intimidating than need be. However, like all procedures, SkipLabels is just a
series of small steps carried out in a specific order to achieve some goal;
SkipLabels just has to go through more steps than most procedures.

You don’t need to type in SkipLabels yourself. Just download SkipLabels
from www.coolnerds.com/vba.

Listing 8-1: SkipLabels

Sub SkipLabels(ReportName As String, LabelsToSkip As Byte, _
Optional PassedFilter As String)

‘Declare some variables.
Dim MySQL, RecSource, FldNames As String
Dim MyCounter As Byte
Dim MyReport As Report

‘Turn off warning messages.
DoCmd.SetWarnings False

‘Copy the original label report to LabelsTempReport
DoCmd.CopyObject , “LabelsTempReport”, acReport, ReportName

‘Open LabelsTempReport in Design view.
DoCmd.OpenReport “LabelsTempReport”, acViewDesign

‘Get name of report’s underying table or query,
‘and store it here in the RecSource variable.
RecSource = Reports!LabelsTempReport.RecordSource

‘Close LabelsTempReport
DoCmd.Close acReport, “LabelsTempReport”, acSaveNo

‘Declare an ADODB recordset named MyRecordSet
Dim cnn1 As ADODB.Connection
Dim MyRecordSet As New ADODB.Recordset
Set cnn1 = CurrentProject.Connection
MyRecordSet.ActiveConnection = cnn1

‘Load data from RecSource into MyRecordSet
MySQL = “SELECT * FROM [“ + RecSource + “]”
MyRecordSet.Open MySQL, , adOpenDynamic, adLockOptimistic

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 162

163Chapter 8: Putting Recordsets to Work

‘Grab field names and data types from Fields collection.
Dim MyField As ADODB.Field
For Each MyField In MyRecordSet.Fields

‘Convert AutoNumber fields (Type=3) to Longs
‘to avoid insertion problems later.
If MyField.Type = 3 Then

FldNames = FldNames + “CLng([“ + RecSource + _
“].[“ + MyField.Name + “]) As “ + MyField.Name + “,”

Else
FldNames = FldNames + _
“[“ + RecSource + “].[“ + MyField.Name + “],”

End If
Next

‘Remove trailing comma.
FldNames = Left(FldNames, Len(FldNames) - 1)

‘Create an empty table with same structure as RecSource,
‘but without any AutoNumber fields.
MySQL = “SELECT “ + FldNames + _

“ INTO LabelsTempTable FROM [“ + _
RecSource + “] WHERE False”
MyRecordSet.Close

DoCmd.RunSQL MySQL

‘Next we add blank records to empty LabelsTempTable.
MySQL = “SELECT * FROM LabelsTempTable”
MyRecordSet.Open MySQL, , adOpenStatic, adLockOptimistic
For MyCounter = 1 To LabelsToSkip

MyRecordSet.AddNew
MyRecordSet.Update

Next

‘Now LabelsTempTable has enough empty records in it.
MyRecordSet.Close

‘Build an SQL string to append all records from original
‘record source (RecSource)into LabelsTempTable.
MySQL = “INSERT INTO LabelsTempTable”
MySQL = MySQL + “ SELECT [“ + RecSource + _

“].* FROM [“ + RecSource + “]”

‘Tack on the PassedFilter condition, if it exists.
If Len(PassedFilter) > 1 Then

MySQL = MySQL & “ WHERE “ & PassedFilter
End If

‘Append the records
DoCmd.RunSQL MySQL

(continued)

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 163

164 Part III: VBA, Recordsets, and SQL

‘LabelsTempTable is done now.
‘Next we make LabelsTempTable the Record Source for LabelsTempReport.
DoCmd.OpenReport “LabelsTempReport”, acViewDesign, , , acWindowNormal
Set MyReport = Reports![LabelsTempReport]
MySQL = “SELECT * FROM LabelsTempTable”
MyReport.RecordSource = MySQL
DoCmd.Close acReport, “LabelsTempReport”, acSaveYes

‘Now we can finally print the labels.
DoCmd.OpenReport “LabelsTempReport”, acViewPreview, , , acWindowNormal

‘Note: As written, procedure just shows labels in Print Preview.
‘To get it to actually print, change acPreview to acViewNormal
‘in the statement above.

End Sub

Okay, that was intimidating. In the next sections, I pick apart SkipLabels
and see exactly what makes it tick. If you’ve lost your appetite to get into the
details of it all, you can still skip ahead to “Calling a Procedure from an
Event,” later in this chapter.

Passing data to SkipLabels
The first line of SkipLabels gives the procedure its name and sets it up to
accept either two or three arguments from whatever programmer runs it. The
first argument, ReportName, stores the name of the report to skip. The second
argument stores the number of labels to skip as a number. The optional third
parameter, if passed, is stored under the name PassedFilter:

Sub SkipLabels(ReportName As String, LabelsToSkip As Byte, _
Optional PassedFilter As String)

For the sake of example, say that an event procedure calls on SkipLabels by
using the following command:

Call SkipLabels (“My8462Labels”,7)

Right away, the variable named ReportName gets the value My8462Labels,
and LabelsToSkip gets the value 7. The PassedFilter gets no value
because it wasn’t used in the calling command.

If a procedure called SkipLabels uses all three parameters, as follows:

Call SkipLabels (“My8462Labels”,7,”[CustID]=123”)

the variable named PassedFilter would store [CustID]=123 as its value.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 164

165Chapter 8: Putting Recordsets to Work

Declaring variables
The next task within SkipLabels is to create some variables for storing infor-
mation as the code executes. Those statements are shown as follows. You’ll
see those variable names put to use later in the procedure:

‘Declare some variables
Dim MySQL, RecSource, FldNames As String
Dim MyCounter As Byte
Dim MyReport As Report

The SkipLabels procedure executes some action queries (SQL statements)
while doing its job. To prevent those queries from displaying warnings, the
next line of code turns off the warning messages:

DoCmd.SetWarnings False

Copying the label report
To play it safe with original objects, SkipLabels works with copies of those
objects. This next statement uses the CopyObject method of the DoCmd
object to make a copy of the label report. Notice how it uses ReportName,
passed to the procedure in an argument, to determine which report to copy.

DoCmd.CopyObject, “LabelsTempReport”, acReport, ReportName

Referring to the earlier examples of calling SkipLabels with the syntax Call
SkipLabels (“My8462Labels”,7), after the preceding line executes, the
report format named LabelsTempReport would be an exact copy of the
report named My8462Labels.

Getting a report’s record source
To work with data from a report, SkipLabels needs to figure out where that
report is getting its data. Every form and report has an exposed .RecordSource
property that VBA can query to find out the name of the table or query to which
the form or report is attached. However, VBA can get that information only if the
report (or form) is currently open in Design view. In SkipLabels, this next state-
ment opens LabelsTempReport in Design view:

‘Open LabelsTempReport in Design view.
DoCmd.OpenReport “LabelsTempReport”, acViewDesign

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 165

166 Part III: VBA, Recordsets, and SQL

In the following, the first line stores in the variable named RecSource the
name of the table or query from which the report gets its data. The second
line then closes LabelsTempReport because there’s no need for it to be open
in Design view any more:

RecSource = Reports!LabelsTempReport.RecordSource

DoCmd.Close acReport, “LabelsTempReport”, acSaveNo

Remember that from this point on in the code, the name RecSource refers to
the name of the table or query in which data to be printed on labels is stored.
The code can let that variable sit for now and move on to the task of creating
LabelsTempTable, which is the table that SkipLabels will use to store
blank records and data to be printed on labels.

Creating the recordset
SkipLabels uses a recordset (and some action queries) to do its job. The next
lines in the procedure, as follows, create a recordset named MyRecordSet,
which you’ll see put to use shortly:

‘Declare a recordset named MyRecordSet that gets its
‘data from the current database’s tables.
Dim cnn1 As ADODB.Connection
Dim MyRecordSet As New ADODB.Recordset
Set cnn1 = CurrentProject.Connection
MyRecordSet.ActiveConnection = cnn1

Creating LabelsTempTable
from MyRecordSet
At this point in the code, an empty recordset named MyRecordSet is just
waiting to get filled with some data. The following statement creates a SQL
statement using whatever is stored in RecSource as the name of the table
from which to get records:

MySQL = “SELECT * FROM [“ + RecSource + “]”

For the sake of example, say that the record source is a query named New
Customers Qry. In that case, the MySQL variable would receive as its value
the following string:

SELECT * FROM [New Customers Qry]

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 166

167Chapter 8: Putting Recordsets to Work

At this point in the procedure, MyRecordSet has the same fields as the origi-
nal table. The code now needs to create a new table from that recordset, but
there’s a snag. If the current table contains any AutoNumber fields, you won’t
be able to append blank records to the top of the table. So rather than create
an exact clone of the original table, the procedure creates a semi-clone where
any AutoNumber fields are converted to Long Integers. That way, you’ll be
able to append blank records to the final table.

To determine the name and data type of each field in the recordset, the fol-
lowing loop looks at each field in MyRecordSet’s structure, particularly the
.Name and .Type (data type) property of each field. When used in a record-
set, the .Type property of a recordset returns a number indicating the data
type of the field, as listed here:

AutoNumber 3

Text 202

Memo 203

Date/Time 7

Currency 6

Yes/No 11

OLE Object 205

Hyperlink 203

Byte 17

Integer 2

Long Integer 3

Single 4

Double 5

The next big step in the SkipLabels procedure involves creating a string of
field names in the FldNames variable (declared earlier in the procedure as a
string). To do this, the following code uses a For Each...Next loop to analyze
the name (.Name property) and data type (.Type property) of each field in the
recordset. If the field’s data type is an AutoNumber field, the code uses the built
in CLng() (Convert to Long) function to convert it to a regular long integer:

Dim myField As ADODB.Field
For Each myField In myRecordSet.Fields

‘Convert AutoNumber fields (Type=3) to Longs
‘to avoid insertion problems later.
If myField.Type = 3 Then

FldNames = FldNames + “CLng([“ & RecSource & _
“].[“ & myField.Name & “]) As “ & myField.Name & “,”

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 167

168 Part III: VBA, Recordsets, and SQL

Else
FldNames = FldNames & _
“[“ & RecSource & “].[“ & myField.Name & “],”

End If
Next
FldNames = Left(FldNames, Len(FldNames) - 1) ‘Remove trailing comma.

Suffice it to say that when the last statement is executed, the FldNames vari-
able will contain a list of field names organized in such a way that they can be
used in a SQL statement to create a new table with a structure similar to the
original record source table’s (or query’s) structure. For example, if the
record source table contains an AutoNumber field named CustID and some
text fields named FirstName, LastName, Address1, and so forth, FldNames
ends up containing something like this (as one long line that’s too wide for
the margins here):

CLng([CustID]) As CustID, [FirstName], [LastName], [Company],
[Address1], [Address2], [City], [StateProv],
[ZIPPostalCode], [Country]

When executed as part of a SQL statement, the CLng() function converts the
AutoNumber CustID field to a long integer, which makes it easier to append
records to the top of the LabelsTempTable. The next line creates an SQL
statement using field names from the recordset and additional text needed to
create a table:

mySQL = “SELECT “ & FldNames & “ INTO LabelsTempTable
FROM [“ & RecSource & “] WHERE False”

Recall that RecSource is the name of the table or query that contains the
data to print on labels. If that table is named Customers and it has field
names like the preceding example, mySQL ends up being a valid SQL state-
ment, something like this:

SELECT CLng([CustID]) As CustID, [FirstName], [LastName],
[Company], [Address1], [Address2], [City],
[StateProv], [ZIPPostalCode], [LabelCountry] INTO
LabelsTempTable FROM [Customers] WHERE False

The WHERE False part of the SQL statement prevents any records from being
copied into the new LabelsTemp table. When executed, the following state-
ments create LabelsTempTable as a new, empty table and then close the
recordset (which was needed only to determine field names and data types
from the original report’s record source):

myRecordSet.Close

DoCmd.RunSQL mySQL

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 168

169Chapter 8: Putting Recordsets to Work

After the preceding statements execute, LabelsTempTable is an empty table
that’s nearly identical to the report’s underlying table but with AutoNumber
fields defined as Long Integer fields. The chunk of code creates a new
recordset that matches the currently empty LabelsTempTable table. The
.AddNew and .Update methods within the loop add one new blank record to
LabelsTempTable. Notice how those statements are in the For...Next loop
that counts from 1 to LabelsToSkip. That LabelsToSkip variable contains
the number of labels to be skipped over. So basically the following code adds
as many blank records to LabelsTempTable as are needed to skip over the
appropriate number of labels:

‘Next we add blank records to empty LabelsTempTable.
MySQL = “SELECT * FROM LabelsTempTable”
MyRecordSet.Open MySQL, , adOpenStatic, adLockOptimistic

For MyCounter = 1 To LabelsToSkip
MyRecordSet.AddNew
MyRecordSet.Update

Next

‘Now LabelsTempTable has enough empty records in it.
MyRecordSet.Close

The next statements form a SQL statement to append all records from the
original record source onto LabelsTempTable. For example, if the name of
the original record source table is Customers, mySQL ends up being INSERT
INTO LabelsTempTable SELECT [Customers].* FROM [Customers].
That statement is basically an append query that adds all the records from
the original table to LabelsTempTable. When the SQL statement executes,
the records from the original table are appended onto LabelsTempTable
beneath the blank records that are already in LabelsTempTable:

mySQL = “INSERT INTO LabelsTempTable”
mySQL = mySQL + “ SELECT [“ & RecSource & _

“].* FROM [“ & RecSource & “]”
DoCmd.RunSQL mySQL

After the preceding code runs, LabelsTempReport is an exact clone of the
original label report. LabelsTempTable is a clone of all the records to be
printed on the labels, with blank records on top, as shown in Figure 8-8.

The next statements open LabelsTempReport in Design view and set its
recordsource to print all records from LabelTempTable. It does so by chang-
ing the Record Source property of LabelsTempReport to an SQL statement
that prints all records from LabelsTempTable:

DoCmd.OpenReport “LabelsTempReport”, acViewDesign, , , acWindowNormal
Set myReport = Reports![LabelsTempReport]
mySQL = “SELECT * FROM LabelsTempTable”
myReport.RecordSource = mySQL
DoCmd.Close acReport, “LabelsTempReport”, acSaveYes

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 169

170 Part III: VBA, Recordsets, and SQL

At this moment in time, everything is ready to go. LabelsTempReport is
bound to LabelsTempTable, which in turn contains all the necessary blank
records on top followed by all the records that actually need to be printed. So
now VBA just needs to print the report. As written, the code just displays the
results in Print Preview, using this statement:

‘Now we can finally print the labels.
DoCmd.OpenReport “LabelsTempReport”, acViewPreview, , , acWindowNormal

Using Print Preview is just a means of testing and debugging the code without
wasting a lot of paper on trial runs. In an actual working environment, you’ll
want the code to actually print the labels. That’s simple to do. Just change
the work acViewPreview to acNormal in that last statement, as follows:

DoCmd.OpenReport “LabelsTempReport”, acViewNormal, , , acWindowNormal

SkipLabels is now done. The final two statements set the object variables
named cnn1 and MyReport (defined earlier in the procedure with Set state-
ments) each to Nothing. This is just a little housekeeping step before the
procedure ends:

‘Free up the object variables.
Set cnn1 = Nothing
Set MyReport = Nothing

End Sub

By the time the End Sub statement is executed, the labels will be printing (or
getting ready to print), and SkipLabels is done. You can close and save the
standard module, giving it any name you like. In the download from www.
coolnerds.com/vba, you’ll find all the SkipLabels code in a standard
module named SkipLabels 2003.

Calling a Procedure from an Event
At this stage of the game, your database contains a standard module that
contains a Sub procedure named SkipLabels(). Because you haven’t yet
actually tied the SkipLabels procedure to any event, there’s nothing in the
database yet to take advantage of SkipLabels().

Recall that earlier in the chapter, I show a form with a control named
LabelsToSkip (it stores the number of labels to be skipped over) as well as
a Cancel and a Print button. If the user clicks Cancel, you just want Skip-
LabelsForm to close without doing anything. If the user clicks the Print
button, you want the form to call SkipLabels with the appropriate label
report name and number of labels.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 170

171Chapter 8: Putting Recordsets to Work

When you want an event procedure on a form to call a standard procedure,
use the syntax

Call procedureName (arguments)

where procedureName is the name of the procedure to call, and arguments
are values for whatever required arguments the procedure is expecting.
SkipLabels() requires at least two arguments: the name of the labels report
and the number of labels to skip. Here’s how you could get the Print button in
SkipLabels form to call SkipLabels () when clicked:

1. Open SkipLabelsForm (or whatever form you created) in Design view
and click the button that will call SkipLabels.

2. On the Event tab of the Properties sheet, click the On Click event for
the Print button.

3. Click the Build button and choose Code Builder. You’ll be taken to the
VBA editor with the cursor inside the event procedure.

4. Type the following into the procedure:

Call SkipLabels(“[YourReportName]”, [LabelsToSkip].Value)

substituting YourReportName with the name of the report in your data-
base that prints labels.

For example, if your database contains a report named Avery 8462
Labels, you’d type Call SkipLabels(“Avery 8462 Labels”, [LabelsTo-
Skip].Value) as shown in the second procedure, PrintBttn_Click() in
Figure 8-9.

The first procedure in that figure — CancelBttn_Click() — in that
class module just closes SkipLabelsForm without doing anything and is
tied to the On Click event of the form’s Cancel button.

Figure 8-9:
The

PrintBttn
_Click()
procedure
called the
Skip-
Labels

Sub.

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 171

The syntax for calling a custom VBA function from an Event procedure
is =functionName(arguments), which is clearly different from calling a
Sub procedure with Call procedureName (arguments). I talk more
about custom functions in Chapter 11.

5. Choose File➪Save and Return to Microsoft Access from the VBA
editor’s menu bar.

The button’s On Click event shows Event Procedure, as usual. Now you
can close and save the form and then reopen it in Form view to try it out.

You’ll be able to do some fancier things with SkipLabelsForm in later chap-
ters. For example, you can allow the user to choose any one of several label
formats, or you can let the user specify a filter condition by using simple
options on a form. But for now, if you’ve gotten this far, you’re doing great.
You created a Sub procedure named SkipLabels() that you can easily drop
into just about any database you create.

172 Part III: VBA, Recordsets, and SQL

03c_574116 ch08.qxd 7/27/04 9:25 PM Page 172

Part IV
Applying VBA in
the Real World

04a_574116_PP04.qxd 7/27/04 9:26 PM Page 173

In this part . . .

Some of the programming techniques in this chapter
are a bit trickier than techniques from previous chap-

ters, but they’re not just stupid pet tricks. They’re actually
useful tricks. What makes them tricky has to do with the
way you use VBA to trick Access into doing things it
couldn’t possibly do on its own. In the real world, people
rarely write code that works perfectly right off the bat.
Even experienced programmers have to spend some time
testing and debugging their code. In this part you discover
the many tools that VBA offers to help you with testing
and debugging.

04a_574116_PP04.qxd 7/27/04 9:26 PM Page 174

Chapter 9

Creating Your Own
Dialog Boxes

In This Chapter
� Asking questions, responding to answers

� Storing dialog box settings

� Creating custom dialog boxes

� Creating spin box controls

You see dialog boxes in Windows and other programs all the time. Each
dialog box presents some options for you to choose from. The name

dialog box stems from the fact that the user and the dialog box carry on a
sort of conversation. The dialog box presents some options, and the user
makes selections from those options and then clicks OK.

When you’re creating a database, you might want to put your own dialog box
(or other message) onscreen so the user can make some choices. Creating
dialog boxes in Access is easier than you might think because each dialog
box is just an Access form with certain settings that make the form look and
act more like a dialog box than a regular Access form.

In addition to dialog boxes, your database can also display small custom mes-
sages onscreen. A message is a dialog box of sorts because it presents informa-
tion or a question to the user and waits for the user to respond. And you don’t
even have to create an entire dialog box to display a small message onscreen:
You can just use the VBA MsgBox() function instead.

In this chapter, I look at message and dialog boxes, showing examples of pro-
gramming each. I start with message boxes because those are the easiest to
create.

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 175

Displaying and Responding to Messages
When you want your database to give the user a little feedback or have the
user answer a simple Yes/No question, you can use a message box. The mes-
sage box can be a simple feedback message with a single OK button, like the
example shown at the left side of Figure 9-1. Or, the message box can ask a
question and wait for an answer, as in the right side of Figure 9-1.

There are two syntaxes for the MsgBox keyword. If you just want the message
to show some text and an OK button, use the syntax

MsgBox “YourMessageHere”

where YourMessageHere is the text that you want the message box to display.
For example, here’s the complete VBA code to display the message on the left
side of Figure 9-1:

MsgBox “Finished exporting records”

If you type that exact statement into the VBA Editor Immediate window and
press Enter, you’ll see the message box onscreen. When you click its OK
button, the message box closes.

The preceding syntax, where you just follow the MsgBox statement with a mes-
sage enclosed in quotation marks, works only when you don’t specify buttons
to display in the message box. The message box will have only an OK button,
and clicking that button closes the message box.

If you want your message box to ask a question and give the user some choices
as to how to respond, you have to use a different syntax, as discussed next.

Asking a question
If you want your message box to ask a question and show Yes/No buttons, you
have to use the MsgBox() function with the following syntax:

Dim Variable As Integer
Variable = MsgBox(“YourQuestion”,buttons,[“title”])

Figure 9-1:
Examples of

message
boxes.

176 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 176

where

� Variable is a variable name of your choosing.

� YourQuestion is the text to be displayed in the box.

� buttons is a number or constant defining buttons to display and other
message box properties, as discussed in the upcoming section,
“Designing a message box.”

� title is an optional title that appears in the title bar of the message box.

For example, the following lines of code below display the message box
shown on the right side of Figure 9-1. When the user clicks a button, the vari-
able named Answer stores a number indicating which button the user
clicked.

Dim Answer As Integer
Answer = MsgBox(“Did Labels print OK?”, vbQuestion + vbYesNo, “Question”)

Whenever VBA displays a message box, it stops executing code in your pro-
cedure. In other words, any lines below the statement in the code are ignored
until the user clicks a button in the message box. At that point, VBA can
decide what to do based on which button the user clicked. But before I get to
that, look at all the different ways you can control the appearance and behav-
ior of a message box.

Designing a message box
You can use the buttons argument of the MsgBox keyword to define the
exact appearance and behavior of your message box. Each possible value for
the buttons argument can be expressed as either a constant or a number. You
can add the constants or numbers together to combine properties.

For example, the constant vbYesNo (or number 4) tells MsgBox to display Yes
and No buttons in the form. The constant vbQuestion (or number 32) tells
MsgBox to display a question mark icon in the form. Combining the two argu-
ments with a + sign in the MsgBox statement applies both properties. For
example, using vbYesNo + vbQuestion together as the buttons argument
in the following example displays the dialog box shown on the right side of
Figure 9-1. There you can see the question mark icon and Yes/No buttons in
the message box.

Answer = MsgBox(“Did Labels print OK?”, vbQuestion + vbYesNo, “Question”)

Whenever VBA encounters a MsgBox statement in code, it displays the mes-
sage box onscreen and then waits for the user to respond to the box. Code
beneath the MsgBox statement within the procedure isn’t executed until the
user responds to the message box.

177Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 177

Modal and pop-up messages
The buttons argument lets you define how the message box looks when it
first opens and also how it behaves while it’s open. By default, a message
box is always application modal. That is, after the message box is onscreen,
the user can’t do anything else in Access until he or she replies to the mes-
sage. With the buttons argument, you can make the message box system
modal, which means the user can’t do anything in any other program until he
responds to the message.

With the buttons argument, you can also make the message box a pop-up. As
a pop-up, the message box will always jump to the top of the stack of whatever
other windows happen to be open onscreen, therefore guaranteeing that the
message box will be visible to the user onscreen.

Message box default buttons
You can even define a default button for the message. The default button is
the button that’s automatically selected when the message box first opens.
It’s also the button that gets clicked if the user just presses the Enter key to
close the message box. For example, the following statement displays a mes-
sage box with Yes, No, and Cancel buttons with the third button (Cancel)
already selected (highlighted) in the box:

Answer = MsgBox(“Hello World”, vbYesNoCancel + vbDefaultButton3)

Because the Cancel button is the default button in that example, if the user
just presses the Enter key in response to the message, that is the same as the
user clicking the Cancel button.

The complete set of MsgBox buttons argument settings are shown in Table
9-1. The first six settings, (0 through 5) specify buttons to show in the message
box. Those settings also specify which values the variable at the left side of the
statement could get when the user clicks a button, as I discuss next.

Table 9-1 Constants and Numbers used for
MsgBox buttons Argument

Constant Number Displays Returns

vbOKOnly 0 OK button. vbOK

vbOKCancel 1 OK, Cancel buttons. vbOK or
vbCancel

vbAbortRetryIgnore 2 Abort, Retry, Ignore vbAbort,
buttons. vbRetry,

vbIgnore

178 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 178

Constant Number Displays Returns

vbYesNoCancel 3 Yes, No, Cancel vbYes, vbNo,
buttons. vbCancel

vbYesNo 4 Yes, No buttons. vbYes, vbNo

vbRetryCancel 5 Retry, Cancel vbRetry,
buttons. vbCancel

vbCritical 16 Red X icon.

vbQuestion 32 Question icon.

vbExclamation 48 Exclamation icon.

vbInformation 64 Information icon.

vbDefaultButton1 8 First button is
default.

vbDefaultButton2 256 Second button is
default.

vbDefaultButton3 512 Third button is
default.

vbDefaultButton4 768 Fourth button is
default.

vbApplicationModal 0 Suspends Access
objects until user
replies.

vbSystemModal 4096 Suspends all
applications until
user replies.

vbMsgBoxHelpButton 16384 Show Help button
in box.

VbMsgBoxSetForeground 65536 Make message box
the top window
(pop–up).

vbMsgBoxRight 524288 Right-align text in
box.

vbMsgBoxRtlReading 1048576 Right-to-left text
for Hebrew/
Arabic.

179Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 179

Adding the vbMsgBoxHelpButton argument displays a Help button in the
message box. However, the button won’t work unless you create custom Help
files, and that’s a large topic that’s beyond the scope of this book. If you’re
interested in learning more, see

www.microsoft.com/resources/documentation/office/2000/all/
solution/en-us/part2/ch13.mspx

Responding to a MsgBox button click
If your dialog box asks a question, you presumably want your VBA code to
respond to whatever button the user clicked. That’s fairly easy to do because
when the user clicks a button, the variable to the left side of the MsgBox()
function returns a value indicating which button the user clicked. Each button
that you can show in a message box returns a unique value. For example, when
the user clicks the Yes button, MsgBox() returns 6 (which also equals Access’s
built-in vbYes constant). If the user clicks the Cancel button, MsgBox returns
2 (which equals the vbCancel constant).

In your code, you can use either the constant or the number, but it’s always
easier to read the code later if you use the constant. Table 9-2 lists the value —
expressed both as a constant and a number — that each message box buttons
returns when clicked.

Table 9-2 Values Returns by Buttons
If User Clicks MsgBox Returns (Constant) MsgBox Returns (Integer)

OK vbOK 1

Yes vbYes 6

No vbNo 7

Cancel vbCancel* 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5
* MsgBox() also returns vbCancel (2) if the user presses the Esc key or clicks the box’s Close
button.

Code execution always stops at the line when a message box is onscreen.
Thus, the next line of code in your procedure can make a decision based on
the contents of the variable used at the start of the VBA MsgBox() statement.

180 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 180

For example, if the message box contains Yes and No buttons, you can use an
If statement to do one set of steps if the user clicks Yes and another set of
steps if the user clicks No. Here’s the basic idea:

Dim Answer As Integer
Answer = MsgBox(“Click a button”,vbYesNo,”Test”)

‘Make a decision based on button user clicked.
If Answer = vbYes Then

‘Code to execute if user clicked Yes goes here.
Else

Code to execute if user clicked No goes here.
End If

So here’s how the preceding code executes. The Dim statement creates a vari-
able (a cubbyhole) named Answer. The next statement displays onscreen a
message box with Yes and No buttons. Code execution stops there until the
user clicks a button in the message box. When the user does click a button,
the Answer variable receives a value indicating which button the user clicked.
In this example, that value will be either vbYes (6) or vbNo (7). Code execu-
tion then resumes normally at the next line in the procedure.

In the preceding example, the first executable line on code is an If...Then...
End If statement that compares the value of the Answer variable with vbYes.
Then . . .

� If the value of Answer is vbYes, only the code between If and Else is
executed; code between Else and End If is ignored.

� If the value of Answer value is not vbYes, code between If and Else is
ignored, and only code between Else and End If executes.

Either way, code execution then resumes normally at the next statement after
the End If statement.

If you want to try it for yourself, you could type a little procedure like the fol-
lowing example into any standard module:

Sub MsgTest2()’Show message with Yes and No Buttons
Dim Answer As Integer
Answer = MsgBox(“Ready?”, vbYesNo)

If Answer = vbYes Then
‘Code to execute if user clicked Yes button.
Debug.Print “You clicked Yes”
Beep ‘Sound a beep too.

Else
‘Code to executed if user clicked No button.
Debug.Print “You clicked No”

End If
End Sub

181Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 181

After the entire procedure is typed in, you can just type its name, MsgTest2,
into the Immediate window and try it. When you see the message box, click
Yes. You’ll hear a beep and see You clicked Yes in the Immediate window.
Run the procedure a second time and click No, and you’ll see You clicked
No in the Immediate window.

You might have a situation where you want your code to do one thing if the
user clicks Yes, do another thing if the user clicks No, and do yet something
else if the user clicks Cancel or closes the dialog box without clicking a spe-
cific button. You can use a Select Case block of code to specify a different
action for each of three buttons possibilities.

For example, when executed, the following Answer = MsgBox(...) state-
ment displays a message box with Yes, No, and Cancel buttons. After the
user clicks a button, the Select Case...End Select block takes one of
three possible actions. If the user clicks the Yes button, only the code under
Select Case vbYes executes. If the user clicks No, only the code under
Select Case vbNo executes. If the user clicks the Cancel button or closes
the message box by using the Close button or Esc key, only the code under
Select Case vbCancel executes.

Dim Answer As Integer
Answer = MsgBox(“Ready again?”, vbYesNoCancel + _

vbDefaultButton3)

Select Case Answer
Case vbYes

‘Code to execute if user clicked Yes.
Debug.Print “You clicked Yes”

Case vbNo
‘Code to execute if user clicked No.
Debug.Print “You clicked No”

Case vbCancel
‘Code to execute if user cancelled.
Debug.Print “You didn’t click Yes or No.”

End Select

For more information on If...Then...End If and Select Case...End
Select, see the section in Chapter 4 on making decisions in VBA code.

Converting Forms to Dialog Boxes
Message boxes are fine when your code just needs to ask the user a simple
question, but sometimes you want to give users several options to choose
from. You might want to use a variety of controls, such as check boxes and
combo boxes, to present those options. (Read about this in the upcoming

182 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 182

section, “Creating Custom Combo Boxes.”) When your code needs more than a
simple answer to a single question, use a dialog box rather than a message box.

A dialog box (often called a dialog for short) in an Access database is basically
the same thing as a dialog box in Windows or any other program. It’s a group of
options from which the user can make choices. For example, if you right-click
the Windows XP Start button and choose Properties, the Windows Taskbar and
Start Menu Properties dialog box opens, giving you options for customizing
your Windows desktop.

Storing dialog box settings
Although creating a dialog box is easy, you need to first think about how you
want to deal with the settings that the user chooses. If you want your dialog
box to remember settings from one session to the next, you need to store
those settings in some sort of table. Otherwise, all the user’s settings will be
forgotten by Access each time the user closes the database.

The table that you create for storing dialog box settings needs only one record,
with a field to store each dialog box setting that needs to be remembered. In
this chapter, I show you how to create a fancy dialog box for the SkipLabels
procedure I create in Chapter 8. I show you how to make it remember which
report the user last used for printing labels and how many labels the user
skipped on each run. This will make it a little easier for the user to reuse set-
tings in the dialog box.

For this example, create a tiny table that stores the name of the report as Text
and the number of labels last skipped as a Number. Figure 9-2 shows the struc-
ture of the table that I use here. You don’t need to define a primary key in this
table because the table will never contain any more than one record. I’ll name
the table SettingsTable.

Figure 9-2:
Structure

of the
Settings

Table
table.

183Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 183

After you close and save the table, you need to open that table and type in the
value of at least one field. That’s because when you bind a dialog box to that
table later, it will work only if the table already contains one record. For exam-
ple, Figure 9-3 shows one record that I typed into the SettingsTable table.
The blank record beneath the filled record isn’t an actual record in the table.
That empty record appears only as a placeholder for any new record that you
want to add to the table in Datasheet view.

You can see an example of using the SettingsTable values in a dialog box a
little later in this chapter. For now, master how to create a dialog box in the
first place.

Setting form properties
Creating a dialog box in Access is similar to creating any other form. You don’t
even need any VBA code to create the box. Rather, you just create a form and
set its Form Properties so that the form looks and acts like a dialog box. Here’s
how:

1. In the database window, click the Forms button and then click the
New button.

2. In the New Form dialog box that opens, choose Design View.

If you created a table for storing settings, choose the table’s name from
the Choose the Table or Query Where the Object’s Data Comes From
drop-down list in the New Form dialog box.

If you won’t be storing settings in a table, just leave that drop-down list
option empty so the form won’t be bound to any table.

3. Click OK.

4. If the Properties sheet isn’t visible, choose View➪Properties or
press F4.

Figure 9-3:
One table

record
stores

dialog box
settings.

184 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 184

5. In the Properties sheet, make sure that Form is selected, and then
click the All tab (see Figure 9-4).

6. Set the properties as indicated in Table 9-3.

7. Save the form.

Table 9-3 Properties to Make a Form into a Dialog Box
Property Setting Reason

Default View Single Form To look like a dialog box.

Allow Form View Yes To look like a dialog box.

Allow Datasheet View No Dialog boxes have no such view.

Allow PivotTable View No Dialog boxes have no such view.

Allow PivotChart View No Dialog boxes have no such view.

Allow Edits Yes User needs to change settings.

Allow Deletions No Underlying table (if any) must
contain only one record.

(continued)

Form properties

FormFigure 9-4:
Setting form

properties
for a

dialog box.

185Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 185

Table 9-3 (continued)
Property Setting Reason

Allow Additions No Underlying table (if any) must
contain only one record.

Data Entry No Underlying table (if any) must
contain only one record.

Scroll Bars Neither Dialog boxes don’t have scroll bars.

Record Selectors No Dialog boxes don’t have record
selectors.

Navigation Buttons No Dialog boxes don’t have navigation
buttons.

Dividing Lines No Dialog boxes don’t need them.

Pop Up Yes Keep dialog box on top of other
open windows.

Modal Yes Disable other open windows until
user responds to dialog box.

Border Style Dialog Looks like a dialog box border.

Control Box Yes Needed to make Close button
visible.

Min Max Buttons None Dialog box can’t be sized.

Close Button Yes Dialog boxes have a Close button,
which acts like a Cancel button.

Cycle Current Only one record in underlying
Record settings table.

To color your dialog box, click the Detail band in forms Design view, click its
Back Color property, and choose a color. For example, for a slightly off-white
color, set the Back Color property of the Detail band to 16316664.

Adding controls to the dialog box
The form properties that you change to control the appearance and behavior
of a form don’t affect how you add controls to the form. You can still use all
the standard techniques that you’d use in Access to create a form for scrolling

186 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 186

through records. For example, to add a bound control to the form, click a
control type in the Toolbox. Then drag the underlying field’s name from the
Field List to the form. To add an unbound control to the form, click a control
type in the Toolbox and then click the form’s Design grid.

If the Control Wizard opens after you drop a control on the form, you can go
through the wizard as you normally would. If you’re planning to attach custom
code to the control later and don’t want the wizard to create the control, just
click the wizard’s Cancel button. Then you can assign a name, caption, and
events to the control through the control’s Properties sheet.

For example, the top half of Figure 9-5 shows in Design view a sample dialog
box with four main controls: ReportName, LabelsToSkip, CancelBttn, and
PrintBttn. In that example, the controls ReportName and LabelsToSkip
are bound to fields in the SettingsTable described earlier in this section.
Thus, the dialog box remembers the settings in those controls from one ses-
sion to the next. The lower half of Figure 9-5 shows that same form open in
Form view.

In the sample form shown in Figure 9-5, the CancelBttn and PrintBttn con-
trols aren’t bound to any table field. Instead, each just has some custom code
tied to its On Click event. For example, the On Click event for CancelBttn
is DoCmd.Close acForm, Me.Name, acSaveNo, which closes the form with-
out saving any changes or printing.

ReportName

LabelsToSkip
PrintBttn

CancelBttn

Figure 9-5:
Controls

on a form
(dialog box).

187Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 187

The On Click event for PrintBttn could execute any VBA code or macro.
For instance, to call the SkipLabels procedure described in Chapter 8, have
that procedure execute the statement

Call SkipLabels ([ReportName].Value,LabelsToSkip].Value.

Doing so will print whatever report name appears in the ReportName control,
skipping the number of labels specified in the LabelsToSkip control. The
procedure also closes the dialog box. The following code shows the On Click
event procedure for both controls in the class module for the sample form.

Private Sub CancelBttn_Click()

‘Close the SkipLabels form without doing anything.
DoCmd.Close acForm, Me.Name, acSaveNo

End Sub

Private Sub PrintBttn_Click()

‘Print the specified labels, skipping specified blanks.
Call SkipLabels([ReportName].Value, [LabelsToSkip].Value)

‘Then close the SkipLabels form, saving current choices.
DoCmd.Close acForm, Me.Name, acSaveYes

End Sub

I help you create a much fancier SkipLabels dialog box in the sections that
follow. But for now, you should be able to see how it works. The controls
named ReportName and LabelsToSkip on the form serve as data to pass to
the SkipLabels() Sub procedure. Clicking the Print button on the form calls
the SkipLabels routine using the syntax

Call SkipLabels([ReportName].Value,[LabelsToSkip].Value)

When SkipLabels run, it prints whatever report name appears in the Report
Name control on the form and also skips however many labels are specified in
the LabelsToSkip control on the form.

Creating Custom Combo Boxes
A combo box in Access is a control that acts as both a text box and a drop-
down menu of options. As you probably know, you can create two types of
combo boxes in Access: those that get their values from a table or query, and
those that get their values from a simple value list that you type manually.

188 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 188

For example, suppose you have a database that contains a number of reports,
as in the example shown in Figure 9-6. Ideally, you’d like to create a Skip
Labels dialog box that provides a drop-down list of report names that the
user can print labels on.

One way to do this would be to add a ComboBox control to your SkipLabels
form and simply type the names of reports on which the user can print labels
into the control’s Value List. For example, suppose you already have a TextBox
control named ReportName on a form, and you want to change that to a combo
box. Open the form in Design view, right-click the ReportName control, and
choose Change To➪Combo Box. The ReportName text box becomes a combo
box (still named ReportName).

On the Data tab of the control’s Properties sheet, set the Row Source Type to
Value List and then set the Row Source property to the names of reports that
you want to see in the drop-down menu. Note: You need to spell each report
name exactly as it’s spelled in the database. Enclose each report name in
quotation marks and also separate names with semicolons. To ensure that
the user can choose only a report name from the list, set the Limit to List
property to Yes.

Figure 9-7 shows an example where I converted the TextBox control named
ReportName to a ComboBox control. On the Data tab of that control’s Proper-
ties sheet, I set the Row Source Type to Value List and the Row Source to the
list of report names as shown here:

“Avery 5197 Labels”;”Avery 8462 Labels”;”Avery 8463 Labels”;
“Avery Name Tag Labels”

The lower half of Figure 9-7 shows that same combo box open in Form view.
The drop-down menu lists the report names that show in the Value List prop-
erty of the control.

Figure 9-6:
Sample

reports in
an Access
database.

189Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 189

The drop-down menu in the example shown above is static: It never changes.
If you add, delete, or rename reports, those changes won’t automatically be
reflected in the drop-down menu. To get the drop-down list to work correctly,
you need to open the form in Design view and manually change the Value List
property from the drop-down menu to reflect current report names.

An easier approach would be to make the drop-down list dynamic so that
each time the form opens, VBA can build an accurate, up-to-date list of valid
report names for the combo box. That way, the drop-down list will always work
even if you add, change, or delete reports, or even drop the whole chunk of
code into an entirely separate database.

The CurrentProject.AllReports collection in VBA contains the names of
all reports in the current database. If you want the drop-down list to show the
names of all reports each time the form opens, you need some sort of code
that builds the combo box’s Value List from those report names. You also need
to attach that code to the form’s On Load event, which is triggered each time
the form opens and displays any data from its underlying table or query.

Selected control (Design view)

Drop–down menu in Form view

Menu properties

Figure 9-7:
The

Report
Name

control as a
combo box.

190 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 190

In this example, assume that the form is named and the control for which you
want to build the Value List is named ReportName. The first step is to open
Fancy SkipLabels Form in Design view and get to its Properties sheet.
Choose Form from the Properties sheet’s drop-down menu so you’re setting
properties for the form as a whole. Then click the Event tab, click On Load
Event, click the Build button, click Code Builder, and then click OK. The VBA
editor opens with the cursor inside an event procedure named Form_Load(),
as follows:

Private Sub Form_Load()

End Sub

Any code that you place inside that procedure will execute each time the form
opens. In this case, you want that code to loop through the AllReports col-
lection, building a string of report names separated by semicolons that you
can use as the ValueList for the ReportName drop-menu. The following code
creates that semicolon-delimited list of report names from all reports in the
current database:

Private Sub Form_Load()
‘ValueList variable will store a string that can
‘be used as the Value List property for a combo box.
Dim ValueList As String
ValueList = “”

‘Loop through all report names.
For Each AccessObject In CurrentProject.AllReports

‘Add current report name and semicolon to ValueList variable.
ValueList = ValueList + Chr(34) + AccessObject.Name + Chr(34) + “;”

Next

‘Now make ValueList the Value List for the ReportName combo box.
Debug.Print ValueList
ReportName.RowSource = ValueList
ReportName.Requery

End Sub

Take a moment to see how that works. The For Each...Next loop loops
through each report in the database’s Reports collection. For each report, it
adds a quotation mark (specified as Chr(34) in the code), the report name,
another quotation mark, and a semicolon.

Every character on your keyboard has an ASCII number assigned to it. For
example, a double-quotation mark is character number 34. A single quotation
mark is character number 39. Using Chr(34) in code tells VBA to insert a
double-quotation mark in place of Chr(34).

191Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 191

So with each pass through the loop, the variable named ValueList gets
another report name enclosed in quotation marks, followed by a semicolon.
As written, the loop just adds every report name to the ValueList variable.
So, referring back to the report names shown in Figure 9-6, by the time the
loop has looked at every report name in the database, the ValueList variable
contains this:

“Avery 8463 Labels”;”Avery 8462 Labels”;”Avery 5197
Labels”;”Customer Directory”;”Avery Name Tag
Labels”;”Vendor Directory”;”Invoices and Receipts
Rpt”;”Sales Tax Due Rpt”;”LabelsTempReport”;

The next lines

ReportName.RowSource = ValueList
ReportName.Requery

change the ReportName control’s RowSource property to that new ValueList
variable. The ReportName.Requery statement just makes sure that the form is
aware of the change so that the combo box always shows the correct names.
By the time the procedure has run, in this example, the ReportName combo
box drop-down menu would contain these options:

� Avery 8463 Labels

� Avery 8462 Labels

� Avery 5197 Labels

� Customer Directory

� Avery Name Tag Labels

� Vendor Directory

� Invoices and Receipts Rpt

� Sales Tax Due Rpt

� LabelsTempReport

There are a couple of little problems here. For one, not all of these reports
print mailing labels, so not all of the report names are really appropriate for
the SkipLabels procedure. Also, LabelsTempReport isn’t really a valid
report name: It’s just a temporary report name created by the SkipLabels
procedure.

If you want to exclude LabelsTempReport from the drop-down list, you need
to modify the code so that name isn’t added to the ValueList variable. The
necessary lines to be added are shown here in boldface:

192 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 192

Dim ValueList As String
ValueList = “”
‘Loop through all report names.
For Each AccessObject In CurrentProject.AllReports

‘Don’t add LabelsTempReport to drop-down menu.
If Not AccessObject.Name = “LabelsTempReport” Then

‘Add current report name and semicolon to ValueList variable.
ValueList = ValueList + Chr(34) + AccessObject.Name + Chr(34) + “;”

End If
Next

‘Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

By the time all the preceding code is executed, the ValueList for the
ReportName control contains all report names except LabelsTempReport,
which got skipped over by the statement

If Not AccessObject.Name = “LabelsTempReport”...

You can narrow the list of report names to just those reports that can print
labels, but you need some means of being able to tell those reports apart from
other ones. For example, suppose I make the rule Any report in this database
that prints labels must have the word label in its name. If I make that rule and
stick to it, I can rewrite the preceding code so that only reports with the word
label in the name are added to ValueList, as shown in boldface here:

‘ValueList variable will store a string that can
‘be used as the Value List property for a combo box.
Dim ValueList As String
ValueList = “”

‘Loop through all report names.
For Each AccessObject In CurrentProject.AllReports

‘Don’t add LabelsTempReport to the Value List.
If Not AccessObject.Name = “LabelsTempReport” Then

‘Only add report names that contain the word “label”.
If InStr(AccessObject.Name, “Labels”) > 1 Then

‘Add current report name and semicolon to ValueList variable.
ValueList = ValueList + Chr(34) + _
AccessObject.Name + Chr(34) + “;”

End If
End If

Next

‘Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

193Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 193

Excluding LabelsTempReport and any other reports that don’t have the word
label in their names creates the following string in the ValueList variable and
ultimately in the ValueList property of the ReportName combo box. Hence,
the ValueList string ends up containing

“Avery 8463 Labels”;”Avery 8462 Labels”;”Avery 5197 Labels”;
“Avery Name Tag Labels”;

which means that the drop-down menu for the ReportName combo box ends
up containing these options:

� Avery 8463 Labels

� Avery 8462 Labels

� Avery 5197 Labels

� Avery Name Tag Labels

Listing 9-1 shows the complete procedure with the ability to build the list of
report names from only those reports that have the word label in their name,
excluding the report named LabelsTempTable.

Listing 9-1: Building a List of Report Names

Private Sub Form_Load()
‘ValueList variable will store a string that can
‘be used as the Value List property for a combo box
Dim ValueList As String
ValueList = “”

‘Loop through all report names.
For Each AccessObject In CurrentProject.AllReports

‘Don’t add LabelsTempReport to the ValueList.
If Not AccessObject.Name = “LabelsTempReport” Then

‘Only add report names that contain the word “label”.
If InStr(AccessObject.Name, “Labels”) > 1 Then

‘Add current report name and semicolon to ValueList variable.
ValueList = ValueList + Chr(34) + _
Access Object.Name + Chr(34) + “;”

End If
End If

Next

‘Now make ValueList the Value List for the ReportName combo box.
ReportName.RowSource = ValueList
ReportName.Requery

End Sub

194 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 194

You don’t have to rewrite all this code yourself. You can download Fancy Skip
Labels Form and all the code shown in this chapter from www.coolnerds.
com/vba.

The main point to glean from this example, though, is that the drop-down menu
for a combo box need not be set in concrete. With VBA, you can customize the
drop-down menu as needed by changing the control’s .RowSource property.
In this example, the code to build the ReportName drop-down list is executed
each time Fancy SkipLabels Form opens. Hence, if any reports have been
added, renamed, or deleted since the last time the form opened, the drop-down
list will still accurately reflect the names of all reports in the current database
that contain the word label.

If you import Fancy SkipLabels Form into an existing database, the drop-
down list will automatically display all report names that contain the word
label (excluding LabelsTempReport) in that database. Of course, if that other
database didn’t follow the rule of including the word label in all label reports,
the procedure as it stands wouldn’t work. You’d need to either rename reports
in that database to follow the rule (which could be disastrous for any existing
macro or code that refers to existing report names). Or you could make copies
of all existing label reports, renaming the copies to include the word label.

If you already have some other means of uniquely identifying label reports in
your database, you can change the rule in the code accordingly. For example, if
all the label reports contain the word Avery, you can change the inner If...
End If block to exclude report names that don’t contain the word Avery, as
below:

‘Only add report names that contain the name “Avery”.
If InStr(AccessObject.Name, “Avery”) > 1 Then

‘Add report name and semicolon to ValueList variable.
ValueList = ValueList + Chr(34) + _
AccessObject.Name + Chr(34) + “;”

End If

The Form_Load() procedure executes as soon as you open the form. To fully
test the form after creating or changing the Form_OnLoad() event procedure,
close and save the form first. Then open it in Form view from the database
window.

Creating a Spin Box Control
Many Windows dialog boxes offer a spin box control that lets you change a
number without typing. Oddly enough, there is no spin box control in the
form’s Design Toolbox to let you create such a control on your Access forms.

195Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 195

If you want to add a spin box control to an Access form, you have to fudge it.
Writing the code for the spin buttons is easy; creating the little buttons is the
real challenge.

I’ve used numerous techniques to create the spin buttons. I’ve imported
ActiveX controls, used command buttons with a special character like an up
or down arrow, and even used transparent-background GIFs to put a tiny arrow
on each command button. Because the spin buttons are so tiny, though, get-
ting the command button to look right is difficult.

I finally just gave in and drew each button as a tiny graphic image. (It really
doesn’t matter whether you use a command button or a picture for the spin
button because buttons and pictures both have On Click events to which
you can tie code.) Figure 9-8 shows buttons that I drew for this example mag-
nified 800 percent in Paint Shop Pro. The lower half of that same picture shows
the buttons in place on a form. To get the buttons onto the form, I just used
the standard Insert➪Picture commands on the Access menu bar in forms
Design.

I’ll post some spin buttons at www.coolnerds.com/vba that you can down-
load and use on your own forms.

Regardless of whether you use command buttons to pictures to get spin
buttons onto a form, getting them to work is the same. You can name each
button as you would any other control (via the Name property on the All tab
of the Properties sheet). I named my two picture buttons SpinUpBttn and
SpinDownBttn.

Spin
buttons

Figure 9-8:
Spin button

images in
a program

(top) and
on a form
(bottom).

196 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 196

After you have the controls on the form in Design view, click the Spin Up
button control, click Events in the Properties sheet, click the On Click event,
click the Code button, and then choose Code Builder. The VBA editor opens
with the cursor already in a procedure named SpinUpBttn_Click() (assum-
ing that you named your spin up button SpinUp). In my example, I want each
click of the Spin Up button to increase the value in the LabelsToSkip con-
trol by 1.

Use an If...Then...End If statement to put an upper limit on how high the
value can go. I chose 80 as an upper limit (because I doubt there are many label
sheets that offer more than 80 labels per page), but you can set your upper
limit to any value you want. Following is the code to increase the value in the
LabelsToSkip control each time a user clicks the form’s SpinUpBttn control:

Private Sub SpinUpBttn_Click()
‘Increase LabelsToSkip by 1 to a maximum of 80.
If Me!LabelsToSkip.Value < 80 Then

Me!LabelsToSkip.value = Me.LabelsToSkip.Value+1
End If

End Sub

After writing the code for the SpinUpBttn and returning to your form in forms
Design, click the SpinDownBttn control on your form. Again, get to that con-
trol’s On Click event in the Properties sheet and write a routine like the one
that follows. In that example, I put a lower limit of 0 (zero) on the value in the
LabelsToSkip control:

Private Sub SpinDownBttn_Click()
‘Decrease LabelsToSkip by 1 to a minimum of 0.
If Me!LabelsToSkip.Value > 0 Then

Me!LabelsToSkip.value = Me.LabelsToSkip.Value-1
End If

End Sub

The following code shows both procedures in place in the class module for
my Fancy SkipLabels dialog box example. Again, the biggest trick to get-
ting spin buttons on a form is getting buttons that are small enough to fit next
to the control. But after you have a command button or picture in place, you
can program its On Click event to increase or decrease the value in a
numeric field by one with each click.

Private Sub SpinDownBttn_Click()
‘Decrease LabelsToSkip by 1 to a minimum of 0.
‘If Me!LabelsToSkip.Value > 0 Then

Me!LabelsToSkip.Value = Me.LabelsToSkipValue - 1
End If

End Sub

197Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 197

Private Sub SpinUpBttn_Click()
‘Increase LabelsToSkip by 1 to a maximum of 80.
If Me!LabelsToSkip.Value < 80 Then

Me!LabelsToSkip.Value = Me.LabelsToSkip.Value + 1
End If

End Sub

Detecting a Right-Click
You might have noticed that just about every control has an On Click event
to which you can tie code. The On Click event occurs only when the user
points to the item and then presses and releases the left mouse button. There
is no On Right-Click event that you can use to detect whether the user
right-clicks an item.

If you want to write different code for different types of clicks, you have to use
the On MouseDown event. When you click an object’s On MouseDown event in
the Properties sheet and choose the Code Builder, the procedure created will
look something like this (where objectName is the name of the object to which
you’re tying the code):

Private Sub objectName_MouseDown _
(Button As Integer, _
Shift As Integer, X As Single, _
Y As Single)

End Sub

The arguments that get passed automatically to the procedure are listed as
follows:

� Button: Returns a number or constant indicating which mouse button
the user pressed.

• Left mouse button: Button argument contains acLeftButton.

• Middle mouse button (or mouse wheel): Button contains
acMiddleButton.

• Right mouse button: Button contains acRightButton.

� Shift: Returns a constant indicating whether the user held down the
Shift, Alt, or Ctrl key while pressing the mouse button. Possible values
for Shift include

• acShiftMask: The Shift key was held down.

• acCtrlMask: The Ctrl key was held down.

• acAltMask: The Alt key was held down.

198 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 198

� X: Returns a number indicating the horizontal position of the mouse
pointer.

� Y: Returns a number indicating the vertical position of the mouse
pointer.

In your procedure, you can If...Then...End If statements to write differ-
ent code for different mouse activities. For example, the Listing 9-2 shows the
basic skeletal structure that responds differently to a left, middle, or right
mouse click:

Listing 9-2: Skeletal Structure of Code to Distinguish between Left and
Right Mouse Clicks

Private Sub ObjectName_MouseDown(Button As Integer, _
Shift As Integer, X As Single, _
Y As Single)

‘Code for left mouse button.
If Button = acLeftButton Then

‘Code to execute for left button goes here.
MsgBox “You pressed the Left mouse button”

End If

‘Code for right mouse button.
If Button = acRightButton Then

‘Code to execute for left button goes here.
MsgBox “You pressed the Right mouse button”

End If

‘Code for middle mouse button.
If Button = acMiddleButton Then

‘Code to execute for middle button goes here.
MsgBox “You pressed the Middle mouse button”

End If

End Sub

As it stands, the sample procedure just provides a little message onscreen
indicating which mouse button you pressed. In your actual code, you’d replace
the MsgBox statements with the VBA code that you want to execute after the
left, middle, or right mouse click.

In the next chapter, I dig deeper into the whole topic of creating custom drop-
down menus and lists using VBA code. The techniques that you can see there
apply to any form that you create, whether that form is a dialog box or just a
regular Access form for scrolling through table records.

199Chapter 9: Creating Your Own Dialog Boxes

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 199

200 Part IV: Applying VBA in the Real World

04b_574116 ch09.qxd 7/27/04 9:26 PM Page 200

Chapter 10

Customizing Lists and
Drop-Down Menus

In This Chapter
� Programming combo boxes and list boxes

� Linking lists

� Updating one form’s control from another form

� Cool combo box tricks

Typing information into forms takes time, and typing always means the
possibility of typographical errors. Any time you can eliminate typing by

giving the user something to click, you’re making your data entry quicker and
more accurate.

Combo boxes and list boxes are both good tools for giving the user options to
choose from when typing would otherwise be necessary. A combo box is basi-
cally a text box with a drop-down arrow on the right, as in the left side of Fig-
ure 10-1. The options available to the user — also shown at the left side of
Figure 10-1 — aren’t visible until he or she clicks the drop-down arrow. The
user can either type in the text box or choose an option from the drop-down
menu.

The right side of Figure 10-1 shows an example of a list box. Like a combo box,
the list box shows a list of options, but there’s no hidden drop-down menu:
The list (or at least some portion of it) is plainly visible. Also, with a list box,
there’s no place to type text. The user has to choose an option from the list
by clicking it. The selected option is highlighted in the control.

Because both combo and list boxes display a list of options onscreen, they
have many similar properties. For example, every combo box and list box has a
Row Source property that defines where the list of options comes from. When
you use the Control Wizards to create a combo or list box, the wizard sets the
Row Source property according to how you answer its questions. In forms
Design, you can set the Row Source property via the Properties sheet. From
VBA, you can change the Row Source property by using the .RowSource
keyword.

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 201

Programming Combo and List Boxes
When working with combo and list boxes through VBA, you’ll often want to
start with just a simple unbound control (one that’s not attached to any field in
the form’s underlying table or query) and then let VBA control the properties.

To add an unbound ComboBox or a ListBox control to a form, first make sure
that the form is open in Design view and that the Toolbox (see Figure 10-2) is
open. To prevent the Control Wizards from helping you create the control,
click the wizard’s button until it’s no longer lit. Then follow these steps:

1. In the Toolbox, click either the Combo Box or List Box tool, depending
on which you want to create.

If it’s hard to tell one button from the other in the Toolbox, just point to
any button in the Toolbox to see its name next to the mouse pointer.

2. In the form, click at about where you want the left edge of the control
to appear.

Control Wizards

List Box
Combo Box

Figure 10-2:
Toolbox
Control

Wizards,
List Box,

and Combo
Box buttons.

List boxCombo box menu visible

Combo box

Figure 10-1:
Sample

combo box
and list box.

202 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 202

3. If the wizard appears and you don’t want to use it, click the Cancel
button in the wizard.

After the combo box or list box is on your form, you can view its properties
in the Properties sheet. As always, if the Properties sheet isn’t already open,
you can press F4 or right-click the control and choose Properties.

Like all controls, combo boxes and list boxes have lots of properties. The ones
that you’re most likely to refer to from VBA are summarized in the following
list. The first name (bold) is the property name as it appears in the Properties
sheet; the following name in parentheses is the name of the property as writ-
ten in VBA.

� Name (.Name): Defines the name of the control.

� Row Source Type (.RowSourceType): Specifies where the list gets its
data: from records in a Table/Query, from a simple Value List typed into
the Row Source property, or a field list of field names from a table or
query.

� Row Source (.RowSource): Depending on the Row Source Type, this can
be a SQL statement that gets data from a table or query, a typed list of
options, or the name of a table or query.

� Default Value (.DefaultValue): The item that’s automatically selected
when the form first opens.

� List Rows (.ListRows): (Combo box only) The number of items to shown
in the drop-down menu.

� List Width (.ListWidth): (Combo box only) The width of the drop-
down menu. If Auto, the drop-down menu width is equal in width to the
ComboBox control.

� Limit to List (.LimitToList): (Combo box only) If Yes, the user’s entry
in the combo box must match an item in its drop-down menu. Otherwise,
whatever the user typed is rejected as an invalid entry.

� Value (.Value): The value currently contained within the control.

To name a control on a form, first click the control to select it. Then click the
All tab in the Properties sheet. Set the Name property at the top of the All tab
to whatever you want to name your control.

In addition to the properties from the Properties sheet, VBA has an Item
Data(x) property (where x is a number) that lets you refer to each item in the
list by its position in the list. The first item is always zero (0), so the first item
in the list can be referred to as ItemData(0), the next item is ItemData(1),
and then ItemData(2) on down to the end of the list.

203Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 203

A list box doesn’t have a List Rows or List Width property because there
is no drop-down list in a list box. The width and height of the ListBox con-
trol, as a whole, determine the width and length of the list. There is no Limit
To List property for a list box because there is no optional text box in which
the user could type a value. With a list box, the user is always required to
choose an option in the list.

Combo boxes and list boxes are both examples of list controls (in that they
show some sort of list to the user). After the preceding quick peek at some
commonly used properties of those controls, read on to take a look at how
you work those pups.

In forms Design, you can easily change a text box to a combo box to a list box
or whatever. Just right-click the control that you want to change and then
choose Change To➪xx (the type of control you want).

Listing field names
If you want a list box or combo box to list the names of fields in a table or
query, set the control’s Row Source Type property to Field List and set
its Row Source property to the name of the table or query that contains the
fields whose names you want to list.

For example, Figure 10-3 shows a ComboBox control named FldNameCombo on
a form. As you can see in the Properties sheet, its Row Source Type is set to
Field List, and its Row Source is set to Customers. The names in the con-
trol’s drop-down menu (CustID, FirstName, LastName, and so forth) are field
names from a table named Customers.

From a VBA standpoint, if you want the FldNamesCombo control to show field
names from a different table or query in response to some event, change the
control’s .RowSource property to the name of the table or query from which
you want the control to get field names. For example, this statement sets the
Row Source property of the control named FldNamesCombo to a table named
Products (so the control shows field names from the Products table):

Me!FldNamesCombo.RowSource = “Products”

The Me! in these examples refers to the form to which the control is attached
and works only from a class module. From a standard module, Me! would have
to be replaced with the full identifier for the open form — for example

Forms![EzQueryFrm]![FldNamesCombo].RowSource = “Products”

if the control is on an open form named EZQueryFrm.

204 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 204

In your code, you can take extra steps to make sure that the control’s Row
Source Type is set correctly to Field List prior to putting in the new table
name. After the field receives its new list, you can use the statement

Me!FldNamesCombo.Value = Me!FldNamesCombo.ItemData(0)

to set the selected option in a combo box to the first item in the drop-down
list.

‘Make sure the control’s Row Source Type is Field List.
Me!FldNamesCombo.RowSourceType = “Field List”

‘Change the Row Source table to Products table.
Me!FldNamesCombo.RowSource = “Products”

‘Set selected combo box item to first item in drop-down menu.
Me!FldNamesCombo.Value = Me!FldNamesCombo.ItemData(0)

Using the keyword Me! in the preceding examples assumes that the code is
in the class module for whatever form the FldNamesCombo control is on. To
change the FldNamesCombo properties from a standard module or another
form’s class module, include the complete identifier for the open form. For
example, if the FldNamesCombo control is on a form named EZQueryFrm, the
complete identifier for the form is Forms![EzQueryFrm]! rather than Me! The
complete identifier to the FldNamesCombo control is Forms![EzQueryFrm]!
[FldNamesCombo].

FldNameCombo

Row Source properties

Figure 10-3:
Row Source

properties
for a Field

List combo
box.

205Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 205

In code, you could spell out the complete identifier in each line of code, as
follows:

‘Make sure the control’s Row Source Type is Field List.
Forms![EzQueryFrm]![FldNamesCombo].RowSourceType = “Field List”

‘Change the Row Source table to Products table.
Forms![EzQueryFrm]![FldNamesCombo].RowSource = “Products”

‘Set selected combo box item to first item in drop-down menu.
Forms![EzQueryFrm]![FldNamesCombo].Value _

= Forms![EzQueryFrm]![FldNamesCombo].ItemData(0)

To avoid typing Forms![EzQueryFrm]![FldNamesCombo] repeatedly in your
code, define a Control object variable that refers to the control through a
shorter name.

‘Make short name MyControl refer to
‘Forms![EZQueryFrm]![FldNamesCombo]
Dim MyControl As Control
Set MyControl = Forms![EZQueryFrm]![FldNamesCombo]

‘Make sure the control’s Row Source Type is Field List.
MyControl.RowSourceType = “Field List”

‘Change the Row Source table to Products table.
MyControl.RowSource = “Customers”

‘Set selected combo box item to first item in drop-down menu.
MyControl.Value = MyControl.ItemData(0)

For example, the first line of the preceding code (Dim MyControl As
Control) defines a new, empty Control object variable named MyControl.
The second line

Set MyControl = Forms![EzQueryFrm]![FldNamesCombo]

makes the short name MyControl refer specifically to the control named Fld
NamesCombo on the form named EZQueryFrm. The lines that follow those two
below are the same lines as in the preceding example except that they use the
shorter name MyControl to refer to Forms![EzQueryFrm]![FldNamesCombo]
(which makes the code a little easier to read).

The main point here though is that if you have a combo box or list box on a
form, you can programmatically change the contents of the list (or drop-down
menu) to show the field names from any table or query in the database. Now
turn your attention to the second type of list — one that gets its values from
a Value List.

206 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 206

Listing text options
A combo box or list box can get its values from a simple string called a Value
List. The string just contains each item in the list separated by semicolons.
If the items in the list are all text, it’s best to enclose each item in quotation
marks.

For example, Figure 10-4 shows a combo box (named OpsCombo) added to a
form. You can see the items in the open combo box: =, Like, <, >, and so forth.
You can also see the properties for the control. Notice that the Row Source
Type is Value List, and the Row Source is a bunch of little chunks of text
enclosed in quotation marks and separated by semicolons. On the form, each
little chunk of text is shown as an option on the control’s drop-down menu.

The Row Source for the OpsCombo control is

“=”;”Like”;”<>”;”>”;”<”;”>=”;”<=”

which is why the drop-down menu displays the various comparison opera-
tors. You can programmatically change the contents of a Value List combo or
list by using the RowSource property. The new Row Source value must follow
the rules of syntax, though, with each item separated by a semicolon and
each string enclosed in quotation marks.

In code, you can represent a quotation mark as Chr(34) (the 34th ASCII char-
acter). That’s generally easier that trying to add quotation marks by enclosing
them in single quotation marks like ‘ “ ‘, which doesn’t always work and is

OpsCombo

Row Source properties

Figure 10-4:
Row Source

properties
for a Value

List.

207Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 207

difficult to read. For example, Listing 10-1 declares a string variable named
NewValList and then adds some text, quotation marks, and semicolons to
that string.

Listing 10-1: Code to Fill a Combo Box Value List Property

‘Create a string variable named NewValList
Dim NewValList As String

‘Build NewValList string in chunks.
NewValList = Chr(34) + “First Item” + Chr(34) + “;”
NewValList = NewValList + Chr(34) + “Second Item” + Chr(34) + “;”
NewValList = NewValList + Chr(34) + “Third Item” + Chr(34) + “;”
NewValList = NewValList + Chr(34) + “Fourth Item” + Chr(34)
‘At this point, NewValList contains...
‘“First Item”;”Second Item”;”Third Item”;”Fourth Item”

‘Make new string the Row Source for value list named OpsCombo
Me!OpsCombo.RowSourceType = “Value List”
Me!OpsCombo.RowSource = NewValList
‘Set selection to first item in drop-down menu.
Me.OpsCombo.Value = Me.OpsCombo.ItemData(0)

When you create a list box or combo box with its Row Source Type set to
Value List, you can leave the Row Source property empty. When the form first
opens, the list will also be empty, which means that the user can’t select any-
thing. However, you can write some code that fills the list and then attach it
to the form’s On Load event. This allows you to create dynamic, flexible lists
that adapt themselves to the current database. I look at some examples in the
sections that follow.

Make a list of table and query names
Sometimes you might want a combo box or list box to display a list of all the
tables, or all the queries, or both. There isn’t a simple property setting that
will let you do that. You need to programmatically fill the list with names as
soon as the form opens. Any time that you want code to execute as soon as a
form opens, attach that code to the form’s On Load event.

For example, Figure 10-5 shows an empty control named TblQryCombo. Its Row
Source Type is set to Value List, but its Row Source property is empty. So with-
out any code, when the form opens, TblQryCombo displays nothing.

Suppose now that when the form opens, you want it to display a list of all table
names in the current database. You can write some code that loops through
the AllTables collection and adds the name of each table to a string. Then
use that string as the Row Source for the control.

208 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 208

Note this catch, though. The AllTables collection includes hidden system
tables that Access uses behind the scenes. Because the names of those system
tables normally don’t appear in the database window, you want to exclude
them from the drop-down list as well.

Luckily, all the system tables have names that start with the letters MSys. To
eliminate those table names from the drop-down list, you can use an If...
Else...End If block to skip over any name that starts with MSys. The com-
plete code to fill TblQryCombo with a list of table names as soon as the form
opens is shown in Listing 10-2. Each comment refers to the line (or lines) that
follow the comment.

Listing 10-2: Procedure to Create a Combo Box of Table Names

Private Sub Form_Load()
‘Declare an empty string to store a value list.
Dim TblNames As String
TblNames = “”

‘Loop through AllTables connection, add each table’s
‘name to TblNames variable, each enclosed in quotation
‘marks and followed by a semicolon.
Dim tbl As AccessObject
For Each tbl In CurrentData.AllTables

‘Exclude system tables, whose names all start with Msys.
If Not Left(tbl.Name, 4) = “Msys” Then

TblNames = TblNames + Chr(34) + tbl.Name + Chr(34) + “;”
End If

Next tbl
(continued)

Empty TblQryCombo control

Figure 10-5:
Sample

empty
combo box

named Tbl
QryCombo.

209Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 209

Listing 10-2 (continued)

‘TblNames string now has all table names (except system tables).
‘Make it the Row Source for the TblQryCombo control.
Me!TblQryCombo.RowSourceType = “Value List”
Me!TblQryCombo.RowSource = TblNames

‘Show first item as selected item in control.
Me!TblQryCombo.Value = Me!TblQryCombo.ItemData(0)
‘Make sure user can only select a valid name.
Me!TblQryCombo.LimitToList = True

End Sub

If you want the combo box to show a list of all queries rather than all tables,
you basically just have to change the word AllTables to AllQueries so that
the loop gathers up names of queries rather than tables. Also, there are no
system queries, so you wouldn’t need the If...Then...End If block to
exclude names that begin with MSys.

Taking it a step further, suppose you want the list to display the names of all
tables and queries in the current database, with the word Table: in front of
table names and the word Query: in front of query names. You need two
loops in the form’s On Load procedure: one to add the table names and one
to add the query names. The entire procedure is shown in Listing 10-3.

Listing 10-3: Procedure to Create a Combo Box of Table
and Query Names

Private Sub Form_Load()
‘Declare an empty string to store a value list.
Dim TblNames As String
TblNames = “”

‘To keep lines below short, we’ll store the quotation mark
‘as a variable named QM, and just refer to it by
‘name (QM) in code that follows.
Dim QM As String
QM = Chr(34)

‘Loop through AllTables connection, add each table’s
‘name to TblNames variable, each enclosed in quotation
‘marks and followed by a semicolon.
Dim tbl As AccessObject
For Each tbl In CurrentData.AllTables

‘Exclude MSys table names from list.
If Not Left(tbl.Name, 4) = “MSys” Then

TblNames = TblNames + QM + “Table: “ + tbl.Name + QM + “;”
End If

Next tbl

210 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 210

‘Next we loop through the AllQueries collection and add their names.
Dim qry As AccessObject
For Each qry In CurrentData.AllQueries

TblNames = TblNames + QM + “Query: “ + qry.Name + QM + “;”
Next qry

‘TblNames string now has all table and query names.
‘Make it the Row Source for the TblQryCombo control.
Me!TblQryCombo.RowSourceType = “Value List”
Me!TblQryCombo.RowSource = TblNames

‘Show first item as selected item in control.
Me!TblQryCombo.Value = Me!TblQryCombo.ItemData(0)
‘Make sure user can only select a valid name.
Me!TblQryCombo.LimitToList = True

End Sub

Referring to the empty TblQryCombo control shown at the start of this
section — and assuming that the code above is tied to that form’s On Load
event — by the time the form is visible to the user, the control will contain
the names of all tables and queries in the current database, as in the example
shown in Figure 10-6.

Make a list of form or report names
You can use a similar technique to Listing 10-2 to make a drop-down list dis-
play the names of all forms or all reports in the current database. For example,
Figure 10-7 shows an empty ComboBox control named ObjCombo (for lack of a
better name).

Figure 10-6:
TblQry
Combo

control after
Form_
Load()

procedure
executes.

211Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 211

To fill the ObjCombo with a list of all form names in the current database, tie
the form’s On Load event to a procedure that creates a value list of form
names, as follows in Listing 10-4.

Listing 10-4: Code to Fill a Combo Box with Form Names

Private Sub Form_Load()
‘Define string variable to store new Value List.
Dim NewValList As String
NewValList = “”

‘Loop through collection and add each object name
‘with quotation marks and semicolons to NewValList.
Dim obj As AccessObject
For Each obj In CurrentProject.AllForms

NewValList = NewValList + Chr(34) + obj.Name + Chr(34) + “;”
Next obj

‘Now NewValList contains all object names in proper format.
‘Make that string the Row Source for objCombo control.
Me!ObjCombo.RowSourceType = “Value List”
Me!ObjCombo.RowSource = NewValList

‘Set option to first item in list.
Me!ObjCombo.Value = Me!ObjCombo.ItemData(0)

End Sub

If you want that combo box to list all reports rather than all forms in the cur-
rent database, change the code to loop through the AllReports collection
rather than the AllForms collection. That just involves changing the collec-
tion name, as shown in boldface:

Figure 10-7:
Sample

combo box
named

ObjCombo.

212 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 212

Private Sub Form_Load()
‘Define string variable to store new Value List.
Dim NewValList As String
NewValList = “”

‘Loop through collection and add each object name
‘with quotation marks and semicolons to NewValList.
Dim obj As AccessObject
For Each obj In CurrentProject.AllReports

NewValList = NewValList + Chr(34) + obj.Name + Chr(34) + “;”
Next obj

‘Now NewValList contains all object names in proper format.
‘Make that string the Row Source for objCombo control.
Me!ObjCombo.RowSourceType = “Value List”
Me!ObjCombo.RowSource = NewValList

‘Set option to first item in list.
Me!ObjCombo.Value = Me!ObjCombo.ItemData(0)
End Sub

The basic idea is still the same in all these examples. When the form opens,
the form’s On Load event occurs, which then triggers the code in the
Form_Load() procedure, which in turn creates a valid, up-to-date list of
object names to show in the list box or combo box.

Listing Table/Query field values
The third type of combo box/list box that you can create gets its values from
a field (or fields) in a table or query. The Row Source Type for such a list is
Table/Query, and the Row Source is generally a SQL statement that specifies
which fields and values to show in the list. Back up a moment and take a look
at the bigger picture.

Suppose you want to create a drop-down list that shows an alphabetized list
of all unique Company names from a table. By unique, I mean that if a given
company name appears more than once in the table, it still appears only once
in the drop-down menu (or list box). To create such a query in Query Design,
you’d need to add the field name to the Query-by-Example (QBE) grid and
also choose Ascending as the Sort order. To prevent empty records from
showing up in the query results, set a criterion to Is Not Null, as in the exam-
ple shown in Figure 10-8.

To see the SQL view of a query on your own screen, right-click the query’s
title bar and choose SQL View. For more information, see the first few pages
of Chapter 7.

213Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 213

To ensure that only unique addresses appear, you then need to double-click
the gray area at the top of the query to open the Query Properties sheet. In
the Query Properties sheet, set the Unique Values property to True, as in the
example shown in Figure 10-8.

I also managed to sneak the SQL view of the same query into Figure 10-8. Like
any SQL statement, it describes in words what the query is to do when
opened. In this case, those words are

SELECT DISTINCT Customers.Company
FROM Customers
WHERE (((Customers.Company) Is Not Null))
ORDER BY Customers.Company;

The SQL statement says the same thing that the items in the QBE grid say,
which is Select unique Company names from the Customers table, excluding
blanks (nulls), and put them in alphabetical order.

The Unique Values property eliminates duplicate values within a single field.
If a query contains multiple fields and you want only records with identical
values in every field to be considered a duplicate, set the Unique Records
property to Yes (or True). The SQL keyword for Unique Values is DISTINCT,
and the SQL keyword for Unique Records is DISTINCTROW.

The SQL statement would work as the Row Source property for a ListBox or
ComboBox control. In VBA, however, you’d probably prefer to use the follow-
ing slightly different syntax, partly because you can omit all the parentheses

Query Properties

SQL view

Unique
Values
property

Figure 10-8:
Sample
unique
values

query for a
text field.

214 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 214

and partly because the table name in front of the field name (for example,
Customer.Company) is required only when the query involves two or more
tables with identical field names. In the following syntax, tblName is the name
of a table in the current database, and fldName is the name of any field within
that table:

SELECT DISTINCT [fldName]
FROM [tblName]
WHERE [fldName] Is Not Null
ORDER BY [fldName]

For example, Figure 10-9 shows a ComboBox control named SearchVal with
its drop-down menu already visible. That drop-down menu contains an alpha-
betized list of company names from a table named Customers because the
control’s Row Source Type is set to Table/Query, and its Row Source prop-
erty is set to the SQL statement below (shown as one lengthy line within the
property):

SELECT DISTINCT [Company] FROM Customers WHERE [Company] Is Not Null ORDER BY
[Company];

SearchVal control

Row Source property

Figure 10-9:
SearchVal

is a
ComboBox

control.

215Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 215

Now, suppose you want to programmatically change the SearchVal combo
box so that it shows all unique ZIP codes from the Customers table. This
example assumes that the Customers table stores ZIP codes in a field named
ZipCode. But the idea is to create a new SQL statement that refers to the
ZipCode field rather than the Company field, as follows. Then use that new
SQL statement as the Row Source property for the SearchVal control.

‘Create a string named MySql, and put a SQL statement in it.
Dim MySQL As String
MySQL = “SELECT DISTINCT [ZipCode] FROM [Customers]”
MySQL = MySQL + “ WHERE [ZipCode] Is Not Null”
MySQL = MySQL + “ ORDER BY [ZipCode]”

‘Now MySQL contains a valid SQL statement. Use that SQK
‘statement as the Row Source for the SearchVal control.
Me!SearchVal.RowSource = MySQL

‘Make the first menu option the selected item in list.
Me!SearchVal.Value = Me.SearchVal.ItemData(0)

Even though the SQL statement is built in chunks in the code (just to make
the lines short enough to fit inside these margins), the SQL statement that’s
created and stored in the MySQL variable is one long line of text composed of
all the chunks. By the time the last MySQL = MySQL + ... statement has
executed, the MySQL variable contains

SELECT DISTINCT [ZipCode] FROM [Customers] WHERE [ZipCode] Is
Not Null ORDER BY [ZipCode]

In the procedure, the statement Me!Search.Rowsource = MySQL puts the
complete SQL statement into the Row Source property of the control. When
the user clicks the drop-down button, the control shows all unique ZIP codes
from the Customers table, as in Figure 10-10.

The bottom line here is that programmatically, you can do anything you want
with a ListBox or ComboBox control. Like with anything you do through VBA,
controlling when a combo box gets changed is a matter of choosing an appro-
priate event. Often the triggering event will be a change to some other control
on the form or even a different form. In this way, you can control what appears
in a combo or list box based on the contents of some other control, which
brings me to linking lists.

216 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 216

Linking Lists
One of the main reasons for programming ListBox and ComboBox controls
is to create linked lists, where the options in one control depend on what’s
selected in another control. As an example, Figure 10-11 shows a form named
Fancy SkipLabels Dialog Box that contains three dynamic combo boxes named
LabelRpt, FldToSearch, and ValueToFind. The fourth combo box (not
pointed out) is static, meaning that its drop-down list never changes.

The names of the dynamic controls and the relationships between the control
are summarized here:

� LabelRpt: This ComboBox lists names of all reports in the current data-
base that contain the word label. It needs to be filled once — the moment
when the form opens.

� FldToSearch: This ComboBox lists the names of fields from the selected
report’s underlying table or query. This needs to be updated each time
the user chooses a report to print from the LabelRpt control.

� ValueToFind: This displays a list of all unique values in the field selected
in the FldToSearch combo box. Each time the user chooses a field to
search on, this combo box needs to be changed to display values from the
selected field.

Different list because of..

...new Row Source property setting

Figure 10-10:
Result of

changing a
combo box’s
Row Source

property.

217Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 217

You can envision the relationships between the combo boxes as dependencies,
in the sense that the exact items in a combo box depend on what’s selected
and available at the moment. For example, what appears in the FldToSearch
combo box depends on what report is selected at the moment in LabelRpt.
Similarly, what appears in the ValueToFind combo box depends on what
field name is selected in the FldToSearch control. As is always the case, just
writing the code to make these controls always show the “right stuff” is only
part of the problem. You also have to control exactly when that code runs.
Look at some examples of that first, which I’ll follow with some of the code.

To make life simpler for myself, I encapsulated the code that updates each
combo box as its own little procedure. The fancy programming term encapsu-
lation translates to something along the lines of Save myself from having to deal
with this problem more than once. For example, if I create a procedure named
UpdateFldToSeachCombo() and make its job to ensure that the FldToSearch
control is up-to-date, I don’t have to worry about when the code gets exe-
cuted. I can just tie the statement UpdateFldToSeachCombo to any event on
any control in the form when I want that event to update the FldToSearch
control.

That’s sort of a programming strategy. To encapsulate the code needed to
update each of the three dynamic controls shown in Figure 10-11, I wrote three
separate procedures and named each so it describes what it does. The names
of those procedures are

� Sub UpdateLabelRptCombo(): This procedure updates the list of reports
in the LabelRpt combo box on the form to accurately reflect label reports
in the current database.

� Sub UpdateFldToSearchCombo(): This procedure ensures that the
FldToSrch combo box accurately reflects the names of fields in the

LabelRpt

FldToSearch ValueToFind

Figure 10-11:
Fancy

SkipLabels
Form

dynamic
controls.

218 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 218

selected report’s record source. It allows the user to choose a field name
on which to create a filter.

� Sub UpdateValueToFindCombo(): As its name suggests, this procedure
ensures that the unique values displayed in the ValueToFind combo box
accurately reflect the contents of the field specified in the FldToSearch
control.

The advantage of creating these procedure is that I could just concentrate on
getting each one to work (at all) without worrying about when the procedure
will do its thing. In my code, when I want to tie the procedure to a particular
event, the triggered procedure need only call the appropriate Sub procedure
to get its job done. Again, I’ll look at each procedure in a moment. Just focus
on the when for a moment.

Running code when a form opens
If you want a procedure to execute as soon as a form opens and any data
from the form’s underlying table or query has been loaded into the form, tie a
procedure to the forms On Load event. The name of that procedure, in every
form, is Form_Load(). The Form_Load() procedure for the sample form
shown in Figure 10-11 looks something like this:

Private Sub Form_Load()
Call UpdateLabelRptCombo
Call UpdateFldToSearchCombo
Call UpdateValueToFindCombo

End Sub

In forms Design, make sure that the Properties sheet shows the word Form in
the title bar and/or drop-down list. Clicking the gray area behind forms
Design grid will instantly display Form properties in the Properties sheet.

The basic logic of the Form_Load() procedure is pretty straightforward: It
simply updates each of the three ComboBox controls in the order that they
need to be updated. When the form opens, each ComboBox control has actual,
reasonable data in its drop-down menu.

Say the form is open, and the user chooses a report name from the LabelRpt
drop-down menu. When that happens, the two controls beneath LabelRpt
need to have their drop-down menus updated. First the FieldToSearch drop-
down list needs to be updated to reflect field names from the selected
reports record source (underlying table or query). Then after that control
gets a new value, the ValueToFind drop-down menu needs to be updated to
reflect legitimate values for the currently selected field name. To make that

219Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 219

happen, a change to the LabelRpt control needs to run two of the update
procedures. Here’s the After Update procedure for the LabelsRpt control:

Private Sub LabelRpt_AfterUpdate()
Call UpdateFldToSearchCombo
Call UpdateValueToFindCombo

End Sub

The preceding procedure says, After the user chooses a different report to print,
update the FldToSearch and ValueToFind combo boxes on this form.

Running code when the
user makes a choice
To make a procedure execute after the user chooses an option from a combo
or list box, tie the procedure to the control’s After Update event. For exam-
ple, when the user chooses to different field to search on from the Search Field
option on the Fancy SkipLabels form (the FldToSearch control), the Look
For Value drop-down menu needs to be updated to show unique values from
that field. To make sure that the ValueToList control gets updated whenever
the user chooses a different field to search, I added the following procedure
to the form’s class module:

Private Sub FldToSearch_AfterUpdate()
Call UpdateValueToFindCombo

End Sub

The preceding class procedure says, After the user chooses a different field to
search on, update the Value to Find combo box to list unique values from the
specified field.

220 Part IV: Applying VBA in the Real World

Getting Fancy SkipLabels
You can download the Fancy SkipLabels Dialog
Box form and all its code from www.cool
nerds.com/vba. You won’t find any standard
modules in that database. All the code for the
Fancy SkipLabels Dialog Box will be in the
form’s class module. If you look at that code,
you’ll see more than just what’s shown in this
chapter. (That’s because much of the code
there isn’t relevant to this chapter topic.)

To use Fancy SkipLabels Dialog Box in your own
database, you first need to create at least one
report for printing labels and also make sure you
save that report with the word label in its name
so SkipLabels will find the report. Then you need
to import LabelSettingsTable and Fancy
SkipLabels Dialog Box Form from the
downloaded database into your own database.
The Web site will provide more information.

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 220

Getting back to the encapsulation strategy, you can see that it wouldn’t be too
tough to make other events on other controls update any dynamic list on the
form. Just click the control, click its After Update event, and add the code
needed to call the appropriate procedure(s) for the event.

The various preceding called procedures all follow the examples presented
earlier in this chapter. For example, the LabelRpt control, which displays a
drop-down menu of reports with the word label in their name, gets its infor-
mation from the AllReports collection (Listing 10-5):

Listing 10-5: Code to Update a Combo Box of Report Names

‘** UpdateLabelRptCombo() updates the LabelRpt control.
Private Sub UpdateLabelRptCombo()

‘ValListVar variable will store a string that can
‘be used as the Value List property for a combo box.
Dim ValListVar As String
ValListVar = “”

‘Get names of label reports from AllReports collection,
‘and assemble into a valid Value List for a Combo Box.
Dim rpt As AccessObject
For Each rpt In CurrentProject.AllReports

‘Don’t add LabelsTempReport to the ValListVar.
If Not rpt.Name = “LabelsTempReport” Then

‘Only add report names that contain the word “label”.
If InStr(rpt.Name, “Labels”) > 1 Then

‘Add label report names to ValListVar.
ValListVar = ValListVar + qt + rpt.Name + qt + “;”

End If
End If

Next

‘ValListVar now contains valid report names, so next
‘lines make it the Row Source property for LabelRpt.
Me!LabelRpt.RowSourceType = “Value List”
Me!LabelRpt.RowSource = ValListVar
‘More code follows in actual procedure...

End Sub

The UpdateFldToSearchCombo procedure updates the drop-down menu in
the FldToSearch control. The code gets the name of the label report to print
from the LabelRpt control on the form (referred to as Me!LabelRpt.Value
in the code). It then (invisibly) opens that report in Design view and copies
its Record Source property (which is the name of the report’s underlying
table or query) into its own variable named LabelRecSource. After that, the
rest of the code sets the controls Row Source Type to Field List and the Row
Source to the name that’s stored in that LabelRecSource variable. Here’s the
whole procedure with comments to help explain each step:

221Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 221

‘** UpdateFldToSearchCombo updates the FldToSearch Combo Box.
Private Sub UpdateFldToSearchCombo()

‘Open specified report in Design view.
DoCmd.OpenReport Me!LabelRpt.Value, acViewDesign, , , acHidden

‘Copy its record source name to LabelRecSource variable.
Dim LabelRecSource As String
‘Placeholder for record source.
LabelRecSource = Reports(Reports.Count - 1).RecordSource

‘Close the report (only needed to grab record source).
DoCmd.Close acReport, Me!LabelRpt.Value, acSaveNo

‘Set FldToSearch Combo Box Row Source properties.
Me.FldToSearch.RowSourceType = “Field List”
Me.FldToSearch.RowSource = LabelRecSource

End Sub

The last dynamic control on the form, ValueToFind, gets updated by a Sub
procedure named UpdateValueToFindCombo. This procedure updates the
list of unique values in the control’s drop-down menu to accurately reflect
unique values in whatever field the user specified in the FldToSearch control.
The Row Source Type for the control needs to be Table/Query, and the Row
Source has to be a valid SQL statement that specifies what to display. The
code below builds a valid SELECT DISTINCT... query for whatever field’s
name is selected in FldToSearch control (Me!FldToSearch.Value in VBA).
Listing 10-6 holds the whole procedure with comments.

Listing 10-6: Code to Update a Combo Box from a Table

Private Sub UpdateValueToFindCombo()
‘Build a SQL statement to pull unique values
‘from whatever field name is selected in form.
‘(If FldToSearch is empty, do nothing)
If Not IsNull(Me!FldToSearch.Value) Then

Dim MySQL As String
MySQL = “SELECT DISTINCT “ + FldToSearch.Value
MySQL = MySQL + “ FROM “ + LabelRecSource
MySQL = MySQL + “ WHERE “ + FldToSearch.Value + “ Is Not Null”
MySQL = MySQL + “ ORDER BY “ + FldToSearch.Value

‘Now that we have the right SQL statement, make it the
‘Row Source for the ValueToFind control.
Me!ValueToFind.RowSourceType = “Table/Query”
Me!ValueToFind.RowSource = MySQL

End If
End Sub

222 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 222

In case you’re wondering about the If Not IsNull(!FldToSearch.Value)
Then...End If statements, I originally wrote the procedure without those.
At first, the procedure seemed to work fine when tested. But then I discov-
ered that if the FldToSearch control is null (empty) when UpdateValueTo
FindCombo is called, the procedure crashes and yelps out an error message.
To ward off that irritant, I make execution of the code dependent on the
FldToSearch control’s not being null. In other words, the procedure executes
only if there’s a field name selected in the FldToSearch control. Otherwise,
the procedure does nothing to prevent the error from occurring.

From a programming perspective, the main thing to remember is that every
ListBox and ComboBox control that you create exposes many properties to
VBA. Two of those properties, Row Source Type and Row Source, give you
strong programmatic control over the choices presented by those controls.

Linking Lists across Forms
Working with list controls (such as ListBox and ComboBox controls) isn’t
always a matter of controlling the Row Source Type and Row Source properties
of the control. In some cases, it’s just getting the darn control to show what’s
currently in the underlying table or query. Or worse yet, getting it to accept a
value that should be acceptable to the control — but isn’t. These types of
problems happen a lot when two or more forms are involved in the scenario.

I suppose a typical example would be where a user is trying to type in a new
order, perhaps coming in over the phone. Say the user is sitting there looking
only at the Orders form shown at the left side of Figure 10-12. To start typing
in an order, she can choose an existing customer from the CustID combo box
on the Orders form, or she can click New Customer (NewCustBttn) to enter
name and address info for a new customer.

The names and e-mail addresses shown in these figures are all fake, so don’t
bother trying out any of the e-mail addresses to see whether they actually go
anywhere.

If your user clicks the New Customer button, the NewCust form (also shown
in Figure 10-12) opens at a blank record, ready to type in a new customer’s info.
Say the user types in the info and clicks the Done - Fill Order button (named
DoneBttn). At that point, the NewCust form closes, and the user is returned
to the Orders form. That moment in time — when the NewCust form closes
and the focus returns to the Orders form — is where most troubles begin. The
problem has to do with when a combo box or list box gets its data from an
underlying table or query, which (in general) is only once — when the form
opens.

223Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 223

Updating a combo box or a list box
A typical combo box or list box gets the values that it shows in its list only
once, right after the form opens. For example, the CustID control in the Orders
form pictured earlier gets its list of customers from a field in a table named
Customers. It gets that list when the Orders form opens. When a user adds a
new record to the Customers table via the NewCust form, the Orders table
knows nothing of the new record. The drop-down menu in the CustID control
just continues to show the same names it did before NewCust form added a
new record to the Customers table.

The solution to the problem is the Requery method, which every list box and
combo box control exposes to VBA. As its name implies, the Requery method
forces the list box or combo box to update its list (drop-down menu) immedi-
ately. The syntax for using the method is

controlName.Requery

CustID

DoneBttn

NewCustBttn

NewCust form

CustID

Orders form

Figure 10-12:
Sample

Orders and
NewCust

forms open.

224 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 224

where controlName is the name of the combo box or list box that needs
updating. When you need to update a control on some (for other than the
one in which the code is running), you need a complete identifier at the start
of the name, specifying the name of the form on which the control resides.
For example, to update the CustID control in Orders form from code that’s in
the class module for the NewCust form (or any other form)

Forms![Orders]![CustID].Requery

The preceding statement says, Update the control named CustID on the cur-
rently open form named Orders.

Okay, back to the sample Orders and NewCust forms shown in Figure 10-12.
First, clarify that the Orders form there is bound to a table named Orders.
The CustID control on the Orders form is bound to the CustID control in the
Orders table, which is a Long Integer. The CustID control on the NewCust
form is bound to the CustID control in the Customers table, where it’s defined
as an AutoNumber field and Primary key (ensuring that every new customer
automatically gets a unique, unchangeable CustID value the moment when a
new record is added). Figure 10-13 shows the structures of the Orders and
Customers tables.

When you look at the CustID combo box in Figure 10-12, it doesn’t look like
it’s bound to an Integer field in a table because the control displays text.
However, the actual hidden value in that CustID control is an integer; the
integer is just hidden from view. More on that in the upcoming section,
“Hidden values in combo and list boxes.”

CustID in Customers table (AutoNumber, Primary, key)

CustID in Orders
table (Long Integer)

Figure 10-13:
Tables

underlying
OrdersFrm

and
NewCust

forms.

225Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 225

Suppose you have a form like the Orders form that has a button to add a new
record through some other form. The first thing you need to do is get the
button to open the appropriate form pointing at a new, blank record. Tackle
that problem first.

Open a form to enter a new record
Say you have the Orders form open in Design view, and you need to get that
New Customer button to open the NewCust form poised to accept a new
record. You could do that with a macro, or you can assign the following pro-
cedure to New Customer button’s (NewCustBttn) On Click event.

Private Sub NewCustBttn_Click()
‘Open NewCust form at new, blank record (asFormAdd).
DoCmd.OpenForm “NewCust”, acNormal, , , acFormAdd

End Sub

That’s it for the Orders form’s role in all of this, so you’d close and save that
form. When the user clicks the New Customer button on the Orders form (in
Form view), the NewCust form will open. Presumably, the user will then type
in the new customer’s information, click the Done button, and return to the
Orders form. That’s where the CustID control on the Orders form will get out
of sync.

When the NewCust form closes and saves the new record, the CustID control
on the Orders form won’t know about the new record. Hence, its drop-down
menu will be out of sync. Somehow you have to get the NewCust form to tell
the Orders form, “Hey, update your CustID control” before the form closes.

To solve the problem, write some code that updates the CustID control on the
Orders form every time the NewCust form adds a new record to the Customers
table. As it turns out, any time a form adds a new record to its underlying table
or query, that form’s On Insert event occurs. Thus, a guaranteed way to
ensure that the Orders form’s CustID combo box is up-to-date is to requery
that control every time the NewCust form’s On Insert event occurs.

To make that happen, do the following:

1. First make sure you open the NewCust form (not the Orders form) in
Design view.

2. Make sure Form is selected in the Properties sheet (so you’re setting
Form properties).

3. Click the Event tab in the Properties sheet.

4. Click the Build button next to the After Insert event.

5. Choose Code.

226 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 226

6. Click OK.

7. Type the VBA statement needed to requery the control on the Orders
form:

Forms![Orders]![CustID].Requery.

The entire Form_AfterUpdate procedure in the NewCust form’s class
module looks like this:

Private Sub Form_AfterInsert()
‘Update CustID combo on open Orders form.
Forms![Orders]![CustID].Requery

End Sub

The problem is now solved because every time the user adds a customer to
the Customers table from the NewCust form, the CustID control on the
Orders form will automatically be requeried to include that new record. You
could leave it at that. However, in solving that problem, you created a new
problem, as described next.

Seeing whether a form is open
VBA can requery a control only on a form that’s open. If a form is closed, there’s
no way to (and no reason to) requery any of its controls because any list con-
trols on the form will be created (and hence up-to-date) the moment when the
form opens. If VBA code tries to requery a control on a form that’s closed, the
procedure crashes, and an error message appears onscreen. Not good.

To get around the problem of the Form_AfterInsert() procedure crashing
when the Orders form isn’t open, put the statement that updates the con-
trol inside an If...End If block. Make the condition of the If statement
CurrentProject.AllForms(“FormName”).IsLoaded in your code but sub-
stitute FormName with the name of the form that needs to be open. For exam-
ple, the following modified Form_AfterUpdate() procedure requeries the
Orders form’s CustID control only if the Orders form is open when the proce-
dure executes:

Private Sub Form_AfterInsert()
‘If the Orders form is open (loaded...)
If CurrentProject.AllForms(“Orders”).IsLoaded Then

‘...update CustID combo on open Orders form.
Forms![Orders]![CustID].Requery

End If
End Sub

If the Orders form is closed when the preceding procedure is executed, the
procedure does absolutely nothing. That’s good because as I mention, there’s
no need to requery a control on a closed form.

227Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 227

Getting forms in sync
Requerying the CustID control on the Orders form keeps the combo box’s
drop-down list up-to-date with the current contents of the Customers table at
all times. However, it doesn’t change the value that’s currently displayed in
that control. In other words, requerying a ComboBox control fixes the combo
box’s hidden drop-down menu, but it doesn’t change which option in that
menu is currently selected and visible in the control. You can always add
some code to take care of that.

A perfect example would be when the user adds a new customer via the
NewCust form and returns to the Orders form. Ideally, you want the Orders
form to already show a new, blank order form with the new customer already
chosen as the one placing the order. So from a VBA perspective, when the
user closes the NewCust form, it makes sense to add a new, blank record to
the Orders form and set the CustID control on the Orders form to the new
customer’s CustID value. In other words, when the user clicks the Done - Fill
Order button, you want VBA to

� Copy the new customer’s CustID to a variable for holding

� Close the NewCust form, saving the new customer’s record

� Make sure you’re at new, blank record in Orders form

� Copy the new customer’s CustID into Orders form’s CustID control

� On the Orders form, put the cursor in whatever control the user is most
likely to resume typing the order

Making those steps happen whenever someone clicks the DoneBttn button
in the NewCust form requires the procedure in Listing 10-7 in the NewCust
form’s class module:

Listing 10-7: Code to Update a Control on a Separate Form

Private Sub DoneBttn_Click()

‘Do these steps only if Orders form is open.
If CurrentProject.AllForms(“Orders”).IsLoaded Then

‘Copy the new customer’s CustID to a variable.
Dim NewCustID As Integer
NewCustID = Me!CustID.Value

‘Close the NewCust form, saving new record.
DoCmd.Close acForm, “NewCust”, acSaveYes

228 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 228

‘Make sure were at new, blank record in Orders form
DoCmd.GoToRecord acDataForm, “Orders”, acNewRec

‘Copy new CustID into Orders form’s CustID control
Forms![Orders]!CustID.Value = NewCustID

‘Move cursor to PaymentMethod control in Orders form.
Forms![Orders]![PaymentMethod].SetFocus

End If

End Sub

You might notice that none of the statements in the preceding procedure
requeries the CustID control on the Orders form. That’s because you’ve
already written a Form_AfterInsert() procedure to ensure that any time
any record gets added to Customers via the NewCust form, code immediately
updates the CustID control on the Orders form. When VBA executes the
statement DoCmd.Close acForm, “NewCust”, acSaveYes, it has to save
the current record (because of acSaveYes). Right after the form inserts the
new record into the Customer table, the Form_AfterInsert() procedure
runs, updating the CustID combo box on the Orders form.

In other words, by the time execution reaches the first statement under the
DoCmd.Close acForm, “NewCust”, acSaveYes statement, the Form_
AfterInsert() event has already occurred and updated the CustID control
on the Orders form to include the new customer’s record.

More Combo Box Tricks
Here I look at a few more combo box tricks, starting with an explanation of
why what you see in a combo box isn’t always what you get in VBA. For exam-
ple, the CustID control on the Orders form shown in Figure 10-12 is bound to
a Long Integer field in its underlying table, and yet its combo box shows a
bunch of names and addresses. How can that be?

Hidden values in combo and list boxes
A combo box or list box can show any data from a table or query even though
the control contains some simple value like an Integer. The integer, which is
usually a primary key value, can be hidden in the control as the control’s actual
value while some more meaningful (to humans) text is shown to the user.

229Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 229

This disappearing value act works thanks to multicolumn lists and the Bound
Column property. Here, in a nutshell, is how it works:

� Whatever is in the first column of the list is what shows (visibly) in the
control.

� Whatever value is defined as the Bound Column is the value that’s actu-
ally stored in the control, although not visible to the user.

For example, to create the drop-down menu of customer names and e-mail
addresses shown back in the Orders form (refer to Figure 10-12), I first cre-
ated a query based on the Customers table. In that query, I used some fancy
expressions to display the name and e-mail address of each customer in the
list. The first column in the query, as shown in Figure 10-14, contains the cal-
culated field (which is too wide to show completely in the figure):

SortName: IIf(IsNull([LastName]),[Company],[LastName] & “, “ & [FirstName])

The preceding expression says, If the Last Name field in this record is null
(empty), just show the Company name. Otherwise, show the person’s LastName
followed by a comma and a space and then the FirstName.

Figure 10-14:
The

Customer
LookupQry

query in
Design and
Datasheet

views.

230 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 230

The second column in the query contains the calculated field:

EmailText: HyperLinkPart([EmailAddress],0)

In that example, EmailAddress refers to a Hyperlink field in the underlying
Customers table. Hyperlink fields can look kind of weird in drop-down menus.
The HyperLinkPart() function there isolates just the display portion of the
field. That basically ensures that the e-mail address looks like an e-mail
address in the query results.

The third column in the CustomerLookupQry contains represents the CustID
control from the Customers table, which is defined as a AutoNumber field in
the table’s design. The lower-right image in Figure 10-14 is the same Customer
LookupQry in Datasheet view. Notice how the names are presented in the first
column; the e-mail address in the third column; and the CustID value — an
Integer — in the third column. Later, when you use that query as the drop-
down menu for a combo box, you can make that third column the Bound
Column while still showing the fancy SortName value in the control.

Say you create, close, and save a query like CustomerLookupQry. Now you
want to use that query’s columns as a drop-down menu for a combo box that
allows the user to choose a customer by name and/or e-mail address. To get
started, you need a form open in Design view. Optionally, you can turn on the
Control Wizards by clicking the Control Wizards button in the Toolbox.

Next, create the combo box as you normally would. For example, to create
the CustID combo box on the Orders form, you’d click the Combo Box tool in
the toolbox and then drag the CustID control from the Orders table’s Field
List onto the form. (Dragging the CustID control to the form after you click
the Combo Box tool binds the new combo box to the CustID control.)

When the Combo Box Wizard starts, just follow its instructions to design the
combo box. For example, tell it to get its values from the CustomerLookupQry
described earlier. When it asks which fields from that query to display, choose
all three field names. When you get to the wizard page where you set column
widths, you’ll initially see all the columns from the query, as in the top-left side
of Figure 10-15. To hide the CustID number from the user, narrow its column to
the point that it’s not visible. Set the widths of the other two columns to what-
ever fits best, as in the lower-right portion of that same figure.

The next page of the wizard asks which field from the query should actually be
stored in the ComboBox control. In this case, you’d choose CustID because you
want to store the selected customer’s CustID value (not the name or e-mail
address) in the CustID field of the Orders form. The last wizard page asks
which field should store that value and suggests CustID. I click Next, and the
last wizard page asks for a label. I type Customers and then click Finish.

231Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 231

The ComboBox control is now on the form. Figure 10-16 shows the results with
the Combo Box drop-down menu visible. You can also see the Properties sheet
there, and that’s where you can see what’s really going on. For example, the
Column Count property shows that the drop-down menu actually contains
three columns. The Column Widths are 1.4", 1.6", and 0", meaning the third
column is invisible (zero inches wide). The Bound Column property (3) tells
you that whatever is in that third column is what actually gets stored in the
CustID control that the drop-down menu is attached to.

Because a combo box always shows whatever is in the first column of the
drop-down menu, only the selected person’s name appears in the combo box
after the user makes a selection because that SortName control is the fist
column in the CustomerLookupQry query. The only purpose of the e-mail
column in that query is to act as a tie-breaker. For example, if two customers
happen to have the same first and last name, the user can tell which is which
by the e-mail address.

The most important thing to glean from all of this is that what you see in a
ComboBox control isn’t always what Access and VBA see. What’s actually stored
in the combo box will be whatever is defined as the Combo Box’s Bound

Before sizing columns

After sizing columns

Figure 10-15:
Column-

sizing page
of the

Combo Box
Wizard.

232 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 232

column. What you’ll see in the control is whatever is in the first column of the
drop-down menu.

If you add an unbound text box control to your form that contains an expres-
sion like =fieldname.Value as its control source (where fieldname is the
name of a ComboBox or ListBox control), that control will show you the true
value of the fldname control as opposed to what appears in the control.

Giving users a quick find
You can use a combo box as a tool for allowing a user to quickly find a spe-
cific record in a table. For example, suppose you have a form that allows a
user to find and edit customers. At the top of that form, you could provide a
drop-down menu, perhaps named Quick Find or something, as in Figure 10-17.
When the user chooses a name from the drop-down menu, the form instantly
displays that customer’s record. (I also point out some of the properties for
the QuickFind control in that figure.) You can assign those properties when
you use the Control Wizards to create the initial combo box.

CustID control

CustID
properties

Figure 10-16:
CustID

control
using

Customer
Lookup
Qry’s

columns.

233Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 233

Look at an example of creating a QuickFind control. Like with any combo or
list box, you can begin by creating a query that defines the columns to be
displayed in the list. For this example, you can use the CustomerLookupQry
shown earlier in this chapter as the drop-down menu for a combo box named
Quick Find. Here are the basic steps for creating such a control:

1. In the Access database window, right-click the name of the form to
which you want to add a Quick Find capability and then choose
Design View.

2. If you want to use the Combo Box Wizard to create the initial control,
make sure that the Control Wizards button in the Toolbox is pushed
in. Then click the Combo Box tool and click where you want to place
the control on your form.

The Combo Box Wizard opens.

3. On the first wizard page, select I Want the Combo Box to Look Up the
Values in a Table or Query and then click Next.

4. On the second wizard page, choose Queries and then select the query
that contains the values to be displayed in the drop-down menu. Then
click Next.

In my example, I click Queries and then click CustomerLookupQry.

5. On the third wizard page, click the button with the right-facing
chevrons (>) to add all the fields from your query to the drop-down
menu; then click Next.

QuickFind control (unbound)

QuickFind properties

Figure 10-17:
A

QuickFind
control

offers fast
customer

name
lookup.

234 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 234

6. (Optional) You can choose a sort order on the fourth wizard page. If
your query already has all the records in order, you can just ignore
that page and click Next.

7. On the fifth wizard page, size your columns.

As in Figure 10-15 earlier in this chapter, you can hide any column by
narrowing it to the point where it’s invisible. Then click Next.

8. The sixth wizard page asks which value from the query the combo
box should store. Click whichever field name would provide the most
accurate search; then click Next.

In my example, CustID is unique to each customer, so I specify the CustID
field.

9. On the seventh wizard page, select Remember the Value for Later Use
and then click Next.

10. On the last wizard page, type a label for the control and then click
Finish.

I labeled my Combo Box QuickFind.

That takes care of creating the initial unbound combo box. To get it to act as
a Quick Find, you need to write some VBA code. First, I suggest you go into
the All tab of the Properties sheet and change the Name property something
more meaningful — for example, QuickFind instead of Combo01 or whatever
Access named the control. Then click the Event tab in the Properties sheet
and click the After Update event. You’ll be taken to the VBA editor with the
cursor in a procedure named control_AfterUpdate() where control is the
name of your unbound ComboBox control.

The basic skeleton structure needed for a Quick Find procedure looks like this:

Private Sub controlName_AfterUpdate()
‘Clone the form’s table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

‘Find first matching record in the recordset.
MyRecSet.FindFirst “[fldName] = “ & Me![controlName]

‘Set the form’s record to found record.
Me.Bookmark = MyRecSet.Bookmark

End Sub

where controlName is the name of the unbound combo box, and fldName is
the name of the field being searched in the form’s underlying table or query.
In my example, the QuickFind control will contain an integer value that
matches the CustID value of the customer you’re searching for. (Both values
are integers.) The code for the QuickFind control, which searched the
CustID control in the Customers table, looks like this:

235Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 235

Private Sub QuickFind_AfterUpdate()
‘Clone the form’s table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

‘Find first matching record in the recordset.
MyRecSet.FindFirst “[CustID] = “ & Me![QuickFind]

‘Set the form’s record to found record.
Me.Bookmark = MyRecSet.Bookmark

End Sub

Like all procedures, this one is a series of steps. Starting at the first line, the
name of the procedure defines when it runs. In this case, the procedure will
run whenever a user chooses a customer from the QuickFind control’s drop-
down menu:

Private Sub QuickFind_AfterUpdate()

The following lines provide for a speedy search without any activity on the
screen by using an invisible recordset to do the search behind the scenes. The
Dim statement declares a general object named MySetSet. The Set statement
makes MyRecSet into a recordset that’s an exact clone of the table/query
underlying the current form:

‘Clone the form’s table/query into a recordset.
Dim MyRecSet As Object
Set MyRecSet = Me.Recordset.Clone

With a simple clone recordset like this, you can use the FindFirst method to
quickly locate a specific value in a single field. You can’t do any sort of fancy
SQL WHERE clause — only a simple fieldname = value type expression is
allowed.

The next statement in the procedure uses the FindFirst method to locate
CustID value in the recordset that matches whatever value is currently stored
in the QuickFind control:

MyRecSet.FindFirst “[CustID] = “ & Me![QuickFind]

It takes less than an eyeblink’s time for the preceding statement to search
the CustID field in the recordset. After the record is found, the recordset’s
Bookmark property will contain a value that indicates that record’s position
in the recordset. To get the form to show the record that was found in the
recordset, the next statement sets the form’s underlying Table/Query
Bookmark property equal to the Bookmark property of the recordset:

Me.Bookmark = MyRecSet.Bookmark

236 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 236

The job is done after the form is displaying the requested record, so the End
Sub statement marks the end of the procedure

End Sub

After the procedure is written, you can close the VBA editor, as usual, save the
form, and try out the new control in Form view. The lookup should work when
you open the form and choose a customer from the QuickFind combo box.

Avoid retyping common entries
Here’s another situation where a dynamic combo box can be very helpful in
data entry. Suppose you have a table like Customers that includes a City field,
and as it turns out, most of your customers are from a few nearby cities. Thus,
you find yourself typing the same city name over and over again as you enter
customer’s data.

As an alternative to typing the same city name repeatedly, you could make
the City field on the form a self-referential combo box that automatically lists
every unique city name that’s ever been typed into the form. For example, the
first time you type Los Angeles as the city entry, that name gets added to the
City field’s drop-down menu. In the future, when it comes time to type Los
Angeles into another record, you can just choose that name from the drop-
down menu rather than retyping it again.

To get started, you’ll need a drop-down menu of unique city names. You can
use a query to design the initial drop-down menu. For example, Figure 10-18
shows a query named UniqueCitiesQry that lists, in alphabetical order, every
unique city name in a field named City. Setting the Unique Values property in
the query’s Properties sheet to Yes is what provides the unique city names.

Figure 10-18:
Unique

CitiesQry
lists unique
city names

from the
City field.

237Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 237

In the query, switch to Datasheet view to make sure the query shows each
city name only once and then close and save the query. You can then use the
query as the Row Source for any combo box or list box that’s bound to the
City field. For example, on any form that will display the City field from the
Customer’s table, you could create a unique value’s combo box by following
these steps:

1. In the Toolbox, make sure the Control Wizards button is pushed in,
and then click the Combo Box tool.

2. Drag the City field from the Field List onto your form.

The Combo Box Wizard opens.

3. On the first wizard page, select I Want the Combo Box to Look Up the
Values in a Table or Query and then click Next.

4. On the second wizard page, choose Queries and then choose the query
that shows the unique values (that would be UniqueCitiesQry in my
example). Then click Next.

5. On the third wizard page, click the button with the right-facing
chevrons (>) to add the field to the Selected Fields column; then click
Next.

6. On the fourth wizard page, you can just click Next rather than a sort
order (because the query has already defined a sort order).

7. On the fifth wizard page, adjust your column width (if necessary), and
then click Next.

8. On the sixth wizard page, select Store That Value in This Field and the
name of the field to which the combo box is attached; then click Next.

Most likely, the correct options will already be selected for you because
you already dragged the bound field’s name to the form in Step 2.

9. Type in a label for the control (City in my example) and then click
Finish.

That’s it. When you switch to Form view, the City drop-down menu should
display the name of each unique city that’s currently in the Customers table.
It might seem like you’re done, but there’s just one small problem. As you add
new records to the Customers table, the drop-down menu in the City field
will not be able to keep up at first because the City field’s drop-down list won’t
automatically requery with each new record.

The problem is easily solved with a single line of code that requeries the City
control every time a new record is added to the Customers table. To requery
a control with each new record, follow these steps:

238 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 238

1. In forms Design, double-click the gray area behind the Design grid to
get to the Form properties in the Properties sheet.

2. In the Properties sheet, click the Event tab and choose the After Insert
event.

3. Click the Build button next to the After Insert event.

You’ll be taken to a procedure named Form_AfterInsert(), which will
run every time the current form adds a new record to its underlying
table.

4. Within the procedure, type Me!fieldName.Requery where fieldName is
the name of the control that contains the self-referential combo box.

In my example, that would be

Me![City].Requery

5. Choose File➪Close and Return to Microsoft Access.

6. Close and save your form.

In the future, whenever you’re adding records to the Customers table through
the form, you can either type a new city name or choose an existing city name
from the City drop-down menu. If you do type a new city name, that name will
be added to the drop-down menu of existing field names automatically, thanks
to the little, one-line VBA procedure.

239Chapter 10: Customizing Lists and Drop-Down Menus

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 239

240 Part IV: Applying VBA in the Real World

04c_574116 ch10.qxd 7/27/04 9:27 PM Page 240

Chapter 11

Creating Your Own Functions
In This Chapter
� Deciding why to create custom functions

� Passing data to and from custom functions

� Creating a function to fix upper/lowercase problems

� Creating a function to print check amounts

As you might already know, Access has lots of built-in functions that you
can use in creating expressions. When you use the Expression Builder in

Access to create an expression, you can view a list of all the built-in functions
and also choose any function that you want to incorporate into the expres-
sion you’re writing.

First, you need to get to a place where one might actually write an expres-
sion. For example, if you’re designing a table and decide to set a Default Value
for a field, as soon as you click the Default Value field property, a Build button
appears. Clicking that Build button opens the Expression Builder. If you set
the Default Value to =Date(), =Date() is an expression that uses the built-in
Date() function to return the current date.

You can also use expressions to create calculated fields. For example, in
Chapter 10, you can read how the CustomerLookupQry query uses expres-
sions to create fields named SortName and EmailText. You can also use
expressions to create calculated controls on forms, where the control’s
Control Source property contains an expression that does some math or
returns some value based on other data in the same form.

The Role of Functions in VBA
All the functions that are available to you in Access are also available to you
in VBA. In VBA, you use the same function syntax that you use in Access. In
Access, the Expression Builder is a good tool for finding out what functions
are available as well as how to use them. If you’re in an Access Design view
and don’t see a Build button to click, you can click the Build button in the
toolbar to open the Expression Builder.

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 241

After you’re in the Expression Builder, click the + sign next to functions and
then click Built-In Functions. If you then select <All> from the top of the middle
column, the right column lists all the built-in functions in alphabetical order,
as in Figure 11-1. Optionally, you can click a category name in the middle
column to limit the third column’s list to just the functions in that category.

When you click the name of a specific function in the third column, the
syntax for using that function appears in the lower-left corner of the
Expression Builder. For example, the Abs function is selected in Figure 11-1,
so the window shows Abs(number). That just tells you that the Abs function
expects a single number to be passed to it. For more information in the cur-
rently selected function, click the Help button in the Expression Builder.

Before you go trying to create your own custom functions, I recommend
knowing what functions are already available to you as built-in functions.
There’s no need for you to reinvent the wheel by creating a custom function
that duplicates a built-in function.

Every function returns some value. For example, the Date() function returns
the current date. You could see this for yourself right in the VBA editor
Immediate window. For example, if you type the following into the Immediate
window and press Enter

? Date()

the Immediate window shows the value returned by the Date function, which
would be the current date.

Figure 11-1:
The Build

button
and the

Expression
Builder.

242 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 242

I suppose I should point out that sometimes in VBA, you can often omit any
empty parentheses that follow a function name. In fact, the VBA editor might
even remove the closing parentheses for you, and the statement will still work
after the VBA editor removes the parentheses. For example, if you enter ?
Date in the Immediate window, you get the same result if you enter ? Date().
However, if the parentheses are not empty, you should definitely include both
the opening and closing parentheses in your code.

Look at another example. The Sqr() function accepts a single number as an
argument and returns the square root of that number. For example, if you
type the following into the VBA editor Immediate window

? Sqr(81)

you get back 9, which is the square root of 81.

It often helps to imagine that the word of follows a function’s name. For exam-
ple, think of ? Sqr(81) in the Immediate window as meaning, What is the
square root of 81?

Creating Your Own Functions
In VBA, you can create your own custom functions to add to those that are
built into Access. As a rule, you want to put all custom functions in a stan-
dard module rather than in a class module because putting a custom function
in a standard module makes the function available to all the objects in the
current database. In other words, any function that you create in a standard
module can be used just as though it were a built-in function throughout the
current database.

Work through the whole process, starting with a simple example of a custom
function that calculates and returns the sales tax for any numeric value that’s
passed to it. You can put the function in any standard module — it doesn’t really
matter which. For this case, just start with a new, empty standard module.

1. In the Access database window, click Modules.

2. Click the New button in the toolbar at the top of the database window.

You’re taken to the VBA editor with a brand new, almost-empty module
to work with.

All modules have the words Option Compare Database at the top
already, so that’s why I say it’s an almost-empty module. That first declara-
tion, Option Compare Database, just tells the module that any compar-
isons using operators like = or > should be performed using the same rules
as the rest of the current database. There’s no need to change that line.

243Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 243

3. Choose Insert➪Procedure from the VBA editor menu bar.

The Add Procedure dialog box opens, asking for the name, type, and
scope of the procedure.

The name must start with a letter and cannot contain any blank spaces.
For this example, you could name the function SalesTax.

4. Choose Function as the type (because you’re creating a custom func-
tion here) and Public as the scope (so that all other objects within the
database can use the function).

5. Click OK in the Add Procedure dialog box.

The module contains the first and last lines of the procedure, as follows:

Public Function SalesTax()

End Function

Passing data to a function
In most cases, you want your function to accept one or more values that you
pass to it as data for the function to operate upon. For example, the Sqr()
function accepts a single argument, which must be a number. To define the
arguments that your custom function accepts, use the following syntax,
inside the parentheses that follow the function name:

name As Type

where name is just some name that you make up to use as a placeholder for the
incoming value, and Type is a valid data type. For example, suppose you want
the custom SalesTax() function to accept a single numeric value as an argu-
ment. You need to make up a name for that, so just call it AnyNum. You also
have to define that incoming value as some sort of number. Most likely, the
passed value will be a Currency value anyway, so you can modify the custom
SalesTax() function as follows to accept a single number as an argument:

Public Function SalesTax(AnyNum As Currency)

End Function

What the first line above really means is Expect some number to be here when
called. Refer to that number as AnyNum and treat it as a Currency number (two
decimal places).

A function can accept any number of arguments. If you want a function to
accept multiple arguments, give each argument a name and data type by using
the same preceding syntax. Separate each definition with a comma. The

244 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 244

SalesTax() function needs to accept only one argument, so you wouldn’t
want to modify that one. However, just as a general example, if you want a func-
tion to accept two arguments, you define each as in the following example:

Public Function funcName(AnyNum As Currency, AnyText As String)

End Function

Returning a value from a function
A function can also return a value — that is, only one value because a func-
tion can’t return multiple values. To make your function return a value, you
just add

As Type

where Type is a valid data type, to the end of the first statement, outside the
closing parenthesis of the function name. You specify only the data type of
the returned value — you don’t give it a name. For example, suppose you
want the SalesTax() function to return a single value that’s a Currency
number. In that case, modify the SalesTax() function as follows:

Public Function SalesTax(AnyNum As Currency) As Currency

End Function

The custom function doesn’t actually return its value until all the code in the
procedure has been executed. To define the value returned by the function,
use this syntax:

functionName = value

where functionName is the same as the name of the function itself, without
the parentheses, and value is the value that you want the function to return
(although the value can be an expression that calculates a return value).

For example, suppose you want to be able to pass to the SalesTax() func-
tion some Currency value like $100.00 or $65.45 or whatever, and have it
return the sales tax for that amount. Just picking a number out of a hat, say
the sales tax rate is 6.75%. The following SalesTax() function will do the
appropriate calculation (by multiplying the number passed to it by 0.065) and
then return the results of that calculation:

Public Function SalesTax(AnyNum As Currency) As Currency
‘Multiply passed value by 6.75% (0.065) and
‘return the result of that calculation.
SalesTax = AnyNum * 0.065

End Function

245Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 245

Testing a custom function
Remember earlier when I said that a public custom function in a standard
module can be used anywhere a built-in function? After you type in the
SalesTax() function, you can see that for yourself by testing it the same way
that you test a built in function. For example, if you type the following into
the Immediate window

? SalesTax(100)

and then press Enter, you get

6.75

because the sales tax on $100.00 is $6.75. If you type

? SalesTax(14.99)

and press Enter, you get 1.0118 because the sales tax on $14.99 is about $1.02.

In case you’re wondering why all the numbers aren’t automatically rounded
off, it’s because the Immediate window always displays its results as sort of a
plain number. In real life, you wouldn’t create a function just to use it in the
Immediate window. More likely, you’d use the custom function in queries,
forms, reports, or macros.

For example, suppose you create the SalesTax() function above and then
choose File➪Close and Return to Microsoft Access from the VBA editor menu
bar. Next, you want to create a query that lists the unit price and sales tax for
all the records in some table. Because you can use a custom function just like
you do a built-in one, you could set up the query as shown in the Query
Design portion of Figure 11-2, where the Unit Price column refers to a field in
the Order Details table, and Tax is a calculated field that uses the custom
SalesTax() function.

The lower half of Figure 11-2 shows the results of the query in Datasheet
view. The Unit Price column displays the Unit Price from each record in the
underlying table. The Tax column shows the sales tax amount for each unit
price.

The query in Figure 11-2 is just an example, of course. You could use the
custom SalesTax() function any place you could use a built-in function,
such as in the Control Source property of a calculated control or wherever
you’d use a built-in function in a VBA statement.

246 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 246

A Proper Case Function
Take a look now at a somewhat larger custom function that does more than a
simple match calculation. Suppose you have a table filled with names and
addresses, but for whatever reason, all the text is in uppercase (or lower-
case). For example, maybe the table has a Name field containing names like
JOE SMITH or joe Smith. You want to tidy that up, but you certainly don’t
want to go in and retype all the data manually.

Technically, you could just use the built-in StrConv(string,3) function to
solve this problem. For example, StrConv(“JOE SMITH”,3) returns Joe Smith.
Problem solved . . . except that StrConv() doesn’t take into consideration little
quirks like the uppercase D in McDonald. StrConv(“MCDONALD”,3) returns
Mcdonald (rather than McDonald). Likewise, StrConv(“p.o. box 123”,3)
returns P.o. Box 123, which doesn’t look quite right because the O should be
uppercase.

To get around that, you could create your own custom function that takes
any string as its argument and then returns that string with initial caps (the
first letter of each word capitalized), just like the StrConv() function does.

Tax: SalesTax([Unit Price])

Figure 11-2:
Custom

SalesTax
() function

used in a
query’s

calculated
field.

247Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 247

But your custom function could then use some If...End If statements to
correct any little problems like the Mcdonald and P.o. Box examples.

You don’t really have to type any of the functions shown in this book into
your own database. You can download them from www.coolnerds.com/vba
and just import them into a database.

You might want to use this function to fix several fields in several tables, so
you want the function to be public, like any built-in function. For starters, you
need to open or create a standard module. Think up a name for your function
(I call this one PCase()) and create an appropriate function. In this case, you
need to pass a string (which I refer to as AnyText) to the function. The return
value for the function will also be a string (whatever text was passed con-
verted to initial caps). Listing 11-1 shows the function in its entirety. I take a
look at how it works in a moment.

Listing 11-1: Sample PCase() Custom Function

‘The PCase() function accepts any string, and returns
‘a string with words converted to initial caps (proper case).
Public Function PCase(AnyText As String) As String

‘Create a string variable, then store AnyText in
‘that variable already converted to proper case
‘using the built-in StrConv() function
DIm FixedText As String
FixedText = StrConv(AnyText, vbProperCase)

‘Now, take care of StrConv() shortcomings

‘If first two letters are “Mc”, cap third letter.
If Left(FixedText, 2) = “Mc” Then

FixedText = Left(FixedText, 2) + _
UCase(Mid(FixedText, 3, 1)) + Mid(FixedText, 4)

End If

‘If first three letters are “Mac”, cap fourth letter.
If Left(FixedText, 3) = “Mac” Then

FixedText = Left(FixedText, 3) + _
UCase(Mid(FixedText, 4, 1,)) + Mid(FixedText, 5)

End If

‘If first four characters are P.o. then cap the “O”.
If Left(FixedText, 4) = “P.o.” Then

FixedText = “P.O.” + Mid(FixedText, 5)
End If

‘Now return the modified string.
PCase = FixedText

End Function

248 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 248

How PCase() works
Before I talk about using the PCase() function, take a moment to see how it
works. PCase() uses several built-in Access functions — StrConv(), Left(),
UCase(), and Mid() — to work with chunks of text in the passed string. For
the sake of example, see what happens when PCase() gets called with some-
thing like PCase(“MACDONALD”):

When PCase() is called in this example, AnyText becomes a string variable
that contains the text MACDONALD. The AnyText argument is defined as a
string in the Function() statement itself, as shown here:

Public Function PCase(AnyText As String) As String

The next two statements declare a new string variable named FixedText,
which act as a placeholder for text being operated upon by the function. The
Dim statement just declares the variable as a string. The second statement
stores a copy of AnyText, already converted to proper case by using the
StrConv() method:

Dim FixedText As String
FixedText = StrConv(AnyText, vbProperCase)

In VBA, you can use constants (like vbProperCase) rather than numbers
(like 3) in built-in functions. Thus, StrConv(AnyText, vbProperCase) is
the same as = StrConv(AnyText, 3).

Going back to the example of calling the function, by the time the two preceding
statements have been executed, the FixedText variable contains Macdonald.
That’s close to what you need, but the function isn’t done working yet.

The next statements say, If the first two letters of FixedText are Mc, change
FixedText to the first two characters of FixedText unchanged, followed by the
third letter in uppercase, followed by all the rest unchanged.

‘If first two letters are “Mc”, cap third letter.
If Left(FixedText, 2) = “Mc” Then

FixedText = Left(FixedText, 2) + _
UCase(Mid(FixedText, 3, 1)) + Mid(FixedText, 4)

End If

Because FixedText at this moment in time contains Macdonald, this block of
code is ignored because its first two letters are ma, not mc. By the time the
preceding statements execute (in this example), FixedText still contains
Macdonald. Nothing has changed there.

The following block of code says, If the first three characters are mac, change
FixedText to the first three letters of itself, followed by the fourth letter in
uppercase, then the rest of the string unchanged.

249Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 249

‘If first three letters are “Mac”, cap fourth letter.
If Left(FixedText, 3) = “Mac” Then

FixedText = Left(FixedText, 3) + _
UCase(Mid(FixedText, 4, 1)) + Mid(FixedText, 5)

End If

In the current example, FixedText contains Macdonald when code execution
reaches the If statement. And the first three letters of FixedText are indeed
mac; thus, the code inside the If...End If block will execute. In doing so, it
changes FixedText to its own first three letters unchanged (Mac), plus the
fourth letter in uppercase (D), plus the rest of the string, unchanged (onald).
By the time execution gets past the End If statement in this example,
FixedText contains MacDonald.

The following block of code does basically the same thing as the two preced-
ing blocks. It looks to see whether the first four letters of the string are P.o. —
and if so, changes those first four letters to P.O. Of course, the first four let-
ters of MacDonald aren’t P.O., so that whole block of code is skipped over.

These final statements assign the current contents of the FixedText variable
(MacDonald, now) to the function name sans parentheses (PCase). The End
Sub statement then ends the function and returns the contents of PCase
(MacDonald) to the code (or object) that called the function.

PCase = FixedText
End Sub

If you type ? PCase(“macdonald”) into the Immediate window, it returns
MacDonald. If you type ? PCase(“P.O. BOX 123”) into the Immediate window,
you get P.O. Box 123. If you type ? PCase(“HELLO WORLD”) into the
Immediate window, you get Hello World. The StrConv() function inside
PCase() still does its thing. The If...End If statement just makes minor
corrections for Mc, Mac, and P.O..

Using the PCase() function
Like with any custom function, you can use PCase() wherever you would use
a built-in function. Look at an example where you have a large table of names
and addresses, where everything is in uppercase, as in Figure 11-3. For the
sake of example, call this table UglyCustomers (which isn’t an insult to the
customers — just the way their names are typed in!).

Now that you have a PCase() function that can convert text to proper case —
without messing up the Mc’s, Mac’s and P.O.’s — you can use that in an update
query to convert all the Text fields to proper case.

250 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 250

Test it on a copy of your original table first. That way, if you made any mis-
takes that mess up the data, you will have only ruined the copy of the table.

To create an update query to do the job, close the VBA editor to get back to
Access. Then create a new query that uses the problem table as its source.
Next, choose Query➪Update Query to convert the query to an update query.
The Query-by-Example (QBE) grid gains an Update To column, in which you
can add an expression that defines the new value for a field. Thus, you can
add any Text field that needs converting to the QBE grid, and then use the
expression =PCase([fieldname]) (where fieldname is the same name as
the field at the top of the column) to convert that field to proper case.

Figure 11-4 shows an example in which I’m fixing the FirstName, LastName,
Company, and Address1 fields (as well as others that are just scrolled
out of view). Notice that the Update To row for the FirstName field is
PCase([FirstName]). The Update To row for the LastName field is PCase
([LastName]), and so forth. In other words, when the query runs, you want
it to replace the contents of that field, in every record, to proper case.

Figure 11-4:
Query to fix
uppercase

problems in
a table.

Figure 11-3:
Sample

problem
table in all

uppercase.

251Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 251

The query shown in Figure 11-4 wouldn’t work in a database that doesn’t con-
tain the PCase() function. It will work only in a database that has the PCase()
function defined in one of its standard modules.

Because the query shown in Figure 11-4 is an action query, you need to run
the query before it actually does anything.

1. Click the Run button in the toolbar or choose Query➪Run from the
Access toolbar.

You get the standard warning message (You are about to update x
rows...).

2. Click Yes and wait a second. Then just close the query.

3. Back at the database window, click Tables, and then click the table
that you changed.

If all went well, the fields will be in proper case. Figure 11-5 shows the
results of running the sample query on the UglyCustomers table.

As you can see, the names and addresses in the fixed UglyCustomers table
look a lot better than those in the original table. And the Mc and Mac last
names — as well as the P.O. Box entries — look okay, too. Still, not everything
is perfect. For example, Abc Productions probably should be ABC Productions.
However, it would be pretty tough to write a function that deals with every con-
ceivable exception to the standard use of uppercase letters in proper nouns.
Some you might have to polish manually, but polishing off a few of them manu-
ally is a heck of a lot easier than retyping them all from scratch!

Figure 11-5:
Convert text

fields by
using the

custom
PCase()

function.

252 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 252

A Function to Print Check Amounts
Suppose you want to use Access to print checks from a table of payable
amounts. You have your printer, and you have your preprinted checks, and
maybe you’ve already created a report format to print the checks. But what
about the part of the check where you’re supposed to write out the dollar
amount, such as One Hundred Thirty Five and 49/100? How are you going to
get that part of the check printed? There’s no built-in function capable of
doing that for you. And heaven knows you don’t want to type all those words!

The solution is a custom function like NumWord() that takes as its argument
any number and returns that number translated to words. For example,
typing ? NumWord(1234.56) returns One Thousand Two Hundred Thirty
Four and 56/100. Because the NumWord() function is fairly lengthy, download
it from www.coolnerds.com/vba rather than try to type it in yourself. Just in
case, Listing 11-2 holds the whole kit-and-caboodle, which you can place in
any standard module in any database.

Listing 11-2: Custom NumWord() Function

‘NumWord() converts a number to its words.
‘For example, NumWord(999.99) returns
‘Nine Hundred Ninety Nine and 99/100.
Function NumWord(AmountPassed As Currency) As String

‘Declare some general working variables.
Dim English, strNum, Chunk, Pennies As String
Dim Hundreds, Tens, Ones As Integer
Dim StartVal, LoopCount As Integer
Dim TensDone As Boolean

‘Make array of number words called EngNum.
Dim EngNum(90) As String
EngNum(0) = “”
EngNum(1) = “One”
EngNum(2) = “Two”
EngNum(3) = “Three”
EngNum(4) = “Four”
EngNum(5) = “Five”
EngNum(6) = “Six”
EngNum(7) = “Seven”
EngNum(8) = “Eight”
EngNum(9) = “Nine”
EngNum(10) = “Ten”
EngNum(11) = “Eleven”
EngNum(12) = “Twelve”
EngNum(13) = “Thirteen”
EngNum(14) = “Fourteen”
EngNum(15) = “Fifteen”

(continued)

253Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 253

Listing 11-2 (continued)

EngNum(16) = “Sixteen”
EngNum(17) = “Seventeen”
EngNum(18) = “Eighteen”
EngNum(19) = “Nineteen”
EngNum(20) = “Twenty”
EngNum(30) = “Thirty”
EngNum(40) = “Forty”
EngNum(50) = “Fifty”
EngNum(60) = “Sixty”
EngNum(70) = “Seventy”
EngNum(80) = “Eighty”
EngNum(90) = “Ninety”

‘** If zero or null passed, just return “VOID”.
If Nz(AmountPassed) = 0 Then

NumWord = “VOID”
Exit Function

End If

‘** strNum is the passed number converted to a string.
strNum = Format(AmountPassed, “000000000.00”)

‘Pennies variable contains last two digits of strNum
Pennies = Mid(strNum, 11, 2)

‘Prep other variables for storage.
English = “”
LoopCount = 1
StartVal = 1

‘** Now do each 3-digit section of number.
Do While LoopCount <= 3

Chunk = Mid(strNum, StartVal, 3) ‘3-digit chunk.
Hundreds = Val(Mid(Chunk, 1, 1)) ‘Hundreds portion.
Tens = Val(Mid(Chunk, 2, 2)) ‘Tens portion.
Ones = Val(Mid(Chunk, 3, 1)) ‘Ones portion.

‘** Do the hundreds portion of 3-digit number.
If Val(Chunk) > 99 Then

English = English & EngNum(Hundreds) & “ Hundred “
End If

‘** Do the tens & ones portion of 3-digit number.
TensDone = False
‘** Is it less than 10?
If Tens < 10 Then

English = English & “ “ & EngNum(Ones)
TensDone = True

End If

254 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 254

‘** Is it a teen?
If (Tens >= 11 And Tens <= 19) Then

English = English & EngNum(Tens)
TensDone = True

End If

‘** Is it evenly divisible by 10?
If (Tens / 10) = Int(Tens / 10) Then

English = English & EngNum(Tens)
TensDone = True

End If

‘** Or is it none of the above?
If Not TensDone Then

English = English & EngNum((Int(Tens / 10)) * 10)
English = English & “ “ & EngNum(Ones)

End If

‘** Add the word “Million” if necessary.
If AmountPassed > 999999.99 And LoopCount = 1 Then

English = English + “ Million “
End If

‘** Add the word “Thousand” if necessary.
If AmountPassed > 999.99 And LoopCount = 2 Then

English = English + “ Thousand “
End If

‘** Do pass through next three digits.
LoopCount = LoopCount + 1
StartVal = StartVal + 3

Loop

‘** Done: Return English with Pennies/100 tacked on.
NumWord = Trim(English) & “ and “ & Pennies & “/100”

End Function

That function is too long to show in the Code window (and too boring to dis-
cuss in any detail right now). So just assume that you’ve already stuck the
entire NumWord() procedure into some standard module in your database,
and now you want to use it to print checks.

Using the NumWord function
For the sake of example, assume that you already put NumWord() into a stan-
dard module in your database. You already have a table that contains data to
be printed on checks. Just to give this whole example some context, suppose

255Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 255

you have a table with field names and data types similar to those shown in
the sample Payables table in Figure 11-6. The left side of the figure shows
the table’s structure, and the right side of the figure shows some sample data
in the table.

Next, you need to create a report format that’s capable of printing on the
checks. When you get to the part of the report where the check amount
needs to be printed, just add a calculated control that prints the NumWord of
the numeric check amount. For example, in the PrintChecks report shown
in Figure 11-7, you can see where I’ve placed various controls to line up with
blanks on each check (even though I don’t really have a preprinted check
here to show you). Presumably, all the other info the check needs is already
printed on the check.

Figure 11-7:
Sample

report
format for

printing
checks.

Figure 11-6:
Sample field

names and
data types
for printing

checks.

256 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 256

In the report format shown in Figure 11-7, the PayTo and CheckAmt fields
come straight from the underlying Payables table. The check date and check
amount in words are both calculated controls. The calculated control for
printing the check date has as its Control Source property the expression
=Date(), which prints the current date on the check. The calculated control
for printing the check amount in words contains the following expression as
its Control Source property:

=NumWord([CheckAmt])

There, the field name CheckAmt refers to the field named CheckAmt, which
contains the check amount expressed as a number. Once again, the example
illustrates how after you add a custom function to a standard module, you
can use that function in any place you’d use a built-in function. For example,
the check date is printed by using the built-in Date() function, and the check
amount (in words) is printed by the custom NumWord() function.

Figure 11-8 shows a Print Preview for the report in Figure 11-7 (with some
dashed lines artificially thrown in to make it easier to see where each check
begins and ends). As mentioned, here I’m assuming any other information
that needs to be printed on the check is already on the checks.

Figure 11-8:
Print

Preview of
sample
check-

printing
report.

257Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 257

How NumWord() works
NumWord() is a fairly lengthy procedure mainly because the rules for convert-
ing numbers to words, in English, are a little complicated. But like any proce-
dure, NumWord() is just a series of small decisions and steps needed to get
the job done.

The first line of the procedure, as follows, defines the name of the procedure,
NumWord(), and declares that it will accept a number Currency value
(number) as an argument. Whatever number gets passed to the argument is
referred to as AmountPassed in the rest of the procedure. The As String
part at the end declares that NumWord() will return a string (text) to what-
ever called the function.

Function NumWord(AmountPassed As Currency) As String

The next lines declare some variables used for temporary storage by the pro-
cedure. Because there are lots of things to keep track of in this procedure,
you need quite a few variables to store bits of information. In the following
Dim statements, I’m just declaring the names and data types of the variables.
You can see how to put them to use later in the procedure:

‘Declare some general working variables.
Dim English, strNum, Chunk, Pennies As String
Dim Hundreds, Tens, Ones As Integer
Dim StartVal, LoopCount As Integer
Dim TensDone As Boolean

Next, the statement Dim EngNum(90) As String declares any array of vari-
ables, all containing text. The variables created by the statement will be named
EngNum(0), EngNum(1), EngNum(2), and so forth, on up to EngNum(90). The
Dim statement, as always, just sets aside space for those 90 variables. The vari-
ables don’t actually contain any data at first:

Dim EngNum(90) As String

The next statements assign text to some of the variables that the Dim state-
ment just declared. You don’t need all 90 variables here — just enough of
them to cover every possible unique number word. For example, you need
ninety as a unique word, but you don’t need ninety-one as a unique word
because that can be built from two words: ninety and one.

The subscript for each variable matches the word that the variable contains.
For example, EngNum(1) contains “One”, EngNum(11) contains “Eleven”,
EngNum(70) contains “Seventy”, and so forth. In a sense, you’ve already
solved part of the problem just by having the array subscript match the word
that you need:

258 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 258

EngNum(0) = “”
EngNum(1) = “One”
EngNum(2) = “Two”
EngNum(3) = “Three”
EngNum(4) = “Four”
EngNum(5) = “Five”
EngNum(6) = “Six”
EngNum(7) = “Seven”
EngNum(8) = “Eight”
EngNum(9) = “Nine”
EngNum(10) = “Ten”
EngNum(11) = “Eleven”
EngNum(12) = “Twelve”
EngNum(13) = “Thirteen”
EngNum(14) = “Fourteen”
EngNum(15) = “Fifteen”
EngNum(16) = “Sixteen”
EngNum(17) = “Seventeen”
EngNum(18) = “Eighteen”
EngNum(19) = “Nineteen”
EngNum(20) = “Twenty”
EngNum(30) = “Thirty”
EngNum(40) = “Forty”
EngNum(50) = “Fifty”
EngNum(60) = “Sixty”
EngNum(70) = “Seventy”
EngNum(80) = “Eighty”
EngNum(90) = “Ninety”

For the lowdown on arrays, see Chapter 4.

With all the needed variables declared, the procedure can get to work on
translating whatever number was passed to it. The first If...End If block
takes care of the problem of a zero or null value being passed to the function.
The built-in Nz() (Null-To-Zero) converts a null value to a zero. Thus, the If
statement Nz(AmountPassed) = 0 Then really says, If the amount passed to
me to work on is zero (or a null), then do the lines below me up to End If.
Otherwise, ignore those statements.

So what happens if AmountPassed is a zero or null? The statement NumWord
= “VOID” makes the return value for the function into the word VOID, and
the Exit Function statement tells VBA to just bail out of the procedure now
without doing anything else:

‘** If zero or null passed, just return “VOID”.
If Nz(AmountPassed) = 0 Then

NumWord = “VOID”
Exit Function

End If

259Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 259

Assuming that the amount passed to NumWord() is not a zero or null, execu-
tion then picks up at the following statement. This one is a little tricky. It uses
the built-in Format function to make a string named strNum that exactly
matches the amount passed. However, this string has exactly nine zeroes to
the left of the decimal point and also two to the right. Suppose NumWord gets
called with NumWord(7609511.98). By the time the following statement exe-
cutes, the AmountPassed variable (a number) contains 7609511.98, and
strNum contains (as a string) 007609511.98. Having those leading zeroes in
place makes it easier to make decisions about how to handle the number
later in the procedure:

‘** strNum is the passed number converted to a string.
strNum = Format(AmountPassed, “000000000.00”)

So getting back with the NumWord(7609511.98) call, after the preceding
statement executes, you have two copies of the amount passed to work with:
the original AmountPassed (a number) and strNum, which is basically that
same number with a fixed amount of leading zeroes, as follows:

AmountPassed = 7609511.98
strNum = “007609511.98”

Next, the following statement grabs the last two digits off of StrNum and
stores that value in a variable named Pennies.

‘Pennies variable contains last two digits of strNum
Pennies = Mid(strNum, 11, 2)

In this example where I’m using 7609511.98 as the number passed, the vari-
able named Pennies contains the following after the preceding statement
executes:

Pennies = “98”

Now you need to get some starting values in some variables for the code to
follow. The variable named English (which will eventually contain the entire
number word) starts off as a null (“ “). LoopCount and StartVal each get
values of 1. You can see how to use those variables in the code that follows:
‘Prep other variables for storage.

English = “”
LoopCount = 1
StartVal = 1

Next, start a loop that will repeat until the LoopCount variable is greater than
three. Within that tool, the first thing you do is peel off chunks of strNum
variable and assign them to integer variables:

260 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 260

‘** Now do each 3-digit section of number.
Do While LoopCount <= 3

Chunk = Mid(strNum, StartVal, 3) ‘3-digit chunk
Hundreds = Val(Mid(Chunk, 1, 1)) ‘Hundreds portion
Tens = Val(Mid(Chunk, 2, 2)) ‘Tens portion
Ones = Val(Mid(Chunk, 3, 1)) ‘Ones portion

Getting back to the initial strNum number, 007609511.98, by the time the pre-
ceding statements execute, the following variables contain the following
values:

Chunk = “007”
Hundreds = 0
Tens = 7
Ones = 7

The next statement says, If the value of chunk (007 right now) is greater than
99, add EngNum(Hundreds) plus the word hundred to the string. In the current
example, where Chunk is not greater than 99, nothing happens in this
If...End If block:

‘** Do the hundreds portion of 3-digit number
If Val(Chunk) > 99 Then

English = English & EngNum(Hundreds) & “ Hundred “
End If

The next statements set the Boolean variable TensDone to False. Then the
next statement says, If the Tens portion is less than 10, add a blank space and
EngNum(Ones) to the English variable and change TensDone to True.

‘** Do the tens & ones portion of 3-digit number
TensDone = False
‘** Is it less than 10?
If Tens < 10 Then

English = English & “ “ & EngNum(Ones)
TensDone = True

End If

In this case, where Tens contains 7, the statement is true. By the time the
preceding statements have executed (given the sample number), the follow-
ing variables have the following values:

English = “ Seven”
TensDone = True

The next If...End If statement deals with numbers in the range of 11–19. It
says, If the Tens number is between 11 and 19, add EngNum(Tens) to English
and set TensDone to True. In this example, Tens is 7, which is not between 11
and 19, so this If block is skipped over. The contents and English and
TensDone haven’t changed:

261Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 261

‘** Is it a teen?
If (Tens >= 11 And Tens <= 19) Then

English = English & EngNum(Tens)
TensDone = True

End If

The next block deals with Tens values that are evenly divisible by 10, such as
10, 20, 30, 40, 50, and so forth up to 90. In this case, where Tens contains 7
(which is not evenly divisible by 10), nothing happens, so the English and
TensDone variables hang on to their current values:

‘** Is it evenly divisible by 10?
If (Tens / 10) = Int(Tens / 10) Then

English = English & EngNum(Tens)
TensDone = True

End If

The next If block kicks in only if the Tens portion of the number is still unre-
solved: that is, only if TensDone is still False. In this case, where TensDone
got set to True already, the whole If...End If block is once again skipped
over:

‘** Or is it none of the above?
If Not TensDone Then

English = English & EngNum((Int(Tens / 10)) * 10)
English = English & “ “ & EngNum(Ones)

End If

Next look at adding the word million to the word. The If statement says, If
the amount passed is greater than 999,999.99 and the LoopCount variable
equals one, add the word Million to English.

‘** Add the word “Million” if necessary
If AmountPassed > 999999.99 And LoopCount = 1 Then

English = English + “ Million “
End If

Using the running example, the number passed is greater than 999,999.99,
and right now LoopCount does equal 1. By the time the preceding If state-
ment executes, the English variable has had the word Million tacked onto
it, as follows:

English = “Seven Million”

The next statement says that if the amount passed is greater than 999.99 and
LoopCount equals 2, tack on the word Thousand. In the running example,
where LoopCount currently equals 1, this whole block of code is skipped
over:

262 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 262

‘** Add the word “Thousand” if necessary
If AmountPassed > 999.99 And LoopCount = 2 Then

English = English + “ Thousand “
End If

The next statements increase the value of the LoopCount variable by 1 and
increase the value of the StartVal variable by 3; then the Loop statement
sends execution back up to the Do While LoopCount <= 3 statement for
the next pass through the loop.

Converting the rest of the number is more of the same. The next pass
through the loop just has to work with the next three-digit chunk of strNum.
In this example, where strNum contains 007609511.98, the next three digits
after 007 are 609. By the time Chunk, Hundreds, Tens, and Ones have
received their new values near the top of the loop, those variables contain
the following values:

Chunk = 609
Hundreds = 6
Tens = 9
Ones = 9

Looking through just the If...End If statements that prove true for this
second pass through the loop, the statement Val(Chunk) > 99 is true this
time. Thus, the statement English = English & EngNum(Hundreds) & “
Hundred “ executes adding EngNum(6) plus the word “Hundred” to EngNum.
By the time that statement has executed, the English variable has a new
value:

English = “Seven Million Six Hundred”

The statement If Tens < 10 Then is also True on this second pass through
the loop, so the statement English = English & “ “ & EngNum(Ones)
adds a space and EngNum(9) to the English variable:

English = “Seven Million Six Hundred Nine”

No other If statements will prove True here until If AmountPassed >
999.99 And LoopCount = 2 Then executes. Because it’s true that
AmountPassed is greater than 999.99 and LoopCount = 2 right now, the
statement English = English + “ Thousand “ executes, and the
English variable contains

English = “Seven Million Six Hundred Nine Thousand”

Now you’re at the bottom of the loop again, where LoopCount gets increased
by 1, and StartVal gets increased by 3. By the time the Loop statement
sends control back up to the Do While statement, those variables contain
the following values:

263Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 263

LoopCount = 3
StartVal = 9

At the top of the loop, the Chunk, Hundreds, Tens, and Ones variable all get
new values, as follows, by peeling off the last three digits to the left of the
decimal point:

Chunk = “511”
Hundreds = 5
Tens = 11
Ones = 1

Once again, execution goes through all the statements, but only certain
If...End If statements will prove true. For example, the first True state-
ment, If Val(Chunk) > 99, executes the statement English = English &
EngNum(5) & “ Hundred “. By the time that If...End If block has exe-
cuted, the English variable contains

English = “Seven Million Six Hundred Nine Thousand Five Hundred”

Going through the procedures that follow, the next If statement to prove
True is If (Tens >= 11 And Tens <= 19) Then. So the statement
English = English & EngNum(11) executes, making the English variable
contain

English = “Seven Million Six Hundred Nine Thousand Five Hundred Eleven”

No other If...End If statements execute. At the bottom of the loop where
LoopCount = LoopCount + 1, the value of LoopCount value increases to 4.
The Do While loop repeats only while LoopCount is less than 4, so execution
falls through the Loop statement, executing the statement NumWord =
Trim(English) & “ and “ & Pennies & “/100”. At that moment, NumWord
(which is also the name of the function) gets “ and “, the Pennies variable’s
value, and “/100” tacked on. The procedure then ends with an End Function
statement. The value returned after calling NumWord(7609511.98) is

Seven Million Six Hundred Nine Thousand Five Hundred Eleven and 98/100

which, happily, is exactly right.

The procedure is designed to translate any number in the range of
0–999,999,999.99 where NumWord(999,999,999.99) returns

Nine Hundred Ninety Nine Million Nine Hundred Ninety Nine
Thousand Nine Hundred Ninety Nine and 99/100

264 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 264

If that’s not big enough for you (because you print checks for a billion dollars
or more), you could probably talk me into personally modifying the proce-
dure to accommodate your needs.

You can download the NumWord() custom function from www.coolnerds.
com/vba.

Getting away from the nitty-gritty details of how a complex procedure like
NumWord() works, the most important concepts to remember are that you
can create your own custom function in Access. To make the function freely
available to all the other objects in your database, you just have to put the
custom function in a standard module. After you do that, you can treat your
custom function as though it were any built-in function.

I admit that I got into some fairly intense code here in this last example. If
you’re thinking that I just made up that procedure in my head and jotted it
down like notes, you’re way off-base. Programming rarely works that way. It’s
all a matter of breaking down a large problem into small pieces. Then you
attack one piece of the problem at a time, getting each little piece to work
before moving on to the next piece.

Along the way, you’ll generally run into a whole lot of error messages because
it’s tough to write code that just works right off the bat. You really need to
create, test, and debug every little piece of code as you go along. That brings
me to debugging strategies for building your code so that it always works and
never crashes. Debugging is what the next chapter is all about.

265Chapter 11: Creating Your Own Functions

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 265

266 Part IV: Applying VBA in the Real World

04d_574116 ch11.qxd 7/27/04 9:27 PM Page 266

Chapter 12

Testing and Debugging Your Code
In This Chapter
� Identifying types of errors (bugs)

� Conquering compile errors

� Dealing with logical errors

� Trapping and fixing runtime errors

Writing code is nothing like writing in English. When you write in English,
you can make all kinds of spelling and grammatical mistakes, and the

reader will still be able to get your meaning because a human reader has a
brain that can figure out what you mean just by the context of the message
you sent.

Unfortunately, writing code for a computer to read doesn’t work that way.
Computers don’t have brains and can’t figure out anything. When it comes
to writing code, every letter of every word that you type has to be exactly
right. Punctuation marks such as commas, periods, blank spaces, and so
forth are critical and must be typed exactly as specified in the statement’s
syntax chart. If you have one small typographical error, the statement won’t
work.

Because it’s nearly impossible to type every statement correctly every time,
every program will have some bugs (errors) in it that will need to be corrected.
The act of diagnosing and fixing these errors is debugging, and it’s something
that both beginning and seasoned programmers alike spend quite a bit of time
doing. In fact, debugging is so commonplace that the VBA editor offers several
debugging tools that are designed strictly for finding and fixing those bugs.

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 267

Before I get to specific debugging tools and techniques, though, I think it
helps to understand a little bit about what’s going on behind the scenes as
you’re pounding away at the keyboard, trying to write some code that actu-
ally does something other than throw up error messages.

Understanding Compilation and Runtime
How a machine (like your computer) works and how your brain works are two
entirely different things. All machines are basically dumb as rocks because
they’re just machines. Your computer is nothing more than a mindless machine
that can pump a few billion instructions per second through a little toenail-
sized wafer. No thought nor thinking nor awareness is involved in any of that.
It’s all just electrons zooming around at the speed of light in a controlled
manner inside a small area.

Each of those zooming electronics creates a little friction as it travels, like
when you rub the palms of your hands together really fast. That friction is
what causes your computer to heat up.

Programmers often refer to how a machine processes information as low-level.
For example, by the time information gets to the processor in your computer,
that information is nothing more than a string of ones and zeroes, something
like this:

0010101001100010101011010100001110101011010101101010101010101011
0101000111110101011000111110101010111000001010101100011001110001
1111010011000110001100111110000011101010111000111001101011011

In ProgrammerSpeak, you refer to the preceding as low-level machine language
or machine code.

Human brains don’t process information as ones and zeroes. Human brains
process and communicate information by using higher-level concepts, like
words, sentences, and paragraphs (not to mention pictures, sound, video,
and so on.) Although you could write code by using just the 1 and 0 charac-
ters on your keyboard, it would not be easy nor quick — thus the invention
of high-level programming languages.

A high-level programming language is one that uses words and sentences,
rather than ones and zeroes, to control the computer. For example, VBA is
a high-level language. When you want VBA to do something — like open
a form named MyForm — you don’t have to type out a bunch of ones and

268 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 268

zeroes. Instead, you can type out a sentence that looks more like words,
as follows:

DoCmd.OpenForm “MyForm”

The code that you type into the VBA editor is often referred to as source code.
Every line of source code that you type needs to be compiled (translated) into
a lower-level language that the computer can actually process. To keep you
from writing a whole lot of code that makes no sense at all to the computer
(which makes for extremely difficult debugging), the VBA editor quickly com-
piles each line of code you type the moment you finish typing that line.

Note that the VBA editor doesn’t actually run (or execute) each line the
moment you type it. Rather, it just compiles each line to make sure that
when you do run the code, each statement in that code will work. When
you type a line of code that VBA can’t translate to lower-level machine
code, the VBA editor gives you a Compile error message, like the example
shown in Figure 12-1, to let you know that there’s a problem with that line.

The real problem with the statement in Figure 12-1 is the comma (,) between
DoCmd and OpenForm. That comma should be a period.

Programmers refer to the brief instant of time when your code is converted
to a lower-level language as compilation or compile time. At compilation, the
source code gets converted to the lower-level language that the computer
needs to do what the code tells it to do. Later, when you actually run the
code, the lower-level compiled code is what gets executed. The moment of
time when the code is executed is runtime. Figure 12-2 illustrates the basic
idea.

Figure 12-1:
A sample

compile
error

caused by a
mistyped

statement.

269Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 269

Considering Types of Program Errors
Errors in code can happen at any time in the create/compile/execute sequence.
Programmers generally categorize the types of errors that they have to deal
with as follows:

� Compile errors: Any problem that prevents the VBA editor from trans-
lating a line of source code to something executable generates a com-
pile error, like the example shown in Figure 12-1. Such errors are usually
syntax errors, meaning that you didn’t obey the rules of syntax for that
statement when typing the code.

� Logical errors: If your code runs without generating an error message
but fails to do what you expected it to do, that’s a logical error. In other
words, the code can and does run, but the logic of the procedure isn’t
the right logic for achieving the desired result.

� Runtime errors: The code compiles okay, but when you run the code,
it doesn’t work. Instead, it pops a runtime error message onscreen, per-
haps looking something like the example shown in Figure 12-3.

Compile: Convert source
code to “machine code”

Runtime: Execute
machine code

VBA
source

code

Figure 12-2:
VBA source

code gets
compiled

before being
executed.

270 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 270

In the following sections, I look at the tools and techniques for dealing with
each type of error, starting with the ubiquitous compile error, which rears its
ugly head most often.

Conquering Compile Errors
The error messages that you’ll face most often are the compile errors that
happen in the VBA editor Code window. Every time you type a complete VBA
statement and then move the cursor to some other line in the procedure, VBA
quickly compiles that line of code. It doesn’t actually run the code — it just
compiles the one line of code to make sure that it will run when you run the
procedure.

When you’re first learning to program, compile errors might seem incessant
and unstoppable. That’s only because you’re not yet familiar enough with
the VBA language to write valid statements. And perhaps you haven’t yet
accepted the fact that when it comes to writing code, guessing never works.
Either you know how to use a particular statement or you don’t. You really
have to know how to use all the help that’s available to you — and use it well.

For more information on the various types of Help available to you in the VBA
editor, read about understanding syntax in Chapter 3 and objects and collec-
tions in Chapter 5.

Compile error messages are rarely specific about what the problem is. For
example, Figure 12-4 shows an Expected: = message, triggered by the
MsgBox statement shown in the code. The error message tells you that the
compiler was expecting to find an equal sign (=) in that statement, but it
doesn’t tell you where the equal sign should go. (If it knew where the equal
sign belongs, it wouldn’t have to show the message. It could just put in the
equal sign for you.)

Clicking the Help button in the error message box rarely helps much. In this
case, you’d just get a brief description of the problem and a few examples.
However, the examples aren’t necessarily relevant to the code that you’re
writing at the moment: They’re just general examples.

Figure 12-3:
A sample

runtime
error

message.

271Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 271

The only real solution is to find out the correct syntax for the MsgBox keyword.
As it turns out, there are two syntactical forms of MsgBox. The first form, which
you can use to just show a simple message with an OK button, is

MsgBox prompt

where prompt is the message to display in the box (either as literal text
enclosed in quotation marks or the name of a variable that contains text).

The second form allows you to specify multiple arguments, such as the title,
buttons, and icon to show. Using MsgBox in that manner requires the syntax

variable = MsgBox(prompt[,buttons][,title][,helpfile,context])

Here’s where you get a clue as to the whereabouts of the missing equal sign.
Because the MsgBox statement in the code uses multiple arguments, I have
to use variable = at the left side of MsgBox(), with parentheses around
its arguments. The value returned by MsgBox() will be a number indicating
which button the user clicked, so the variable accepting that value should
be declared as an integer. Thus the correction to the problem code in Figure
12-5 is the corrected code shown here:

Public Sub Sample()
Dim Answer As Integer
Answer = MsgBox(“Hello World”, vbInformation, “Test”)

End Sub

The main point here is that the error message Expected: = really didn’t tell
you how to solve the problem. The only real solution to the problem was to
find out how to use the MsgBox() statement and to see some examples of its
use in Help. That’s typical of compile error messages: They maybe give you
a vague hint as to what the problem might be, but they never solve the prob-
lem for you nor even tell you how to solve the problem.

Figure 12-4:
A sample

compile
error.

272 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 272

Take a look at some more common (and usually unhelpful) compile error
messages and the solutions to the problems they’ve found.

Expected: expression
The Expected: expression compile error means that while trying to com-
pile the line, things went haywire because the compiler was expecting to find
an expression but found nothing. This error happens if you leave one or more
dangling commas at the end of a statement.

For example, the MsgBox statement in Figure 12-5 generated the compile
error shown in that same figure. If you look closely, you might also notice
that the closing parenthesis in the code is highlighted. The compile error is
trying to help out by highlighting the place where it ran into the problem.

The problem with the line of code is that last comma, just to the left of the
closing parenthesis. You use a comma only when you’re about to type another
expression into the list of arguments. In other words, while compiling that line
of code, the compiler saw that last comma, expecting to find some expression
after that comma, but instead found a closing parenthesis.

One solution to the problem would be to get rid of that last comma, as follows:

Answer = MsgBox(“Hello World”, vbInformation)

Or, you can leave the comma but add the argument that belongs in that spot.
For example, in the MsgBox statement, the third argument is the title to show
in the message box. To make that title read as Test, just go ahead and make
that word the third argument (after the last comma), as follows:

Figure 12-5:
Sample

Expected:
expression

compile
error.

273Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 273

Answer = MsgBox(“Hello World”, vbInformation,”Test”)

Expected: end of statement
The Expected: end of statement message is another common (and rarely
helpful) compile error. Once again, all the message is telling you is that you
have some sort of syntactical error in the statement. In Figure 12-6, the string
literal “MyForm” at the end of the statement is highlighted, but that only tells
you that the compiler got lost at that point.

The real problem with the statement in Figure 12-6 is the comma between
DoCmd and OpenForm. The correct syntax for using the DoCmd object is

DoCmd.method...

where there’s a period — not a comma — between the first two words. The
fix for the problem would be to replace that comma with a period, as follows:

DoCmd.OpenForm “MyForm”

Expected: list separator or)
The Expected: list separator or) error message tells you that the com-
piler was expecting to find either a list separator (such as the comma that sep-
arates arguments in a function) or a closing parenthesis in the statement. In
most cases, it will highlight where the problem began. For example, the follow-
ing statement, when compiled, generates an Expected: list separator
or) error message with the word World highlighted:

Figure 12-6:
Expected:

end of
statement

compile
error.

274 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 274

Answer = MsgBox(Hello World, vbInformation,”Test”)

The problem with the preceding line is that the words Hello World are sup-
posed to be a string literal enclosed in quotation marks, but I forgot the quo-
tation marks. The blank space between the words Hello and World has sent
the compiler into a tizzy because it was expecting something else there. To
correct the problem, put the quotation marks around the string literal, as
follows:

Answer = MsgBox(“Hello World”, vbInformation,”Test”)

With the quotation marks in place, the compiler can see that the entire string
of text “Hello World” is the first argument, vbInformation is the second
argument, and “Test” is the third argument.

Sometimes the Expected: list separator or) error message points out a
missing parenthesis in a statement. For example, the following statement gen-
erates such an error message when compiled:

PCase = “Mc” & UCase(Mid(PCase, 3, 1) & Mid(PCase, 4)

It’s rarely easy to see where a parenthesis needs to be added to a statement,
especially if the statement contains lots of parentheses. But one fact is
always true: Any statement that uses open parentheses must also use an
equal number of closed parentheses.

Here’s a little trick that programmers use to see whether they have the right
number of parentheses. You start with the number 0 in mind. Then you read
left to right. Each time you encounter an open parenthesis, add 1 to that 0.
Each time you come to a closed parenthesis, subtract 1 from that number. By
the time you get to the end of the line, you should be back to 0. If you end up
at any other number, you have a problem.

As an example, Figure 12-7 shows the troublesome line above after counting
open and closed parentheses. After you add 1 for each open parenthesis and
subtract one for each closing parenthesis, you end up with 1. That shows
that you either have one too many open parentheses or you’re lacking one
closed parenthesis.

Figure 12-7:
Counting

open/closed
parentheses

in a
statement.

275Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 275

Needless to say, you can’t just stick an extra closing parenthesis into the
statement at random. Rather, you need to understand the syntax rules of
the various functions used in the expression. The example in Figure 12-7
uses two functions named UCase() and Mid(). Each function needs its
own complete pair of parentheses.

The Mid(PCase, 4) function at the end of the statement is fine because the
Mid() function requires exactly one open and one closed parenthesis. The
larger Mid() function, Mid(PCase, 3, 1), is also okay because it has one
open and one closed parenthesis.

The problem is with the UCase() function. That larger Mid(PCase, 3, 1)
function is actually the argument for the UCase() function, and there’s no
closing parenthesis for UCase(). That needs to be added right after the clos-
ing parenthesis for Mid(). Each of the Mid() functions also has a pair of open
and closed parentheses. If you count the parentheses in the modified state-
ment shown in Figure 12-8, the count ends up at 0, which is exactly what you
want.

Regardless of what compile error message you get, you have to fix the prob-
lem before you can even run the procedure. Don’t expect the compile error
message to pinpoint the solution for you. The message in a compile error is
often too vague and too general for that. In most cases, your only recourse is
to look up the correct syntax in Help (or through the Object Browser) and
learn the correct syntax for whatever you’re trying to accomplish.

Dealing with Logical Errors
Even if your code compiles and runs without generating an error message,
the code isn’t necessarily perfect. Your code can also contain logical errors.
Unlike a compile error, which is an error in syntax or a typographical error, a
logical error is an error in your thinking (logic). The computer will always do
exactly what the code tells it to do, even if you tell it to do the wrong thing.

For example, say you meant to write a line of code to open some form, but
you accidentally wrote the code to close the form. When you run the code,
the computer will (of course) close the form — not open it. The computer

Figure 12-8:
Equal

number of
open/closed
parentheses.

276 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 276

would never look at your code and think to itself, “Hmmmm. I bet she meant
to open a form here, so I’ll do that instead.” Computers just don’t work that
way. The computer always does exactly what the code tells it to do.

Pinpointing logical errors in your code is often difficult mainly because when
you run a procedure, everything happens in less time than it takes to blink
your eyes. Often it helps to take a look at what’s going on behind the scenes
while the code is running. The VBA editor provides a few tools that allow you
to see what’s going on behind the scenes.

Checking on variables with Debug.Print
In earlier chapters, you can see examples of using the VBA editor Immediate
window to test procedures and try out expressions. For example, typing a
simple expression like ? 1+1 (What is one plus one?) results in 2, which is the
sum of one plus one. Typing the expression ? CurrentProject.AllForms.
Count displays the number of forms in the current database.

You can also force your code to display information in the Immediate window.
However, in code, you use a Debug.Print expression rather than a ? expres-
sion to make the code print to the Immediate window. This is an easy way to
watch what’s happening to variables behind the scenes while your code is
running.

The real beauty of Debug.Print is that it allows you to write a little code,
test it to see what’s going on, and make sure that all is well before writing
more code. For example, in Chapter 11, I show you an example of a function
named PCase() that can convert any text to proper noun case (the first
letter of each word in uppercase).

When you look at a completed procedure like that, you might think that the
programmer just typed it out like typing a note, and the thing just ran per-
fectly right off the bat. That’s not even close to how programmers really
work. A programmer knows that every line of code is just one step in the
overall procedure. For the procedure as a whole to work, you need to make
sure that each individual piece is doing exactly what you think it’s doing.

To write the PCase() function, I actually started out by just writing this:

Public Function PCase(anyText) As String
PCase = StrConv(anyText, vbProperCase)
Debug.Print “PCase = “ & PCase

End Function

That was the entire function, at first. To test it, I typed ? PCase(“MARVIN
DODoskY”) into the Immediate window and pressed Enter. When I did, the
Debug.Print statement in the code displayed the following in the Immediate
window:

277Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 277

PCase=Marvin Dodosky

To test it again, I typed ? PCase(“123 OAK TREE LANE”) into the Immediate
window and got back PCase = 123 Oak Tree Lane. At this point, I knew
that the basic problem — converting the first letter of each word to upper-
case and lowercasing all other letters — was solved.

Granted, having the procedure show a small result like that in the
Immediate window is of no value to a potential user of the function. But
to me — as the programmer — it told me that after the statement PCase =
StrConv(anyText, vbProperCase) executes, the PCase variable con-
tains the passed text with the first letter of each word capitalized. At that
point, I knew that the basic problem of capitalizing the first letter of each
word was solved, so I could then move onto writing code to solve the next
problem.

I decided to tackle the Mc problem next. First, I had to figure out how to tell
the procedure that if the first two letters were mc, change PCase so that the
first and third letters are uppercase. I already knew that I could use the Mid()
function to grab any portion of any string, and that I could use the UCase()
function to convert any letter to uppercase.

So I typed out the If...Else...End If block of code to handle any string
that starts with the letters Mc, shown as follows, and moved the Debug.
Print “PCase = “ & PCase statement below that, as follows:

Public Function PCase(anyText) As String
PCase = StrConv(anyText, vbProperCase)

If Left(PCase, 2) = “Mc” Then
PCase = “Mc” & UCase(Mid(PCase, 3, 1)) & Mid(PCase, 3)

End If

Debug.Print “PCase = “ & PCase

End Function

To test my progress, I typed into the Immediate window ? PCase(“MCDONALD”)
and pressed Enter. The Immediate window showed PCase = McDdonald.
Oops, that should have been McDonald — not McDdonald (with two d’s).
This is a logical error in the sense that the code ran without generating any
error messages. The problem is with the logic of how I handled the problem.

After studying the code more closely, I realized that the last Mid statement —
& Mid(PCase,3) — was wrong. That should be Mid(PCase,4). So I changed
the code, as follows:

278 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 278

Public Function PCase(anyText) As String
PCase = StrConv(anyText, vbProperCase)

If Left(PCase, 2) = “Mc” Then
PCase = “Mc” & UCase(Mid(PCase, 3, 1)) & Mid(PCase, 4)

End If

Debug.Print “PCase = “ & PCase

End Function

Once again, I tested the procedure by entering ? PCase(“MCDONALD”) into
the Immediate window. I got back the following:

PCase = McDonald

in the Immediate window. Now I knew that the Mc problem was solved. Onto
the next problem — dealing with the Mac last names. From there on out, it
was more of the same. I’d write a little code, test my progress so far, and fix
any problems that I discovered. By making sure that each piece of the puzzle
worked at each step in the process, I was able to finally create a custom func-
tion that did what I wanted it to.

The much larger NumWord() procedure from Chapter 11 was harder to write,
of course. Again, it was all a matter of doing a little at a time, testing my
progress, fixing all compile and logical errors, and then moving on to the
next problem. Basically, I started out by declaring variables, setting up the
array, and typing the first statement, followed by a couple of Debug.Print
statements. Here’s the basic idea; to save space, I put an ellipsis (...) in
place of most of the array element definitions:

Function NumWord(AmountPassed As Currency) As String
‘Declare all variables and arrays.
Dim English As String, strNum As String
Dim Chunk As String, Pennies As String
Dim Hundreds As Integer, Tens As Integer
Dim Ones As Integer, LoopCount As Integer
Dim StartVal As Integer, TensDone As Boolean
Dim EngNum(90) As String
EngNum(0) = “”
EngNum(1) = “One”
EngNum(2) = “Two”
EngNum(3) = “Three”

‘...
EngNum(80) = “Eighty”
EngNum(90) = “Ninety”

strNum = Format(AmountPassed, “000000000.00”)
‘strNum is original number converted to string

Debug.Print “AmountPassed = “ & AmountPassed

279Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 279

Debug.Print “strNum = “ & strNum

End Function

To test my progress at this point, I typed ? NumWord(1234. 56) into the
Immediate window and then pressed Enter. The Immediate window returned
this:

AmountPassed = 1234.56
strNum = 000001234.56

Now I could see what I really had to work with before writing more code.
Also, I knew that because strNum is a string, I could use the built-in Mid()
function to isolate portions of the string and still use AmountPassed to check
for other things, like how large a number was being translated to English.

Knowing that I had AmountPassed and strNum to work with, I then wrote
a little more code for the procedure, tested that, and worked out any kinks
until all was well to that point. And so it goes. You write a little code, maybe
use the Help to work out any compile errors, test the code, fix any errors in
logic, and then you’re on to the next bit of code.

If I’d tried to just type the whole procedure in one fell swoop before testing
it, any problems would have been more difficult to find because they could
be anywhere in the code. By writing a little, testing a little, and debugging a
little along the way, I was gradually able to solve all the problems and come
up with a procedure that actually works.

The only purpose of using Debug.Print in the code is to give yourself some
feedback as to what’s going on behind the scenes as that code is running.
After any problems are solved at a given point in a procedure, you can delete
any Debug.Print statements that you don’t need any more. After all, the
Debug.Print statements won’t be of any value to the user of your custom
function. Debug.Print statements serve only as a programmer’s debugging
tool.

Slowing down code
Using Debug.Print in code to get a little feedback as to what’s happening
in your procedure is helpful, but when you run the procedure, it will still
execute in an eyeblink’s time. To get things to slow down, you can set break-
points in your code via the VBA editor Code window. A breakpoint in your
code doesn’t actually make the code run in slow motion; rather, it forces
the VBA editor to suspend execution of code at that point so that you can
explore the values of variables or whatever in the Immediate window.

280 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 280

To set a breakpoint in a procedure, follow these steps:

1. Make sure that the procedure you want to test is open and visible in
the Code window.

2. Move the cursor to the line where you want to suspend code execu-
tion; then do whichever of the following is most convenient at the
moment:

• Right-click the line and choose Toggle➪Breakpoint.

• Choose Debug➪Toggle Breakpoint from the VBA editor menu bar.

• Click the Toggle Breakpoint button on the Debug toolbar.

If the Debug toolbar isn’t visible in your VBA editor, choose View➪
Toolbars➪Debug from the menu bar to make that toolbar visible.

After the breakpoint is set, test your code normally from the Immediate
window. Your code will execute at its usual blazing speed until execution
reaches the line that you defined as a breakpoint. Instead of being compiled
and executed, the breakpoint line of code gains a bright yellow highlighter
in the Code window and won’t actually execute until you press F8. Basically,
this means that you can make your code slam on the brakes and go into step
mode, where you miraculously take over all code execution yourself.

Of the several ways to use step mode, just take a look at the easiest and most
common way to set a breakpoint and use step mode. Suppose that while cre-
ating the NumWord() procedure, I want to take a look at all my variables just
before the line that reads strNum = Format(AmountPassed, “000000000.00”)
executes. In the Code window, I’d right-click that line and choose Toggle➪
Breakpoint. Then I’d run the function and pass some huge number to it, as a
test, by entering something like ? NumWord(123456789.00).

281Chapter 12: Testing and Debugging Your Code

Testing Function and Sub procedures
The syntax for calling a procedure from code,
as well as from the Immediate window, is dif-
ferent from the syntax for calling a function. To
run a procedure from the Immediate window,
just type the procedure’s name (without the
parentheses) and press Enter — for example,
if your module contains a Sub procedure
declared as Sub.

To test a custom Sub procedure from the
Immediate window, just type the procedure’s

name without any quotation marks and then
press Enter. To test a function from the Immedi-
ate window, use the syntax ? functionName
(arguments) where functionName is the
name of your custom function, and arguments
represents any sample data that you want to
pass to the function for testing. After the func-
tion runs, the Immediate window will display the
value returned by your function.

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 281

The procedure would run at its usual blazing speed up to the breakpoint
line and then slam on the brakes. If I wanted to take a quick look at some
variable defined in the code before the breakpoint line executes, I could ask
the Immediate window by typing ? variableName. For example, if I enter ?
strNum into the Immediate window while the code is suspended, I get noth-
ing in return because strNum is empty before the breakpoint line executes.
Still, getting nothing in response to the ? strNum expression is confusing.
Here’s a much quicker and easier way to check out the contents of your pro-
cedure’s variables: the Locals window.

Using the Locals window
While your code is suspended in a breakpoint and in step mode, you can easily
check the value and data type of every variable defined in your code up to that
breakpoint. This saves you from having to type a bunch of ? variableName
statements in the Immediate window. To see an overview or all the variables
in the procedure, just choose View➪Locals Window from the VBA editor
menu bar or click the Locals Window button on the Debug toolbar.

The Locals window will open, showing the name, value, and data type of every
variable defined up to that point in your code. Figure 12-9 shows an example
where I opened the Locals window while code was suspended in the sample
NumWord() procedure. There I can see the name, value, and data type of every
variable that exists in NumWord() just before the breakpoint line executes.

In the Locals window, I can easily see the strNum variable that I previously
checked on in the Immediate window. The Locals window lets me know that
the variable is empty by showing “” as its value and String as its data type.
That’s all true and correct because a Dim statement near the top of the proce-
dure has already declared strNum a string variable.

282 Part IV: Applying VBA in the Real World

Moving and sizing editor windows
Like all windows in the VBA editor, you can
anchor the Locals window to any edge of the
program window. While it’s anchored, you can
change its height or width by dragging the
border just above its title bar. You can also drag
it by the title bar toward the center of the screen
to make it a free-floating window. To put the
Watch window back into hiding, click the Close
(X) button in its title bar.

To get the Immediate and Locals windows to
stack up as they are in Figure 12-9, first make
sure that both are open. Drag one window’s title
bar right to the middle of the other’s title bar and
then release the mouse button. To resize them,
drag the border line that separates the two
panes up or down or drag the leftmost border
left to right. To reverse the stack order of the
two panes, drag the bottom pane’s toolbar up to
the middle of the top pane’s window.

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 282

The Locals window shows the name, value, and data type of every variable
created prior to the currently highlighted line of code. And knowing about all
your variables at an exact moment of time can be a great aid to debugging
your code. Keep reading because things really get good when you learn to
use the step mode.

Stepping through code in step mode
Say you’ve set your break point, code execution has stopped at the break-
point line, and maybe you’re looking at variables in the Locals window. The
real question is, “What next?” The answer is that you basically have four
choices:

� To execute the currently highlighted line of code (only): Press F8 or
choose Debug➪Step Into.

� To skip the currently selected line without executing it: Press Shift+F8
or choose Debug➪Step Over.

� To execute all lines of code up to — but excluding — a specific line of
code: First click the line to which you want execution to run. Then press
Ctrl+F8 or choose Debug➪Run to Cursor from the menu bar.

� To bail out of break mode: Press Ctrl+Shift+F8 or choose Debug➪
Step Out.

The best way to use step mode, as a beginner anyway, is to just press F8 to
execute the currently selected line of code. When you do so, the line executes.
Any changes to variables made by executed statements appear in the Locals
window. For example, if I press F8 at the moment shown in Figure 12-9, the
strNum variable’s value in the Locals window changes from “” (nothing) to
“123456789.00” because the executed statement gave strNum a value.

Even better, you can sit there and just tap the F8 key to watch the procedure
execute one line at a time. You can actually see how code execution jumps
over If...End If statements and how it goes around in circles in a loop.
If the Locals window is open, you can watch variables appear and receive
values just as they do when the code is really executing. It’s code execution
in super-slow motion, where you control the speed of things by tapping the
F8 key.

If the code that you’re debugging affects an open form in Access, you might
notice the Access program window flash onscreen as the code executes. If
you want to take a look at that open form — without losing your place in the
VBA editor — just click the form’s taskbar button or press Alt+F11 to switch
back and forth between Access and the VBA editor.

283Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 283

Getting back to normal
in the Code window
When you finish debugging or just want to start over with a clean slate, do
one of the following:

� To get out of step mode: Press Ctrl+Shift+F8 or choose Debug➪Step Out.
Code execution will stop, and things will be back to normal.

� To remove a breakpoint: Right-click the line and choose Toggle➪
Breakpoint.

� To clear all breakpoints from your code: Choose Debug➪Clear All
Breakpoints.

� To clear the Locals window of its value: Right-click any text within the
window and choose the Reset option from the shortcut menu.

Debug toolbar

Locals windowCode suspended at breakpoint

Figure 12-9:
Checking

out the
locals in

step mode.

284 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 284

Closing the VBA editor window also terminates the step mode. For instance,
if you choose File➪Close and Return to Microsoft Access while in step mode,
you’ll see the prompt This command will stop the debugger (see Figure
12-10). This means that if you click OK, the Visual Basic editor will close,
all breakpoints will be cleared, step mode will be terminated, and you’ll
be returned to the Access program window. The next time you open the
module, it will be free of breakpoints and in normal mode rather than step
mode. (Clicking Cancel closes the dialog box without doing anything to the
code. Clicking Help shows some confusing information about the dialog box.)

Wrestling Runtime Errors
Some VBA errors are caused by environment conditions rather than anything
that’s wrong with the logic of the code or a compile error. As an extreme exam-
ple, take a look at an environmental condition that could prevent code from
executing. Say you drag and drop some icons from a folder to the icon for your
floppy drive in My Computer. If there’s no floppy disk in the drive when you
release the mouse button, you create an environmental condition in which
no program could complete its task. There’s just no way any program in the
world can copy files to an empty floppy disk drive!

In your VBA code, environmental conditions can be much more subtle than
the missing floppy disk example. A more common example would be a line
of code that attempts to move the cursor to a specific control when the form
isn’t even open. For example, the following line of code attempts to move the
cursor (SetFocus) to a control named StateProv on an open form named
Customers (Forms![Customers].SetFocus).

Forms!Customers.[StateProv].SetFocus

The preceding line of code will execute just fine provided that the form named
Customers actually is open in Form view when the line executes. If the form
named Customers is open in Design view when that line executes, a runtime
error like the one in Figure 12-11 occurs.

Figure 12-10:
Exit options

when
closing in

step mode.

285Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 285

Responding to a runtime error
When your code generates a runtime error and you’re given the choices
shown in Figure 12-11, you have three or four choices:

� Continue: If code execution was suspended when the error occurred,
clicking the Continue button will resume execution at the next line of
code in the procedure. This option is disabled (not available) in most
cases.

� End: Clicking this button terminates code execution and takes you back
to the Code window without going into step mode.

� Debug: Clicking this button stops code and takes you back to the Code
window. The line of code that generated the error is highlighted, and
you’re in step mode.

� Help: Clicking this button provides brief help with debugging VBA code.

Most often, you just click End to get back to your code normally or click Debug
to get back to your code with the faulty line highlighted and in step mode. If
the problem is something that you can fix in that particular line, you can just
modify the line and try again although it often takes a little more brain power
than that to figure out what’s really wrong.

For example, say upon inspecting the code that caused the runtime error,
you discover that the line above the faulty line opens the Customers form
in Design view (acDesign) rather than the normal Form view, as follows:

DoCmd.OpenForm “Customers”, acDesign
Forms!Customers.[StateProv].SetFocus

Even though the error message was generated by the second line, the real
problem is in the first line. The fix is to change acDesign to acNormal in
the top line, as follows, so that the second line can do its job of moving the
cursor to the StateProv control of that form:

DoCmd.OpenForm “Customers”, acNormal
Forms!Customers.[StateProv].SetFocus

Figure 12-11:
A sample

runtime
error

message.

286 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 286

After you make the correction, you can just run the entire procedure again to
test it out.

If seeing the error is difficult, you can still use step mode to watch what’s
going on in your code and in Access. For example, in your code, you could
set a breakpoint a few lines above the line that’s causing the error. Then step
through your code one line at a time, pressing the F8 key. After you press F8,
you can press Alt+F11 to see what (if anything) happened in Access as a result of
that statement’s execution. Then press Alt+F11 again to return to VBA, press F8
to execute the next statement, and then press Alt+F11 again to see that state-
ment’s effect on Access. Just keep doing that, and eventually you’ll discover
which statement is really causing the situation that’s making the faulty line fail.

Unfortunately, not all runtime errors are the kind of things that you can fix
by correcting your existing code. Some runtime errors are caused by peculiar
situations in the environment, like the missing floppy disk in the copy-to-floppy
example, and there’s really no way to write code to fix that error. The best that
you can do with those kinds of errors is to trap them and give the user some
kind of more friendly feedback and options than the VBA runtime error mes-
sage box would provide.

Trapping runtime errors
As you can see in the preceding example, when a runtime error occurs, you
get two pieces of information in the message box that appears (see Figure
12-12). Note the error number (referred to as Err.Number or the Number prop-
erty of the Err object in programmer lingo). That number is of no value to a
human user but can be handy for a programmer. The other piece of informa-
tion that the error message provides is the error description, referred to as
Err.Description in VBA. The error description is the text that (vaguely)
describes why the error occurred.

When you see a runtime error on your screen, two things have actually hap-
pened. The obvious first thing is the message onscreen. But behind the scenes,
VBA has raised a runtime error, and the Err object has also received two
values that describe that error. Those values are stored in the Number and
Description properties of the Err object (expressed as Err.Number and
Err.Description in VBA code). Just like you can see the number and
description of an error by looking at the message onscreen, VBA can “see”
that same information by looking at the contents of the Err.Number and
Err.Description properties.

Trapping runtime errors is basically a matter of anticipating what runtime
errors might occur when the code runs, and also writing code to gracefully
handle each type error without causing the whole procedure to crash. The
code that you write to deal with runtime errors is often referred to as an error
handler because that’s exactly what the code does — it handles the error in
some way without causing the whole procedure to crash.

287Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 287

To create an error handler, you first need to add an On Error statement to
your code, preferably just after the Sub or Function statement that marks
the beginning of the procedure. Use one of the following three different ways
to create an On Error statement:

� On Error GoTo label: When an error occurs as a statement runs,
code execution jumps to the section of code identified by label within
the same procedure.

� On Error Resume Next: If an error occurs as a statement runs, that
statement is ignored, and processing just continues with the next line
of code in the procedure.

� On Error GoTo 0: Disables any previous OnError GoTo or On Error
Resume Next statements so that future runtime errors are handled by
VBA rather than your own code.

The Resume statement can be used in any error-handling code to tell VBA
exactly where to resume code execution after the runtime error occurred.
The syntax for the Resume statement can take any of the following forms:

� Resume: Causes VBA to re-execute the statement that caused the error.
You want to use this statement only if the error-handling code fixed the
problem that caused the error in the first place. Otherwise, executing
the same statement again just causes the same error again.

� Resume Next: Causes execution to resume at the first statement after
the statement that caused the error. The statement that caused the error
does not execute at all.

� Resume label: Causes execution to resume at the label specified.

Code created by Control Wizards and macro conversions might already have
error-handling code written into it. For example, say you’re working on a form
in Design view. You add a command button to the form from the Toolbox while
the Control Wizards button is pushed in. As soon as you drop the button in

Err.Number

Err.Description

Figure 12-12:
Err.

Number
and Err.
Descrip
tion in a

runtime
error.

288 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 288

the form, the Command Button Wizard opens so that you can define the
button’s appearance and behavior one step at a time.

Suppose you go through the wizard and create a button that closes the form.
You tell the wizard to name the button, and then you click Finish to complete
the wizard. Your form now has a button on it. Although it’s not readily appar-
ent in Design view, what the Command Button Wizard really did was write
some VBA code that tells the button what to do. To see the code that the
wizard wrote, right-click the new button and choose Build Event. The Code
window will open showing the code that the wizard wrote for the button’s
On Click event, as in Figure 12-13.

In the CloseBttn_Click() procedure that the wizard created, only the line
DoCmd.Close closes the form. Technically, the code would work just fine if
DoCmd.Close were the only statement in the entire procedure, but the wizard
always adds error handling to the code that it generates. And most of the
lines in the procedure are actually there to handle errors in case some prob-
lem arises that prevents the form from closing.

Near the top of the procedure, you see the statement On Error GoTo Err_
CloseBttn_Click. When executed, that statement tells VBA, If a runtime
error occurs while this procedure is executing, don’t “crash.” Instead, stop what
you’re doing and resume execution at the Err_CloseBttn_Click label.

CloseBttn button CloseBttn code

Figure 12-13:
CloseBttn

button and
On Click
event code.

289Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 289

Then the code tries to execute the next statement, DoCmd.Close. If VBA is
able to close the form when executing that statement, no runtime error occurs.
Instead, the code execution drops to the next actual statement in the proce-
dure, Exit Sub, which ends the procedure. In other words, if no error occurs
when DoCmd.Close executes, the code runs and ends normally without call-
ing upon any error-handling code.

However, if a runtime error does occur when VBA tries to execute the DoCmd.
Close statement, the procedure doesn’t crash. Rather, it passes control to the
first statement under the Err_CloseBttn_Click: label. There, the MsgBox
Err.Description statement shows the description of the error in a simple
message box, and code execution drops to the line that reads Resume Exit_
CloseBttn_Click:. The first statement under that label reads Exit Sub.
When executed, that statement just ends the procedure normally.

A key component of understanding how error handling works is realizing that
any line that ends with a colon is a label in code. A label is different from a
regular line of code in that it’s not an instruction to the computer to do some-
thing. Rather, its just a placeholder in code to which GoTo and Resume state-
ments can pass control. The sample CloseBttn_Click procedure has two
labels, pointed out in Figure 12-14.

A label text can be any text at all, provided that it starts with a letter and con-
tains no blank spaces. Using the word Err and an underscore, followed by the
procedure name and a colon, is customary but not required. However, the colon
at the end of the label is mandatory because it’s the only character that lets the
compiler know that the line is a label rather than a regular VBA statement.

Writing your own error handlers
When writing your own code and your own error handlers, it’s not realistic to
assume that you can anticipate every possible environmental condition that

Label

Label

Figure 12-14:
Lines ending

with a
colon (:) are

labels, not
statements.

290 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 290

might cause the procedure to crash. For starters, you can just write the basic
code to trap the error, display the error number and description in a simple
message box, and then exit the procedure gracefully.

Assume that you’ve already written a procedure, and now you want to add
some error-handling to that procedure. Exactly what the procedure does is
irrelevant, so rather than show a bunch of VBA statements here, I’ll just refer to
the existing statements as the main body of code below. First, you need to add
an On Error... statement at or near the top of the procedure so that any
runtime error that occurs during execution branches control to some label.

Next, you need to define the label to which the On Error statement refers.
Typically, you can add an Exit Sub or Exit Function statement just above
the End Sub or End Function procedure that’s currently in the code. That
will ensure that if the code runs without generating an error, code execution
won’t fall through to the error handler and make you think that there’s an
error when there isn’t.

Finally, just above the Exit Sub or Exit Function statement at the bottom
of the procedure, add whatever label you specified in your On Error state-
ment. It’s rarely possible to anticipate every conceivable error message. For
starters, you can just have the error handler display the error number and
description in a standard message box. Here’s the basic skeleton of what the
starting error-handling code might look like in a Sub procedure (where the
main body of code represents any number of VBA statements that define
what the procedure does normally):

Sub anySub()
On Error GoTo MyErrorHandler

Main body of code
Main body of code
Main body of code

Exit Sub
MyErrorHandler:

Dim Msg As String
Msg = Err.Number & “:” & Err.Description
MsgBox Msg

End Sub

The same skeleton structure works in a function. You just have to replace the
Exit Sub with Exit Function, as follows:

Function anyFunction()
On Error GoTo MyErrorHandler

Main body of code
Main body of code

291Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 291

Main body of code

Exit Function
MyErrorHandler:

Dim Msg As String
Msg = Err.Number & “:” & Err.Description
MsgBox Msg

End Function

Take a look now at how even a simple generic handler like the preceding
example can be adapted to deal with unexpected runtime errors. Suppose
that somewhere in the main body of code is a statement that attempts to
write some data from a query to an HTML file on a floppy disk. For instance,
the following VBA statement copies data from a query named OrderSummary
to a file named Order Summary.html on a floppy disk:

DoCmd.OutputTo acOutputQuery, “OrderSummary”, _
acFormatHTML, “A:\Order Summary.html”

Figure 12-15 shows that code added to the main body of the basic skeletal
structure for error handling. Once again, ...Main body of code... refers
to any other numbers of statements in the same procedure.

Suppose you run the procedure without a floppy disk in the floppy drive.
Naturally, when VBA tries to execute the statement that tries to write to a
floppy disk, the empty floppy drive is going to cause a major environmental
problem. That problem, in turn, is going to raise an error message. However,
by the time the DoCmd.OutputTo... statement executes, the On Error GoTo
MyErrorHandler code has already been executed. So rather than just crash
at the DoCmd.OutputTo... statement, execution gets passed down to the
MyErrorHandler label.

The MyErrorHandler code then creates a little message string from the
Number and Description properties of the Err object. That message is
then displayed onscreen, as in Figure 12-16.

As a programmer, you’ve just learned something very useful about your pro-
cedure. When a user tries to run this procedure without a floppy disk in the
drive, Access raises Err.Number 2302 (the number at the start of the mes-
sage). As a programmer, you also don’t care about anything else, other than
finding some graceful way of handling this situation that doesn’t leave the

Figure 12-15:
Statement

writes a file
to a floppy.

292 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 292

poor user at a complete loss as to what to do next. As a programmer, you
click OK and get back to doing what programmers do — writing code.

You also know that when any error occurs in your code, execution will always
transfer to the MyErrorHandler label. To trap that 2302 error, you can place
an If...End If statement right there under the label that reads, If the error
that got us here was error number 2302, then... (handle it this way). Here I’ll start
(as I always do in real life) just by typing the If...End If lines for trapping
error 2302. These need to be inserted just under the label MyErrorHandler:,
as shown in boldface in the following. (I’ve also added a couple of comments
to the code.)

‘Everything below here is Error handler stuff.
MyErrorHandler:

‘Trap “missing floppy” error (2302).
If Err.Number = 2302 Then

‘Deal with missing floppy problem.
End If

‘Just show error number and description, then end Sub.
Dim Msg As String
Msg = Err.Number & “:” & Err.Description
MsgBox Msg

End Sub

So now you have an If...End If block of code in your handler that can deal
specifically with error 2302 when it arises. I suppose the smart thing to do
would be to show a message that tells the user to put a floppy in the floppy
drive, click an OK button, and let the code take another shot at copying to
the floppy. The following code sample shows the appropriate code added
between the If...End If statements for error 2302:

‘Everything below here is Error handler stuff.
MyErrorHandler:
‘Trap “missing floppy” error (2302).
If Err.Number = 2302 Then

‘Deal with missing floppy problem.
‘Tell user what to do.

Figure 12-16:
Custom

error
message for
the missing

floppy (error
2302).

293Chapter 12: Testing and Debugging Your Code

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 293

Dim ErrMsg As String
ErrMsg = “Please put a floppy disk in drive A:.”
ErrMsg = ErrMsg + “ Then click OK. “
MsgBox ErrMsg

‘Re-execute line that copies to floppy.
Resume

End If

‘Just show error number and description, then end Sub.
Dim Msg As String
Msg = Err.Number & “:” & Err.Description
MsgBox Msg

End Sub

Notice how there’s now a block of code that’s executed if (and only if) error
number 2302 is raised (If Err.Number = 2302 Then...End If). Within that
block of code is more code written specifically to handle that error. If the user
runs the procedure without a floppy in the drive, the user first sees the mes-
sage box defined in the code, which looks like Figure 12-17 on the user’s screen.

For starters, your custom error-handler has replaced the generic error message
Microsoft Office Access can’t save the output data to the file
you’ve selected to a very specific instruction telling the user exactly what
to do. That’s because the message being displayed now is the one defined by
these lines of code within the If Err.Number = 2302 Then...End If block:

ErrMsg = “Please put a floppy disk in drive A:.”
ErrMsg = ErrMsg + “ Then click OK. “
MsgBox ErrMsg

When the MsgBox ErrMsg statement executes and displays the message
onscreen, code execution halts until the user clicks OK. (Not because of
anything special I did but rather because that’s how MsgBox... statements
always execute.) When the user does as instructed and clicks OK, the next
statement executed is

Resume

That statement forces execution to try the error-generating line again (DoCmd.
OutputTo...). This time, because there is a floppy disk in the drive, the state-
ment will run just fine. Code execution will then resume normally under that
line, and everything will be just as though the error never occurred.

And that’s what handling runtime errors gracefully is all about. By adding a
general error-handler to the code, you’re able to trap — and take a look at —
whatever runtime errors that particular procedure might generate. When
you find a specific runtime error, find some way of handling it that allows
the code to keep running and keep working rather than just leaving the user
staring dumbfounded at the screen.

294 Part IV: Applying VBA in the Real World

04e_574116 ch12.qxd 7/27/04 9:28 PM Page 294

Part V
Reaching Out

with VBA

05a_574116_PP05.qxd 7/27/04 9:29 PM Page 295

In this part . . .

Even though the focus of this book is on using VBA
to program Microsoft Access, that doesn’t mean that

VBA works only in Access. VBA is actually a programming
language for all the programs in Microsoft Office, includ-
ing Microsoft Word, Excel, and Outlook. In this part, you’ll
discover some tools and techniques for using VBA to
automate transferring data among those programs — and
even programs that aren’t part of Microsoft Office at all.

05a_574116_PP05.qxd 7/27/04 9:29 PM Page 296

Chapter 13

Using VBA with Multiple
Databases

In This Chapter
� Importing data from external tables and queries

� Linking to external Access tables

� Creating recordsets from external data

� Importing, exporting, and linking to anything

Usually an Access database (an MDB file) contains all the tables, queries,
forms, reports, and other objects that make up a single database. How-

ever, you will find situations where it’s to your advantage to split things into
two or more database files. For example, you might want to put some tables
for a database into a single MDB file that’s located in a shared folder on a net-
work and then put all the other stuff (queries, forms, reports, and code) in a
separate database file. You can then distribute the front-end database to mul-
tiple users on the network, thus allowing several people to work with the
same tables simultaneously from multiple computers.

Splitting a database into two allows you to set up a client-server relationship
between the data in the tables and the queries, forms, reports, pages, macros,
and modules that manage and access those tables. The computers that can
get to the data are the clients. The computer that stores and serves the tables
to the clients is the server. There are many ways to split up data into a client-
server relationship. Take a look at one of the most common methods — the
Access Database Splitter.

Client-Server Microsoft Access
As you might (or might not) know, you can use Access’s built-in Database
Splitter to split any existing database into two separate databases (two sepa-
rate MDB files). The Database Splitter takes you through the steps necessary

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 297

to split the database. In the process, the wizard creates a database that con-
tains only the tables, giving it the same filename as the original database file,
appended with _be.

For example, say you split a database file named MOM.mdb using the Database
Splitter. After the database is split, you end up with a file named MOM_be.mdb,
which contains all of that database’s tables. You also still have your original
MOM.mdb database containing all the original queries, forms, reports, pages,
macros, and modules.

However, MOM.mdb won’t contain any tables. Instead, the database window
shows links to external tables. In the database window, each linked table has
an arrow to the left of its icon, as in the example shown in Figure 13-1. Pointing
to a linked table’s icon or name displays the table’s true location in a screen
tip at the mouse pointer.

Splitting the database into two lets you keep the back end separate from the
front end. The back end is the database file that contains only the tables. On
a network, you can place the back-end MDB file on any shared folder in a net-
work so that all computers in the network can get to the tables.

After you place the back-end database in a shared folder, the next step is just
a matter of opening the front-end database to make sure that it can find the
linked tables. If you’ve changed the location of the back-end database since
splitting the tables, you can use the Linked Table Manager to reestablish a
link with those tables at any time.

Getting back to the MOM.mdb and MOM_be.mdb example, say you put MOM_
be.mdb in a shared folder named MOMFolder on a computer named Homie.
Then you open the front-end database, MOM.mdb, on some computer other
than Homie. If the links to the back-end database fail, just choose Tools➪
Database Utilities➪Linked Table Manager from the Access menu bar to the
new location. In this example, that would be \\Homie\MOMFolder\MOM_
be.mdb.

Figure 13-1:
Arrows next

to table
names

indicate
linked

tables.

298 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 298

After you reestablish the links, you can install the front-end database on any
computer in the network that has Microsoft Access installed (up to a maxi-
mum of five simultaneous users). For example, Figure 13-2 shows how the
back-end database is installed on one computer, which acts as the server by
serving table data to all who request it. Each of the other computers has a
copy of the MOM.mdb front-end database installed, so each of those comput-
ers has access to exactly the same back-end tables.

Everything I’ve discussed so far can be done without any VBA at all. The
Database Splitter and Linked Table Manager tools are both right on the Tools
menu in Microsoft Access. After you establish a valid link between the front-
end and back-end databases, everything else is automatic. As far as queries,
forms, reports, macros, and modules go, a linked table is no different from a
local table (a table that’s actually in the current database, not just linked).

Here is a downside to the whole business of splitting the tables from the
other objects. network traffic. It takes time to get things across a network.
The heavier the traffic on the network, the longer it takes.

You might have situations where a certain external table needs to be
accessed only occasionally. Perhaps only a snapshot of some data is all
that’s required. In such cases, you can use VBA to open and close external
links on an as-needed basis. For example, you can attach code to a form’s
On Load and On Unload events to interact across the network only while
that form is open or only at the moment when the data is required.

299Chapter 13: Using VBA with Multiple Databases

When not to split a database
Splitting a database isn’t something to be taken
lightly, just for the heck of it. After you split a
database file into two, changing or deleting a
field in a table becomes a real headache. You
have to open the back-end database table and
change the field there. Furthermore, Name
AutoCorrect won’t be able to propagate a field
name change through other objects as it nor-
mally would. So you might have to manually
change the same field name in several objects
in the front-end database file.

Splitting a database across multiple computers
also slows things down because now there’s
the extra step of transferring all data to and from
tables over the network. To keep life simple and
not slow things down while you’re trying to

create a database, keep your tables, queries,
forms, reports, macros, and modules all in one
MDB file. Don’t even think about splitting things
until you’ve created everything you need — and
are sure that everything is working.

If you want to try it, start with a copy of some
database (so you still have the original un-split
database available to you). Open that database
with Access in the usual manner, and then
choose Tools➪Database Utilities➪Database
Utilities. For more information on the whole she-
bang, search Access Help go to or http://
search.microsoft.com and search for the
keywords Database Splitter, Linked Table
Manager, and Name AutoCorrect.

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 299

To illustrate the various techniques shown in this chapter, I use an example
of a single Access MDB file named MOMSecure.mdb. To keep names short,
this table is stored in a folder named SecureData on drive C:. Thus, the path
to the database file is C:\SecureData\MOMSecure.mdb from any other
Access database. (Most of the code that follows is copy-and-paste stuff. In
most code, you’ll need to change the path to reflect the actual location of
your own external MDB file.)

If MOMSecure.mdb were in a shared folder named SecureData on a computer
named Max in a local network, the path would be \\Max\SecureData\
MOMSecure.mdb from any Access database on the LAN.

Back-end server
(tables only)

Microsoft Access and MOM.mdb

Front-end
clients

Microsoft Access and
MOM_be.mdb

Figure 13-2:
Front-end

clients and
back-end

server.

300 Part V: Reaching Out with VBA

Changing linked tables back to local tables
To convert a linked table back to a local table,
do the following:

1. Right-click the linked table’s icon in the
database window and choose Cut.

2. Press Ctrl+V or right-click some empty
space in the database window and choose
Paste.

3. In the Paste Table As dialog box that opens,
type the original table name (same as the
linked table’s name), choose Structure and
Data (Local Table), and then click OK.

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 300

To keep things relatively simple, say that MOMSecure.mdb contains only two
objects: one table and one query. The table’s name is CCSecure; its structure
is shown at the left side of Figure 13-3. The figure also shows some sample
data in that table, in Datasheet view.

By the way, the names and credit card numbers shown are entirely fake. Don’t
bother trying to use them to shop online.

As you might have guessed already, the CC in the field names is short for
credit card. Here’s a quick overview of the purpose of each field in the
CCSecure table:

� ContactID: A Long Integer that relates each record to a specific cus-
tomer in a separate Customers table. ContactID is the foreign key here
in the CCSecure table and the primary key in the Customers table.

� CCPreferred: Contains the name of a preferred credit card, such as
Amex, Master Card, or Visa.

� CCHolder: Contains the cardholder name as it appears on the card.

� CCAcctNumTxt: Stores the card account number as text: for example,
1234567898765432.

� CCExpireMon: The month when the card expires, as an integer (1–12).

� CCExpireYr: The year when the card expires, as an integer: for example,
2005, 2006, and so forth.

� CCcidCode: The three-digit CID code that appears on the back of the
credit card.

CCSecure table
(Datasheet view)

CCSecure Table
(Design view)

Figure 13-3:
CCSecure

table in
Design and
Datasheet

views.

301Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 301

The second object of MOMSecure is a query named CCSecureQry. For this
example, I created a query named CCSecureQry. This query displays all
records from the CCSecure table except the account number and CID fields.
In place of the account number is a calculated field named CCHint, which
is a calculated control based on the expression shown here:

CCHint: “xxxx-xxxx-xxxx-”+Right([CCAcctNumTxt],4)

Figure 13-4 shows the CCSecureQry query both in Design and Datasheet views.
I omitted the CCcidCode field from the query for no particular reason other
than to have an example of leaving fields out of a query. As you can see in the
Datasheet view, the CCHint field displays xxx-xxx-xxx-1234, where 1234 is
the last four digits of the account number. Thus, the query is hiding some
information from the CCSecure table.

CCAcctNumTxt is a text field, so you use the expression Right([CCNumTxt],4)
to refer to the last (rightmost) four characters of that field’s contents.

CCHint:“xxxx–xxxx–xxxx–”+Right([CCAcctNumTxt],4)

CCSecureQry (Design view)

CCSecureQry (Datasheet view)

Figure 13-4:
CCSecure

Qry in
C:\Secure
Data\MOM
Secure.

mdb.

302 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 302

In a sense, you’ve turned the MOMSecure.mdb database into a little black box
from which you can zap some credit card info out of a query (or the table, if
need be) from any other Access database in the network. I suppose you could
call it your customer credit card information server. I suppose you can’t call it
your secure server right now because making it secure would require some
close encounters of the Network Administration kind, which has nothing to
do with Access nor VBA.

So how can any Access database on the network reach into MOMSecure.mdb
and grab data, even when that database is closed? Here are the three answers
to this question, and you can use whichever method seems most appropriate
to the occasion:

� Import (a snapshot): You can import a snapshot of a table or query, stor-
ing it as a table in the current database. The imported table is a local table
and won’t reflect any changes made to the source table since the snap-
shot was taken.

� Link: You can create a link to any table in any external database. This
type of link is identical to that created by the Database Splitter. Changes
made to the source table will be reflected in the linked table.

� Recordset: You can create an ActiveX Data Objects Database (ADODB)
recordset of any table or query from an external database. Recordsets
are useful when you need only a brief snapshot of external data, like
when using that data for a single VBA procedure only.

Each of the methods has its pros and cons. Which method is most appropri-
ate at any given time depends on the situation. If the situation calls for a quick
snapshot of current data, you can import data. If the situation calls for an open
link to the table, like when both tables need to be up-to-date with each other,
you need either a link or a recordset. Start with the easiest scenario first —
the quick-zap grab of a snapshot of current data.

Importing from External Databases
You can import data from any external Access table or query into a table
in the current database. There are a couple of advantages to this approach.
When you import, you actually create a table, within the current database,
that contains an exact clone of the external table or query. Secondly, the
imported data are stored in a normal, local Access table. After the table
exists in the current database, all other objects in the database that depend
on that table work just fine. No special handling is required.

The only disadvantage is that any changes made to the copy of the table in
the current database won’t carry over to the original table — nor vice versa

303Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 303

because the local table and external table are no longer connected in any
way. So you want to use this approach

� When the external table is one that doesn’t change much

� When the current database needs the external table’s data only for a
short period of time

The TransferDatabase method of the DoCmd object is the easiest way to
import an external table or query with VBA. The general syntax is shown
here. Note that when typing your own code, you should type it in as one long
line without the continuation characters (_). Or, if you want to break the
statement into shorter lines, make sure that you end each of the first two
lines with a blank space and an underscore, as shown here:

DoCmd.TransferDatabase acImport, “Microsoft Access”, _
“pathToExternalDB”, acTable, _
“externalTblQry”, “localTableName”

where

� pathToExternalDB: This is the complete path and filename of the data-
base file that contains the table or query.

� externalTblQry: This is the name of the table or query in the external
database that contains the data you wish to import.

� localTableName: This is the name of the table in which the imported
data will be stored.

For example, assume that at the moment when the MOM.mdb database is open
in Access, C:\SecureData\MOMSecure\MDB actually does exist. When exe-
cuted, the following statement creates a local table named CCSecure, whose
contents are a snapshot of the CCSecureQry query’s Datasheet view, from
the external database at C:\SecureData\MOMSecure.mdb:

DoCmd.TransferDatabase acImport, “Microsoft Access”, _
“C:\SecureData\MOMSecure.mdb”, acTable, _
“CCSecureQry”, “CCSecure”

After the preceding code executes, the MOM.mdb database window contains a
new icon named CCSecure. It’s a normal table icon — not a link — because
there is no link to the MOMSecure.mdb file. Opening the table shows a snap-
shot of the MOMSecure.mdb table’s CCSecureQry, as shown in Figure 13-5.

If the current database already contains a table with the name specified in
the LocalTableName argument, Access will create a new, separate table —
a duplicate — with that name followed by a digit. There are easy ways to
avoid that problem, as discussed in the section, “Avoiding Multiple Tables
and Links,” a little later in this chapter.

304 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 304

When VBA executes the preceding code, Access actually performs these
tasks behind the scenes:

1. Opens the database named C:\SecureData\MOMSecure.mdb and then
opens the query named CCSecureQry in Datasheet view.

2. Creates a new, local table named CCSecureTable as an exact clone of
CCSecureQry.

3. Closes CCSecureQry and C:\MOMSecure.mdb, breaking the connection
between the two databases.

The code for linking to an external table is almost the same as the basic
syntax I’ve shown and my example of importing data from an external data-
base’s table or queries.

Linking to External Data through Code
The TransferDatabase method of the VBA DoCmd object also provides a
syntax for linking to an external table (but not a query). Note that the first
argument after TransferDatabase is acLink rather than acImport. Other
than that, the syntax is basically the same:

CCSecureTable (Local table)

CCSecureTable (Datasheet view)

Figure 13-5:
Table

contains
data

imported
from an
external

query.

305Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 305

DoCmd.TransferDatabase acLink, “Microsoft Access”, _
“pathToExternalDB”, acTable, _
“externalTbl”, “localTableName”

For example, the DoCmd.TransferDatabase (as shown here) sets up a link
from the current database to an external table named CCSecure in the data-
base file named C:\SecureData\MOMSecure.mdb. When the procedure exe-
cutes, the database window gains a link icon named CCSecureLinked. That
linked table will contain the current contents of the external table:

DoCmd.TransferDatabase acLink, “Microsoft Access”, _
“C:\SecureData\MOMSecure.mdb”, acTable, _
“CCSecure”, “CCSecureLinked”

After the preceding statement executes, the current database’s database
window will display a new link icon named CCSecureLinked. The arrow in
the icon shows that this is a linked table, identical to the kind of linked tables
that the Database Splitter creates. Opening the link shows the contents of the
external table, as in Figure 13-6.

The advantage of the linked table over the imported table is that the linked
table shows live data from the external MOM2003Secure.mdb file. Therefore,
if somebody changes the table data, from any database, those changes are
reflected in the linked table. The main disadvantage is that data access slows
down because the link requires some network traffic between the actual table
and the local link.

Figure 13-6:
Result of
linking to

CCSecure
table in

C:\Secure
Data\MOM
Secure.

mdb.

306 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 306

The other disadvantage — at least within the context of this example — is
that you can’t link to a query. You have to link to a table. So the only choice
here is to link to the table, thereby making all the table’s fields visible in
Datasheet view. (However, a query in the local database that gets its data
from the linked table could still hide any information within that table.)

Avoiding Multiple Tables and Links
One of the big tricks to using the TransferDatabase method is being aware
of how it names the table or link that it creates. It won’t overwrite an existing
table. If the current database already contains a table or link with the name
that you specify in the localTableName argument, Access creates a new
table or link with a number added to the name.

For example, if CCSecureTable already exists when you run the code to
import its data, Access creates the new table as CCSecure1. Run the code
again, and you get CCSecureTable2, then CCSecureTable3, and so forth.
The tables (or links) just keep piling up, and this is not good.

You can solve the piling-up problem by writing a general-purpose procedure
that always deletes the existing table (if it exists) prior to creating the new
table. You can set things up so that you just have to copy and paste the
whole thing into any code that needs to import or link to an external table.
Look at a couple of examples.

The procedure in Listing 13-1, named ImportQry, imports a query from an
external database. It ensures that you don’t end up with multiple liked tables
by first deleting any previously imported copy of the table by the same name.

Listing 13-1: Getting Data from an External Query

‘Import a table snapshot from an external query.
Public Sub ImportQry(dbPath, extQry, localName As String)

‘Loop through the AllTables collection.
Dim tbl As AccessObject, thisDB As Object
Set thisDB = Application.CurrentData

For Each tbl In thisDB.AllTables
‘If the local table already exists...
If tbl.Name = localName Then

‘If table is open...
If tbl.IsLoaded Then

‘...close the table.
DoCmd.Close acTable, localName, acSaveNo

(continued)

307Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 307

Listing 13-1 (continued)

End If
‘...delete the local table.
DoCmd.DeleteObject acTable, localName

End If
Next tbl

‘Local table gone, import the query now.
DoCmd.TransferDatabase acImport, “Microsoft Access”, _

dbPath, acTable, extQry, localName
‘All done.

End Sub

You can just copy and paste the entire procedure above into any standard
module in your front-end database. Then, in any code that needs to import
query results from an external database, call the procedure with the syntax

Call ImportQry(“pathToDB”,”extQry”,”localName”)

where

� pathToDB is the full path and name to your external database.

� extQry is the name of the query in that external database you wish
to import.

� localName is the name as it will appear in the current database.

For example, the following code imports data from the CCSecureQry in C:\
SecureData\MOMSecure.mdb into a local table named CCSecureTable. The
whole procedure is bound to the On Click event of a hypothetical button
named ImportBttn:

Private Sub ImportBttn_Click()
Call ImportQry(_
“C:\SecureData\MOMSecure.mdb”, _
“CCSecureQry”, “CCSecure”)

End Sub

Listing 13-2 shows a similar procedure for linking to external tables — a pro-
cedure named LinkToTable that can set up a link to any external Access
database table. Before doing so, it will delete the existing link, if any, to avoid
multiple links to the same table. It’s basically the same code as the preceding
ImportQry() procedure. However, it sets up a link to the external table using
acLink on the TransferDatabase method:

308 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 308

Listing 13-2: Link to a Table in an External Database

Public Sub LinkToTbl(dbPath, extTbl, localName As String)
‘Loop through the AllTables collection.
Dim tbl As AccessObject, thisDB As Object
Set thisDB = Application.CurrentData

For Each tbl In thisDB.AllTables
‘If the local table already exists...
If tbl.Name = localName Then

‘If table is open...
If tbl.IsLoaded Then

‘...close the table.
DoCmd.Close acTable, localName, acSaveNo

End If
‘...delete the local table.
DoCmd.DeleteObject acTable, localName

End If
Next tbl

‘Local table gone, import the query now.
DoCmd.TransferDatabase acLink, “Microsoft Access”, _

dbPath, acTable, extTbl, localName

‘All done.
End Sub

Once again, you can just copy and paste the entire procedure, as-is, into any
standard module in your database. When you want to set up a link to an exter-
nal table, call the function by using the following syntax:

Call LinkToTable(“extDB”, “extTable”, “localName”)

For example, to link to a table named CCSecure in a database named
C:\SecureData\MOMSecure.mdb — and ensure that you won’t re-create the
previous link — just call the procedure from your code by using the syntax

Call LinkToTable(“C:\SecureData\MOMSecure.mdb”, _
“CCSecure”, “CCSecureLinked”)

Creating Recordsets from External Tables
You can also use VBA to create an ADODB recordset from any Access table,
even one outside the current database. The basic idea is the same as in Chap-
ter 7, where you need to define a connection to the table before creating a
recordset. For example, the boilerplate code for defining a recordset from a
local table starts out something like this:

309Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 309

Dim cnn1 As ADODB.Connection
Set cnn1 = CurrentProject.Connection
Dim myRecordSet As New ADODB.Recordset
myRecordSet.ActiveConnection = cnn1
<etc...>

The only problem in that code is the CurrentProject.Connection is a refer-
ence to local tables. When the table from which you want to create a record-
set exists outside the current database, you need to use a different connection.
When the table is in an external Microsoft Access database (MDB) file, use the
following syntax to define a local recordset, changing only the arguments
shown in italics:

‘Build a recordset from foreign .mdb database.
Dim CnnStr As String
CnnStr = “Provider=Microsoft.Jet.OLEDB.4.0;”
CnnStr = CnnStr + “User ID=Admin;”
CnnStr = CnnStr + “Data Source=path”

Dim cnn2 As New ADODB.Connection
Dim MyRecordSet As New ADODB.Recordset
MyRecordSet.ActiveConnection = CnnStr
MyRecordSet.Open “Select * FROM [table/query]”

where path is the full path and filename of the external database file, and table/
query is the name of a table or query within that table. For example, the follow-
ing code creates, in the current database, a recordset named MyRecordSet
that contains all the records from CCSecureQry in the external database C:\
SecureData\MOMSecure.mdb:

‘Build a recordset from foreign .mdb database.
Dim CnnStr As String
CnnStr = “Provider=Microsoft.Jet.OLEDB.4.0;”
CnnStr = CnnStr + “User ID=Admin;”
CnnStr = CnnStr + “Data Source=C:\SecureData\MOMSecure.mdb”

Dim cnn2 As New ADODB.Connection
Dim MyRecordSet As New ADODB.Recordset
MyRecordSet.ActiveConnection = CnnStr
MyRecordSet.Open “Select * FROM [CCSecureQry]”

After this procedure executes, the current database will contain an ADODB
recordset named MyRecordset that contains the contents of the external
CCSecureQry query. The recordset will be invisible, as always. You’ll need to
use VBA code and ADODB recordset syntax to access data in the recordset.

See Chapter 7 for more information on creating and using ADODB recordsets.

310 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 310

Importing/Exporting/Linking to Anything
As you might know, you export data from Access to a variety of formats. You
can do so interactively (without code). Here’s how.

1. In the database window, click the table, query, or other object that
you want to export.

2. Choose File➪Export from the Access menu bar.

3. In the Export dialog box that appears, choose a document type from
the Save As Type drop-down list.

4. Navigate to a folder, enter a filename for the exported data, and click
the Export button.

Using a macro to write the code
If you want to automate the exportation so that a user can do it with the click
of a button, your best bet is to create a macro that uses the OutputTo action
to export the data to a file. Here’s how:

1. Open the Access database that contains the database to export.

2. Click Macros in the database window, and then click the New button.

3. Choose OutputTo as the Action argument, and then fill in the Action
Arguments as summarized in Table 13-1.

Press F1 while the cursor is in any Action Argument for more informa-
tion on that argument.

4. Close and save the macro.

Table 13-1 Action Arguments
Action Argument Description

Object Type Choose the type of object in your database you wish to
export (typically table or query).

Object Name Choose the name of the object you wish to export.

Output Format Choose format, such as HTML or .wks (worksheet), from the
list of available options.

Output File Enter the complete path and filename of the file you wish to
create from the exported data.

(continued)

311Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 311

Table 13-1 (continued)
Action Argument Description

Auto Start Choose Yes to have the exported object open automatically,
or choose No to leave the exported object closed.

Template File (Optional) Available only for HTML exports; specifies the
name of a template file to use for formatting the HTML output.

Encoding (Optional) Specifies a character set for the exported table.
Leave blank for standard encoding used within the database.

As an example, Figure 13-7 shows the selections needed to export a query
named Customer Lookup Qry to an HTML page named FirstTest.htm in
a folder named C:\SecureData on the current computer.

For this example, I name the macro ExportCustLookup.

To test the macro, click its name in the database window and then click the
Run button in the database window’s toolbar. If all is well, the data should
export without providing any feedback onscreen. To verify that the macro
worked, go to the folder in which you placed the exported file and double-
click its icon to open it. If the file is right, you’re done: You’ve written the
code necessary to export your data.

Because you used a macro to go the export, the code for exporting the data
isn’t visible like it would be in VBA. However, you can get around that in a
couple of ways. You can keep the macro, as-is. Then when you want to export
data from some procedure, use the following syntax:

DoCmd.RunMacro “macroName”

where macroName is the name of the macro to run. For example, after creat-
ing the ExportCustLookup macro in a database, you could add the following

Figure 13-7:
Macro to
export a

query to an
HTML file.

312 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 312

statement to any procedure in the current database when you want code to
export the query:

DoCmd.RunMacro “[ExportCustLookup]”

You can convert any macro to VBA code and then copy and paste the code
into any VBA procedure. After you copy the converted code to a procedure,
you won’t need the macro anymore nor the DoCmd.RunMacro() statement.
The code will run just like any code that you typed into the procedure your-
self. Here’s how to convert a macro to VBA:

1. Click Macros in the database window, and then click the macro that
you want to convert.

2. Choose Tools➪Macro➪Convert Macros to Visual Basic.

3. To convert without adding error-trapping to the exported code, clear
(uncheck) the Add Error Handling to Generated Functions check box.

4. Click Convert, and then click OK when the conversion is finished.

To get to your converted code, click Modules in the database window.
The converted macro will be in a module named Converted Macro -
yourMacroName where yourMacroName is the name of the macro that you
converted. Double-click that module name to see the converted code.

The converted code will be inside a pair of Function...End Function
statements, as in the example shown in Figure 13-8. There, you see the results
of converting the macro shown in Figure 13-7 to VBA. (You can really get a
sense here of how a macro is nothing more than VBA code that you create
by filling in the blanks in action arguments rather than typing the source
code in the VBA editor.)

To use the converted code, copy everything between the Function...End
Function statements: that is, excluding the Function and End Function
statements. Then paste that converted code into any class module or stan-
dard module, where you would otherwise have used DoCmd.RunMacro() to
execute the macro.

Quick and easy import/export
The truth be told, the bit about creating a macro to import, export, or link to
external data holds true for all kinds of transfers between Access and other
files. The easiest way to solve any import/export/link problem is to create a
macro to do the job. I’ve barely scratched the surface of all that’s possible
here.

In a macro, choose any action listed here to create a macro to do some sort
of import, export, or link:

313Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 313

� CopyObject: Copy tables, queries, forms, reports, macros, and modules
to the same or a different database (MDB file).

� OutputTo: Output an Access table, query, form, report, module, data
access page) to an Excel 98 (*.xls), MS-DOS text (*.txt), rich-text
(*.rtf), HTML (*.html), Active Server Pages (*.asp), or Internet
Information Server (IIS) formats (*.htx, *.idv format).

� SendObject: Send Access an Access table, query, form, report, module,
or data access page via any e-mail server that supports Microsoft Mail
Applications Programming Interface (MAPI).

� TransferDatabase: Import, link, or export data between two databases.
Supports Access, dBase, Paradox, Windows SharePoint Services (WSS),
and Open Database Connectivity (ODBC) formats.

� TransferSpreadsheet: Import, link, or export data between the current
Microsoft Access database (MDB) or Access project (ADP) and a spread-
sheet file. Import, export, or link to any Excel worksheet (*.xls). Import
or export with any Lotus 1-2-3 worksheet (.wks).

� TransferText: Import, link, or export a Microsoft Access database
(MDB) or Access project (ADP) object with a text, HTML, or Word for
Windows merge file.

Converted macro

Code to copy/paste

Figure 13-8:
Macro

converted to
VBA code.

314 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 314

After you choose an action, you can then choose options from the Action
Arguments. The Help text to the right of the arguments describes the cur-
rent argument. You can press F1 for more information on using the argument.

Create your macro, test it out, and make sure that it works. If you just want
to use the macro’s VBA code, convert the macro to VBA, as described earlier
in this chapter. Then copy all the code between the Function and End
Function statements. It’s a whole lot easier than trying to write the code
from scratch!

The macro actions for importing, exporting, and linking correspond directly to
various methods of the DoCmd object in VBA. If you’re ever in the VBA editor
and need help with a DoCmd statement, click DoCmd in the Members column of
the Object browser, as in Figure 13-9. Then click any method name in the right
column and click the Object Browser’s Help button.

In Chapter 14, you can read about yet another way to reach outside Access to
external programs: Automation, which works with all the major programs in
Microsoft Office.

DoCmd

DoCmd methods

Figure 13-9:
DoCmd

methods in
the Object

Browser.

315Chapter 13: Using VBA with Multiple Databases

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 315

316 Part V: Reaching Out with VBA

05b_574116 ch13.qxd 7/27/04 9:29 PM Page 316

Chapter 14

Integrating with Other
Office Applications

In This Chapter
� Understanding Automation objects

� Sending e-mail via Microsoft Outlook

� Sending commands to Microsoft Word

� Interacting with Microsoft Excel

VBA isn’t just a programming language for Microsoft Access. VBA is a pro-
gramming language for all the Microsoft Office application programs that

support Automation. Automation (always with a capital A) refers to the ability
of a program to expose itself to VBA so that VBA can control it behind the
scenes, so to speak.

All the major applications in Microsoft Office, including Microsoft Access,
Microsoft Excel, Microsoft Outlook, Microsoft PowerPoint, and Microsoft
Word support Automation. You can write code to control any one of them.
You can also write code to transfer information among programs. For exam-
ple, you can automate pulling data from an Excel worksheet or sending data
from an Access table to a Word document.

Accessing the Object Library
In order for VBA to manipulate a program — or a document within a program —
VBA first needs to have access to that program’s object library. You might envi-
sion VBA as sort of a steering wheel that can control any program to which it
has access (through an object library), as in Figure 14-1.

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 317

To write code for an Office application program, you first need to set a refer-
ence to that program’s object library. To do so, starting from Microsoft Access,
follow these steps:

1. In Access, open the database that contains objects to share with other
programs.

2. Choose Tools➪Reference from the VBA editor menu bar.

3. From the list of available references, choose the libraries for the pro-
grams you want to program.

For example, in Figure 14-2, I add references to Excel (Microsoft Excel 11.0
Object Library) and Word (Microsoft Word 11.0 Object Library).

Office XP object libraries are version 10.0, and Office 2003 libraries are 11.0.
Don’t worry about that, though. They work the same as far as this book is
concerned.

Object
library

VBA
steers the action

Microsoft
Access

Microsoft
Excel

Microsoft
Outlook Microsoft

PowerPoint
Microsoft

Word

Figure 14-1:
VBA can

control any
program

through that
program’s

object
library.

318 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 318

Exploring a program’s object model
After you set a reference to a program’s object model, you can explore its
exposed objects, properties, and methods through the Object Browser. In the
VBA editor, just press F2 or choose View➪Object Browser. To limit the display
to a given program’s objects, choose that program’s name from the Project/
Library drop-down list. For example, in Figure 14-3, I select Excel from the
Project/Library drop-down list. The classes and members in the columns
beneath this list refer to Microsoft Excel and any data that might be in the
currently open Excel worksheet.

In the Object Browser, classes mean objects, collections, and such, whereas
members mean properties, methods, and events of (whatever is currently
highlighted in the Collections pane).

For more goods on the Object Browser, see Chapter 1.

Each Office application exposes a lot of objects to VBA. Even if you limit the
Object Browser to show just one program’s model, you still end up with a zil-
lion names of things. There isn’t enough room in this book to define all those
things. You just have to learn how to get the information you need (whatever
that might be) when you need it. In the Object Browser, that generally involves
clicking the name you need help with and then clicking the ? (Help) button.

Meet the Application object
Different application programs expose different object models to VBA, but all
programs have in common an Application object (with a capital A). The pro-
gram’s Application object exposes all that program’s collections and objects
to VBA.

Figure 14-2:
Choose

object
libraries

in the
References
dialog box.

319Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 319

If a document is open in the program, the document’s objects are also
exposed to VBA. For example, when VBA opens an Excel worksheet, Excel
exposes its own capabilities to VBA through its Application object. Every
cell in the worksheet is also exposed. Basically, VBA can do anything in the
worksheet that a person actually sitting at the worksheet could do from
Excel’s menus.

Excel

Excel‘s Application object

Members of Excel‘s Application object

Figure 14-3:
Viewing

classes and
members of

Excel’s
object

library.

320 Part V: Reaching Out with VBA

What if I don’t have Word/Excel/Outlook?
Automation between Microsoft Office programs
works only with the programs currently installed
on your computer. If you don’t have a given pro-
gram (like Microsoft Outlook) installed, you can’t
load its object library or control it through VBA.

Things can get confusing when you copy a
database (an MDB file) that contains VBA code

to a different computer. Any code that refers
to Word, Excel, Outlook, or PowerPoint will fail
if the current computer doesn’t have those
programs installed. In other words, VBA can’t
create those programs if they’re missing. VBA
can use those programs only if they already
exist on the current computer.

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 320

Connecting to other programs
After you set a reference to an external program’s object library, you can create
instances that you program in VBA. An instance is basically the same idea as
an open program window. For example, when you start Microsoft Internet
Explorer on your computer, you’re actually creating an instance of Internet
Explorer. If you right-click a link and choose Open in New Window, a new, sep-
arate Internet Explorer window opens to show the new page. Now you have
two instances of Internet Explorer open, each showing a different Web page.

Before you can create an instance of a program, you have to declare an object
variable that will become the name used by VBA to refer to the program. The
object variable name can be any name you like. Just try to think of a short,
simple name that’s meaningful. The syntax for declaring an object variable
that refers to an external open program is

Dim objectVariable As New program.Application

In the syntax, objectVariable is the object variable name, and program is
a reference to one of the Office application programs: Word, Excel, Outlook,
or PowerPoint. The .Application part refers to the program’s Application
object of that program. The New keyword is optional but recommended
because it ensures that the object will create a new instance of the program.
Examples of declaring object variables for each of the Office programs follow.

Dim XL As New Excel.Application
Dim Wrd As New Word.Application
Dim Olk As New Outlook.Application
Dim Ppt As New PowerPoint.Application

You must set a reference to a program before writing a Dim statement to
declare an instance of the program.

After you declare an object variable to refer to an open instance of a program,
you can then open that program (and any document) so that your VBA code
has access to all the program’s objects. The syntax for opening a program is

Set objectVariable As CreateObject(“program.Application”)

where objectVariable is the same as the name you specified in the Dim
statement, and program is the name of the application program: Excel, Word,
PowerPoint, or Outlook. Referring to the earlier Dim statements, the Set
statements that you use for each defined object variable are the following:

Set XL = CreateObject(“Excel.Application”)
Set Wrd = CreateObject(“Word.Application”)
Set Olk = CreateObject(“Outlook.Application”)
Set Ppt = CreateObject(“PowerPoint.Application”)

321Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 321

I use short names for my object variables here: XL for Excel, Wrd for Word,
Olk for Outlook, and Ppt for PowerPoint. You can use any names you wish.
I kept mine short just to save space here.

Anyway, that’s the basic procedure for making the connection to an external
program. To review and summarize, the basic procedure is

1. Set a reference to the program’s object library in the Reference
dialog box.

2. In your code, use a Dim statement to a name that you’ll use in code
to refer to the program.

3. After the Dim statement, use a Set statement with CreateObject()
to open an instance of the program.

You can see examples in the sections that follow where I share data between
Microsoft Access, Outlook, Word, and Excel.

Sending E-mail via Outlook
Suppose you want to be able to send e-mail messages to people listed in a table
named Customers in an Access database. You are absolutely certain that you
can send and receive e-mail with Microsoft Outlook. (Important: None of the
code described here will work with Outlook Express or a Web browser.) For
this example, say you want to create a standard form letter-type e-mail mes-
sage to whatever customer a user chooses from a drop-down menu, as in
Figure 14-4. There, the controls named MsgAddress and MsgSubject are
text, and MsgBody is a memo field.

Microsoft Outlook has built-in security to prevent you from sending huge
mass-mailings from Access. If you’re thinking of using it to flood the Internet
with some junk e-mail message, it won’t work.

MsgBody

MsgSubject
MsgAddress

Figure 14-4:
Controls on

a sample
e-mail form.

322 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 322

When the user clicks the Send button in Figure 14-4, you want VBA to create
and send an e-mail message. Because you’ll be calling on Outlook to do the
job, the first step in the VBA editor is to choose Tools➪References from the
menu bar and set a reference to the Microsoft Outlook object library.

To write the procedure to send the message, create a procedure that’s attached
to the Send button. In my example, I name that button SendMailBttn. All the
code for the procedure is shown in Listing 14-1.

Listing 14-1: Procedure Attached to Send Button

Private Sub SendMailBttn_Click()

‘Open an instance of Microsoft Outlook, name it Olk.
Dim Olk As Outlook.Application
Set Olk = CreateObject(“Outlook.Application”)

‘Create a new, empty Outlook e-mail message.
Dim OlkMsg As Outlook.MailItem
Set OlkMsg = Olk.CreateItem(olMailItem)

‘Put data from form into the new mail message.
With OlkMsg

‘Make MsgAddress the “To” address of message.
Dim OlkRecip As Outlook.Recipient
Set OlkRecip = .Recipients.Add(Me![MsgAddress])
OlkRecip.Type = olTo
.Subject = Me![MsgSubject]
.Body = Me![MsgBody]
‘Send the finished message.
.Send

End With

‘Clean up object variables, then done.
Set Olk = Nothing
Set OlkMsg = Nothing
Set OlkRecip = Nothing

End Sub

The procedure looks like a lot of code. Like all procedures, though, it’s just a
series of small, simple steps. The procedure reaches into Outlook and creates
a new, empty e-mail message. The code then fills in that new message with data
from the MsgAddress, MsgSubject, and MsgBody controls on the form and
sends it — and that’s the end of it. Take a look at the code one chunk at a time.

The first two statements under the first comment declare an object variable
named Olk and set it to an open instance of Microsoft Outlook:

‘Open an instance of Microsoft Outlook, name it Olk.
Dim Olk As Outlook.Application
Set Olk = CreateObject(“Outlook.Application”)

323Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 323

The Application object for Outlook lets you declare a create object vari-
able of the type Outlook.MailItem, to which you can then assign a new,
blank e-mail message. In the following code, I create a new, blank e-mail mes-
sage named OlkMsg. (The name OlkMsg is one I just made up. The Olk. in
Olk.CreateItem(... is a reference to the open Outlook program, and
olMailItem is a constant from the Outlook object library.)

‘Create a new, empty Outlook e-mail message.
Dim OlkMsg As Outlook.MailItem
Set OlkMsg = Olk.CreateItem(olMailItem)

The With...End With block of code sets properties for the newly created
e-mail message, OlkMsg.

With OlkMsg
...
End With

Within the With...End With block of code, the first three lines provide the
recipient’s e-mail address. The first line, as shown here, declares a new object
variable named OlkRecip as an Outlook.Recipient object. (This is a gen-
eral object for e-mail addresses and can be a To, a CC, or a BCC (blind carbon
copy) address field. The second line sets the OlkRecp value to whatever e-mail
address is on the MsgAddress control on the form. The last line, OlkRecip.
Type,=olTo, turns the recipient address into the To address (where olTo is
a constant from the Outlook object library):

‘Make MsgAddress the “To” address of message.
Dim OlkRecip As Outlook.Recipient
Set OlkRecip = .Recipients.Add(Me![MsgAddress])
OlkRecip.Type = olTo

The next two lines copy the contents of the form’s MsgSubject and MsgBody
controls into the Subject line and body of the e-mail message:

.Subject = Me![MsgSubject]

.Body = Me![MsgBody]

The last line within the With...End With block sends the message, using
the syntax OlkMsg.Send:

‘Send the finished message.
.Send

End With

Note that all those properties are being applied to the new e-mail message
named OlkMsg. The full syntax would be OlkMsg.Subject=..., OlkMsgBody=,
and OlkMsg.Send. But here, you can omit the OlkMsg part of the name

324 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 324

because the With OlkMsg statement means All properties from here to End
With refer to the new e-mail message named OlkMsg.

After the message is sent, the job is done. Although not absolutely necessary,
I did a little housekeeping at the end of this procedure; by setting the object
variable names, I created the Nothing. Doing so breaks the link between the
name and object and reclaims any memory that those things were using:

‘Clean up object variables, then done.
Set Olk = Nothing
Set OlkMsg = Nothing
Set OlkRecip = Nothing

End Sub

When you actually run the procedure, you’ll see why the Access/Outlook
combination really isn’t appropriate for any mass mailing. When you first run
the procedure, you see a security warning, as at the top of Figure 14-5. You
need to grant permission (for a maximum of ten minutes). Then the real tor-
ture sets in as it makes you wait a few seconds and then answer Yes before
each sent message. If you were trying to send out hundreds or thousands of
messages, you’d be clicking Yes over and over again for a long time.

Like all object libraries, Outlook’s library is quite large and not something
that I can discuss in detail here. It would take more pages than there are in
this entire book to even list and briefly define each object, property, method,
and event in Outlook’s object library. After you set a reference to Microsoft
Outlook in the VBA editor References dialog box, you can get information
from the Object Browser. Everything described in this example comes from
Outlook’s Application object (see Figure 14-6).

Figure 14-5:
Outlook
security

prevents
mass

mailings.

325Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 325

The Microsoft Web site is another good resource for getting more informa-
tion on automating activity between Access and Outlook. To see what’s avail-
able, go to http://search.microsoft.com and search for Access Outlook
Automation.

Any time you’re searching Microsoft’s Web site for information on program-
ming interactions between Office programs, include both program names
and the word Automation in your search.

Sending Data to Microsoft Word
There are plenty of ways to print Access data without getting into VBA. The
usual method is to just create a report from the Access database window.
You can also use the Microsoft Word Mail Merge Wizard to print form letters,
envelopes, labels, and catalogs from any Access table or query. There’s no
VBA involved in any of that. Just learn to use Word’s Mail Merge feature, and
you’re on your way.

Yet a third approach would be to create a general Word template that con-
tains bookmarks (placeholders) for data to be filled in later. Then, use VBA
in Access to replace the bookmarks with data from an Access table. This is
particularly handy when you want to be able to click a button on a form in
Access to print one Microsoft Word form letter.

Outlook

Application CreateObject

Figure 14-6:
Outlook’s

Applica-
tion

object
selected in
the Object

Browser.

326 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 326

Creating the Word template
The first step to merging data from Access into a Word document is to create
a Word document template (DOT file). Start with any blank Word document
and type your form letter (or whatever you wish) as you normally would in
Word. You can use any and all Word features — fonts, pictures, tables, WordArt,
whatever.

Wherever you want VBA to insert data from an Access table, create a Word
bookmark. A bookmark (in Word) is just a placeholder. Bookmarks are usually
hidden, so before you add any bookmarks to the document, choose Tools➪
Options from the Word menu bar. In Word’s Options dialog box that opens,
click the View tab, select Bookmarks, and then click OK.

You can insert bookmarks however you wish. Here’s how I usually do it:

1. Move the cursor to where you want VBA to insert data from Access.

2. Type a short, simple name for the bookmark.

The name cannot contain spaces nor punctuation, and it must start with
a letter.

3. Select (double-click) the name you just typed and then press Ctrl+C to
copy it.

4. Choose Insert➪Bookmark from the Word menu bar.

5. Press Ctrl+V to paste the typed name as the bookmark name.

6. Click the Add button.

You’ll need to go through those steps for each item of data that you want
VBA to insert later. In the example shown in Figure 14-7, I add three book-
marks to the document. Note that the square brackets around each book-
mark’s name are visible because the Show Bookmarks option is on. I didn’t
type any of those square brackets.

The bookmark names in the sample document template get data from Access
and VBA as follows:

� TodaysDate: VBA will replace this bookmark with the current date.

� AddressLines: VBA will replace this line with as many lines as neces-
sary to show the recipient’s address.

� Salutation: VBA will replace this with the customer’s first name or just
Sirs if the first name is Null (empty) in the record being printed.

When you finish typing your document and all your bookmarks are in place,
follow these steps to save the document as a Word template:

327Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 327

1. Choose File➪Save As from Word’s menu bar.

2. From the Save As Type option at the bottom of the Save As dialog box,
choose Document Template (*.dot).

3. Use the Save In drop-down list to navigate to the folder in which you
want to store the document template.

Your best bet would be to put it in the same folder as your database
MDB file, but you can use any folder you wish — provided that you
know the full path to the document. For example, if you put the Word
template in your Shared Documents folder, the path to that document
is C:\Documents and Settings\All Users\Documents.

4. Name the document (but don’t change the .dot extension) and click
the Save button.

I name my document template WordFormLetter.dot, but you can name
yours however you wish.

5. Close Microsoft Word.

So that takes care of the Word document. The rest of the action takes place in
Access and VBA.

Bookmarks

Figure 14-7:
Word

document
template

with
bookmarks

to later
accept
Access

data.

328 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 328

Creating the Access form
For this example, I create a simple form that’s bound to a table named
Customers, with the usual name and address fields that you’d expect to
find in such a table. Figure 14-8 shows a sample form in Form view. The con-
trols that are relevant to the form letter start at the one containing the name
Tori. Starting at that field, and reading down and to the right, the names of
the controls are:

FirstName

LastName

Company

Address1

Address2

City

State

ZIP

In the VBA code to follow, you’ll see them referred to with square brackets —
[FirstName], [LastName], [Company], and so forth. The e-mail address
control, near the bottom, isn’t really relevant to the topic at hand. The drop-
down list near the top of the control provides the user with a means of choos-
ing a customer. The Merge to Word Letter button is named MergeBttn.

Figure 14-8:
Create a

form to
display one
customer’s
name and

address
at a time.

329Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 329

To use the form, a person chooses a name from the Choose a Customer combo
box and then clicks the Merge to Word Letter button. That button executes
VBA code to open the document template, replaces each bookmark with data
from the current record in the form, prints the document, and then closes
Word.

Writing the merge code
For this example, I place the code in the form shown in Figure 14-8 by attach-
ing it to the MergeBttn control’s On Click event. The VBA code is shown in
its entirety in Listing 14-2.

Listing 14-2: Merge Code

Private Sub MergeBttn_Click()

‘Declare variables for storing strings (text).
Dim AddyLineVar, SalutationVar As String

‘Start building AddyLineVar, by dealing with blank
‘LastName and Company fields (allowed in this table).
If IsNull([LastName]) Then

AddyLineVar = [Company]
‘Just set SalutationVar to generic “Sirs”.
SalutationVar = “Sirs”

Else
AddyLineVar = [FirstName] + “ “ + [LastName]
‘If the Company isn’t blank, tack that on after name.
If Not IsNull([Company]) Then

AddyLineVar = AddyLineVar + vbCrLf + [Company]
End If
‘Salutation will be customer’s first name.
SalutationVar = [FirstName]

End If

‘Add line break and Address1
AddyLineVar = AddyLineVar + vbCrLf + [Address1]

‘If Address2 isn’t null, add line break and Address2
If Not IsNull([Address2]) Then

AddyLineVar = AddyLineVar + vbCrLf + [Address2]
End If

‘Tack on line break then City, State Zip.
AddyLineVar = AddyLineVar + vbCrLf + [City] + “, “
AddyLineVar = AddyLineVar + [State] + “ “ + [ZIP]

‘Declare an instance of Microsoft Word.
Dim Wrd As New Word.Application

330 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 330

Set Wrd = CreateObject(“Word.Application”)

‘Specify the path and name to the Word document.
Dim MergeDoc As String
MergeDoc = Application.CurrentProject.Path
MergeDoc = MergeDoc + “\WordFormLetter.dot”

‘Open the document template, make it visible.
Wrd.Documents.Add MergeDoc
Wrd.Visible = True

‘Replace each bookmark with current data.
With Wrd.ActiveDocument.Bookmarks

.Item(“TodaysDate”).Range.Text = Date

.Item(“AddressLines”).Range.Text = AddyLineVar

.Item(“Salutation”).Range.Text = SalutationVar
End With

‘Letter is ready to print, so print it.
‘Wrd.ActiveDocument.PrintOut

‘All done. Close up (no need to save document)
Wrd.ActiveDocument.Close wdDoNotSaveChanges
Wrd.Quit

End Sub

Like all procedures, this one is just a series of small steps carried out in a
specific order to achieve some goal. The first line tells you that this proce-
dure will execute any time a user clicks the MergeBttn button.

Private Sub MergeBttn_Click()

The next two lines declare two string variables named AddyLineVar and
SalutationVar. Each of those variables will become a string of text to be
substituted into the document template in place of the AddressLines and
Salutation bookmarks:

‘Declare variables for storing strings (text).
Dim AddyLineVar, SalutationVar As String

In the Customers table I use for this example, the Address1, City, State,
and ZIP code fields are required, but the user can leave the FirstName,
Company, and Address2 fields empty (Null). The code that follows builds
the variable AddyLineVar as needed for whatever information is available
in the current record. The first big If...End If block, shown next, starts
out by saying, If the LastName field for this record is empty, make the first line
of the AddyLineVar the company name and make SalutationVar into the
general title, Sirs:.

331Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 331

‘Start building AddyLineVar, by dealing with blank
‘LastName and Company fields (allowed in this table).
If IsNull([LastName]) Then

AddyLineVar = [Company]
‘Just set SalutationVar to generic “Sirs”.
SalutationVar = “Sirs”

If the LastName field for this record is not null, the following code adds
the customer’s first and last names to AddyLineVar. Note that vbCrLf is
the Access VBA constant for a carriage return/linefeed. Each vbCrLf in
AddyLineVar translates to the end of the line in the Word document. Note,
too, that SalutationVar gets its value from the FirstName field in the fol-
lowing code:

Else
AddyLineVar = [FirstName] + “ “ + [LastName]

‘If the Company isn’t blank, tack that on after name.
If Not IsNull([Company]) Then

AddyLineVar = AddyLineVar + vbCrLf + [Company]
End If

‘Salutation will be customer’s first name.
SalutationVar = [FirstName]

End If

Because Address1 is a required field, you can assume that it is not null. The
following code adds a vbCrLf and the contents of the Address1 field to
AddyLineVar:

‘Add CRLF and Address1
AddyLineVar = AddyLineVar + vbCrLf + [Address1]

The next If...End If block adds a line break and the contents of the
Address2 field to AddyLineVar but only if the Address2 field isn’t empty:

‘If Address2 isn’t null, add CRLF and Address2
If Not IsNull([Address2]) Then

AddyLineVar = AddyLineVar + vbCrLf + [Address2]
End If

Because the City, State, and ZIP fields are required in the Customers table,
the next lines of code just add another vbCrLf to AddyLineVar, followed
by the City, a comma and blank space (,), the State, two blank spaces,
and then the ZIP:

‘Tack on line break then City, State Zip.
AddyLineVar = AddyLineVar + vbCrLf + [City] + “, “
AddyLineVar = AddyLineVar + [State] + “ “ + [ZIP]

332 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 332

At this point in the code, the AddyLineVar and SalutationVar variables
both contain the data to be plugged into the form letter. Now you can start
writing the code to open Word and replace its bookmarks with some actual
data. First, use the standard syntax described earlier in this chapter to
declare and open an instance of Microsoft Word:

The VBA editor won’t accept the statements that follow if you haven’t already
selected the Microsoft Word Object Library in your References dialog box.

‘Declare an instance of Microsoft Word.
Dim Wrd As New Word.Application
Set Wrd = CreateObject(“Word.Application”)

From this point in the code, the object variable named Wrd refers to an open
instance of Microsoft Word (and its entire Application object, which exposes
all of Microsoft Word to VBA.)

The next step is to open the document template that contains the book-
marks and text. The syntax for opening a Word document from Access VBA
is objVar.Documents.Add path. The objVar must match the object vari-
able used in the Dim and Set statements (Wrd in this example).

The path must be the complete path to the Word document. In my exam-
ple, I place the Word document in the same folder as the database MDB
file (which makes it easy to find). In Access, you can use Application.
CurrentProject.Path to get the path to the currently open database.
I name my Word document WordFormLetter.dot. The following state-
ments create a string variable named MergeDoc that contains the full path
and filename of that Word document template:

‘Specify the path and name to the Word document.
Dim MergeDoc As String
MergeDoc = Application.CurrentProject.Path
MergeDoc = MergeDoc + “\WordFormLetter.dot”

If WordFormLetter.dot were in some other folder, I couldn’t use
Application.CurrentProject.Path to get its path. I’d have to specify
the path literally in the code. For example, in Windows XP, if your user
account name is Bobo, and your form letter is named MyFormLetter.
dot and is stored in your My Documents folder, the following statement
will work just fine provided that you type it into the Code window as one
long line.

Wrd.Documents.Add “C:\Documents and Settings\Bobo\My Documents\MyFormLetter.dot”

Normally, when VBA opens an instance of Word, the program window is invis-
ible, and all activity takes place behind the scenes. For testing and debugging
purposes, though, you’ll probably want to make Word visible so you can see

333Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 333

what’s happening. To make the window visible, set its Visible property to
True, as shown here:

Wrd.Visible = True

When Word and a document are both open, VBA can refer to the document
as objVar.ActiveDocument (where, once again, objVar matches the object
variable name, which is Wrd in this example). The ActiveDocument object,
in turn, contains a Bookmarks collection, which contains a list of all the book-
marks in the document.

The following statement begins a With...End With block that defines the cur-
rent document’s Bookmarks collection (Wrd.ActiveDocument.Bookmarks) as
the item to which all properties to follow (up to End With) will be applied:

‘Replace each bookmark with current data.
With Wrd.ActiveDocument.Bookmarks

Within the With...End With block, you can refer to any bookmark by
name by using the syntax .Item(bookmarkName) where bookmarkName
is the name of the bookmark as defined in the Word document. Each book-
mark has a .Range property, which refers to everything that’s contained
within the bookmark. The .Range property in turn has a .Text prop-
erty, which refers specifically to the text within the bookmark. Thus, the
statement

.Item(“AddressLines”).Range.Text = AddyLineVar

says, Change whatever text is currently in the bookmark named AddressLines
to whatever is currently in the variable named AddyLineVar.

In the following code, I change the TodaysDate bookmark to the current
date, the AddressLines bookmark to the contents of the AddyLineVar vari-
able, and the Salutation bookmark to whatever is in the variable named
SalutationVar:

.Item(“TodaysDate”).Range.Text = Date

.Item(“AddressLines”).Range.Text = AddyLineVar

.Item(“Salutation”).Range.Text = SalutationVar
End With

Onscreen, the document template now contains the complete form letter
with all the right information. This next statement prints the form letter:

‘Print the letter.
Wrd.ActiveDocument.PrintOut

334 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 334

The following statement closes the letter without saving it. (There’s no need
to save the letter after it’s printed because you’ll always have the document
template to work with.)

‘All done. Close up (no need to save document)
Wrd.ActiveDocument.Close wdDoNotSaveChanges

These two lines close Microsoft Word and end the procedure:

Wrd.Quit

End Sub

Figure 14-9 shows an example of using the procedure. There I chose a cus-
tomer named Tori Pines from the Access form and then clicked the Merge to
Word Letter button. The form letter that you see in the background is the
result, with the date, address lines, and salutation all in place. The code is
written to actually print the letter, so you’d never actually see the form on
top of the Word document. (I had to superimpose the form there.) However,
you would get a printed copy of the letter shown in the figure.

Figure 14-9:
Record from

the form
merged into

a form
letter.

335Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 335

Interacting with Microsoft Excel
Microsoft Excel is a great program for playing what-if scenarios with data
because it lets you plug data and formulas into cells in whatever manner
you wish. Excel isn’t good, however, at managing large volumes of data. For
large volumes of data, you need a database like Microsoft Access.

Microsoft Access can certainly do any math calculations that Excel can do.
Playing what-if scenarios with data in Access is not so easy, though, because
you need to get queries and/or forms involved. It’s just plain difficult to experi-
ment with what-if scenarios in Access.

Sometimes, the data you need for your worksheet might actually come from
an Access database. For example, say you manage all your orders in an Access
database. Every now and then you want to grab the total sales from all your
orders into a worksheet and use that value to play around with your data.

You could, of course, just open Excel and type in the total sales value — or
even copy and paste it from some form in Access. Optionally, you could auto-
mate the whole thing by creating a button on some Access form that opens
the worksheet and plugs in the total sales amount for you. Look at an exam-
ple of Automation that does just that.

Creating the worksheet
The first step is to create an Excel worksheet that contains a blank cell that
gets its values from Access. Give the cell a name so that you can refer to that
cell by name in VBA code. For example, in Figure 14-10, I create a worksheet
named My Sheet.xls. Cell B3 in that worksheet is named FromAccess.

To name a cell or range in Excel, click the cell or select the cells that you want
to name. Then type a name into the Name box (where FromAccess appears
in Figure 14-10) and press Enter. For more information, search Excel’s Help
for name cells.

For the sake of example, say I save that worksheet in my My Documents
folder with the name My Sheet.xls. In Windows XP, where I’m currently
working under the user account name Alan, the complete path to that work-
sheet is

C:\Documents and Settings\Alan\My Documents\My Sheet.xls

That’s important to know because VBA won’t be able to find the worksheet
without the complete path and filename.

336 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 336

Creating a query and a form
After you create and save the worksheet, you can close Excel and open
Access. In Access, you need to create a query that can do the calculations
and also create a form that can display the appropriate value to copy to the
Excel sheet. For this example, I create a totals query in Access that totals all
the sales for each product from tables named Products and Order Details
in a sample database. Figure 14-11 shows that query, named Order Summary
Totals Qry, in Design view (left) and Datasheet view (right).

Next, I create a form that’s bound to Order Summary Totals Qry. In Design
view, I set the Form’s Default View property to Continuous Forms so that
the detail band displays all the records from the underlying query. In the Form
Footer of that form, I add a calculated control named GrandTotal that con-
tains the expression =Sum([TotalSales]) to display the grand total of all
the TotalSales values. I also create a button named ExportBttn. Figure
14-12 shows the form in Design (left) and Form (right) views.

As always, when using external applications, you must choose Excel’s object
library (Microsoft Excel xx.x Object Library) in the References dialog
box before writing the code that follows.

Cell named FromAccess

Figure 14-10:
Sample

Excel
worksheet
with a cell

named
From

Access.

337Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 337

Writing the Excel code
With the query and form squared away, the next step is to write VBA code that
can open the Excel sheet and copy the value in the control named GrandTotal
to the cell named FromAccess in the My Sheet.xls worksheet. You can attach
that to the ExportBttn On Click event. The entire procedure is shown here
in Listing 14-3.

ExportBttn

Control Source: =Sum([TotalSales])
Name: GrandTotal

Figure 14-12:
Sample

form named
Order

Summary
Form.

Figure 14-11:
Sample

query to
total sales

from orders
in a

database.

338 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 338

Listing 14-3: Procedure to Copy Access Form Data to an Excel Worksheet

Private Sub ExportBttn_Click()

‘Declare a variable named MySheetPath as String.
Dim MySheetPath As String

‘Note: You must change the path and filename below
‘to an actual Excel .xls file on your own computer.
MySheetPath=”C:\Documents and Settings\Alan\My Documents”
MySheetPath = MySheetPath + “\My Sheet.xls”

‘Set up object variables to refer to Excel and objects.
Dim Xl As Excel.Application
Dim XlBook As Excel.Workbook
Dim XlSheet As Excel.Worksheet

‘Open an instance of Excel, open the workbook.
Set Xl = CreateObject(“Excel.Application”)
Set XlBook = GetObject(MySheetPath)

‘Make sure everything is visible on the screen.
Xl.Visible = True
XlBook.Windows(1).Visible = True

‘Define the topmost sheet in the Workbook as XLSheet.
Set XlSheet = XlBook.Worksheets(1)

‘Copy GrandTotal to FromAccess cell in the sheet.
XlSheet.Range(“FromAccess”).Locked = False
XlSheet.Range(“FromAccess”) = Me!GrandTotal

‘Boldface the new value (optional).
XlSheet.Range(“FromAccess”).Font.Bold = True

‘Save the sheet with the new value (optional).
XlBook.Save

‘Close the Access form (optional).
DoCmd.Close acForm, “OrderSummaryForm”, acSaveNo

‘Clean up and end with worksheet visible on the screen.
Set Xl = Nothing
Set XlBook = Nothing
Set XlSheet = Nothing

End Sub

Even though the procedure is just an example, it illustrates many techniques
for manipulating Excel and worksheets from Access VBA. Taking it one bit at a
time, the first line, as always, names the procedure. In this case, the procedure

339Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 339

is tied to the On Click event of ExportBttn, so the procedure name is
ExportBttn_Click():

Private Sub ExportBttn_Click()

In this example, the code will change the contents of an Excel workbook
named My Sheet.xls, stored in the My Documents folder of a user named
Alan on a Windows XP computer. The following statements create a string
variable named MySheetPath and store the lengthy path name, C:\Documents
and Settings\Alan\My Documents, in that variable. (The only reason I split
it into multiple lines was to get the code to fit within the margins of this book):

‘Declare a variable named MySheetPath as String
Dim MySheetPath As String

‘Note: You must change the path and filename below
‘to an actual Excel .xls file on your own computer.
MySheetPath=”C:\Documents and Settings\Alan\My Documents”
MySheetPath = MySheetPath + “\My Sheet.xls”

Opening Excel and a workbook
The next step in this sample procedure is to open Excel and the workbook.
First, you need to declare some object variables so you’ll have short names
to use for these objects later in the code. An Excel workbook is actually two
objects: The workbook as a whole is a Workbook object; each sheet (page) in
the workbook is a Worksheet object. So you can actually set up three object
variables:

� One for Excel (of the type Excel.Application)

� One for the workbook (of the type Excel.WorkBook)

� One for a specific sheet within that workbook (of the type
Excel.Worksheet)

In the following lines of code, I assign each of these object types named Xl,
XlBook, and XlSheet:

‘Set up object variables to refer to Excel and objects.
Dim Xl As Excel.Application
Dim XlBook As Excel.Workbook
Dim XlSheet As Excel.Worksheet

With the object variables declared, you can start assigning specific objects
to them. The following statement opens an instance of Microsoft Excel and
makes the object variable name Xl refer specifically to that open instance
of Excel:

340 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 340

‘Open an instance of Excel, open the workbook.
Set Xl = CreateObject(“Excel.Application”)

After Excel is open, you can use the GetObject() function to open a specific
file and assign it to the workbook object. The syntax is

Set objectVarName = GetObject(filePathName)

where objectVarName is the object variable name declared as an Excel.
Workbook (XlBook in this example), and filePathName is the complete path
and filename of the worksheet to open (previously stored in the variable
named MySheetPath in this example). The next statement in the procedure
uses GetObject() to open the My Sheet.xls workbook:

Set XlBook = GetObject(MySheetPath)

One thing that you always need to be aware of is that when you use
Automation (that is, VBA) to open an instance of a program, the program
usually isn’t visible onscreen. In the case of Excel, even an open workbook
isn’t necessarily visible. You have to specifically tell Excel to make its first
document window (referred to as XlBook.Windows(1) in VBA) visible.
The following lines of code ensure that Excel and the workbook are visible
onscreen:

‘Make sure everything is visible on the screen.
Xl.Visible = True
XlBook.Windows(1).Visible = True

The code still needs to set a reference to the first sheet on the open work-
book. You can use the workbook’s Worksheets collection with a subscript
to refer to a specific sheet by number. For example, .Worksheets(1) refers
to the first (topmost) page of a workbook — the one that’s automatically visi-
ble when you first open the workbook. In the following statement, I assign
that topmost sheet to the object variable XlSheet:

‘Define the topmost sheet in the Workbook as XLSheet.
Set XlSheet = XlBook.Worksheets(1)

Referring to worksheet cells from VBA
After you set a reference to the worksheet, you can use its .Range property
to refer to any cell in the worksheet. There are several ways to use the prop-
erty. You can refer to a single cell by its address in the worksheet. For exam-
ple, assuming that the following object variable name XlSheet refers to an
open worksheet, the following expression refers to cell A1 in that sheet:

XlSheet.Range(“A1”)

341Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 341

You can also specify a range by using the syntax objectVarName.
Range(startCell:endCell) where startcell and endCell are
both cell addresses. For example, the following expression refers to
the range of cells extending from cell B3 to cell F20:

XlSheet.Range(“B3:F20”)

If you’ve previously named a cell or range in the worksheet, you can use
that name in place of a cell address. For example, this statement refers to
a cell or range named FromAccess:

XlSheet.Range(“FromAccess”)

To change the contents of a cell in a worksheet, follow the cell reference by
an = sign and the value that you want to store in that cell. For example, this
statement stores the words Howdy World in cell C2:

XlSheet.Range(“C2”) = “Howdy World”

This statement stores the number 100 in cell C3:

XlSheet.Range(“C3”) = 100

To put a literal date in a cell, enclose the date in # symbols. For example, this
expression stores the date 12/31/05 in cell C4:

XlSheet.Range(“C4”) = #12/31/2005#

To put the current date into a cell, use the built-in Date() function without
the parentheses, as shown here, where cell C5 will receive the current date
as its value:

XlSheet.Range(“C5”) = Date

To place a formula in a cell, use the standard Excel syntax but place the whole
formula inside quotation marks. For example, the following statement places
the formula =Sum(D4:D10) in cell D11 of the worksheet:

XlSheet.Range(“D11”) = “=Sum(D4:D10)”

Note that you must still precede the formula with an = sign, inside the quota-
tion marks, to ensure that the new cell content is treated as a formula rather
than as a string of text.

Getting back to the sample procedure, the worksheet is open and visible at this
point in the procedure. The next step is to copy the value displayed in the
GrandTotal control on OrderSummaryForm into the cell named FromAccess
in the worksheet. To play it safe, the following statements first make sure that
the cell isn’t locked (XlSheet.Range(“FromAccess”).Locked = False).

342 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 342

Then the next statement makes the content of the cell named FromAccess
equal to the values stored in the form’s GrandTotal control:

‘Copy GrandTotal to FromAccess cell in the sheet.
XlSheet.Range(“FromAccess”).Locked = False
XlSheet.Range(“FromAccess”) = Me!GrandTotal

At this point, the job is actually complete. The procedure could end right
there with an End Sub statement. Just to illustrate a technique for formatting
cells from VBA, I added the following statement to boldface the FromAccess
cell in the worksheet:

‘Boldface the new value (optional).
XlSheet.Range(“FromAccess”).Font.Bold = True

You’ll see other techniques for formatting spreadsheet cells in a moment.
For now, continue on with the sample procedure. The next statement simply
saves the worksheet with the new data in place. Again, this step is entirely
optional.

‘Save the sheet with the new value (optional).
XlBook.Save

Now that the spreadsheet is open and the FromAccess cell has its new value,
it’s really not necessary to keep OrderSummaryForm open. This statement
closes that form:

‘Close the Access form (optional).
DoCmd.Close acForm, “OrderSummaryForm”, acSaveNo

At this point, the procedure has finished its job, and there’s really nothing
left to do. Just to keep things tidy, the following statements break the bonds
between the object variables and Excel objects. Think of this as the program-
ming equivalent of tying up loose ends. Then the procedure ends.

‘Clean up and end with worksheet visible on the screen.
Set Xl = Nothing
Set XlBook = Nothing
Set XlSheet = Nothing

End Sub

It’s worth noting that only one statement in the whole procedure, XlSheet.
Range(“FromAccess”) = Me!GrandTotal, actually copies the value from
the form control to the Excel worksheet. All the code preceding that state-
ment is just getting things open and onscreen so that the statement can
execute. All that code is boilerplate for opening an instance of Excel and a
workbook. As you’ll see in the next example, you can use most of that code,
as-is, to do something different — copy an entire table, or the results of any
query, to a worksheet.

343Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 343

To copy a table or query results to an Excel worksheet, you first need to
create a recordset. You can use the general techniques described in Chap-
ter 7 to create a Select query that produces the records you want to export.
Then you can copy and paste its SQL statement into code to create a record-
set in code. Then, thanks to Excel’s CopyFromRecordset method, the code
can copy the whole recordset to any place in the worksheet with a single
command.

For example, the hefty-looking chunk of code in Listing 14-4 copies all records
produced by OrderSummaryQry (refer to Figure 14-11) to a worksheet named
RecordsetSheet.xls (for lack of a better name). As intimidating as it all
looks, it’s mostly a bunch of copy-and-paste code that I just lifted from other
procedures:

Listing 14-4: Example of Copying a Recordset to an Excel Worksheet

‘We’ll start by creating a recordset named MyRecordset.
Dim cnn As ADODB.Connection
Set cnn = CurrentProject.Connection
Dim MyRecordset As New ADODB.Recordset
MyRecordset.ActiveConnection = cnn

‘Build the SQL statement (swiped from a query).
Dim MySQL As String
MySQL = “SELECT [Product Name], Sum([Qty]*[Unit Price])”
MySQL = MySQL + “ AS TotalSales FROM [Order Details]”
MySQL = MySQL + “ INNER JOIN Products ON”
MySQL = MySQL + “ [Order Details].ProductID =”
MySQL = MySQL + “ Products.ProductID”
MySQL = MySQL + “ GROUP BY Products.[Product Name]”
MySQL = MySQL + “ ORDER BY Products.[Product Name]”

MyRecordset.Open MySQL
‘Now MyRecordset contains records to be exported.

‘Now for the Excel rigmarole.
‘Define the path to the workbook, save it as MySheetPath.
Dim MySheetPath As String
‘Note: You must change the path and filename below
‘to an actual Excel .xls file on your own computer.
MySheetPath = “C:\Documents and Settings\All Users\Documents”
MySheetPath = MySheetPath + “\Worksheets\RecordsetSheet.xls”

‘Set up object variables to refer to Excel and objects.
Dim Xl As Excel.Application
Dim XlBook As Excel.Workbook
Dim XlSheet As Excel.Worksheet

‘Open an instance of Excel, open the workbook.
Set Xl = CreateObject(“Excel.Application”)

344 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 344

Set XlBook = GetObject(MySheetPath)

‘Make sure everything is visible on the screen.
Xl.Visible = True
XlBook.Windows(1).Visible = True

‘Define the topmost sheet in the Workbook as XLSheet,
Set XlSheet = XlBook.Worksheets(1)

‘Copy the recordset to worksheet starting at cell B3.
XlSheet.Range(“B3”).CopyFromRecordset MyRecordset

‘Clean up and end with worksheet visible on the screen.
MyRecordset.Close
Set cnn = Nothing
Set Xl = Nothing
Set XlBook = Nothing
Set XlSheet = Nothing

I didn’t put the code above between Sub...End Sub statements. You could
just attach the code to any command button’s On Click event to run it when
you want it run. To show how the code isn’t as intimidating as it looks, let me
tell you how I wrote it.

First, before I even wrote any code, I created an Excel worksheet, added
a heading in cell A1, did a little formatting, and saved it in my Shared
Documents folder as RecordsetSheet.xls (for lack of a better name).
So I’ll want my VBA code to open that workbook.

I also created a query in Access that defines the records I want to copy to the
worksheet. I made sure that query was working and also that its Datasheet
view showed the exact data I want to copy to Excel. Then I closed and saved
that query.

With the worksheet and query in place, I started writing the code. I knew that
I’d need two major chunks of code here: one chunk to create the recordset,
and another to open the worksheet. I already have boilerplate code (from
Chapter 7) for creating an ADODB (ActiveX Data Objects Database) record-
set, so I just did a quick copy and paste of that code into a new procedure.

Most of the copy-and-paste code was fine. I just had to delete all the MySQL =
statements so I could build a new SQL statement. To get that new statement, I
opened my previously defined and test query in SQL view and copied its SQL
statement (minus the semicolon at the end) into the Code window.

In the Code window, I set about breaking that lengthy SQL statement into
smaller chunks. (Note: I did that only to make it all fit within the margins
of this book.) In the following code fragment, italics indicate the lines that I
had to change. All other lines are straight from a copy and paste:

345Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 345

‘We’ll start by creating a recordset named MyRecordset.
Dim cnn As ADODB.Connection
Set cnn = CurrentProject.Connection
Dim MyRecordset As New ADODB.Recordset
MyRecordset.ActiveConnection = cnn

‘Build the SQL statement (swiped from a query).
Dim MySQL As String
MySQL = “SELECT [Product Name], Sum([Qty]*[Unit Price])”
MySQL = MySQL + “ AS TotalSales FROM [Order Details]”
MySQL = MySQL + “ INNER JOIN Products ON”
MySQL = MySQL + “ [Order Details].ProductID =”
MySQL = MySQL + “ Products.ProductID”
MySQL = MySQL + “ GROUP BY Products.[Product Name]”
MySQL = MySQL + “ ORDER BY Products.[Product Name]”

MyRecordset.Open MySQL
‘Now MyRecordset contains records to be exported.

That takes care of the recordset problem. Now onto opening Excel and my
workbook. This was another copy and paste job, this time from the proce-
dure shown in the preceding example. The path and filename to the work-
book will be different in this procedure, so I had to change those lines of
code (again shown in italics here), but the rest is exactly what I pasted into
the procedure:

‘Now for the Excel rigmarole.
‘Define the path to the workbook, save it as MySheetPath.
Dim MySheetPath As String
‘Note: You must change the path and filename below
‘to an actual Excel .xls file on your own computer.
MySheetPath = “C:\Documents and Settings\All Users\Documents”
MySheetPath = MySheetPath + “\Worksheets\RecordsetSheet.xls”

‘Set up object variables to refer to Excel and objects.
Dim Xl As Excel.Application
Dim XlBook As Excel.Workbook
Dim XlSheet As Excel.Worksheet

‘Open an instance of Excel, open the workbook.
Set Xl = CreateObject(“Excel.Application”)
Set XlBook = GetObject(MySheetPath)

‘Make sure everything is visible on the screen.
Xl.Visible = True
XlBook.Windows(1).Visible = True

‘Define the topmost sheet in the Workbook as XLSheet,
Set XlSheet = XlBook.Worksheets(1)

At this point in the code, I have my recordset and I have my open worksheet.
Because this procedure copies a recordset, the next statement is brand-new,

346 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 346

but it’s not too terribly difficult to figure out what it’s doing even if you just
read it and take a wild guess:

‘Copy the recordset to worksheet starting at cell B3.
XlSheet.Range(“B3”).CopyFromRecordset MyRecordset

The preceding statement is all that you need to copy a recordset to an open
Excel worksheet. The B3 in the statement just moves the cursor to cell B3.
Then CopyFromRecordset MyRecordset copies the recordset, starting at
cell B3, into the worksheet. Nothing to it!

The rest of the code is just clean up, but that code is just a straight copy and
paste from the other two procedures as well. So you see, as big and intimidat-
ing as the procedure looks, it really required very little typing or programming
on my part. I used boilerplate code — that I know already works — to write
at least 90 percent of the procedure! And that’s the way you write code. Use
what already works, when you can. Create new stuff only when you have to.

Running Excel macros from Access
Speaking of writing code by using what works and creating only what you
have to, consider formatting an Excel worksheet. When you write a proce-
dure that copies data from Access to Excel, you might be tempted to write
some code to format the worksheet as well, but that would be tedious and
unnecessary. That’s because in Excel, you could just record a macro while
you’re formatting the sheet. Then save that macro, and run it from your
Access VBA program.

For example, rather than add a bunch of code to either of the procedures
above to format the worksheet, you could just open the worksheet and move
the cursor to some known starting point — say cell A1. Then do the following:

1. Choose Tools➪Macro➪Record New Macro.

2. Give the macro an easily remembered name (like Format Sheet) and
then click OK.

3. Format your worksheet using whatever techniques you wish.

For example, you might

• Click a column heading (like B) and choose Format➪Column➪
AutoFit Selection to size the column to its contents.

• Click a column heading, choose Format➪Cells, and select some
format like Currency.

• Move the cursor to a cell and type a formula.

347Chapter 14: Integrating with Other Office Applications

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 347

While recording a macro, try to use the Name box as much as possible to
move the cursor to a specific cell. That way, if you move the cell or range
later, the macro will go to its new location rather than the old location.

4. Keep doing whatever you have to do to make the sheet look right, and
then click the Stop Recording button.

To test the macro, choose Tools➪Macro➪Macros from the Excel menu bar.
Click the macro name and choose Run. The macro will execute. If all is well,
you’re done. You can close and save the worksheet in the usual manner and
close Excel as well.

The recorded macro is also VBA code. If you choose Tools➪Macro➪Macros,
click a macro name, and then click Edit, the macro opens in the VBA editor.
Each step in the procedure that you see was recorded while you were record-
ing the macro.

Back in your Access VBA procedure, you’ll most likely want to run the macro
after your code copies new content to the worksheet — for example, just
under the XlSheet.Range(“FromAccess”) = Me!GrandTotal statement
in the Listing 14-3, or under XlSheet.Range(“B3”).CopyFromRecordset
MyRecordset in Listing 14-4. The syntax for running a macro in the currently
open workbook, from Access, is

objVar.Run (“macroName”)

where objVar is the object variable to which you’ve assigned the Excel appli-
cation (Xl in previous examples), and macroName is the name of the macro in
the worksheet that you want to run. For example, from any Access VBA pro-
cedure, the following statement runs the macro named FormatSheet in the
currently open worksheet (assuming the open worksheet contains a macro
named FormatSheet):

Xl.Run (“FormatSheet”)

If you want to put the cursor in a specific field before the macro executes, use
the syntax objVar.Range(“Address”).Select before running the macro. For
example, the following code positions the cursor to cell A1 and then executes
the macro named FormSheet in the currently open workbook:

‘Go to cell A1.
XlSheet.Range(“A1”).Select

‘Run macro named FormatSheet.
Xl.Run (“FormatSheet”)

348 Part V: Reaching Out with VBA

05c_574116 ch14.qxd 7/27/04 10:02 PM Page 348

Part VI
The Part of Tens

06a_574116_PP06.qxd 7/27/04 10:29 PM Page 349

In this part . . .

What For Dummies book would be complete without
a Part of Tens? Ten is such a nice number to work

with, given our ten fingers and all. The Ten Commandments
of Writing VBA Code cover the main strategies that you
want to adopt to avoid going crazy trying to get VBA to do
anything. Then there are the top ten nerdy programming
things you’re most likely to want to do almost from Day 1
of using VBA. And check out the way-more-than ten short-
cut keys listed here. I figured that if I were gonna stick
some shortcut keys here, why limit it to ten? I’ll splurge
a little on those because they’re easy.

06a_574116_PP06.qxd 7/27/04 10:29 PM Page 350

Chapter 15

Ten Commandments
of Writing VBA

I. Thou Shalt Not Harbor Strange Beliefs
about Microsoft Access

VBA is a programming language for manipulating objects in Microsoft Office
application programs. As described in this book, VBA is a programming lan-
guage for manipulating objects and their properties in Access. Before you can
write code to manipulate objects programmatically, you must first under-
stand the objects themselves.

Therefore, you really have to understand the purpose of tables, queries,
forms, reports, macros, controls on forms, expressions, and other Access
concepts before you even think about learning VBA. If thou tryeth to learn
or use VBA without first knowing Access, thou shalt surely break The Tenth
Commandment for all thy programming days.

II. Thou Shalt Not Use VBA Statements
in Vain

Or, to put this another way, Thou shalt not attempt to make up thy own pro-
gramming language. (As a young boy, I was always a little fuzzy on the phrase
in vain in the Catholic version of the Ten Commandments. Here, in vain means
without a clue.)

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 351

You need to know the exact spelling and syntax of every VBA keyword and
every Access object that you name. If the correct thing to type is

DoCmd.OpenForm “myForm”, acNormal, , , acFormEdit

don’t assume that something reasonably close, like any of the examples that
follow, will work:

� Do Cmd.OpenForm “myForm”, acNormal, , , acFormEdit

� DoCmd.Open Form “myForm”. acNormal..acFormEdit

� DoCmd.OpenForm “myForm”, acNormal, , , acFrmEdit

� DoCmd.Open Form “myForm”, acNormal, , , acFormEdit

� DoComnd.OpenForm “myForm”, acNormal, , , acFormEdit

� DoCmd.OpenForm “myForm”, “acNormal”, , , “acFormEdit”

On casual observation, you might think any of the preceding six lines would
do in place of the original example. In fact, each of the six preceding state-
ments contains a syntax error that would cause the line to fail.

III. Remember to Keep Holy VBA Syntax
Every VBA statement has strict rules of syntax that define the exact spelling,
punctuation, and order of things in that statement. They’re not suggestions:
They’re really rules that must be obeyed if you expect your code to work at
all. (Okay, so I’m still harping on the Second Commandment here.) Anyway,
the first amendment to this commandment follows.

If thou not a clue haveth what that box under the cursor in Figure 15-1 is about,
or why the FormName is in boldface there, thou shalt study in earnest how
to understand syntax in Chapter 3. Woe be to those who heed not this warn-
ing, for surely they will live their remaining programming days breaking The
Tenth Commandment.

Figure 15-1:
Thou shalt

not be
clueless.

352 Part VI: The Part of Tens

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 352

IV. Honor Thy Parens and
Quotation Marks

Punctuation marks count big time in all programming languages. Many come in
pairs. For example, you will never find a VBA function or statement that uses
only one parenthesis. For every open parenthesis, there must be exactly one
closed parenthesis.

You can do yourself a favor by getting in the habit of always typing both
punctuation marks immediately when you know that two are required. For
example, when you have to type something like IsNull([Last Name]), you
can type it like a programmer rather than like a normal person. Here’s how
a programmer would type that. First type

IsNull()

The syntax of IsNull() requires both parentheses, so now both parentheses
are typed. If you don’t type both parentheses when you’re thinking about them,
you’ll probably forget to type the closing parenthesis later. (Compile error!)

Next, a programmer would type the square brackets inside the parentheses,
like this:

IsNull([])

Once again, if you type the opening bracket, you know you’re gonna need a
closing bracket, so just type it while it’s fresh in your mind. Finally, type the
thing in the middle of it all:

IsNull([Last Name])

The same goes for quotation marks. For example, to type MyText = “Hello
World”, first type

MyText = “”

You can’t forget to type the closing quotation mark now because it’s already
there. Then type the stuff that goes inside the quotation marks:

MyText = “Hello World”

The abbreviated version of the Fourth Commandment is Thou shalt not type
like a normal person.

353Chapter 15: Ten Commandments of Writing VBA

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 353

V. Thou Shalt Not Guess
When it comes to anything having to do with computers, guessing rarely
works. When it comes to database management or programming, guessing
never works. Woe be to he who attempts to create a database or code by
guessing, for surely he will layeth down in green padded cells, breaking The
Tenth Commandment for all his remaining days.

VI. Thou Shalt Not Commit Help Adultery
Microsoft Access is a computer program that has its own built-in Help system.
The VBA editor is a separate program that has its own built-in Help system.
They are not one and the same. For help on Access matters, use Access Help
(top of Figure 15-2). For help on VBA, use VBA Help (bottom of same figure).
If in doubt, try both. Don’t just try one and give up. Guesseth not.

Thou shalt use taskbar buttons or press Alt+F11 to switch between Access
and VBA editor program windows.

When all else fails, thou shalt go to http://search.microsoft.com and
search for more information. Thou shalt include relevant words like Access
VBA in all searches, lest thou end up with 196,342 irrelevant links to sift
through.

Should thou seeketh knowledge through Google, or any other whole-Web
search engine, thou shalt include even more relevant words, like Microsoft
Office Access VBA lest thou endeth up with more links than could be viewed
in 100 lifetimes.

Access Help

VBA Help

Figure 15-2:
Thou shalt

seek
relevant

facts, for
nothing else

matters.

354 Part VI: The Part of Tens

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 354

VII. Thou Shalt Steal Whenever Possible
The more you type, the more likely you are to make typographical errors.
Whenever there’s an option to choose, rather than type (as in Figure 15-3),
always choose. Woe be to those who ignoreth the options and maketh up
their own words, and those who choose options at random, for they shall
not inherit the Earth nor a single working line of code.

If you can find the code on some Web page somewhere, or any place from
which you can copy and paste, go ahead and copy and paste. Woe be to
those who attempt to write code before learning about copy and paste, for
one must learn to crawl (use a computer) before one learns to pole vault
(program a computer).

VIII. Thou Shalt Not Bear False Witness
against Thy Object Browser

Everything in an Access database is an object. VBA exists to manipulate
those objects programmatically. Thy Object Browser is thy Word and
Shepard. It leadeth you to code that actually works. It helpeth to remind
you that Forms! and Reports! refer to open objects and that AllForms
and AllReports work with closed objects.

For example, the Object Browser helpeth you to discriminate between the
DoCmd object and the DoCmd property. It taketh you to the land of truth and
facts, and bestoweth upon you names and words that actually work in VBA.

Figure 15-3:
Thou shalt
not ignore

options nor
choose
options

cluelessly.

355Chapter 15: Ten Commandments of Writing VBA

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 355

Thy Object Browser is always available in the VBA editor. Seeketh (press F2),
and ye shall find. He who believeth that just opening the Object Browser will
solveth some problem hath lost his way, and shall wander in dark lands of
meaningless Babel for all his programming days. For the laying of eyes on the
Object Browser (mouth agape in a fish-like stare) is not enough to enter the
land of light and truth. Only he who learneth to use thy Object Browser suc-
cessfully shall make it beyond the Tower of Babble, to the pearly gates of
code-writing heaven.

He who knoweth not an Object Browser from a Web browser, nor a property
from pastrami, can seek enlightenment in Chapter 5, which covers objects
and collections.

IX. Thou Shalt Not Covet Thy Neighbor’s
Knowledge

Nobody was ever born already knowing how to use a computer, already
knowing how to do database management, or as a fresh out-of-the-womb
VBA programmer. Everyone who already knows this stuff went through
the same learning curve you’re faced with. Thou shalt not consider one’s
self stupid for not knowing things from birth, for such is the plight of all
humankind. Thou shalt earn and learn thy skills like everyone else — by
learning, doing, and knowing how to get the information you need when
you need it.

X. Thou Shalt Not Scream . . .
. . . for screaming helpeth not. Nor do wishing, hoping, guessing, opinions,
beliefs, anger, envy, wrath, sloth, gluttony, nor sadness. For there is only
one true saver of programmers’ souls, and that is The Facts. Only facts can
saveth your soul. Anything else is a futile waste of time and energy.

I was tempted to add praying after . . .wishing, hoping above. Because this is
the Ten Commandments of VBA, I figured I’d leave that out of the list of futile
strategies. In the interest of keeping things practical, I’ll add a 21st-century
Tenth Commandment amendment here:

Thou shalt press F1 after every prayer.

356 Part VI: The Part of Tens

06b_574116 ch15.qxd 7/27/04 10:30 PM Page 356

Chapter 16

Top Ten Nerdy VBA Tricks
In This Chapter
� Opening forms

� Dealing with controls

� Making custom messages

� Printing reports

� Using DoCmd

Access and VBA are both huge products in the sense that you can do
about a bazillion different things with either one of them. However,

when it comes to learning VBA, having a zillion options to choose from
doesn’t help. It only creates the unanswerable question, “Where do I start?”

From a big-picture point of view, you have to know Access before you even
attempt to learn VBA. You also need to get your bearings as to how and where
VBA fits into the whole Microsoft Access picture. I cover the getting-your-
bearings endeavor in Part I of this book. Eventually, you’ll get to the point
where you’re actually typing VBA code.

After you get to where you’re typing code, you’re back to the problems of
having a zillion different things that you could type and knowing where to
start. Well, if you were to ignore the zillion things you could type and keep
only the top ten things that you most likely want to type, you’d end up with
the sections that follow.

1. Open a Form from VBA
When you want a procedure to open an Access form in Form view — so that
the user can see and use the form — use the OpenForm method of the DoCmd
object, as follows:

DoCmd.OpenForm “yourFormName”, acNormal

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 357

but replace yourFormName with the name of the form that you want to open.
For example, if your database contains a form named Products and you want
VBA to open that form in Access, use the statement

DoCmd.OpenForm “Products”, acNormal

2. See Whether a Form Is Already Open
Sometimes it’s useful for a procedure to know whether a form is currently
open or closed. The CurrentProject.AllForms collection contains the
name of every form in the current database. Each form has an IsLoaded
property that’s True if the form is currently open or False if the form is
closed. The syntax for using IsLoaded is

CurrentProject.AllForms(“formName”).IsLoaded

where formName is the name of a form in the current database. For example,
the following expression returns True if the form named Customers is cur-
rently open or False if that form is closed.

CurrentProject.AllForms(“Customers”).IsLoaded

A practical example would be an If...End If block that closes the form
named NewCust but only if that form is currently open:

If CurrentProject.AllForms(“NewCust”).IsLoaded Then
DoCmd.Close acForm, “NewCust”, acSaveYes

End If

3. Refer to an Open Form
VBA keeps track of all currently open forms in the Forms collection. To refer
to an open form from a standard module, use the syntax

Forms![formName]

where formName is the name of the open form. For example, when the
Products form is open, use

Forms![Products]

358 Part VI: The Part of Tens

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 358

in VBA to refer to that form as a whole. However, you typically want to refer
to a specific control on the open form or perhaps a property of the form as a
whole. To refer to a form property, use the syntax

Forms![formName].[propertyName]

where propertyName is the name of the property. For example, every form
has a RecordSource property that contains the name of the table or query
to which the form is bound. The following example refers specifically to the
RecordSource property of the currently open form named Products:

Forms![Products].RecordSource

Use an exclamation point (!) (sometimes called a bang) in front of any name
that you create yourself, such as the name of a form, report, field, or control
on a form. Use a period/dot (.) to precede property names and method names
that are built into Access (names that you didn’t make up yourself).

To refer to a specific control on an open form, use the syntax

Forms![formName]![controlName]

where controlName is the name of a control on the open form. For example,
the following statement refers specifically to the value stored in a control
named Product Name on an open form named Products:

Forms![Products]![Product Name]

To refer to a property of a control, use the syntax

Forms![formName]![controlName].propertyName

where propertyName is a valid property for the control. For example, just
about every control type has a Value property that refers to the current
contents of the control. To refer to the Value property of the Product Name
control on the currently open Products form, use

Forms![Products]![Product Name].Value

4. Move the Cursor to a Control
To move the cursor to a specific control on an open form (from within a stan-
dard module), use the syntax

Forms![formName]![controlName].SetFocus

359Chapter 16: Top Ten Nerdy VBA Tricks

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 359

For example, the following VBA statements open a form named NewCust and
move the cursor to a control named TaxExempt on that form:

‘Open my NewCust form in Form view.
DoCmd.OpenForm “NewCust”, acNormal

‘Move the cursor to the Tax Exempt control.
Forms![NewCust]![Tax Exempt].SetFocus

5. Change the Contents of a Control
To change the contents of a control on an open form, use the syntax

Forms![formName]![fieldName].Value = newValue

where newValue is the value to assign to the control.

For example, the following statement sets the value of a field named Credit
Limit on an open form named NewCust to 10,000. The syntax assumes that
Credit Limit is bound to a Number or Currency field:

Forms![NewCust]![Credit Limit].Value = 10000

The following example sets the field named CustStatus on the open form
named NewCust to Approved. The syntax assumes that CustStatus is bound
to a Text or Memo field:

Forms![NewCust]![CustStatus].Value = “Approved”

The following statement changes the value of a Date/Time control, named
DateEntered on an open form named NewCust, to the current date:

Forms![NewCust]![DateEntered].Value = Date

The following statement changes the contents of the Date/Time field named
DateEntered specifically to the date January 1, 2005:

Forms![NewCust]![DateEntered].Value = #1/1/2005#

The following statement sets the value of a Yes/No field named PrintedYet
to True on an open form named NewCust:

Forms![NewCust]![PrintedYet].Value = True

360 Part VI: The Part of Tens

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 360

6. Update a List Box or Combo Box
ListBox and ComboBox controls can show lists of data from tables or queries.
A common problem with such controls occurs when the row source for the
list changes while the control is open and visible on the form. List boxes and
combo boxes don’t recheck their record sources after the form is open, so
it’s easy for a list to get out of sync with what’s currently in its source table
or query.

VBA can force a list box or combo box to update its list immediately, via the
syntax

Forms![formName]![controlName].Requery

where formName is the name of the open form, and controlName is the name
of the ListBox or ComboBox control on that open form. For example, the fol-
lowing statement updates a ComboBox or ListBox control named CustID on
an open form named Customers:

Forms![Customers]![CustID].Requery

It’s not necessary (or possible) to requery a control on a closed form. If the
preceding statement executes when the form named Customers isn’t open
in Form view, the statement will generate an error message.

To prevent such a statement from executing when the specified form isn’t
open, place the Requery statement in an If...End If block that executes
the statement only if the form is open, as in the following example:

If CurrentProject.AllForms(“Customers”).IsLoaded Then
Forms![Customers]![CustID].Requery

End If

7. Show a Custom Message
You can use VBA to display a simple message and an OK button on the
screen. The syntax for doing so is

MsgBox “yourMessage”

where yourMessage is the prompt (the text to show), as shown in Figure 16-1.

361Chapter 16: Top Ten Nerdy VBA Tricks

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 361

For example, the following VBA statement displays the exact message box
shown in Figure 16-1:

MsgBox “Your message here.”

The following statement shows the text Thank you. in a message box:

MsgBox “Thank you.”

8. Ask the User a Question
If you want your VBA code to ask the user a question and then perform some
action based on the user’s answer, you need to use the more complex MsgBox
function syntax and an If...Else...End If block of code with the general
syntax as shown here:

Dim variableName As Integer
variableName = MsgBox(“prompt”,buttons,”title”)
If variableName = vbYes Then

‘Code to execute if user clicked Yes goes here.
Else

‘Code to execute if user clicked No goes here.
End If

where

� variableName is a name of your own choosing (such as Answer).

� prompt is the text of the question that the box displays.

� buttons is any VBA constant or sum of constants. (For a question like
the one in Figure 16-2, use vbYesNo+vbQuestion.)

� title is the title of message box.

� ‘Code to execute if... represents any number of VBA statements.

yourMessage

Figure 16-1:
A simple

custom
message

with an OK
button.

362 Part VI: The Part of Tens

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 362

In the following example, the statement

Answer = MsgBox(“Did labels print OK?”, vbYesNo+vbQuestion, “Question”)

displays the message box shown in Figure 16-2. The question mark icon and
Yes/No buttons are in the box courtesy of the vbQuestion+vbYesNo expres-
sion as the buttons argument.

Dim Answer As Integer
Answer = MsgBox(“Did labels print OK?”, vbQuestion+ vbYesNo, “Question”)

If Answer = vbYes Then
MsgBox “You clicked Yes”

Else
MsgBox “You clicked No”

End If

In the preceding code example, when a user clicks a button, he just gets a
little message saying which button he clicked, which serves no practical
purpose. In real life, you’d replace MsgBox “You clicked Yes” and MsgBox
“You clicked No” with code that actually does something useful.

9. Print a Report
If you want VBA to print a report from the current database, use the syntax

DoCmd.OpenReport “reportName”, acViewNormal

where reportName is the name of any report in the current database. For
example, the following statement prints a report named MyLabels:

DoCmd.OpenReport “MyLabels”, acViewNormal

Figure 16-2:
A question

in the
screen with

Yes/No
buttons.

363Chapter 16: Top Ten Nerdy VBA Tricks

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 363

In case you hadn’t noticed, the DoCmd (pronounced do command) object
shows up quite a few times in this chapter. That’s because the DoCmd object
lets you do lots of useful things with the tables, queries, forms, and reports
in your database. In fact, now that I think of it, I suppose item number ten
here should be. . . .

10. Get to Know the DoCmd Object
The DoCmd object is one of your most potent programming allies because it
can do virtually anything you can do in Access’s program window. When you
type DoCmd. into the Code window, the hefty list of items that appears in the
little menu (see Figure 16-3) represents various methods of the DoCmd object.
Each method, in turn, represents something that the DoCmd object can do.

The DoCmd methods that you’re most likely to use, especially as a beginning
programmer, are summarized in Table 16-1. Like with any Access object, you
can use the Object Browser to get more information on any DoCmd method.

Table 16-1 DoCmd Methods Worth Getting to Know
Goal DoCmd Method

Close a form or report DoCmd.Close

Open a form DoCmd.OpenForm

Do a menu command DoCmd.DoMenuItem

Open a report DoCmd.OpenReport

Export data DoCmd.OutputTo

Figure 16-3:
DoCmd

methods in
the Code
window.

364 Part VI: The Part of Tens

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 364

Goal DoCmd Method

Print data DoCmd.PrintOut

Rename an object DoCmd.Rename

Run a macro DoCmd.RunMacro

Run an action query DoCmd.RunSQL

Save an object DoCmd.Save

Select an object DoCmd.SelectObject

E-mail an object DoCmd.SendObject

Import/export spreadsheet DoCmd.TransferSpreadsheet

You can read about the Object Browser in Chapter 5. But just as a quick head-
start, in case you’re already familiar with the Object Browser, you can find the
DoCmd object in the Classes column. When you click it, you’ll see its methods
in the Members column. The bottom of the window shows a summary of the
syntax for using the method. For details, though, you want to click the Object
Browser’s Help button, as shown in Figure 16-4.

Help for highlighted item

Summary syntax

Highlighted method

DoCmd

Figure 16-4:
DoCmd

selected in
the Object

Browser.

365Chapter 16: Top Ten Nerdy VBA Tricks

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 365

366 Part VI: The Part of Tens

06c_574116 ch16.qxd 7/27/04 10:30 PM Page 366

Chapter 17

(Way More Than) Ten
Shortcut Keys

In This Chapter
� Code and Immediate window shortcuts

� General VBA editor shortcut keys

� Debug shortcut keys

Code and Immediate Window Shortcuts
You’ll use the VBA editor Code window to type all your Access code. The
Code window supports all the standard Windows text-editing techniques, as
summarized here in Table 17-1. Most keys also work in the Immediate
window. The keys that don’t work in the Immediate window are marked with
an asterisk (*).

Table 17-1 Code and Immediate Window Shortcuts
Action Shortcut Key

Move cursor right one character →

Select character to right Shift+→

Move cursor right one word Ctrl+→

Select to end of word Ctrl+Shift+→

Move cursor left one character ←

Select character to left of cursor Shift+←

Move cursor left one word Ctrl+←

(continued)

06d_574116 ch17.qxd 7/27/04 10:31 PM Page 367

Table 17-1 (continued)
Action Shortcut Key

Move cursor to start of line Home

Select text to start of line Shift+Home

Move cursor to end of line End

Select text to end of line Shift+End

Move cursor up a line ↑

Move cursor down a line ↓

Move cursor to next procedure Ctrl+↓

Move cursor to previous procedure Ctrl+↑

Scroll up one screen PgUp

Scroll down one screen PgDn

Go to top of module/window Ctrl+Home

Select all text to top of module/window Ctrl+Shift+Home

Go to bottom of module/window Ctrl+End

Select all text to bottom of module/window Ctrl+Shift+End

Cut selection Ctrl+X

Copy selection Ctrl+C

Paste Ctrl+V

Cut current line to Clipboard Ctrl+Y

Delete to end of word Ctrl+Delete

Delete character or selected text Delete (Del)

Delete character to left of cursor Backspace

Delete to beginning of word Ctrl+Backspace

Undo* Ctrl+Z

Indent line Tab

Outdent line Shift+Tab

Find* Ctrl+F

Replace* Ctrl+H

368 Part VI: The Part of Tens

06d_574116 ch17.qxd 7/27/04 10:31 PM Page 368

Action Shortcut Key

Find Next* F3

Find Previous Shift+F3

Get help with currently selected word F1

Quick Info* Ctrl+I
* Doesn’t work in the Immediate window

General VBA Editor Shortcut Keys
The shortcut keys in Table 17-2 are available throughout the VBA editor and
are therefore also available in the Code window and Immediate window.

Table 17-2 General VBA Editor Shortcut Keys
Action Shortcut Key

Help F1

View Object Browser F2

Properties F4

View Code window F7

Close and return to Access Alt+Q

Switch to Access Alt+F11

View Immediate window Ctrl+G

View shortcut menu Shift+F10 (or right-click)

Run a Sub/UserForm F5

Stop code execution Ctrl+Break

Debug Shortcut Keys
The shortcut keys in Table 17-3 apply when debugging code in the VBA
editor.

369Chapter 17: (Way More Than) Ten Shortcut Keys

06d_574116 ch17.qxd 7/27/04 10:31 PM Page 369

Table 17-3 Debug Shortcut Keys
Action Shortcut Key

Toggle breakpoint F9

Step into F8

Step over Shift+F8

Step out Ctrl+Shift+F8

Run to cursor Ctrl+F8

Clear all breakpoints Ctrl+Shift+F9

370 Part VI: The Part of Tens

06d_574116 ch17.qxd 7/27/04 10:31 PM Page 370

• Symbols •
' (apostrophe), 52, 83
! (bang character), 81, 155, 359
: (colon), 290
:= (colon equal sign), 45
, (comma), 38, 42, 43
_ (continuation character), 156–158
. (dot), 79, 81, 359
= (equal sign), 80
! (exclamation point), 138
* (multiplication operator), 106
() (parentheses)

checking, 275–276
for ending procedure, 37, 42, 353

| (pipe), 63
+ (plus sign), 44, 106, 157
(pound character), 83
? (question mark), 79
" (quotation marks), 58, 83, 353
[] (square brackets)

in Access, 91
as representing argument, 40, 41
as representing name, 154–155
typing, 353

• A •
Access 2003 All-in-One Desk Reference

For Dummies (Alan Simpson,
Margaret Levine Young, Alison
Barrows), 9

Access 2003 For Dummies
(John Kaufeld), 9

Access (Microsoft)
class module, 12–15
client-server relationship and, 297–303

database window, 10
description of, 1
11.0 Object Library, 31
Help system, 354
learning before using VBA, 351
Modules container, 10
Query menu, 122
references for learning about, 9
standard module, 12–13
switching between Visual Basic editor

and, 15–16
accessing object library, 317–319
Action Arguments, 311–312, 315
action query

hiding warning message, 125–126
on one record, 136
overview of, 121–123

Add Procedure dialog box, 36, 37
address, correcting case of with

PCase() function, 248–252
ADO (ActiveX Data Objects), 141
AdOpenDynamic cursor type, 145
After Focus event, 89
After Insert Event form event, 98
After Update event, 220
All tab (Properties sheet), 185, 203
AllForms collection, 149
AllTables collection, 209
Alt+F11 (switch between Access and

Visual Basic editor), 16, 354
Alt+Q (close Visual Basic editor), 15
AND operator, 67
apostrophe ('), 52, 83
appearance of object, changing

color, 99–103
font or style of text, 103
special effects, 103–104
With...End With statement, 104–105

Index

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 371

372 Access VBA Programming For Dummies

append query, 122, 131–132
appending record to table

overview of, 131–132
with query, 133–134
single, with SQL, 132–133

application modal, 178
Application object

description of, 319–320
Outlook, 326

argument
CursorType (recordset), 142–143, 145
definition of, 40
function and, 244–245
Help page and, 43–45
keyword support for, 41
LockType (recordset), 143
MsgBox() keyword, 43–45, 177–179
named, 45
OpenForm method of DoCmd object,

107–108
order of, 45
parameters and, 161
square brackets ([]) and, 40, 41
Sub procedure, 56
syntax for, 55
title, 44
value for, 42

argument list, 55
array, storing data in, 58–60
ASCII number, 191
asking question of user, 362–363
Automation technology, 28, 317

• B •
BackColor property, 100
back-end database table, 298, 299, 300
backing up data, 135
BackStyle property, 101
bang character (!), 81, 155, 359
Barrows, Alison, Access 2003 All-in-One

Desk Reference For Dummies, 9
Beep method of DoCmd object, 81–82

Before Update event, 89
binding dialog box to table, 184
blank space, inserting in code, 157
BOF property, 145
book, Web site for, 5
bookmark, 326, 327
Boolean data type, 53, 62
BorderColor property, 100
BorderStyle property, 101
Bound Column property, 230, 232–233
bound control, adding to form, 187
breaking long line of code, 156–158
breakpoint

clearing, 284–285
setting in code, 280–284

bug, definition of, 267
Build button (Design view), 241, 242
Building a List of Report Names

listing, 194
button

default, for message box, 178–179
On Click event and, 87

buttons argument of MsgBox()
keyword, 43–44, 177–179

Byte data type, 53, 62

• C •
calling procedure

from event, 170–172
overview of, 18

changing. See also appearance of object,
changing

contents of control, 360
control type, 204
table record, 134–136
value of property, 80

checking
parentheses, 275–276
whether form is open, 358

class, definition of, 14, 31, 76
Class icon, 78

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 372

373Index

class module (Access)
description of, 12–13, 87
finding, 13–15
Me term, 155
Project Explorer and, 24

Classes list (Object Browser), 31
clearing breakpoint, 284–285
client, definition of, 297
Close method of DoCmd object, 109
closing

form, 109
Object Browser, 33
recordset, 146
table through VBA, 130–131
Visual Basic editor, 15–16

code. See also listings; syntax
automating task and, 12
blank space, inserting in, 157
breaking long line of with continuation

character (_), 156–158
in class module, 14
commenting, 52–53
conventions for, 2
converting query to, 129
copying, 355
creating in pieces, 265
definition of, 11
encapsulation of, 218–219, 221
linking to external data through,

305–307
modifying existing, 46–48, 57, 123–125,

153–154
object and event for, choosing, 92–95
PaymentMethod_AfterUpdate()

procedure, 93–95
recordset, creating, 139–140
sample, acquiring, 51
slowing down, 280–284
typing, 27–28

Code window (Visual Basic editor)
Help methods in, 84
overview of, 15, 16, 26–28
shortcut keys, 367–369
viewing existing code in, 153–154

CodeContextObject, 155
collection
AllForms, 149
AllTables, 209
Count property, 79, 147–148
CurrentProject.AllForms, 358
CurrentProject.AllReports, 190
enumerating, 147–153
Forms, 72, 73, 79, 149, 358–359
looping through, 147–148
object compared to, 72–74, 148

colon (:), 290
colon equal sign (:=), 45
color

for dialog box, 186
of object, changing, 99–103

Color Builder, 100–101
Column Count property, 232
combo box

creating, 189–190
description of, 188–189, 201–202
drop-down menu, customizing, 195
dynamic drop-down list for, building,

190–194
field names, listing, 204–206
hidden values in, 229–233
linking lists, 217–219
linking lists across forms, 223–229
properties, 203
as quick find tool, 233–236
self-referential, creating, 237–239
table/query field values, listing, 213–217
text options, listing, 207–213
unbound control, adding to, 202–203
updating, 224–226, 361
updating from table, 222
updating report names in, 221–222

Combo Box Wizard, 231–232, 234–235, 238
comma (,), 38, 42, 43
Command Button Wizard, 288–289
commenting code, 52–53
comparison operators, 66–67
compilation or compile time, 269

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 373

374 Access VBA Programming For Dummies

compile error
cause of, 269
description of, 270, 271–273
Expected: end of statement

message, 274
Expected: expression message,

273–274
Expected: list separator or)

message, 274–275
message example, 28, 272
understanding message, 271

compiling line of code, 28
concatenating strings, 157
condition, description of, 63
conditional expression, 66–67
connection

closing, 146
defining, 140–141
to external program, 321–322

constant
buttons argument of MsgBox()

keyword, 178–179
color, 100
definition of, 38, 43
list of, 39
storing data in, 58

Constant icon, 78
continuation character (_), 156–158
control. See also combo box; list box

adding to dialog box, 186–188
bound, adding to form, 187
changing contents of, 360
changing type of, 204
description of, 73
enabling or disabling, 90–91
event and, 89
filling with data, 105–107
locking and unlocking, 96
moving cursor to, 359–360
naming, 203
on open form, referring to, 359
requerying with every new record,

238–239

showing or hiding, 95–96
spin box, creating, 195–198
unbound, adding to form, 187, 202–203
updating on separate form, 228–229
Visible property, 79–80

Control Wizards
adding control to dialog box and, 187
Combo Box Wizard, 231–232,

234–235, 238
error-handling code and, 288–289

Control Wizards button
Design view, 17
Toolbox, 231

converting
linked table to local table, 300
macro to VBA code, 313, 314
query to code, 129

CopyFromRecordset method (Excel), 344
copying

code from Web, 46–47, 355
data before querying, 135
data before testing, 251
SQL statement into VBA code, 123–125
table or query results to Excel

worksheet, 344–347
CopyObject action, 314
Count property of collection, 79, 147–148
CREATE TABLE statement (SQL), 129–130
Ctrl+C (Copy), 46
Ctrl+F8 (Run to Cursor), 283
Ctrl+Shift+F8 (Step Out), 283, 284
Ctrl+V (Paste), 46
Currency data type, 53, 62
CurrentProject.AllForms

collection, 358
CurrentProject.AllReports

collection, 190
cursor

moving to control, 359–360
positioning, 38, 91–92

CursorType argument (recordset),
142–143, 145

Customer Lookup query, 230–231, 234

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 374

375Index

• D •
DAO (Data Access Objects), 142
data

backing up, 135
copying before testing, 251
form control, filling with, 105–107
importing from external database,

303–305
linking to external through code,

305–307
passing to function, 244–245
passing to procedure, 55–57, 164
recordset, filling with, 142–143
storing in combo box, 232–233

Data Access Objects (DAO), 142
Data tab (Properties sheet), 189
data types, 53–55, 62
database. See also recordset; SQL

(Structured Query language); table
back-end and front-end, 298, 299, 300
importing data from external, 303–305
objects and, 85
splitting into two files, 297

Database Splitter, 297–303
DataMode argument of OpenForm

method of DoCmd object, 108
Datasheet view of query, 138
Date data type, 53
Date() function, 56
date, literal, 83
Date/Time data type, 62
Debug toolbar, 284
debug window (Visual Basic editor),

25–26
Debug➪Clear All Breakpoints, 284
debugging

compile errors, 271–276
definition of, 267
logical errors, 276–285
shortcut keys for, 370

Debug.Print statement
checking variable with, 277–280
seeing name of object with, 150

Debug➪Step Into, 283
Debug➪Toggle Breakpoint, 281
Decimal data type, 54
decision-making

comparison operators, 66–67
If...End statement, 67–68
procedure and, 128
Select Case block, 68–69

declarations area of module, 60–61
declaring

array, 59
object variable, 152, 321
variable, 165

Default Method icon, 78
Default Property icon, 77
Default Value property (combo box

and list box), 203
Delete Event form event, 98
Delete query, 122, 134–137
deleting

table record, 134–136
table through VBA, 130–131

delimiting literal text and dates, 83
dependency, 218
Design view

Build button, 241, 242
combo box sample in, 190
Control Wizards button, 17
Detail band, 186
dialog box sample in, 187
form events in, 96–97

designing message box, 177–180
Detail band (Design view), 186
Details pane (Object Browser), 31
detecting right-click, 198–199
dialog box

controls, adding, 186–188
converting form to, 182–183
form properties, setting, 184–186
overview of, 175
storing settings, 183–184

Dim statement, 152
disabling form control, 90–91

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 375

376 Access VBA Programming For Dummies

displaying
control, 95–96
custom message, 361–362
Immediate window, 25
properties, 75–76
toolbar, 21

docking Code window, 27
DoCmd (do command) object
Beep method, 81–82
Close method, 109
description of, 32
methods for forms, 111–113, 364–365
OpenForm method, 82, 107–108,

357–358
TransferDatabase method, 304–307

DoCmd.RunSQL statement, 124, 125, 146
Do...Loop block, 62–63
dot (.), 79, 81, 359
DOT file, 327
Double data type, 54, 62
drop-down menu

customizing, 195
dynamic, building, 190–194
static versus dynamic, 190

• E •
element of array, 58
e-mail, sending via Outlook, 322–326
enabling form control, 90–91
encapsulation, 218–219, 221
Enter key and typing code, 27–28
Enum icon, 78
enumerating collection
For Each loops, 149–151
object, using shorter name for, 152–153
overview of, 147–148

EOF property, 145
equal sign (=), 80
error handler

creating, 287–290
writing, 290–294

errors
compile, 271–276
logical, 276–285
runtime, 285–294
types of, 270–271

event
After Focus, 89
After Insert Event form event, 98
After Update, 220
Before Update, 89
calling procedure from, 170–172
for code, choosing, 92–95
Delete Event form event, 98
form, responding to, 96–99
Load Event form event, 98
On Change, 89
On Click, 87, 89, 188, 198–199
On Close form event, 98
On Current form event, 98
On Insert, 226
On Load, 190, 208, 219
On Mouse Down, 89, 198

Event icon, 78
Events tab (Properties sheet), 88, 96
Excel (Microsoft)

code to copy form data to worksheet,
338–347

interacting with, 336
macro, running from Access, 347–348
query and form, creating, 337–338
worksheet, creating, 336–337

exclamation point (!), 138
execute, definition of, 12
existing code, modifying

argument list and, 57
copying and pasting from Web, 46–47
For Each...Next loop and, 153
importing standard module, 47–48
overview of, 46, 48, 153–154
SQL statement into VBA code, 123–125

Expected: end of statement error
message, 274

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 376

377Index

Expected: = error message, 271–272
Expected: expression error message,

273–274
Expected: list separator or)

message, 274–275
exporting

interactively, 311
with macro, 311–313

exposing object, 28–29
expression

conditional, 66–67
testing in Immediate window, 26, 42–43

Expression Builder, 241

• F •
F1 (Help), 39, 356
F2 (open Object Browser), 30
F4 (Properties sheet), 74
F8 (Step Into), 283
Fancy SkipLabels Dialog Box

code for, 220
overview of, 217–218

field in recordset, referring to, 145–146
field name

listing in combo box or list box, 204–206
referring to, 154–155

File➪Close, 15
File➪Export, 311
File➪Get External Data➪Import, 47
filling

form control with data, 105–107
recordset with data, 142–143, 166–170

FilterName argument of OpenForm
method of DoCmd object, 107

focus, giving control, 91
font, changing, 103
For Each...Next loop, 149–151, 153, 191
ForeColor property, 100, 103
form

adding related record to another table,
109–111

appearance of object, changing, 99–107

class module, opening, 14–15
class procedures, 87–89
closing, 109
control, enabling or disabling, 90–96
converting to dialog box, 182–183
description of, 10, 14, 73
DoCmd object methods for, 111–113
opening, 107–108
opening from VBA, 357–358
properties to turn into dialog box,

184–186
referring to open, 358–359
working with, 87

form event, responding to, 96–99
form names, making list of, 211–213
Form view

combo box sample in, 190
dialog box sample in, 187

Form_Address Book Form listing, 111
Format function, 260
Format tab (Properties sheet), 99
formatting worksheet cells from VBA,

343, 347–348
Form_Current() procedure, 97–98
Form_Load() procedure, 219
Forms collection
Count property, 79
description of, 149
object model and, 72, 73
referring to open form and, 358–359

For...Next block, 64–65
friction in computer, 268
front-end database, 298, 299, 300
function. See also procedure

arguments and, 244–245
built-in, listing, 242
creating, 243–244
Date(), 56
Format, 260
GetObject(), 341
Mid(), 278, 280
NumWord(), 253–265, 279–280
overview of, 241

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 377

378 Access VBA Programming For Dummies

function (continued)
passing data to, 244–245
PCase(), 247–252
Public, 19, 37
returning value from, 245
role of, 241–243
SalesTax() example, 244–247
StrConv(), 247, 249
testing, 246–247
testing from Immediate window, 281
UCase(), 278

Function procedure
creating, 36–38
data returned by, 56
overview of, 19–20

• G •
GetObject() function, 341
getting value of property, 79–80
Global icon, 78
global scope and standard module, 13
guessing, 354

• H •
heat of computer, 268
Help system

Access compared to VBA, 354
argument and, 43–45
methods, 112
opening, 39
procedure and, 39–43
properties and methods, 82–85
showing properties, 75–76

Help window (Object Browser), 33
hiding

control, 95–96
toolbar, 21
warning message, 125–126

high-level programming language, 268–269
hyperlink field, 231

• I •
icons

for items in Object Browser, 77–78
for saved action queries, 138

identifier
description of, 80
square brackets and, 154–155
syntax, 81

If...Else...End If statement, 93
If...End If block, 227
If...End statement, 67–68
If...Then...Else block, 106
If...Then...End If statement, 197
Immediate window (Visual Basic editor)

overview of, 25–26
re-executing statement in, 79
running procedure from, 281
shortcut keys, 367–369
testing function in, 281
testing statement in, 42–43
viewing, 22

importing
data from external database, 303–305
query from external database, 307–309
standard module, 47–48
table, 303

inserting blank space in code, 157
Insert➪Picture, 196
Insert➪Procedure, 36, 150
instance, 321
Integer data type, 54, 62
IsLoaded property of form, 358
Item Data(x) property (combo box

and list box), 203
item, undocking and re-docking, 22

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 378

379Index

• K •
Kaufeld, John, Access 2003

For Dummies, 9
keyboard shortcuts

Alt+F11 (switch between Access and
Visual Basic editor), 16, 354

Alt+Q (close Visual Basic editor), 15
Code and Immediate window, 367–369
Ctrl+C (Copy), 46
Ctrl+F8 (Run to Cursor), 283
Ctrl+Shift+F8 (Step Out), 283, 284
Ctrl+V (Paste), 46
for debugging, 370
F1 (Help), 39, 356
F2 (open Object Browser), 30
F4 (Properties sheet), 74
F8 (Step Into), 283
Shift+F8 (Step Over), 283
VBA editor, 369

keywords. See also MsgBox() keyword
arguments supported by, 41
Help page for, 39–43, 153–154
Me!, 204
New, 321

• L •
label, 290
Label Wizard, 159
Levine Young, Margaret, Access 2003

All-in-One Desk Reference
For Dummies, 9

Limit to List property
(combo box), 203

line of code
breaking with continuation character,

156–158
compiling, 28

Linked Table Manager, 298, 299

linking
to external data through code, 305–307
to external tables, 308–309
table, 303

linking lists
across forms, 223–224
getting forms in sync, 228–229
opening form to enter new record,

226–227
overview of, 217–219
running code when form opens, 219–220
running code when user makes a

choice, 220–223
updating combo box or list box, 224–226

list box
description of, 201–202
field names, listing, 204–206
hidden values in, 229–233
linking lists, 217–219
linking lists across forms, 223–229
properties, 203
table/query field values, listing, 213–217
text options, listing, 207–213
unbound control, adding to, 202–203
updating, 224–226, 361

List Rows property (combo box), 203
list separator, 274–275
List Width property (combo box), 203
listing built-in functions, 242
listings

building list of report names, 194
combo box of table and query names,

210–211
combo box of table names, 209–210
combo box value list property,

filling, 208
combo box with form names, filling, 212
copying form data to Excel

worksheet, 339
copying recordset to Excel worksheet,

344–345

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 379

380 Access VBA Programming For Dummies

listings (continued)
distinguishing between left and right

mouse clicks, 199
Form_Address Book Form, 111
Form_Current() procedure, 98
importing query from external

database, 307–308
linking to external table, 309
merge code, 330–331
NumWord() function, 253–255
PaymentMethod_AfterUpdate()

procedure, 94
PCase() function, 248
Send button procedure, 323
SkipLabels procedure, 162–164
updating combo box from table, 222
updating combo box of report

names, 221
updating control on separate form,

228–229
literal string, 83, 157–158
Load Event form event, 98
local scope and class module, 13
local table, 299, 300
Locals window, 282–283
locking control, 96
LockType argument (recordset), 143
logical error

description of, 270, 276–277
slowing down code, 280–284
variables, checking with Debug.Print

expression, 277–280
logical operators, 67
Long data type, 54, 62
loop

description of, 62
Do...Loop block, 62–63
For...Next block, 64–65
While...Wend block, 64

looping through collections
For Each...Next loop, 149–151,

153, 191
object, using shorter name for, 152–153
overview of, 147–148

low-level machine language, 268

• M •
macro

actions for, 313–315
description of, 10
Excel, running from Access, 347–348
exporting with, 311–313

macro conversion, 288–289
mailing labels, skipping over used

(SkipLabels procedure)
calling procedure from event, 170–172
combo box, creating for, 189–195
controls, adding to dialog box, 186–188
copying label report, 165
declaring variables, 165
getting report record source, 165–166
listing, 162–164
overview of, 158–161
passing data to, 164
recordset, creating and filling, 166–170
spin box control, creating for, 195–198
table for storing dialog box settings for,

183–184
maintenance mode technology, 142
Make-Table query, 122, 128–129
managing recordset, 144–145
MDB file, 297
Me! keyword, 204
member of class, definition of, 31, 76
Members list (Object Browser), 31
menu. See drop-down menu
message box. See also MsgBox() keyword

as application modal, 178
code execution and, 177
default buttons for, 178–179
designing, 177–180
Help button, 180
overview of, 175
as pop-up, 178
question asking, 176–177
responding to button click, 180–182
Select Case block and, 182

message, custom, showing, 361–362

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 380

381Index

method
Beep of DoCmd object, 81–82
Close of DoCmd object, 109
CopyFromRecordset (Excel), 344
description of, 75–77
DoCmd object for forms, 111–113,

364–365
Help page and, 112
OpenForm of DoCmd object, 82, 107–108,

357–358
Requery, 224–226
TransferDatabase of DoCmd object,

304–307
using, 81–82

Method icon, 77
Microsoft. See also Microsoft Access;

Microsoft Excel; Microsoft Word
ActiveX Data Objects 2.1 Library, 32, 141
DAO 3.6 Object Library, 32
maintenance mode technology, 142
Outlook, sending e-mail via, 322–326
Web site, 354

Microsoft Access
class module, 12–15
client-server relationship and, 297–303
database window, 10
description of, 1
11.0 Object Library, 31
Help system, 354
learning before using VBA, 351
Modules container, 10
Query menu, 122
references for learning about, 9
standard module, 12–13
switching between Visual Basic editor

and, 15–16
Microsoft Excel

code to copy form data to worksheet,
338–347

interacting with, 336
macro, running from Access, 347–348
query and form, creating, 337–338
worksheet, creating, 336–337

Microsoft Word
form, creating, 329–330
merge code, writing, 330–335
sending data to, 326
template, creating, 327–328

Mid() function, 278, 280
modifying existing code

argument list and, 57
copying and pasting from Web, 46–47
For Each...Next loop and, 153
importing standard module, 47–48
overview of, 46, 48, 153–154
SQL statement into VBA code, 123–125

module. See also class module (Access);
standard module (Access)

declarations area, 60
definition of, 89

Module icon, 78
module-level declaration, 36, 60–61
Modules button (Access), 13
Modules container (Access), 10
MOMSecure.mdb example, 300–303
moving editor window, 282
MsgBox() keyword

arguments for, 43–45
buttons argument, 43–44, 177–179
Help page, 40–43
overview of, 38–39
question asking, 176–177
responding to button click, 180–182
syntax for, 176, 272

multidimensional array, 60
multiplication operator (*), 106

• N •
name, correcting case of with PCase()

function, 248–252
Name property

combo box and list box, 203
of object, 152
of recordset, 145–146

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 381

382 Access VBA Programming For Dummies

named argument, 45
naming

bang character (!) and, 359
cell or range in Excel, 336
control on form, 203
square brackets and, 91
variable, 61–62

New Customer form example,
223–226, 228

New keyword, 321
NOT operator, 67
numbers

ASCII, 191
for buttons argument of MsgBox()

keyword, 178–179
numeric expression, 42
NumWord() function

code for, 253–255
explanation of, 258–265
uses of, 255–257
writing and checking for logical errors,

279–280

• O •
object

for code, choosing, 92–95
as collection, 148
collection compared to, 72–74
color, changing, 99–103
description of, 71
exposing, 28–29
font or style of text, controlling, 103
methods of, 81–82
Name property, 152
referring to, 155–156
special effects, changing, 103–104
using shorter name for, 152
With...End With statement, using to

change appearance of, 104–105
Object Browser tool (Visual Basic editor)
DoCmd object information in, 365
Help methods in, 84–85

help with objects and collections from,
76–77

icons for items in, 77–78
methods listed in, 112–113
object model, exploring through, 319
overview of, 30–33, 355–356

Object data type, 54
object library

accessing, 317–319
description of, 28–29
list of, 31–32
Outlook, 325
referencing external, 321–322
searching, 32–33
setting reference to, 29–30

Object Library icon, 78
object model

ADO (ActiveX Data Objects), 141
description of, 71, 72
exploring, 319
icons for items in, 77–78
objects and collections, 72–74
properties and methods, 75–77
viewing, 74

object variable, declaring, 152
object-oriented, definition of, 10
OLE Automation object library, 32
On Change event, 89
On Click event

description of, 87, 89
PrintBttn control, 188
right-click, detecting, 198–199

On Close form event, 98
On Current form event, 98
On Error statement, 288, 291
On Insert event, 226
On Load event

description of, 190
Form_Load() procedure, 219
use of, 208

On Mouse Down event, 89, 198
one-dimensional array, 59
opacity of background or border, 101

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 382

383Index

Open method of recordset, 142–143
OpenArgs argument of OpenForm

method of DoCmd object, 108
OpenForm method of DoCmd object, 82,

107–108, 357–358
opening

class module, 14–15
Excel and workbook, 340–341
Expression Builder, 241
form, 107–108
form and adding related record to

another table, 109–111
form from VBA, 357–358
form to enter new record, 226–227
Help page, 39
module, 15
module in VBA editor, 24
Object Browser, 30
program, 321
Properties sheet, 73–74
Query Properties sheet, 214

operators
comparison, 66–67
logical, 67

Option Compare Database
declaration, 243

OR operator, 67
Orders form example, 223–226, 228
Outlook (Microsoft), sending e-mail via,

322–326
OutputTo action, 311–313, 314

• P •
page, description of, 10
pane

sizing, 23
undocking or re-docking, 22

parameters, 161
parentheses [()]

checking, 275–276
for ending procedure, 37, 42, 353

passing data
to function, 244–245
to procedure, 55–57
to SkipLabels procedure, 164

PaymentMethod_AfterUpdate()
procedure listing, 94

PCase() function
code for, 247–248
explanation of, 249–250
uses of, 250–252
writing and checking for logical errors,

277–279
pipe (|), 63
placeholder, 41, 45. See also bookmark
plus sign (+), 44, 106, 157
pop-up message box, 178
positioning cursor, 38, 91–92
pound (#) character, 83
Print Preview, using, 170, 257
printing check amount (NumWord()

function)
code for, 253–255
explanation of, 258–265
uses of, 255–257
writing and checking for logical errors,

279–280
printing report, 363–364
Private procedure, 19, 20
procedure. See also function;

SkipLabels procedure;
Sub procedure

calling, 18
calling from event, 170–172
class type, working with, 87–89
creating, 36–38
decision-making and, 128
definition of, 17
Form_Current(), 97–98
Form_Load(), 219
Function, 19–20, 36–38, 56
parentheses for ending, 37, 42, 353
passing data to, 55–57

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 383

384 Access VBA Programming For Dummies

procedure (continued)
PaymentMethod_AfterUpdate()

listing, 94
Private, 19, 20
Public, 19, 37
running from Immediate window, 281
saving, 95
Send button, 323
Sub, 18–19, 20
tying to event, 17

procedure-level declaration, 61
program, opening, 321
programming language

description of, 11
high-level, 268–269

Project Explorer window (Visual Basic
editor), 23–24, 25

Project icon, 78
Project/Library list (Object Browser),

31–32
Properties sheet

All tab, 185, 203
Data tab, 189
Events tab, 88, 96
Format tab, 99
viewing, 73–74

Properties window (Visual Basic editor),
24–25

property
BackColor, 100
BackStyle, 101
BOF, 145
BorderColor, 100
BorderStyle, 101
Bound Column, 230, 232–233
Column Count, 232
of control, referring to, 359
Count property of collection, 79,

147–148
Default Value, 203
description of, 75–77
EOF, 145
ForeColor, 100, 103

IsLoaded property of form, 358
Item Data(x), 203
Limit to List, 203
List Rows, 203
List Width, 203
Name, 145–146, 152, 203
on open form, referring to, 359
Row Source, 201, 203, 205
Row Source Type, 203
Special Effects, 103–104
Unique Records, 214
Unique Values, 214
Value, 145–146, 203
value of, changing, 80
value of, getting, 79–80
Visible property of control, 79–80,

95–96
Property icon, 77
Public function, 19, 37

• Q •
QBE (Query-by-Example) grid, 119, 120,

121, 133–134
query

in Access compared to in VBA, 120
action, 121–123, 125–126, 136
append, 122, 131–132
to append record to table, 133–134
Customer Lookup, 230–231, 234
Datasheet view of, 138
Delete, 122, 134–137
description of, 10
importing from external database,

307–309
Make-Table, 122, 128–129
select, 117–118, 121–123, 126, 137–140
as SQL statement, 117–118, 120–121
Unique Cities, 237–238
Update, 122, 123, 134–136
viewing SQL view of, 213

Query Design, 123
Query menu (Access), 122

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 384

385Index

query names, making list of, 210
Query Properties sheet, 214
Query➪Append Query, 131, 133
Query-by-Example grid. See QBE grid
Query➪Run, 123, 252
Query➪Update Query, 251
question, asking of user, 362–363
question mark (?), 79
quick find tool, combo box as, 233–236
Quick Info tip, 38, 39, 84
quotation marks ("), 58, 83, 353

• R •
read-only control, 96
record. See also recordset

action query on one, 136
appending to table, 131–134
changing or deleting, 134–136
opening form to enter new, 226–227
requerying control with every new,

238–239
recording macro, 347–348
recordset

closing, 146
connection, defining, 140–141
copying to Excel worksheet, 344–347
creating from external table, 309–310
defining, 141
filling with data, 142–143
managing, 144–145
as object, 140
referring to fields in, 145–146
select query and, 126, 137–140
SkipLabels procedure, 166–170
of table, creating, 303

re-docking item, 22
re-executing statement in Immediate

window, 79
reference, setting to object library, 29–30
References dialog box, 29–30
referencing external object library,

321–322

referring
to field in recordset, 145–146
to field name, 154–155
to object, 155–156
to open form, 358–359
to worksheet cell from VBA, 341–343

report
class module, opening, 14–15
creating, 159
description of, 10
printing, 363–364
for printing checks, 256–257

report names, making list of, 211–213
Requery method, 224–226
requerying control with every new

record, 238–239
responding to form event, 96–99
Restore Window button

(Code window), 27
Resume statement, 288
returning value

custom procedure and, 56
from function, 245

RGB values, 100–101
right-click, detecting, 198–199
Row Source property

combo box and list box, 201, 203
Field List combo box, 205

Row Source Type property (combo box
and list box), 203

running
action query, 122–123
Excel macro from Access, 347–348

running code
when form opens, 219–220
when user makes a choice, 220–223

runtime, 269
runtime error

description of, 270–271, 285–286
error handler, writing, 290–294
responding to, 286–287
trapping, 287–290

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 385

386 Access VBA Programming For Dummies

• S •
SalesTax() function example, 244–247
saving

document as Word template, 327–328
procedure, 95

scope, 60
Screen.ActiveControl, 155
Search box (Object Browser), 31
Search Results pane (Object Browser), 33
searching object library, 32–33
Select Case block

decision-making and, 68–69
message box buttons and, 182

select query
example of, 117–118
overview of, 121
recordset and, 126, 137–140

selecting code to copy, 46
self-referential combo box, creating,

237–239
Send button procedure, 323
sending e-mail via Outlook, 322–326
SendObject action, 314
server, definition of, 297
setting

breakpoint in code, 280–284
reference to object library, 29–30

Shift+F8 (Step Over), 283
shortcut keys

Alt+F11 (switch between Access and
Visual Basic editor), 16, 354

Alt+Q (close Visual Basic editor), 15
Code and Immediate window, 367–369
Ctrl+C (Copy), 46
Ctrl+F8 (Run to Cursor), 283
Ctrl+Shift+F8 (Step Out), 283, 284
Ctrl+V (Paste), 46
for debugging, 370
F1 (Help), 39, 356
F2 (open Object Browser), 30
F4 (Properties sheet), 74

F8 (Step Into), 283
Shift+F8 (Step Over), 283
VBA editor, 369

showing
control, 95–96
custom message, 361–362
Immediate window, 25
properties, 75–76
toolbar, 21

Simpson, Alan, Access 2003 All-in-One
Desk Reference For Dummies, 9

Single data type, 54, 62
sizing

editor window, 282
pane, 23

skills, as learned, 356
SkipLabels procedure

calling procedure from event, 170–172
combo box, creating for, 189–195
controls, adding to dialog box, 186–188
copying label report, 165
declaring variables, 165
getting report record source, 165–166
listing, 162–164
overview of, 159–161
passing data to, 164
recordset, creating and filling, 166–170
spin box control, creating for, 195–198
table for storing dialog box settings for,

183–184
skipping over used mailing labels. See

SkipLabels procedure
slowing down code, 280–284
source code, 269, 270
Special Effects property, 103–104
spin box control, creating, 195–198
Split bar (Object Browser), 31
splitting database into two files, 297–303
SQL INSERT INTO statement, 132–133
SQL (Structured Query Language)

Access query and, 120–121
getting into VBA, 123–125

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 386

387Index

overview of, 117–118
statement syntax, 118–119
storing statement in variable, 126–128

SQL View, 118, 123
square brackets ([])

in Access, 91
as representing argument, 40, 41
as representing name, 154–155
typing, 353

stacking editor windows, 282
standard module (Access)

creating, 35–36
custom function and, 243
importing, 47–48
overview of, 12–13

standard OLE Automation object library
(stdole), 32

statement
CREATE TABLE (SQL), 129–130
Debug.Print, 150, 277–280
definition of, 17
Dim, 152
DoCmd.RunSQL, 124, 125, 146
If...Else...End If, 93
If...End, 67–68
If...Then...End If, 197
On Error, 288, 291
order of arguments in, 45
re-executing in Immediate window, 79
Resume, 288
SQL INSERT INTO, 132–133
SQL, storing in variable, 126–128
With...End With, 104–105

stdole (standard OLE Automation object
library), 32

step mode, 281, 283–284
storing

dialog box settings, 183–184
SQL statement in variable, 126–128

storing data
in arrays, 58–60
in combo box, 232–233

lifetime of variable and, 60–61
in variables and constants, 57–58

StrConv() function, 247, 249
string

concatenating, 157
literal, 83, 157–158
Value List, 207–203

String data type, 54, 62
string expression, 42
string variable, creating, 58
Structured Query Language. See SQL
style of text, changing, 103
Sub procedure

arguments and, 56
creating, 36–38
overview of, 18–19, 20
testing, 150–151
testing from Immediate window, 281

switching between Access and Visual
Basic editor, 15–16

syntax. See also code; listings
ADO recordset, creating, 142–143
for argument, 55
assigning object to object variable, 152
for built-in functions, accessing, 242
calling custom VBA function from

event, 172
calling procedure from event, 171
color of property, changing, 100
CREATE TABLE statement (SQL), 129–130
declaring object variable, 321
definition of, 31, 38–39
Do...Loop block, 63
enabling or disabling control, 90
focus, setting to control, 92
Help page and, 40
identifier, 81
If...End statement, 67
importance of, 78–79, 351–352
MsgBox() keyword, 176, 272
OpenForm method of DoCmd object, 82
opening program, 321

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 387

388 Access VBA Programming For Dummies

syntax (continued)
punctuation marks in, 353
quotation marks (") in, 83
recordset, creating, 138–139
for referring to object property, 75, 79
Requery method, 224
running macro in open workbook, 348
Select Case block, 68
SQL INSERT INTO statement, 132–133
SQL statement, 118–119
Visible property of control, 80

system modal, 178
system table, 209

• T •
table. See also recordset

action query and, 121
action query on one record, 136
adding related record to another,

109–111
appending record to, 131–133
closing and deleting through VBA,

130–131
creating recordset from external,

309–310
description of, 10
linked, converting to local, 300
linking to external, 308–309
making list of names of, 208–211
new, creating from existing, 128–129
new, empty, creating from VBA, 129–130
record, changing or deleting, 134–136
select query and, 121
for storing dialog box settings, 183–184

Table/Query field values, listing, 213–217
tag, 61–62
taskbar button, 15, 16
testing

on copy of data, 251
expression in Immediate window,

26, 42–43

function, 246–247
function from Immediate window, 281
macro, 312, 348
Print Preview, using, 170
Sub procedure, 150–151
Sub procedure from Immediate

window, 281
while writing code, 277–280

text
font or style of, controlling, 103
literal, 83, 157–158

text options, listing
form or report names, 211–213
table and query names, 208–211
overview of, 207–208

title argument, 44
Toggle Folders button (Project Explorer

window), 23
Toggle➪Breakpoint, 281, 284
toolbar

Debug, 284
Project Explorer, 23

Tools➪Database Utilities➪Database
Utilities, 299

Tools➪Database Utilities➪Linked Table
Manager, 298

Tools➪Macro➪Convert Macros to Visual
Basic, 313

Tools➪Macro➪Macros, 348
Tools➪Macro➪Record New Macro, 347
Tools➪References, 29, 318
TransferDatabase action, 314
TransferDatabase method of DoCmd

object, 304–307
TransferSpreadsheet action, 314
TransferText action, 314
transparency of background or

border, 101
trapping runtime error, 287–290
two-dimensional array, 59–60
typing code, 27–28

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 388

• U •
UCase() function, 278
unbound control, adding to form,

187, 202–203
undocking

Code window, 27
item, 22

Unique Cities query, 237–238
Unique Records property, 214
Unique Values property, 214
unlocking control, 96
Update query, 122, 123, 134–136
updating

combo box from table, 222
combo box of report names, 221
combo box or list box, 224–226, 361
control on separate form, 228–229

user, asking question of, 362–363
User Defined Type icon, 78

• V •
value

for argument, 42
declaring and assigning, 60
function and, 242
hidden, in combo box and list box,

229–233
parameters and, 161
of property, getting and changing,

79–80
returned by MsgBox() keyword

buttons, 180
returning, 56
returning from function, 245
RGB, 100–101

Value List string, 207–213
Value property

combo box and list box, 203
recordset, 145–146

variable
checking with Debug.Print

expression, 277–280
declaring, 165
lifetime of, 60–61
naming conventions for, 61–62
storing color in, 102
storing data in, 57–58
storing SQL statement in, 126–128

Variant data type, 54, 62
VBA editor. See Visual Basic editor
VBA Keyword or data icon, 78
VBA (Visual Basic for Applications)

Access and, 1
consistency of language, 1, 9
description of, 9, 11–12
Help system, 354
learning Access before using, 351
object library, 32

View argument of OpenForm method of
DoCmd object, 107

View Code button (Project Explorer
window), 24

View Object button (Project Explorer
window), 24

View➪Immediate Window, 22
viewing

existing code, 153–154
form events, 96–97
object model, 72, 74
Properties sheet, 73–74
SQL view of query, 213

View➪Locals Window, 282
View➪Object Browser, 30
View➪Properties, 74
View➪Toolbars, 21
Visible property of control, 79–80,

95–96
Visual Basic editor. See also Code

window; Immediate window; Object
Browser tool

closing, 15–16
description of, 15

389Index

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 389

Visual Basic editor (continued)
item, undocking and re-docking, 22
moving and sizing windows in, 282
Project Explorer window, 23–24, 25
Properties window, 24–25
shortcut keys, 369
sizing pane, 23
toolbar, hiding or showing, 21
View menu, 22

Visual Basic for Applications. See VBA

• W •
warning message, hiding, 125–126
Web sites

for book, 5
Help file, custom, creating, 180
Microsoft, 354

what-if scenario, 336
WhereCondition argument of OpenForm

method of DoCmd object, 108
While...Wend block, 64
WindowMode argument of OpenForm

method of DoCmd object, 108
With...End With statement, 104–105
Word (Microsoft)

form, creating, 329–330
merge code, writing, 330–335
sending data to, 326
template, creating, 327–328

• X •
XOR operator, 67

390 Access VBA Programming For Dummies

06e_574116_bindex.qxd 7/27/04 10:31 PM Page 390

PERSONAL FINANCE & BUSINESS

Also available:
Accounting For Dummies
(0-7645-5314-3)
Business Plans Kit For
Dummies
(0-7645-5365-8)
Managing For Dummies
(1-5688-4858-7)
Mutual Funds For Dummies
(0-7645-5329-1)
QuickBooks All-in-One Desk
Reference For Dummies
(0-7645-1963-8)

Resumes For Dummies
(0-7645-5471-9)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business
For Dummies
(0-7645-1547-0)
Taxes For Dummies 2003
(0-7645-5475-1)

Also available:
Bartending For Dummies
(0-7645-5051-9)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Cookies For Dummies
(0-7645-5390-9)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Grilling For Dummies
(0-7645-5076-4)
Home Maintenance For
Dummies
(0-7645-5215-5)
Slow Cookers For Dummies
(0-7645-5240-6)
Wine For Dummies
(0-7645-5114-0)

The easy way to get more done and have more fun

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

HOME, GARDEN, FOOD & WINE

Also available:
Cats For Dummies
(0-7645-5275-9)
Chess For Dummies
(0-7645-5003-9)
Dog Training For Dummies
(0-7645-5286-4)
Labrador Retrievers For
Dummies
(0-7645-5281-3)
Martial Arts For Dummies
(0-7645-5358-5)
Piano For Dummies
(0-7645-5105-1)

Pilates For Dummies
(0-7645-5397-6)
Power Yoga For Dummies
(0-7645-5342-9)
Puppies For Dummies
(0-7645-5255-4)
Quilting For Dummies
(0-7645-5118-3)
Rock Guitar For Dummies
(0-7645-5356-9)
Weight Training For Dummies
(0-7645-5168-X)

FITNESS, SPORTS, HOBBIES & PETS

0-7645-2431-3 0-7645-5331-3 0-7645-5307-0

0-7645-5295-3 0-7645-5130-2 0-7645-5250-3

0-7645-5167-1 0-7645-5146-9 0-7645-5106-X

06f_574116_badvert01.qxd 7/27/04 10:31 PM Page 391

Also available:
The Bible For Dummies
(0-7645-5296-1)
Controlling Cholesterol
For Dummies
(0-7645-5440-9)
Dating For Dummies
(0-7645-5072-1)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For
Dummies
(0-7645-5424-7)
Judaism For Dummies
(0-7645-5299-6)

Menopause For Dummies
(0-7645-5458-1)
Nutrition For Dummies
(0-7645-5180-9)
Potty Training For Dummies
(0-7645-5417-4)
Pregnancy For Dummies
(0-7645-5074-8)
Rekindling Romance For
Dummies
(0-7645-5303-8)
Religion For Dummies
(0-7645-5264-3)

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

A world of resources to help you grow

TRAVEL

Also available:
America’s National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)

France For Dummies
(0-7645-6292-4)
Las Vegas For Dummies
(0-7645-5448-4)
London For Dummies
(0-7645-5416-6)
Mexico’s Beach Resorts
For Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dummies
(0-7645-5443-3)

Also available:
The ACT For Dummies
(0-7645-5210-4)
Chemistry For Dummies
(0-7645-5430-1)
English Grammar For
Dummies
(0-7645-5322-4)
French For Dummies
(0-7645-5193-0)
GMAT For Dummies
(0-7645-5251-1)
Inglés Para Dummies
(0-7645-5427-1)

Italian For Dummies
(0-7645-5196-5)
Research Papers For Dummies
(0-7645-5426-3)
SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dummies
(0-7645-5249-X)
World History For Dummies
(0-7645-5242-2)

EDUCATION & TEST PREPARATION

HEALTH, SELF-HELP & SPIRITUALITY

0-7645-5453-0 0-7645-5438-7 0-7645-5444-1

0-7645-5194-9 0-7645-5325-9 0-7645-5249-X

0-7645-5154-X 0-7645-5302-X 0-7645-5418-2

06f_574116_badvert01.qxd 7/27/04 10:31 PM Page 392

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

Plain-English solutions for everyday challenges

HOME & BUSINESS COMPUTER BASICS

Also available:
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Office XP 9-in-1 Desk
Reference For Dummies
(0-7645-0819-9)
PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Troubleshooting Your PC
For Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)
Word 2002 For Dummies
(0-7645-0839-3)

Also available:
CD and DVD Recording
For Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
eBay For Dummies
(0-7645-1642-6)
Genealogy Online For
Dummies
(0-7645-0807-5)
Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)

Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Paint Shop Pro For Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Photoshop Elements For
Dummies
(0-7645-1675-2)
Scanners For Dummies
(0-7645-0783-4)

INTERNET & DIGITAL MEDIA

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0894-6 0-7645-1642-6 0-7645-1664-7

• Find listings of even more Dummies titles

• Browse online articles, excerpts, and how-to’s

• Sign up for daily or weekly e-mail tips

• Check out Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

06f_574116_badvert01.qxd 7/27/04 10:31 PM Page 393

Helping you expand your horizons and realize your potential

GRAPHICS & WEB SITE DEVELOPMENT

Also available:
Adobe Acrobat 5 PDF
For Dummies
(0-7645-1652-3)
ASP.NET For Dummies
(0-7645-0866-0)
ColdFusion MX For Dummies
(0-7645-1672-8)
Dreamweaver MX For
Dummies
(0-7645-1630-2)
FrontPage 2002 For Dummies
(0-7645-0821-0)

HTML 4 For Dummies
(0-7645-0723-0)
Illustrator 10 For Dummies
(0-7645-3636-2)
PowerPoint 2002 For
Dummies
(0-7645-0817-2)
Web Design For Dummies
(0-7645-0823-7)

Also available:
Access 2002 For Dummies
(0-7645-0818-0)
Beginning Programming
For Dummies
(0-7645-0835-0)
Crystal Reports 9 For
Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)

JavaScript For Dummies
(0-7645-0633-1
Oracle9i For Dummies
(0-7645-0880-6)
Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)

SQL For Dummies
(0-7645-0737-0)
Visual Basic .NET For
Dummies
(0-7645-0867-9)

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

PROGRAMMING & DATABASES

Also available:
A+ Certification For Dummies
(0-7645-0812-1)
CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1651-5 0-7645-1643-4 0-7645-0895-4

0-7645-0746-X 0-7645-1626-4 0-7645-1657-4

0-7645-1545-4 0-7645-1760-0 0-7645-0772-9

06f_574116_badvert01.qxd 7/27/04 10:31 PM Page 394

	Access VBA Programming For Dummies
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You’re Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Web Site for This Book
	Where to Go from Here

	Part I: Introducing VBA Programming
	Chapter 1: Where VBA Fits In
	Taking a Look at Access
	Understanding VBA
	Seeing Where VBA Lurks
	Finding Out How VBA Works

	Chapter 2: Your VBA Toolkit
	Using the Visual Basic Editor
	Referring to Objects from VBA
	Setting References to Object Libraries
	Using the Object Browser
	Searching the Object Library

	Chapter 3: Jumpstart: Creating a Simple VBA Program
	Creating a Standard Module
	Creating a Procedure
	Understanding Syntax
	Modifying Existing Code

	Part II: VBA Tools and Techniques
	Chapter 4: Understanding Your VBA Building Blocks
	Commenting Your Code
	Understanding VBA Data Types
	Passing Data to Procedures
	Repeating Chunks of Code with Loops
	Making Decisions in VBA Code

	Chapter 5: Controlling Access through VBA
	Understanding Object Models
	Manipulating Properties and Methods

	Chapter 6: Programming Access Forms
	Working with Class Procedures
	Enabling Disabling Form Controls
	Responding to Form Events
	Changing the Appearance of Objects
	Opening and Closing Forms

	Part III: VBA, Recordsets, and SQL
	Chapter 7: The Scoop on SQL and Recordsets
	What the Heck is SQL?
	Creating Tables from VBA
	Adding Records to a Table
	Changing and Deleting Table Records
	Doing an Action Query on One Record
	Working with Select Queries and Recordsets

	Chapter 8: Putting Recordsets to Work
	Looping through Collections
	Tips on Reading and Modifying Code
	Skipping Over Used Mailing Labels
	How SkipLabels Works
	Calling a Procedure from an Event

	Part IV: Applying VBA in the Real World
	Chapter 9: Creating Your Own Dialog Boxes
	Displaying and Responding to Messages
	Converting Forms to Dialog Boxes
	Creating Custom Combo Boxes
	Creating a Spin Box Control
	Detecting a Right-Click

	Chapter 10: Customizing Lists and Drop-Down Menus
	Programming Combo and List Boxes
	Linking Lists
	Linking Lists across Forms
	More Combo Box Tricks

	Chapter 11: Creating Your Own Functions
	The Role of Functions in VBA
	Creating Your Own Functions
	A Proper Case Function
	A Function to Print Check Amounts

	Chapter 12: Testing and Debugging Your Code
	Understanding Compilation and Runtime
	Considering Types of Program Errors
	Conquering Compile Errors
	Dealing with Logical Errors
	Wrestling Runtime Errors

	Part V: Reaching Out with VBA
	Chapter 13: Using VBA with Multiple Databases
	Client-Server Microsoft Access
	Importing from External Databases
	Linking to External Data through Code
	Avoiding Multiple Tables and Links
	Creating Recordsets from External Tables
	Importing/Exporting/Linking to Anything

	Chapter 14: Integrating with Other Office Applications
	Accessing the Object Library
	Sending E-mail via Outlook
	Sending Data to Microsoft Word
	Interacting with Microsoft Excel

	Part VI: The Part of Tens
	Chapter 15: Ten Commandments ofWriting VBA
	I. Thou Shalt Not Harbor Strange Beliefs about Microsoft Access
	II. Thou Shalt Not Use VBA Statements in Vain
	III. Remember to Keep Holy VBA Syntax
	IV. Honor Thy Parens and Quotation Marks
	V. Thou Shalt Not Guess
	VI. Thou Shalt Not Commit Help Adultery
	VII. Thou Shalt Steal Whenever Possible
	VIII. Thou Shalt Not Bear False Witness against Thy Object Browser
	IX. Thou Shalt Not Covet Thy Neighbor’s Knowledge
	X. Thou Shalt Not Scream . . .

	Chapter 16: Top Ten Nerdy VBA Tricks
	1. Open a Form from VBA
	2. See Whether a Form Is Already Open
	3. Refer to an Open Form
	4. Move the Cursor to a Control
	5. Change the Contents of a Control
	6. Update a List Box or Combo Box
	7. Show a Custom Message
	8. Ask the User a Question
	9. Print a Report
	10. Get to Know the DoCmd Object

	Chapter 17: (Way More Than) Ten Shortcut Keys
	Code and Immediate Window Shortcuts
	General VBA Editor Shortcut Keys
	Debug Shortcut Keys

	Index

