

Introduction

i

C C
CC
C

C
C
C CC

Advanced C

Advanced C

ii

Introduction

iii

C C
CC
C

C
C
C CCC C

CC
C

C
C
C C

Advanced C
Peter D. Hipson

A Division of Prentice Hall Computer Publishing
201 W. 103rd St., Indianapolis, Indiana 46290 USA

Advanced C

iv

© 1992 by Sams Publishing

All rights reserved. Printed in the United States of America. No part of this book may be used or
reproduced in any form or by any means, or stored in a database or retrieval system, without prior
written permission of the publisher except in the case of brief quotations embodied in critical articles
and reviews. Making copies of any part of this book for any purpose other than your own personal
use is a violation of United States copyright laws. For information, address Sams Publishing, 201 W.
103rd St., Indianapolis, IN 46290

International Standard Book Number: 0-672-30168-7

Library of Congress Catalog Card Number: 92-061304

96 95 94 93 92 8 7 6 5 4 3

Interpretation of the printing code: the rightmost double-digit number is the year of the book’s
printing; the rightmost single-digit number, the number of the book’s printing. For example, a
printing code of 92-1 shows that the first printing of the book occurred in 1992.

Composed in AGaramond and MCPdigital by Prentice Hall Computer Publishing.

Screen reproductions in this book were created by means of the program Collage Plus,
from Inner Media, Inc., Hollis, NH.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Introduction

v

C C
CC
C

C
C
C CC

Publisher

Richard K. Swadley

Acquisitions Manager

Jordan Gold

Managing Editor

Neweleen A. Trebnik

Acquisitions Editor

Stacy Hiquet

Production Editor

Mary Corder

Technical Reviewer

Timothy C. Moore

Editorial Assistants

Rosemarie Graham
Lori Kelley

Formatter

Pat Whitmer

Production Director

Jeff Valler

Production Manager

Corinne Walls

Imprint Manager

Matthew Morrill

Proofreading/Indexing Coordinator

Joelynn Gifford

Production Analyst

Mary Beth Wakefield

Book Design

Michele Laseau

Cover Art

Tim Amrhein

Graphic Images Specialist

Dennis Sheehan

Production

Katy Bodenmiller
Christine Cook
Lisa Daugherty
Denny Hager

Carla Hall-Batton
John Kane

Roger Morgan
Juli Pavey

Angela Pozdol
Linda Quigley
Michele Self

Susan Shepard
Greg Simsic
Alyssa Yesh

Index

Hilary Adams

Advanced C

vi

About the Author

Peter Hipson and his wife live and work in New Hampshire. He has worked with
computers since 1972, in hardware design and software development. He has
developed numerous software programs for both PCs and larger systems. He holds
patents in the field of CPU design and has been involved with microcomputers since
their inception. Peter is the developer of the Windows applications STARmanager and
STARmanager A/E.

You can contact Peter Hipson at P.O. Box 88, West Peterborough, NH, 03468.
Enclosing an SASE greatly enhances the likelihood of a reply.

To Bianca, who has shown me what great fun it is having a granddaughter.

Introduction

vii

C C
CC
C

C
C
C CC

Overview

Introduction .. xxiii

Part I Honing Your C Skills 1

1 The C Philosophy .. 3

2 Data Types, Constants, Variables, and Arrays 19

3 Pointers and Indirection .. 65

4 Special Pointers and Their Usage .. 99

5 Decimal, Binary, Hex, and Octal ... 139

6 Separate Compilation and Linking .. 161

Part II Managing Data in C 189

7 C Structures ... 191

8 Dynamic Memory Allocation... 227

9 Disk Files and Other I/O ... 249

10 Data Management: Sorts, Lists, and Indexes 321

Part III Working with Others 433

11 C and Other Langauages .. 435

12 C and Databases .. 467

13 All About Header Files ... 497

Advanced C

viii

Part IV Documenting the Differences 519

14 ANSI C’s Library Functions ... 521

15 Preprocessor Directives .. 621

16 Debugging and Efficiency .. 641

Part V Appendixes 677

A The ASCII Character Set ... 679

B Compiler Variations .. 681

C Introduction to C++ .. 695

D Function/Header File Cross Reference 723

Index .. 741

Introduction

ix

C C
CC
C

C
C
C CC

Contents

Introduction .. xxiii

Part I: Honing Your C Skills ... 1

1 The C Philosophy .. 3

A Brief History of C and the Standard .. 3
A Programming Style .. 11
Memory Models .. 17
Summary ... 18

2 Data Types, Constants, Variables, and Arrays 19

Data Types .. 19
Constants .. 25
Definitions versus Declarations ... 29

Declarations .. 30
Definitions .. 33

Variables ... 35
Variable Types and Initializing Variables 35
Scope (Or I Can See You) ... 37
Life Span (Or How Long Is It Going To Be Here?) 39
Type Casting .. 41

Arrays .. 46
Declaration of Arrays .. 46
Definition of an Array ... 47
Array Indexing .. 48
Using Array Names as Pointers ... 55
Strings: Character Arrays ... 56
Using Arrays of Pointers ... 58

Summary ... 62

Advanced C

x

3 Pointers and Indirection .. 65

Pointers, Indirection, and Arrays ... 65
Pointers ... 66
Indirection .. 69
An Example of Pointers, Indirection,

and Arrays ... 69
Character Arrays and Strings ... 74
Indirection to Access Character Strings ... 79
Protecting Strings in Memory ... 90
Ragged-Right String Arrays ... 92
Summary ... 98

4 Special Pointers and Their Use .. 99

Command Line Arguments ... 99
Function Pointers .. 114
Menus and Pointers... 120
State Machines .. 135
Summary ... 137

5 Decimal, Binary, Hex, and Octal ... 139

Decimal ... 139
Binary ... 141
Hex ... 142
Octal ... 144
Looking at a File ... 146
Bit Operators .. 154
Bit Fields ... 155
Summary ... 158

6 Separate Compilation and Linking .. 161

Compiling and Linking Multiple Source Files 162
Compiling Multifile Programs .. 164
Linking Multifile Programs ... 164
Using #include .. 166
External Variables .. 171
Using an Object Library Manager ... 181
Using MAKE Files .. 182
Summary ... 186

Introduction

xi

C C
CC
C

C
C
C CC

Part II: Managing Data in C 189

7 C Structures ... 191

Using the struct Keyword .. 191
Arrays of Structures ... 195
Structures of Arrays ... 200
Structures of Structures ... 203
Bit Fields in Structures .. 206
Using the typedef Keyword ... 208
Using the offsetof() Macro .. 213
Pointers to Structures .. 216
Understanding unions ... 219
Summary ... 226

8 Dynamic Memory Allocation... 227

Using the malloc() Function... 228
Using the calloc() Function .. 232
Using the free() Function ... 235
Using the realloc() Function ... 237
Allocating Arrays ... 244
Global Memory versus Local Memory ... 247
Summary ... 248

9 Disk Files and Other I/O ... 249

File I/O Basics ... 250
Text Files and Binary Files .. 251
Creating and Using Temporary Work Files 256
Stream Files and Default File Handles ... 268

The stdin File .. 271
The stdout File ... 272
The stderr File .. 272
The stdaux File ... 273
The stdprn File ... 274

Low-Level I/O and File Handles ... 278
Standard Low-Level File Handles .. 280
Console and Port I/O .. 280
Direct Port I/O ... 288

Table of Contents

Advanced C

xii

The PC Printer Ports... 289
The PC Communications Ports .. 296
Summary ... 318

10 Data Management: Sorts, Lists, and Indexes 321

Sorting .. 322
Merging .. 329
Purging ... 336
Sorting, Merging, and Purging All in One................................... 343
Linked Lists ... 344

Using Dynamic Memory .. 345
Disk-Based Lists .. 346
Double Linked Lists .. 346

Indexing .. 367
Fixed-field Disk Files ... 392
B-trees ... 392
Summary ... 430

Part III: Working with Others .. 433

11 C and Other Languages ... 435

Other Languages ... 436
Assembly ... 438
FORTRAN... 441
Pascal .. 442
BASIC .. 443

Calling Other Languages from C... 443
Calling Assembly from C .. 447
Calling FORTRAN and Pascal from C 449

Calling C Functions from Other Languages 450
Calling C from Assembly .. 451
Calling C from FORTRAN and Pascal 462

All the Things that Can Go Wrong ... 462
Looking at Data .. 463
Names and Limits ... 465

Summary ... 465

Introduction

xiii

C C
CC
C

C
C
C CC

12 C and Databases .. 467

Interfacing with dBASE-Compatible Programs 468
Using dBASE Files Directly... 468

Reading dBASE and dBASE-Compatible Files 474
Creating dBASE and dBASE-Compatible Files 484
Updating dBASE and dBASE-Compatible Files 494

Summary ... 494

13 All About Header Files ... 497

Function Prototypes .. 497
The ANSI C Header Files ... 500
The assert.h File (ANSI) .. 501
The ctype.h File (ANSI) .. 502
The errno.h File (ANSI) .. 504
The float.h File (ANSI) ... 506
The io.h File .. 508
The limits.h File (ANSI) ... 508
The locale.h File (ANSI) ... 509
The malloc.h File .. 510
The math.h File (ANSI) .. 510
The memory.h File .. 511
The search.h File ... 511
The setjmp.h File (ANSI) .. 512
The signal.h File (ANSI) ... 512
The stdarg.h File (ANSI) ... 513
The stddef.h File (ANSI) ... 515
The stdio.h File (ANSI)... 515
The stdlib.h File (ANSI) ... 516

String Conversion ... 516
Memory Allocation ... 516
Random Numbers .. 516
Communications with the Operating System.......................... 516
Search Functions ... 517
Integer Math ... 517
Multibyte Characters .. 517

The string.h File (ANSI) ... 517
The time.h File (ANSI) ... 518
The varargs.h File .. 518
Summary ... 518

Table of Contents

Advanced C

xiv

Part IV: Documenting the Differences 519

14 ANSI C’s Library Functions ... 521

Functions .. 522
abort() ... 522
abs() .. 522
acos() .. 523
asctime() ... 523
asin() ... 524
assert() .. 524
atan() .. 524
atan2() .. 525
atexit() .. 525
atof() ... 526
atoi() ... 526
atol() ... 526
bsearch() ... 527
calloc() .. 528
ceil() .. 528
clearerr() ... 528
clock() ... 529
cos() .. 529
cosh() .. 530
ctime() .. 530
difftime() .. 531
div() .. 531
exit() ... 532
exp() ... 532
fabs() ... 533
fclose() .. 533
feof() ... 533
ferror() .. 534
fflush() .. 534
fgetc() ... 535
fgetpos() .. 535
fgets() .. 536
floor() ... 536

Introduction

xv

C C
CC
C

C
C
C CC

fmod() .. 537
fopen() .. 537
fprintf() ... 538
fputc() ... 538
fputs() ... 539
fread() ... 539
free() ... 540
freopen() ... 540
frexp() ... 541
fscanf() .. 542
fseek() ... 542
fsetpos() .. 543
ftell() ... 544
fwrite() .. 544
getc() ... 545
getchar().. 545
gets() ... 546
gmtime() ... 546
isalnum() .. 547
isalpha() .. 547
iscntrl() ... 547
isdigit() ... 548
isgraph().. 548
islower() .. 549
isprint() ... 549
ispunct() ... 549
isspace() .. 550
isupper() ... 551
isxdigit() .. 551
labs() ... 551
ldexp() .. 552
ldiv() ... 552
localeconv() ... 553
localtime() ... 553
log() .. 554
log10() .. 554
longjmp() .. 554
malloc() .. 556

Table of Contents

Advanced C

xvi

mblen() ... 556
mbstowcs() .. 557
mbtowc() .. 557
memchr() .. 558
memcmp() .. 558
memcpy() ... 559
memmove() .. 560
memset() ... 561
mktime() ... 561
modf() .. 562
offsetof() ... 562
perror() ... 563
pow() .. 564
printf() .. 564
putc() .. 564
putchar() ... 565
puts() .. 565
qsort() ... 566
raise() .. 566
rand() .. 567
realloc() ... 567
remove() ... 568
rename() ... 568
rewind() .. 568
scanf() ... 569
setbuf() ... 569
setjmp() .. 570
setlocale() .. 571
setvbuf() .. 572
signal() .. 573
sin() .. 574
sinh() .. 575
sprintf() ... 575
sqrt() ... 576
srand() .. 576
sscanf() .. 576
strcat() .. 577
strchr() .. 577

Introduction

xvii

C C
CC
C

C
C
C CC

strcmp() .. 578
strcoll() .. 579
strcpy() .. 580
strcspn() ... 580
strerror() .. 581
strftime() .. 581
strlen() .. 583
strncat() .. 584
strncmp() .. 584
strncpy() ... 585
strpbrk().. 586
strrchr() ... 586
strspn() ... 587
strstr() ... 588
strtod() .. 588
strtok() .. 589
strtol() ... 590
strtoul() ... 591
strxfrm().. 592
system() .. 593
tan() .. 594
tanh() .. 594
time() .. 595
tmpfile() .. 596
tmpnam() ... 596
tolower() ... 597
toupper() ... 597
ungetc() .. 597
va_arg() ... 598
va_end() .. 600
va_start() ... 601
vfprintf() ... 601
vprintf() .. 602
vsprintf() ... 604
wcstombs().. 605
wctomb() .. 606

printf() Format Codes ... 606
c .. 607

Table of Contents

Advanced C

xviii

e and E .. 608
f .. 609
g and G ... 610
n ... 610
o ... 610
p and P ... 611
s .. 612
u ... 612
x and X ... 613

scanf() format codes .. 614
c .. 615
d ... 615
o ... 615
x.. 616
i .. 616
u ... 617
e, f, and g .. 617
n ... 618
p ... 618
s .. 618
[...] .. 619

Summary ... 619

15 Preprocessor Directives .. 621

The Macro Continuation Operator (\) .. 622
The Stringize Operator (#) .. 622
The Characterize Operator (#@) ... 623
The Token Paste Operator (##) .. 624
The Defined Identifier Operator (defined()) 624
The #define Directive .. 625
The #error Directive .. 628
The #include Directive .. 629
The #if Directive ... 629
The #ifdef Directive .. 630
The #ifndef Directive .. 631
The #else Directive .. 632
The #elif Directive .. 633
The #endif Directive ... 633

Introduction

xix

C C
CC
C

C
C
C CC

The #line Directive ... 634
The #pragma Directive .. 635

The message Pragma ... 635
The pack Pragma .. 636

The #undef Directive .. 637
Predefined Macros... 637

The _ _DATE_ _Macro ... 637
The _ _TIME_ _Macro .. 637
The_ _FILE_ _Macro ... 638
The_ _LINE_ _Macro .. 638
The_ _STDC_ _Macro .. 638
NULL ... 638
The offsetof() Macro ... 638

Summary ... 639

16 Debugging and Efficiency .. 641

Debugging .. 641
Common Bugs .. 642
Rules for Debugging ... 649
Using the assert() Macro ... 650
Debug Strings and Messages ... 652
Debuggers ... 655

Efficiency .. 657
32-Bit Programs .. 658
Compiler Optimization .. 660
Direct Video I/O .. 667
Floating-Point Optimization ... 667
Inline Assembly ... 669
Linking for Performance ... 670
Pascal and cdecl Calling Conventions 671
Precompiled Headers .. 671
Using 80286/80386/80486 Instruction Sets 671
Using a Source Profiler ... 672
Using Intrinsic Functions.. 672
Using Memory Models ... 673

Summary ... 675

Table of Contents

Advanced C

xx

Part V: Appendixes 677

A The ASCII
Character Set ... 679

B Compiler Variations .. 681

Borland’s C++ 3.1 ... 682
Microsoft .. 686

C/C++ 7.0 .. 686
QuickC for Windows 1.0 ... 690

Watcom C/386 9.01 ... 692

C Introduction to C++ .. 695

Object-Oriented Programming (OOP) 696
Abstraction ... 696
Encapsulation ... 696
Hierarchies .. 697

Learning C++ .. 697
Overloading Functions .. 701
Declaring Variables When Needed .. 704
Default Function Argument Values ... 706
References ... 710
References as Return Values .. 711
Classes ... 714

D Function /Header File Cross Reference.................................. 723

Index .. 741

Introduction

xxi

C C
CC
C

C
C
C CC

Acknowledgments

I would like to offer my thanks to the following organizations and people for their
support, help, guidance, and enthusiasm.

The Sams editorial and production staff, especially Gregory Croy, Stacy Hiquet, Susan
Pink, Mary Corder, and Rebecca Whitney, all who put enormous effort into making
this a good book. I would also like to thank Timothy C. Moore, who did the technical
editing.

Borland International Inc., Microsoft Corporation, and Watcom Products, Inc., have
provided valuable support and assistance.

Thanks to William Colley, III, and the C User’s Group, for the Highly Portable
Utilities (CUG-236) files that are included on the sample source diskette.

Eric Jackson (“Eric in the Evening”) and public radio station WGBH for providing all
the jazz.

Thank you all.

Advanced C

xxii

Introduction

xxiii

C C
CC
C

C
C
C CC

Introduction

C has become one of the most frequently used computer languages. The first C
language was developed by Dennis Ritchie at Bell Laboratories in 1972 and ran on a
DEC PDP-11. The ANSI standard for C, which replaced the standard written by
Kernighan and Ritchie in 1978, is only a few years old.

C’s structure is similar to PL/I (a popular language used on IBM’s mainframe
computers), FORTRAN, Pascal, and BASIC. C is a simple language. It has only a
small group of keywords and no support for I/O or advanced math. The power
of C comes from its simplicity and its use of a standard library of functions.

Who Should Read This Book?

Advanced C is for the programmer who has some experience writing applications in C
or a similar language, such as PL/I or Pascal. Regardless of whether you are an
intermediate or experienced programmer, this book is intended to improve your skills
as easily as possible.

What Is in This Book?

This book has several purposes. First, it introduces advanced parts of the C language.
It also describes changes in the ANSI standard, which is the only true definition of the
C language. In addition, the book contains much of what I have learned (often the
hard way) about C programming.

Advanced C is divided into five parts, and each part can be used by itself. Part I
gets you started and lays the groundwork for the rest of the book. In Part II, you learn
how to manage data and files when programming in C. Part III introduces integrating
C with other languages and interfacing with other environments such as database
programs. Part IV is a reference section that covers the header files, the intrinsic
functions, the preprocessor, and some performance and debugging techniques. Part V

Advanced C

xxiv

(the appendixes) contains an ASCII table, information about different compilers, an
introduction to C++, and a cross-reference of functions and their header files.

Many chapters contain example programs. In some chapters, a single example
program is used to demonstrate several topics in the chapter.

For a platform to develop C software, I recommend at least a 386/25, and
preferably a 386/33 or 486. A 286 will do, but most linkers and some compilers are
noticeably slower when you do not have a fast CPU. I suggest that you have at least a
100M hard disk. The compiler I use most frequently is QuickC for Windows. It is
powerful and easy to use (because it has an integrated debugging environment), and
supports both ANSI C and Microsoft’s extensions.

Conventions Used in This Book

I used the following conventions in the book:

• All program listings and code fragments are in monospace.

• All function names are in monospace.

• ANSI C keywords are in monospace.

• All function names appearing in text (not in the code) are followed by an
empty set of parentheses, for example, sprintf().

• Something that must be substituted (such as a filename or a value) is in
monospace italic.

• When a listing title shows a filename in uppercase, that file is usually found on
the sample diskette. If a filename is not given or it is in lowercase, then it is not
a separate source file on the diskette, but probably part of another file on the
sample diskette. The text usually indicates which file the code fragment is
from.

A Note on Practicing C

You can read, attend lectures, or discuss a subject, but as the saying goes, “practice
makes perfect.”

Introduction

Introduction

xxv

C C
CC
C

C
C
C CC

Do not be afraid to practice with the programs in this book. But practice does
not mean copying a program from the diskette, compiling it, and running it. Change
the example programs. Make them do things they weren’t intended to do and learn
from your mistakes. Make backups often and program away. Because C is a powerful
language and many of us are programming on PCs using DOS (which has very poor
memory protection), be careful; it is easy to trash the disk.

Good luck improving your C programming skills, have fun writing your software,
and remember Peter’s rule: Back up your disk frequently!

Advanced C

xxvi

Table of Contents

1

C C
CC
C

C
C
C CC

Part I

Honing

Your C Skills

Advanced C

2

The C Philosophy

3

C C
CC
C

C
C
C C1C C

CC
C

C
C
C C1

The C Philosophy

C probably wasn’t your first computer language. Mine was FORTRAN, and many
other people began their study of computer language with either BASIC or PASCAL.
No matter which language was your first, you probably will spend much time
programming in C from now on. This chapter covers a number of introductory topics.

A Brief History of C and the Standard

Until the past few years, no absolute standard for the C language existed. The C
Programming Language, by Kernighan and Ritchie, served as a standard, but most
compiler manufacturers added extensions and did not follow all the specifications
presented by Kernighan and Ritchie. As C became one of the most popular computer
languages for programming small computers, the need for a true standard became
apparent.

Part I • Honing Your C Skills

4

The American National Standards Institute (ANSI) produced standards that
help keep each of the compilers working in the same manner. These standards, which
are very exacting, spell out exactly what the language should do and what should not
happen. Specified limits and definitions exist also.

C is an interesting language. Because its syntax is simple, it’s not the most
powerful language, and it has only a few operations. Most of C’s power comes from
these attributes:

• C can address and manipulate memory by direct address. A program can obtain
the memory address of any object (both data objects and functions) and
manipulate without restriction the contents of the memory specified by the
address. This capability is good to have because it allows flexibility. However,
you have no protection from the program overwriting critical parts of the
operating system when you are programming a PC using DOS.

• C has a powerful library of functions. This library of functions enables program-
mers to perform I/O, work with strings (which are arrays of characters), and
perform many other tasks.

There is a lot of talk (much I consider to be blown out of proportion) about
portability. Generally, for each program, you should consider whether it is likely to be
needed on a different system, and how much effort must be dedicated to planning the
move to a future system. Some C programming is never portable. Programs written for
Microsoft Windows, for example, don’t move well to the Apple Macintosh or IBM’s
OS/2 Presentation Manager (a system much like Windows). The decision to maintain
portability is one that you must make—sometimes the effort to maintain portability
far exceeds what is required if later parts of the program must be rewritten.

The ANSI standard specified a number of language limits (see Table 1.1). Many
of these limits are really compiler limits; however, because they affect the language, you
sometimes must take them into consideration. These limits are not usually a problem;
in the ten years that I’ve been writing C programs, I’ve run into problems with these
limits only once or twice.

Data Types, Constants, Variables, and Arrays

19

C C
CC
C

C
C
C C2C C

CC
C

C
C
C C2

Data Types, Constants,

Variables, and Arrays

The C language offers a number of data types, which can be used for constants,
variables, and arrays. This chapter helps you become more familiar with data objects
and how to use them.

Data Types

The C language supports a number of data types, all of which are necessary in writing
programs. Because most CPUs generally support these data types directly, it is
unnecessary for the compiler to convert the data types into the types the CPU
understands. In addition to the standard types, new data types are needed, which are
often unique to a given application, and C provides the mechanisms to create and use
types of data created by the programmer.

Part I • Honing Your C Skills

20

The basic data types as they are defined by the ANSI standard are listed in Table
2.1. They are all that are needed when simpler applications are created (and are
generally adequate for many of the more complex programs).

Table 2.1. C’s data types.

Type Size Description

char 1 byte Used for characters or integer variables.

int 2 or 4 bytes Used for integer values.

float 4 bytes Floating-point numbers.

double 8 bytes Floating-point numbers.

In addition to these data types, some of them may be used with a modifier that affects
the characteristics of the data object. These modifiers are listed in Table 2.2.

Table 2.2. C’s data type modifiers.

Modifier Description

long Forces a type int to be 4 bytes (32 bits) long and forces a type
double to be larger than a double (but the actual size is imple-
mentation defined). Cannot be used with short.

short Forces a type int to be 2 bytes (16 bits) long. Cannot be used
with long.

unsigned Causes the compiler (and CPU) to treat the number as con-
taining only positive values. Because a 16-bit signed integer can
hold values between –32,768 and 32,767, an unsigned integer
can hold values between 0 and 65,535. The unsigned modifier
can be used with char, long, and short (integer) types.

Each of the data types (and their modifiers) has a minimum and maximum value
(see Table 2.3). Check your compiler documentation because some compilers extend

Data Types, Constants, Variables, and Arrays

21

C C
CC
C

C
C
C C2

these values. Be careful not to assume that a variable created as int is either 16 bits or
32 bits. Different compilers, on different computers, may default the size of an int
variable to either size, depending on the CPU’s default integer size. If you must know
the size of the variable, be sure you specify either long or short when you create it.

When you are entering constants, determining the value to use can be difficult.
For instance, if the following line is in your program, the results probably are not going
to be what you expected:

#define INT_MAX 0x8000 /* Really not a good idea! */

In this example, you expect INT_MAX to contain the value (–32768); the compiler
promotes the constant to unsigned, however, and the value of INT_MAX, 32,768, is
probably not what you expect.

A much easier solution exists. A number of useful identifiers are defined in the
limits.h header file in ANSI C (see Table 2.3). Use limits.h so that predefined
identifiers can define the limits for the integer data types. The values shown in Tables
2.3 through 2.5 represent the ANSI limits, although many compilers exceed the values
shown.

Table 2.3. C’s int limits identifiers, from limits.h.

Identifier Value Description

char types

CHAR_BIT 8 Number of bits in a char type

SCHAR_MIN –127 Minimum signed char type

SCHAR_MAX 127 Maximum signed char type

UCHAR_MAX 255 Maximum unsigned char type

CHAR_MIN SCHAR_MIN Minimum char value, if characters
are unsigned

CHAR_MAX SCHAR_MAX Maximum char value, if characters
are unsigned

CHAR_MIN 0 If characters are signed

continues

Part I • Honing Your C Skills

22

CHAR_MAX UCHAR_MAX If characters are signed

MB_LEN_MAX 1 Maximum number of bytes in
multibyte char

short int types

SHRT_MIN –32767 Minimum (signed) short type

SHRT_MAX 32767 Maximum (signed) short type

USHRT_MAX 65535 Maximum unsigned short type

INT_MIN –32767 Minimum (signed) int type

INT_MAX 32767 Maximum (signed) int type

UINT_MAX 65535 Maximum unsigned int type

long int types

LONG_MIN –2147483647 Minimum (signed) long type

LONG_MAX 2147483647 Maximum (signed) long type

ULONG_MAX 4294967295 Maximum unsigned long type

Three different-size variables can be defined for floating-point variables (see
Table 2.4). The identifiers for floating-point numbers are subdivided into three parts.
The first three letters indicate the size of the floating-point object: DBL_ for a double,
FLT_ for a float, and LDBL_ for a long double.

Table 2.4. C’s floating-point limits identifiers, from float.h.

Identifier Value Description

DBL_DIG 15 Number of
decimal digits of
precision

Table 2.3. continued

Identifier Value Description

Data Types, Constants, Variables, and Arrays

23

C C
CC
C

C
C
C C2

DBL_EPSILON 2.2204460492503131e-016 Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

DBL_MANT_DIG 53 Number of bits in
mantissa

DBL_MAX 1.7976931348623158e+308 Maximum value

DBL_MAX_10_EXP 308 Maximum
decimal exponent

DBL_MAX_EXP 1024 Maximum binary
exponent

DBL_MIN 2.2250738585072014e-308 Minimum
positive value

DBL_MIN_10_EXP (-307) Minimum
decimal exponent

DBL_MIN_EXP (-1021) Minimum binary
exponent

DBL_RADIX 2 Exponent radix

DBL_ROUNDS 1 Addition round-
ing: near

FLT_DIG 7 Number of
decimal digits of
precision

FLT_EPSILON 1.192092896e-07F Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

Identifier Value Description

continues

Part I • Honing Your C Skills

24

FLT_MANT_DIG 24 Number of bits in
mantissa

FLT_MAX 3.402823466e+38F Maximum value

FLT_MAX_10_EXP 38 Maximum
decimal exponent

FLT_MAX_EXP 128 Maximum binary
exponent

FLT_MIN 1.175494351e-38F Minimum
positive value

FLT_MIN_10_EXP (-37) Minimum
decimal exponent

FLT_MIN_EXP (-125) Minimum binary
exponent

FLT_RADIX 2 Exponent radix

FLT_ROUNDS 1 Addition round-
ing: near

LDBL_DIG 19 Number of
decimal digits of
precision

LDBL_EPSILON 5.4210108624275221706e-020 Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

LDBL_MANT_DIG 64 Number of bits in
mantissa

LDBL_MAX 1.189731495357231765e+4932L Maximum value

Table 2.4. continued

Identifier Value Description

Data Types, Constants, Variables, and Arrays

25

C C
CC
C

C
C
C C2

LDBL_MAX_10_EXP 4932 Maximum
decimal exponent

LDBL_MAX_EXP 16384 Maximum binary
exponent

LDBL_MIN 3.3621031431120935063e-4932L Minimum
positive value

LDBL_MIN_10_EXP (-4931) Minimum
decimal exponent

LDBL_MIN_EXP (-16381) Minimum binary
exponent

LDBL_RADIX 2 Exponent radix

LDBL_ROUNDS 1 Addition
rounding: near

Other identifiers generally are defined in float.h; however, they usually are either
CPU- or compiler-dependent. Refer to your compiler manual for a description of these
other identifiers, or print float.h to see whether comments in the file help you
understand the purpose of the identifiers.

Rather than code constants for these values into your program, you should use
one of the predefined identifiers shown in Tables 2.3 and 2.4. These identifiers allow
for better portability and make the meaning of your program clear.

Constants

All homes are buildings, but not all buildings are homes. All literals are constants, but
not all constants are literals. Maybe this example is not clear, but with the const
modifier applied to a variable, it becomes nonmodifiable—a constant. Let’s look at a
few constants. Constants can come in any data type that the C compiler supports. A
special constant, the string, can be used to either initialize a character array or be
substituted for one. Table 2.5 shows a number of constants.

Identifier Value Description

Part I • Honing Your C Skills

26

Table 2.5. Constants in C.

Constant Description Comments

123 int, in the smallest Never a decimal point; a unary is
size and type that allowed if the value is negative.
will hold the value Be careful not to specify a value
specified too large for the data type for which it

is being used. The C compiler may
change the size (or to an unsigned
integer) if necessary to fit the value into
the specified data type.

123U unsigned int, in the Never a decimal point; a unary is
smallest size and not allowed because the value
type that will hold must be positive. Be careful not
the value specified to specify a value too large for

the data type for which it is being used.
The C compiler may change the size if
necessary to fit the value into the
specified data type.

123L long int, signed Never a decimal point; a unary is
allowed if the value is negative.

123UL long int, unsigned Never a decimal point; a unary is not
allowed because the value must be
positive.

‘A’ Character constant A single character, enclosed within
single quotes. For nonprintable
characters, you can use \xNN, where NN
are valid hex digits.

“ABCDE” Character string One or more characters (to the
constant limit of 509) enclosed in double

quotes. For nonprintable characters,
you can use \xNN, where NN are valid
hex digits.

Data Types, Constants, Variables, and Arrays

27

C C
CC
C

C
C
C C2

1.23 double—floating- Always a decimal point; both leading
point constant and trailing zeros are optional, but for

readability, at least one digit should
precede and follow the decimal point.

1.23F float—floating- Always a decimal point; both leading
point constant and trailing zeros are optional, but for

readability, at least one digit should
precede and follow the decimal point.

1.23L long double— Always a decimal point; both leading
floating-point and trailing zeros are optional, but for
constant readability, at least one digit should

precede and follow the decimal point.

The suffixes shown in Table 2.5 can be in either upper- or lowercase. I prefer
uppercase because a lowercase l is difficult to distinguish from the number 1. If a
number that does not fit in the default size is presented to the compiler, it either is
changed to an unsigned type or its size is increased. As an example, when the value
45000 is encountered, the compiler assumes that is an unsigned value; 500000, which
is too large for either a signed or unsigned 16-bit value, is promoted to a 32-bit long
value.

String constants present several unique situations. First, unlike numeric con-
stants, it’s possible to obtain the address of a string constant. This capability is necessary
because string functions use addresses (see Listing 2.1).

Listing 2.1. BADSTR.C.

/* BADSTR, written 12 May 1992 by Peter D. Hipson */

/* An example of changing a string constant. */

#include <stdio.h> // Make includes first part of file

#include <string.h>

int main(void); // Declare main() and the fact that this program doesn’t

 // use any passed parameters.

Constant Description Comments

continues

Part I • Honing Your C Skills

28

int main()

{

char szMyName[] = “John Q. Public”;

char szYourName[50];

 szYourName[0] = ‘\0’;

 strcpy(szYourName, szMyName); // szYourName is now the same as

 // szMyName.

 printf(“MyName ‘%s’ YourName ‘%s’ \n”,

 szMyName,

 szYourName);

 strcpy(szMyName, “My New Name”); // strcpy() actually receives the

 // address of the constant

 // “My New Name”

 printf(“MyName ‘%s’ YourName ‘%s’ \n”,

 szMyName,

 szYourName);

 printf(“Before: MyName ‘%s’ Constant ‘%s’ \n”,

 szMyName,

 “My New Name”);

 strcpy(“My New Name”, // strcpy() actually receives the address

 szYourName); // of the constant “My New Name”

 // This will fail and destroy the constant!

 printf(“After: MyName ‘%s’ Constant ‘%s’ \n”,

 szMyName,

 “My New Name”); // The result can be seen because QuickC

 // for Windows keeps identical strings

 // constants with only a single copy in

 // memory, and they are not read-only.

Listing 2.1. continued

Data Types, Constants, Variables, and Arrays

29

C C
CC
C

C
C
C C2

 return (0);

}

In Listing 2.1, strcpy() receives two addresses—a destination string and a source
string. When the prototype for strcpy() is examined by the compiler, it sees that the
second parameter is a constant and that it will not be modified. The first parameter,
however—the destination—is not a constant and can be modified. Compiling the
example in the listing enables you to determine whether your compiler keeps separate
copies of strings that are identical or keeps only one copy (in an attempt to conserve
memory). You cannot depend on the compiler to store identical strings either once in
memory or separately for each occurrence. Nor can you depend on the compiler (or
the CPU) to make a string constant read-only. On some systems, this attempt causes
an error (at execution time); on others, the program generally fails.

Except for string constants, obtaining the address of a constant or modifying the
constant is not possible. Using the address of operator (&) on a constant isn’t allowed.

Because a string literal can be more than 500 characters long, and because it is
difficult (or even impossible) to edit source lines that are that long, you can concatenate
string literals. The process is easy because no operator is used—you simply follow one
string literal with a second (or third):

char szMyAddress[] =

 “John Q. Public\n”

 “123 Main Street\n”

 “Our Town, NH 03458\n”;

In this code fragment, the variable szMyAddress prints as three lines (because of
the embedded \n newline character). The initialization is easier to read because it’s not
spread out on a single line; rather, it is formatted the way it should look.

Definitions versus Declarations

There is a difference between defining an object and declaring it. This section looks
at the differences and the information that should be provided to the compiler in
defining and declaring objects.

Part I • Honing Your C Skills

30

Both data objects (variables) and functions are defined or declared. This chapter
discusses only variables; however, the concepts are the same for a function also.

The difference between defining and declaring a data object is that, when a data
object is declared, only its attributes are made known to the compiler. When an object
is defined, not only are its attributes made known, but also the object is created. For
a variable, memory is allocated to hold it; for a function, its code is compiled into an
object module.

Because this chapter deals with data objects, this section looks at both declara-
tions and definitions.

Declarations

The simplest declaration of a variable is shown in the following code fragment:

void OurFunction(

 int nType)

{

int nTest;

 nTest = nType;

}

In the fragment, an integer variable is defined. That is, both its attributes (the
variable is an integer) were made known to the compiler, and storage was allocated.
Because the variable is located in a function, its scope is limited and its life is auto (by
default, you can change it). This means that each time OurFunction() is called, the
storage for the variable nTest is reallocated automatically (using C’s stack). Notice that
nTest wasn’t initialized when it was declared. This isn’t good programming style. To
prevent your using an uninitialized variable, I recommend that you initialize all auto
variables.

The following fragment shows a declaration for a static variable. The difference
is that the static variable’s storage space is allocated by the compiler when the program
is compiled; and because the storage space is never reallocated, it remembers its
previous value.

Data Types, Constants, Variables, and Arrays

31

C C
CC
C

C
C
C C2

void OurFunction(

 int nType)

{

static int nTest;

 nTest += nType;

}

You do not initialize this declaration either. Fortunately, however, because the
compiler initializes static variables (to zero), the preceding function works and adds
nType to nTest every time the function is called. If the function were called enough
times, it is likely that nTest would not be capable of holding the constantly increasing
sum, and that an integer overflow would occur.

A fatal error? Perhaps, but on most implementations, integer overflow isn’t
caught as an error, and on these systems (and compilers), this error doesn’t cause any
warning messages to be displayed to the user. The only solution is to make sure that
nType, when added to nTest, doesn’t overflow.

Whenever a variable is defined within a function, it has local scope. Whenever a
variable is defined outside any functions, it is said to have global scope.

In each of the preceding examples, you have created a variable that is known
within the function and that cannot be referenced by any other function. Many
programmers (almost all of whom are very good programmers) will argue that a
variable should be known within a single function, and for any external data objects
to be known, the objects should be passed as parameters.

Experience has shown, however, that this viewpoint can be idealistic. You often
will want to share variables between a number of functions, and these variables may
be unknown to the caller. Common uses include common buffers, storage areas, flags,
indexes, tables, and so on.

To enable a variable to be used by more than one function, it must be declared
outside any function—usually very near the top of the source file (see Chapter 1, “The
C Philosophy”). An example is shown in Listing 2.2.

Part I • Honing Your C Skills

32

Listing 2.2. An example of a global variable, in a single source file.

long int lSum; // Using ‘int’ is optional.

long int lCount;

void SumInt(

 int nItem)

{

 lSum += (long)nItem;

 ++lCount;

}

void SubInt(

 int nItem)

{

 lSum -= (long)nItem;

 —lCount;

}

int Average()

{

int nReturn = 0;

 nReturn = (int)(lSum / lCount);

 return (nReturn);

}

The preceding code fragment has a set of two functions that add to a sum and
count (used to create an average), and return an average.

If you look at the Average() function, you may wonder why I thought that I
could divide two long (32-bit) integers and be sure that I would get a returned value
that fit in a short (16-bit) integer. The answer is easy because I know that I’ve never
added to the sum a value that was larger than would fit into a short integer, and that

Data Types, Constants, Variables, and Arrays

33

C C
CC
C

C
C
C C2

when the sum was divided by the count, the result had to be smaller than (or equal to)
the largest value added. Or, will it? No. I made a bad assumption because SumInt() can
add a large number, and SubInt() then could remove a smaller number.

Again, in the preceding example, all three of the functions are located in a single
source file. What if each of these functions is large and you need to have three source
files? For that, you must use both declarations and definitions.

Definitions

Assume that your three functions are larger than they really are, and that each one
therefore has its own source file. In this case, you must declare the variables (but in only
one file) and then define them in the other files. Let’s look at what this declaration
would look like. Listing 2.3 shows each of the files.

Listing 2.3. An example of a global variable, in three source files.

----------------------FILE-SUMINT.C--------------------------------

/* SUMINT.C routines to sum integers and increment a counter. */

/* Declare the variables that will be shared between these functions. */

long int lSum; // Using ‘int’ is optional.

long int lCount;

void SumInt(

 int nItem)

{

 lSum += (long)nItem;

 ++lCount;

}

----------------------FILE-SUBINT.C--------------------------------

/* Declare the variables that will be shared between these functions. */

continues

Part I • Honing Your C Skills

34

Listing 2.3. continued

extern long int lSum; // Using ‘int’ is optional.

extern long int lCount;

/* SUBINT.C routines to de-sum integers and decrement a counter. */

void SubInt(

 int nItem)

{

 lSum -= (long)nItem;

 --lCount;

}

----------------------FILE-AVERAGE.C--------------------------------

/* AVERAGE.C routines to return the average. */

/* Declare the variables that will be shared between these functions. */

extern long int lSum; // Using ‘int’ is optional.

extern long int lCount;

int Average()

{

int nReturn = 0;

 nReturn = (int)(lSum / lCount);

 return (nReturn);

}

Notice that the two variables lSum and lCount in the SUBINT.C and AVERAGE.C
files are defined—using the extern attribute. This definition tells the compiler what
the variables’ attributes are (long int), and tells the compiler not to allocate any
memory for these variables. Instead, the compiler writes special information into the
object module to tell the linker that these variables are declared in a different module.

Data Types, Constants, Variables, and Arrays

35

C C
CC
C

C
C
C C2

In both files, this information constitutes a definition of the variable, but not a
declaration (which would have allocated the storage for the variable three times—once
for each file).

You might ask what would happen if the variables never were declared in any
module. The linker (not the compiler) usually is the one to complain, by displaying
an error message. The typical error message is that an object was undefined (the
message provides the name of the object). Don’t confuse the linker’s use of the word
defined with the C compiler’s use of it: The linker doesn’t use the word defined in
exactly the same way as the compiler uses it.

When ANSI C uses the modifier static, its meaning changes depending on the
context of how it is used. To help you understand the differences, the following section
describes variables and their scope and life span.

Variables

Variables make it all happen. Unlike constants, a variable data object can be modified.
C’s use of variables can be rather complex when you consider its capability to modify
any variable either directly or by using its address. Any data object that can be defined
as a singular variable can be defined also as an array. The definition (and use) of arrays
is discussed later in this chapter.

Variable Types and Initializing Variables

A variable can be of any type that C supports: an integer or character, or composed of
compound data objects—structures or unions. This section discusses some examples.

In the following declaration, nCount is an integer:

int nCount; /* An integer of default size, uninitialized */

On most PCs, it is a short int; when it is compiled with one of the 32-bit
compilers (or under a different operating system), however, it can be a 32-bit long
integer.

long lCount = 0; /* An integer of long size, initialized */

This declaration leaves no doubt about the size of the object. First, because long
and short are defaulted to integer types (to create a long double, you must specify long

Part I • Honing Your C Skills

36

double in your declaration), the keyword int is optional. It might be better style to
include it (I usually try to). The variable lCount is initialized explicitly; if it were a static
variable, this initialization would be optional, but by including it, you can be sure of
its value.

char cKeyPressed = ‘\0’;

This declaration is interesting: Because the data type is character, it must be
initialized with the correct type. Because character constants are enclosed in single
quotes, this initialization works well. I don’t recommend it, but you can use

char cKeyPressed = (char)NULL;

Because the NULL identifier is intended for use as a pointer value, the cast to type
char isn’t a smart idea. This hasn’t prevented much C code from being written in
exactly this way.

Look at the following floating-point number:

float fTimeUsed = 0.0F;

If this code had been written before the ANSI C standard was written, the
initialization probably would look like this:

float fTimeUsed = (float)0.0;

It was necessary to cast the double to a float because there was no other way to
specify a float value.

Because the default floating-point constant size is double, the following initial-
ization is fine.

double dTimeUsed = 0.0;

ANSI introduced the long double, a data type that was not often found in various
C implementations:

long double fTimeUsed = 0.0L;

Again, because the default floating-point constant is a double, the size is specified
in the initializer. This specification definitely is much easier than specifying a cast of
(long double), unless you like to type.

This chapter discusses character string declaration later, in the “Arrays” section.
In all cases, C creates strings using arrays of type char because there is no distinct data
type for strings.

Data Types, Constants, Variables, and Arrays

37

C C
CC
C

C
C
C C2

Scope (Or I Can See You)

The scope of a variable is often one of the things programmers don’t understand at first.
Depending on where they are declared, variables can be either visible or not visible.

Let’s look at an example of scope that shows some poor programming practices.
SCOPE.C is created in Listing 2.4. Because the program has two variables with the
same name, it can be difficult to know which variable is being referred to.

Listing 2.4. SCOPE.C.

/* SCOPE, written 15 May 1992 by Peter D. Hipson */

/* An example of variable scope. */

#include <stdio.h> /* Make includes first part of file */

#include <string.h>

int main(void); /* Declare main() and the fact that this program doesn’t

 use any passed parameters. */

int main()

{

int nCounter = 0;

 do

 {

 int nCounter = 0; /* This nCounter is unique to the loop. */

 nCounter += 3; /* Increments (and prints) the loop’s nCounter */

 printf(“Which nCounter is = %d?\n”, nCounter);

 }

 while (++nCounter < 10); /* Increments the function’s nCounter */

 printf(“Ended, which nCounter is = %d?\n”, nCounter);

 return (0);

}

Part I • Honing Your C Skills

38

This is the result of running SCOPE.C:

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Which nCounter is = 3?

Ended, which nCounter is = 10?

Notice that nCounter was never greater than three inside the loop. The reason is
that the variable is being reallocated from within the do{} block, and, because it is
initialized, it is set to zero when it is reallocated. To create a variable that can be used
in the loop and still not have scope outside the loop, you have to create a dummy block:

{

int nCounter = 0; /* This nCounter is unique to the loop */

 do

 {

 nCounter += 3; /* Increments (and prints) the loop’s nCounter */

 printf(“Which nCounter is = %d?\n”, nCounter);

 }

 while (++nCounter < 10); /* Increments the function’s nCounter */

}

This example doesn’t work, however, because the while()’s use of nCounter then
uses the wrong nCounter. Only one solution exists: Use unique names for variables
when you are declaring them from within a block in a function. Resist the urge, if you
are using the style shown in Chapter 1, “The C Philosophy,” to redefine the for() loop
index variables—i, j, and so on. Listing 2.5 shows the successful implementation of
SCOPE.C.

Listing 2.5. SCOPE1.C.

/* SCOPE1, written 15 May 1992 by Peter D. Hipson */

/* An example of variable scope that works. */

Data Types, Constants, Variables, and Arrays

39

C C
CC
C

C
C
C C2

#include <stdio.h> /* Make includes first part of file */

#include <string.h>

int main(void); /* Declare main() and the fact that this program doesn’t

 use any passed parameters. */

int main()

{

int nCounter = 0;

 {

 int nCountLoop = 0; /* This nCounter is unique to the loop */

 do

 {

 nCountLoop += 3; /* Increments (and prints) the loop’s

nCounter */

 printf(“nCountLoop is = %d?\n”, nCountLoop);

 }

 while (++nCounter < 10); /* Increments the function’s nCounter */

 }

 printf(“Ended, nCounter is = %d?\n”, nCounter);

 return (0);

}

Using unique variable names is the only way to guarantee that there will be no
confusion over which variable is being used. This is a good case of “the language lets
you do something, but you really don’t want to.”

Life Span (Or How Long Is It Going To Be Here?)

Determining how long a variable will be kept is another problem that perplexes
aspiring programmers. Let’s look at the keyword modifier static. This modifier has
several purposes that, unfortunately, are related.

Part I • Honing Your C Skills

40

When static is used on a variable found within a function or block, it tells the
compiler never to discard or reallocate the variable. The variable is created at compile
time and is initialized to zero. The opposite of static in this situation is auto (the
default). That variable, found inside a function or block, is reallocated every time the
function or block is entered.

When static is used on a variable that is defined outside any functions or blocks,
its meaning is that the variable is known to only those functions contained in the
specified source file, and are not known outside the source file. When a variable is
known outside the source file, it is called an external variable. (Don’t confuse this with
the keyword extern.) The extern keyword tells the compiler that the variable is being
defined (and not declared). Because extern and static conflict, they cannot be used
together. The program LIFETIME.C, in Listing 2.6, shows a variable’s lifetime.

Listing 2.6. LIFETIME.C.

/* LIFETIME, written 15 May 1992 by Peter D. Hipson */

/* An example of variable lifetime. */

#include <stdio.h> // Make includes first part of file

#include <string.h>

int nLife = {5}; // Initialize to 5, default is 0.

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

void DisplayLife(void); // Define DisplayLife()

int main()

{

int nCounter = 0;

 do

 {

 int nCountLoop = 0; /* This nCounter is unique to the loop */

 nCountLoop += 3; /* Increments (and prints) the loop’s

 nCounter */

Data Types, Constants, Variables, and Arrays

41

C C
CC
C

C
C
C C2

 nLife += nCounter;

 printf(“nCountLoop is = %d\n”, nCountLoop);

 }

 while (++nCounter < 10); /* Increments the function’s nCounter */

 DisplayLife();

 printf(“Ended, nCounter is = %d\n”, nCounter);

 return (0);

}

void DisplayLife()

{

 printf(“DisplayLife(), nLife = %d?\n”, nLife);

}

In LIFETIME.C, the variable nLife is known to both main() and DisplayLife().
This sharing of the variable is an acceptable programming practice and is commonly
used as outlined previously.

In the preceding example, if the declaration of nLife had been the following:

static int nLife = {5}; // Initialize to 5, default is zero.

the result would have been the same. The reason is that only one source file is in this
program; therefore, nLife had to be visible in only one file. Whenever possible,
remember to make your external variables static: If they are known in only one source
file, they are much less likely to be modified unintentionally by another function in a
different source file.

Type Casting

This chapter has referred to type casting, but what is a cast? A cast is C’s way of
converting a variable of one type to another type. This topic is very important when

Part I • Honing Your C Skills

42

errors and misuse of a variable’s types occur. Nothing is more disastrous in a C program
than inadvertently assigning a pointer to an integer using a cast and not catching the
error.

Won’t the compiler give a message? No. If you cast one type of variable to a
different type, the compiler assumes that you know what you are doing, and it says
nothing. There is a time and a place for a cast. Before using one, however, be sure to
look carefully at your code and determine that the effect of the cast (or the lack of the
cast) is what you want and expect.

Listing 2.7 shows the CASTS.C program. A number of variables, all initialized,
are in this program. First, the initialized values of each variable are printed, a few
assignments are made, and then the result of these assignments is printed.

Listing 2.7. CASTS.C.

/* CASTS, written 15 May 1992 by Peter D. Hipson */

/* Using casts to change a data type. */

#include <stdio.h> // Make includes first part of file

#include <string.h>

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

float fValue = 123.0F;

double dValue = 987.0;

long double ddValue = 123123123123.0L;

int nInteger = 12345;

int nIntegerAgain = 12345;

long lLong = 987;

unsigned long ulLong = 987;

char cChar = ‘A’;

 printf(“ fValue %f \n dValue %lf \n ddValue %Lf \n “

 “nInteger %d \n lLong %ld \n ulLong %lu \n cChar %c\n”,

 fValue,

Data Types, Constants, Variables, and Arrays

43

C C
CC
C

C
C
C C2

 dValue,

 ddValue,

 nInteger,

 lLong,

 ulLong,

 cChar);

/* These assignment statements generate a warning message

 about type conversion. */

 nInteger = dValue;

 lLong = ddValue;

 ulLong = ddValue;

 cChar = nIntegerAgain;

 printf(“\n fValue %f \n dValue %lf \n ddValue %Lf \n “

 “nInteger %d \n lLong %ld \n ulLong %lu \n cChar %c\n”,

 fValue,

 dValue,

 ddValue,

 nInteger,

 lLong,

 ulLong,

 cChar);

/* With a cast, there is no warning message;

 however, the conversion is the same */

 nInteger = (int)dValue;

 lLong = (long)ddValue;

 ulLong = (unsigned long)ddValue;

 cChar = (char)nIntegerAgain;

 printf(“\n fValue %f \n dValue %lf \n ddValue %Lf \n “

 “nInteger %d \n lLong %ld \n ulLong %lu \n cChar %c\n”,

 fValue,

 dValue,

 ddValue,

 nInteger,

 lLong,

 ulLong,

continues

Part I • Honing Your C Skills

44

 cChar);

 printf(“\nNotice that ‘lLong’ and ‘ulLong’”

 “both have the wrong value.\n”);

 return (0);

}

After compiling and running CASTS.C, you get the following result:

fValue 123.000000

dValue 987.000000

ddValue 123123123123.000000

nInteger 12345

lLong 987

ulLong 987

cChar A

fValue 123.000000

dValue 987.000000

ddValue 123123123123.000000

nInteger 987

lLong -1430928461

ulLong 2864038835

cChar 9

fValue 123.000000

dValue 987.000000

ddValue 123123123123.000000

nInteger 987

lLong -1430928461

ulLong 2864038835

cChar 9

Notice that ‘lLong’ and ‘ulLong’ both have the wrong value.

You may want to know how ulLong managed to get such a strange value. Your
first guess probably is that it should have received the least-significant digits from
ddValue; there seems to be no relationship, however, between the value 123123123123

Listing 2.7. continued

Data Types, Constants, Variables, and Arrays

45

C C
CC
C

C
C
C C2

and the result held in ulLong of 2864038835. The difference is easy to explain, though,
when you look at the hex values of the converted number. The value 123123123123 is
too large to store in a single 32-bit unsigned (or signed) integer. The hex representation
of 123123123123 is 1C AA B5 C3 B3, a value that requires five bytes to store. Because
ulLong has only four bytes, the leading digits, 1C, are truncated, leaving the result that
is assigned to ulLong: AA B5 C3 B3 (2864038835 in decimal).

This same type of truncation happens when a short int is assigned a value that
was stored in a long int that was too large. For example, if the value 123123123 is stored
in ulLong, when it is assigned to an unsigned integer the result is 46515 (see Table 2.6).

Table 2.6. Examples of conversions of C data types.

Original Original Original Result Result
data type in decimal in hex Conversion in hex in decimal

long int 123123123 0x756B5B3 To short 0xB5B3 46515
int, by
truncating
(the leading
0x756 is
dropped).

short 12345 0x3039 To char by 0x39 ‘9’
int truncating

and type
change (the
leading 0x30
is dropped).

long 123123123123 0x1CAAB5C3B3 Convert to 0xAAB5C3B3 2864038835
double integer,

and truncate
(the leading
0x1C is
dropped).

As shown in Table 2.6, it’s important to remember that truncation occurs using
the internal format of the number, not the number you see and use. It is easy to lose
the number you had, and if you are changing types (such as from integer to char), the
result can be difficult to predict.

Part I • Honing Your C Skills

46

Casts have their place in C programming. Because your goal should be to have
your program compile with no warning messages, a cast can sometimes be the only
way to suppress a warning.

When a cast is used on a parameter used in a function call, the effect is predictable:
First, the variable is converted to the correct type, and then it is passed. If you have
prototyped the function correctly, the compiler knows the data types of the parameters
and ensures that the conversions are completed, giving whatever warnings are
appropriate. If no parameter types are provided with the prototype or the prototype
is missing, the compiler doesn’t know the correct types, makes no conversions for you,
and issues only a missing prototype message.

Arrays

Arrays are collections of identical data objects, known by a common name and
addressable either as a group or as a single object. Any data object that can be defined
can be defined as an array.

Declaration of Arrays

Like a single data object, arrays have to be declared. The process of declaring an array
is not difficult. You must, however, provide the compiler with some more information.
You must tell how many of the desired data objects will be found in the array. For
example, an array of int may be defined as

int nArray[15];

In this declaration, an array of integers has been created (remember that a
declaration allocates memory). The first member in the array is addressed as nArray[0],
and the final member is addressed as nArray[14]. Here’s an example of one of the most
common coding errors:

#define MAX_SIZE 20

int nArray[MAX_SIZE];

int i;

/* Other lines of code */

Data Types, Constants, Variables, and Arrays

47

C C
CC
C

C
C
C C2

 for (i = 1; i <= MAX_SIZE; i++)

 {

 nArray[i] = i;

 }

In the preceding fragment, the array element nArray[15] is initialized. Your
program crashes because there is no element 15. The probable result is that some part
of the program (often much later past the loop) that probably is not related to the failed
part either produces incorrect results or simply crashes and dies. Also, the array element
nArray[0] is never initialized because the loop starts with the second element in the
array.

When a for() loop is used to initialize an array, always make sure that the
following two statements are true:

1. The initial index value is zero (unless there is a valid reason for some other
starting value).

2. When the array is being tested to the end, the test does not exceed the number
of elements defined.

An example of the preceding loop being written correctly shows that the first
element is initialized correctly and that the loop ends with the last element, nArray[14]:

 for (i = 0; i < MAX_SIZE; i++)

 {

 nArray[i] = i;

 }

Working with arrays can be difficult, especially when their bounds are exceeded.
Many C implementations have little or no array bound checking. Generally, you
should be sure that you have not exceeded the bounds of any arrays in your program.

Definition of an Array

An array can be declared with the following line:

int nArray[15];

When an array is external (defined in a different source file), it must be defined
in any other source files that may need to access it. Because you don’t want the compiler
to reallocate the storage for an array, you must tell the compiler that the array is

Part I • Honing Your C Skills

48

allocated externally and that you want only to access the array. To do this, you use an
array definition, which might look like this:

extern int nArray[];

This statement tells the compiler two important things:

1. The array has been declared (and storage allocated) in a different source file.

2. The size of the array is unknown.

Because the compiler knows only what you tell it (the compiler doesn’t search
your source files to find where nArray[] was declared), it needs at least the name of the
array and its type (so that the array can be indexed properly). Although it’s not
necessary, especially in dealing with single-dimensional arrays, to tell the compiler the
number of elements in an array, the compiler has no way of knowing where the end
of the array is. You must make sure the array is used properly and you don’t exceed the
bounds of the array.

If you choose to use the following definition:

extern int nArray[MAX_SIZE];

you will tell the compiler at least the number of elements in the array. This is a good
start in being able to ensure that you have not exceeded the bounds of the array. Again,
note that the majority of C compilers (whether ANSI or not) do not check array (or
string) bounds.

Array Indexing

When C stores an array in memory, it uses a rather complex set of pointers. Generally,
you have to consider only that a block of memory has been allocated for the array. Then
you can work with this memory and let C do the address computations for you.

At times, however, it’s necessary to work with the array as a single object. The
most common time is when the array must be passed to a function. The most common
occurrence of arrays passing to functions is when you pass a string to a character
function, such as C’s strlen() function.

Let’s look at a simple program that creates one-, two-, and three-dimensional
strings. ARRAY1, in Listing 2.8, creates three arrays, initializes them using the
standard C array-subscripting techniques, and then accesses the members in the string
using an alternative array indexing method. (I’m not saying that you should use this
method.)

Data Types, Constants, Variables, and Arrays

49

C C
CC
C

C
C
C C2

Listing 2.8. ARRAY1.C.

/* ARRAY1, written 18 May 1992 by Peter D. Hipson */

/* A program that demonstrates multidimensional arrays. */

#include <stdio.h> // Make includes first part of file

#define MAX_COMPANIES 3

#define MAX_CARS 5

#define MAX_MODELS 10

// This is a 10-element array.

int nArray1[MAX_CARS];

// This is a 10-by-5 array.

int nArray2[MAX_CARS][MAX_MODELS];

// This is a 10-by-5-by-3 array.

int nArray3[MAX_CARS][MAX_MODELS][MAX_COMPANIES];

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int i;

int j;

int k;

 for (i = 0; i < MAX_CARS; i++)

 {

 nArray1[i] = i;

 for (j = 0; j < MAX_MODELS; j++)

 {

 nArray2[i][j] = (j * 10) + i;

 for (k = 0; k < MAX_COMPANIES; k++)

 {

continues

Part I • Honing Your C Skills

50

 nArray3[i][j][k] = (i * 100) + (j * 10) + k;

 }

 }

 }

 for (i = 0; i < MAX_CARS; i++)

 {

 printf(“%3.3d “, *(nArray1 + i));

 }

 printf(“\n”);

 for (i = 0; i < (MAX_CARS * MAX_MODELS); i++)

 {

 if ((i % MAX_MODELS) == 0)

 {

 printf(“\n”);

 }

 printf(“%3.3d “, *(*(nArray2) + i));

 }

 printf(“\n”);

 for (i = 0; i < (MAX_COMPANIES * MAX_CARS * MAX_MODELS); i++)

 {

 if ((i % MAX_COMPANIES) == 0)

 {

 printf(“\n”);

 }

 printf(“%3.3d “, *(*(*(nArray3)) + i));

 }

 printf(“\n”);

// Notice that string concatenation makes the printf() format

// string more readable. Also note the blank line between the

// format string and the other arguments to printf().

Listing 2.8. continued

Data Types, Constants, Variables, and Arrays

51

C C
CC
C

C
C
C C2

 printf(

 “&nArray3 %4.4X \n”

 “&nArray3[0][0][0] %4.4X \n”

 “nArray3 %4.4X \n”

 “*(nArray3) %4.4X \n”

 “*(*(nArray3)) %4.4X \n”

 “*(*(*(nArray3))) %d \n”,

 &nArray3,

 &nArray3[0][0][0],

 nArray3,

 *(nArray3),

 ((nArray3)),

 ((*(nArray3))));

 printf(“\n”);

 printf(

 “&nArray3 %4.4X \n”

 “&nArray3[0][0][0] %4.4X \n”

 “nArray3 + 1 %4.4X \n”

 “*(nArray3 + 1) %4.4X \n”

 “*(*(nArray3 + 1) + 1) %4.4X \n”

 “*(*(*(nArray3 + 1) + 1) + 1) %d \n”

 “*(*(*(nArray3)) + ((1 * (10 * 3)) + (1 * 3) + (1))) %d \n”

 “nArray3[1][1][1] %d\n”,

 &nArray3,

 &nArray3[0][0][0],

 nArray3 + 1,

 *(nArray3 + 1),

 ((nArray3 + 1) + 1),

 ((*(nArray3 + 1) + 1) + 1),

 ((*(nArray3)) + ((1 * (10 * 3)) + (1 * 3) + (1))),

 nArray3[1][1][1]

);

 printf(“\n”);

 return (0);

}

Part I • Honing Your C Skills

52

In ARRAY1, notice the three printf() statements. Each of the three arrays is
accessed in a slightly different manner. This difference, due to the different number
of dimensions in each array, dictates how you access them.

The single-dimensional array is the simplest type of array in C. To initialize the
single-dimensional array, nArray1[], you use a simple loop, which sets each element
equal to its index:

for (i = 0; i < MAX_CARS; i++)

{

 nArray1[i] = i;

}

Next, to initialize the two-dimensional array, nArray2[], you use a pair of loops,
one for each index. To initialize the elements, you add a simple math statement that
computes the initializer value based on the indexes:

for (i = 0; i < MAX_CARS; i++)

{

 for (j = 0; j < MAX_MODELS; j++)

 {

 nArray2[i][j] = (j * 10) + i;

 }

}

This array, which is more complex than a single-dimensional array, is still easy
to use because it has only two indexes.

Next, to initialize the three-dimensional array, nArray3[], you use three loops,
one for each index. To initialize the elements, you use a simple math statement that
computes the initializer value based on the indexes:

for (i = 0; i < MAX_CARS; i++)

{

 for (j = 0; j < MAX_MODELS; j++)

 {

 for (k = 0; k < MAX_COMPANIES; k++)

 {

 nArray3[i][j][k] = (i * 100) + (j * 10) + k;

 }

 }

}

Data Types, Constants, Variables, and Arrays

53

C C
CC
C

C
C
C C2

This array, still more complex than either a single- or two-dimensional array, is
still easy to use, even with its three indexes. When you are using arrays with a large
number of dimensions, you must make sure that the correct values are being applied
to each of the indexes. Errors, which usually occur in transposing an array index
position, can lead to innumerable problems and can be very difficult to find and
correct.

This discussion leads to how an array is stored in memory. The methods of
accessing an array, if you simply use C’s array indexing, are of no great importance. If
you are writing a program, however, that needs to access the array in ways other than
the simple index method that C supports, you can benefit from an understanding of
how C accesses the array.

First, let’s look at a single-dimensional array. In memory, the array’s name is a
pointer to the first element in the array. If this pointer is incremented, you can point
to successive elements in the array. Figure 2.1 is an example of a single-dimensional
array and how it is accessed.

Figure 2.1. A single-dimensional array in memory.

Figure 2.1 shows that a single-dimensional array is simply a pointer that points
to the first element in the array. Each successive array element is accessed by
incrementing the pointer by the size of the array’s elements.

In Figure 2.2, you can see that a two-dimensional array is a set of pointers that,
when unmodified by the array index values, point to the first element in the array. Each
successive array element is accessed by incrementing the pointers by the size of the array
and the array elements.

Part I • Honing Your C Skills

54

Figure 2.2. A two-dimensional array in memory.

Figure 2.2 shows that a three-dimensional array is a set of pointers that, when
unmodified by the array index values, point to the first element in the array. This
situation is exactly the same as in a two-dimensional array, except that this array has
an additional address pointer. Each successive array element is accessed by incrementing
the pointers by the size of the array and the array elements.

Most array accesses are either for the entire array (usually to pass it as a parameter)
or for an individual array element. You can treat a multidimensional array as an array
of arrays.

Seeing is believing. Compile the program ARRAY1, and run it. Print the results
if you cannot see all of the program’s output on the screen at one time. Notice how the
final two printf() calls reference the array nArray3. This addressing is important to
understand if you must access an array using indirection.

Why use indirection? I really can’t answer that. With ANSI C, I suspect that there
are few reasons for using this technique. Because programming is an art, however, I
have no doubt that someone will come up with a good reason to use indirection
addressing for array elements.

Data Types, Constants, Variables, and Arrays

55

C C
CC
C

C
C
C C2

Using Array Names as Pointers

In the ARRAY1 program in Listing 2.8, you used indirection to index an array. This
indirection tells you that the array name nArray1 is in fact a pointer. One of the nice
things about ANSI C is it improved the accessing of arrays. Part of the change is that
now you can obtain a pointer to an array, and you can specify to C the dimension of
an array, which enables you to declare a dynamically allocated array and use simple
array indexing on that array.

An example of a dynamically allocated multidimensional array is shown in
Listing 2.9, ARRAY2.C. In this program, an array is created that has more than one
dimension, using malloc().

Listing 2.9. ARRAY2.C.

/* ARRAY2, written 18 May 1992 by Peter D. Hipson */

/* A program that demonstrates multidimensional arrays. */

#include <stdio.h> // Make includes first part of file

#include <malloc.h> // For memory allocation.

#define MAX_COMPANIES 3

#define MAX_CARS 5

#define MAX_MODELS 10

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int (*nPointer)[MAX_MODELS];

int i;

int j;

int k;

 nPointer = (int (*) [MAX_MODELS])

continues

Part I • Honing Your C Skills

56

 malloc(MAX_CARS * sizeof(*nPointer));

 for (i = 0; i < MAX_CARS; i++)

 {

 for (j = 0; j < MAX_MODELS; j++)

 {

 nPointer[i][j] = (i * 100) + j;

 }

 }

 for (i = 0; i < MAX_CARS; i++)

 {

 for (j = 0; j < MAX_MODELS; j++)

 {

 printf(“nPointer[%d][%d] = %4d\n”,

 i,

 j,

 nPointer[i][j]);

 }

 }

 free(nPointer);

 return (0);

}

The technique shown in ARRAY2 is not limited to two-dimensional arrays, nor
do you have to “preallocate” the nPointer variable. The variable could have been
allocated using other techniques also. In ARRAY2, it was allocated using a standard
declaration statement.

Strings: Character Arrays

You should be aware by now that C doesn’t support strings. Many people consider this
shortcoming to be serious; because so much of C’s power is in the library functions,
however, the lack of basic string functionality is not a serious shortcoming.

Listing 2.9. continued

Data Types, Constants, Variables, and Arrays

57

C C
CC
C

C
C
C C2

The definition of a string is an array of type char. This definition can be mod-
ified, however; because the library string functions assume that strings are arrays of
type char, it is best to use the default definition.

A string constant such as “This is a string” can be considered a pointer to a
character array.

Because the C compiler cannot generate code that knows how long a string is (a
string’s length is never saved), the end of the string must be marked with a special
character. The character used to mark the end of a string is NULL (0x00). Don’t confuse
this use of NULL with the keyword of the same name. In a character string, the NULL
character is the first character of the 256 ASCII character set. It has a numeric value
of 0 (the lowercase a has a numeric value of 98, which means that it is the 98th character
in the ASCII character set).

Note that ANSI C doesn’t assume any specific character set. Most of the time,
on the IBM PC family of computers, you use the IBM PC character set, and on most
other computers you access one of the ANSI character sets. Both the PC character set
and the ANSI character set are shown in Appendix A, “The ASCII Character Set.”

If you look at character string declarations, you can see that they may be sized
(and initialized) in several different ways.

The following declaration creates an uninitialized string with space to hold 19
characters plus the terminating NULL. Remember that this string is uninitialized, and
can contain any characters, many of which might be unprintable.

char szString[20];

In the following example, the string initializes with the characters This is the
time., and the C compiler adds the NULL automatically.

char szString[20] = “This is the time.”;

Whenever a double quoted string constant is specified, the compiler always
provides a terminating NULL. It is unnecessary to provide this NULL explicitly, as in

char szString[20] = “This is the time.\0”;

In this string, the string is terminated with two NULLs. This error is not serious,
but it is not necessary, either. Because the initializing string is less than 20 characters
long, the remaining characters in the string are undefined with most C implementa-
tions. You should not assume the string will be padded with NULLs or any other
character.

Part I • Honing Your C Skills

58

In the following example, the length of the string is determined by the length of
the initializing string.

char szString[] = “This is the time.”;

This determination can be tricky because, if you change the contents of the
string, you must be careful not to exceed the length, which you either must know in
advance or compute. This type of string declaration generally is used only for string
constants. Therefore, I recommend that you use the const type modifier:

const char szString[] = “This is the time.”;

Using const helps retain the string’s integrity because you can modify it only by
creating a new pointer to the string or by passing the string as a parameter to a function
that modifies the string. Using const is helpful in preventing unintended modification
of a string; it is not absolute insurance, however, that the string’s contents will not be
changed.

The following example doesn’t work.

char szString[30] = {‘T’”his is the time”’.’};

I can think of no reason to try to mix char and string constants in an initializer,
because you can simply write the following:

char szString[30] = {“T””his is the time””.”};

The example is “pushing it” a little, but as shown in Listing 2.9, sometimes you
can format strings using concatenation to make their final printed format more
obvious. Notice that when you are concatenating strings, you don’t use commas or
any other nonwhitespace separator (to the compiler, a comment is a whitespace
separator).

We all know that the most serious weakness of strings under C is that they cannot
be manipulated directly. You cannot assign, test, or compare strings without using one
of the library functions, such as strcpy() or strcmp().

Using Arrays of Pointers

Just as you can have arrays of type int, you can have arrays of pointers. The use of arrays
of pointers is a handy C feature. This section does not discuss pointers themselves, but
they are described in Chapter 3, “Pointers and Indirection.”

Data Types, Constants, Variables, and Arrays

59

C C
CC
C

C
C
C C2

Let’s look at an example of a program called REPEAT.C that reads in strings,
places them in an array, and prints them to a terminal. This program, shown in Listing
2.10, forms the basis for the sort program you write in a later chapter.

Listing 2.10. REPEAT.C.

/* REPEAT, written 19 May 1992 by Peter D. Hipson */

/* Prints, in the same order, the strings that are entered. */

/* On PCs with memory models, you can compile with LARGE model */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 1000 /* Total maximum lines */

#define BIGEST_LINE 128 /* The longest line readable from keyboard

*/

/* Although these variables are defined as external, they can

 * be defined inside the function or be allocated dynamically,

 * depending on the program’s needs and memory available.

 */

char szInput[BIGEST_LINE];

char szBuffer[MAX_CHARACTERS];

char *pBuffer[MAX_LINES];

int nBufferPointer = {0};

int nLine = 0;

int main()

{

int i;

continues

Part I • Honing Your C Skills

60

 printf(

 “Enter lines, when last one is entered\n”

 “provide a End-Of-File (ctrl-Z on most systems)\n”

 “to print the entered text\n\n”);

 while (gets(szInput))

 {

 if ((nBufferPointer + strlen(szInput)) > MAX_CHARACTERS)

 { // The line won’t fit! End input loop.

 break;

 }

 pBuffer[nLine] = &szBuffer[nBufferPointer];

// The strcpy() could have been written as:

// strcpy(&szBuffer[nBufferPointer], szInput);

 strcpy(pBuffer[nLine], szInput);

// the + 1 skips over the terminating NULL in each string.

 nBufferPointer += strlen(szInput) + 1;

 if (++nLine >= MAX_LINES)

 { // Too many lines! End input loop.

 break;

 }

 }

//

// Later, you add a sort to provide sorted output.

//

 for (i = 0; i < nLine; i++)

 {

 printf(“String %d ‘%s’\n”, i, pBuffer[i]);

 }

 printf(“\n”);

 return (0);

}

Listing 2.10. continued

Data Types, Constants, Variables, and Arrays

61

C C
CC
C

C
C
C C2

This program allocates space for as much as 32,767 bytes of strings, and a
maximum of 1,000 strings. These limits may not be reasonable for a program that will
be used. Also, when either limit is exceeded, REPEAT.C simply assumes that the end
of the input file has been reached. In reality, a (meaningful) message to the user is in
order.

Following the #define statements that define your limiting parameters, you
allocate storage for the necessary variables. As the comments in the C program indicate,
these variables can be defined inside the main() function; because an external (or static)
variable is automatically initialized to zero (or zeroes), however, you don’t have to
initialize the variables. Again, the way your program (or function) is used dictates how
or where you allocate the storage.

In allocating storage, you create first a character array called szBuffer that is used
to hold the strings as they are read in. The next variable, pBuffer, an array of pointers
to type char, is declared. The first member in this array points to the first string stored
in szBuffer, the second member in pBuffer points to the second string stored, and so
on.

A count of the number of strings entered by the user is kept in nLine. This variable
is initialized to zero (the first string) and is incremented until the user finishes entering
strings. It then is used in the for() loop that is used to print the user’s strings.

An index pointing to the character position in szBuffer in which the next string
will be placed is kept in nBufferPointer. This variable is initialized to zero (the first
character position in szBuffer) and is incremented by the number of characters in each
of the user’s strings until the user finishes entering strings.

The program’s input is handled using a while() loop, which calls gets(), a
C library function that reads a line from stdin (the keyboard).

 while (gets(szInput))

 {

 if ((nBufferPointer + strlen(szInput)) > MAX_CHARACTERS)

 { // The line won’t fit! End input loop.

 break;

 }

 pBuffer[nLine] = &szBuffer[nBufferPointer];

// The strcpy() could have been written as:

// strcpy(&szBuffer[nBufferPointer], szInput);

Part I • Honing Your C Skills

62

 strcpy(pBuffer[nLine], szInput);

// The + 1 skips over the terminating NULL in each string.

 nBufferPointer += strlen(szInput) + 1;

 if (++nLine >= MAX_LINES)

 { // Too many lines! End input loop.

 break;

 }

 }

In the input while() loop, first you check to see whether szBuffer has enough
room for this line, and then abort the input if there is no more room. Then you add
the line to szBuffer and update the pointers. If no more input line pointers remain in
pBuffer, you end the input phase as well. This error checking is not the best, but this
program is intended to show a usage for an array of pointers—not to show error
checking.

When the user signals the end of input, the program then can process the lines.
This program alludes only to the fact that perhaps you sort the lines, or count
characters, lines, and words, or justify the text or change its case. Who knows, and for
now, who cares? You have a program that reads lines in and writes them out.

To write the lines out, a simple for() loop has been used. This loop simply uses
printf() to print the user’s inputted lines:

for (i = 0; i < nLine; i++)

{

 printf(“String %d ‘%s’\n”, i, pBuffer[i]);

}

In the call to printf(), you use the pointer to the string in the buffer rather than
try to use an array index—again, to show the use of an array of pointers.

Summary

C provides the basic data types necessary to create most programs. C’s flexibility is due
in part to its capability to create new data types as they are needed. The limits of each
type of variable were described in this chapter.

l

Data Types, Constants, Variables, and Arrays

63

C C
CC
C

C
C
C C2

Using constants in C is much like using a constant in any other computer
language. The only different situation is that in C you can modify a character
constant (even though it’s an error).

There is a difference between a variable’s declaration (which allocates storage
and defines the variable’s attributes) and a variable’s definition (which only
defines the variable’s attributes and does not allocate storage).

The use and initialization of variables were discussed, along with arrays,
including using indirection as a method to access an array’s members. The
chapter discussed multidimensional arrays and how they are stored in memory,
with a demonstration of one-, two-, and three-dimensional arrays provided by
an example program.

The last part of the chapter described arrays of pointers and a simple program
demonstrated their use.

•

•

•

•

Part I • Honing Your C Skills

64

The C Philosophy

5

C C
CC
C

C
C
C C1

Table 1.1. ANSI compiler minimums.

Minimum Item

6 Significant characters in an external name

8 #include nesting

8 #if, #ifndef, #ifdef and #elif

12 (), [], or * in a declaration

15 Nested compound statements

15 Levels of struct or union nesting

31 () declarators within a declaration

31 Significant characters in a macro or identifier

31 Parameters passed to a function or macro (important for
printf(), scanf(), and so on)

32 Levels of nested parentheses

127 Local identifiers in a block

127 Members in a single struct, union or enum

257 case statements in a switch() statement

509 Characters in a literal string (after any concatenation)

511 External identifiers in a single source file

1024 Simultaneously defined macros

32767 Bytes in a single data object

Of course, nothing prevents a compiler producer from extending these limits;
however, you should review the documentation supplied with your compiler to see
whether any (or all) limits are different from the ANSI standard. If your compiler does
extend these limits and you use the extensions, you can be sure that when your
program is compiled with another compiler, it will either not compile correctly or not
execute correctly.

Part I • Honing Your C Skills

6

Some of these limits will change (soon, I hope) with future revisions of the ANSI
specification. One of the most bothersome limits, six significant characters in an
external name, was issued because some linkers cannot use more than the first six
characters in an external name. As noted by the ANSI standards committee, this limit
is a rather poor one and probably will change soon. If your compiler doesn’t have a
published limit on the number of significant characters in an external name, you can
test it. Compile and link the programs shown in Listing 1.1 (it has two source files).
As noted in the listing, changing the names of the functions called (and the missing
one) can be used to indicate the number of characters that are significant (13 in this
example) in an external name.

Listing 1.1. External name lengths for FILEONE.C and FILETWO.C.

FILEONE.C

void sixchr1234567(void);

void sixchr1234567(void);

int main()

{

 sixchr1234567();

 sixchr12345678(); /* Will be unresolved external if more than */

 /* 13 characters are significant. */

}

FILETWO.C

void sixchr1234567()

{

 return;

}

Another significant factor in external names is that most linkers ignore case. You
should be very careful, therefore, not to have two functions that differ only in the case
of their names, such as in the following example (in which both functions are external):

OurPrinter(); /* Print, using initial caps. */

OURPRINTER(); /* Print, using all caps. */

ourprinter(); /* Print, using only lowercase. */

The C Philosophy

7

C C
CC
C

C
C
C C1

In this fragment, the three different names will be linked to the same function
by the linker. Some linkers have the option to retain case, which solves this problem,
but many don’t. Be careful: I got burned by this one once, and it took a long time to
determine why the wrong function was being called. (I didn’t know about the other,
different-case function).

A number of keywords are reserved in ANSI C (see Table 1.2). You must be
careful not to use these names (all of the ANSI keywords are in lowercase) as identifiers
in your program. Generally, the compiler “complains” when you incorrectly use any
reserved keyword.

Table 1.2. ANSI C reserved identifiers.

Keyword Usage

asm Begins assembly code and is not part of the ANSI standard.

FORTRAN The entry follows FORTRAN calling conventions; FOR-
TRAN may be in lowercase for some implementations and
is not part of the ANSI standard.

PASCAL The entry follows PASCAL calling conventions; PASCAL
may be in lowercase for some implementations and is not
part of the ANSI standard. Generally, the PASCAL conven-
tions are identical to FORTRAN’s.

const The variable will be used as a constant and will not be
modified.

volatile The compiler may make no assumptions about whether the
variable’s value is current. This keyword limits optimization,
and possibly slows program execution.

signed The variable is a signed integer (with the actual size
unspecified).

auto The variable is created when the function is called, and is
discarded when the function exits. An auto variable is not
initialized by the compiler.

continues

Part I • Honing Your C Skills

8

break Ends the enclosing do(), for(), switch()/case or while()
statement and is used most often to end a case statement.
Using break outside of a switch()/case block may be
considered to be unstructured programming, in the same
way that embedded return statements are considered by
some programmers.

case Used with the switch() statement to mark the beginning of
a group of statements that are executed when the case’s
value matches the switch() statement’s value. Execution
continues until a break statement is encountered or no more
statements are in the switch() statements.

char A character variable that may be either signed or unsigned.

continue Passes control to the next iteration of a do(), for(), or
while() statement.

default Used with a switch() statement, the statements following
the default statement are executed until the first break
statement if no case statement value matches the switch()
statement’s expression.

do Used with the while() statement, the statement or state-
ments between the do and the closing while() are executed
until the while() condition evaluates to false. The state-
ments between are executed at least one time.

double An eight-byte floating point variable.

else Used with the if() statement, the statement or statements
within the else block are executed if the if() expression
evaluates to false.

enum An integer defining a range of values. The actual internal
representation of the value is not significant.

extern The object is defined in a different source file.

float A four-byte floating point variable.

Table 1.2. continued

Keyword Usage

The C Philosophy

9

C C
CC
C

C
C
C C1

for The iterative loop statement for C. Enables one (or more)
identifiers to be initialized, tested, and modified.

goto Causes an unconditional branch (change flow of execution).
(Many programmers consider using goto to be one step
short of sacrilege).

if Causes execution of a block of statements depending on the
logical evaluation of the if() statement’s expression.

int The object is defined as an integer (with a default size
dependent on the CPU’s default integer size.

long The object is defined as a long (four-byte) integer.

register The object (usually an integer) is retained in one of the
CPU’s registers whenever possible. The compiler often is
forced to remove the variable from the register to perform
various other tasks, however. This keyword can help speed
program execution when a variable must be accessed
frequently.

return Causes a function to return to its caller. Most programmers
insist that there be only one return statement at the end of a
function. The return statement may specify a value to be
returned to the caller if the called function was defined as
returning a value.

short A two-byte integer.

sizeof Returns the size of a specified data object, which can be a
simple data type, structure, union, or other complex data
object.

static A data object created when the program is linked and
initialized (to zero), and retains its value throughout the
program’s execution. The opposite of an auto variable.

struct Used to define or declare a complex data type, which can
consist of a number of different data types.

Keyword Usage

continues

Part I • Honing Your C Skills

10

switch Used with an expression (that must yield either a long or
short integer), which used with the case statement, allows
for conditional execution of code based on the current value
of the expression.

typedef Allows creation of a specific data type that is not part of C’s
provided data types. Usually (but not always) used with
either struct or union to create complex data types.

union Creates a complex data type in which two or more variables
occupy the same data memory at the same time. Often used
to enable the reading of different types of records into a
common buffer, which then can be referred to with the
correct type variables.

unsigned An unsigned integer (either long or short) always can
contain only positive values.

void Defines a function that either doesn’t return a value or has
no parameters, or defines a pointer to a variable of an
unspecified type. An object pointed to by a void pointer
cannot be directly modified.

while Used either alone or with the do statement to conditionally
execute statements until the while()’s conditional statement
evaluates as false.

Even with the ANSI set of reserved keywords, you can generally expect that a
specific compiler may reserve, as necessary, other words as well. A number of key-
words are reserved also for library names, for example. Table 1.3 lists these reserved
names.

Table 1.3. ANSI C reserved names.

Name Usage

% Used in a printf()/scanf() format string; to create a
literal percent sign, use %%

Table 1.2. continued

Keyword Usage

The C Philosophy

11

C C
CC
C

C
C
C C1

is... or to... Lowercase function names beginning with either is or to,
where the next character also is a lowercase letter

str..., mem..., Lowercase function names beginning with either
or wcs... str, mem, or wcs, where the next character also

is a lowercase letter

E Macros that begin with an uppercase E

SIG... or SIG_... Macros that begin with either an uppercase SIG or SIG_

...f or ...l Existing math library names with a trailing f or l

LC_ Macros that begin with an uppercase LC_

As you can see from Table 1.3, there are a number of reserved prefixes and
postfixes; it isn’t difficult, however, to find a suitable name, because all these reserved
names are either all uppercase or all lowercase—just using mixed-case names should
enable you to avoid conflicts with the reserved names in ANSI C (remember that some
linkers ignore case).

A Programming Style

I know that at least half of all C programmers use a formatting style different from the
one I’m going to propose. I can’t resist, however—I’ve used this style for years (longer
even than I’ve programmed in C), and I can (and will) justify why you should consider
using it.

Let’s look at the style in which all the example code in this book is presented. The
following list shows a few simple rules.

1. Each tab stop is indented four characters.

2. Lines should be a maximum of 80 characters if at all possible.

3. Comments can use either the ANSI standard /* comment */ or the newer //
single line comment (supported by many compilers even though it’s not part
of the ANSI standard).

Name Usage

Part I • Honing Your C Skills

12

4. When variables are defined or declared, only one variable is allowed per
definition or declaration.

5. All functions are prototyped, either in the header include file, or if there is
none, at the top of the file.

6. All data objects (variables) use Hungarian notation (see Table 1.4) and are
mixed case.

7. All function names are mixed case and should be descriptive of what the
function does. If the return is not clear, use Hungarian notation for the
function name.

8. Opening and closing braces are on their own lines, aligned in the same
column. In either case, a comment (one or more lines) may be used to
describe what the particular block of code is doing.

9. Document why, not what, you are doing. For example, you always can see that
you are incrementing the variable, but you can’t always see why you had to
increment it. Comments are just notes to yourself (and perhaps others)
reminding you of what you did. It’s almost painful to go back to a complex
piece of code and find that you no longer understand it. It’s easier to rewrite
poorly documented code than to try to figure it out.

10. Use blank lines wherever necessary to make the code readable.

11. Use the variables i, j, k, l, m, and n as for() loop indexes, and use them in
order. Using this rule saves many hours of trying to figure out which index is
changing faster. Avoid using these variables for scratch variables.

12. Avoid “cute” code. You may think that it makes you look like you’re the
world’s greatest programmer; however, you will have unreadable source code
that is difficult to maintain. If you must create a relatively strange piece of
code, don’t forget to document what it’s doing and why you needed to create
it. Don’t make yourself have to go back and ask, “Why did I do that?” when
you might realize that there was an easier way to get the job done.

13. Use parentheses liberally. When in doubt, use them. Then you can be sure in
what order things will be done.

14. Use the “new”-style function headers. This style, as shown in the code frag-
ment later in this section, is much easier to read because the variables and their
types and order are clearly defined. The fact that you can’t assume that the old
style will remain in future releases of the standard is a good incentive to switch.

The C Philosophy

13

C C
CC
C

C
C
C C1

Hungarian notation prefixes a variable name with a letter or letters to tell the
programmer what data type the variable contains (see Table 1.4). This type of notation
is very helpful when you must maintain the program later. Hungarian notation helps
to prevent assigning the wrong data type to a variable, and helps you understand why
you are using a particular data object.

Table 1.4. Hungarian notation prefixes.

Prefix Description

c char

by BYTE (unsigned char)

n short int

x Usually a short int, used for x coordinate in graphics

y Usually a short int, used for y coordinate in graphics

i int

b BOOL (int)

w WORD (unsigned int)

h HANDLE (WORD)

dw DWORD (unsigned long int)

fn Function, usually used with function pointers

s Character array (not necessarily NULL terminated)

sz Character string (must be NULL terminated)

Modifier Description

p Pointer

lp long (or far) pointer

np short (or near) pointer

Although it often is recommended that programmers use these same prefixes for
functions, I do so only if the function’s return type is not obvious and it does not return
an int.

Part I • Honing Your C Skills

14

When you are writing a function, you must have a function declaration. The
new-style function declaration (the header, as it sometimes is called) looks like the
following example, when it is formatted as I have suggested:

int MyFunction(

 int nFirstParameter,

 char szString[],

 char chMode)

{ // Function’s opening brace

The preceding example is basically the new ANSI C style, with each of the
function’s parameters coded on a separate line for readability. The same example in the
old style (I do not recommend this method) looks like this:

int MyFunction(nFirstParameter, szString[], chMode)

 int nFirstParameter;

 char szString[];

 char chMode;

{ // Function’s opening brace

If for no other reason, you should use the new style because it requires less typing.

Let’s look at a piece of well-formatted code. Listing 1.2 is a simple program that
prints on the screen a message that is an implementation of the standard HELLO.C.
Comments about the formatting are in italic type to highlight them, but these
comments are not necessary in the program.

Listing 1.2. HELLO.C.

/* HELLO, written 12 May 1992 by Peter D. Hipson */

/* A source formatting example. */

#include <stdio.h> // Make includes first part of file

int main(void); // Declare main() and the fact that this program doesn’t

 // use any passed parameters

int main()

{ // First opening brace for each function is at the left margin

int i; // Used as a for loop index

The C Philosophy

15

C C
CC
C

C
C
C C1

int nCount = 0; // Always initialize your auto variables

char szString[] = “We want to impress you %d\n”;

 for (i = 0; i < 5; i++) // Spaces around operators

 { // Brace on its own line

 nCount += printf(szString, i + 1);

 } /* for (i...) */

 return (nCount); // Brackets around all return values

} // Closing brace for a function is at left margin also.

Notice in Listing 1.2 that if you draw a vertical line from any opening brace, you
eventually can connect with its closing brace. Therefore, you can easily see the various
blocks that are part of the code. When you place the opening brace at the end of the
preceding line (for() in the example), it’s difficult to move up from a closing brace and
find its opening counterpart.

All the variables declared in the function, except for the loop counter, are
initialized. Neglecting to initialize a variable is perhaps the most problematic error that
C programmers make. It seems that, at some point, we make an assumption that the
contents of a variable are valid, we use it, and the program crashes.

I recommend that you order your C source files in this order:

1. Use a one-line file description with the filename (it can be handy when it is
printed), the entire project’s name, and perhaps the initial date written and the
programmer’s name.

2. Add #include statements. Remember to comment include files that are not
part of ANSI C and tell what is in the file. It’s not unusual for a large project
to have five or more include files. I usually have an include file with typedefs,
one with prototypes, one (or more) with defines, and an include file with
external definitions.

3. Following the #include statements, I recommend a full program header block.
In the example I use (see Listing 1.2), you can see what information usually is
included with a typical source file.

4. After the program header, put the definitions and declarations used in this file
(and that are not found in the header files).

Part I • Honing Your C Skills

16

5. List the file’s functions. The order of functions in a source file is generally not
critical. I often reorder the files and place at the top (or end, if I am working
on two functions at one time) the function on which I am working. This
ordering makes the function easy to find. I don’t recommend that you have
each 20- or 30-line function in its own source file or that your project consist
of two or three source files of 10,000 (or more) lines. When a source file is
more than about 1,000 lines, I break it into two files, if possible. You can load
the source file into the editor faster, and compile faster most of the time.

Listing 1.3 shows a typical header block comment used in creating a C source file.
Using a header such as this one is helpful when you work on the program again later
(perhaps years later). The more comments you have, the easier it is to fix the program.
Remember that no one will have sympathy for you if you don’t understand your own
programming, even if it’s been a while since you worked on it.

Listing 1.3. A typical source file header block.

/

**

**

** PROJECT: The project’s name goes here.

**

** TITLE: The FILE’S title (not the project title).

**

** FUNCTION: What the function(s) in this file does.

** More than one line if necessary.

**

** INPUTS: What generally is passed to the functions.

**

** OUTPUTS: What the functions return.

**

** RETURNS: Some functions don’t return normally; say so if necessary.

**

** WRITTEN: When the file was created.

**

** CALLS: Significant calls to other parts of program.

**

** CALLED BY: Who (generally) calls these functions.

The C Philosophy

17

C C
CC
C

C
C
C C1

**

** AUTHOR: Your name.

**

** NOTES: Modifications, special considerations, and so on.

**

** COPYRIGHT 1992: By whomever. All rights reserved. All wrongs

** deserved.

**

**/

Here’s a final comment about programming style. Always correct all the
problems that create compiler warning messages. Doing so may seem to be a bother;
the messages wouldn’t be there, however, if they were not important. Make it a goal
to have your program (no matter how large) compile with no warnings or errors. Make
sure that the error-message level is set as high as possible. In Microsoft compilers, use
either /W3 or /W4; with other compilers, use the equivalent. It can be done—I’ve
written programs with hundreds of thousands of lines and no compiler messages.

Memory Models

If you’re not programming on an IBM PC (or other computer that uses the Intel
segmented architecture), skip this part of this chapter. You have enough to fill your
head without having to add the information in this section.

The PC, when running in real mode, is able to address only 64K at any time using
16-bit addresses, referred to as near pointers. This limitation is a problem because many
programs and their data are larger than 64K. To address more than 64K, it is necessary
to use segments and offsets, which are forms of 24-bit addresses. If the compiler is told
to use segments, it generally creates two problems: Segment arithmetic will cause your
application to be slightly slower, and the size of the program will be larger. Using
segments and offsets is referred to as far pointers. Because you can choose to use far
pointers for function calls, or for data references or both, there are four combinations
of models, as shown in Table 1.5.

Part I • Honing Your C Skills

18

Table 1.5. PC segmented architecture models.

Model Addressing Used

Small Near addresses for both data and function calls, where functions
and data each have one segment allocated to them.

Compact Near pointers for the function calls and far pointers for data;
used for small programs that use large amounts of data memory.

Medium Far pointers for the function calls and near pointers for data; for
larger programs that don’t have more than 64K of data allocated.

Large Far pointers for the function calls and far pointers for data; for
larger programs that have more than 64K of data allocated.

On the positive side, using a memory model larger than necessary isn’t always a
serious problem. The size of the program often isn’t increased much (less than 10
percent), and the differences in execution speed may be slight. It is possible to
benchmark your compiler and determine the execution times and executable program
size differences.

When in doubt, use the large model when you are writing your
applications. Using this model enables you to develop any size
program. If you find later that the program wasn’t as large as you

expected, you can change to one of the other models and not have to change
compiler memory models in the middle of the project.

Summary

In this chapter, you learned about subjects that will assist you in writing better C
programs:

• The history of the C language, and the ANSI standard.

• Programming style, and commenting and formatting your source code.

• The use of the PC’s memory models; how and why to select a specific memory
model.

NOTE

Pointers and Indirection

65

C C
CC
C

C
C
C C3C C

CC
C

C
C
C C3

Pointers and Indirection

You probably couldn’t write anything except the simplest program without arrays.
Having worked with programming languages that don’t support arrays, I know how
difficult it can be to create meaningful applications using only singular variables.

The C language provides programmers with an additional tool to access mem-
ory, for both arrays and singular variables. This method, using pointers, seldom is
found in higher-level languages, which often “protect” the programmer from direct
memory manipulation.

With pointers, you use the technique of indirection, which is the method of
obtaining the value of the memory object to which the pointer is pointing.

Pointers, Indirection, and Arrays

The concept of pointers, indirection, and arrays is an advanced idea. You can write
programs (very good programs) without using pointers or indirection, and you can
write good programs using only direct array accessing, without using pointers or
indirection. Let’s look at each—pointers, indirection, and arrays.

Part I • Honing Your C Skills

66

Pointers

A pointer is a variable (or constant) that contains the address (in memory) of a specific
object. It has the following qualities:

1. A pointer can hold the address of any valid data object, including an array, a
singular variable, a structure, and a union.

2. A pointer can hold the address of a function.

3. A pointer cannot hold the address of a constant, with one possible exception: A
string constant has an address, which can be stored in a pointer variable
indirectly (usually as the result of being passed as a function call parameter).

Pointers enable you to access any block of memory you want, but there are
restrictions, of course:

• You must have the operating system’s permission to access the memory (the
memory accessed must have been allocated to your program).

• You must know where the block of memory you want to access is located. For
many applications, knowing this information is easy because the memory will
have been allocated for the program, and the program will have been given the
address of the memory. If the memory is a common block, such as a video
buffer, either the memory will be found in a fixed location or a pointer to the
memory will be found in a known location.

Let’s review the C address of operator &. To obtain the address of a singular
variable and an array, or the element in an array, simply prefix the variable’s name with
the & operator. This section has several examples of using the & operator.

When you use pointers, you must tell the compiler the size of the object the
pointer will be used with. What does size have to do with it? If a pointer variable can
point to only one thing at a time, why do you have to tell the compiler that the variable
is a pointer to type char, or type int? If you remember that a pointer variable can be
modified, you begin to get the idea that there is nothing wrong with incrementing a
pointer, adding to its value, or decrementing it. Because a char is an 8-bit-wide value
(1 byte), an int is a 16-bit-wide value (2 bytes), and a long is a 32-bit-wide value
(4 bytes), the compiler must know how many bytes are between the data objects to
which the pointer will point.

Pointers and Indirection

67

C C
CC
C

C
C
C C3

Figure 3.1 shows how the memory for both the integer array and a pointer to a
variable of type int typically is allocated. The figure shows also the memory allocated
to szString and the pointer to a variable of type char.

Figure 3.1. char and int pointers to arrays.

Always remember that when a pointer is incremented, its value is increased by
the sizeof() the pointer’s type. When a pointer is decremented, its value is decreased
by the sizeof() the pointer’s type.

You use the pointer declaration type modifier to tell the compiler that a variable
will be a pointer to a variable type rather than being that variable type. Let’s look at
some identifiers, both variables that hold data and pointer variables:

int nCounter = 0;

int *pnCounter;

 pnCounter = &nCounter;

Two variables have been created in this code fragment. The first, an int called
nCounter, holds a simple counter that your program may use. The second variable,
pnCounter, has the address of nCounter assigned to it. This assignment could have been
done as an initialization also.

Notice that both the pointer and the variable whose address will be stored in it
have similar names. This naming is important when you need some way to know the
purpose of the pointer. If you had named the pointer pPointer, you wouldn’t know
its purpose.

Part I • Honing Your C Skills

68

Two variables are allocated again in the following lines of code. First, a character
string called szString is created (and initialized) and then a pointer to that string is
created.

char szString[20] = {“This is a string.”};

char *pszString;

 pszString = szString;

 pszString = &szString;

 pszString = &szString[0];

In all three of the following assignment statements, pszString contains the same
value and always contains a pointer to the first character in szString. Subtle differences
exist in these assignments, however.

 pszString = szString;

 pszString = &szString;

 pszString = &szString[0];

The first assignment assigns the address of the array to pszString. This yields the
address of the first element in the array.

In the second statement, the compiler assigns the address of the array to
pszString. Generally, this also yields the address of the first element in the array. The
primary difference is that, with an array of more than one dimension, you can have the
C compiler take care of indexing.

The third statement has a pointer to the specified element in the array (or string).
Some compilers (not all of them) check to see whether the element specified is within
the bounds of the array; you should not count on the compiler to catch this error,
however.

Here’s a difficult issue: An array name is not a pointer, but an array name can be
assigned to a pointer variable to create a pointer to the array, it can be passed to a
function as though it is a pointer to the array, and so on. I’ve had few problems
considering the name of an array as a pointer to the first element in the array; however,
only experience (and the compiler, I hope) can tell when this is not true.

Pointers and Indirection

69

C C
CC
C

C
C
C C3

Indirection

Now that you have a pointer, what do you do with it? Because it’s part of your program,
you can’t write your address on it and nail it to a tree so that your friends can find your
home. You can, however, assign to a pointer the address of a variable and pass it to a
function, and then the function can find and use the variable (just as some of your
friends might find and use your home).

The C operator * is called the indirection operator. It tells C to use whatever the
pointer variable is pointing to and use the value contained in the memory that the
pointer is pointing to.

An Example of Pointers, Indirection,

and Arrays

It took a while for me to understand the relationship between pointers and indirection
(and arrays), but tables, pictures, and example programs can help you understand it
too. The program in Listing 3.1 is a useless program. It does nothing except assign
values to variables and test the values and addresses of the variables.

Listing 3.1. POINTERS.C.

/* POINTERS, written 20 May 1992 by Peter D. Hipson */

/* Demonstration of pointers and indirection. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

continues

Part I • Honing Your C Skills

70

int nCounter = 33;

int *pnCounter = (int *)NULL;

char szSaying[] = {

 “Firestone’s Law of Forecasting:\n”

 “ Chicken Little only has to be right once.\n\n”};

char *pszSaying = (char *)NULL;

 printf(

 “nCounter | pnCounter | *(pnCounter) | pszSaying | “

 “szSaying[0] | szSaying[0-20]\n”);

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

 pszSaying,

 *(pszSaying),

 szSaying);

 printf(“pnCounter = &nCounter; \n”);

 pnCounter = &nCounter;

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

 pszSaying,

 *(pszSaying),

 szSaying);

 printf(“pszSaying = szSaying; \n”);

 pszSaying = szSaying;

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

Listing 3.1. continued

Pointers and Indirection

71

C C
CC
C

C
C
C C3

 pszSaying,

 *(pszSaying),

 szSaying);

 printf(“pszSaying = &szSaying; \n”);

 pszSaying = &szSaying; // Different levels of indirection!

 // A cast (char *) will work here.

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

 pszSaying,

 *(pszSaying),

 szSaying);

 printf(“pszSaying = &szSaying[0]; \n”);

 pszSaying = &szSaying[0];

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

 pszSaying,

 *(pszSaying),

 szSaying);

 printf(“*(pnCounter) = 1234; \n”);

 *(pnCounter) = 1234;

 printf(“%8d | %8p | %8d | %8p | %c | %20.20s\n”,

 nCounter,

 pnCounter,

 *(pnCounter),

 pszSaying,

 *(pszSaying),

 szSaying);

 return (0);

}

Part I • Honing Your C Skills

72

Running POINTERS.C in Listing 3.1 produces the output shown in Listing
3.2. This output shows what happens when each of the pointer variables is modified
and as the value pointed to by pnCounter is changed using the pointer.

Listing 3.2. The output from POINTERS.C.

nCounter | pnCounter | *(pnCounter) | pszSaying | szSaying[0] |

szSaying[0-20]

 33 | 0000 | 0 | 0000 | |

Firestone’s Law of F

pnCounter = &nCounter;

 33 | 24F6 | 33 | 0000 | |

Firestone’s Law of F

pszSaying = szSaying;

 33 | 24F6 | 33 | 24A6 | F |

Firestone’s Law of F

pszSaying = &szSaying;

 33 | 24F6 | 33 | 24A6 | F |

Firestone’s Law of F

pszSaying = &szSaying[0];

 33 | 24F6 | 33 | 24A6 | F |

Firestone’s Law of F

*(pnCounter) = 1234;

 1234 | 24F6 | 1234 | 24A6 | F |

Firestone’s Law of F

Pointers are most commonly used when a called function must modify a variable.
This process usually happens when a function returns two different values and
therefore cannot use normal function-value returning mechanisms. A pointer is passed
to a variable, and the called function changes the contents of the variables as required
(see Listing 3.3). In Listing 3.3, ADDER.C, a function is called to add two numbers,
and the result is placed in the third. This function then returns TRUE if the two
numbers fit in the sum, or false if overflow occurs.

Listing 3.3. ADDER.C.

/* ADDER, written 20 May 1992 by Peter D. Hipson */

/* Calling functions with passed pointers. */

Pointers and Indirection

73

C C
CC
C

C
C
C C3

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <limits.h> // For integer value limits.

#define TRUE 1

#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int DoAdd(int * nResult, int nFirstValue, int nSecondValue);

int main()

{

int nFirst = 3000;

int nSecond = 700;

int nSum = 0;

 printf(“BEFORE: nSum = %4d nFirst = %4d nSecond = %4d\n”,

 nSum,

 nFirst,

 nSecond);

 if (!DoAdd(&nSum, nFirst, nSecond))

 {

 printf(“%d + %d don’t fit in an int\n”,

 nFirst,

 nSecond);

 }

 printf(“AFTER: nSum = %4d nFirst = %4d nSecond = %4d\n”,

 nSum,

 nFirst,

 nSecond);

 return (0);

}

continues

Part I • Honing Your C Skills

74

int DoAdd(

 int * nResult,

 int nFirstValue,

 int nSecondValue)

{

 if ((long)nFirstValue + (long)nSecondValue > (long)INT_MAX)

 {

 return(FALSE);

 }

 else

 {

 *nResult = nFirstValue + nSecondValue;

 }

 return(TRUE);

}

You should notice two interesting things about ADDER.C:

1. The function is called with a pointer to an integer that will receive the results
of the addition. Also, before the numbers are summed, the program checks to
make sure that the results will fit in an int without overflow. If the result
doesn’t fit, the numbers are not summed and the function returns FALSE, if
the result fits, the sum is saved at the address pointed to by nResult, and the
function returns TRUE.

2. The test is made using casts to type long because the result of adding two
shorts can never be larger than a long. You cannot use int types here because
the test isn’t meaningful if an overflow occurs.

Running ADDER.C with both nFirst and nSecond set to a large value (30,000,
for example) shows how the test for overflow works.

Character Arrays and Strings
C stores strings as arrays of type char. Note that no operators work on strings directly.
You cannot copy a string using the assignment (equal sign) operator, nor can you
compare two strings using logical operators.

Listing 3.3. continued

Pointers and Indirection

75

C C
CC
C

C
C
C C3

To make up for the shortcomings in C’s character handling, a large number of
string functions are in the standard library (see Chapter 14, “ANSI C Library
Functions”). Because the particular functionality your application requires might not
be present in one of the C library functions, you can write a function to do whatever
you want.

This section doesn’t show you how to count words in a string (the demo program
does that), but it does show you how easy it is to work with strings and manipulate
pointers to strings.

By now, you should not still be writing programs that compare strings using
logical operators, as in the following example:

char szFirst[] = {“This is a string”};

char szNext[] = {“Before this one”);

if (szFirst > szNext)

{

 /* the test was meaningless! */

}

This comparison simply evaluates the addresses of the two strings, not their
contents. The result of the test is undefined because you cannot predict where in
memory the strings will be located, nor are their contents related to their memory
address.

The correct way to compare two strings is to call the library function strcmp(),
which returns a value based on the logical relationship between the two strings:

char szFirst[] = {“This is a string”};

char szNext[] = {“Before this one”);

if (strcmp(szFirst, szNext) > 0)

{

 /* szFirst is before szNext! */

}

This relationship is much more useful to your programs than are the string’s
addresses. NUMWORD.C counts the number of words in a sentence that are entered
from the keyboard (see Listing 3.4).

Part I • Honing Your C Skills

76

Listing 3.4. NUMWORD.C.

/* NUMWORD, written 20 May 1992 by Peter D. Hipson */

/* Program to count words in sentences. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#define TRUE 1

#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int NumberWords(char * pString);

#define BIGEST_LINE 256 /* The biggest line readable from keyboard */

/* Though these variables are defined as external, they can be

 * defined inside the function or be allocated dynamically,

 * depending on the program’s needs and the amount of memory available */

char szInput[BIGEST_LINE];

int main()

{

int i;

 printf(

 “Enter lines, when last one is entered\n”

 “provide a End-Of-File (ctrl-Z on most systems)\n”

 “to end the program.\n\n”);

 while (gets(szInput))

 {

Pointers and Indirection

77

C C
CC
C

C
C
C C3

 printf(“Words = %2d ‘%.50s’\n”,

 NumberWords(szInput),

 szInput);

 }

 printf(“\n”);

 return (0);

}

int NumberWords(

 char szString[])

{

int i;

int nBlank = TRUE;

int nCount = 0;

for (i = 0; szString[i]; i++)

 {

 if (szString[i] != ‘ ‘)

 {

 if (nBlank)

 {

 ++nCount;

 }

 nBlank = FALSE;

 }

 else

 {

 nBlank = TRUE;

 }

 }

 return(nCount);

}

Part I • Honing Your C Skills

78

NUMWORD has a very simple loop that calls gets() until the end-of-file is
reached. After gets() returns, the loop itself calls printf(), which has as one of its
parameters a call to the NumberWords() function.

printf(“Words = %2d ‘%.50s’\n”,

 NumberWords(szInput),

 szInput);

C first calls NumberWords() and then passes to printf() the returned value, along
with the other parameters.

for (i = 0; szString[i]; i++)

 {

 if (szString[i] != ‘ ‘)

 {

 if (nBlank)

 {

 ++nCount;

 }

 nBlank = FALSE;

 }

 else

 {

 nBlank = TRUE;

 }

 }

NumberWords() has a loop that looks at the passed string and parses out the words.
The format for this loop is a for() loop; while() can be used, however. This loop
moves through the character string and increments an index to the passed string. When
the loop starts, it is assumed that a blank has been encountered already. This
assumption is made by setting the blank flag (nBlank) on so that you can count the first
word regardless of whether it’s preceded by blanks. Also, the word count (nCount) is
set to zero, which indicates that no words have been counted.

When the first nonblank character is found, the word counter is incremented (a
word has been found), and the blank flag is turned off. The loop continues searching
for the next blank; when it is found, the blank flag is set to on and the process continues
until the end of the string is found.

Pointers and Indirection

79

C C
CC
C

C
C
C C3

Indirection to Access Character Strings

To change NUMWORD to use indirection to access the string, the loop in
NumberWords() must change slightly (see Listing 3.5).

Listing 3.5. NUMWORD1.C.

/* NUMWORD1, written 21 May 1992 by Peter D. Hipson */

/* Program to count words in sentences. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#define TRUE 1

#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int NumberWords(char * pString);

#define BIGEST_LINE 256 /* The biggest line readable from keyboard */

/* Although these variables are defined as external, they can be

 * defined inside the function or be allocated dynamically,

 * depending on the program’s needs and memory available. */

char szInput[BIGEST_LINE];

int main()

{

int i;

 printf(

continues

Part I • Honing Your C Skills

80

 “Enter lines, when last one is entered\n”

 “provide a End-Of-File (ctrl-Z on most systems)\n”

 “to end the program.\n\n”);

 while (gets(szInput))

 {

 printf(“Words = %2d ‘%.50s’\n”,

 NumberWords(szInput),

 szInput);

 }

 printf(“\n”);

 return (0);

}

int NumberWords(

 char * pString)

{

int nBlank = TRUE;

int nCount = 0;

 do

 {

 if (*(pString) && *(pString) != ‘ ‘)

 {

 if (nBlank)

 {

 ++nCount;

 }

 nBlank = FALSE;

 }

 else

 {

 nBlank = TRUE;

 }

Listing 3.5. continued

Pointers and Indirection

81

C C
CC
C

C
C
C C3

 } while(*(pString++));

 return(nCount);

}

NumberWords() again has a loop that looks at the passed string and parses out the
words. The format for this loop is do()...while(). A straight while() or even a for()
loop, however, can be used:

do

{

 if (*(pString) && *(pString) != ‘ ‘)

 {

 if (nBlank)

 {

 ++nCount;

 }

 nBlank = FALSE;

 }

 else

 {

 nBlank = TRUE;

 }

} while(*(pString++));

You no longer need to use an index variable, because you are using the pointer
that was passed to keep track of where you are in the string. One possible advantage
to this method is that by incrementing the pointer rather than an index to a string, the
function generally is both faster and smaller.

This loop moves through the character string and increments the passed pointer.
Remember that this passed pointer is a private copy for this function and can be
modified. It is assumed that a blank has been encountered already, by setting the blank
flag on so that you can count the first word regardless of whether it is preceded by
blanks. Also, the word count is set to zero so that no words are counted. When the first
nonblank character is found, the word counter is incremented (a word has been found)
and the blank flag is turned off. The loop continues searching for the next blank; when
it is found, the blank flag is set to on and the process continues until the end of the string
is found.

Part I • Honing Your C Skills

82

Listing 3.6 shows the assembly listing for the version of NumberWords() that uses
pointer indexing. The compiler produces this machine code, commented with the
original source lines, when the function is compiled.

Listing 3.6. NUMWORD3.COD, the assembly listing for the pointer

version of NumberWords().

; Edited for size.

; Static Name Aliases

;

 TITLE numword3.c

 NAME numword3

 .8087

_TEXT SEGMENT WORD PUBLIC ‘CODE’

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC ‘DATA’

_DATA ENDS

CONST SEGMENT WORD PUBLIC ‘CONST’

CONST ENDS

_BSS SEGMENT WORD PUBLIC ‘BSS’

_BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA

 ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP

EXTRN --acrtused:ABS

EXTRN --chkstk:NEAR

_TEXT SEGMENT

 ASSUME CS: _TEXT

;|*** /* NUMWORD3, written 21 May 1992 by Peter D. Hipson */

;|***

;|*** #include <stdio.h> // Make includes first part of file

;|*** #include <string.h> // For string functions

;|***

;|*** #define TRUE 1

;|*** #define FALSE 0

;|***

;|***

;|*** int NumberWords(char * pString);

;|***

;|*** int NumberWords(

Pointers and Indirection

83

C C
CC
C

C
C
C C3

;|*** char * pString)

;|***

;|*** {

; Line 15

 PUBLIC _NumberWords

_NumberWords PROC NEAR

 *** 000000 55 push bp

 *** 000001 8b ec mov bp,sp

 *** 000003 b8 06 00 mov ax,6

 *** 000006 e8 00 00 call __chkstk

; pString = 4

; nBlank = -2

; nCount = -4

;|***

;|*** int nBlank = TRUE;

; Line 17

 *** 000009 c7 46 fe 01 00 mov WORD PTR [bp-2],1

;nBlank

;|*** int nCount = 0;

; Line 18

 *** 00000e c7 46 fc 00 00 mov WORD PTR [bp-4],0

;nCount

;|***

;|*** do

; Line 20

 $D239:

;|*** {

; Line 21

;|*** if (*(pString) && *(pString) != ‘ ‘)

; Line 22

 *** 000013 8b 5e 04 mov bx,WORD PTR [bp+4] ;pString

 *** 000016 8a 07 mov al,BYTE PTR [bx]

 *** 000018 88 46 fa mov BYTE PTR [bp-6],al

 *** 00001b 0a c0 or al,al

 *** 00001d 74 15 je $I242

 *** 00001f 3c 20 cmp al,32

 *** 000021 74 11 je $I242

;|*** {

; Line 23

;|*** if (nBlank)

continues

Part I • Honing Your C Skills

84

; Line 24

 *** 000023 83 7e fe 00 cmp WORD PTR [bp-2],0 ;nBlank

 *** 000027 74 03 je $I243

;|*** {

; Line 25

;|*** ++nCount;

; Line 26

 *** 000029 ff 46 fc inc WORD PTR [bp-4] ;nCount

;|*** }

; Line 27

;|***

;|*** nBlank = FALSE;

; Line 29

 $I243:

 *** 00002c c7 46 fe 00 00 mov WORD PTR [bp-2],0

;nBlank

;|*** }

; Line 30

;|*** else

; Line 31

 *** 000031 eb 06 jmp SHORT $I244

 *** 000033 90 nop

 $I242:

;|*** {

; Line 32

;|*** nBlank = TRUE;

; Line 33

 *** 000034 c7 46 fe 01 00 mov WORD PTR [bp-2],1

;nBlank

;|*** }

; Line 34

 $I244:

;|***

;|*** } while(*(pString++));

; Line 36

 *** 000039 8b 5e 04 mov bx,WORD PTR [bp+4] ;pString

 *** 00003c ff 46 04 inc WORD PTR [bp+4] ;pString

 *** 00003f 80 3f 00 cmp BYTE PTR [bx],0

 *** 000042 75 cf jne $D239

Listing 3.6. continued

Pointers and Indirection

85

C C
CC
C

C
C
C C3

;|***

;|*** return(nCount);

; Line 38

 *** 000044 8b 46 fc mov ax,WORD PTR [bp-4] ;nCount

 *** 000047 8b e5 mov sp,bp

 *** 000049 5d pop bp

 *** 00004a c3 ret

 *** 00004b 90 nop

_NumberWords ENDP

_TEXT ENDS

END

;|*** }

Listing 3.7 is the assembly listing for the version of NumberWords() that uses an
index to the passed array. As in the preceding example, the compiler produces this
machine code, commented with the original source lines, when the function is
compiled.

Listing 3.7. NUMWORD4.COD, the assembly listing for the array

indexed version of NumberWords().

; Edited for size.

; Static Name Aliases

;

 TITLE numword4.c

 NAME numword4

 .8087

_TEXT SEGMENT WORD PUBLIC ‘CODE’

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC ‘DATA’

_DATA ENDS

CONST SEGMENT WORD PUBLIC ‘CONST’

CONST ENDS

_BSS SEGMENT WORD PUBLIC ‘BSS’

_BSS ENDS

DGROUP GROUP CONST, _BSS, _DATA

 ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP

continues

Part I • Honing Your C Skills

86

EXTRN --acrtused:ABS

EXTRN --chkstk:NEAR

_TEXT SEGMENT

 ASSUME CS: _TEXT

;|*** /* NUMWORD, written 20 May 1992 by Peter D. Hipson */

;|***

;|*** #include <stdio.h> // Make includes first part of file

;|*** #include <string.h> // For string functions

;|***

;|*** #define TRUE 1

;|*** #define FALSE 0

;|***

;|***

;|*** int NumberWords(char * pString);

;|***

;|***

;|*** int NumberWords(

;|*** char szString[])

;|***

;|*** {

; Line 16

 PUBLIC _NumberWords

_NumberWords PROC NEAR

 *** 000000 55 push bp

 *** 000001 8b ec mov bp,sp

 *** 000003 b8 08 00 mov ax,8

 *** 000006 e8 00 00 call --chkstk

 *** 000009 56 push si

; szString = 4

; i = -6

; nBlank = -2

; nCount = -4

;|***

;|*** int i;

;|*** int nBlank = TRUE;

; Line 19

 *** 00000a c7 46 fe 01 00 mov WORD PTR [bp-2],1

;nBlank

;|*** int nCount = 0;

Listing 3.7. continued

Pointers and Indirection

87

C C
CC
C

C
C
C C3

; Line 20

 *** 00000f c7 46 fc 00 00 mov WORD PTR [bp-4],0

;nCount

;|***

;|*** for (i = 0; szString[i]; i++)

; Line 22

 *** 000014 c7 46 fa 00 00 mov WORD PTR [bp-6],0 ;i

 *** 000019 eb 09 jmp SHORT $F240

 *** 00001b 90 nop

 $I243:

;|*** {

;|*** if (szString[i] != ‘ ‘)

;|*** {

;|*** if (nBlank)

;|*** {

;|*** ++nCount;

;|*** }

;|***

;|*** nBlank = FALSE;

;|*** }

;|*** else

;|*** {

; Line 34

;|*** nBlank = TRUE;

; Line 35

 *** 00001c c7 46 fe 01 00 mov WORD PTR [bp-2],1

;nBlank

;|*** }

; Line 36

;|*** }

; Line 37

 $FC241:

 *** 000021 ff 46 fa inc WORD PTR [bp-6] ;i

 $F240:

 *** 000024 8b 5e fa mov bx,WORD PTR [bp-6] ;i

 *** 000027 8b 76 04 mov si,WORD PTR [bp+4] ;szString

 *** 00002a 8a 00 mov al,[bx][si]

 *** 00002c 88 46 f8 mov BYTE PTR [bp-8],al

 *** 00002f 0a c0 or al,al

 *** 000031 74 15 je $FB242

continues

Part I • Honing Your C Skills

88

;|*** {

; Line 23

;|*** if (szString[i] != ‘ ‘)

; Line 24

 *** 000033 3c 20 cmp al,32

 *** 000035 74 e5 je $I243

;|*** {

; Line 25

;|*** if (nBlank)

; Line 26

 *** 000037 83 7e fe 00 cmp WORD PTR [bp-2],0 ;nBlank

 *** 00003b 74 03 je $I244

;|*** {

; Line 27

;|*** ++nCount;

; Line 28

 *** 00003d ff 46 fc inc WORD PTR [bp-4] ;nCount

;|*** }

; Line 29

;|***

;|*** nBlank = FALSE;

; Line 31

 $I244:

 *** 000040 c7 46 fe 00 00 mov WORD PTR [bp-2],0

;nBlank

;|*** }

; Line 32

;|*** else

; Line 33

 *** 000045 eb da jmp SHORT $FC241

 *** 000047 90 nop

 $FB242:

;|*** {

;|*** nBlank = TRUE;

;|*** }

;|*** }

;|***

Listing 3.7. continued

Pointers and Indirection

89

C C
CC
C

C
C
C C3

;|*** return(nCount);

; Line 39

 *** 000048 8b 46 fc mov ax,WORD PTR [bp-4] ;nCount

 *** 00004b 5e pop si

 *** 00004c 8b e5 mov sp,bp

 *** 00004e 5d pop bp

 *** 00004f c3 ret

_NumberWords ENDP

_TEXT ENDS

END

;|*** }

The assembly listings show the major differences from what the original C
version shows; you should consider several factors, however, when you are deciding
whether to use indexing or to modify pointers:

• Functions that use indexing often are easier to read and understand.

• Functions that use indexing often generate more machine code than functions
that use pointer modification. This situation is more prevalent in functions
that have many references to the variable (or variables) accessed with pointers.

• Functions that use indexing often are slower than functions that use pointer
modification. This situation is more prevalent in functions that have many
references to the variable (or variables) accessed with pointers, and occurs
because the functions usually must add the index to the array base for each
access.

• Functions with array indexing require local variables that require stack space.
This consideration usually is a minor one, but it may be a factor when stack
usage must be either minimized or eliminated.

You should note that even though the example program used a string (which is
a character array), the concepts are the same in other arrays, such as int, long, or float.
The important thing with nonstring arrays is that the function the string is being
passed to must know how many elements are found in the array, because only strings
have a meaningful end marker, NULL.

Part I • Honing Your C Skills

90

Protecting Strings in Memory

If I could find a way to protect strings in memory, I would be rich. Seriously, the only
thing that protects strings in memory is careful programming. Although many
operating environments offer some forms of memory protection and some compilers
offer bounds checking, this protection is limited and easily circumvented—often
unknowingly by programmers.

A number of dangerous functions in the C language’s library don’t know how
long a string is and easily can overwrite a string’s memory allocation without notifying
the programmer. Even functions that tell you how much of the string they used have
possibly already destroyed valuable memory when they write past the end of the string.

Two of the worst offenders are input/output functions and the various string
functions. The input/output functions are often given a buffer in order to read in the
desired information. The problem is that they don’t know how long the buffer is. In
the following example fragment, the programmer made the assumption that a user
never would enter a line longer than 80 characters:

char szBuffer[80]; // You’ll never read more than 80 characters

// (ha-ha).

 if (gets(szBuffer))

 {

// Process the buffer inputted.

 }

The programmer might have thought, for example, that the terminal to be used
allowed only 80 characters per line. The user first used I/O redirection to provide input
to the program, though, and the lines in the user’s file were about 200 characters long.
Of course, the program crashed.

This problem doesn’t really have a fix that always works. The fix most often
consists of putting a realistic maximum on the buffer size, which means that the buffer
must be capable of holding a very large string. In the preceding example, it would not
be unreasonable to define the input buffer to be several thousand bytes long. I usually
create in my programs a generic buffer (called szTempBuffer), which is used for places
where I don’t want to experience buffer overflow.

In the following example, a set of two strings has been defined and then
concatenated, when necessary.

Pointers and Indirection

91

C C
CC
C

C
C
C C3

char szMyName[] = {“Peter D. Hipson”);

char szMyAddress[]= {“New Hampshire”);

// bFullAddress says that the user wants my full address:

 if (bFullAddress)

 {

 strcat(szMyName, szMyAddress);

 }

The only problem is that szMyName is not large enough to hold both strings.
Crash—it’s over! Again, the fix is to be sure that the destination for the library string
functions is large enough. One possible fix is to use szTempBuffer to hold the result of
the concatenation and then test to see whether it fits into the final destination, as in
this example:

strcpy(szTempBuffer, szMyName);

strcat(szTempBuffer, szMyAddress);

if (strlen(szTempBuffer) > sizeof(szMyName))

{ // Truncate the result to fit.

 szTempBuffer[sizeof(szMyName) - 1] = ‘\0’;

 printf(“String ‘%s’ won’t fit into buffer\n”, szTempBuffer);

}

strcpy(szMyName, szTempBuffer);

Or if the preceding example doesn’t require that the operation take place if the
number of characters being assigned to a string doesn’t fit, you can simply test and
perform the operation if it fits:

if (strlen(szMyName) + strlen(szMyAddress) < sizeof(szMyName))

{

 strcat(szMyName, szMyAddress);

}

else

{

 printf(“String ‘%s%s’ won’t fit into buffer\n”,

 szMyName,

 szMyAddress);

}

The primary difference is that the first example copies as many characters as will
fit, and the second does not. For either example to work, the compiler must know how

Part I • Honing Your C Skills

92

large the strings are. It knows how large when the strings are declared in the source file,
or when they are defined with sizes. Because you often define arrays by specifying their
size, you can get into trouble when an error message tells you that the size of the object
is unknown.

When you are using sprint() to print to a string, the function can cause
innumerable problems because most format specifiers for floating-point numbers,
when given an invalid value, print some rather strange results. Often, you assume that
your numbers are always correct; that assumption is a weak one, however, because the
majority of the numbers the program works with are provided by the user. In this case
also, I try to use a large buffer, such as my szTempBuffer, to hold the results of
sprintf() until I can be sure that the resulting string is not too large for the intended
destination.

Ragged-Right String Arrays

There is a problem with using strings. Suppose that you have a program with a large
number of strings, such as list of common sayings. Each line of the sayings is placed
in a string buffer. If these strings are used as constants (they won’t be modified), you
may well want to pack the strings together, with no wasted space.

A more common way of storing strings is shown in the program FIXSTR.C. It
allocates an array of 25 lines, each of which is 80 characters long. The total storage
required for this array is 2,000 bytes (see Listing 3.8).

Listing 3.8. FIXSTR.C.

/* FIXSTR, written 20 May 1992 by Peter D. Hipson */

/* Fixed-length strings in a program. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#define MAX_LINES 25

#define MAX_LENGTH 80

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

Pointers and Indirection

93

C C
CC
C

C
C
C C3

int main()

{

int i;

char szSaying[MAX_LINES][MAX_LENGTH] =

 {

 “Firestone’s Law of Forecasting:”,

 “ Chicken Little only has to be right once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”

 };

 printf(

 “Number of lines is %d\n”

 “size of item is %d\n”

 “size of (char) is %d\n”,

 sizeof(szSaying) / sizeof(szSaying[0]), // Number of elements.

 sizeof(szSaying[0]), // Size of char *

 sizeof(szSaying[0][0])); // Size of char

 switch (sizeof(char *))

 {

 case 2: // Near pointers

 printf(“Addr len saying\n”);

 break;

continues

Part I • Honing Your C Skills

94

 case 4: // Far pointers, 808x segmented pointers.

 printf(“Address len saying\n”);

 break;

 }

 for (i = 0; i < sizeof(szSaying) / sizeof(szSaying[0]); i++)

 {

 printf(“%p %3d ‘%s’\n”,

 szSaying[i],

 strlen(szSaying[i]),

 szSaying[i]);

 }

 return (0);

}

Figure 3.2 shows an example of how the memory for FIXSTR.C’s szSaying is
allocated and used. In this program, szSaying is a single, two-dimensional character
array.

Listing 3.8. continued

Figure 3.2. szSaying in FIXSTR.C.

Pointers and Indirection

95

C C
CC
C

C
C
C C3

In Listing 3.9, RAGSTR.C shows a different way of allocating the strings. In this
program, C has been told to allocate an array of string pointers, and then give constants
as initializers. This technique wastes no space, and with two allocated arrays (one is the
pointer to a string array, and the other is the string array that’s being pointed to), only
521 bytes of storage are required.

Listing 3.9. RAGSTR.C.

/* RAGSTR, written 20 May 1992 by Peter D. Hipson */

/* Non-fixed-length strings in a program. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

int main(void); // Define main() and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int i;

char *szSaying[] =

 {

 “Firestone’s Law of Forecasting:”,

 “ Chicken Little only has to be right once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

continues

Part I • Honing Your C Skills

96

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”

 };

 printf(

 “Number of lines is %d\n”

 “size of item is %d\n”

 “size of (char) is %d\n”,

 sizeof(szSaying) / sizeof(szSaying[0]), // Number of elements.

 sizeof(szSaying[0]), // Size of char *

 sizeof(szSaying[0][0])); // Size of char

 switch (sizeof(char *))

 {

 case 2: // Near pointers

 printf(“Addr len saying\n”);

 break;

 case 4: // Far pointers, 808x segmented pointers.

 printf(“Address len saying\n”);

 break;

 }

 for (i = 0; i < (sizeof(szSaying) / sizeof(szSaying[0])); i++)

 {

 printf(“%p %3d ‘%s’\n”,

 szSaying[i],

 strlen(szSaying[i]),

 szSaying[i]);

 }

 return (0);

}

Notice that the main body of the program, especially the for() loop used to print
the strings, is identical in each program, despite the fact that each program has two
different types of array addressing.

Listing 3.9. continued

Pointers and Indirection

97

C C
CC
C

C
C
C C3

Figure 3.3 shows an example of how the memory for RAGSTR.C’s szSaying is
allocated and used. In this program, szSaying is a single-dimensional array of character
pointers. Each pointer then is initialized to point to the correct initializing character
string.

Figure 3.3. szSaying in RAGSTR.C.

Don’t be concerned if this discussion leaves you confused—certain parts of the
C language, and the way it is used, can confuse anyone. The important factors in the
preceding two programs include the following:

1. A two-dimensional array of type char, accessed with only one subscript,
effectively returns a pointer to a character string.

2. A single-dimensional array of type char * can be initialized with a set of string
constants.

3. If a single-dimensional array of type char * is initialized with a set of string
constants, you should be careful about modifying them. The process of
modifying a string constant is undefined under ANSI C, and many compilers
keep only one copy of a set of identical strings (also legitimate under ANSI C).

4. A single-dimensional array of type char *, initialized with a set of string
constants, uses less memory than a two-dimensional array of type char.

Part I • Honing Your C Skills

98

5. A two-dimensional array of type char can be initialized and effectively modi-
fied by a program.

When you are working under the constraint that character strings stored in a
ragged-right format are difficult—if not impossible—to modify, this format can save
a large amount of wasted storage space.

Summary

In this chapter, you learned about pointers and indirection.

• Pointers are generally variables whose contents are the address of a memory
object.

• Indirection is the modification of the memory object pointed to by a pointer.

• Strings are arrays of type char. The end of a string is indicated by the NULL
character.

• Indirection is used often in functions that must modify one (or more) of the
parameters that was passed to the function.

• Strings are best protected by good programming style: Be sure all buffers and
string variables can hold the objects placed in them.

• Strings can be stored in a ragged-right format that saves memory. Generally,
such strings are difficult to modify.

Special Pointers and Their Use

99

C C
CC
C

C
C
C C4C C

CC
C

C
C
C C4

Special Pointers and

Their Use

Chapters 2 and 3 described pointers as they pertain to data objects. This chapter
discusses pointers that point to objects other than data. Just as you can have a pointer
that points to a data object, you can also have a pointer that points to a function.
Pointers have several special uses in programming, too. One such use is to obtain the
program’s name and any parameters that have been entered by the user and passed to
the program by the operating system.

Command Line Arguments

Command line arguments are vital to many programs you create. Command line
arguments are used for options, input and output data sources, and to enable the user
to pass parameters to the program.

Part I • Honing Your C Skills

100

The operating system processes the arguments the user enters, and places each
one in a string that is pointed to by a pointer that you can access. Suppose that the user
enters the following command line:

WONDER /Why Ask.dat

The program can access not only the program’s name, but also the command line
arguments. These are passed to the main() function as parameters. Until now, the
main() function has taken no parameters; in reality, however, three parameters are
passed to main() when it is called. The function prototype for the main() function is

int main(

 int argc,

 char *argv[],

 char *envp[]

)

The argc parameter, an integer, contains the number of elements in the passed
array of argv[]. Because the first member of argv[] is the program’s name (usually this
is a fully qualified name, complete with the drive and directory information), the value
of argc is always at least 1. Some compilers and operating systems don’t provide the
program name, but have argv[0] point instead to some predefined string constant,
such as "C".

The * argv[] parameter is an array of char pointers. The first element in argv[]
always points to the program’s name, and each subsequent member points to a
parameter. Each parameter is separated by the operating system’s default parameter
separator, usually a blank or comma. Under the PC’s DOS operating system, only a
blank is used as a separator. The end of this list of parameters can be determined by
either using argc or testing the pointer, which is NULL to signify the end of the list.

The * envp[] parameter is an array of char pointers. The first element in argv[]
points to the first environment string (when you are using DOS on the PC). Each
subsequent member points to a succeeding environment string. Each environment
string looks just like it does when you enter the DOS command SET, where you have
an environment variable, an equal sign, and a string. The end of this list of environment
strings can be determined by testing each envp[] pointer, when NULL is encountered,
signifying the end of the environment list.

Listing 4.1 is a simple program that prints both the passed parameters and the
environment strings to the screen. This program’s output depends somewhat on which
operating system it runs; however, it shouldn’t fail when it is run under different
operating systems.

Special Pointers and Their Use

101

C C
CC
C

C
C
C C4

Listing 4.1. MAINARGS.C.

/* MAINARGS, written 22 May 1992 by Peter D. Hipson */

/* This program prints a program's arguments. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

int main(// Define main() and the fact that this program uses

 int argc, // the passed parameters.

 char *argv[],

 char *envp[]

);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

int i;

 printf("\n");

 printf("Program name is '%s'\n\n",

 argv[0]);

// argc includes the program name, so decrement for actual

// passed parameters.

 printf("Number of parameters %d \n\n",

 argc - 1);

// It's just as valid is to use:

// for (i = 1; i < argc; i++)

 for (i = 1; argv[i]; i++)

continues

Part I • Honing Your C Skills

102

Listing 4.1. continued

 {

 printf("Passed parameter %2d is '%.50s'\n",

 i,

 argv[i]);

 }

 printf("\n");

// Environment variables may not be meaningful for all

// operating systems. Check the compiler's documentation.

// If this information is not available on your system,

// delete the below for() loop.

 for (i = 0; envp[i]; i++)

 {

 printf("Environment string %2d is '%.50s'\n",

 i,

 envp[i]);

 }

 return (0);

}

As the MAINARGS program shows, the command line parameters are easy to
access—the operating system does all the work for you. Almost all the work, at least.
You still have to process the arguments and do whatever is required of your program.

Programs generally accepts three types of information:

1. Input or output filenames

2. Options, generally preceded by either a hyphen (-) or a slash (/)

3. Parameters, which may or may not be in any given format

Let’s write a program that expects two filenames (both input and output), several
options, and a parameter. This program reformats the lines of the input to the number
of characters specified by the parameter. Possible options are to justify the lines or make
them flush left or flush right. For simplicity, you don’t write the program to actually
do this work; however, you process the program’s command line, and set flags,
filenames, and the line width. Listing 4.2, JUSTIFY.C, is the basis for this program.

Special Pointers and Their Use

103

C C
CC
C

C
C
C C4

Listing 4.2. JUSTIFY.C.

/* JUSTIFY, written 22 May 1992 by Peter D. Hipson */

/* This program justifies text files (shell only). It assumes

 * and uses Microsoft's extensions to C. Readers with other

 * compilers may have to change the program to use the calls

 * that their compiler supplies to perform the same functions. */

/* This program assumes the command line syntax shown in

 * the GiveHelp() function. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit() etc.

#define LEFT 1

#define RIGHT 2

#define JUSTIFY 3

#define INNAME 1

#define OUTNAME 2

#define WIDTH 3

#define LAST_THING 4

#define ARG_LEFT 'l'

#define ARG_RIGHT 'r'

#define ARG_JUSTIFY 'j'

#define ARG_SLASH '/'

#define ARG_DASH '-'

#define ARG_HELP '?'

#define NOINNAME 1

#define NOOUTNAME 2

#define BAD_WIDTH 3

#define BAD_PARM 4

#define BAD_OPTION 5

#define NAME_MISSING 6

continues

Part I • Honing Your C Skills

104

Listing 4.2. continued

int main(// Define main() and the fact that this program uses

 int argc, // the passed parameters.

 char *argv[],

 char *envp[]

);

void GiveHelp(

 int nLevel,

 char *psItem);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

char *pszTemp;

char szBuffer[129]; // Temporary work buffer.

char szProgram[30];

char szInputFile[132]; // Make large enough for your OS.

char szOutputFile[132]; // Make large enough for your OS.

/* strings for _splitpath() (which parses a filename) */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

int i;

int j;

int nCurrentParameter = INNAME;

int nTempWidth = 0;

int nLineWidth = 80;

int nJustification = LEFT;

Special Pointers and Their Use

105

C C
CC
C

C
C
C C4

 if (argc <= 2)

 {

 GiveHelp(argc, NULL);

 return(16);

 }

 _splitpath(argv[0],

 szDrive,

 szDir,

 szFname,

 szExt);

 strncpy(szProgram, szFname, sizeof(szProgram) - 1);

 for (i = 1; argv[i]; i++)

 {

 if (argv[i][0] == '/' || argv[i][0] == '-')

 { /* You have an argument, convert to lowercase, and test. */

 pszTemp = strlwr(argv[i]);

 for (j = 1; j < strlen(pszTemp); j++)

 {

 switch(pszTemp[j])

 {

 case ARG_LEFT:

 nJustification = LEFT;

 break;

 case ARG_RIGHT:

 nJustification = RIGHT;

 break;

 case ARG_JUSTIFY:

 nJustification = JUSTIFY;

 break;

 case ARG_HELP:

 GiveHelp(NOINNAME, NULL);

 exit(4);

 break;

continues

Part I • Honing Your C Skills

106

Listing 4.2. continued

 case ARG_SLASH:

 case ARG_DASH:

 break;

 default:

 GiveHelp(BAD_OPTION, &pszTemp[j]);

 break;

 }

 }

 }

 else

 { /* Either a filename or width. */

 switch(nCurrentParameter)

 {

 case INNAME:

 strcpy(szInputFile, argv[i]);

 nCurrentParameter = OUTNAME;

 break;

 case OUTNAME:

 strcpy(szOutputFile, argv[i]);

 nCurrentParameter = WIDTH;

 break;

 case WIDTH:

 sscanf(argv[i], "%d", &nTempWidth);

 if (nTempWidth < 20 || nTempWidth > 128)

 {

 GiveHelp(BAD_WIDTH, NULL);

 }

 else

 {

 nLineWidth = nTempWidth;

 }

 nCurrentParameter = LAST_THING;

 break;

Special Pointers and Their Use

107

C C
CC
C

C
C
C C4

 default:

 GiveHelp(BAD_PARM, NULL);

 break;

 }

 }

 }

 if (nCurrentParameter < WIDTH)

 { /* Didn't get two filenames! */

 GiveHelp(NAME_MISSING, NULL);

 return(16);

 }

 printf("\n");

 printf(

 "%s would read the file '%s' and write the file '%s'\n\n",

 szProgram,

 szInputFile,

 szOutputFile);

 switch(nJustification)

 {

 case LEFT:

 printf("The lines would be %d characters long, left \

 aligned\n",

 nLineWidth);

 break;

 case RIGHT:

 printf("The lines would be %d characters long, right \

 aligned\n",

 nLineWidth);

 break;

 case JUSTIFY:

 printf("The lines would be %d characters long, justified\n",

 nLineWidth);

 break;

 }

continues

Part I • Honing Your C Skills

108

Listing 4.2. continued

/* In the final version of this program, the files would

 * be opened next and the input file would be read into a buffer,

 * formatted according to the wishes of the user, and written

 * to the output file. At the end, the files would be closed,

 * and perhaps some statistical information could be

 * presented to the user.

 */

 return (0);

}

void GiveHelp(

 int nLevel,

 char *psItem)

{

 printf("\n");

 switch(nLevel)

 {

 case NOINNAME:

 case NOOUTNAME: // Not enough parameters!

 printf(

 "FORMAT [-r|-l|-j] inputfile outputfile width\n"

 " where \n"

 " Options - -r (or /r) to right align \n"

 " -l (or /l) to left align \n"

 " -j (or /j) to justify\n"

 "\n"

 " inputfile - is the input file name \n"

 " outputfile - is the output file name \n"

 "\n"

 " width is the desired output width (20 to 128)\n"

 " (default is 80 characters).\n"

 "\n"

 " Note: lines are concatenated, paragraph breaks are\n"

 " signaled with a blank line\n\n");

 break;

Special Pointers and Their Use

109

C C
CC
C

C
C
C C4

 case BAD_WIDTH:

 printf(

 "The width parameter must be between 20 and 128!\n"

 "the width is ignored\n");

 break;

 case BAD_PARM:

 printf("Excessive parameters have been entered\n");

 /* Force a display of full help! */

 GiveHelp(NOINNAME, NULL);

 break;

 case BAD_OPTION:

 printf("'%c' is an invalid option! (Use only -l, -r or -j)\n",

 *psItem);

 break;

 case NAME_MISSING:

 printf("One or both of the required file names is missing!\n");

 /* Force a display of full help! */

 GiveHelp(NOINNAME, NULL);

 break;

 default:

 printf(

 "An unspecified error occurred! FORMAT has ended!\n"

);

 exit(16);

 break;

 }

}

Part I • Honing Your C Skills

110

This isn’t so hard, is it? You have three possible options in JUSTIFY. You don’t
check to see whether one of these options has been entered—you just accept the last
one entered. You can set a flag, and if too many options are entered or there are
conflicting options, warn the user. The syntax of JUSTIFY shows the following:

1. The filenames (input and then output) and the width must be entered in that
order.

2. The options must be preceded by either a slash (/) or a dash (-) option flag.
One or more options can follow the option flag.

3. The options can be entered anywhere in the command line, before, after, or
interspersed with other parameters.

4. The filenames must be entered; the width, however, is optional.

5. The GiveHelp() function is recursive—it calls itself to give the command
syntax for some errors.

You can use JUSTIFY as a shell to create almost any simple utility program by
changing what it expects for files, parameters, and options.

So that you have a better understanding of what JUSTIFY does with the
command line arguments, let’s look at several parts of the program in detail. First, you
check to see that there are at least two command line arguments. Because both an input
and an output filename are required, if there are not two arguments, one (or both) of
these is missing. This test isn’t exhaustive—you must test again later to make sure that
you have received two filenames and not just a lot of options. The test for the number
of arguments is simply:

if (argc <= 2)

{

 GiveHelp(argc, NULL);

 return(16);

}

The return’s value is passed back to the operating system, and if this program
was run under DOS, the value can be tested using the DOS BATCH command if
errorlevel command.

After you have checked to see that you have the minimum number of command
line arguments, rather than hard-code the name of the program, you then extract the
program’s name. You do this extraction so that, if the user has renamed your program,
you present the user with the correct program name. It’s confusing to rename a

Special Pointers and Their Use

111

C C
CC
C

C
C
C C4

command and have the error messages continue to give the old name. You then loop
through the list of command line arguments, using a simple for() loop:

for (i = 1; argv[i]; i++)

{

You test for the terminating NULL command line argument pointer that signifies
the end of the list. For each parameter, you look at the first character. If it is either a
slash or a dash, the command line argument is an option:

if (argv[i][0] == '/' || argv[i][0] == '-')

{ /* You have an argument, convert to lowercase, and test. */

 pszTemp = strlwr(argv[i]);

You convert options to lowercase (to minimize the testing) because you don’t
have case-sensitive options in this program. Because in some programs the options
-p and -P have different meanings, it’s unlikely that users will remember the difference
between the two. Make your program user-friendly by ignoring case if possible.

After changing the case, you simply loop through the option’s string. Start with
the second character because you know that the first character is the slash or dash.
Using a switch, you check each valid letter option, and when there is a match, you set
that option as required. Some programs have used the slash as the option prefix flag,
and a dash to turn the option off; however, I suggest that you turn an option on with
one letter, and off with another. Two-letter options (common with compilers and
other complex programs) can be processed by looking at the first letter, and then the
second, simply by adding a second nested switch() statement where needed:

 for (j = 1; j < strlen(pszTemp); j++)

 {

 switch(pszTemp[j])

 {

 case ARG_LEFT:

 nJustification = LEFT;

 break;

 case ARG_RIGHT:

 nJustification = RIGHT;

 break;

 case ARG_JUSTIFY:

 nJustification = JUSTIFY;

 break;

Part I • Honing Your C Skills

112

 case ARG_HELP:

 GiveHelp(NOINNAME, NULL);

 exit(4);

 break;

 case ARG_SLASH:

 case ARG_DASH:

 break;

 default:

 GiveHelp(BAD_OPTION, &pszTemp[j]);

 break;

 }

 }

}

In the preceding switch() block, you ignore imbedded slashes and dashes. Users
commonly enter a set of options with a slash or dash before each option and with no
intervening spaces.

You also process correctly the /? option, the relatively standard syntax for help.
You can also process /h for help.

Notice the default: in this block: If the user has entered an unrecognized option
letter, you provide a message that indicates the invalid option letter.

In the following block, you have either one of the filenames or the width specifier.

 else

{ /* Either a filename or width. */

These three items are positional; that is, the input filename is always the first of
the three, the output filename is the second, and the width (which is optional) is always
the third. There are numerous reasons for this order: One reason is that a filename can
be a number (and therefore, width cannot be first if it is to be optional); another reason
is that the two filenames must be provided in a known order because they are
indistinguishable to the program.

You keep track of which of these three items you are processing by using the
variable nCurrentParameter. This variable works as a state machine (see the “State
Machines” section, later in this chapter), and changes its state every time a parameter
is encountered:

Special Pointers and Their Use

113

C C
CC
C

C
C
C C4

 switch(nCurrentParameter)

 {

 case INNAME:

 strcpy(szInputFile, argv[i]);

 nCurrentParameter = OUTNAME;

 break;

 case OUTNAME:

 strcpy(szOutputFile, argv[i]);

 nCurrentParameter = WIDTH;

 break;

 case WIDTH:

 sscanf(argv[i], "%d", &nTempWidth);

 if (nTempWidth < 20 || nTempWidth > 128)

 {

 GiveHelp(BAD_WIDTH, NULL);

 }

 else

 {

 nLineWidth = nTempWidth;

 }

 nCurrentParameter = LAST_THING;

 break;

 default:

 GiveHelp(BAD_PARM, NULL);

 break;

 }

 }

}

The width parameter is tested, and the variable nLineWidth is updated only if the
width is within the program’s bounds of 20 to 128. (I’m not saying that these bounds
are realistic—just that they can be.) You know that the user entered at least two
parameters, but you don’t know whether two of them were filenames. A confused user

Part I • Honing Your C Skills

114

might have entered the command name, with no filenames, and with all three option
letters as separate command line parameters:

JUSTIFY /j /l -r

This command line syntax has the minimum number of command line
parameters; however, you don’t have any filenames. You test for this with the following
code:

if (nCurrentParameter < WIDTH)

{ /* Didn't get two filenames! */

 GiveHelp(NAME_MISSING, NULL);

 return(16);

}

Again, the state machine variable, nCurrentParameter, lets you know how many
filenames the user entered. If the state machine variable isn’t at least to the WIDTH state,
you didn’t get the required filenames.

The remainder of the program is simple because I didn’t write the text-
formatting part of this program. It has minimal error checking and a simple error-
message function that receives an error message code and an optional character pointer.
The character pointer can point to either a single character or a string. You must make
sure that the message’s printf() statements know what the pointer is pointing to.

One of the interesting things about the error message processor is that it is
recursive: It calls itself when the user needs to have the full command syntax. The
following syntax is accepted: /lr. That is, more than one option can follow the slash
or dash option flag. If the user has entered a number of options following the slash or
dash, and one of the options is invalid, do you stop processing this command line
parameter? Probably not, but you must consider all possible situations and program
accordingly.

Function Pointers

Function pointers can be used to do almost anything you can do with a function name.
You can still pass parameters to a function that is being called with a pointer.

Sometimes, using pointers to functions is the only way to do something. A classic
example is the library function qsort(), which takes a pointer to a function. This
pointer often is coded as a constant; you might, however, want to code it as a function
pointer variable that gets assigned the correct function to do qsort()’s compare.

Special Pointers and Their Use

115

C C
CC
C

C
C
C C4

The program FUNPTR.C, in Listing 4.3, has an example of one use of function
pointers. This program calls a different function for each character in an input string.
Although initializing the array of function pointers may take some time (and effort)
in most programs, this time factor is not as significant as the effort to program separate
calls, even if the separate calls are in a function by themselves.

Listing 4.3. FUNPTR.C.

/* FUNPTR, written 22 May 1992 by Peter D. Hipson */

/* An array of function pointers. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit() etc.

int main(// Define main() and the fact that this program uses

 int argc, // the passed parameters.

 char *argv[],

 char *envp[]

);

void NonPrint(const char chChar);

void Letter(const char chChar);

void Number(const char chChar);

void Space(const char chChar);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

void (*function[256])(const char);

char *pszTemp;

char szBuffer[512]; // Your input buffer.

continues

Part I • Honing Your C Skills

116

Listing 4.3. continued

int i;

/* First initialize your array of function pointers. Notice that,

 * because you have specified what the function pointed to by this

 * pointer requires for a parameter, all the functions assigned to

 * this array require the same number and types of parameters.

 * The parameters could have been omitted, but then you don't

 * benefit from type checking on parameters. */

 for (i = 0; i < 256; i++)

 {

 if ((unsigned char)i < ' ')

 {

 function[i] = NonPrint;

 }

 else

 {

 if ((unsigned char)i >= '0' &&

 (unsigned char)i <= '9')

 {

 function[i] = Number;

 }

 else

 {

 if ((unsigned char)i == ' ')

 {

 function[i] = Space;

 }

 else

 {

 function[i] = Letter;

 }

 }

 }

 }

 while (gets(szBuffer))

 {

 for (i = 0; szBuffer[i]; i++)

Special Pointers and Their Use

117

C C
CC
C

C
C
C C4

 {

/* Now, this is nice syntax: */

 function[(int)szBuffer[i]] (szBuffer[i]);

 }

 }

 return(0);

}

void NonPrint(

 const char chChar)

{

/* Make it printable by adding a '@' to it.*/

 printf("CTRL - '%c'\n", chChar + '@');

}

void Space(

 const char chChar)

{

 printf("Space '%c'\n", chChar);

}

void Letter(

 const char chChar)

{

 printf("Letter '%c'\n", chChar);

}

void Number(

 const char chChar)

{

 printf("Number '%c'\n", chChar);

}

Part I • Honing Your C Skills

118

(Remember, I didn’t promise that FUNPTR does anything significant.)

I’ve shown that function prototypes are important, but, in a program that is using
function pointers, they are vital. Notice that each of the functions that will be assigned
to the function pointer has identical prototypes—their return types are the same and
their parameters match equally.

Let’s look at some of the fun parts of FUNPTR. The declaration of the array of
function pointers has a number of critical parts:

void (*function[256])(const char);

The void tells C that these functions don’t return anything. If the functions
return a value, use that value’s type. Because the order and positioning of the
parentheses are critical, the name of the function pointer is next. If this were not an
array declaration, the declaration would be

void (*function)(const char);

Following the function pointer name are the function’s parameters (again, the
parentheses are important). Keep it simple—try to avoid having functions assigned
that take different types or counts of parameters. Having functions with different
parameters weakens the compiler’s capability to check for errors, although it is
possible.

After declaring the function pointer array, you initialize it. When you assign a
function’s address to a function pointer, do not use the function’s parentheses.

for (i = 0; i < 256; i++)

{

 if ((unsigned char)i < ' ')

 {

 function[i] = NonPrint; /* NOTICE: No (), just the name */

 }

 else

 {

 if ((unsigned char)i >= '0' &&

 (unsigned char)i <= '9')

 {

 function[i] = Number; /* NOTICE: No (), just the name */

 }

 else

 {

 if ((unsigned char)i == ' ')

Special Pointers and Their Use

119

C C
CC
C

C
C
C C4

 {

 function[i] = Space; /* NOTICE: No (), just the name */

 }

 else

 {

 function[i] = Letter; /* NOTICE: No (), just the name */

 }

 }

 }

}

Because FUNPTR has an array of 256 possible functions to call, you initialize
all of them. Because you potentially call a different function for each of the possible 256
characters in the character set and because (with a few exceptions) the user can enter
any character, you must make sure that all the members of the function pointer array
are initialized.

After you have initialized the function pointer array, you can continue with the
rest of the program. Use a simple loop to get a line from the keyboard, and then for
each character in the line, call the appropriate function:

 while (gets(szBuffer))

 {

 for (i = 0; szBuffer[i]; i++)

 {

/* Now, this is nice syntax: */

 function[(int)szBuffer[i]] (szBuffer[i]);

 }

 }

Notice the strange call function[]() (using an array of function pointers doesn’t
always look good). It eliminates a large if()...else block that saves valuable program-
ming time if this letter-by-letter parsing of the string is done often (more than once)
in a program. A second important factor is that the while() loop runs faster because
many if() statements are eliminated.

Using a function pointer as a parameter in a function call is not unusual. As
mentioned, the library function qsort() does this.

Look at the following prototype for qsort(). The prototype is in the standard
header file stdlib.h and in search.h, if your compiler has such a header file.

Part I • Honing Your C Skills

120

void _FAR_ __cdecl qsort(

 void _FAR_ *, /* array to be sorted */

 size_t, /* number of elements in the array */

 size_t, /* size of each array element */

 int (_FAR_ __cdecl *)(const void _FAR_ *, const void _FAR_ *));

qsort()’s first three parameters are as expected: an array pointer, two integers
showing the number of elements in the array, and the size of the elements.

The final parameter in the call to qsort() is the most interesting one. It specifies
that the parameter is the address of a function that returns an int value and takes two
far pointers. Both of these pointers are declared as type void so that any type of pointer
can be passed; the function being called, however, must know the pointer’s type. Because
each call to qsort() is generally for a specific type of array, the function being called
will know about the array’s types. qsort() is discussed in detail in Chapter 10, “Data
Management: Sorts, Lists, and Indexes.”

Menus and Pointers

Peter’s programming rule number 6: Don’t reinvent the wheel. OK, it’s not an original
rule, but even with Peter’s rules, I didn’t want to reinvent the rule.

There are several easy ways to put menus in a program without writing them all
yourself. The first and by far the best is to use Windows. No kidding, Windows is an
effective way to create slick user interfaces. Don’t be put off by the learning curve of
Window’s programming—it is much less than writing the user interface yourself.

If you are determined not to use Windows, systems are available that enable
almost any type of program to have extensive menu support, such as pull-down menus,
pop-up dialog menus, and so on.

It’s well beyond the scope of this book to write an entire pull-down menu system.
One simple text-only system requires many thousands of lines of code. This book can,
however, cover many of the basics.

A pull-down menu might, for example, call a different function for each of the
menu items. The function call to the menu system might include such parameters as
an array for each menu item’s text and an array of function pointers to call for each
menu item.

Special Pointers and Their Use

121

C C
CC
C

C
C
C C4

You can look at the top bar menu separately and use a rather simple call to a
function such as getch() to process the keystrokes entered. Part of MENU1.C assumes
that the program is running under DOS on a PC, that the ANSI.SYS device driver
(used for screen control) is installed, and that the compiler supports the functions this
program calls.

In Listing 4.4, the program MENU1.C implements a simple pull-down menu
that has a simple dialog box to enable the user to enter a filename.

Listing 4.4.MENU1.C.

/* MENU1, written 23 May 1992 by Peter D. Hipson */

/* A simple menu program. */

/* This program assumes and uses Microsoft's extensions to C.

 * Readers with other compilers may have to change the program

 * to use the calls that their compiler supplies to perform

 * the same functions. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

#include <conio.h> // For getch() and other console I/O.

#include <ctype.h> // For char functions (_toupper()...)

/* ANSI.SYS screen control #define's below:

*/

#define BOLD "\x1B[1m"

#define NORMAL "\x1B[0m"

#define RED "\x1B[31m"

#define BLACK "\x1B[30m"

#define GREEN "\x1B[32m"

#define CLEAR_SCREEN "\x1B[2J"

#define CLEAR_EOL "\x1B[K"

#define MOVE_CURSOR "\x1B[%d;%df"

continues

Part I • Honing Your C Skills

122

Listing 4.4.continued

char szTopBar[] = {/* Must be 80 characters long MAX. */

 CLEAR_SCREEN

 BOLD"F"NORMAL"iles "

 BOLD"E"NORMAL"dit "

 BOLD"V"NORMAL"iew "

 BOLD"P"NORMAL"roject "

 BOLD"R"NORMAL"un "

 BOLD"D"NORMAL"ebug "

 CLEAR_EOL

 };

/* Line-drawing characters for the PC = " "*/

void MenuBar(); /* Never called! Make the array look good. */

char *szFiles[] = {

 " ",

 " "BOLD"N"NORMAL"ew ",

 " "BOLD"O"NORMAL"pen ",

 " "BOLD"C"NORMAL"lose ",

 " "BOLD"S"NORMAL"ave ",

 " save "BOLD"A"NORMAL"s ",

 " ",

 " "BOLD"P"NORMAL"rint ",

 " ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´",

 " e"BOLD"X"NORMAL"it ",

 " ",

 NULL};

void DoFilesNew();

void DoFilesOpen();

void DoFilesClose();

void DoFilesSave();

void DoFilesSaveAs();

void DoFilesPrint();

void DoFilesEXit();

Special Pointers and Their Use

123

C C
CC
C

C
C
C C4

void (*FilesFunctions[])(void) = {

 MenuBar,

 DoFilesNew,

 DoFilesOpen,

 DoFilesClose,

 DoFilesSave,

 DoFilesSaveAs,

 MenuBar,

 DoFilesPrint,

 MenuBar,

 DoFilesEXit,

 MenuBar,

 NULL

 };

int main(// Define main() and the fact that this program uses

 int argc, // the passed parameters.

 char *argv[],

 char *envp[]

);

void PullDown(char **, int, void (__cdecl **)(void));

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

char chEntered;

 while (1)

 {

 printf(szTopBar);

 chEntered = (char)getch(); continues

Part I • Honing Your C Skills

124

Listing 4.4. continued

 if (chEntered == '\0' || chEntered == '\xE0')

 { // PC Extended character (function key etc.)

 chEntered = (char)getch();

 }

 printf(MOVE_CURSOR, 10, 10); /* Using printf() fully here! */

 switch (_toupper((int)chEntered))

 {

 case 'F':

 PullDown(szFiles, 1, FilesFunctions);

 break;

 case 'E':

 printf("Edit submenu called" CLEAR_EOL);

 break;

 case 'V':

 printf("View submenu called" CLEAR_EOL);

 break;

 case 'P':

 printf("Project submenu called" CLEAR_EOL);

 break;

 case 'R':

 printf("Run submenu called" CLEAR_EOL);

 break;

 case 'D':

 printf("Debug submenu called" CLEAR_EOL);

 break;

 default:

 printf("Invalid key!" CLEAR_EOL);

 break;

 }

 }

Special Pointers and Their Use

125

C C
CC
C

C
C
C C4

 return(0);

}

void PullDown(

 char * szMenu[],

 int nColumn,

 void (__cdecl *pFunctions[])(void))

{

int i;

int nMenuItem = -1;

char chEntered;

 for (i = 0; szMenu[i]; i++)

 {

 printf(MOVE_CURSOR, i + 1, nColumn);

 printf(szMenu[i]);

 }

 while (nMenuItem < 0)

 {

 chEntered = (char)getch();

 if (chEntered == '\0' || chEntered == '\xE0')

 { // PC Extended character (function key etc.)

 chEntered = (char)getch();

 }

 chEntered = (char)_toupper((int)chEntered);

/* find the correct menu item index */

 if (isalnum((int)chEntered))

 {

 for (i = 0; szMenu[i]; i++)

 {

continues

Part I • Honing Your C Skills

126

Listing 4.4. continued

 if (strchr(szMenu[i], chEntered))

 {

 nMenuItem = i;

 break;

 }

 }

 }

 if (nMenuItem >= 0)

 {

 pFunctions[nMenuItem]();

 }

 }

}

void DoFilesNew()

{

 printf(MOVE_CURSOR, 20, 10);

 printf("Files, new");

 printf(MOVE_CURSOR, 24, 10);

 printf("Any key to continue");

 (void)getch();

}

void DoFilesOpen()

{

/* Presents to the user a simple get a filename dialog box,

 * enabling character string to be entered. Basic editing supported.

 */

int i;

/* These hard-coded constants, for placement of dialog box,

 * normally would be passed.

Special Pointers and Their Use

127

C C
CC
C

C
C
C C4

 */

int nColumn = 15;

int nRow = 15;

int nInputColumn = 2;

int nInputRow = 4;

char szFileName[132];

char *szFilesOpen[] = {

 "ÚÄÄÄ¿",

 "3 3",

 "3Enter the name of the file to open: 3",

 "3 3",

 "3 .. 3",

 "3 3",

 "ÀÄÄÄÙ",

 NULL};

 for (i = 0; szFilesOpen[i]; i++)

 {

 printf(MOVE_CURSOR, i + nRow, nColumn);

 printf(szFilesOpen[i]);

 }

 printf(MOVE_CURSOR,

 nInputRow + nRow,

 nInputColumn + nColumn);

 scanf("%s", szFileName);

 printf(MOVE_CURSOR, 24, 10);

 printf("NAME: '%s' Any key to continue", szFileName);

 (void)getch();

}

void DoFilesClose()

{

 printf(MOVE_CURSOR, 20, 10);

 printf("Files, close selected"); continues

Part I • Honing Your C Skills

128

Listing 4.4. continued

 printf(MOVE_CURSOR, 24, 10);

 printf("Any key to continue");

 (void)getch();

}

void DoFilesSave()

{

 printf(MOVE_CURSOR, 20, 10);

 printf("Files, save selected");

 printf(MOVE_CURSOR, 24, 10);

 printf("Any key to continue");

 (void)getch();

}

void DoFilesSaveAs()

{

 printf(MOVE_CURSOR, 20, 10);

 printf("Files, save as selected");

 printf(MOVE_CURSOR, 24, 10);

 printf("Any key to continue");

 (void)getch();

}

void DoFilesPrint()

{

 printf(MOVE_CURSOR, 20, 10);

Special Pointers and Their Use

129

C C
CC
C

C
C
C C4

 printf("Files, print selected");

 printf(MOVE_CURSOR, 24, 10);

 printf("Any key to continue");

 (void)getch();

}

void DoFilesEXit()

{

 printf(MOVE_CURSOR, 20, 10);

 printf("Files, exit selected");

 exit(0);

}

void MenuBar()

{

/* This function is never called! */

}

MENU1.C is the most complex program this book has discussed. It shows
several important features, including passing an array of function pointers and using
screen control and—of course—menus.

One of the first things you do in MENU1 is define some string identifiers. These
identifiers are used to format the menu items, position the cursor, and perform other
screen-management functions:

/* ANSI.SYS screen control #define's below: */

#define BOLD "\x1B[1m"

#define NORMAL "\x1B[0m"

#define RED "\x1B[31m"

#define BLACK "\x1B[30m"

Part I • Honing Your C Skills

130

#define GREEN "\x1B[32m"

#define CLEAR_SCREEN "\x1B[2J"

#define CLEAR_EOL "\x1B[K"

#define MOVE_CURSOR "\x1B[%d;%df"

Notice the identifier MOVE_CURSOR. Used with printf() and a set of integer
parameters specifying cursor row and column, you can position the cursor using the
following statement:

printf(MOVE_CURSOR, 10, 20);

The definition of the program’s top menu bar makes heavy use of string constant
concatenation and ANSI screen control.

char szTopBar[] = {/* Must be 80 characters long MAX. */

 CLEAR_SCREEN

 BOLD"F"NORMAL"iles "

 BOLD"E"NORMAL"dit "

 BOLD"V"NORMAL"iew "

 BOLD"P"NORMAL"roject "

 BOLD"R"NORMAL"un "

 BOLD"D"NORMAL"ebug "

 CLEAR_EOL

 };

The maximum true length of the screen’s title bar is equal to the screen’s width.
Counting these characters can be difficult; if you remove the ANSI screen-control
identifiers and the string concatenation quotes, however, you can see the length of the
menu bar more easily.

After the top menu-bar string definition, you define for the Files menu a pull-
down that offers a number of common operations:

char *szFiles[] = {

 "ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿",

 "3"BOLD"N"NORMAL"ew 3",

 "3"BOLD"O"NORMAL"pen 3",

 "3"BOLD"C"NORMAL"lose 3",

 "3"BOLD"S"NORMAL"ave 3",

 "3save "BOLD"A"NORMAL"s 3",

 "ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´",

Special Pointers and Their Use

131

C C
CC
C

C
C
C C4

 " "BOLD"P"NORMAL"rint ",

 "ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´",

 " e"BOLD"X"NORMAL"it ",

 "ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ",

 NULL};

After you know what the Files pull-down menu will contain, you then build the
function pointer array. You first define the functions, and then the array, and then
initialize it with the functions that perform each task.

void DoFilesNew();

void DoFilesOpen();

void DoFilesClose();

void DoFilesSave();

void DoFilesSaveAs();

void DoFilesPrint();

void DoFilesEXit();

void (*FilesFunctions[])(void) = {

 MenuBar,

 DoFilesNew,

 DoFilesOpen,

 DoFilesClose,

 DoFilesSave,

 DoFilesSaveAs,

 MenuBar,

 DoFilesPrint,

 MenuBar,

 DoFilesEXit,

 MenuBar,

 NULL

 };

Notice that you have allowed the number of initializers to define how many
elements are found in this array, and that you have set the final member to NULL so that
you can test for the end of the array if necessary. Setting the last element of an array
of pointers to NULL is a good idea because you don’t have to pass the length of the array
to functions that use it.

Finally, just before you start the main() function, you define the function that
controls the pull-down menus. This function’s prototype is

void PullDown(char **, int, void (__cdecl **)(void));

Part I • Honing Your C Skills

132

Notice how an array of pointers (usually written as *array[]) is described as an
array of pointers to pointers (type **). This description is necessary because you don’t
specify the name of the actual array in this prototype. The array of function pointers
must be specified with both the return values and parameters. In this program, both
are simply void.

The main program has just a large loop that reads the keyboard and processes the
characters. This program uses getch() to get a character (without echoing it to the
screen); because this program runs on a PC, you test (and process) special keypresses,
such as the function keys. Other computers with different keyboards may require some
other changes to this part of the program.

while (1)

{

 printf(szTopBar);

 chEntered = (char)getch();

 if (chEntered == '\0' || chEntered == '\xE0')

 { // PC Extended character (function key etc.)

 chEntered = (char)getch();

 }

After a character is read in, it is converted to uppercase (so that it can be tested),
and then you use a case statement to find which of the top bar menu items has been
selected.

switch (_toupper((int)chEntered))

{

 case 'F':

 PullDown(szFiles, 1, FilesFunctions);

 break;

 case 'E':

 printf("Edit submenu called" CLEAR_EOL);

 break;

 case 'V':

 printf("View submenu called" CLEAR_EOL);

 break;

Special Pointers and Their Use

133

C C
CC
C

C
C
C C4

 case 'P':

 printf("Project submenu called" CLEAR_EOL);

 break;

 case 'R':

 printf("Run submenu called" CLEAR_EOL);

 break;

 case 'D':

 printf("Debug submenu called" CLEAR_EOL);

 break;

 default:

 printf("Invalid key!" CLEAR_EOL);

 break;

}

When a top bar menu item is selected (Files in this example), the PullDown()
function is called. This generic function is provided with the starting column for the
pull-down menu (the starting row is always 2), an array of char pointers pointing to
each menu item, and an array of function pointers pointing to the functions that will
be called when a specific menu item is called. Except for Files, none of the top menu
items are implemented.

PullDown() has the code to display the pull-down menu. A better program would
save the screen at the location where the pull-down menu is displayed and restore it
when the function returns; this simple program, however, doesn’t “clean up” after itself
well:

for (i = 0; szMenu[i]; i++)

{

 printf(MOVE_CURSOR, i + 2, nColumn);

 printf(szMenu[i]);

}

The menu items are printed, one to a line, until the end of the list (signified by
the NULL pointer) is encountered. After the pull-down menu is displayed, you read the
keyboard until a valid key is pressed, and then perform the requested action. Because
this is a simple program, you again require the user to select a menu item before you
let the user return to the main menu.

Part I • Honing Your C Skills

134

 while (nMenuItem < 0)

 {

 chEntered = (char)getch();

 if (chEntered == '\0' || chEntered == '\xE0')

 { // PC Extended character (function key etc.)

 chEntered = (char)getch();

 }

 chEntered = (char)_toupper((int)chEntered);

/* find the correct menu item index */

 if (isalnum((int)chEntered))

 {

 for (i = 0; szMenu[i]; i++)

 {

 if (strchr(szMenu[i], chEntered))

 {

 nMenuItem = i;

 break;

 }

 }

 }

To check the keys pressed by the user, you get the character pressed, convert it
to uppercase, and then scan each menu item for the key character. Because each menu
item is allowed only one capitalized character (the desired character for this action),
you can use strchr() to look at each of the menu lines. If no match is found, you wait
for the user to press a new key; if a match is found, you call the appropriate function:

 if (nMenuItem >= 0)

 {

 pFunctions[nMenuItem]();

 }

}

Calling the correct function is as easy as indexing the array of function pointers.

MENU1 is a relatively crude program, yet it exceeds 300 lines of source code and
doesn’t do anything. Remember my comments about reinventing the wheel at the
beginning of the chapter? Now you can see why. I could write this program (and make

Special Pointers and Their Use

135

C C
CC
C

C
C
C C4

it work properly) under Windows in less time than it took to write the entire thing
myself. I had to write it, though, to provide the example of both menus and the use
of arrays of pointers. Now you can decide what you want to do.

State Machines

You might think that state machines are part of your state government, but not for the
purposes of this book. The example program JUSTIFY is a state machine (refer to
Listing 4.1). Most state machines consist of a controlling variable (the state variable),
whose value indicates the current operating status of the function (or program). The
state variable generally is an integer value, and depending on its current state, can be
changed to another state.

Generally, in most state machines the state of the controlling variable does not
need to be incremented (or decremented) in single steps. For example, it may change
directly from one state to another. States generally can be considered to be unique but
equal. When you are writing a state machine, you must consider the process and what
needs to be done (see Figure 4.1).

Figure 4.1. An example of a state machine’s state transitions.

Part I • Honing Your C Skills

136

Figure 4.1 shows that the program has a number of “states.” The state machine
part of JUSTIFY is the processing of the three parameters: the input filename, the
output filename, and the output width you want.

Listing 4.5 shows the way the state machine works. The major part of this
machine is a simple switch() loop, with a case to handle each state. At the end of each
state’s case statement is the code necessary to update the status of the state variable,
nCurrentParameter. The next time the switch() statement is executed, this new state
of nCurrentParameter controls which case: statement is executed. As usual with a
switch() statement, only one case statement block is executed (you don’t allow case
statements to fall through, into the following case statement, in this state machine).

One important factor limits JUSTIFY’s state machine: You allow the state
variable to change to only the next state, and you don’t allow states to be skipped. The
only way to get to the WIDTH state, therefore, is from the OUTNAME state, and the only way
to get to the OUTNAME state is from the INNAME state. After the WIDTH state has been
achieved, any further changes in the state are errors because you have nothing else to
get. The result is that the next state from the WIDTH state is the error state, LAST_THING,
which, if processed, gives the user an error message. Listing 4.5 is the parameter
processor from the JUSTIFY program.

Listing 4.5. State machine from JUSTIFY.C.

switch(nCurrentParameter)

{

 case INNAME:

 strcpy(szInputFile, argv[i]);

 nCurrentParameter = OUTNAME;

 break;

 case OUTNAME:

 strcpy(szOutputFile, argv[i]);

 nCurrentParameter = WIDTH;

 break;

 case WIDTH:

 sscanf(argv[i], "%d", &nTempWidth);

 if (nTempWidth < 20 || nTempWidth > 128)

 {

 GiveHelp(BAD_WIDTH, NULL);

 }

Special Pointers and Their Use

137

C C
CC
C

C
C
C C4

 else

 {

 nLineWidth = nTempWidth;

 }

 nCurrentParameter = LAST_THING;

 break;

 default:

 GiveHelp(BAD_PARM, NULL);

 break;

}

State machines can prove valuable in helping to organize your programs. The use
of a state variable was a logical choice as a method to keep track of where I was in the
program’s command line and to track which parts of the required command param-
eters had been processed.

Summary

In this chapter, you learned about command line arguments, pointer arrays, function
pointers, and state machines.

• Each program is passed, as parameters to the main() function, the command
line parameters.

• Command line parameters are processed by the operating system, by being
parsed into separate tokens.

• You can obtain the name of your program (the executable file’s name) using
the parameters passed to main().

• Like data objects, functions can have pointers to them.

• Like any other pointer, a function pointer can be placed in an array and
indexed using an index variable.

• Function pointers can be passed as parameters to other functions, which then
can call these functions.

Part I • Honing Your C Skills

138

• Properly designed menu-driven programs can offer an excellent user interface.

• It generally is not worth the effort to design your own menu system. Using
Windows, OS/2, the Macintosh, XWindows, or some other commercially
available menuing system is a much better choice.

• Using state machines enables you to efficiently design a program that must
process data in either a fixed or random format.

Decimal, Binary, Hex, and Octal

139

C C
CC
C

C
C
C C5C C

CC
C

C
C
C C5

Decimal, Binary, Hex,

and Octal

By now, you probably have realized that computers don’t save numbers in memory in
the same format as humans do. The CPU converts a number that the computer’s user
provides to a format that the CPU better understands. This conversion, transparent
to both the user and the programmer, enables the computer to work efficiently.

Decimal

We work with decimal (base 10) numbers. Decimal numbers have become popular
primarily because we, as humans, usually have ten fingers. Yes, it’s true, our number
system is based on counting on our fingers. Why, then, don’t we use base 5, (the fingers
on one hand), or base 20 (both hands and feet)?

Part I • Honing Your C Skills

140

Decimal numbers have become so natural to use that we no longer stop to think
about the concept of what we are doing. We add, carry, subtract, multiply, and divide
with ease (most of us do, anyway) and don’t stop to consider any other based number
systems; when we are asked whether we use any of these other systems, most people
reply “No.” The next most common system, however, is base 60—time, where 60
seconds make a minute, and 60 minutes make an hour. We don’t get shaken when we
are presented with time computations; when we have to convert to or work in number
systems other than decimal, however, our palms sweat and we get the shakes.

Let’s review the decimal number system. First, decimal numbers have the
characters to represent items. Figure 5.1 shows the first ten digits and what they
represent.

Figure 5.1. Decimal numbers 0 through 9.

The first use of numbers was probably to count food stocks, livestock, and other
objects encountered daily. As shown in Figure 5.1, a problem begins when you have
more than nine objects. Things get difficult then: Should new digits be created, or a
new system?

When the decimal system was developed, someone decided that ten characters
(or digits) were sufficient and that a system had to be created to indicate how many
hands there were to represent the object being counted—the tens column was created.
It then was possible to write, using two digits, numbers that were ten times as large as
before. No one realized that there would ever be a need for a number larger than 99.
(After all, the greatest number of fish ever caught at a single time probably was only
18). The decimal number system was born, capable of representing as many as 99
objects.

Decimal, Binary, Hex, and Octal

141

C C
CC
C

C
C
C C5

Then Joe came along. Brighter than most, he invented the fishing net. He forgot
to patent the fishing net, and soon a number of cheap but usable clone fishing nets were
available. Bob, who bought one of the better clones, managed one day to catch much
more than 99 fish. He went home and proudly announced that his catch was “99 and
many more,” to which his loving wife wanted to know how many more. The hundreds
column then was created. Bob’s wife simply carried the concept of the tens column out
to a new column. And so it went—soon thousands, millions, and (when government
was created) billions were only a short way off.

All of this math, using the decimal number system, could be done with the help
of the oldest digital computer, the hand.

Binary

Digital computers, invented later, didn’t have hands. They used memory to store
numbers. This memory, which lacked fingers, could hold only a zero (nothing) or a
one (something). Any number greater than one couldn’t be represented within a single
computer memory location. (I’m ignoring the analog computer, which could store
more than zero and one in a single memory location—they never became popular and
are not widely available today).

After the first few hours of working with zero and one, it was apparent that a way
to represent numbers larger than one had to be developed. This task wasn’t difficult
because designers and engineers are bright folks, and a scheme of using consecutive
locations in memory was quickly developed.

Because only two states existed in a single memory location, the representation
of numbers with computers was called binary. The use of this word is common with
computers: Computers sometimes are referred to today as binary computers. To a
computer, binary is as natural as decimal is to humans. Computers have no problems
counting, doing math, storing, and performing I/O using binary numbers. The
representation of binary numbers, however, left much to be desired. For instance, the
year 1992 can be represented using only four digits with the decimal number system;
in binary, it is represented as 11111001000 (11 digits). This number is not nearly as easy
for humans to work with, write, or understand.

Look at Figure 5.2 to see how the binary value for 1992 is determined. This figure
shows the binary value, the value of each bit, and the decimal result.

Part I • Honing Your C Skills

142

Figure 5.2 The year 1992 in decimal and binary.

Hex

Computers did not always have an 8-bit block of memory defined. Early computers
used 10, 11, and 16 bits, and other computers probably were developed that had every
other possible number of bits.

Hex is the compromise that enables both computers and people to understand
number representation. The hex number system is based on 16. My guess is that the
word hex was adopted because the base was 6 greater than base 10. Hex adds a new
wrinkle: Binary uses only 2 digits, 0 and 1; decimal uses 10, 0 to 9; hex, however, uses
16 numeric digits. Because you don’t have 16 digits, either 6 new characters must be
created to represent the new numbers, or you must use 6 existing characters.
Introducing 6 new characters into the currently used character set isn’t easy, but
reusing 6 other characters is easy.

The developers of hex notation chose to use the characters A through F for the
new digits (see Figure 5.3). No standard exists for whether the digits are represented
in upper- or lowercase; I prefer uppercase, however, because numeric characters give
the appearance of being uppercase (or larger) characters.

Decimal, Binary, Hex, and Octal

143

C C
CC
C

C
C
C C5

Figure 5.3. Hex numbers 0 through F.

Because most of the development of computers was done in countries that used
the Roman alphabet, the choice of the number of bits in a computer’s word general-
ly was determined by the number of characters the computer could recognize. As the
computer was being developed, a number of systems to organize the characters and
assign each to a numeric value already were in existence. The minimum number of
characters was fairly large: It was necessary to have letters—both upper- and lowercase
(52), numbers (10), punctuation and symbols (about 20), which brought the total to
between 80 and 90 characters.

In binary number systems, the number of bits increases in the following
progression: 1, 2, 4, 8, 16, 32, 64, 128, 256, and so on. Most people quickly realized
that 64 (a 6-bit word) was too small, 128 (a 7-bit word) was much better, and that 256
(an 8-bit word) was all that would ever be needed. Obviously, this artificial limit was
based on current needs, with no consideration of the future. Sixteen bits now are used
to represent characters in some applications.

Eight bits generally was accepted for the size of the basic block of computer
memory. This amount was referred to as a byte; the origins of this word, however,
escape me.

Part I • Honing Your C Skills

144

Hex might have been developed as a compromise between binary, required for
the computer, and decimal, required for programmers. Two hex digits can be held in
the standard-size computer memory, which is eight bits.

The example of 1992 becomes 7C8 when it is represented in hex. This number,
which is not as long as its decimal equivalent (it has only three digits), is almost as
indecipherable as the binary. It isn’t necessary to be able to read hex numbers to be a
good programmer, but it helps.

To see how the hex value for 1992 is determined, look at Figure 5.4. It shows the
hex value, the value of each digit, and the decimal result.

Figure 5.4. The year 1992 in decimal and hex.

Octal

Octal, the base 8 number system, enjoyed great popularity on a number of DEC
computers, primarily the PDP-8. Trust me, though, octal is dead. Don’t use it, because
no one else uses it anymore. Some computers used word lengths that were not 8 bits
(a byte) long. Rather, they used a 12-bit word that easily was divided into 4 octal digits
of 3 bits each. Unlike hex, which has more than 10 characters, octal has only 8, which

Decimal, Binary, Hex, and Octal

145

C C
CC
C

C
C
C C5

makes the decimal-number characters fully usable. Octal is used for DEC minicom-
puters, and C was developed on DEC minicomputers—therefore, the support for
octal. Figure 5.5 shows a representation of the octal numbers, which are similar to the
ones in the decimal-based systems; octal, however, doesn’t have numbers 8 or 9.

Figure 5.6. The year 1992 in decimal and octal.

Figure 5.5. Octal numbers 0 through 7.

When the 1992 example is represented in octal, it becomes 3710. This rather
misleading number is as long as its decimal equivalent (and could have been longer).
Without some form of prefix (or postfix) notation, you have no way to determine
whether any number is octal- or decimal-based (3710 is a legitimate number).

Look at Figure 5.6 to see how that octal value for 1992 is determined. This figure
shows the octal value, the value of each digit, and the decimal result.

Part I • Honing Your C Skills

146

Looking at a File

In any program that writes a file that is not pure text, you must able to look at the file
and determine whether the program has written the file properly. When you run the
DEBUG utility, a crude debugger, on the PC, it enables you to dump programs and
data files. Because the program is difficult to use, however, it is not used often.

One solution is to have a program that dumps files and provides both a hex and
ASCII listing of the file’s contents (see Listing 5.1,). DUMP is a simple program that
reads files of any length and lists their contents in an easy-to-use format.

Listing 5.1. DUMP.C.

/* DUMP, written 23 May 1992 by Peter D. Hipson */

/* A program that dumps files in hex and ASCII. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

#include <time.h> // For time information.

#define ARG_HELP ‘?’

#define ARG_SLASH ‘/’

#define ARG_DASH ‘-’

int main(// Define main() and the fact that

 int argc, // this program uses the passed parameters.

 char *argv[],

 char *envp[]

);

int main(

 int argc,

 char *argv[],

 char *envp[])

{

FILE *fpFilePointer;

Decimal, Binary, Hex, and Octal

147

C C
CC
C

C
C
C C5

long lPosition;

int i;

int j;

int nNumberBytesRead;

unsigned int nHexNumber;

char *pszTemp;

/* strings for _splitpath() (which parses a file name) */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

char szInputFile[128];

char szProgram[132];

char szBuffer[132];

char sBuffer[257];

time_t tTime;

struct tm *pTM;

 _splitpath(argv[0],

 szDrive,

 szDir,

 szFname,

 szExt);

 strncpy(szProgram, szFname, sizeof(szProgram) - 1);

 if (argc <= 1)

 {

 printf(“%s: - No file name given.\n”, szProgram);

 exit(4);

 }

 for (i = 1; argv[i]; i++)

 {

continues

Part I • Honing Your C Skills

148

 if (argv[i][0] == ‘/’ || argv[i][0] == ‘-’)

 { /* You have an argument, convert to lowercase, and test. */

 pszTemp = strlwr(argv[i]);

 for (j = 1; j < strlen(pszTemp); j++)

 {

 switch(pszTemp[j])

 {

 case ARG_HELP:

 printf(“Usage: %s filename.ext \n”,

 szProgram);

 exit(4);

 break;

 case ARG_SLASH:

 case ARG_DASH:

 break;

 default:

 printf(“%s: - Invalid option ‘%c’.\n”,

 pszTemp[j],

 szProgram);

 break;

 }

 }

 }

 else

 { /* Either a filename or width. */

 strcpy(szInputFile, argv[i]);

 }

 }

 if ((fpFilePointer = fopen(szInputFile, “r+b”)) == NULL)

 {

 printf(“%s: Unable to open file: %s\n”,

 szProgram,

 szInputFile);

Listing 5.1. continued

Decimal, Binary, Hex, and Octal

149

C C
CC
C

C
C
C C5

 exit(16);

 }

 lPosition = 0l;

 printf(“\n”);

 time(&tTime);

 pTM = localtime(&tTime);

/* format a time string, using strftime() (new with ANSI C) */

 strftime(szBuffer,

 sizeof(szBuffer),

 “%A %B %d, %Y at %H:%M:%S”,

 pTM);

 printf(“Dump of %s, %s\n\n”,

 szInputFile,

 szBuffer);

 while((nNumberBytesRead = fread((char *)sBuffer,

 sizeof(char), 16, fpFilePointer)) > 0)

 {

 printf(“ %8.8X -”, lPosition);

 for (i = 0; i < 16; i++)

 {

 if (i == 8)

 {

 printf(“ - “);

 }

 else

 {

 if (i == 0 ||

 i == 4 ||

 i == 12)

 {

continues

Part I • Honing Your C Skills

150

 printf(“ “);

 }

 }

 if (i < nNumberBytesRead)

 {

 nHexNumber = (unsigned char)sBuffer[i];

 printf(“%2.2X”, (unsigned int)nHexNumber);

 }

 else

 {

 printf(“ “);

 }

 }

 for (i = 0; i < nNumberBytesRead; i++)

 {

 if (sBuffer[i] < ‘ ‘ ||

 sBuffer[i] == ‘\xFF’)

 {

 sBuffer[i] = ‘.’;

 }

 }

 sBuffer[nNumberBytesRead] = ‘\0’;

 printf(“ : %s”, sBuffer);

 printf(“ \n”);

 lPosition += 16;

 }

 return(0);

}

Listing 5.1. continued

Decimal, Binary, Hex, and Octal

151

C C
CC
C

C
C
C C5

DUMP.C has few unusual parts. The first part of the program is the same
command line arguments parser from Chapter 4, “Special Pointers and Their Use,”
with a test for the help option (standardized as /? under DOS on the PC). DUMP has
no other options and simply requires the name of the file to dump.

The file is opened and read in 16 bytes at a time (or less, if fewer than 16 bytes
remain in the file). The buffer, with 16 bytes, is written out, first in hex format and then
in ASCII format (with control characters, and a . character substituted for DEL.

DUMP enables you to look at a file’s output; you still must understand what the
output means, however.

There are two ways to store integers in memory. The first method, in which the
high-order bits are stored in the low byte or bytes, makes dumps easy to read; in the
second method, the low-order bits are stored in the low byte or bytes. One method
makes it easier for you to look at a dump and determine an integer’s value, and the other
method makes you work a little harder. The PC, of course, makes you work harder;
supposedly, it makes the CPU faster, but we’ll never know. Figure 5.7 shows both a
16-bit integer and a 32-bit integer, as they are stored in the PC’s format.

Figure 5.7. Integers in memory (16 and 32 bits).

The method your CPU uses to store integers must always be considered
whenever you are viewing memory directly. If you do not know the order of the bits
in storage, the simple program in Listing 5.2 tells you which method is being used.

Part I • Honing Your C Skills

152

Listing 5.2. WCHBYTE.C.

/* Program WCHBYTE, written 25 May 1992 by Peter D. Hipson */

/* Program that shows byte swapping (if present) by the CPU. */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit() etc.

int main(// Define main() and the fact that this program uses

 int argc, // the passed parameters.

 char *argv[],

 char *envp[]

);

void NonPrint(const char chChar);

void Letter(const char chChar);

void Number(const char chChar);

void Space(const char chChar);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

unsigned char cTemp[10];

unsigned char *pcTemp;

int nYear = 1992;

long int lYearYear = 19921992;

char szHello[] = “Hello”;

 pcTemp = (unsigned char *)&nYear;

 cTemp[0] = *(pcTemp++);

 cTemp[1] = *(pcTemp);

Decimal, Binary, Hex, and Octal

153

C C
CC
C

C
C
C C5

 printf(“nYear = %d decimal, %4.4X hex, in memory %2.2X %2.2X\n”,

 nYear,

 nYear,

 cTemp[0],

 cTemp[1]);

 pcTemp = (unsigned char *)&lYearYear;

 cTemp[0] = *(pcTemp++);

 cTemp[1] = *(pcTemp++);

 cTemp[2] = *(pcTemp++);

 cTemp[3] = *(pcTemp);

 printf(“lYearYear = %ld decimal %8.8lX hex, in memory %2.2X %2.2X \

%2.2X %2.2X\n”,

 lYearYear,

 lYearYear,

 cTemp[0],

 cTemp[1],

 cTemp[2],

 cTemp[3]);

 pcTemp = (unsigned char *)&szHello[0];

 cTemp[0] = *(pcTemp++); // H

 cTemp[1] = *(pcTemp++); // e

 cTemp[2] = *(pcTemp++); // l

 cTemp[3] = *(pcTemp++); // l

 cTemp[4] = *(pcTemp++); // o

 cTemp[5] = *(pcTemp++); // \0 (NULL)

 printf(“szHello = ‘%s’ (string), in memory ‘%c’ ‘%c’ ‘%c’ ‘%c’ ‘%c’ \

‘%c’ \n”,

 szHello,

 cTemp[0],

 cTemp[1],

 cTemp[2],

 cTemp[3],

 cTemp[4],

 cTemp[5]);

 return(0);

}

Part I • Honing Your C Skills

154

If the hex representation and the memory view of the variables are the same when
you run WCHBYTE, dumps made using DUMP will be correct. If they are different,
however (which is the case for all PCs), you have to swap the bytes manually when you
are using a DUMP listing.

Bit Operators

Bit operators form the basis for C’s powerful bit-manipulation capabilities. Never
confuse these operators with their logical counterparts, which work on different
principles. In Table 5.1, the keyword TRUE signifies a true bit (or bits) that is set to one,
and FALSE signifies a bit (or bits) that is set to zero.

Table 5.1. Bitwise operators.

Operator Description

& Performs a bitwise AND operation. If both operands are TRUE, the
result is TRUE; otherwise, the result is FALSE.

| Performs a bitwise OR operation. If either operand is TRUE, the
result is TRUE; otherwise, the result is FALSE.

^ Performs a bitwise exclusive OR operation. If both operands are
TRUE or both operands are FALSE, the result is FALSE. The result is
TRUE if one operand is TRUE and the other is FALSE. Exclusive OR is
used to test to see that two operands are different.

<< Shifts the X operand, Y operand bits to the left. For example, (1 <<
4) returns a value of 8. In bits, (0001 << 4) results in 1000. New
positions to the left are filled with zeroes. This is a quick way to
multiply by 2, 4, 8, and so on.

>> Shifts the X operand, Y operand bits to the right. For example, (8
>> 4) returns a value of 1. In bits, (1000 >> 4) results in 0001. New
positions to the right are filled with ones or zeroes, depending on
the value and whether the operand being shifted is signed. This is a
quick way to divide by 2, 4, 8, and so on.

~ Returns the 1’s complement of the value. The 1’s complement is
defined as setting all bits that are 1 to 0, and all bits that are 0 to 1.

Decimal, Binary, Hex, and Octal

155

C C
CC
C

C
C
C C5

Do not confuse the bitwise operators with the logical operators. The misuse of
these operators can cause problems that are difficult to repair, such as those in the
following program fragment:

int x = 1;

int y = 2;

// Using a logical AND:

 if(x && y)

 {

// With x == 1, and y == 2, this will ALWAYS be TRUE.

 }

// Using a bitwise AND:

 if (x & y)

 {

// With x == 1, and y == 2, this will NEVER be TRUE.

 }

Why does the bitwise test fail in this fragment? The answer is easy, but only if you
look at the bits themselves. The bit pattern for x is 0000 0001, and the bit pattern for
y is 0000 00010. Doing a bitwise AND shows the following:

0000 0001 & 0000 0010 = 0000 0000

Practice is one of the best teachers—practice using these operators to get a better
feel for how they work. The following section discusses the use of these operators,
including some example code fragments.

Bit Fields

A bit field is a data object being accessed at the bit level. These fields, which may be
only one bit long, have for each bit a defined meaning that may or may not be related.
A good programming practice is to make all the bits in a single bit field variable-related
so that management of the bit field is easier. When you are using ANSI C, you generally
can have a maximum of 16 bits in a bit-mapped variable. There are two ways to use
bit fields:

Part I • Honing Your C Skills

156

1. Assign a meaning to each of the bits of any integer variable.

2. With a structure, you may create a bit field that is any length (to a maximum
of 16 bits).

Let’s look first at user-defined bit fields. When you declare an integer variable,
such as the following:

unsigned short int nFlag = 0;

the compiler allocates a 16-bit short integer and initializes it to zero. This example is
less than meaningful for bit flags. To harness the power of a bit flag, you have to define
each bit position and be able to test, set, and reset each bit without regard to the other
bits. You know that you have 16 bits to work with, but you don’t know how to address
them. This process isn’t as difficult as it might seem, because each bit has a logical value,
and working with these values is easy.

Figure 5.8 shows the bits in the variable. You can easily determine (and assign)
a meaningful flag for each of these bits, such as shown.

Figure 5.8. Bit values in a 16-bit integer.

Figure 5.8 shows that you use the value 4 to access the third bit from the right.
Assume that if this bit is set, it tells you the user has a middle name, and if it is not
set, the user doesn’t have a middle name. You first make a defined identifier so that your
program is manageable:

#define MIDDLE_NAME 0x04

Decimal, Binary, Hex, and Octal

157

C C
CC
C

C
C
C C5

You use the hex value because it’s easiest to remember and use. The decimal
equivalents are not that usable. Assign the first bit from the left to tell you that the user’s
middle name is just an initial:

#define MIDDLE_INITIAL 0x80

Now that you have some defines, let’s look at how to use them. First, you can clear
all flags in the flag variable nFlag by simply assigning a zero to it:

nFlag = 0;

To set the flag so that you know that the user has a middle name, you can use the
following line:

nFlag |= MIDDLE_NAME;

This statement uses one of C’s bit operators. These operators seldom are used by
most programmers, primarily because they are not well understood. This is a shame
because they make management of logical information much easier.

Next, suppose that the person’s middle name is only an initial. You set both the
MIDDLE_NAME flag and the MIDDLE_INITIAL flag. You can use one assignment or combine
both:

nFlag |= (MIDDLE_NAME | MIDDLE_INITIAL);

This statement could have been written as

nFlag = (MIDDLE_NAME | MIDDLE_INITIAL | nFlag);

If the flag bits were already set for some reason, they don’t change. After they are
set, performing a bitwise OR on them doesn’t change their state.

Now assume that you set the middle-name flag, but later you must change it to
indicate that there is no middle name (or initial). Because the OR only sets (and doesn’t
reset), you have to do something different:

nFlag &= (~MIDDLE_NAME & ~MIDDLE_INITIAL);

This statement introduces both the one’s complement operator ~ and the bitwise
AND operator &. You have used the ONES COMPLEMENT operator to invert the identifier’s
bits. For example, if the identifier’s bit pattern (as MIDDLE_NAME’s) is

0000 0100

the result of the ~ is

1111 1011

Part I • Honing Your C Skills

158

This bit flag, when it is combined using the bitwise &, enables you to turn off a
bit in the nFlags variable. This effect is important because setting and resetting the bits
is a common operation.

Finally, you must test bits. You want to test only those bits that are significant
for whatever we are testing. For example, to see whether there is a middle name (the
MIDDLE_NAME flag is set), you can use the following test:

if ((nFlag & MIDDLE_NAME))

In this test, several things are important. You must be careful not to use the logical
AND operator (&&) when you intend to use the bitwise one. Also, you should use
parentheses around each bitwise operation so that the order of precedence is clear. In
the preceding test, the expression yields a nonzero value if the bit is set, or a zero if it
is not. You can test two bits at one time using either

if ((nFlag & (MIDDLE_NAME | MIDDLE_INITIAL))

or

if ((nFlag & MIDDLE_NAME) &&

 (nFlag & MIDDLE_INITIAL))

Because either expression is correct, which one you use is probably more a matter
of programming style rather than efficiency. Just make sure that you are clear about the
order in which the expression is evaluated; when in doubt, use parentheses.

Summary

In this chapter, you learned about decimal, hex, binary, and octal notation. You
learned also about bit field usage.

• Decimal (base 10) is the number base we use in everyday life.

• Hex (base 16) most commonly is used by programmers in writing software.
Some programmers can do hex addition and subtraction without the aid of a
calculator.

• Binary (base 2) is the only base the CPU understands directly. All other
number systems must be converted to binary for the CPU’s use.

Decimal, Binary, Hex, and Octal

159

C C
CC
C

C
C
C C5

• Octal, originally developed for DEC’s PDP-8 computers, seldom is used by
today’s programmers, primarily because octal worked best with 12-bit-word
computers.

• C supports six bitwise operators, enabling direct manipulation of bits by the
programmer.

• Using bit fields, programmers can store much information by using individual
bits.

Separate Compilation and Linking

161

C C
CC
C

C
C
C C6C C

CC
C

C
C
C C6

Separate Compilation

and Linking

Not all programs are as simple as the examples in this book. Rarely do you write a
significant program that has only a single source file; if you do, it usually is too large
to be maintained easily. Whether your program is huge, with hundreds of thousands
of lines, or is a smaller one, with only a few thousand lines of code, you can benefit
from using separate source files.

Some of the information in this chapter is based on Microsoft’s tools, such as its
MAKE utility and the LIB program. If you are not using Microsoft’s products or are
not even using a PC, much of the discussion in this chapter will be very helpful
because it is information that is new to you.

Part I • Honing Your C Skills

162

Compiling and Linking Multiple Source Files

There are a number of reasons to have more than one source file. The most important
reason is to help keep your program’s source organized. Without this organization, as
the program grows larger, it becomes increasingly more difficult to maintain.

Because there are few rules regarding the subdivision of source code between files,
how do you determine what to put in each file? First and foremost, the majority of the
programs written don’t start out large. Most software developers create a shell for their
programs (using the main() function) and then build the user interface and the
program’s functionality using calls from main(). This process allows the developer to
test and debug small parts of the program with the hope of not creating new problems
for other parts of the program.

Prototyping is a technique for writing larger (and smaller) programs. Don’t
confuse this use of prototyping with C’s use of it. Prototyping a program requires that
you do (and have) a number of things, including the following:

1. Establish the program’s basic functionality. You must do this by working with
the program’s final users.

2. Select an operating environment—whether it’s a standard character-based
application (becoming increasingly rare) or a graphical user interface (GUI)
Windows-based program such as Microsoft Windows or IBM Presentation
Manager. Pay particular attention to whether the program will use graphics (a
GUI interface is a necessity), whether it will be mass marketed (or is intended
for a very small vertical market), and whether the users with whom you are
working will be the same users that use the program later.

3. After the program’s basic functionality and operating environment have been
selected, the user interface then is developed. The user interface is the most
important part of the program. In a GUI program, follow standards that
already have been established, including Microsoft’s guidelines and IBM’s
book Systems Application Architecture Common User Access Advanced Interface
Design Guide. Resist the urge (and pressure from others) to do your own thing
when you are writing GUI Windows applications. A prime example is a
program for Microsoft Windows that, although it’s a good application, has a
nonstandard user interface that makes using it nearly impossible if you are an
experienced Windows user.

Separate Compilation and Linking

163

C C
CC
C

C
C
C C6

4. After the basics of the user interface are developed (at this point there probably
won’t be much functionality), potential users should review the interface and
suggest additional functionality.

5. Create and implement the standard parts of the user interface, such as the
capability to open, close, and save files. Create the help access. Create the look
and feel of the application’s screen. You probably won’t ever face a “look and
feel” lawsuit, and the standards make it easier for users to become familiar with
your program. The fewer unique things the user must learn, the less support
you have to provide.

6. Add each of the functionalities, one at a time, that the program requires. Each
can have its own source file and should be fully self-contained. Don’t use too
many shared supporting functions: Wanting to change a supporting function
is common, but problems occur when some calls to these functions then fail.
Utility functions—the building blocks of your programs—should be as simple
as possible.

Suppose that you have a large program, which therefore is divided into several
source files. How do you put the pieces of the program together and create a single
program that runs? The process of creating a large, multisource file program is shown
in Figure 6.1. It shows generically what you must do (at a minimum) to create a
multisource file program. You first compile all of your source files and then link them.

Figure 6.1. A multisource file program.

Part I • Honing Your C Skills

164

Compiling Multifile Programs

Compiling a multifile program isn’t much more difficult than compiling a single-file
program. Many compilers can perform the compile and link using a single command,
usually either CC or CL; other variations exist, however. You must tell the compiler that
it should not link the program when it does the compiling. You tell it (with the
Microsoft compilers) by using the /c option, which simply specifies that you want only
a compile.

A couple of things are necessary in creating a functioning multisource file
program:

• Be sure that you have properly defined each variable that will be shared
between different parts of the program, using the extern keyword.

• Be sure that all functions have a single sharable prototype the compiler can use.
Never create more than one copy of the prototypes: Make a single copy and
place it in a shared header file (this subject is discussed in this section).

Because function parameters and shared variables (to a lesser extent) are the
primary methods of passing information among different functions in the program,
by defining them properly you increase the likelihood that the program will run
properly.

Because you don’t yet have an automated system to control which of the source
files is compiled (don’t try to remember “I changed this one, but not that one”), you
must compile each source file. For projects that have only a few source files, compiling
each one isn’t as bad as it seems; if you have several hundred source files, however,
compiling all of them every time a change is made is a little excessive. Later, the “Using
MAKE Files” section discusses automated project systems and how to make your
program creation more efficient.

Linking Multifile Programs

When you are linking a program, the linker requires a minimum (other than options)
of the name of the compiler output .OBJ file. This name then is used for the executable
program’s name (which has an EXE extension under DOS on the PC). If more than
one object file is specified, the first file’s name is used if no executable filename is
specified.

Separate Compilation and Linking

165

C C
CC
C

C
C
C C6

The linker, whose command line can be lengthy, accepts a multiline command
line. You type the first line and end it with a plus sign (+) and a return. The linker then
prompts for the next part of the command line. This process of continuing the
command line can continue for as long as necessary.

The following short code fragment shows a typical larger multisource file
program’s link command. (You shouldn’t have multiple lines with comments in a real
command).

link /linenumbers /al:16 /nod /map + /* Linker options */

 mainprog.obj file2.obj file3.obj, + /* Compiler output obj */

 mainprog, + /* Executable file’s name */

 , + /* No map file specified */

 MLIBCEW LIBW STARBOTH STARAE + /* Libraries */

The link command has a number of options (all of which probably will be
different for other linkers). These options tell the linker to include line number
information for the debugger (/linenumbers), align objects on 16-byte boundaries
(/al:16), not use the default libraries (/nod) that the compiler inserts in the OBJ files,
and create a load map used for debugging (/map).

After the options are the input OBJ files. You can generally omit the OBJ
extension. You can specify as many OBJ files, separated by blanks, as you want. If
several OBJ files are needed, you may have to use the multiline command format.

Then the name of the output file is specified. This filename receives the EXE
extension if no extension is specified. If no output filename is provided, the executable
filename is derived from the name of the first OBJ file.

The next parameter is the name of the linker map file. This file (see Chapter 16,
“Debugging and Efficiency,” for an example) is useful for debugging your program and
for certain performance considerations. If you don’t specify a filename and the /map
option is specified, the map filename is derived from the executable file’s name.

The final parameters are the libraries. This parameter (like the input OBJ files)
can have more than one name, separated by blanks. If you have specified the /nod
option, you must specify all the necessary libraries; otherwise, it is necessary to specify
only the libraries that are special to this program. It is not an error to specify a library
that is not needed, and the linker does not load extra code if an unneeded library is
specified.

Part I • Honing Your C Skills

166

Using #include

The preprocessor’s #include statement is a powerful part of creating a C program. You
cannot create a program that compiles without warnings if you do not use at least one
#include statement. A set of include files is supplied with every C compiler. These files
always have the .h extension, which is shorthand for headers. The ANSI C definitions,
prototypes, and other necessary information the compiler needs to function properly
are contained in these files (see Chapter 13, “All About Header Files”).

The #include statement can be coded in two formats. Each is slightly different;
the differences, however, are easy to understand. The first format is

#include “stdio.h”

In this format, the file to be included is delimited by the “ character. The
delimiter in this #include statement means: “When the compiler searches for the file
to be included, the search starts with the current directory of the file that has the
#include; if the file is not found and the file containing the #include is also an included
file, then it’s a parent.” This process continues recursively until all directories in the
chain of included files have been searched. If the file still has not been found, the search
continues as though the second format has been specified. The second format is

#include <stdio.h>

In this format, the file to be included is delimited by the < and > characters. When
the compiler searches for the file to be included, the search starts with the directories
specified on the compile command line (using the /I option) and then the directories
specified using the environment variable include. The current directory is not
searched unless it has been specified in one of these two places. If the file cannot be
found, the compiler issues an error message and the compile ends.

You know that you must include C’s header files because they have the function
prototypes and other defined identifiers needed to write your program. What else can
be included? An include file can contain anything that could have been put in a source
file. You can have preprocessor statements, C source code, and so on, and the compiler
treats the information as though it all were in the same file. The only difference is that
when an error is in an include file, the compiler’s error message provides the necessary
name and line number of the include file.

Separate Compilation and Linking

167

C C
CC
C

C
C
C C6

For large projects, I generally recommend that you have the following custom
include files. Although some projects do not need all these files, you can create and
include them at any time.

• The first file is named with the same name as the program. This file has only
include statements and looks like Listing 6.1. It contains only #include
statements to include the other include files.

• The second file, defines.h, contains all common #define statements. Using a
single, included file for a define helps prevent the use of the same identifier
being defined for two purposes.

• The next file, typedef.h, contains the program’s typedef statements. By placing
all typedef statements in a single include file, all parts of the program can
access them. There is no possibility of the same name being used for two
different types if a single include file is used.

• The vars.h file contains all the variable definitions (and declarations). To see
how a single file can contain both, see Listing 6.4, later in this chapter.

• The final file, prototyp.h, contains the function prototypes for each of the
program’s functions. Always keep prototypes in a single file, using the format
shown in Listing 6.5, later in this chapter.

Listing 6.1 shows the main include file for a multisource file program.

Listing 6.1. An example of a main include file for a large project.

#include “defines.h”

#include “typedef.h”

#include “vars.h”

#include “prototyp.h”

Listing 6.2 shows the defines.h file. You should document each #define’s use as
shown in this example.

Listing 6.2. An example of the defines.h include file.

#ifndef DEFINES_H

#define DEFINES_H

continues

Part I • Honing Your C Skills

168

#define MAX_SIZE 123 /* Maximum size of array */

#define USER “I AM USER” /* The user’s name */

#define MAXFONT 50 /* Maximum number of fonts available */

#ifndef MIN

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

#endif /* MIN */

#ifndef MAX

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

#endif /* MAX */

#ifndef TRUE

#define TRUE 1 /* LOGICAL TRUE */

#endif /* TRUE */

#ifndef FALSE

#define FALSE 0 /* if not TRUE, must be FALSE */

#endif /* FALSE */

#endif /* DEFINES_H */

Listing 6.3 shows the typedef.h file. As in other include files, you should
document each typedef’s use as the example shows.

Listing 6.3. An example of the typedef.h include file.

#ifndef TYPEDEF_H

#define TYPEDEF_H

typedef struct

{

 char FontList[MAXFONT][LF_FACESIZE]; // MAXFONT is 50. LF_FACESIZE

 // is in windows.h file.

 BYTE CharSet[MAXFONT]; // The font’s character set

 BYTE PitchAndFamily[MAXFONT]; // The font’s pitch and

 // family

 BYTE VectorOrRaster[MAXFONT]; // The font’s type

Listing 6.2. continued

Separate Compilation and Linking

169

C C
CC
C

C
C
C C6

 BYTE FontType[MAXFONT]; // RASTER_FONTTYPE,

 // DEVICE_FONTTYPE, or

 // TRUETYPE_FONTTYPE

 // (windows.h)

 int nSizeIndex; // Index to the font size.

 int nFontIndex; // Index to the font.

 int nSizeList[MAX_SIZE]; // List of font’s sizes.

} FONTSPECS;

typedef FONTSPECS *PFONTSPECS;

typedef FONTSPECS NEAR *NPFONTSPECS;

typedef FONTSPECS FAR *LPFONTSPECS;

#endif /* TYPEDEF_H */

The typedef.h file includes not only a typedef for the structure, but also typedefs
for various pointers that may point to this structure. This inclusion makes it easy to
create prototypes and to define the necessary structures and pointers later in the
program.

Listing 6.4, the vars.h file, includes all the global variables. It does not contain
any of the static variables because they are known in only the current source file. Notice
the use of the defined identifier EXTERN. This identifier is defined to the C keyword
extern if the file that is including the vars.h file is not the main file. The variables then
can be either declarations (done only once) or definitions (done in each file). For any
initialized variable, you must check the EXTERN identifier and process each one as
necessary. As in the other include files, you should document each variable’s use as the
example shows.

Listing 6.4. An example of the vars.h include file.

#ifndef VARS_H

#define VARS_H

#ifndef EXTERN

#define EXTERN /*NULL, do variable declarations */

continues

Part I • Honing Your C Skills

170

#define INITIALIZE_EXTERN

#endif /* EXTERN */

EXTERN char szBuffer[257]; /* Scratch buffer, contents undefined */

EXTERN char szFileName[129]; /* Input filename */

EXTERN int nErrorCount; /* How many errors so far? */

EXTERN int nErrorValue

#if defined(INITIALIZE_EXTERN) /* Do the initialization */

 = {NO_ERROR} /* Initialized */

#endif

;

#if defined (INITIALIZE_EXTERN)

#undef INITIALIZE_EXTERN

#endif

#endif /* VARS_H */

Notice that vars.h uses the identifier EXTERN and defines a new identifier called
INITIALIZE_EXTERN. Whenever you are declaring a variable that you want to initialize,
you can use this example to make sure that the variable is not declared twice.

Listing 6.5, the prototyp.h file, includes all the function prototypes for the
various functions in the program. This file should be the last of the group of included
files because it uses the typedefs created in typedef.h. As with the other include files,
you should document each function’s use and the file in which it is found, as the
example shows.

Listing 6.5. An example of the prototyp.h include file.

#ifndef PROTOTYP_H

#define PROTOTYP_H

/* source file return name(parameters); */

/* ADDARRAY.C */ int ArrayAdd(LPARRAY, LPARRAY);

/* SUBARRAY.C */ int ArraySubtract(LPARRAY, LPARRAY);

Listing 6.4. continued

Separate Compilation and Linking

171

C C
CC
C

C
C
C C6

/* UTILITY.C */ void ErrorMessage(LPSTR szSubString, WORD wError,

 long lSomething);

#endif /* PROTOYTP_H */

The prototyp.h file has enough information for you to know each function’s
parameters, what the function returns, and where it is located (so that you can fix it
when it breaks).

By using these include files for your project, you can be confident that you have
much of the project under control. You will not have duplicate external variables with
the same name and different usage, and you won’t have functions defined with one set
of parameters and declared with another. You must work at keeping the include files
in order; however, in the long run, the result is worth the effort.

External Variables

This chapter has discussed using a set of standard include files. These files enable you
to control the way objects are defined in your programs, preventing duplicate
identifiers with different meanings. Chapter 2, “Data Types, Constants, Variables,
and Arrays,” discussed variables, including external variables, and this chapter has
discussed using a single include file to create both a definition and a declaration for
an external variable. Now let’s look at a “real” program that shows how external
variables work for you.

The TWOFILE program, shown in Listings 6.6 through 6.14, is a simple
program with two source C files and a full set of include files that uses shared external
(global) variables to share data. TWOFILE doesn’t do much; however, it has the
framework to enable you to build a more meaningful application.

Listing 6.6. TWOFILE1.C.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson

 * A multisource file program.

 * This is the first source file for TWOFILE.

 */
continues

Part I • Honing Your C Skills

172

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

#define EXTERN extern

#include “twofile.h” /* TWOFILE’s include has all other #includes. */

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

char *pszTemp;

char szBuffer[129]; /* Temporary work buffer. */

char szProgram[30];

char szInputFile[132]; /* Make large enough for your OS. */

char szOutputFile[132]; /* Make large enough for your OS. */

/* strings for _splitpath() (which parses a file name) */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

int i;

int j;

int nCurrentParameter = INNAME;

int nTempWidth = 0;

int nLineWidth = 80;

int nJustification = LEFT;

 if (argc <= 2)

 {

 GiveHelp(argc, NULL);

 return(16);

 }

Listing 6.6. continued

Separate Compilation and Linking

173

C C
CC
C

C
C
C C6

 _splitpath(argv[0],

 szDrive,

 szDir,

 szFname,

 szExt);

 strncpy(szProgram, szFname, sizeof(szProgram) - 1);

 for (i = 1; argv[i]; i++)

 {

 if (argv[i][0] == ‘/’ || argv[i][0] == ‘-’)

 { /* You have an argument, convert to lowercase, and test. */

 pszTemp = strlwr(argv[i]);

 for (j = 1; j < (int)strlen(pszTemp); j++)

 {

 switch(pszTemp[j])

 {

 case ARG_LEFT:

 nJustification = LEFT;

 break;

 case ARG_RIGHT:

 nJustification = RIGHT;

 break;

 case ARG_JUSTIFY:

 nJustification = JUSTIFY;

 break;

 case ARG_SLASH:

 case ARG_DASH:

 break;

 default:

 GiveHelp(BAD_OPTION, &pszTemp[j]);

 break;

 }

 }

 }

 else

continues

Part I • Honing Your C Skills

174

 { /* Either a filename or width. */

 switch(nCurrentParameter)

 {

 case INNAME:

 strcpy(szInputFile, argv[i]);

 nCurrentParameter = OUTNAME;

 break;

 case OUTNAME:

 strcpy(szOutputFile, argv[i]);

 nCurrentParameter = WIDTH;

 break;

 case WIDTH:

 sscanf(argv[i], “%d”, &nTempWidth);

 if (nTempWidth < 20 || nTempWidth > 128)

 {

 GiveHelp(BAD_WIDTH, NULL);

 }

 else

 {

 nLineWidth = nTempWidth;

 }

 nCurrentParameter = LAST_THING;

 break;

 default:

 GiveHelp(BAD_PARM, NULL);

 break;

 }

 }

 }

 if (nCurrentParameter < WIDTH)

 { /* Didn’t get two file names! */

 GiveHelp(NAME_MISSING, NULL);

 return(16);

Listing 6.6. continued

Separate Compilation and Linking

175

C C
CC
C

C
C
C C6

 }

 printf(“\n”);

 printf(

 “%s would read the file ‘%s’ and write the file ‘%s’\n\n”,

 szProgram,

 szInputFile,

 szOutputFile);

 switch(nJustification)

 {

 case LEFT:

 printf(“The lines would be %d characters long, left \

 aligned\n”,

 nLineWidth);

 break;

 case RIGHT:

 printf(“The lines would be %d characters long, right \

 aligned\n”,

 nLineWidth);

 break;

 case JUSTIFY:

 printf(“The lines would be %d characters long, justified\n”,

 nLineWidth);

 break;

 }

/* In the final version of this program, the files next

 * are opened, and the input file is read into a buffer,

 * formatted according to what the user wants, and written

 * out to the output file. At the end, the files are closed,

 * and perhaps some statistical information can be presented

 * to the user.

 */

 return (0);

}

Part I • Honing Your C Skills

176

Listing 6.7 is TWOFILE2.C, the second source file. It contains the help
function.

Listing 6.7. TWOFILE2.C.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson

 * A multisource file program.

 * This is the second source file for TWOFILE: TWOFILE2.C.

 */

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

#include “twofile.h” // TWOFILE’s include has all other #includes.

void GiveHelp(

 int nLevel,

 char *psItem)

{

 printf(“\n”);

 switch(nLevel)

 {

 case NOINNAME:

 case NOOUTNAME: // Not enough parameters!

 printf(

 “FORMAT [-r|-l|-j] inputfile outputfile width\n”

 “ where \n”

 “ Options - -r (or /r) to right align \n”

 “ -l (or /l) to left align \n”

 “ -j (or /j) to justify\n”

 “\n”

 “ inputfile - is the input file name \n”

 “ outputfile - is the output file name \n”

 “\n”

 “ width is the desired output width (20 to 128)\n”

Separate Compilation and Linking

177

C C
CC
C

C
C
C C6

 “ (default is 80 characters).\n”

 “\n”

 “ Note: lines are concatenated, paragraph breaks are\n”

 “ signaled with a blank line\n\n”);

 break;

 case BAD_WIDTH:

 printf(

 “The width parameter must be between 20 and 128!\n”

 “the width is ignored\n”);

 break;

 case BAD_PARM:

 printf(“Excessive parameters have been entered\n”);

 /* Force a display of full help! */

 GiveHelp(NOINNAME, NULL);

 break;

 case BAD_OPTION:

 printf(“‘%c’ is an invalid option! (Use only -l, -r or \

 -j)\n”,

 *psItem);

 break;

 case NAME_MISSING:

 printf(“One or both of the required file names is \

 missing!\n”);

 /* Force a display of full help! */

 GiveHelp(NOINNAME, NULL);

 break;

 default:

 printf(

 “An unspecified error occured! FORMAT has ended!\n”

);

continues

Part I • Honing Your C Skills

178

 exit(16);

 break;

 }

}

Listing 6.8 is TWOFILE.H, the main include file for TWOFILE.

Listing 6.8. TWOFILE.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson

 * A multisource file program’s main include file.

 * This is TWOFILE’s include file.

 */

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

/* First include the C language’s include files: */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

/* Next, include TWOFILE’s include files */

#include “define.h”

#include “typedef.h”

#include “vars.h”

#include “prototyp.h”

/* End of this include file; put nothing but #include statements

 * in this header!

 */

Listing 6.7. continued

Separate Compilation and Linking

179

C C
CC
C

C
C
C C6

Listing 6.9 is DEFINE.H, the identifier identification include file for TWOFILE.

Listing 6.9. DEFINE.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson

 * A multisource file program’s #define include file.

 * This is TWOFILE’s DEFINE.H include file.

 */

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

#define LEFT 1

#define RIGHT 2

#define JUSTIFY 3

#define INNAME 1

#define OUTNAME 2

#define WIDTH 3

#define LAST_THING 4

#define ARG_LEFT ‘l’

#define ARG_RIGHT ‘r’

#define ARG_JUSTIFY ‘j’

#define ARG_SLASH ‘/’

#define ARG_DASH ‘-’

#define NOINNAME 1

#define NOOUTNAME 2

#define BAD_WIDTH 3

#define BAD_PARM 4

#define BAD_OPTION 5

#define NAME_MISSING 6

Listing 6.10 is TYPEDEF.H, the identifier identification include file for
TWOFILE.

Part I • Honing Your C Skills

180

Listing 6.10. TYPEDEF.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson */

 * A multisource file program’s #define include file.

/* This is TWOFILE’s TYPEDEF.H include file. */

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

/* This program uses no typedefs. */

Listing 6.11 is VARS.H, the external variables include file for TWOFILE.

Listing 6.11. VARS.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson */

 * A multisource file program’s external variables include file.

/* This is TWOFILE’s VARS.H include file. */

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

/* This program uses no external variables. */

Listing 6.12 is PROTOTYP.H, the function prototypes’ include file for
TWOFILE.

Listing 6.12. PROTOTYP.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson

 * A multisource file program’s prototypes’ include file.

 * This is TWOFILE’s PROTOTYP.H include file.

 */

Separate Compilation and Linking

181

C C
CC
C

C
C
C C6

/* This program assumes and uses Microsoft’s extensions to C.

 * Readers with other compilers may need to change the program

 * to use the calls their compiler supplies to perform the

 * same functions.

 */

/* TWOFILE1.C */ int main(int argc, char *argv[], char *envp[]);

/* TWOFILE1.C */ void GiveHelp(int nLevel, char *psItem);

For a simple project that has only one source file, having five include files may
seem like overkill. Perhaps it is, but for larger projects (with two or more source files),
it isn’t long before you thank yourself for the organization these files offer.

One of the keys to success is organization. Another is planning. Plan your
program, and be sure it is organized. Disarray and chaos have no place in program-
ming. Let’s look at how you can keep your compiler output files better organized.

Using an Object Library Manager

When a large program is created with many source files, the process of creating the
program is called building. This process consists of the following steps (refer to Fig-
ure 6.1):

1. Compile each of the source files. The compiler’s output usually is referred to as
an object module and often has an .obj extension.

2. Combine all the object modules the compiler has produced with the C
language’s libraries to create an executable program.

3. In this optional step, you create symbol files that your debugger uses. Because
each debugger is different, program creation is not discussed here.

Everything’s OK so far, but problems lurk. First, if your program is large, the
linker’s command-line input can get huge, even if the linker is driven by a file
containing the necessary filenames. I have seen linker command lines that are several
hundred lines long, but they’re not pretty.

Part I • Honing Your C Skills

182

You can have a group of object modules in which your project isn’t a program,
but is just a collection of functions that perform a specific purpose and that (usually)
is used with more than one program. The various C library functions are an example.

Grouping a number of functions together is called creating a library. Utility
programs (supplied with your compiler and usually called LIB) perform various tasks
with libraries. Let’s look at Microsoft’s LIB utility. This program enables you to
maintain your object code libraries and performs the following functions:

• Adds an object module to the library

• Deletes an existing object module from the library

• Replaces an existing object module in the library by performing a delete
followed by an add

• Extracts an object module from the library

• Maps a library and provides a listing of the library’s contents, the sizes of the
library’s members, and the member’s entry points and other external names

In all cases, if the library doesn’t exist, you have the option of creating it. An
empty library can exist; however, it doesn’t have much value. When Microsoft’s LIB
program runs, it creates a backup copy of the library and enables you to recover easily
from errors.

You can group functions in an object library by what they do. This capability is
handy because you can, for example, create a library of functions that read database
files and a library of special math functions and keep them separate.

Using MAKE Files

Suppose that you have a program that consists of 35 source files. As you are editing
them, you note on paper which ones you have changed so that you can recompile them.
How long before you forget to compile one of the changed source files, and what are
the effects? The answer is “not long and the problems are difficult to find.”

Now suppose that you compile the entire program every time. How long until
you finish your program, and do you have any friends when you finish? The answer
is “forever, and your friends have left you long ago.”

Separate Compilation and Linking

183

C C
CC
C

C
C
C C6

There has to be a better way—that’s why we have computers. Many program-
mers are faced with the dilemma of whether it is faster to do it by hand or to figure out
how to make the computer do it. In this case, it’s always preferable to let the computer
do the work. This is where MAKE (also known by other names, such as NMAKE)
comes in handy.

The MAKE utility has one purpose: It looks at the date on which one file was
created or last modified and compares it to the date of another file. If the first file is older
than the second, the MAKE performs some specified action, such as compiling,
linking, or another command that can be called from the command prompt.

Some of the more advanced compilers have a utility that creates the MAKE files
for you. If your compiler has one, use it. (Creating a MAKE file by hand involves some
work, but it can be done.) Listing 6.13 is a simple MAKE file that compiles
TWOFILE, the example program discussed earlier.

Listing 6.13. TWOFILE.MAK, a MAKE file to compile TWOFILE.

includes = twofile.h define.h typedef.h vars.h prototyp.h

twofile1.obj: twofile1.c $(includes)

 cl -c -u -as -gsw -os -zpe twofile1.c

twofile2.obj: twofile2.c $(includes)

 cl -c -u -as -gsw -os -zpe twofile1.c

twofile.exe: twofile1.obj twofile2.obj

 link clockdat;

In Listing 6.13, the variable includes is defined first (yes, MAKE has variables).
It contains the following string:

twofile.h define.h typedef.h vars.h prototyp.h

You use this technique to reference the include files in a MAKE file to save typing
and make it easy to update the list (if you need to add a new include file later). A defined
variable in a MAKE file can be referenced by enclosing it within parentheses and
preceding the opening parenthesis with a dollar sign. If the variable is undefined, the
result is a blank, and no error is generated. This capability can come in handy because
you can define variables on the MAKE command line to change compiler options,
linker options, or almost anything else.

Part I • Honing Your C Skills

184

Not listing the include file prototyp.h in the MAKE file is not uncommon;
however, I recommend that you reference every file that makes up part of your project.

The following line is called a dependency line:

twofile1.obj: twofile1.c $(includes)

It tells MAKE that the file twofile1.obj might change if any of the files following the
: change. In this case, twofile1.obj may change if twofile.c or any of the include files
changes. There is a limit to what MAKE can see: It looks only at the files’ time stamp.
If twofile1.c or any of the include files is newer than twofile1.obj, the dependency is
true, and MAKE performs whatever commands immediately follow the dependency
line:

cl -c -u -as -gsw -os -zpe twofile1.c

These commands, however, must start in a column other than the first one (I
recommend that you indent them four spaces).

In a MAKE file, the # character is the comment delimiter. If you want to
comment your MAKE file (I recommend it), simply use the comment delimiter (see
Listing 6.14). MAKE continues to process the MAKE file until one of the commands
returns a nonzero return code or until the MAKE file ends. Rarely do you want to
continue to run MAKE after an error has been detected. Listing 6.13 is a simple
MAKE file. Listing 6.14 is a more advanced MAKE file, again written for TWOFILE.

Listing 6.14. TWOFILE, an advanced MAKE file for the TWOFILE

program.

Module Macro

NAME = twofile

SRCS = twofile1.c twofile2.c

OBJS =

C7 Macro (if you have Microsoft C-7)

C7 = 1

Library Macros (if programming under Windows)

LIBS = libw mlibcew

MOD = -AM

Include Macro

INCLS = $(NAME).h define.h typedef.h vars.h prototyp.h

Separate Compilation and Linking

185

C C
CC
C

C
C
C C6

DEBUG Defined

DEBUG = 1

Build Option Macros

!if $(DEBUG)

DDEF = -DDEBUG

CLOPT = -Zid -Od

MOPT = -Zi

LOPT = /CO /LI /MAP

!else

DDEF =

CLOPT = -Os

LOPT =

!endif

General Macro

DEF =

Tool Macros

ASM = masm -Mx $(MOPT) $(DDEF) $(DEF)

CC = cl -nologo -c $(MOD) -G2sw -Zp -W3 $(CLOPT) $(DDEF) $(DEF)

LINK = link /NOD /NOE $(LOPT)

RC = rc $(DDEF) $(DEF)

HC = hc

Inference Rules

.c.obj:

 $(CC) $*.c

.asm.obj:

 $(ASM) $*.asm;

.rc.res:

 $(RC) -r $*.rc

Main (default) Target

goal: $(NAME).exe

Dependents For Goal and Command Lines

$(NAME).exe: $(SRCS:.c=.obj)

continues

Part I • Honing Your C Skills

186

 $(LINK) @<<

 $(SRCS:.c=.obj) $(OBJS),

 $(NAME).exe,

 $(NAME).map,

 $(LIBS),

 $(NAME).def

<<

!if $(DEBUG)

!if !$(C7)

 cvpack -p $(NAME).exe

!endif

 mapsym $(NAME).map

!endif

Dependents

$(SRCS:.c=.obj): $(INCLS)

Clean Directory

clean:

 -del *.obj

 -del *.exe

This example of a MAKE file does little more than the first, simpler example, but
it does have the capability to quickly add new source (.C) files, to switch between debug
mode and a final production version, and to handle Microsoft C 7’s differences.

In all, MAKE is one of the most important tools you have to help you produce
your program. Without it, you have to do most of the work in creating your program,
such as calling the compiler and linker.

Summary

This chapter described programs made up of more than one source file and how to
manage larger, multisource file projects.

• The compiler is used to compile each source file.

Listing 6.14. continued

Separate Compilation and Linking

187

C C
CC
C

C
C
C C6

• When all the source files are compiled (successfully), they are combined, using
a linker, to produce the final executable program.

• The #include statement causes the C compiler to read in the named file as
though it were part of the original file.

• When the included file ends, the compiler continues with the original file.

• External variables, identified with the extern keyword, can be used to share
information between functions, even when the functions reside in different
source files.

• The object library utility (LIB) is used to maintain library files.

• MAKE files are used to help automate the process of creating a large program
that has more than one source file.

Part I • Honing Your C Skills

188

Table of Contents

189

C C
CC
C

C
C
C CC

Part II

Managing Data in C

Advanced C

190

C Structures

191

C C
CC
C

C
C
C C7

C Structures

A computer language would be ineffective if it did not offer a way to create complex
data objects. C structures are objects that contain more than one item. A structure often
contains data objects grouped according to their usage, but a structure can contain
unrelated data objects as well.

Using the struct Keyword

You use the struct keyword to define a structure. A structure definition consists of
several parts, as the following shows:

struct tag_name {

 type member_name;

 type member_name;

 type member_name;

 } structure_name =

 {initializer_values};

C C
CC
C

C
C
C C7

Part II • Managing Data in C

192

Although the formatting is up to the programmer, I suggest that you use the preceding
format for easy readability.

The first line contains the struct keyword, then the optional tag_name:

struct tag_name {

The tag_name can be used to create a copy of the structure (as shown in STRUCT4.C,
one of the example programs in this chapter). An opening brace follows the tag_name
(or the struct keyword, if the tag_name is not used). This brace signals to the compiler
that the next lines are member definitions. Each member definition consists of a
variable type and a name. The members can be any valid variable type, including arrays,
structures, and unions, as follows:

type member_name;

type member_name;

type member_name;

Following the last member name is a closing brace and the optional structure_name,
as follows:

} structure_name =

When using the structure_name and the tag_name, you can choose any of the
following:

• If a structure_name is not specified and a tag_name is specified, the structure is
being defined but not declared.

• If a structure_name is specified and a tag_name is not specified, the structure is
being declared but not defined.

• If a structure_name and a tag_name are provided, the structure is being both
defined and declared.

• If neither a structure_name nor a tag_name is provided, a compile-time error
will result.

If you want to initialize the structure, you must have a structure_name because
it signals the compiler that this is a declaration. The structure_name is also necessary
if you want to refer to the structure.

After the structure_name are optional initializers:

{initializer_values};

C Structures

193

C C
CC
C

C
C
C C7

The following is a simple structure:

struct

 {

 char szSaying[129];

 int nLength;

 } MySaying;

This structure definition provides a data object that can be referenced with a single
name, MySaying. Each member of MySaying provides different information.

Structures offer us a number of important advantages, including the following:

You can refer to the entire data object using a single name.

You can use the structure name as a parameter to a function. For example,
you could pass the address and the length of the structure name to read()
to read the structure’s contents from a disk file.

Structures can be assigned directly. You cannot assign strings (you must use
the strcpy() library function), but you can assign two structures simply by
using an assignment statement.

A function can return a structure.

A simple program that allocates and initializes a structure is shown in Listing 7.1.

Listing 7.1. STRUCT1.C.

/* STRUCT1, written 1992 by Peter D. Hipson

 * This is a simple structure program.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

int main(void); // Define main() and the fact that this

 // program doesn’t use any passed parameters

int main()

{

continues

Part II • Managing Data in C

194

Listing 7.1. continued

int i;

struct

 {

 char szSaying[129];

 int nLength;

 } MySaying =

 {“Firestone’s Law of Forecasting:”,

 strlen(MySaying.szSaying)};

 printf(“sizeof(MYSaying) = %d\n”, sizeof(MySaying));

 printf(“MySaying %p %3d ‘%s’\n”,

 &MySaying.szSaying,

 MySaying.nLength,

 MySaying.szSaying);

 printf(“\n\n”);

 return (0);

}

In STRUCT1, you can see the definition of the MySaying structure. This
structure has two members: a character string (with a length of 129) called szSaying
and an integer variable called nLength. The structure is initialized with a line of text and
a number. The program then initializes the nLength member to the length of the string
in the szSaying member. (Using a function call to initialize a data object is permitted
but uncommon.)

Notice how the program refers to each member in the structure. The shorthand
for a structure reference is the structure name followed by a period and the member
name:

structure.member

If the member is also a structure (more on this later), the member name is
followed by a period and its member name:

structure.memberstructure.member

C Structures

195

C C
CC
C

C
C
C C7

Arrays of Structures

As mentioned, an array can consist of any data type. In this section, you look at an
example of a program that uses an array of type struct. Listing 7.2, STRUCT2, creates
a structure, makes it an array, and initializes it.

Some compilers will not compile Listing 7.2 correctly, even
though it is legitimate ANSI code.

Listing 7.2. STRUCT2.C.

/* STRUCT2, written 1992 by Peter D. Hipson

 * This program creates an array of type struct

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

int main(void); // Define main() and the fact that this

 // program doesn’t use any passed parameters

int main()

{

int i;

struct

 {

 char szSaying[129];

 int nLength;

 } MySaying[] = {

 “Firestone’s Law of Forecasting:”, 0,

! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !

continues

Part II • Managing Data in C

196

 “ Chicken Little has to be right only once.”, 0,

 “”, 0,

 “”, 0,

 “Manly’s Maxim:”, 0,

 “ Logic is a systematic method of coming to”, 0,

 “ the wrong conclusion with confidence.”, 0,

 “”, 0,

 “”, 0,

 “Moer’s truism:”, 0,

 “ The trouble with most jobs is the job holder’s”, 0,

 “ resemblance to being one of a sled dog team. No one”, 0,

 “ gets a change of scenery except the lead dog.”, 0,

 “”, 0,

 “”, 0,

 “Cannon’s Comment:”, 0,

 “ If you tell the boss you were late for work because you”, 0,

 “ had a flat tire, the next morning you will have a flat tire.”,

0,

 };

 for (i = 0;

 i < (sizeof(MySaying) / sizeof(MySaying[0]));

 i++)

 {

 MySaying[i].nLength = strlen(MySaying[i].szSaying);

 }

 printf(“sizeof(MySaying) = %d\n”, sizeof(MySaying));

 printf(“Number of elements = %d\n”,

 (sizeof(MySaying) / sizeof(MySaying[0])));

 for (i = 0;

 i < (sizeof(MySaying) / sizeof(MySaying[0]));

 i++)

 {

 printf(“MySaying[%2d] %p %3d ‘%s’\n”,

 i,

 &MySaying[i].szSaying,

 MySaying[i].nLength,

Listing 7.2. continued

C Structures

197

C C
CC
C

C
C
C C7

 MySaying[i].szSaying);

 }

 printf(“\n\n”);

 return (0);

}

Let’s look at how the structure is declared. In the first few lines, the structure
members and the structure’s name are established:

struct

 {

 char szSaying[129];

 int nLength;

 } MySaying[] = {

In the last line of this code fragment, brackets indicate that an array is being defined.
(A nonstructure array is declared in this way also.) Following are the array brackets,
which do not have a size. This tells the compiler to compute the number of elements
in MySaying from the initializers.

I have not specified the number of elements; instead, the compiler computes this
number. While the program is executing, it calculates the number of members using
a simple formula:

nNumberOfMembers = (sizeof(MySaying) / sizeof(MySaying[0]))

The total size of the structure is divided by the size of the first member. (Remember
that all members must be the same size.) This gives us the number of elements in the
structure array. Computing the number of elements in this way is handy. If you want
to change the initializers to add a new saying, for example, you won’t have to change
the program.

You can write a macro to compute the number of elements as follows:

#define NUMBER_ELEMENTS(array) (sizeof(array) / sizeof(array[0]))

If you give this macro the name of an array (of any type), it returns the number
of elements in the array. An example is shown in Listing 7.3, the STRUCTA program.
The macro makes it easy to use loops to index an array whose number of elements has
been determined by the initializers (or by any other means).

Part II • Managing Data in C

198

Listing 7.3. STRUCTA.C.

/* STRUCTA, written 1992 by Peter D. Hipson

 * A program showing a macro to determine the

 * number of elements in an array.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

/* The NUMBER_ELEMENTS(array) macro returns the number of

 * elements found in array. Array can be any array, including

 * an array of type struct.

 */

#define NUMBER_ELEMENTS(array) (sizeof(array) / sizeof(array[0]))

int main(void); // define main(), and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int i;

struct

 {

 char szSaying[129];

 int nLength;

 } MySaying[] = {

 “Firestone’s Law of Forecasting:”, 0,

 “ Chicken Little has to be right only once.”, 0,

 “”, 0,

 “”, 0,

 “Manly’s Maxim:”, 0,

 “ Logic is a systematic method of coming to”, 0,

 “ the wrong conclusion with confidence.”, 0,

 “”, 0,

 “”, 0,

 “Moer’s truism:”, 0,

C Structures

199

C C
CC
C

C
C
C C7

 “ The trouble with most jobs is the job holder’s”, 0,

 “ resemblance to being one of a sled dog team. No one”, 0,

 “ gets a change of scenery except the lead dog.”, 0,

 “”, 0,

 “”, 0,

 “Cannon’s Comment:”, 0,

 “ If you tell the boss you were late for work because you”, 0,

 “ had a flat tire, the next morning you will have a flat tire.”,

 0,

 };

 for (i = 0; i < NUMBER_ELEMENTS(MySaying); i++)

 {

 MySaying[i].nLength = strlen(MySaying[i].szSaying);

 }

 printf(/* String literal concatenation makes formatting lists easy

 */

 “sizeof(MySaying) = %d\n”

 “Number of MySaying elements = %d\n”

 “sizeof(MySaying[0].szSaying) = %d\n”,

 sizeof(MySaying),

 NUMBER_ELEMENTS(MySaying),

 NUMBER_ELEMENTS(MySaying[0].szSaying));

 for (i = 0;

 i < NUMBER_ELEMENTS(MySaying);

 i++)

 {

 printf(“MySaying[%2d] %p %3d ‘%s’\n”,

 i,

 &MySaying[i].szSaying,

 MySaying[i].nLength,

 MySaying[i].szSaying);

 }

 printf(“\n\n”);

 return (0);

}

Part II • Managing Data in C

200

As Listing 7.3 shows, creating arrays of structures is simple and straightforward.
Under ANSI C, you can initialize an auto structure as both a singular entity and an
array, which makes it easier to use structures.

Listing 7.3 has some problems, however. Note the size of the structure when you
run the program. It is huge! Because the size of the largest initializing string cannot be
determined easily, I made the szString member large enough for all (or almost all)
strings, 129 characters. The compiler adds a byte to pad this length to a word boundary,
making the length 130. The total length of the structure—including the integer length
member, nLength—is 132 bytes. There are 18 members in the array of structures.
When I compiled and executed the program, the total length was 2376 bytes. Perhaps
there is a better way.

Structures of Arrays

If you can make an array from a structure, can a structure contain an array? Of course!
The process of defining an array in a structure was demonstrated in Listing 7.3, in
which the szString variable is a string variable, and string variables are made up of
arrays of type char.

An advanced version of STRUCTA is shown in STRUCT3.C, Listing 7.4. This
program stores pointers to a ragged-right array of character initializers. Because the
program does not allocate additional space, this version is useful when the saved strings
will not be modified. If you have to modify the saved strings, STRUCTA is a better
choice.

Listing 7.4. STRUCT3.C.

/* STRUCT3, written 1992 by Peter D. Hipson

 * A structure containing an array (or two).

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#define NUMBER_ELEMENTS 35

int main(void); // define main(), and the fact that this program doesn’t

 // use any passed parameters.

C Structures

201

C C
CC
C

C
C
C C7

int main()

{

int i;

struct

 {

 char *szSaying[NUMBER_ELEMENTS];

 int nLength[NUMBER_ELEMENTS];

 } OurSaying = {

 “Firestone’s Law of Forecasting:”,

 “ Chicken Little has to be right only once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”,

 NULL /* Flag to mark the last saying */

 };

 for (i = 0; OurSaying.szSaying[i]; i++)

 {

 OurSaying.nLength[i] = strlen(OurSaying.szSaying[i]);

 }

 printf(“sizeof(OurSaying) = %d\n”, sizeof(OurSaying));

 for (i = 0; OurSaying.szSaying[i]; i++)

continues

Part II • Managing Data in C

202

Listing 7.4. continued

 {

 printf(“OurSaying %p %3d ‘%s’\n”,

 &OurSaying.szSaying[i],

 OurSaying.nLength[i],

 OurSaying.szSaying[i]);

 }

 printf(“\n\n”);

 return (0);

}

Because I do not want to count by hand how many strings will be used to initialize
the structure and cannot (in this context) let the compiler compute the number, I have
a problem. I must specify the number explicitly. I chose a value of 35 (the identifier
is called NUMBER_ELEMENTS) because I knew that there would not be more than 35 lines
of sayings.

Although the number of elements is fixed at 35, all of them are not initialized.
Therefore, the program needs a way to know when the end of the list has been reached.
This is accomplished by adding a pointer with the NULL value as the last initializer. The
program can test for the end of the array using a conditional test, such as

for (i = 0; OurSaying.szSaying[i]; i++)

Because ANSI C has defined NULL as a pointer that is never used, and because the value
of NULL is usually zero when programming under DOS, this test always works.

If you are unwilling to assume that NULL is always defined as a zero value, the test
could be rewritten as

for (i = 0; OurSaying.szSaying[i] != NULL; i++)

This conditional comparison of the pointer and NULL makes the test more explicit. I
did not test for a zero-length string because the blank lines between sayings have a
length of zero.

C Structures

203

C C
CC
C

C
C
C C7

Structures of Structures

It is common to have members of a structure be structures themselves. The maximum
level of nesting is 15 according to the ANSI C standard. (You are unlikely to reach this
limit.)

Listing 7.5, STRUCT4, has nested structure definitions. This program (built
from STRUCT) has Murphy’s sayings and a few others I have collected over the years.

Listing 7.5. STRUCT4.C.

/* STRUCT4, written 1992 by Peter D. Hipson

 * A program with nested structures.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

int main(void); // Define main(), and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int i;

struct SAYING

 {

 char *szSaying[35];

 int nLength[35];

 };

struct

 {

 struct SAYING Murphy;

 struct SAYING Peter;

 } OurSaying = {{

 “Firestone’s Law of Forecasting:”,

continues

Part II • Managing Data in C

204

 “ Chicken Little has to be right only once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”,

 NULL /* Flag to mark the last saying */

 }, {

 “David’s rule:”,

 “ Software should be as easy to use as a Coke machine.”,

 “”,

 “”,

 “Peter’s Maxim:”,

 “ To be successful, you must work hard, but”,

 “ Hard work doesn’t guarantee success.”,

 “”,

 “”,

 “Teacher’s truism:”,

 “ Successful people learn.”,

 “”,

 “”,

 “Player’s Comment:”,

 “ If you don’t play to win,”,

 “ you don’t win.”,

 NULL /* Flag to mark the last saying */

 }};

 for (i = 0; OurSaying.Murphy.szSaying[i]; i++)

 {

Listing 7.5. continued

C Structures

205

C C
CC
C

C
C
C C7

 OurSaying.Murphy.nLength[i] =

 strlen(OurSaying.Murphy.szSaying[i]);

 }

 printf(“sizeof(OurSaying.Murphy) = %d\n”, sizeof(OurSaying.Murphy));

 for (i = 0; OurSaying.Murphy.szSaying[i]; i++)

 {

 printf(“OurSaying.Murphy %p %3d ‘%s’\n”,

 &OurSaying.Murphy.szSaying[i],

 OurSaying.Murphy.nLength[i],

 OurSaying.Murphy.szSaying[i]);

 }

 printf(“\n\n”);

 for (i = 0; OurSaying.Peter.szSaying[i]; i++)

 {

 OurSaying.Peter.nLength[i] = strlen(OurSaying.Peter.szSaying[i]);

 }

 printf(“sizeof(OurSaying.Peter) = %d\n”, sizeof(OurSaying.Peter));

 for (i = 0; OurSaying.Peter.szSaying[i]; i++)

 {

 printf(“OurSaying.Peter %p %3d ‘%s’\n”,

 &OurSaying.Peter.szSaying[i],

 OurSaying.Peter.nLength[i],

 OurSaying.Peter.szSaying[i]);

 }

 printf(“\n\n”);

 return (0);

}

STRUCT4 is the first program in this book that has used the structure tag. The
definition of the structure is

struct SAYING

 {

Part II • Managing Data in C

206

 char *szSaying[35];

 int nLength[35];

 };

I create a definition of a structure, but I do not declare the structure (that is, I do not
allocate storage). I assign the name SAYING to the optional tag position. This name can
be referred to in future declarations of structures of the same type.

Next, I declare the structure, which has two members: Murphy and Peter. The
structure is then initialized:

struct

 {

 struct SAYING Murphy;

 struct SAYING Peter;

 } OurSaying = {{...},{...}};

Note the use of initialization braces: the entire initializer is enclosed with a set of braces,
then each of the nested structure’s initializers is enclosed in a set of braces. By grouping
the initializers into two blocks, these braces tell the compiler which initializer goes with
which nested structure.

Then the structure is accessed using the same syntax shown in the previous
examples, except a name (either Murphy or Peter) is added to tell the compiler which
member to use:

for (i = 0; OurSaying.Murphy.szSaying[i]; i++)

{

 OurSaying.Murphy.nLength[i] = strlen(OurSaying.Murphy.szSaying[i]);

}

A saying or length in the Murphy part of the structure is accessed with

OurSaying.Murphy.

and a saying or length in the Peter part of the structure is accessed with

OurSaying.Peter.

Bit Fields in Structures

In a scalar data object, the smallest object that can be addressed directly is usually a byte.
In a structure, you can define data objects from 1 to 16 bits long.

C Structures

207

C C
CC
C

C
C
C C7

Suppose your program contains a number of TRUE/FALSE variables grouped
in a structure called Status, as follows:

struct {

 unsigned int bIsValid;

 unsigned int bIsFullSize;

 unsigned int bIsColor;

 unsigned int bIsOpen;

 unsigned int bIsSquare;

 unsigned int bIsSoft;

 unsigned int bIsLong;

 unsigned int bIsWide;

 unsigned int bIsBoxed;

 unsigned int bIsWindowed;

} Status;

This structure requires 20 bytes of storage, which is a lot of memory for saving
a few TRUE/FALSE variables. It would be better to save each variable using only one
bit. Perhaps you could use a single, bit-mapped variable (described in Chapter 5,
“Decimal, Binary, Hex, and Octal”). Sometimes, however, your flags must keep the
identity that a unique name offers.

C offers the capability to define the width of a variable, but only when the variable
is in a structure called a bit field. For example, you could rewrite the definition of Status
as follows:

struct {

 unsigned int bIsValid:1;

 unsigned int bIsFullSize:1;

 unsigned int bIsColor:1;

 unsigned int bIsOpen:1;

 unsigned int bIsSquare:1;

 unsigned int bIsSoft:1;

 unsigned int bIsLong:1;

 unsigned int bIsWide:1;

 unsigned int bIsBoxed:1;

 unsigned int bIsWindowed:1;

} Status;

The :1 that appears after each variable’s name tells the compiler to allocate one
bit to the variable. Thus, the variable can hold only a 0 or a 1. This is exactly what is
needed, however, because the variables are TRUE/FALSE variables. The structure is
only two bytes long (one tenth the size of the previous example).

Part II • Managing Data in C

208

A bit field can hold more than a single bit. For example, it can hold a definition
of a structure member, such as

unsigned int nThreeBits:3;

In this example, nThreeBits can hold any value from 0 to 7.

The most critical limitation to using bit fields is that you cannot determine the
address of a bit field variable. If you use the address of operator, a compile-time error
results. This means that you cannot pass a bit-field’s address as a parameter to a
function.

When the compiler stores bit fields, it packs them into storage without regard to
alignment. Therefore, storage is used most efficiently when all your bit fields are
grouped together in the structure. You can force the compiler to pad the current word
so that the next bit field starts on a word boundary. To do so, specify a dummy bit field
with a width of 0, for example:

struct {

 unsigned int bIsValid:1;

 unsigned int bIsFullSize:1;

 unsigned int bReserved1:0;

 unsigned int bIsBoxed:1;

 unsigned int bIsWindowed:1;

} Status;

The bReserved1 bit field tells the compiler to pad to the next word boundary,
which results in the bIsBoxed bit field starting on a known boundary. This technique
is useful when the compiler is packing structures and you need to know that the
alignment is as optimal as possible. (Some computers access objects faster when the
objects are aligned on word or double word boundaries.)

Using the typedef Keyword

I think that the typedef keyword is one of the best parts of the C language. It enables
you to create any data type from simple variables, arrays, structures, or unions.

The typedef keyword is used to define a type of variable, just as its name implies.
You can define any type from any other type. A variable created with typedef can be
used just like any other variable. Listing 7.6, CREATEDB.C, is a simple example of
using typedef with structures.

C Structures

209

C C
CC
C

C
C
C C7

Listing 7.6. CREATEDB.C.

/* CREATEDB, written 1992 by Peter D. Hipson

 * This program demonstrates typedef. The program

 * has minimal error checking; it will fail if

 * you enter a field value that is too long for

 * the structure member that holds the value.

 * Use with caution!

 */

#include <string.h>

#include <ctype.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

/* Define the structure for the customer database */

typedef struct _CUSTNAME {

 int nRecordType; // 1 == Customer record

 char szName[61]; // 60 chars for name; 1 for null at end

 char szAddr1[61]; // 60 chars for address; 1 for null at end

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 characters for city; 1 for null at end

 char szState[3]; // 2-character state abbrev. plus null

 int nZip; // Use integer. Print as %5.5d for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount customer has purchased

 } CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;

typedef CUSTNAME *PCUSTNAME;

void main()

continues

Part II • Managing Data in C

210

{

FILE *DataFile;

CUSTNAME Customer;

char szFileName[25];

char szBuffer[129];

int i;

int nResult;

double dSales = 0.0; // Forces loading of floating-point support

 printf(“Please enter customer database name: “);

 gets(szFileName);

 DataFile = fopen(szFileName, “wb”);

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

 Customer.szName[0] = ‘A’; // To get past while() the first time

 i = 0;

 Customer.nRecordNumber = 0;

 while (strlen(Customer.szName) > 0)

 {

 memset(&Customer, 0, sizeof(CUSTNAME));

 printf(“Enter the Customer’s name: “);

 gets(Customer.szName);

Listing 7.6. continued

C Structures

211

C C
CC
C

C
C
C C7

 if (strlen(Customer.szName) > 0)

 {

 Customer.nRecordNumber = i;

 do

 {

 printf(“Enter 1 for customer, 2 for supplier “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer.nRecordType);

 }

 while (Customer.nRecordType != CUSTOMER_RECORD &&

 Customer.nRecordType != SUPPLIER_RECORD);

 printf(“Enter address line 1: “);

 gets(Customer.szAddr1);

 printf(“Enter address line 2: “);

 gets(Customer.szAddr2);

 printf(“Enter City: “);

 gets(Customer.szCity);

 printf(“Enter state postal abbreviation: “);

 gets(Customer.szState);

 printf(“Enter ZIP code: “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer.nZip);

 printf(“Enter total sales: “);

 gets(szBuffer);

 sscanf(szBuffer, “%f”, &Customer.dSalesTotal);

 nResult = fwrite((char *)&Customer, sizeof(CUSTNAME), 1,

 DataFile);

 if (nResult != 1)

 {

 printf(“ERROR: File ‘%s’, write error.\n”,

 szFileName);

 fclose(DataFile);

 exit(4);

 }

continues

Part II • Managing Data in C

212

Listing 7.6. continued

 ++i;

 }

 }

 fclose(DataFile);

}

In Listing 7.6, the lines that define the structure that holds the customer’s name
and address use the typedef keyword. This enables us to define the data object using
only one line of code:

CUSTNAME Customer;

This line creates a structure named Customer. As many different structures as needed
could have been created using the name CUSTNAME.

You access a structure created by a typedef in the same way as you access a
structure created by any other method. However, now the compiler has a data type that
it can work with, so you can obtain the size of the structure type by referring to its name.
This is valuable when you must allocate memory for the structure—you cannot get the
size from the object because it doesn’t exist yet!

The program clears the structure’s contents to 0 by using sizeof() with the
name:

memset(&Customer, 0, sizeof(CUSTNAME));

In the call to memset(), you must pass the address of the structure (&Customer), the value
that you are setting all the bytes to (0), and the size of the structure (sizeof(CUSTNAME)).
The memset() C library function then stores the specified value in all the bytes in
Customer.

The rest of CREATEDB is straightforward. The program reads from the
keyboard each field in the structure. Fields that are not character fields (such as
.dSalesTotal) are converted to the correct type for the field before being saved in the
structure.

C Structures

213

C C
CC
C

C
C
C C7

Listing 7.6 does not check the size of the input, so the program
may fail if an input line is too long.

Using the offsetof() Macro

ANSI C introduced a new macro, called offsetof(), that you use to determine the
offset of a member in a structure. There are many reasons for wanting to know the
location of a member in a structure. You might want to write part of a structure to a
disk file or read part of a structure in from the file.

Using the offsetof() macro and simple math, it is easy to compute the amount
of storage used by individual members of a structure. An example use of the offsetof()
macro is shown in Listing 7.7.

Listing 7.7. OFFSETOF.C.

/* OFFSETOF, written 1992 by Peter D. Hipson

 * This program illustrates the use of the

 * offsetof() macro.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <stddef.h> // For offsetof()

#define MAX_SIZE 35

int main(void); // Define main(), and the fact that this program doesn’t

 // use any passed parameters

int main()

{

int i;

continues

! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !

Part II • Managing Data in C

214

typedef struct

 {

 char *szSaying[MAX_SIZE];

 int nLength[MAX_SIZE];

 } SAYING;

typedef struct

 {

 SAYING Murphy;

 SAYING Peter;

 SAYING Peter1;

 SAYING Peter2;

 SAYING Peter3;

 SAYING Peter4;

 } OURSAYING;

OURSAYING OurSaying = {{

 “Firestone’s Law of Forecasting:”,

 “ Chicken Little has to be right only once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”,

 NULL /* Flag to mark the last saying */

 }, {

 “David’s rule:”,

 “ Software should be as easy to use as a Coke machine.”,

 “”,

Listing 7.7. continued

C Structures

215

C C
CC
C

C
C
C C7

 “”,

 “Peter’s Maxim:”,

 “ To be successful, you must work hard, but”,

 “ Hard work doesn’t guarantee success.”,

 “”,

 “”,

 “Teacher’s truism:”,

 “ Successful people learn.”,

 “”,

 “”,

 “Player’s Comment:”,

 “ If you don’t play to win,”,

 “ you don’t win.”,

 NULL /* Flag to mark the last saying */

 }};

 printf(

 “sizeof(SAYING) = %d (each member’s size)\n”

 “offsetof(OURSAYING, Peter) = %d (the second member)\n”

 “offsetof(OURSAYING, Peter3) = %d (the fifth member)\n”,

 sizeof(SAYING),

 offsetof(OURSAYING, Peter),

 offsetof(OURSAYING, Peter3));

 return (0);

}

To use the offsetof() macro, you supply both the structure and the member
name. In addition, the structure name must be created using typedef because the
offsetof() macro must create the pointer type with a value of 0, and an identifier—
not a variable name—is required.

Here is another use of the offsetof() macro. Suppose that a structure has 75
members that consist of strings, structures, and scalar variables. You want to save the
middle 30 members in a file. You have to know the starting address and how many
bytes to write to the file.

You could use the sizeof() keyword to compute the size of the block of memory
to write, but this would be difficult and complex. You would have to get the size of each
member that you want to save to the file, then add the results. Also, serious problems
would result if members contained packing bytes (to align them on word boundaries).

Part II • Managing Data in C

216

A better solution is to take the offsetof() of the first member to write and the
offsetof() of the member just after the last member to write. Subtract one from the
other, and you have the number of bytes to save. As you can see, this method is quick
and easy.

Pointers to Structures

A pointer to a structure is handled in the same way as a pointer to any other data type,
except the syntax of the structure pointer operator differs. You can have a pointer to
a structure, and use the pointer to access any member in the structure.

When calling functions that have structures as parameters, it is more efficient to
pass a pointer to a structure rather than pass the entire structure. See Listing 7.8,
STRUPTR.C.

Listing 7.8. STRUPTR.C.

/* STRUPTR, written 1992 by Peter D. Hipson

 * Pointers and structures

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#define MAX_SIZE 35

int main(void); // Define main(), and the fact that this program doesn’t

 // use any passed parameters.

int main()

{

int i;

typedef struct

 {

 char *szSaying[MAX_SIZE];

C Structures

217

C C
CC
C

C
C
C C7

 int nLength[MAX_SIZE];

 } SAYING;

typedef struct

 {

 SAYING Murphy;

 SAYING Peter;

 } OURSAYING;

OURSAYING OurSaying = {{

 “Firestone’s Law of Forecasting:”,

 “ Chicken Little has to be right only once.”,

 “”,

 “”,

 “Manly’s Maxim:”,

 “ Logic is a systematic method of coming to”,

 “ the wrong conclusion with confidence.”,

 “”,

 “”,

 “Moer’s truism:”,

 “ The trouble with most jobs is the job holder’s”,

 “ resemblance to being one of a sled dog team. No one”,

 “ gets a change of scenery except the lead dog.”,

 “”,

 “”,

 “Cannon’s Comment:”,

 “ If you tell the boss you were late for work because you”,

 “ had a flat tire, the next morning you will have a flat tire.”,

 NULL /* Flag to mark the last saying */

 }, {

 “David’s rule:”,

 “ Software should be as easy to use as a Coke machine.”,

 “”,

 “”,

 “Peter’s Maxim:”,

 “ To be successful, you must work hard, but”,

 “ Hard work doesn’t guarantee success.”,

 “”,

 “”,

 “Teacher’s truism:”,

continues

Part II • Managing Data in C

218

 “ Successful people learn.”,

 “”,

 “”,

 “Player’s Comment:”,

 “ If you don’t play to win,”,

 “ you don’t win.”,

 NULL /* Flag to mark the last saying */

 }};

OURSAYING * pOurSaying;

SAYING * pSaying;

 pOurSaying = &OurSaying;

 pSaying = &OurSaying.Peter;

 printf(

 “sizeof(OURSAYING) = %d\n”

 “sizeof(OurSaying) = %d\n”

 “sizeof(SAYING) = %d\n”

 “sizeof(pOurSaying->Murphy) = %d\n”

 “sizeof(pOurSaying->Peter) = %d\n”

 “sizeof(pSaying) = %d\n”

 “sizeof(*(pSaying)) = %d\n”,

 sizeof(OURSAYING),

 sizeof(OurSaying),

 sizeof(SAYING),

 sizeof(pOurSaying->Murphy),

 sizeof(pOurSaying->Peter),

 sizeof(pSaying),

 sizeof(*(pSaying)));

 for (i = 0; pOurSaying->Murphy.szSaying[i]; i++)

 {

 pOurSaying->Murphy.nLength[i] = strlen(pOurSaying-

 >Murphy.szSaying[i]);

 }

 for (i = 0; pOurSaying->Murphy.szSaying[i]; i++)

 {

Listing 7.8. continued

C Structures

219

C C
CC
C

C
C
C C7

 printf(“pOurSaying->Murphy %p %3d ‘%s’\n”,

 &pOurSaying->Murphy.szSaying[i],

 pOurSaying->Murphy.nLength[i],

 pOurSaying->Murphy.szSaying[i]);

 }

 printf(“\n\n”);

 for (i = 0; pSaying->szSaying[i]; i++)

 {

 pSaying->nLength[i] = strlen(pSaying->szSaying[i]);

 }

 for (i = 0; pSaying->szSaying[i]; i++)

 {

 printf(“pOurSaying->Peter %p %3d ‘%s’\n”,

 &pSaying->szSaying[i],

 pSaying->nLength[i],

 pSaying->szSaying[i]);

 }

 printf(“\n\n”);

 return (0);

}

When a structure is accessed with a pointer, the usual method of obtaining a value
from memory (using the * operator) is unsatisfactory. To access a member of a
structure pointed to by a pointer, you use the -> structure pointer operator rather than
the . structure member operator. The -> operator is used as shown in Listing 7.8. You
use the address of operator to assign the address of the structure to the pointer.

Understanding unions

If a structure is a group of related data objects, what is a union?

In a structure, each member is stored separately. Modifying one member of a
structure does not change the contents of any other member.

Part II • Managing Data in C

220

In a union, all the members share the same block of storage. The block of storage
is large enough to hold the largest member; smaller members use only as much storage
as necessary. If you change what is stored in one member of a union, all other members
are changed too.

Figure 7.1 shows the relationship between a structure and a union in memory.
This figure shows the relationship between allocated memory and the members that
are part of the data object.

Figure 7.1. A structure and a union in memory.

The UNION.C program in Listing 7.9 reads the database file created with the
CREATEDB.C program (Listing 7.6). UNION.C places the result of the read into a
union. It then checks what type of record was read and calls the correct function to
process the record.

Listing 7.9. UNION.C.

/* UNION, written 1992 by Peter D. Hipson

 * This program reads the CREATEDB.C database. The

 * program has minimal error checking; it will fail

 * if you provide a field value that is too long for the

 * structure member that holds it. Use with caution!

 */

C Structures

221

C C
CC
C

C
C
C C7

#include <string.h>

#include <ctype.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

// Define the structure for the customer database.

typedef struct _CUSTNAME {

 int nRecordType;

 char szName[61]; // 60 chars for name; 1 for null at end

 char szAddr1[61]; // 60 chars for address; 1 for null at end

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 characters for city; 1 for null at end

 char szState[3]; // 2-character state abbreviation + null

 int nZip; // Use integer; print as %5.5d for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount the customer has purchased

 } CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;

typedef CUSTNAME *PCUSTNAME;

typedef struct _SUPPLIERNAME {

 int nRecordType;

 char szName[61]; // 60 chars for name; 1 for null at end

 char szAddr1[61]; // 60 chars for address; 1 for null at end

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 characters for city; 1 for null at end

 char szState[3]; // 2-character state abbreviation + null

 int nZip; // Use integer. Print as %5.5d for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount the customer has purchased

 } SUPPLIERNAME;

continues

Part II • Managing Data in C

222

typedef SUPPLIERNAME near *NPSUPPLIERNAME;

typedef SUPPLIERNAME *PSUPPLIERNAME;

typedef union _DBRECORD {

 CUSTNAME Customer;

 SUPPLIERNAME Supplier;

 } DBRECORD;

/* Local prototypes (use the typedef’ed names,

 * so must follow typedefs):

 */

SUPPLIERNAME ProcessSupplier(NPSUPPLIERNAME);

CUSTNAME ProcessCustomer(NPCUSTNAME);

// main() function, the called functions

void main()

{

DBRECORD dbRecord;

FILE *DataFile;

char szFileName[25];

char szBuffer[129];

int i;

int nResult[3];

double dSales = 0.0; // Forces loading of floating-point support

 printf(“Please enter customer database name: “);

 gets(szFileName);

 DataFile = fopen(szFileName, “rb”);

Listing 7.9. continued

C Structures

223

C C
CC
C

C
C
C C7

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

 nResult[0] = 1;

 while (nResult[0] == 1)

 {

 nResult[0] = fread((char *)&dbRecord, sizeof(DBRECORD), 1,

 DataFile);

 if (nResult[0] != 1)

 {

 if (!feof(DataFile))

 {

 printf(“ERROR: File ‘%s’, read error.\n”, szFileName);

 fclose(DataFile);

 exit(4);

 }

 else

 {

 printf(“End of database file ‘%s’.\n”, szFileName);

 }

 }

 else

 {

// You could test dbRecord.Supplier.nRecordType, or

 switch(dbRecord.Customer.nRecordType)

 {

 case CUSTOMER_RECORD:

 ProcessCustomer(&dbRecord.Customer);

 break;

 case SUPPLIER_RECORD:

continues

Part II • Managing Data in C

224

 ProcessSupplier(&dbRecord.Supplier);

 break;

 default:

 printf(“ERROR: Invalid record type read from \

database \n”);

 break;

 }

 }

 }

 fclose(DataFile);

}

SUPPLIERNAME ProcessSupplier(

 NPSUPPLIERNAME npSupplier)

{

SUPPLIERNAME WorkSupplier;

 WorkSupplier = *npSupplier;

 printf(“Supplier name: %s\n”, npSupplier->szName);

// Do other processing for Supplier...

// .

// .

// .

// Return WorkSupplier to caller.

 return(WorkSupplier);

}

CUSTNAME ProcessCustomer(

 NPCUSTNAME npCustomer)

Listing 7.9. continued

C Structures

225

C C
CC
C

C
C
C C7

{

CUSTNAME WorkCustomer;

 WorkCustomer = *npCustomer;

 printf(“Customer name: %s\n”, npCustomer->szName);

// Do other processing for customer...

// .

// .

// .

// Return WorkCustomer to caller.

 return(WorkCustomer);

}

An integer that determines the record type is the first field of each of the two
structures that make up the union. Another common way to refer to a field like this is
to code the definitions as

typedef union _DBRECORD {

 int nRecordType;

 CUSTNAME Customer;

 SUPPLIERNAME Supplier;

 } DBRECORD;

In this definition, you also have a record type variable as part of the union. You
can check the value of the record type variable by simply using the following format,
rather than Customer or Supplier:

DBRECORD dbRecord;

/* Read a database record into dbRecord */

 switch(dbRecord.nRecordType) // Rather than //

// dbRecord.Customer.nRecordType

 {

With this format, the first field of each structure must still be an integer that will
hold the record type. However, you can refer to the first field directly, which makes the
code easier to read.

Part II • Managing Data in C

226

Summary

In this chapter, you learned about structures and unions.

• A structure is a group of related data objects that are stored in a contiguous
block of memory and can be referred to collectively by a given name.

• A union is a group of (related) data objects that share a single block of memory
and can be referred to collectively by a given name.

• In a union, usually only one member at a time contains valid data.

• The typedef keyword enables the programmer to define new data types. These
new data types can be simple variables, arrays, structures, or unions.

• A bit field is defined as part of a structure. It consists of a named variable
whose length is defined as a specific number of bits.

• The offsetof() macro returns the offset of a structure’s member, from the
beginning of the structure.

Dynamic Memory Allocation

227

C C
CC
C

C
C
C C8

Dynamic Memory

Allocation

Allocating large data objects at compile time is seldom practical—especially if the data
objects are used infrequently and for a short time. Instead, you usually allocate these
data objects at runtime.

To make more memory available to the programmer, ANSI C offers a num-
ber of memory allocation functions, including malloc(), realloc(), calloc(), and
free(). Many compiler suppliers complement these functions with similar functions
that optimize the allocation of memory based on the specifics of your computer’s
architecture. In this chapter, you look at these four functions and Microsoft’s enhanc-
ed versions of them.

C C
CC
C

C
C
C C8

Part II • Managing Data in C

228

Using the malloc() Function

The memory allocation functions in Table 8.1 include both the ANSI C standard
malloc() functions and Microsoft’s extensions.

Table 8.1. Microsoft C malloc() functions.

Function Description

void * malloc(size_t size); The ANSI C standard memory
allocation function.

void _ _based(void) *_bmalloc Does based memory allocation.
(_ _segment seg, size_t size); The memory is allocated from the

segment you specify.

void _ _far *_fmalloc(size_tsize); Allocates a block of memory
outside the default data segment,
returning a far pointer. This
function is called by malloc()
when the large or compact
memory model is specified.

void _ _near *_nmalloc Allocates a block of memory inside
(size_t size); the default data segment, returning

a near pointer. This function is
called by malloc() when the small
or medium memory model is
specified.

The malloc() library function allocates a block of memory up to the size allowed
by size_t. To use malloc(), you must follow a few simple rules:

• The malloc() function returns a pointer to the allocated memory or NULL if the
memory could not be allocated. You should always check the returned pointer
for NULL.

• The pointer returned by malloc() should be saved in a static variable, unless
you are sure that the memory block will be freed before the pointer variable is
discarded at the end of the block or the function.

Dynamic Memory Allocation

229

C C
CC
C

C
C
C C8

• You should always free a block of memory that has been allocated by malloc()
when you are finished with it. If you rely on the operating system to free the
block when your program ends, there may be insufficient memory to satisfy
additional requests for memory allocation during the rest of the program’s run.

• Avoid allocating small blocks (that is, less than 25 or 50 bytes) of memory.
There is always some overhead when malloc() allocates memory—16 or more
bytes are allocated in addition to the requested memory.

The malloc() function requires only one parameter: the size of the block of
memory to allocate. As mentioned, the length of this parameter is size_t, which on
many systems is a short int (16 bits).

You could assume that you cannot allocate a block of memory larger than the
ANSI C maximum of 32,767 bytes. Another method is to check the defined identifier
(usually in malloc.h) for the maximum for the particular system. With Microsoft C
compilers, for example, the maximum is approximately 65,500 bytes. If you assume
the worst case (the ANSI C value), however, your program has a better chance of
working if the limit changes.

The constraint on the size of a data object may seem unreasonable, but you will
rarely reach the 32K limit imposed by ANSI C. If you have large data objects, it is
always possible (and desirable) to break them into smaller, more manageable pieces.

If you are determined to define a data object larger than the allowed size (some-
thing I do not recommend) and are using a Microsoft C compiler, you can use the
halloc() function. This function allocates an array that can be any size (up to the
amount of available free memory). You must define the array element size as a power
of two, which is not an issue if the array is type char, int, or long. If the array is a
structure, type union, or a floating-point long double, this constraint may need to be
addressed with padding. If you use the halloc() function, your code will not be
portable, but you could probably create a workaround if necessary.

When you use the malloc() function, remember that the block of allocated
memory is not initialized. If you want initialized memory, use memset() after the
memory is allocated or use calloc() (discussed in the next section). I recommend that
you always initialize any memory allocated with the malloc() function.

Listing 8.1, MALLOC2.C, allocates blocks of memory. There is no way to
determine the size of the largest available block, so the program begins with the largest
size (32,767). If malloc() fails, the program reduces this size by 50 percent; this

Part II • Managing Data in C

230

continues until the requested size is less than 2 bytes. The program stops when there
is no more memory, or a total of 2M has been allocated.

Listing 8.1. MALLOC2.C.

/* MALLOC2, written 1992 by Peter D. Hipson

 * This program allocates memory.

*/

#include <io.h> // I/O functions

#include <stdio.h> // Make includes first in program

#include <string.h> // For string functions

#include <malloc.h> // For memory allocation functions

int main(void); // Define main() and the fact that this

 // program doesn’t use any passed parameters

int main()

{

int i = 0;

int j = 0;

int *nPointer[100] = {NULL};

int nSize = 32767;

long lTotalBytes = 0;

 while(nSize > 0 && // Make nSize valid

 nSize <= 32767 &&

 lTotalBytes < 2000000) // Not more than 2M will be allocated

 {

 nPointer[i] = (int *)malloc(nSize);

 if (nPointer[i] != NULL)

 {

 ++i;

 lTotalBytes += nSize;

Dynamic Memory Allocation

231

C C
CC
C

C
C
C C8

 printf(“Allocated %5u bytes, total %10ld\n”,

 nSize,

 lTotalBytes);

 }

 else

 {

 printf(“Couldn’t allocate %5u bytes, total %10ld\n”,

 nSize,

 lTotalBytes);

 nSize /= 2;

 }

 }

 for (j = 0; j < i; j++)

 {

 free(nPointer[j]);

 nPointer[j] = NULL;

 }

 return (0);

}

Listing 8.1 is system dependent. If you are using a PC under DOS in real mode,
for example, about 400,000 bytes of memory might be allocated. Under a protected-
mode environment such as OS/2 or Windows, you can allocate much more memory.
For example, on a system running in protected mode with 10M of free memory, 2M
of memory might be allocated, as follows:

Allocated 32767 bytes, total 32767

Allocated 32767 bytes, total 65534

Allocated 32767 bytes, total 98301

and so on...

Allocated 32767 bytes, total 1966020

Allocated 32767 bytes, total 1998787

Allocated 32767 bytes, total 2031554

If you are not sure of the environment in which your application will be running,
assume the worst case—less than 32K of free memory.

Part II • Managing Data in C

232

Notice that a loop at the end of the program frees the memory that malloc() has
allocated. This loop is performing housekeeping—something that every well-written
program should do.

Using the calloc() Function

Because malloc() does not initialize memory and calloc() does, programmers often
prefer calloc(). When using Microsoft’s C compilers, the array memory allocation
functions in Table 8.2 are used with calloc().

Table 8.2. Microsoft C calloc() Functions.

Function Description

void *calloc(size_t num, The ANSI C standard array memory allo-
size_t size); cation function.

void _ _based(void) Does based memory allocation. You
*_bcalloc(_ _segment seg, provide the segment that the data will be
size_t num, size_t size); allocated from.

void _ _far *_fcalloc Allocates a block of memory outside the
(size_t num, size_t default data segment, returning a far
size); pointer. This function is called by calloc()

when the large or compact memory model
is specified.

void _ _near *_ncalloc Allocates a block of memory inside the
(size_t num, size_t default data segment, returning a near
size); pointer. This function is called by calloc()

when the small or medium memory model
is specified.

The calloc() library function allocates memory much like the malloc()
function, with two main differences. With the calloc() function, you specify two
parameters, not one: the number of elements and the size of each element. The product
of these parameters determines the size of the memory block to allocate, and must fit
in type size_t, which on many systems is a short int (16 bits). If you specify an element

Dynamic Memory Allocation

233

C C
CC
C

C
C
C C8

size of 1, the calloc() num parameter functions similarly to the malloc() size

parameter.

The second difference is that the calloc() function initializes the memory it
allocates to zero. The value used to initialize the memory is an absolute zero, which
usually—but not always—evaluates to a floating-point zero or a NULL pointer value.
This is fine if the memory will be used for string storage or integers. If the memory will
be used for floating-point values, you should explicitly initialize the block of memory
after calloc() returns. I recommend that you always initialize memory allocated with
calloc if you do not know the format of the data that you will be storing in it.

To use calloc(), you follow the same rules for using malloc(). These rules are
outlined in the first section, “Using the malloc() Function.”

Listing 8.2, CALLOC1.C, allocates blocks of memory. The size of the largest
available block cannot be determined, so the program begins with the largest size
possible (using the size of int) and tries to allocate an array of 32,767 members. If
calloc() fails, the program reduces the size by 50 percent; this continues until the
requested size is less than 2 bytes. The program allocates buffers, each containing
32,767 2-byte integers. When an allocation request fails, the program decreases the size
of the array until more memory can be allocated. It stops when there is no more
memory or 2M have been allocated. The only major difference between MALLOC2.C
and CALLOC1.C is the call to the memory allocation function.

Listing 8.2. CALLOC1.C.

/* CALLOC1, written 1992 by Peter D. Hipson

 * This program allocates arrays of memory.

*/

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <malloc.h> // For memory allocation functions

int main(void); // Define main() and establish that this

 // program does not use any passed parameters

int main()

continues

Part II • Managing Data in C

234

{

int i = 0;

int j = 0;

int *nPointer[100] = {NULL};

int nSize = 32767;

long lTotalBytes = 0;

 while(nSize > 0 && // Make nSize valid

 nSize <= 32767 &&

 lTotalBytes < 2000000) // No more than 2M will be allocated

 {

 nPointer[i] = (int *)calloc(nSize, sizeof(int));

 if (nPointer[i] != NULL)

 {

 ++i;

 lTotalBytes += (nSize * sizeof(int));

 printf(“Allocated %5u short int, total %10ld\n”,

 nSize,

 lTotalBytes);

 }

 else

 {

 printf(“Couldn’t allocate %5u short int, total %10ld\n”,

 nSize,

 lTotalBytes);

 nSize /= 2;

 }

 }

 for (j = 0; j < i; j++)

 {

Listing 8.2. continued

Dynamic Memory Allocation

235

C C
CC
C

C
C
C C8

 free(nPointer[j]);

 nPointer[j] = NULL;

 }

 return (0);

}

When CALLOC1 was run, it could not allocate an integer array of 32,767
members, as the following output shows:

Couldn’t Allocate 32767 bytes, total 0

Allocated 16383 bytes, total 32766

Allocated 16383 bytes, total 65532

Allocated 16383 bytes, total 98298

and so on...

Allocated 16383 bytes, total 1965960

Allocated 16383 bytes, total 1998726

Allocated 16383 bytes, total 2031492

The reason for this is not the ANSI C limit of 32,767 bytes in a data object—my C
compiler does not enforce this limit. The limit in my compiler is that a data object
created by calloc() or malloc() cannot be larger than 65,510 bytes. The array of
integers consisted of 32,767 members (each 2 bytes long), for a total of 65,534 bytes,
which is too large.

CALLOC1 then attempted to allocate the next size, 16,383, and was successful.

Using the free() Function

The free() functions in Table 8.3 can be used with a Microsoft C compiler.

Table 8.3. Microsoft C free() Functions.

Function Description

void free(void *memblock); The ANSI C standard array
memory deallocation function.

continues

Part II • Managing Data in C

236

void _bfree(_ _segment seg, Based memory deallocation.
void _ _based(void) *memblock);

void _ffree(void _ _far Frees a block of memory outside
*memblock); the default data segment.

void _nfree(void _ _near Frees a block of memory inside
*memblock); the default data segment.

The free() memory allocation function was shown in Listings 8.1 and 8.2. Its
function is to return to the operating system memory that you have allocated. (You
could think of the memory as borrowed.) Memory is usually a limited resource—even
when you are running a system with virtual memory—so you must give memory back
when you are finished with it.

The free() function is almost foolproof. Errors could occur, however, when you
try to free memory that

Was not allocated with one of the memory allocation functions;

Has been released through a prior call to free() or a call to realloc();

Is currently in use by another thread in a multithreaded operating system;

Is not yours to free.

When free() is called, be sure you are passing a valid pointer to it . To make sure that
the pointer is valid, check that it contains NULL or points to a properly allocated block
of memory. Note that free() considers a NULL pointer to be always valid, and treats a
call with a NULL pointer as a no-operation, which means free() simply returns without
freeing any memory.

Look at the following variable declarations in the CALLOC1 program:

int j = 0;

int *nPointer[100] = {NULL};

int nSize = 32767;

Table 8.3. continued

Function Description

Dynamic Memory Allocation

237

C C
CC
C

C
C
C C8

The pointer array is initialized to NULL, which is a safe value for initialization because
it will not cause an error if it is passed to free(). In addition, because the loop that
allocates the memory uses an index into the array of memory pointers (nPointer[]),
only valid pointers to allocated blocks of memory will be stored in nPointer[].

In the final cleanup, the memory pointed to by nPointer[] is freed. The
following loop resets each pointer to NULL after the block of memory is freed:

for (j = 0; j < i; j++)

{

 free(nPointer[j]);

 nPointer[j] = NULL;

}

If the program tries to free one of the already freed nPointer[]s later (because of
a programming error), the NULL pointer prevents an error that would be caused by
trying to free a block of memory twice.

Using the realloc() Function

When using Microsoft’s C compilers, the array memory allocation functions in
Table 8.4 are used with realloc().

Table 8.4. Microsoft C realloc() functions.

Function Description

void *realloc(void The ANSI C standard array memory
*memblock,size_t size); reallocation function.

void _ _based(void) Does based memory reallocation. You must
*_brealloc(__segment provide the segment that the data will be
seg, void _ _based(void) allocated from.
*memblock, size_t size);

void _ _far *_frealloc Reallocates a block of memory outside the
(void _ _far *memblock, default data segment, returning a far pointer.
size_t size); This function is called by realloc() when the

large or compact memory model is specified.

continues

Part II • Managing Data in C

238

void _ _near *_nrealloc Reallocates a block of memory inside the de-
(void _ _near *memblock, fault data segment, returning a near pointer.
size_t size); This function is called by realloc() when the

small or medium memory model is specified.

Assume that you have a program that reads customer records from the keyboard
and stores each in a structure. When the user is finished entering the names, the
program saves them to disk. You want to be sure that there is enough memory (within
reason) to hold the entered names, but you do not want to allocate more memory than
necessary.

You could call calloc() and allocate all available free memory for the structures.
This might work, but it wastes a lot of memory. Another method is to call calloc()
and allocate a small block, but the program would have to pause to save the
information, something that might irritate the user. Or you could call calloc(),
allocate a small block, call calloc() again when the block was filled and get a bigger
block of memory, copy the small block of memory to the larger one, then free the small
block. As you can see, that would require a lot of work.

The best solution is to call calloc() to allocate the initial array, then call
realloc() to make the block larger. The realloc() function copies the contents of the
original block of memory to the new block, then frees the original block, so your work
is minimized.

Listing 8.3 is the CDB program. Like the CREATEDB program in Chapter 7,
“C Structures”, CDB reads in customer records. Unlike CREATEDB, CDB writes the
records entered by the user to the file only after the user has finished entering the names.

Listing 8.3. CDB.C.

/* CDB, written 1992 by Peter D. Hipson

 * This program uses calloc() and realloc(). It has

 * better error checking than the CREATEDB program,

 * which was presented in Chapter 7.

 */

Table 8.4. continued

Function Description

Dynamic Memory Allocation

239

C C
CC
C

C
C
C C8

#include <string.h>

#include <ctype.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#define INCREMENT_AMOUNT 2

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

/* Define our structure for the customer database. */

typedef struct _CUSTNAME {

 int nRecordType; // 1 == Customer record

 char szName[61]; // 60 chars for name, 1 for null at end

 char szAddr1[61]; // 60 chars for address, 1 for null at end

 char szAddr2[61]; // 60 chars for address, 1 for null at end

 char szCity[26]; // 25 chars for city, 1 for null at end

 char szState[3]; // 2-char state abbreviation, plus null

 long lZip; // Use integer, print as %5.5ld for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // How much customer has purchased

 } CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;

typedef CUSTNAME *PCUSTNAME;

void main()

{

FILE *DataFile;

PCUSTNAME Customer = NULL;

PCUSTNAME TempCustomer = NULL;

char szFileName[25];

char szBuffer[257];

continues

Part II • Managing Data in C

240

int i;

int nNumberRecords = 0;

int nRecord = 0;

int nResult = 0;

double dSales = 0.0; // Forces loading of floating-point support

 Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),

 INCREMENT_AMOUNT);

 nNumberRecords += INCREMENT_AMOUNT;

 printf(“Please enter customer database name: “);

 gets(szFileName);

 DataFile = fopen(szFileName, “wb”);

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

 printf(“Demo of calloc() and realloc(). sizeof(CUSTNAME) = %d\n”,

 sizeof(CUSTNAME));

 nRecord = 0;

 Customer[nRecord].szName[0] = ‘A’; // To get past while() first time

 while (strlen(Customer[nRecord].szName) > 0)

 {

 memset(&Customer[nRecord], 0, sizeof(CUSTNAME));

 printf(“Enter name %d: “, nRecord + 1);

 gets(szBuffer);

Listing 8.3. continued

Dynamic Memory Allocation

241

C C
CC
C

C
C
C C8

 szBuffer[sizeof(Customer[nRecord].szName) - 1] = ‘\0’;

 strcpy(Customer[nRecord].szName, szBuffer);

 if (strlen(Customer[nRecord].szName) > 0)

 {

 Customer[nRecord].nRecordNumber = i;

 do

 {

 printf(“Enter 1 for customer, 2 for supplier “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer[nRecord].nRecordType);

 }

 while (Customer[nRecord].nRecordType != CUSTOMER_RECORD &&

 Customer[nRecord].nRecordType != SUPPLIER_RECORD);

 printf(“Enter address line 1: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer[nRecord].szAddr1) - 1] = ‘\0’;

 strcpy(Customer[nRecord].szAddr1, szBuffer);

 printf(“Enter address line 2: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer[nRecord].szAddr2) - 1] = ‘\0’;

 strcpy(Customer[nRecord].szAddr2, szBuffer);

 printf(“Enter City: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer[nRecord].szCity) - 1] = ‘\0’;

 strcpy(Customer[nRecord].szCity, szBuffer);

 printf(“Enter state postal abbreviation: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer[nRecord].szState) - 1] = ‘\0’;

 strcpy(Customer[nRecord].szState, szBuffer);

 printf(“Enter ZIP code: “);

 gets(szBuffer);

 sscanf(szBuffer, “%ld”, &Customer[nRecord].lZip);

continues

Part II • Managing Data in C

242

Listing 8.3. continued

 printf(“Enter total sales: “);

 gets(szBuffer);

 sscanf(szBuffer, “%f”, &Customer[nRecord].dSalesTotal);

 ++nRecord;

 if (nRecord == nNumberRecords)

 {

 TempCustomer = (PCUSTNAME)realloc(Customer,

 sizeof(CUSTNAME) * (nNumberRecords +

INCREMENT_AMOUNT));

 if (TempCustomer)

 {

 nNumberRecords += INCREMENT_AMOUNT;

 printf(“realloc() added records, now total is %d\n”,

 nNumberRecords);

 Customer = TempCustomer;

 Customer[nRecord].szName[0] = ‘A’; // To get past

while()

 }

 else

 {

 printf(“ERROR: Couldn’t realloc the buffers\n\n\g”);

 --nRecord;

 Customer[nRecord].szName[0] = ‘\0’;

 }

 }

 else

 {

 Customer[nRecord].szName[0] = ‘A’; // To get past while()

 }

 }

 }

 for (i = 0; i < nRecord; i++)

 {

Dynamic Memory Allocation

243

C C
CC
C

C
C
C C8

 printf(“Name ‘%10s’ City ‘%10s’ State ‘%2s’ ZIP ‘%5.5ld’\n”,

 Customer[i].szName,

 Customer[i].szCity,

 Customer[i].szState,

 Customer[i].lZip);

 }

 nResult = fwrite((char *)Customer,

 sizeof(CUSTNAME),

 nRecord,

 DataFile);

 if (nResult != nRecord)

 {

 printf(“ERROR: File ‘%s’, write error, record %d.\n”,

 szFileName,

 i);

 fclose(DataFile);

 exit(4);

 }

 fclose(DataFile);

}

By expanding the buffers used for storing data, the data can be saved in memory
and written to the disk at one time. In addition, summary information such as totals
could be displayed, the user could edit the entered information, and the information
could be processed if necessary. The one hitch is that all the user’s data that is in
RAM and not written to the disk will be lost if the computer fails. With CREATEDB,
at most one record would be lost.

When you write a program in which the user will be entering substantial
amounts of data from the keyboard, you should plan for events that might cause the
loss of information just entered. One solution to retaining this information is to write
to the file after the user inputs a record. Summary information can be presented,
records can be edited, and so on, and the records the user entered can be rewritten by
the program to a master file later as necessary.

Part II • Managing Data in C

244

The realloc() function enables you to have some control over the size of your
dynamic data objects. Sometimes, however, the data objects will become too large for
available memory. In CDB, for example, each data object is 228 bytes long. If 40,000
bytes of free memory were available, the user could enter about 176 records before
using up free memory. Your program must be able to handle the problem of
insufficient memory in a way that does not inconvenience the user or lose data.

Allocating Arrays

Allocating an array is an easy process when you use calloc(). Its parameters are the size
for each element of the array and a count of the number of array elements. To dynam-
ically allocate an array at runtime, you simply make a call.

Refer to Listing 8.4, SORTALOC. The program prompts the user for a number
of integers, in the range 10 to 30,000. It then creates a list of integers, sorts them, and
prints the result.

Listing 8.4. SORTALOC.C.

/* SORTALOC, written 1992 by Peter D. Hipson

 * This program prompts for the number of integers to sort,

 * allocates the array, fills the array with random numbers,

 * sorts the array, then prints it, using 10 columns.

 */

#include <search.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#include <time.h>

int compare(const void *, const void *);

int main()

{

int i;

int *nArray = NULL;

Dynamic Memory Allocation

245

C C
CC
C

C
C
C C8

int nArraySize = 0;

 while(nArraySize < 10 || nArraySize > 30000)

 {

 printf(“Enter the number of random integers to sort (10 to \

 30,000): “);

 scanf(“%d”, &nArraySize);

 if(nArraySize < 10 || nArraySize > 30000)

 {

 printf(“Error: must be between 10 and 30,000!\n”);

 }

 nArray = (int *)calloc(sizeof(int), nArraySize);

 if (nArray == NULL)

 {

 printf(“Error: couldn’t allocate that much memory!\n”);

 nArraySize = 0;

 }

 }

 srand((unsigned)time(NULL));

 for (i = 0; i < nArraySize; i++)

 {

 nArray[i] = rand();

 }

 qsort(nArray, nArraySize, sizeof(int), compare);

 for (i = 0; i < nArraySize; i += 10)

 {

 printf(“%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n”,

 nArray[i],

 nArray[i + 1],

 nArray[i + 2],

 nArray[i + 3],

 nArray[i + 4],

 nArray[i + 5],

continues

Part II • Managing Data in C

246

Listing 8.4. continued

 nArray[i + 6],

 nArray[i + 6],

 nArray[i + 7],

 nArray[i + 8],

 nArray[i + 9]);

 }

 free(nArray);

 return(0);

}

int compare(

 const void * a,

 const void * b)

{

 return (*(int *)a - *(int *)b);

}

SORTALOC illustrates several important points about using the memory al-
location functions. First, the array is simply declared as an integer pointer called
nArray. This pointer is initialized with NULL to prevent an error when the free()
function frees the pointer. Although always initializing variables may seem excessive,
using an uninitialized variable is a common programming error.

After calloc() allocates the array, it can be accessed in the same way as any other
array. For example, standard array indexing can be used, as shown in the following:

for (i = 0; i < nArraySize; i++)

{

 nArray[i] = rand();

}

The loop assigns a random number to each element (indexed by i).

After the array is filled, it is passed to the qsort() function like any other array.
The qsort() function can sort almost any type of data. You just give qsort() the
size of the array’s elements, the number of elements, and the compare function. (Note:
The compare function in Listing 8.4 is valid for integers but not floating-point values.

Dynamic Memory Allocation

247

C C
CC
C

C
C
C C8

This is because the compare must return an integer, and a floating-point value may
differ by less than the truncation value of an integer.)

Finally, the array is printed in ten columns. There is nothing tricky about this
portion of the code—one print statement prints ten elements, then the index is
incremented by ten.

Global Memory versus Local Memory

The discussion of local memory and global memory is applicable to computers with
Intel 80x86 CPUs. These CPUs use segmented architecture, in which a data object can
be addressed with a full address (consisting of both a segment and an offset from the
segment) or as an offset (where the segment used is the default data segment).

Not all operating systems and compilers offer access to both local memory (found
in the default data segment) and global memory (located outside the default data
segment, usually in its own segment). A compiler that offers memory models, such as
small, medium, large, and compact, is generally found on a PC-type of computer. The
discussion in this section pertains to compilers used on an 80x86 CPU.

For most compilers, the memory model determines the area from which memory
will be allocated. If your program uses the large or compact memory model, the default
memory pool is global. If your program is a small or medium model program, the de-
fault memory pool is local. You can always override the compiler’s default memory
allocation area.

When running in real mode, Intel 80x86 CPUs can access a maximum of 64K
in each segment. This limitation, and the way the default data segment is allocated (it
is often used for the stack, initialized data variables, constants, literals, and the heap,
which is where memory is allocated from when using local memory), affects how much
data a program can have.

Global memory has its own segment, and thus can have up to 64K in a single
data object (or more than 64K by using several contiguous segments). To use global
memory, however, your program must use far (4-byte) pointers rather than near (2-
byte) pointers, and this can slow program execution. If you need to determine the effect
this has on performance, you could create one version of your program with small data
blocks and near pointers, and the other with large data blocks and far pointers, then
run simple benchmarks.

Part II • Managing Data in C

248

Summary

In this chapter, you learned about memory allocation, how to change the size of an
allocated block of memory, and how to free memory after it is no longer needed.

• The malloc() function is the ANSI standard method for allocating memory.
It accepts a single parameter that specifies how much memory should be
allocated.

• The calloc() function allocates memory based on the size of the object and
the number of objects. It is typically used to allocate an array.

• When memory allocated with one of the memory allocation functions is no
longer needed, the free() function returns the memory to the operating
system.

• The realloc() function changes the size of a block of memory allocated with
one of the memory allocation functions. The object’s size can be increased or
decreased.

• When programming on the PC (and other systems), you can often choose the
size of the pointer that accesses the allocated memory. The pointer size affects
the size of the executable program and the performance of the program.

Disk Files and Other I/O

249

C C
CC
C

C
C
C C9

Disk Files and Other I/O

Without files, your program could do nothing. It would be without input, unable to
provide output, and unable to save the result of any of its computations. Fortunately,
ANSI C offers an excellent collection of file I/O functions. You can write to a file in
an unformatted (machine readable) manner, or your program can write to a file in a
formatted (people readable) manner.

This chapter deals with all types of I/O: to and from files, the console, and
other devices. You learn all (at least I hope all) that you will need to develop the I/O
portions of your programs. The first part of this chapter deals with disk files. The
second part covers console I/O and direct port I/O, including I/O to printer ports and
communications ports. Much of the direct port I/O is hardware dependent; the
discussion applies to a PC-based system.

C C
CC
C

C
C
C C9

Part II • Managing Data in C

250

File I/O Basics

This section does not discuss how files are arranged, stored, and managed on the disk
drive. That is a topic for a book on operating systems, not a book on C programming.
This section does cover how to use files.

The most important part of most programs is their capability to save results or
the data they use (such as a database) to a disk file. All disk files share things in com-
mon. (Again, this discussion is confined to the PC’s DOS operating system.)

All files have names. The format for a disk filename is eight characters for the
name and three characters for the extension. The selection of a file’s name and
extension are generally left to the user, except for files that other applications utilize.
Many applications suggest an extension (some require it), but few programs place
restrictions on the name.

All files have a creation date and time, which is stored in the time stamp. The
time stamp is updated each time you save changes to the file, so it serves as a file
modification time stamp.

All files have a length. This length is in the operating system’s structure saved for
each file. When a file consists of only text, it may also contain an EOF (end of file)
marker, which under DOS is 0x1A (Ctrl-Z).

All files also have attributes, as follows:

Normal No special attributes are set for the file.

Directory The file is a directory. The directory attribute can be used with
the hidden attribute.

Hidden The file’s name is not displayed when you issue a DIR com-
mand without the /A:H option.

System The file is used only by the operating system. Generally, only
the two files belonging to the operating system have the system
attribute.

Read only The file can be only read, not written or deleted.

Archive The file has not been backed up since it was last changed.
BACKUP and XCOPY can use and change the archive attribute.

Disk Files and Other I/O

251

C C
CC
C

C
C
C C9

You can specify the read-only attribute when you create a file. All other attri-
butes must be set (or cleared) using the DOS ATTRIB command. You use the system()
function to call the ATTRIB command from DOS applications.

When a file is opened, the program typically must specify the filename and the
mode: read, write, or both read and write. If the file is being created, the program
could specify also whether the file will be read only after it is created.

The open functions return an identifier that is a file handle or a pointer to the
opened file. You use this identifier when you call the read and write functions. When
the program has finished with the file, the file should be closed, or if it is a temporary
work file, deleted.

Text Files and Binary Files

If a text file is displayed on the screen, it is readable. It shouldn’t contain any special
characters other than tabs and newlines and is generally formatted so that it pre-
sents information to the user in an organized manner. Many text files are used only by
programs, however, even though the files are fully readable (and perhaps even
understandable). A binary file can contain any data, including the internal represen-
tation of numbers, special control characters.

A problem arises when you use a text file, the C language, and C’s interface to
DOS. C specifies a single character (called the newline character) to signify the end of
a line. DOS uses two characters (a newline character followed by a carriage return
character) to signify the end of a line. Each is a control character, and as such, must be
specified using the ANSI C escape sequence, which begins with a backslash character.

To specify a newline, you use the \n character sequence. When C encounters the
newline character in a string being output to DOS (either to a file or on the screen),
C converts it to the two-character sequence that DOS expects (a newline followed by
a carriage return). When input is read, C does the opposite, converting the newline
and carriage return pair to a single newline character.

This creates a minor problem. When the program reads a specified number of
bytes in a text mode file, each time the newline and carriage return pair is encounter-
ed, the character count is incremented by only 1 (only one newline character is
counted). If your program reads the string from a file, as shown in Figure 9.1, the string
is only 29 characters long, not the 31 characters stored in the file.

Part II • Managing Data in C

252

Figure 9.1. A string in memory and in a text mode file.

The problem arises when the program must go (seek) to a specific place in the
file. You cannot assume how many characters (or bytes) are between a given point and
the desired point. If you have written a file containing five different strings that are each
50 characters long (and contain an unknown number of newline characters), you could
not get to the beginning of the fourth string, for example, by seeking to character
number 150.

To successfully seek in a text file, you must create an index to each string (or
record). This index is assigned values by using one of the functions that return the
current place in a file, such as ftell() or fgetpos(). These functions return the correct
position of a given data object, taking into consideration the conversion of the new-
line character to a newline and carriage return pair.

You must save this index to be able to access the strings randomly. The only al-
ternative to saving an index is to read the text file sequentially, which may not be
acceptable based on performance considerations.

The TEXTFILE.C program, shown in Listing 9.1, shows the effects of text
mode.

Listing 9.1. TEXTFILE.C.

/* TEXTFILE, written 1992 by Peter D. Hipson

 * This program demonstrates text file

 * newline conversions.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

Disk Files and Other I/O

253

C C
CC
C

C
C
C C9

continues

#include <process.h> // For abort(), spawn(), exit(), etc.

#include <malloc.h> // For memory allocation functions

#include <conio.h> // For console getch(), getche(), etc.

#include <ctype.h> // For character-conversion functions

#define MAX_LINES 25

#define MAX_LENGTH 80

char szSaying[MAX_LINES][MAX_LENGTH] =

 {

 “\nFirestone’s Law of Forecasting: \n”,

 “\n Chicken Little has to be right only once. \n”,

 “\n \n\n”,

 “\nManly’s Maxim: \n”,

 “\n Logic is a systematic method of coming to \n”,

 “\n the wrong conclusion with confidence. \n”,

 “\n \n\n”,

 “\nMoer’s truism: \n”,

 “\n The trouble with most jobs is the job holder’s \n”,

 “\n resemblance to being one of a sled dog team. No one \n”,

 “\n gets a change of scenery except the lead dog. \n”,

 “\n \n\n”,

 “\nCannon’s Comment: \n”,

 “\n If you tell the boss you were late for work because you \n”,

 “\n had a flat tire, the next morning you will have a flat tire.\n”,

 “\n \n\n”,

 };

int main(void); // Define main() and the fact that this program

 // does not use any passed parameters

int main()

{

FILE *DataFile = NULL;

char szFileName[25];

char szBuffer[257];

char szMode[5] = “w\0\0”;

Part II • Managing Data in C

254

int i;

int nNumberRecords = 0;

int nRecord = 0;

int nResult = 0;

long lNewPosition = 0;

long lOldPosition = 0;

/* Prompt the user to supply the mode, either lowercase t

 * for a text file or lowercase b for a binary file.

 */

 while (DataFile == NULL)

 {

 while(szMode[1] != ‘b’ && szMode[1] != ‘t’)

 {

 printf(“\nPlease enter ‘t’ for text file, ‘b’ for binary: “);

/* For non-Microsoft C systems, use tolower() (no leading underscore) */

 szMode[1] = _tolower(getche());

 }

 printf(“\nPlease enter name of file to write: “);

 gets(szFileName);

 DataFile = fopen(szFileName, szMode);

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 }

 }

 printf(“\n”);

 switch(szMode[1])

 {

 case ‘t’:

Listing 9.1. continued

Disk Files and Other I/O

255

C C
CC
C

C
C
C C9

 printf(“Demo of a text file\n\n”);

 break;

 case ‘b’:

 printf(“Demo of a binary file\n\n”);

 break;

 }

 for (i = 0; strlen(szSaying[i]); i++)

 {

 lOldPosition = ftell(DataFile);

 fwrite(szSaying[i],

 strlen(szSaying[i]),

 1,

 DataFile);

 lNewPosition = ftell(DataFile);

 printf(

 “Start position %5ld “

 “end %5ld, “

 “strlen(...) %d but “

 “wrote %5ld bytes’\n”,

 lOldPosition,

 lNewPosition,

 strlen(szSaying[i]),

 (long)lNewPosition - lOldPosition);

 }

 fclose(DataFile);

 printf(“\n”);

 switch(szMode[1])

 {

 case ‘t’:

 printf(“Note the bytes written don’t”

 “ equal the string’s length\n\n”);

 break;

continues

Part II • Managing Data in C

256

Listing 9.1. continued

 case ‘b’:

 printf(“Note the bytes written always”

 “ equal the string’s length\n\n”);

 break;

 }

 return (0);

}

TEXTFILE enables you to open the file in text mode or binary mode so you can
see how the modes differ. The ftell() function returns the number of bytes in the file,
without regard to the file’s mode. All strings in TEXTFILE have the same number of
characters, according to strlen(), but the number of bytes written in the text mode
depends on the number of newline characters in the string.

Virtually all files saved by editors and other programs are equivalent to a text file.
Many DOS programs cannot read a file that does not have the newline and carriage
return combination.

Creating and Using Temporary Work Files

When you create a temporary work file, remember the following simple rules:

• The filename must be unique. This uniqueness can be guaranteed by using
tmpfile() or tmpnam().

• The file must be deleted when you have finished using it. If you create the file
using tmpfile(), the operating system deletes the file for you. If you create it
with tmpnam() and an explicit open, your program must delete the file.

Few programs can store all their data in memory. You cannot be sure of the
amount of memory available to your program for data storage, and you therefore
won’t know if there will be enough memory to load the data the program requires.

Many larger programs with large data objects do not even try to save all their data
in memory. They read the data, index the data, then write the data to a temporary
work file. Listing 9.2, EDLINE, is a simple editor that reads a text file, provides editing

Disk Files and Other I/O

257

C C
CC
C

C
C
C C9

capabilities, then writes the program’s buffers out to the file when the user ends the
program. Because this editor is simple, it supports only line-number editing.

Listing 9.2. EDLINE.C.

/* EDLINE, written 1992 by Peter D. Hipson

 * This program is a simple line-oriented editor. If

 * your compiler supports memory models, use the

 * large model.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For abort(), spawn(), exit(), etc.

#include <malloc.h> // For memory allocation functions

#include <conio.h> // For console getch(), getche(), etc.

#include <ctype.h> // For character conversion functions

#define MAX_LINES 15500 /* Allow 64K for indexes */

#define MAX_LENGTH 513 /* Longest line is 512 + NULL */

#define DELETED_LINE -1 /* A line that has been deleted */

long lLineIndex[MAX_LINES];

char szInputLine[MAX_LENGTH];

int main(

 int argc, /* Count of arguments */

 char *argv[], /* Array of pointers to arguments */

 char *envp[] /* Array of pointers to environment */

);

int EditLine(char * szInputLine); /* Used to edit a given line */

int main(

 int argc,

 char *argv[],

 char *envp[]

)

continues

Part II • Managing Data in C

258

{

FILE *DataFile = NULL;

FILE *WorkFile = NULL;

char szFileName[25];

char szBuffer[257];

char szTempName[L_tmpnam];

char szNewName[L_tmpnam];

char szCommand[81];

char chChar;

int i;

int nMaxLines = 0;

int nStartLine;

int nEndLine;

/* First, get the filename to edit */

 if (argc >= 2)

 {

 DataFile = fopen(argv[1], “rt”);

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, argv[1]);

 }

 else

 {

 strcpy(szFileName, argv[1]);

 }

 }

 while (DataFile == NULL)

 {

 printf(“\nPlease enter name of file to edit: “);

 gets(szFileName);

Listing 9.2. continued

Disk Files and Other I/O

259

C C
CC
C

C
C
C C9

 DataFile = fopen(szFileName, “rt”);

 if (DataFile == NULL)

 {

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 }

 }

 printf(“\n”);

/* Next, get a temporary filename, read the original file, and

 * write it to the work file. Create a line-number index so that

 * you can access the records.

 */

 tmpnam(szTempName);

 if (strlen(szTempName) == 0)

 {

 printf(“Couldn’t get a work file name...\n”);

 exit(4);

 }

 WorkFile = fopen(szTempName, “w+t”);

 for (i = 0; i < MAX_LINES; i++)

 {

 lLineIndex[i] = DELETED_LINE;

 }

 nMaxLines = 1;

 lLineIndex[nMaxLines] = 0;

 while(fgets(szInputLine, sizeof(szInputLine), DataFile))

 {

 lLineIndex[nMaxLines++] = ftell(WorkFile);

 fputs(szInputLine, WorkFile);

 }

 fclose(DataFile);

continues

Part II • Managing Data in C

260

 printf(“Total lines in file %d.\n”, nMaxLines - 1);

 szCommand[0] = ‘\0’;

 while(szCommand[0] != ‘q’) // Quit without saving (use w command to

 // save)

 {

 printf(“Command? “);

 gets(szCommand);

 strlwr(szCommand);

 nEndLine = -1;

 sscanf(&szCommand[1], “%d%d”,

 &nStartLine,

 &nEndLine);

 if (nEndLine < nStartLine)

 {

 nEndLine = nStartLine;

 }

 if (nEndLine >= nMaxLines)

 {

 nEndLine = (nMaxLines - 1);

 }

 switch(szCommand[0])

 {

 case ‘e’: /* Edit the specified line */

 if (nStartLine == 0)

 {

 printf(“Line number must be 1 to %d\n”, nMaxLines);

 }

 else

 {

Listing 9.2. continued

Disk Files and Other I/O

261

C C
CC
C

C
C
C C9

 if (lLineIndex[nStartLine] == DELETED_LINE)

 {

 printf(“Line %d has been deleted, “

 “and cannot be edited.\n”,

 nStartLine);

 }

 if (nStartLine < nMaxLines &&

 lLineIndex[nStartLine] != DELETED_LINE)

 {

 fseek(WorkFile,

 lLineIndex[nStartLine], SEEK_SET);

 fgets(szInputLine,

 sizeof(szInputLine), WorkFile);

 if (EditLine(szInputLine))

 {

 fseek(WorkFile, 0, SEEK_END);

 lLineIndex[nStartLine] = ftell(WorkFile);

 fputs(szInputLine, WorkFile);

 }

 }

 }

 break;

 case ‘l’: /* List the specified line */

 if (nStartLine == 0)

 {

 nStartLine = 1;

 while(nStartLine < nMaxLines)

 {

 if (lLineIndex[nStartLine] != DELETED_LINE)

 {

 fseek(WorkFile,

 lLineIndex[nStartLine], SEEK_SET);

continues

Part II • Managing Data in C

262

 fgets(szInputLine,

 sizeof(szInputLine), WorkFile);

 printf(“%4d - %s”,

 nStartLine,

 szInputLine);

 }

 else

 {

 printf(“%4d ***DELETED LINE***\n”,

 nStartLine);

 }

 ++nStartLine;

 }

 nStartLine = 0;

 }

 else

 {

 while(nStartLine <= nEndLine)

 {

 if (lLineIndex[nStartLine] != DELETED_LINE)

 {

 fseek(WorkFile,

 lLineIndex[nStartLine], SEEK_SET);

 fgets(szInputLine,

 sizeof(szInputLine), WorkFile);

 printf(“%4d - %s”,

 nStartLine,

 szInputLine);

 }

 else

 {

 printf(“%4d ***DELETED LINE***\n”,

 nStartLine);

 }

Listing 9.2. continued

Disk Files and Other I/O

263

C C
CC
C

C
C
C C9

 ++nStartLine;

 }

 }

 break;

 case ‘d’: /* Delete the specified line */

 if (nStartLine > 0 &&

 nStartLine < nMaxLines)

 {

 printf(“Do you really want to delete line %d? (y|n) “,

 nStartLine);

 chChar = getche();

 printf(“\n”);

 if (chChar == ‘y’ || chChar == ‘Y’)

 {

 lLineIndex[nStartLine] = DELETED_LINE;

 }

 }

 break;

 case ‘w’: /* Write; continue editing? */

 szNewName[0] = ‘\0’;

 tmpnam(szNewName);

 if (strlen(szNewName) == 0)

 {

 printf(“Error getting a temporary file name...\n”);

 }

 rename(szFileName, szNewName);

 DataFile = fopen(szFileName, “wt”);

 nStartLine = 1;

continues

Part II • Managing Data in C

264

 while(nStartLine < nMaxLines)

 {

 if (lLineIndex[nStartLine] != DELETED_LINE)

 {

 fseek(WorkFile,

 lLineIndex[nStartLine], SEEK_SET);

 fgets(szInputLine,

 sizeof(szInputLine), WorkFile);

 fputs(szInputLine, DataFile);

 }

 ++nStartLine;

 }

 nStartLine = 0;

 fclose(DataFile);

/* In this version, the original file is simply deleted.

 * A better programming practice is to rename it to .BAK

 * so the user can recover the original file.

 *

 * Question:

 * When renaming to .BAK, does the user recover from the

 * last save or the original file?

 */

 remove(szNewName); /* Could be renamed to .BAK */

 break;

 case ‘q’: /* Quit, with no save */

 break;

 default:

 printf(“Error: the command ‘%c’ is not supported!\n”,

 szCommand[0]);

Listing 9.2. continued

Disk Files and Other I/O

265

C C
CC
C

C
C
C C9

 break;

 }

 }

 fclose(WorkFile);

 remove(szTempName);

 return (0);

}

int EditLine(

 char * szInputLine)

{

char chChar = ‘A’; // To fool while() the first time!

int nCurrentChar = 0;

 printf(“%s”, szInputLine);

 while (chChar)

 {

 chChar = getch();

 if (chChar == ‘\0’)

 {

 chChar = getch();

 switch(chChar)

 {

 case ‘\x4D’:

 printf(“%c”, szInputLine[nCurrentChar]);

 ++nCurrentChar;

 break;

 default: /* No other keys implemented yet */

 printf(“\a”);

 break;

 }

continues

Part II • Managing Data in C

266

 }

 else

 {

 switch(chChar)

 {

 case ‘\n’:

 case ‘\x0d’:

 chChar = ‘\0’;

 break;

 default: /* Change current character to typed character */

 szInputLine[nCurrentChar] = chChar;

 printf(“%c”, szInputLine[nCurrentChar]);

 ++nCurrentChar;

 break;

 }

 }

 }

 printf(“\n”);

 return(1);

Listing 9.2. continued

}

Two parts of EDLINE require closer examination. First, the program declares
two character-string buffers to hold temporary file names:

char szTempName[L_tmpnam];

char szNewName[L_tmpnam];

I don’t know how long these buffers should be, so I use the L_tmpnam identifier,
which is defined in stdio.h. This identifier is system dependent and is large enough
to hold any temporary filename returned by tmpnam().

Now that there is a place to save the temporary file names, I can call the ANSI
C tmpnam() function, which returns a unique filename. This filename can be used for
any purpose (EDLINE, for example, uses it for a work file). In a multitasking
environment, the same name might be returned to more than one program. Your
application can handle this situation by getting a new temporary name if a file is

Disk Files and Other I/O

267

C C
CC
C

C
C
C C9

opened for writing and an error is returned because another application is using
the name. There is no need to signal an error to the user; simply recover by getting a
new name.

The following code shows how a temporary filename is obtained and opened:

 tmpnam(szTempName);

if (strlen(szTempName) == 0)

{

 printf(“Couldn’t open a work file...\n”);

 exit(4);

}

The recovery in a multitasking environment could be coded as follows:

 WorkFile = NULL;

 while (WorkFile == NULL)

 {

 tmpnam(szTempName);

 if (strlen(szTempName) == 0)

 {

 printf(“Couldn’t get a work file name...\n”);

 exit(4);

 }

/* fopen() fails if the name has been used by

 * another application

 */

 WorkFile = fopen(szTempName, “w+t”);

 }

In general, this type of error checking is unnecessary for programs running on the
PC under DOS.

When you are finished with your work file, you must delete it. You can do this
with the ANSI C remove() function or the unlink() function, which is still found on
many C compilers.

ANSI C also supports the tmpfile() function, which creates a temporary file and
opens the file. This function does much of the work for the programmer, but it has
disadvantages. For example, when the file is closed (whether or not you are finished),

Part II • Managing Data in C

268

it is deleted. This makes it impossible to close the file early in the program’s execution
and reopen it later. You also cannot specify the mode of the file: it is opened in the
binary read/write mode. EDLINE required a temporary work file with the text mode,
not the binary mode, so tmpfile() could not be used.

The calls to tmpfile() are easy to make, as shown in the following lines of code:

FILE *TempFile = tmpfile();

/* Lines of code to use the file */

 fclose(TempFile);

The tmpfile() function is handy when the file’s attributes (binary read/write)
are suitable to your program’s needs, and when you want the system to automatical-
ly delete the file.

Sometimes you will want the temporary file to stay around. If the program
crashes, for example, you may be able to recover the user’s data from the temporary
work file.

Using a temporary work file is similar to using any other file, except it must be
deleted and its name must be unique.

Stream Files and Default File Handles

In C, files can be opened as stream files, which are identified with a pointer to a FILE
structure, or as low-level files, which are identified with an integer handle. This section
covers stream files. Low-level files are described later in the chapter, under “Low-Level
I/O and File Handles.”

A stream file must be opened with one of the following functions:

fopen() Opens the specified file with the specified mode

freopen() Closes the file specified, then opens a new file as specified

fdopen() Opens a duplicate stream file for an already open low-level
file

If a file is opened with open() or one of the other file open functions that return
an integer handle, the file is a low-level file, not a stream file. Table 9.1 lists the stream
functions that C supports.

Disk Files and Other I/O

269

C C
CC
C

C
C
C C9

Table 9.1. Stream file functions (including Microsoft’s additions).

Function Description

_fsopen() Microsoft’s shared file open.

clearerr() Clears the current error condition flags.

fclose() Closes the specified file.

fcloseall() Closes all open stream files.

fdopen() Opens a low-level file as a stream file.

feof() Checks for end-of-file in a stream file.

ferror() Tests for a read or write error.

fflush() Flushes pending I/O for a file.

fgetc() Gets a character from a stream file.

fgetchar() Gets the next character from a file.

fgetpos() Gets a file’s current position, for use by fsetpos().

fgets() Gets a string from the specified file.

fileno() Returns the low-level file handle for a stream file.

flushall() Flushes pending I/O from all opened files.

fopen() Opens a stream file.

fputc() Writes a character to the specified file.

fputchar() Writes a character to the specified file.

fputs() Writes the buffer to the stream file.

fread() Reads from the specified stream file.

freopen() Reopens the file.

fscanf() Does a formatted read from a stream file.

fseek() Sets the file’s current position as specified.

fsetpos() Sets the file to the position obtained by fgetpos().

ftell() Gets the file’s current position.
continues

Part II • Managing Data in C

270

fwrite() Writes to a specified file.

getc() Gets a character.

getchar() Gets a character from stdin.

gets() Gets a string from stdin.

getw() Gets an integer from the specified file.

printf() Does a formatted write to stdout.

putc() Writes a character to a stream file.

putchar() Writes a character to stdout.

puts() Writes a buffer to stdout.

putw() Writes an integer value to a file.

rewind() Sets the file’s current position to the beginning of the file.

rmtmp() Removes (deletes) temporary files opened with tmpfile().

scanf() Does a formatted read from stdin.

setbuf() Sets the stream file’s buffer.

setvbuf() Sets the stream file’s buffer (variable size buffer).

sprintf() Does a formatted write to a string.

sscanf() Reads formatted input from a string.

tempnam() Gets a temporary filename, allowing the specification of a
different directory.

tmpfile() Opens a uniquely named temporary work file. When the file
is closed or the program ends, the file is deleted.

tmpnam() Returns a unique name for use as a temporary filename.

ungetc() Puts back a character to a file opened in the read mode. The
character put back does not need to be the same as the one
read, but only one character can be put back at a time. Two
successive calls to ungetc() without an intervening read will
fail.

Table 9.1. continued

Function Description

Disk Files and Other I/O

271

C C
CC
C

C
C
C C9

vfprintf() Does a formatted write to the specified file. The output is
pointed to by a parameter-list pointer.

vprintf() Does a formatted write to stdout. The output is pointed to
by a parameter-list pointer.

vsprintf() Does a formatted write to the specified string. Output is
pointed to by a parameter-list pointer.

The classification of stream files includes a number of standard files. For every
C program, five standard files are always open. Programs can use these files to perform
basic file I/O to the screen and the keyboard.

Before describing the standard files, remember that most operating systems
enable you to redirect files. Usually, a simple redirection symbol automatically allows
a file to be used for input or output; the program uses this file as if it were either the
keyboard or the screen.

The stdin File

The stdin file is opened by the operating system and is considered to be the keyboard.
If the operating system supports I/O redirection, however, stdin could be a file.

If stdin’s input comes from an I/O redirected file, several problems can occur
when the end of the redirected file is reached. First, the program receives an end-of-
file (EOF) error. Many programs do not adequately check for EOF, and the user may
have a difficult time ending the program. Second, the operating system does not switch
back to the keyboard. You can force your program to use the keyboard by opening a
file called con: (under DOS on a PC), but this requires a lot of programming.

The following functions use stdin:

getchar() Gets a character from stdin

gets() Gets a string from stdin

scanf() Performs a formatted read from stdin

These functions make your code easier to read and understand. Each has a coun-
terpart that can be used for any other stream file.

Function Description

Part II • Managing Data in C

272

The stdout File

The stdout file is opened by the operating system and is considered to be the screen.
If the operating system supports I/O redirection, however, stdout could be a file.

If stdout’s output goes to a redirected file, several problems can occur. The
program could receive an end-of-file (EOF) error when the disk is full. Many programs
do not adequately check for EOF with stdout, and the user may not realize an error
has occurred until the program has finished running. Another problem is that there is
no provision to switch back to the screen. You can force your program to use the screen
by opening a file called con: (under DOS on a PC), but doing so requires a lot of
programming.

The following functions use stdout:

printf() Performs a formatted write to stdout

putchar() Writes a character to stdout

puts() Writes the buffer to stdout

vprintf() Performs a formatted write to stdout. The output is
pointed to by a parameter-list pointer.

Each stdout function has a counterpart that can be used for any other stream file.
And like the stdin functions, the stdout functions enable you to write code that is
easier to read and understand.

The stderr File

The stderr file is similar to the stdout file; data written to stderr is displayed on the
screen. The major difference is that stderr is used for error messages that you would
not want redirected to a file if the user is using I/O redirection. You can use stderr to
display messages to the user regardless of whether I/O redirection is used because
stderr is never I/O redirected.

No functions use stderr directly. You can use fprintf() to write your error
message:

fprintf(stderr,

 “The input file is in the old format. Run REFMT first”);

Disk Files and Other I/O

273

C C
CC
C

C
C
C C9

The error message will not be redirected if the operating system’s I/O redirection
is in effect.

Always use stderr for the program’s banner message (the message to the user that
describes the program and lists the copyright, author, and so on) and error messages.
If you develop one error message function that is always called when an error occurs,
you can be sure that the message is written to the correct place—the screen and not a
redirected file.

The stdaux File

The stdaux file’s name is a bit confusing. What is the aux device? In ANSI C, the aux
device is defined as the main serial communication port (not the console serial com-
munication port). On a PC, aux is defined as COM1:, and stdaux writes to the COM1:
port.

The short program in Listing 9.3, called STDAUX.C, writes 100 lines to the
stdaux file. Before running this program, initialize the communications port. To do
this under DOS on the PC, use the MODE command.

Listing 9.3. STDAUX.C.

/* STDAUX, written 1992 by Peter D. Hipson

 * This program uses the stdaux file. It should be run

 * only under DOS on a PC.

 */

#include <stdio.h> // Make includes first part of the file

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

int main(// Define main() and the fact that this program

 int argc, // uses the passed parameters

 char *argv[],

continues

Part II • Managing Data in C

274

 char *envp[]

);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

int i;

 for (i = 0; i < 100; i++)

 {

/* Because stdaux is opened in the binary mode,

 * CR/LF must be supplied explicitly, using \n\r

 */

 fprintf(stdaux,

 “Line %2d of 100 lines”

 “ being written to stdaux by a program.\n\r”,

 i);

 }

 return (0);

}

The stdprn File

The stdprn file is easy to understand. It provides a simple way to write to the system
printer without having to explicitly open a file. The stdprn file cannot be redirected
and therefore should be used only for items that will be printed, probably in response
to a user request.

Listing 9.3. continued

Disk Files and Other I/O

275

C C
CC
C

C
C
C C9

The short program in Listing 9.4, called STDPRN.C, writes to stdprn. Before
running this program, be sure a printer is connected to the primary printer port and
is online.

Listing 9.4. STDPRN.C.

/* STDPRN, written 1992 by Peter D. Hipson

 * This program uses the stdprn file. It should be run

 * under DOS on a PC.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

int main(// Define main() and the fact that this program

 int argc, // uses the passed parameters

 char *argv[],

 char *envp[]

);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

int i;

 for (i = 0; i < 50; i++)

 {

/* Because stdprn is opened in the binary mode,

 * CR/LF must be supplied explicitly, using \n\r

 */

continues

Part II • Managing Data in C

276

 fprintf(stdprn,

 “Line %2d of 50 lines”

 “ being written to stdprn by a program.\n\r”,

 i);

 }

/* An explicit form feed is used to force a page eject

 * if the printer is a laser printer

 */

 fprintf(stdprn, “\f”);

 return (0);

}

This program shows how easy it is to use a printer from a C program. Listing 9.5
is a more flexible program—the user can choose the screen, the communications port,
or the printer.

Listing 9.5. STDFILE.C.

/* STDFILE, written 1992 by Peter D. Hipson

 * This program prints to the selected destination. It

 * should be run under DOS on a PC.

*/

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

int main(// Define main() and the fact that this program

 int argc, // uses the passed parameters

 char *argv[],

 char *envp[]

);

Listing 9.4. continued

Disk Files and Other I/O

277

C C
CC
C

C
C
C C9

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

FILE * OutputFile = NULL;

int nFile = 0;

int i;

 while (nFile < 1 || nFile > 3)

 {

 printf(

 “Which file to write to:\n”

 “ 1 - stdprn (the printer)\n”

 “ 2 - stdaux (the communications port)\n”

 “ 3 - stdout (the console)\n”

 “ enter 1, 2 or 3: “);

 scanf(“%d”, &nFile);

 }

 switch(nFile)

 {

 case 1:

 OutputFile = stdprn;

 break;

 case 2:

 OutputFile = stdaux;

 break;

 case 3:

 OutputFile = stdout;

 break;

 }

continues

Part II • Managing Data in C

278

Listing 9.5. continued

 for (i = 0; i < 50; i++)

 {

/* stdprn is opened in the binary mode, so a CR/LF

 * must be supplied explicitly, using \n\r

 */

 fprintf(OutputFile,

 “Line %2d of 50 lines”

 “ being written to user-selected destination by a program.\n\r”,

 i);

 }

/* Use an explicit form feed to force a page eject if the

 * printer is a laser printer.

 */

 fprintf(OutputFile, “\f”);

 return (0);

}

This program shows the effect of assigning standard file handles to a user-
specified file. This technique enables you to have one output routine and several
destinations. This is useful when you want the user to be able to preview a report or
easily select a secondary printer connected to a communications port.

Low-Level I/O and File Handles

All file I/O functions described so far perform primarily high-level I/O, and all require
stream files. (Functions that require stream files receive a FILE * structure pointer.)

You can also access a file more directly using low-level file I/O techniques. Be-
fore describing the details of these techniques, however, several important issues
should be covered.

A file that has been opened as a stream file can be read and written to using low-
level file I/O functions. To get the necessary integer file handle, you must use the
fileno() function.

Disk Files and Other I/O

279

C C
CC
C

C
C
C C9

A low-level file can be used with stream functions by opening it with the fdopen()
function. Be careful not to take a file that has been opened as a stream file, get its file
handle, then open it a second time with fdopen(). You would then have to close the
file twice.

The low-level file I/O functions are shown in Table 9.2. These functions
generally have a stream file function counterpart.

Table 9.2. Low-level file functions.

Function Description

close() Closes the specified file.

creat() Creates a new file.

dup() Creates a new, duplicate file handle.

dup2() Creates a new, duplicate file handle and sets the second
(specified) file handle to the first file.

eof() Tests for an end-of-file.

lseek() Seeks (changes the read/write pointer) to a new place in the file.

open() Opens an existing file.

read() Reads an opened file.

sopen() Opens a file in shared mode.

tell() Returns the value of the read/write pointer.

write() Writes data to a file that has been opened for output.

Before you use stream functions with a low-level file, be sure that you open the
file using the correct stream function. Generally, it is best if you use one type of
function with any specific file.

There are several reasons for using low-level functions, including the following:

• Low-level functions do not try to format data, read from a file, or write
to a file.

• Low-level file I/O is not buffered. When an I/O statement is executed,
what is written goes directly to the file. (This may slow the program’s
execution.)

Part II • Managing Data in C

280

Most programs benefit from the use of stream functions. The capability to open,
read, and write any data object is present in both low-level files and stream files. The
problems caused by buffering, if important, can be circumvented using the file flush-
ing routines.

Standard Low-Level File Handles

Because stdin, stdout, stdaux, stderr, and stdprn are stream files, they can be
referenced using the fileno() function. These files can also be used with low-level
I/O functions directly, however. The file handle numbers for the standard stream files
follows:

stdin 0

stdout 1

stderr 2

stdaux 3

stdprn 4

These low-level file numbers should not be used if possible. The fileno()
function is more portable, especially when a program must run on different systems.

Console and Port I/O

Much of the direct access to the computer’s terminal (the screen and keyboard) is
system dependent. On a PC, you can have any of a number of keyboards, all of which
have different keys, and different scan codes. Several functions interact more directly
with the keyboard, and though not all are ANSI standard, they are often part of many
C compilers. These functions are shown in Table 9.3.

You can easily simulate most console functions by using the stream functions and
the predefined file handles. A few functions, however, have no equal. This section
describes the console functions and how to use them.

Some of the most frequently used direct console functions are the character
getting functions, getch() and getche(). The main difference between these two
functions is that getch() does not echo the character pressed, and getche() does echo

Disk Files and Other I/O

281

C C
CC
C

C
C
C C9

Table 9.3. Console I/O functions.

Console function Description

cgets() Gets a string from the console.

cprintf() Performs a formatted print to the console.

cputs() Writes a string to the screen.

cscanf() Performs a formatted read from the console (key-
board).

getch() Gets a character from the keyboard but does not echo
the character to the screen.

getche() Gets a character from the keyboard and echoes the
character to the screen.

kbhit() Returns immediately with the return code indicating
whether a key has been pressed. Will not wait for a
keypress.

putch() Writes a character to the screen.

ungetch() Allows one character to be pushed back to the key-
board. The character put back does not need to be the
last character read. Only one character may be put
back.

the character. Although the screen functions can be used to read a keypress and echo
it to the screen, you must use the getch() function to read a keypress without echoing
it to the screen.

The next most commonly used function is the kbhit() function, which has no
stream function counterpart. The kbhit() function enables you to poll the keyboard
for a keypress. Many business applications have little use for this function. Games,
however, run in real time, so they must check for user input without stopping
the action. The kbhit() function enables a program to do just that.

Listing 9.6, ARCADE.C, does processing while waiting for keyboard input
from the user. By a far stretch of the imagination, you could consider this program a
simple arcade game.

Part II • Managing Data in C

282

Listing 9.6. ARCADE.C.

/* ARCADE, written 1992 by Peter D. Hipson

 * This is a simple arcade game that uses console I/O.

 * It should be run under DOS on a PC. It also should

 * be compiled with Microsoft C or a compiler that

 * supports kbhit() and getch(). In addition, ANSI.SYS

 * should be loaded before using this program, and the

 * screen size is assumed to be 25 by 80.

 */

#include <stdio.h> // Make includes first part of file

#include <conio.h> // Console I/O functions

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

/* ANSI.SYS screen control #defines follow: */

#define BOLD “\x1B[1m”

#define NORMAL “\x1B[0m”

#define RED “\x1B[31m”

#define BLACK “\x1B[30m”

#define GREEN “\x1B[32m”

#define CLEAR_SCREEN “\x1B[2J”

#define CLEAR_EOL “\x1B[K”

#define MOVE_CURSOR “\x1B[%d;%df”

#define UP ‘\x48’

#define DOWN ‘\x50’

#define LEFT ‘\x4B’

#define RIGHT ‘\x4D’

#define MAX_HEIGHT 25

#define MAX_WIDTH 80

#define HALF_SECOND (CLOCKS_PER_SEC / 2)

Disk Files and Other I/O

283

C C
CC
C

C
C
C C9

int main(// Define main() and the fact that this

 int argc, // program uses the passed parameters

 char *argv[],

 char *envp[]

);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

char chChar;

clock_t ClockTime;

clock_t OldClockTime;

int i;

int nHorizontal = 0; /* Randomize for real game */

int nVertical = 0; /* Randomize for real game */

int nMoneyHorizontal = 10; /* Randomize for real game */

int nMoneyVertical = 10; /* Randomize for real game */

int nPosition;

 OldClockTime = clock() / HALF_SECOND;

 srand((unsigned)time(NULL));

 printf(CLEAR_SCREEN);

 printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);

 printf(“$”);

 printf(MOVE_CURSOR, nVertical, nHorizontal);

 printf(“?”);

continues

Part II • Managing Data in C

284

 while(1)

 {

 if (kbhit())

 {/* A key has been pressed, so process it as necessary */

 chChar = getch();

 if (chChar == (char)NULL)

 {

 chChar = getch();

 printf(MOVE_CURSOR, nVertical, nHorizontal);

 printf(“ “);

 switch(chChar)

 {

 case DOWN:

 if (++nVertical > MAX_HEIGHT)

 {

 --nVertical;

 }

 break;

 case UP:

 if (--nVertical < 1)

 {

 ++nVertical;

 }

 break;

 case RIGHT:

 if (++nHorizontal > MAX_WIDTH)

 {

 --nHorizontal;

 }

 break;

 case LEFT:

 if (--nHorizontal < 1)

 {

 ++nHorizontal;

 }

 break;

Listing 9.6. continued

Disk Files and Other I/O

285

C C
CC
C

C
C
C C9

 default:

 break;

 }

 printf(MOVE_CURSOR, nVertical, nHorizontal);

 if (nMoneyHorizontal == nHorizontal &&

 nMoneyVertical == nVertical)

 {

 printf(“\a”);

 }

 printf(“?”);

 }

 else

 {

 if (chChar == ‘\x1b’)

 {/* Exit on Esc keypress */

 printf(CLEAR_SCREEN);

 exit(4);

 }

 }

 }

 else

 {/* No key has been pressed. Move the money. */

 ClockTime = clock() / HALF_SECOND;

 if (ClockTime != OldClockTime)

 {

 OldClockTime = ClockTime;

 printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);

 printf(“ “); /* Erase the money */

 i = rand();

 switch(i % 4) /* Allow four states */

 {

 case 0:

 if (++nMoneyVertical > MAX_HEIGHT)

continues

Part II • Managing Data in C

286

Listing 9.6. continued

 {

 --nMoneyVertical;

 }

 break;

 case 1:

 if (--nMoneyVertical < 1)

 {

 ++nMoneyVertical;

 }

 break;

 case 2:

 if (++nMoneyHorizontal > MAX_WIDTH)

 {

 --nMoneyHorizontal;

 }

 break;

 case 3:

 if (--nMoneyHorizontal < 1)

 {

 ++nMoneyHorizontal;

 }

 break;

 default:

 break;

 }

 if (nMoneyHorizontal == nHorizontal &&

 nMoneyVertical == nVertical)

 {

 --nMoneyHorizontal;

 --nMoneyVertical;

 }

 printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);

 printf(“$”); /* Display the money */

 printf(MOVE_CURSOR, nVertical, nHorizontal);

 }

Disk Files and Other I/O

287

C C
CC
C

C
C
C C9

 }

 }

 return (0);

}

First the program and the screen are initialized. Standard stream I/O statements
are used because they are easy to use. No sense in doing more work than is necessary!
Then the screen is cleared, and the target (the dollar sign) is placed at position 10, 10.
The chaser (the question mark) is then placed at position 0, 0, and the game begins.

A while loop polls the keyboard. When a key is pressed, kbhit() returns TRUE,
allowing the program to read the keypress, as follows:

if (kbhit())

{/* A key has been pressed, so process it as necessary */

 chChar = getch();

 if (chChar == (char)NULL)

 {

 chChar = getch();

If the first call to getch() returns zero, an extended key (probably an arrow key)
has been pressed. If the return is nonzero, an ASCII key has been pressed. The only
nonextended key that interests us is ESC, which ends the game.

After a key has been pressed, a new location for the chaser is computed. If the
chaser has landed on the target’s position, the speaker beeps. Try playing the game—
it’s harder than it seems!

If no key has been pressed, the program checks how long it has been since the
target moved. Every half second, if no key is pressed, the target moves one square in
a random direction. This time period makes the game more playable. (Otherwise, on
a fast CPU, the target would be all over the screen, and you could never hit it.)

All moves in ARCADE are kept in the bounds of the screen. In addition, the
target cannot move to the same position as the chaser—the game should never lose by
its own choice!

Part II • Managing Data in C

288

Direct Port I/O

This section assumes that you are programming on an IBM compatible PC. If you are
using another type of computer, some of the discussion in this section may not apply.

Direct port I/O can be dangerous because the program is interacting with the
hardware at a basic level. Because there is no error checking, you can seriously damage
the information on your hard disk.

If you are writing software that uses direct port I/O, back up
your hard disk!

Direct port I/O is system dependent, not only on the type of computer, but also
on the computer’s configuration. In this section, the assumption is that you are
programming on an IBM compatible PC. If you are using another type of computer,
this section may not apply.

The CPU uses the I/O ports to communicate with all the various peripherals,
such as the communication ports, the printer ports, and the keyboard. Peripherals are
connected to the CPU by interface cards (these may be part of the motherboard). The
direct port I/O functions are shown in Table 9.4.

Table 9.4. Direct I/O functions.

I/O function Description

inp() Inputs a byte of data from the specified port

inpw() Inputs two bytes of data from the specified port

outp() Outputs a byte of data to the specified port

outpw() Outputs two bytes of data to the specified port

! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! !

Disk Files and Other I/O

289

C C
CC
C

C
C
C C9

The return type is always type int, so you should use only the first byte in
functions that process byte-size data objects. Both output functions return the byte or
word that was output. The input functions return the currently input byte or word.

The PC Printer Ports

The PC supports up to three printer ports. The addresses for the printer ports are
in the BIOS data area, at segment 0040, as follows: 0040:0008 for LPT1, 0040:000A
for LPT2, and 0040:000C for LPT3. Typical addresses for printer ports are 0x0378
or 0x03BC. Although there are standard addresses for the printer I/O, your program
could use any I/O address that is defined by the system.

Listing 9.7, PRNPORT.C, prints to the printer a single string, followed by a
form-feed character. (The form-feed character forces laser printers to print the page.)
The program prints directly, without calling the DOS or the BIOS routines.

Listing 9.7. PRNPORT.C.

/* PRNPORT, written 1992 by Peter D. Hipson

 * This program prints directly to the printer’s port.

 * The program should be run under DOS on a PC. If your

 * computer is not PC-compatible, do not run this program.

 * The program should also be compiled with Microsoft C.

 */

#include <stdio.h> // Make includes first part of file

#include <conio.h> // Console I/O functions

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \

 | (((unsigned long int)((unsigned short int)(high))) << 16)))

#define MAKELP(sel, off) ((void _far*)MAKELONG((off), (sel)))

/* Printer port definitions */

continues

Part II • Managing Data in C

290

Listing 9.7. continued

#define BIOS_DATA_PAGE 0x0040

#define LPT1 0x0008

#define DATA_PORT (nPort)

#define STATUS_PORT (nPort + 1)

#define CONTROL_PORT (nPort + 2)

#define STATUS_NORESP 0x01

#define STATUS_UNUSED1 0x02

#define STATUS_UNUSED2 0x04

#define STATUS_ERROR 0x08

#define STATUS_SELECTED 0x10

#define STATUS_NOPAPER 0x20

#define STATUS_ACK 0x40

#define STATUS_NOTBUSY 0x80

#define CONTROL_STROBE 0x01

#define CONTROL_AUTOFEED 0x02

#define CONTROL_INIT 0x04

#define CONTROL_SELECT 0x08

#define CONTROL_IRQ7 0x10

#define CONTROL_UNUSED1 0x20

#define CONTROL_UNUSED2 0x40

#define CONTROL_UNUSED3 0x80

/* End printer port definitions. */

int main(// Define main() and the fact that this

 int argc, // program uses the passed parameters

 char *argv[],

 char *envp[]

);

int PrintCharacter(char chChar);

int PrinterStatus(void);

int main(

 int argc,

 char *argv[],

Disk Files and Other I/O

291

C C
CC
C

C
C
C C9

 char *envp[]

)

{

char szNowIsTheTime[] = {

 “Now is the time for all good men to come to the aid...\f”};

int nStatus;

int i;

 if (!PrinterStatus())

 {

 printf(“There was a printer error!\n”);

 exit(4);

 }

 for (i = 0; i < strlen(szNowIsTheTime); i++)

 {

 if (PrintCharacter(szNowIsTheTime[i]) == 0)

 {

 printf(“\nCouldn’t print from ‘%s’\n”,

 &szNowIsTheTime[i]);

 break;

 }

 }

 return (0);

}

int PrintCharacter(

 char chChar)

{

int _far *pPrintPort;

int nPort;

continues

Part II • Managing Data in C

292

Listing 9.7. continued

int nStatus;

/* The PC’s printer port is at address 0040:0008

 * (for LPT1:). If 0 is stored at that address,

 * a printer port is not installed.

 */

 pPrintPort = MAKELP(BIOS_DATA_PAGE, LPT1);

 nPort = *pPrintPort;

 if (nPort == 0)

 {/* No printer is installed! */

 printf(“No printer installed... WHY?\n”);

 return(0);

 }

/* Write the data byte to the printer’s data lines */

 outp(DATA_PORT, chChar);

/* Next, check to see if the printer is busy. */

 nStatus = inp(STATUS_PORT);

 if (!(nStatus & STATUS_NOTBUSY))

 {/* The printer is busy. You should wait and try again */

 printf(“The printer is busy?\n”);

 return(0);

 }

/* Set the strobe line */

 outp(CONTROL_PORT, CONTROL_STROBE | CONTROL_INIT | CONTROL_SELECT);

/* Clear the strobe line */

 outp(CONTROL_PORT, CONTROL_INIT | CONTROL_SELECT);

}

int PrinterStatus()

Disk Files and Other I/O

293

C C
CC
C

C
C
C C9

{

int _far *pPrintPort;

int nPort;

int nStatus;

/* The PC’s printer port is at address 0040:0008

 * (for LPT1:). If 0 is stored at that address,

 * a printer port is not installed.

 */

 pPrintPort = MAKELP(BIOS_DATA_PAGE, LPT1);

 nPort = *pPrintPort;

 if (nPort == 0)

 {/* No printer is installed! */

 printf(“No printer installed... WHY?\n”);

 return(0);

 }

 printf(“Printer vector = %lp Printer port %4.4X\n”,

 pPrintPort,

 nPort);

 nStatus = inp(DATA_PORT);

 printf(“DATA port’s contents %2.2X (last character that was

printed).\n”,

 nStatus);

 nStatus = inp(STATUS_PORT);

 if (!(nStatus & STATUS_NORESP))

 {

 printf(“The printer did not respond. \n”);

 }

 else

 {

continues

Part II • Managing Data in C

294

 printf(“The printer is responding. \n”);

 }

 if (!(nStatus & STATUS_ERROR))

 {

 printf(“The printer is signaling an error. \n”);

 }

 else

 {

 printf(“The printer is signaling no errors. \n”);

 }

 if (nStatus & STATUS_SELECTED)

 {

 printf(“The printer is currently selected. \n”);

 }

 else

 {

 printf(“The printer is not selected. \n”);

 }

 if (nStatus & STATUS_NOPAPER)

 {

 printf(“The printer is out of paper.\n”);

 }

 else

 {

 printf(“The printer has paper. \n”);

 }

 if (nStatus & STATUS_ACK)

 {

 printf(“The printer ACK line is set.\n”);

 }

 else

 {

 printf(“The printer ACK line is cleared.\n”);

 }

Listing 9.7. continued

Disk Files and Other I/O

295

C C
CC
C

C
C
C C9

 if (nStatus & STATUS_NOTBUSY)

 {

 printf(“The printer is not busy.\n”);

 }

 else

 {

 printf(“The printer is currently busy. \n”);

 }

 return(1);

}

The PRNPORT.C program shows how easy it is to print to a printer port
using a high-level language such as C. Admittedly, this program cannot be used in its
current state—the character print routines require more error checking and recovery.
These improvements, however, would not be difficult to implement.

I have written custom printer drivers for the PC in C. Why? In one case, the
printer (a special graphics printer with a high-speed interface) needed special timing
and control signals, even though it used a Centronics type of connector and the same
printer pins as other compatible printers.

A second use of the printer port is one that I think is more interesting than sim-
ply printing. In most PCs, the printer port is a bidirectional I/O port (it can both
output data and read data) and as such can be used to communicate with all types of
external devices.

A third use for custom drivers is for I/O boards that are not intended to be printer
ports but have a similar structure. These boards are used for control and for special
devices. It is not unusual for a special board to be used for graphic tablets (which
might also use a serial port) or most tape drives, all of which need drivers.

You must write the driver in assembler (you can use in-line assembly if your
compiler supports it) for the best control and performance. A C language driver is ad-
equate, however, for initial development and for drivers with noncritical timing
requirements.

Part II • Managing Data in C

296

The PC Communications Ports

The serial communications ports are more complex than the printer ports. First, they
require more initialization because the speed (baud rate) and the format of the char-
acters (number of bits) must be set. To make things easy, I have DOS initialize (in my
AUTOEXEC.BAT file) all the communications ports to a known state.

Following are the addresses used by the PC communications ports. When a
communications port is accessed, the first address used is referred to as the I/O base
address. The communications port I/O address starts at 0x03F8 or 0x02F8 (COM1
and COM2) in most PCs. All addresses are accessed using input and output functions,
either in C or assembler.

In the following discussion, the COM1 base I/O address of 0x3F8 is used. To
access COM2, you must use the COM2 base I/O address of 0x2F8. To access a port
other than COM1 or COM2, you must know the port’s base I/O address. The
addresses for COM1 through COM4 are stored in the BIOS data page as follows:

COM1 0000:0400

COM2 0000:0402

COM3 0000:0404

COM4 0000:0406

The UART (Universal Asynchronous Receiver/Transmitter) is the part of the
communications port that converts a byte of data to a serial data stream. The UART
in the PC’s communications port has eight separate addresses. The following para-
graphs and Table 9.5 describe each of these addresses.

Table 9.5. The serial board’s I/O port usage.

Name in
Name Address Description SENDCOMM.C Bits

Receive I/O base Characters received RBR_PORT 0–7 Eight bits of
buffer address may be retrieved received data

+ 0 from this I/O
address. LCR_PORT
bit 80 must be clear.

Disk Files and Other I/O

297

C C
CC
C

C
C
C C9

Name in
Name Address Description SENDCOMM.C Bits

Divisor I/O base Used to set the baud DLL_PORT 0–7 Divisor’s LSB
register address rate, which is deter- (eight bits)
(LSB) + 0 mined using a 16-bit

divisor.
LCR_PORT bit
80 must be set.

Transmit I/O base Characters to be THR_PORT 0–7 Eight bits of
buffer address transmitted are data to be

+ 0 output to this I/O transmitted
address. LCR_PORT
bit 80 must be clear.

Interrupt I/O base Enables the con- IER_PORT 01 Received data
enable address ditions that cause the available. A
register + 1 UART to generate an character has

interrupt to be gener- been received.
ated. When a specified
bit is set and the con-
dition occurs, an inter-
rupt is generated.

02 Transmit
holding register
is empty. The
character that
was being sent
has completed.
A new character
can now be
sent.

04 Receive line status.
The receive line has
changed.

08 MODEM status.
The modem status
line has changed.

10 Not used

continues

Part II • Managing Data in C

298

Table 9.5. continued

Name in
Name Address Description SENDCOMM.C Bits

20 Not used

40 Not used

80 Not used

Divisor I/O base Used to set the baud DLM_PORT 0–7 Divisor’s MSB
register address rate, which is deter- (eight bits)
(MSB) + 1 mined using a 16-bit

divisor. LCR_PORT
bit 80 must be set.

Interrupt I/O base Tells the program IIR_PORT 01 If clear, an
identifier address what condition caused interrupt is
register + 2 the interrupt. pending

02 Interrupt ID, bit 0

04 Interrupt ID, bit 1

08 Not used

10 Not used

20 Not used

40 Not used

80 Not used

Line I/O base Controls the format LCR_PORT 01 Word length,
control address of the characters be- bit 0
register + 3 ing transmitted, in-

cluding the number
of bits, the number of
stop bits, and the
parity. The divisor
latch (see the divi-
sor register) is also
located at this
address, bit 80.

02 Word length, bit 1

04 Stop bits (clear = 1,
set = 2)

08 Parity enable

Disk Files and Other I/O

299

C C
CC
C

C
C
C C9

Name in
Name Address Description SENDCOMM.C Bits

10 Even parity

20 Stick parity

40 Set break

80 Enable divisor
latches

MODEM I/O base Sets the output control MCR_PORT 01 DTR
control address lines. 02 RTS
register + 4 04 OUT1

08 OUT2
10 Loop back
20 Not used
40 Not used
80 Not used

Line status I/O base Status of various LSR_PORT 01 Data has been
register address + 5 parameters. received.

02 Overrun error. The
previous character
received was not
read by the
computer and has
been overwritten
by the following
character.

04 Parity error. There
was a parity error
in the character
being received.

08 Framing error. The
start/stop bits could
not be detected
correctly.

10 Break interrupt. A
break has been
detected.

20 Transmit buffer
empty

continues

Part II • Managing Data in C

300

40 Transmit shift
register is empty.
The output shift
register is currently
empty.

80 Not used

MODEM I/O base Status of MODEM MSR_PORT 01 DCTS
status address + 6 signal lines. 02 DDSR
register 04 TERI

08 DDCD
10 CTS
20 DSR
40 RI (ring indicator)
80 DCD

The receive buffer is located at base address + 0. The functionality of base ad-
dress + 0 is controlled by bit 0x80 of LCR_PORT. If this bit is clear (zero), base
address + 0 is used as the receive buffer.

The baud rate divisor register (LSB) is also located at base address + 0. The
functionality of base address + 0 is controlled by bit 0x80 of LCR_PORT. If this
bit is set, base address + 0 is used as the divisor register (LSB).

The transmit buffer is located at base address + 0. The functionality of base
address + 1 is controlled by bit 0x80 of LCR_PORT. If this bit is clear (zero), base
address + 1 is used as the interrupt enable register.

The baud rate divisor register (MSB) is also located at base address + 1. The
functionality of base address + 1 is controlled by bit 0x80 of LCR_PORT. If this bit
is set, base address + 1 is used as the divisor register (MSB).

The interrupt enable register is located at base address + 1. Only the first four bits
are used in this register.

The interrupt identifier register is located at base address + 2. It is used to tell the
program what condition caused the interrupt.

Table 9.5. continued

Name in
Name Address Description SENDCOMM.C Bits

Disk Files and Other I/O

301

C C
CC
C

C
C
C C9

The line control register is located at base address + 3. This register controls the
character format and the mapping of the divisor latch (see offset +0 and +1).

The modem control register is located at base address + 4. This register is used
to control the port’s I/O connector control signals. These signals are then used to
control the modem (or whatever else is connected to the port).

The line status register is located at base address + 5. It is used to pass to the
program information regarding the status of the UART and the data being received.

The MODEM status register is located at base address + 6. The program uses this
register to determine the status of the device connected to the port.

Note how the DLL and DLM registers (the speed registers) have the same address
as the RBR and IER registers. This is accomplished with the divisor latch enable
bit (0x80) of the LCR register. If this bit is set, these registers are used for the speed
divisor. If this bit is cleared, these registers serve their other purpose.

A communications program can rely on the DOS MODE command setting the
communications port parameters, or the program can set the parameters itself. Each
of the port’s registers may be read (except transmitted data), modified, and written
back. This process of reading, modifying, and writing a register is all that is required
to initialize the serial port.

Listing 9.8, SENDCOMM.C, sends a single string, followed by a LF/CR
character pair, to COM1:. Before you run SENDCOMM.C, COM1: must be in-
itialized with the DOS MODE command.

Listing 9.8. SENDCOMM.C.

/* SENDCOMM, written 1992 by Peter D. Hipson

 * This program outputs to the serial port. You should

 * run this program under DOS on a PC. If your computer

 * is not a PC-compatible, DO NOT RUN this program. Also,

 * the program should be compiled with Microsoft C.

 */

#include <stdio.h> // Make includes first part of file

#include <conio.h> // Console I/O functions

#include <string.h> // For string functions

continues

Part II • Managing Data in C

302

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \

 | (((unsigned long int)((unsigned short int)(high))) << 16)))

#define MAKELP(sel, off) ((void _far*)MAKELONG((off), (sel)))

/* Comm port definitions */

#define BIOS_DATA_PAGE 0x0040

#define COM1 0x0000

/* Receive a character port (read only) */

#define RBR_PORT (nPort)

/* Send (transmit) a character port (write only) */

#define THR_PORT (nPort)

/* Interrupt enable register */

#define IER_PORT (nPort + 1)

#define RECEIVED_DATA_AVAILABLE 0x01

#define TRANSMIT_HOLD_EMPTY 0x02

#define RECIEVER_LINE_STATUS 0x04

#define MODEM_STATUS 0x08

/* Other bits undefined */

/* Interrupt identify register (read only) */

#define IIR_PORT (nPort + 2)

#define INTERUPT_PENDING_0 0x01

#define INTERUPT_ID_BIT_1 0x02

#define INTERUPT_ID_BIT_2 0x04

/* Other bits undefined */

/* Line control register */

#define LCR_PORT (nPort + 3)

#define WORD_LENGTH_SELECT_1 0x01 /* 00 = 5 bits, 01 = 6 bits */

#define WORD_LENGTH_SELECT_2 0x02 /* 10 = 7 bits, 11 = 8 bits */

#define NUMBER_STOP_BITS 0x04 /* 0 = 1 stop, 1 = 2 stop */

#define PARITY_ENABLE 0x08

#define EVEN_PARITY_SELECT 0x10

Listing 9.8. continued

Disk Files and Other I/O

303

C C
CC
C

C
C
C C9

#define STICK_PARITY 0x20

#define SET_BREAK 0x40

#define DIVISOR_LATCH_BIT 0x80 /* For DLL and DLH access */

/* Other bits undefined */

/* Modem control register */

#define MCR_PORT (nPort + 4)

#define DTR 0x01

#define RTS 0x02

#define OUT_1 0x04

#define OUT_2 0x08

#define LOOP 0x10

/* Other bits undefined */

/* Line status register */

#define LSR_PORT (nPort + 5)

#define DATA_READY 0x01

#define OVERRUN_ERROR 0x02

#define PARITY_ERROR 0x04

#define FRAMING_ERROR 0x08

#define BREAK_INTERUPT 0x10

#define TRANS_HOLDING_REGISTER 0x20

#define TRANS_SHIFT_REGISTER 0x40

/* Other bits undefined */

/* Modem status register */

#define MSR_PORT (nPort + 6)

#define DCTS 0x01

#define DDSR 0x02

#define TERI 0x04

#define DDCD 0x08

#define CTS 0x10

#define DSR 0x20

#define RI 0x40

#define DCD 0x80

/* Divisor latch least significant (sets speed) */

#define DLL_PORT (nPort + 0)

/* Bits 0 - 7 */

continues

Part II • Managing Data in C

304

/* Divisor latch most significant (sets speed) */

#define DLM_PORT (nPort + 1)

/* Bits 8 - 15 */

#define BAUD_50 0x0900

#define BAUD_75 0x0600

#define BAUD_110 0x0417

#define BAUD_134 0x0359

#define BAUD_150 0x0300

#define BAUD_300 0x0180

#define BAUD_600 0x00C0

#define BAUD_1200 0x0060

#define BAUD_1800 0x0040

#define BAUD_2000 0x003A

#define BAUD_2400 0x0030

#define BAUD_3600 0x0020

#define BAUD_4800 0x0018

#define BAUD_7200 0x0010

#define BAUD_9600 0x000C

#define BAUD_14400 0x0008

#define BAUD_19200 0x0006

#define BAUD_38400 0x0003

#define BAUD_56000 0x0002

#define BAUD_112000 0x0001

/* End serial port definitions */

int main(// Define main() and the fact that this

 int argc, // program uses the passed parameters

 char *argv[],

 char *envp[]

);

int SerialCharacter(char chChar);

int SerialStatus(void);

int main(

 int argc,

 char *argv[],

Listing 9.8. continued

Disk Files and Other I/O

305

C C
CC
C

C
C
C C9

 char *envp[]

)

{

char szNowIsTheTime[] = {

 “Now is the time for all good men to come to the aid...\n\r”};

int nStatus;

int i;

 if (!SerialStatus())

 {

 printf(“There was a serial error!\n”);

 exit(4);

 }

 for (i = 0; i < strlen(szNowIsTheTime); i++)

 {

 if (SerialCharacter(szNowIsTheTime[i]) == 0)

 {

 printf(“\nCouldn’t send from character ‘%s’\n”,

 &szNowIsTheTime[i]);

 break;

 }

 }

 return (0);

}

int SerialCharacter(

 char chChar)

{

int _far *pSerialPort;

int nPort;

continues

Part II • Managing Data in C

306

Listing 9.8. continued

int nStatus;

/* The PC’s serial port is at address 0040:0000

 * (for COM1:). If a zero is stored at that address,

 * a serial port is not installed.

 */

 pSerialPort = MAKELP(BIOS_DATA_PAGE, COM1);

 nPort = *pSerialPort;

 if (nPort == 0)

 {/* No serial port is installed! */

 printf(“No serial installed... WHY?\n”);

 return(0);

 }

/* Write the data byte to the serial port’s data lines.

 * The program must wait until the last character

 * has been sent because the simple hardware does not

 * have a queue.

 */

 nStatus = inp(LSR_PORT);

 while (!(nStatus & TRANS_HOLDING_REGISTER))

 {/* Simply get the status again, which wastes time */

 nStatus = inp(LSR_PORT);

 }

 outp(THR_PORT, chChar);

 return(1);

}

int SerialStatus()

{

Disk Files and Other I/O

307

C C
CC
C

C
C
C C9

int _far *pSerialPort;

int nPort;

int nStatus;

/* The PC’s serial port is at address 0040:0000

 * (for COM1:). If a zero is stored at that address,

 * a serial port is not installed.

 */

 pSerialPort = MAKELP(BIOS_DATA_PAGE, COM1);

 nPort = *pSerialPort;

 if (nPort == 0)

 {/* No serial port is installed! */

 printf(“No serial board installed... Why?\n”);

 return(0);

 }

 printf(“Serial vector = %lp Serial port %4.4X\n”,

 pSerialPort,

 nPort);

 nStatus = inp(MCR_PORT);

 printf(“MCR_PORT returned %2.2X\n”, nStatus);

 if (nStatus & DTR)

 {

 printf(“DTR is high. \n”);

 }

 else

 {

 printf(“DTR is low. \n”);

 }

 if (nStatus & RTS)

 {

 printf(“RTS is high. \n”);

 }

continues

Part II • Managing Data in C

308

Listing 9.8. continued

 else

 {

 printf(“RTS is low. \n”);

 }

 nStatus = inp(IER_PORT);

 printf(“IER_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(IIR_PORT);

 printf(“IIR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(LCR_PORT);

 printf(“LCR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(MCR_PORT);

 printf(“MCR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(LSR_PORT);

 printf(“LSR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(MSR_PORT);

 printf(“MSR_PORT returned %2.2X\n”, nStatus);

 return(1);

}

SENDCOMM is simple, in that it only displays the status of the registers, then
sends the string. Following is the code that sends the characters:

 nStatus = inp(LSR_PORT);

 while (!(nStatus & TRANS_HOLDING_REGISTER))

 {/* Simply get the status again, which wastes time */

Disk Files and Other I/O

309

C C
CC
C

C
C
C C9

 nStatus = inp(LSR_PORT);

 }

 outp(THR_PORT, chChar);

First, the program gets the port’s status. If the TRANS_HOLDING_REGISTER bit is
clear, the character can be sent. If the bit is set, the program waits for the hardware to
send the current character, at which point the bit is cleared.

After the TRANS_HOLDING_REGISTER is clear, the program sends the character
using a call to outp(). The hardware handles the serial transmission of the character
in a serial format.

SENDCOMM.C is a simple character sending program. Receiving a character
is just as easy. Listing 9.9, READCOMM.C, gets a character from the serial port,
sends it back (echoes the character), and displays it on the terminal’s screen.

Listing 9.9. READCOMM.C.

/* READCOMM, written 1992 by Peter D. Hipson

 * This program reads characters from the serial port.

 * You should run this program under DOS on a PC. If

 * your computer is not a PC-compatible, DO NOT RUN

 * this program. Also, the program should be compiled

 * with Microsoft C.

 */

#include <stdio.h> // Make includes first part of file

#include <conio.h> // Console I/O functions

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \

 | (((unsigned long int)((unsigned short int)(high))) << 16)))

#define MAKELP(sel, off) ((void _far*)MAKELONG((off), (sel)))

/* Comm port definitions */

continues

Part II • Managing Data in C

310

Listing 9.9. continued

#define BIOS_DATA_PAGE 0x0040

#define COM1 0x0000

/* Receive a character port (read only) */

#define RBR_PORT (nPort)

/* Send (transmit) a character port (write only) */

#define THR_PORT (nPort)

/* Interrupt enable register */

#define IER_PORT (nPort + 1)

#define RECEIVED_DATA_AVAILABLE 0x01

#define TRANSMIT_HOLD_EMPTY 0x02

#define RECIEVER_LINE_STATUS 0x04

#define MODEM_STATUS 0x08

/* Other bits undefined */

/* Interrupt identify register (read only) */

#define IIR_PORT (nPort + 2)

#define INTERUPT_PENDING_0 0x01

#define INTERUPT_ID_BIT_1 0x02

#define INTERUPT_ID_BIT_2 0x04

/* Other bits undefined */

/* Line control register */

#define LCR_PORT (nPort + 3)

#define WORD_LENGTH_SELECT_1 0x01 /* 00 = 5 bits, 01 = 6 bits */

#define WORD_LENGTH_SELECT_2 0x02 /* 10 = 7 bits, 11 = 8 bits */

#define NUMBER_STOP_BITS 0x04 /* 0 = 1 stop, 1 = 2 stop */

#define PARITY_ENABLE 0x08

#define EVEN_PARITY_SELECT 0x10

#define STICK_PARITY 0x20

#define SET_BREAK 0x40

#define DIVISOR_LATCH_BIT 0x80 /* For DLL and DLH access */

/* Other bits undefined */

/* Modem control register */

#define MCR_PORT (nPort + 4)

#define DTR 0x01

#define RTS 0x02

#define OUT_1 0x04

Disk Files and Other I/O

311

C C
CC
C

C
C
C C9

#define OUT_2 0x08

#define LOOP 0x10

/* Other bits undefined */

/* Line status register */

#define LSR_PORT (nPort + 5)

#define DATA_READY 0x01

#define OVERRUN_ERROR 0x02

#define PARITY_ERROR 0x04

#define FRAMING_ERROR 0x08

#define BREAK_INTERUPT 0x10

#define TRANS_HOLDING_REGISTER 0x20

#define TRANS_SHIFT_REGISTER 0x40

/* Other bits undefined */

/* Modem status register */

#define MSR_PORT (nPort + 6)

#define DCTS 0x01

#define DDSR 0x02

#define TERI 0x04

#define DDCD 0x08

#define CTS 0x10

#define DSR 0x20

#define RI 0x40

#define DCD 0x80

/* Divisor latch least significant (sets speed) */

#define DLL_PORT (nPort + 0)

/* Bits 0 - 7 */

/* Divisor latch most significant (sets speed) */

#define DLM_PORT (nPort + 1)

/* Bits 8 - 15 */

/* Bits defined as 0xMMLL. MM is DLM. LL is DLL */

#define BAUD_50 0x0900

#define BAUD_75 0x0600

#define BAUD_110 0x0417

#define BAUD_134 0x0359

#define BAUD_150 0x0300

continues

Part II • Managing Data in C

312

Listing 9.9. continued

#define BAUD_300 0x0180

#define BAUD_600 0x00C0

#define BAUD_1200 0x0060

#define BAUD_1800 0x0040

#define BAUD_2000 0x003A

#define BAUD_2400 0x0030

#define BAUD_3600 0x0020

#define BAUD_4800 0x0018

#define BAUD_7200 0x0010

#define BAUD_9600 0x000C

#define BAUD_14400 0x0008

#define BAUD_19200 0x0006

#define BAUD_38400 0x0003

#define BAUD_56000 0x0002

#define BAUD_112000 0x0001

/* End serial port definitions */

int main(// Define main() and the fact that

 int argc, // this program uses the passed parameters

 char *argv[],

 char *envp[]

);

int GetSerialCharacter(char *chChar);

int SerialStatus(void);

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

char chChar;

int nStatus;

int i;

Disk Files and Other I/O

313

C C
CC
C

C
C
C C9

 if (!SerialStatus())

 {

 printf(“There was a serial error!\n”);

 exit(4);

 }

 while(1)

 {

 if (kbhit())

 {/* Discard the keypress and end */

 (void)getch();

 break;

 }

 if (GetSerialCharacter(&chChar))

 {/* Print the received character, and get another */

 printf(“%c”, chChar);

 }

 }

 return (0);

}

int GetSerialCharacter(

 char *chChar)

{

int _far *pSerialPort;

int nPort;

int nStatus;

/* The PC’s serial port is at address 0040:0000

 * (for COM1:). If a zero is stored at that address,

 * a serial port is not installed.

 */

 pSerialPort = MAKELP(BIOS_DATA_PAGE, COM1);

 nPort = *pSerialPort;

continues

Part II • Managing Data in C

314

Listing 9.9. continued

 if (nPort == 0)

 {/* No serial is installed! */

 printf(“No serial installed...Why?\n”);

 return(0);

 }

/* To read a character, the DATA_READY signal must be set

 * (see the previous defines). This bit is in LSR_PORT.

 * If DATA_READY is set, the program reads a character

 * and returns TRUE.

 */

 nStatus = inp(LSR_PORT);

 if (nStatus & DATA_READY)

 {/* A character has been received. */

 *chChar = inp(RBR_PORT);

/* Echo the data byte back to the sender. The program

 * must wait until the last character has been sent

 * because the simple hardware does not have a queue.

 */

 nStatus = inp(LSR_PORT);

 while (!(nStatus & TRANS_HOLDING_REGISTER))

 {/* Simply get the status again, which wastes time */

 nStatus = inp(LSR_PORT);

 }

 outp(THR_PORT, *chChar);

 return(1);

 }

 return(0);

}

int SerialStatus()

Disk Files and Other I/O

315

C C
CC
C

C
C
C C9

{

int _far *pSerialPort;

int nPort;

int nTempStatus;

int nStatus;

/* The PC’s serial port is at address 0040:0000

 * (for COM1:). If a zero is stored at that address,

 * a serial port is not installed.

 */

 pSerialPort = MAKELP(BIOS_DATA_PAGE, COM1);

 nPort = *pSerialPort;

 if (nPort == 0)

 {/* No serial is installed! */

 printf(“No serial board installed...Why?\n”);

 return(0);

 }

 printf(“Serial vector = %lp Serial port %4.4X\n”,

 pSerialPort,

 nPort);

 nStatus = inp(MCR_PORT);

 printf(“MCR_PORT returned %2.2X\n”, nStatus);

 if (nStatus & DTR)

 {

 printf(“DTR is high. \n”);

 }

 else

 {

 printf(“DTR is low. \n”);

 }

continues

Part II • Managing Data in C

316

Listing 9.9. continued

 if (nStatus & RTS)

 {

 printf(“RTS is high. \n”);

 }

 else

 {

 printf(“RTS is low. \n”);

 }

 nStatus = inp(IER_PORT);

 printf(“IER_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(IIR_PORT);

 printf(“IIR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(LCR_PORT);

 printf(“LCR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(MCR_PORT);

 printf(“MCR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(LSR_PORT);

 printf(“LSR_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(MSR_PORT);

 printf(“MSR_PORT returned %2.2X\n”, nStatus);

 nTempStatus = inp(LCR_PORT);

 outp(LCR_PORT, nTempStatus | DIVISOR_LATCH_BIT);

 nStatus = inp(DLM_PORT);

 printf(“DLM_PORT returned %2.2X\n”, nStatus);

Disk Files and Other I/O

317

C C
CC
C

C
C
C C9

 nStatus = inp(DLL_PORT);

 printf(“DLL_PORT returned %2.2X\n”, nStatus);

 outp(LCR_PORT, nTempStatus);

 return(1);

}

READCOMM.C uses a simple loop to read the characters. The part of the
program that does the reading is shown in bold in the following code fragment.
The other parts of the code fragment are the echo code. Echoing received characters
is optional and is usually controlled by the user.

 nStatus = inp(LSR_PORT);

 if (nStatus & DATA_READY)

 {/* A character has been received. */

 *chChar = inp(RBR_PORT);

/* Echo the data byte to the sender. The program

 * must wait until the last character has been sent

 * because the simple hardware does not have a queue.

 */

 nStatus = inp(LSR_PORT);

 while (!(nStatus & TRANS_HOLDING_REGISTER))

 {/* Simply get the status again, which wastes time */

 nStatus = inp(LSR_PORT);

 }

 outp(THR_PORT, *chChar);

The READCOMM program also shows how to switch between the speed con-
trolling ports, DLL and DLM. This is accomplished by setting the DIVISOR_LATCH_BIT
bit in the LCR_PORT register, as follows:

 nTempStatus = inp(LCR_PORT);

 outp(LCR_PORT, nTempStatus | DIVISOR_LATCH_BIT);

Part II • Managing Data in C

318

 nStatus = inp(DLM_PORT);

 printf(“DLM_PORT returned %2.2X\n”, nStatus);

 nStatus = inp(DLL_PORT);

 printf(“DLL_PORT returned %2.2X\n”, nStatus);

 outp(LCR_PORT, nTempStatus);

First, the program gets the current contents of the LCR_PORT and saves the
contents in nTempStatus. Then the program writes to LCR_PORT with nTempStatus
logically ORd with the DIVISOR_LATCH_BIT. This switches the meaning of RBR_PORT to
DLL_PORT and the meaning of THR_PORT to DLM_PORT.

Be sure you reset LCR_PORT after you have finished setting (or checking) the baud
rate. You set the baud rate using the identifiers prefaced with BAUD_ in either program.

Summary

In this chapter, you learned about input and output using C, and how to use both file
I/O and port I/O.

• Files used for both program input and program output are vital to any
program’s operation.

• Text-based files can be read, printed, edited, and otherwise used without
conversion by people. Text files usually contain only printable, newline, and
form-feed characters.

• Binary files contain any bytes that a program must place in the file. Generally,
a binary file is intended for use by the program or by other programs and
cannot be edited, printed, or read.

• Using temporary work files, a programmer can extend a program’s data storage
space to almost the amount of free space on the disk. Work files can be text or
binary, depending on the program’s requirements.

• Stream files are supported by many functions, can be text or binary, and are
usually buffered and formatted.

Disk Files and Other I/O

319

C C
CC
C

C
C
C C9

• Every C program has five opened files: stdin, stdout, stdaux, stdprn, and
stderr. These files are opened as stream files.

• Low-level files are accessed with a minimum number of C functions and are
usually unformatted and unbuffered.

• C compilers provide console functions to access the screen and keyboard.

• In PC compatible systems, your programs can access ports using C. This access
allows direct interaction with the device, without DOS or the BIOS.

Part II • Managing Data in C

320

Data Management: Sorts, Lists, and Indexes

321

C C
CC
C

C
C
C C10C C

CC
C

C
C
C C10

Data Management:

Sorts, Lists, and Indexes

Data management is what it’s all about. Almost all computer programs manage data—
even a simple computer game must manage and access data to update its list of current
high scores.

Sorting, merging, and purging. Indexed files. Tree access methods. Everyone
knows what sorting is, but the other terms may be unfamiliar. Merging is the process
of combining two sorted files and creating a resultant, sorted file. Purging uses a sorted
file to create a new file in which duplicate lines from the original file are eliminated.
An indexed file (or in-memory data object) consists of two files: the main data file and
a second, smaller index file. A tree access method offers fast searching and sorted access
to data. (This chapter discusses B-trees.)

Part II • Managing Data in C

322

I’ll use the creation of this book’s index as an example of sorting, merging, and
purging. For each chapter, I created a file in which each word is on a separate line (I
simply changed all spaces to newline characters). I then sorted the file, then purged it,
which eliminates all duplicate words (and makes the file size more manageable).

Then, I merged each chapter’s file of unique words into one large file for the
entire book. I then purged that file—even though each chapter’s file contains only
unique words, other chapters might contain some of these words too. After this final
purge, I had a file of unique words in the book. After a quick session with an editor,
I deleted any words that were not index material, leaving only the important words.

I used programs that I created to sort, merge, and purge as part of this chapter.
The DOS SORT utility is limited to files under 64K, but the sort program in this
chapter is limited only by the available memory. The merge and purge utilities are not
part of DOS. I hope they prove to be valuable additions to your stable of programming
tools.

Sorting

Sorting a file can be both easy and difficult. It’s easy because C has a sort function called
qsort() that is part of the library. This function’s performance is acceptable. The
difficult part is reading in the files and other programming overhead. You must provide
a compare function that qsort() can use.

When you write a program in which you do not know the amount of data that
the user will input, you must rely on dynamic memory allocation. This is not a problem
with the qsort() function: you pass a single array of pointers to the data being sorted
and, when qsort() returns, use the (now sorted) array of pointers to access the data in
sorted order. When you use this technique with character strings, it reduces overhead
and increases the program’s performance because only the pointers are moved in
memory, not the strings.

Listing 10.1, SORTFILE.C, sorts the input from stdin and writes the sorted
results to stdout. If you use I/O redirection, the program could sort a file and place the
results into a new file. Unlike the DOS SORT command, SORTFILE always sorts
from column one. (Adding the capability to sort from any other column is an exercise
I’ll leave to you.)

Data Management: Sorts, Lists, and Indexes

323

C C
CC
C

C
C
C C10

Listing 10.1. SORTFILE.C.

/* SORTFILE, written 1992 by Peter D. Hipson

 * This program sorts from stdin and sends the results

 * to stdout. If your PC has memory models, you must

 * compile with the LARGE model.

 */

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For exit(), etc.

#include <malloc.h> // For malloc(), calloc(), realloc(), free()

#include <search.h> // For qsort()...

int main(void); // Define main() and the fact that this program

 // does not use any passed parameters

int compare(void *arg1, void *arg2);

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 15500 /* Total maximum lines */

#define BIGEST_LINE 512 /* Largest line readable from keyboard */

#define MAX_BLOCKS 128 /* Allow 128 * MAX_CHARACTERS of memory */

/* Although these variables are defined as external, they could

 * be defined inside the function or allocated dynamically,

 * depending on the program’s needs and the available memory.

 */

char szInput[BIGEST_LINE];

char *szBuffer;

char *pBlocks[MAX_BLOCKS];

char *pBuffer[MAX_LINES];

int nCurrentBlock = 0;

int nBufferPointer = {MAX_CHARACTERS};

int nLine = 0;

int main()

{

continues

Part II • Managing Data in C

324

Listing 10.1. continued

int i;

/* Use fprintf(stderr...) to force prompts and error messages

 * to be displayed on the user’s screen regardless of whether

 * the output has been redirected.

 */

 fprintf(stderr,

 “\n”

 “Peter’s SORTFILE: Sorts large files at the speed of light!\n”

 “\n”

 “ syntax: \n”

 “ sortfile <inputfile >outputfile \n”

 “\n”

 “ where: \n”

 “ the program’s I/O is redirected\n\n”);

 fprintf(stderr, “Reading input...\n”);

 while (gets(szInput))

 {

 if ((nBufferPointer + strlen(szInput)) > MAX_CHARACTERS)

 { // The line won’t fit! Allocate new memory:

 szBuffer = (char *)malloc(MAX_CHARACTERS);

 fprintf(stderr, “ Allocating buffer (32K).\n”);

 nBufferPointer = 0;

 pBlocks[nCurrentBlock] = szBuffer;

 ++nCurrentBlock;

 if (szBuffer == NULL)

 {

 fprintf(stderr, “System sort memory exceeded, can’t \

 sort.\n”);

Data Management: Sorts, Lists, and Indexes

325

C C
CC
C

C
C
C C10

 exit(16);

 }

 }

 pBuffer[nLine] = &szBuffer[nBufferPointer];

 strcpy(pBuffer[nLine], szInput);

// The + 1 skips over the terminating NULL in each string.

 nBufferPointer += strlen(szInput) + 1;

 if (++nLine >= MAX_LINES)

 { // Too many lines! End the program.

 fprintf(stderr, “Too many lines—cannot sort.\n”);

 exit(16);

 }

 }

//

// Now sort the input lines

//

 fprintf(stderr, “Sorting, %d lines, in %d buffers.\n”,

 nLine,

 nCurrentBlock);

 qsort((void *)pBuffer,

 (size_t)nLine,

 sizeof(char *),

 compare);

 fprintf(stderr, “Writing output...\n”);

 for (i = 0; i < nLine; i++)

 {

 printf(“%s\n”, pBuffer[i]);

 }

 fprintf(stderr, “\n”);

continues

Part II • Managing Data in C

326

Listing 10.1. continued

 for (i = 0; i < nCurrentBlock; i++)

 {

 free(pBlocks[i]);

 }

 return (0);

}

int compare(

 char **arg1,

 char **arg2)

{

 return strcmp(*(char**)arg1, *(char**)arg2);

}

Note the declaration of the compare() function:

int compare(char **arg1, char **arg2);

The function has two parameters. It receives its parameters as pointers to pointers
to strings. Got that? You pass an array of pointers to strings, then qsort() passes
pointers to elements in the array to compare. It compares the strings these two pointers
address, and returns a value based on this comparison. The compare function returns
zero if the two parameters are equal, less than zero if the first parameter is less than the
second, and greater than zero if the first parameter is greater than the second.

Next are some defined identifiers:

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 16383 /* Total maximum lines */

#define BIGEST_LINE 512 /* Largest line readable from keyboard */

#define MAX_BLOCKS 128 /* Allow 128 * MAX_CHARACTERS of memory */

Memory is allocated in blocks of 32K using the MAX_CHARACTERS identifier. A
maximum of 16K lines can be sorted (with a 4-byte pointer, about 16K pointers can
fit in 64K). The largest line allowed is 512 bytes, and up to 128 calls can be made to
the memory allocation functions (which allocates more memory than you’ll find on
a PC).

Data Management: Sorts, Lists, and Indexes

327

C C
CC
C

C
C
C C10

The external variables declared (they could be declared as internal static
variables) define an input buffer, szBuffer[], a generic character pointer, an array of
pointers to each block of memory (so that the blocks can be freed later), and an array
of character pointers (*pBuffer[]) that point to each line that will be sorted:

char szInput[BIGEST_LINE];

char *szBuffer;

char *pBlocks[MAX_BLOCKS];

char *pBuffer[MAX_LINES];

int nCurrentBlock = 0;

int nBufferPointer = {MAX_CHARACTERS};

int nLine = 0;

The program receives its input from the keyboard and writes to the terminal.
Therefore, if the program is used as a pipe or with I/O redirection, you must be sure
that error messages do not get redirected. In Chapter 9, “Disk Files and Other I/O,”
you learned that the standard stream stderr does not get redirected, but stdout does.
Therefore, if the program’s output is written to stdout and messages to the user are
written to stderr, you can be sure that messages to the user are not mixed with the
program’s output.

To access stderr, you use the fprintf(stderr,...); statement, as shown in the
following code fragment:

fprintf(stderr,

 “\n”

 “Peter’s SORTFILE: Sorts large files at the speed of light!\n”

 “\n”

 “ syntax: \n”

 “ sortfile <inputfile >outputfile \n”

 “\n”

 “ where: \n”

 “ the program’s I/O is redirected\n\n”);

fprintf(stderr, “Reading input...\n”);

After providing the opening messages to the user, the program reads the input
from stdin. The C function gets() does fine in this context. After reading a line, the
program checks whether there is enough room in the current buffer for the string. If
there is not enough room, the program allocates a new buffer and displays a message
that the buffer has been allocated:

Part II • Managing Data in C

328

while (gets(szInput))

{

 if ((nBufferPointer + strlen(szInput)) > MAX_CHARACTERS)

 { // The line won’t fit! Allocate new memory:

 szBuffer = (char *)malloc(MAX_CHARACTERS);

 fprintf(stderr, “ Allocating buffer (32K).\n”);

 nBufferPointer = 0;

 pBlocks[nCurrentBlock] = szBuffer;

 ++nCurrentBlock;

 if (szBuffer == NULL)

 {

 fprintf(stderr, “System sort memory exceeded--cannot \

 sort.\n”);

 exit(16);

 }

 }

Now that there is enough room in the buffer for the string, the program sets the
pointer array (pBuffer[]) to the string’s eventual location, then copies the string to the
buffer. The intermediate buffer is used to help prevent buffer overflow (otherwise the
program would have to stop filling a block of memory at least 512 bytes before the end
of the block). The call to strcpy() does not take too much overhead. The program also
updates the pointer into the block of memory, in preparation for the next string.

 pBuffer[nLine] = &szBuffer[nBufferPointer];

 strcpy(pBuffer[nLine], szInput);

// The + 1 skips over the terminating NULL in each string.

 nBufferPointer += strlen(szInput) + 1;

A bit of error checking comes next, to be sure that the program does not read in
too many lines:

 if (++nLine >= MAX_LINES)

 { // Too many lines! End the program.

 fprintf(stderr, “Too many lines--cannot sort.\n”);

 exit(16);

 }

}

After the input file had been read, the program calls qsort() to sort the file, using
the compare (described previously):

Data Management: Sorts, Lists, and Indexes

329

C C
CC
C

C
C
C C10

qsort((void *)pBuffer,

 (size_t)nLine,

 sizeof(char *),

 compare);

When qsort() returns, the program uses printf() to write the final sorted
output:

fprintf(stderr, “Writing output...\n”);

for (i = 0; i < nLine; i++)

{

 printf(“%s\n”, pBuffer[i]);

}

Because the printf() output goes to stdout, the output could be redirected to a file.
Finally, the blocks of memory are freed and the program ends:

for (i = 0; i < nCurrentBlock; i++)

{

 free(pBlocks[i]);

}

The compare function, which is called by qsort() in the main program, is
simple. The program calls strcmp(). If you want the program to ignore case, you could
call stricmp() instead. You could also create your own function to compare the strings,
but C’s functions work well enough.

int compare(

 char **arg1,

 char **arg2)

{

 return strcmp(*arg1, *arg2);

}

The SORTFILE program can sort files up to 500K, depending on the DOS
version). You could use SORTFILE also with I/O redirection or as a filter with DOS’s
pipe operator, |.

Merging

No matter how much memory you have available, eventually you will want to sort a
file that is too large. You could sort the file from the disk. Another method is to break

Part II • Managing Data in C

330

the file into smaller parts that will fit in memory, sort these parts, then combine the
sorted parts into a final sorted file that contains the sum of the parts. The process of
breaking a file into smaller, more manageable parts, called a sort/merge, is a common
technique on mainframes and minicomputers.

To keep the programs in this chapter as simple as possible (but wait until you see
the BTREE program later in the chapter), I created separate merge and sort programs.
Listing 10.2, MERGFILE.C, does not use stdin for its input because you must have
two files to perform a merge.

Listing 10.2. MERGFILE.C.

/* MERGFILE, written 1992 by Peter D. Hipson

 * This program merges two sorted files into one large

 * sorted file. If your PC has memory models, you must

 * compile with the LARGE model.

 */

#include <stdlib.h> // For standard functions

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For exit(), etc.

#include <malloc.h> // For malloc(), calloc(), realloc(), free()

#include <search.h> // For qsort()...

int main(int argc, char *argv[], char *envp[]);

int compare(char **arg1, char **arg2);

#define BIGEST_LINE 512 /* The largest readable line */

#define NEED_RECORD 1 /* A record is needed from the file */

#define END_OF_FILE 2 /* This file is finished */

#define ALL_OK 3 /* No record needed; not EOF */

/* Although these variables are defined as external,

 * they could be defined inside the function or

 * allocated dynamically, depending on the program’s

 * needs and available memory.

 */

Data Management: Sorts, Lists, and Indexes

331

C C
CC
C

C
C
C C10

char szInput1[BIGEST_LINE];

char szInput2[BIGEST_LINE];

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

FILE *InFile1;

FILE *InFile2;

FILE *OutFile;

char szProgram[30];

/* Strings for _splitpath() (which parses a filename) */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

int i;

int j;

int nCompare = 0;

int nFileOneStatus = NEED_RECORD;

int nFileTwoStatus = NEED_RECORD;

/* Use fprintf(stderr...) to force prompts and error messages

 * to be displayed on the user’s screen regardless of whether

 * the output has been redirected.

 */

 _splitpath(argv[0],

 szDrive,

 szDir,

 szFname,

 szExt);

continues

Part II • Managing Data in C

332

Listing 10.2. continued

 strncpy(szProgram, szFname, sizeof(szProgram) - 1);

 if (argc <= 3)

 {

 fprintf(stderr,

 “\n”

 “%s -\n”

 “\n”

 “Peter’s MERGEFILE: Merges two sorted files into one!\n”

 “\n”

 “ syntax: \n”

 “ %s inputfile1 inputfile2 outputfile \n”

 “\n”,

 szProgram,

 szProgram);

 return(16);

 }

 fprintf(stderr, “Reading input...\n”);

 InFile1 = fopen(argv[1], “rt”);

 InFile2 = fopen(argv[2], “rt”);

 OutFile = fopen(argv[3], “wt”);

 while (

 nFileOneStatus != END_OF_FILE ||

 nFileTwoStatus != END_OF_FILE)

 {

 switch(nFileOneStatus)

 {

 case NEED_RECORD: /* Read a record */

 if (fgets(szInput1, sizeof(szInput1), InFile1) == NULL)

 {

 nFileOneStatus = END_OF_FILE;

 }

 else

 {

 nFileOneStatus = ALL_OK;

Data Management: Sorts, Lists, and Indexes

333

C C
CC
C

C
C
C C10

 }

 break;

 case ALL_OK: /* Nothing needed */

 break;

 case END_OF_FILE: /* Can’t do anything */

 break;

 }

 switch(nFileTwoStatus)

 {

 case NEED_RECORD: /* Read a record */

 if (fgets(szInput2, sizeof(szInput2), InFile2) == NULL)

 {

 nFileTwoStatus = END_OF_FILE;

 }

 else

 {

 nFileTwoStatus = ALL_OK;

 }

 break;

 case ALL_OK: /* Nothing needed */

 break;

 case END_OF_FILE: /* Can’t do anything */

 break;

 }

 if (nFileOneStatus == END_OF_FILE)

 {

 if (nFileTwoStatus != END_OF_FILE)

 {

 fputs(szInput2, OutFile);

 nFileTwoStatus = NEED_RECORD;

 }

 }

 else

 {

 if (nFileTwoStatus == END_OF_FILE)

 {

continues

Part II • Managing Data in C

334

Listing 10.2. continued

 if (nFileOneStatus != END_OF_FILE)

 {

 fputs(szInput1, OutFile);

 nFileOneStatus = NEED_RECORD;

 }

 }

 else

 {

 nCompare = strcmp(szInput1, szInput2);

 if (nCompare < 0)

 {/* File one is written */

 fputs(szInput1, OutFile);

 nFileOneStatus = NEED_RECORD;

 }

 else

 {

 if (nCompare > 0)

 {/* File two is written */

 fputs(szInput2, OutFile);

 nFileTwoStatus = NEED_RECORD;

 }

 else

 {/* They are the same; write both */

 fputs(szInput1, OutFile);

 fputs(szInput2, OutFile);

 nFileOneStatus = NEED_RECORD;

 nFileTwoStatus = NEED_RECORD;

 }

 }

 }

 }

 }

 fclose(InFile1);

 fclose(InFile2);

 fclose(OutFile);

 return (0);

}

Data Management: Sorts, Lists, and Indexes

335

C C
CC
C

C
C
C C10

Merging files is a simple process. Because this program does not use advanced
techniques, I will dispense with the line-by-line analysis of the program’s code and refer
instead to the program’s flowchart, shown in Figure 10.1.

Figure 10.1. The flowchart for MERGFILE.C.

First, the program opens the two input files and the output file. If errors do not
occur in this stage, the program reads a record from both input files. After the records

Part II • Managing Data in C

336

are read, the program does its comparisons (taking into consideration possible end-of-
file conditions), and writes the correct record. When the program reaches the end of
both input files, it closes all the files and ends. It is a simple program that works quickly.

When writing a merge function, you must consider that one file may be (and
usually is) shorter than the other. The merge program must be sure that the longer file’s
records are written to the output.

Purging

One often needed (and hard to find) program is a purge program, which is used to
delete duplicates (sometimes called de-dup) from a file. You might want to delete
duplicates, for example, from a mailing list or a word list.

The PURGFILE.C program in Listing 10.3 performs two functions. Part of the
program works like MERGFILE (Listing 10.2). Unlike MERGEFILE, however,
PURGFILE does not write duplicates to the output file.

Listing 10.3. PURGFILE.C.

/* PURGFILE, written 1992 by Peter D. Hipson

 * This program merges and purges in one step. If your

 * PC has memory models, you must compile with the

 * LARGE model.

 */

#include <stdlib.h> // For standard functions

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For exit(), etc

#include <malloc.h> // For malloc(), calloc(), realloc(), free()

#include <search.h> // For qsort()...

int main(int argc, char *argv[], char *envp[]);

int compare(char **arg1, char **arg2);

#define BIGEST_LINE 512 /* The largest readable line */

#define NEED_RECORD 1 /* A record is needed from the file */

Data Management: Sorts, Lists, and Indexes

337

C C
CC
C

C
C
C C10

#define END_OF_FILE 2 /* This file is finished */

#define ALL_OK 3 /* No record needed, not EOF */

/* Although these variables are defined as external, they could

 * be defined inside the function or allocated dynamically,

 * depending on the program’s needs and available memory.

 */

char szInput[BIGEST_LINE];

char szInput1[BIGEST_LINE];

char szInput2[BIGEST_LINE];

int main(

 int argc,

 char *argv[],

 char *envp[]

)

{

FILE *InFile1;

FILE *InFile2;

FILE *OutFile;

char szProgram[30];

/* Strings for _splitpath(), which parses a file name */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

int i;

int j;

int nCompare = 0;

int nFileOneStatus = NEED_RECORD;

int nFileTwoStatus = NEED_RECORD;

/* Use fprintf(stderr...) to force prompts and error messages to be

 * displayed on the user’s screen regardless of whether the output

continues

Part II • Managing Data in C

338

Listing 10.3. continued

 * has been redirected.

 */

 _splitpath(argv[0],

 szDrive,

 szDir,

 szFname,

 szExt);

 strncpy(szProgram, szFname, sizeof(szProgram) - 1);

 if (argc <= 3)

 {

 fprintf(stderr,

 “\n”

 “%s -\n”

 “\n”

 “Peter’s PURGEFILE: Merges two sorted files, \n”

 “ purging all duplicate lines!\n”

 “\n”

 “ inputfile1 and inputfile2 can be the same file,\n”

 “ if you want to de-dup only one file.\n”

 “\n”

 “ syntax: \n”

 “\n”

 “ %s inputfile1 inputfile2 outputfile \n”

 “\n”,

 szProgram,

 szProgram);

 return(16);

 }

 InFile1 = fopen(argv[1], “rt”);

 InFile2 = fopen(argv[2], “rt”);

 OutFile = fopen(argv[3], “wt”);

 while (

 nFileOneStatus != END_OF_FILE ||

 nFileTwoStatus != END_OF_FILE)

Data Management: Sorts, Lists, and Indexes

339

C C
CC
C

C
C
C C10

 {

 while(

 nFileOneStatus == NEED_RECORD ||

 nFileTwoStatus == NEED_RECORD)

 {

 switch(nFileOneStatus)

 {

 case NEED_RECORD: /* Read a record */

 if (fgets(szInput, sizeof(szInput), InFile1) == NULL)

 {

 nFileOneStatus = END_OF_FILE;

 }

 else

 {

 if (strcmp(szInput, szInput1) != 0)

 {

 strcpy(szInput1, szInput);

 nFileOneStatus = ALL_OK;

 }

 }

 break;

 case ALL_OK: /* Nothing needed */

 break;

 case END_OF_FILE: /* Can’t do anything */

 break;

 }

 switch(nFileTwoStatus)

 {

 case NEED_RECORD: /* Read a record */

 if (fgets(szInput, sizeof(szInput), InFile2) == NULL)

 {

 nFileTwoStatus = END_OF_FILE;

 }

 else

 {

 if (strcmp(szInput, szInput2) != 0)

 {

continues

Part II • Managing Data in C

340

Listing 10.3. continued

 strcpy(szInput2, szInput);

 nFileTwoStatus = ALL_OK;

 }

 }

 break;

 case ALL_OK: /* Nothing needed */

 break;

 case END_OF_FILE: /* Can’t do anything */

 break;

 }

 }

 if (nFileOneStatus == END_OF_FILE)

 {

 if (nFileTwoStatus != END_OF_FILE)

 {

 fputs(szInput2, OutFile);

 nFileTwoStatus = NEED_RECORD;

 }

 }

 else

 {

 if (nFileTwoStatus == END_OF_FILE)

 {

 if (nFileOneStatus != END_OF_FILE)

 {

 fputs(szInput1, OutFile);

 nFileOneStatus = NEED_RECORD;

 }

 }

 else

 {

 nCompare = strcmp(szInput1, szInput2);

 if (nCompare < 0)

 {/* File one is written */

 fputs(szInput1, OutFile);

 nFileOneStatus = NEED_RECORD;

Data Management: Sorts, Lists, and Indexes

341

C C
CC
C

C
C
C C10

 }

 else

 {

 if (nCompare > 0)

 {/* File two is written */

 fputs(szInput2, OutFile);

 nFileTwoStatus = NEED_RECORD;

 }

 else

 {/* They are the same; write one and discard the

 other. */

 fputs(szInput1, OutFile);

 nFileOneStatus = NEED_RECORD;

 nFileTwoStatus = NEED_RECORD;

 }

 }

 }

 }

 }

 fclose(InFile1);

 fclose(InFile2);

 fclose(OutFile);

 return (0);

}

Purging duplicate records from a single file is not difficult. First the program
reads a line. Then the program discards the line if it is the same as the previous line,
or saves the line if it is different from the previous line. PURGFILE performs a merge
and a purge at the same time, however, making the program a bit more complex.

To use PURGFILE to purge a single file, you simply specify the same name twice
or specify NUL: as the second filename. (A second filename must be specified to provide
the output filename.)

The flowchart in Figure 10.2 shows how the PURGFILE program works. The
program does not use advanced techniques, so this section looks only at the flowchart,
rather than each line of code.

Part II • Managing Data in C

342

Figure 10.2. The flowchart for PURGFILE.C.

Data Management: Sorts, Lists, and Indexes

343

C C
CC
C

C
C
C C10

As you can see in Figure 10.2, the program begins by opening the two input files
and the output file. If there are no errors in the file-open stage, the program reads a
record from each file (assuming that the program should read a record and that the
program has not reached the end of the file).

After the records are read, the program makes its comparisons (taking into
consideration possible end-of-file conditions), then writes the correct record. When
the program has the same record from both files, it discards the second file’s record,
sets the flag indicating that it needs a new record from the second file, and saves the
first file’s record.

When the program reaches the end of both input files, it closes all the files and
ends. It is a simple program that works quickly.

When you write a purge function, remember that a record might be repeated
many times. When your program finds a duplicate and therefore reads a new record,
it still must test to be sure that it has read a unique record. The program might be
reading a third duplicate, for example, that must also be discarded.

Sorting, Merging, and Purging All in One

Usually, a single utility offers sort, merge, and purge functions. This type of utility will
have one or two input filenames, sort the files, purge the duplicates, and provide a single
output file.

A variation of a sort program is a sort that works on a file of any size. The process
to create the ultimate sort follows:

1. Read the file, stopping at the end of the file or when there is no more free
memory.

2. Sort this part of the file. Write the result of the sort to a temporary work file.

3. If the program has reached the end of the file and there are no more records to
read in, the program renames step 2’s work file to the output file’s name and
ends the program.

4. Again read the file, stopping when there is no more free memory or when the
end of the file is reached.

Part II • Managing Data in C

344

5. Sort this part of the file. Write the result of the sort to a second temporary
work file.

6. Merge the file created in step 2 with the file from step 5. Delete both of the
files created by steps 2 and 5, and rename this new file using the name from
step 2.

7. Go to step 3.

Linked Lists

A linked list is a group of data objects in which each object has a pointer to the next
object in the group. Everything that you do with linked lists can be performed in
memory or as part of a disk file.

Sometimes, sorting the data externally to the program (using the DOS SORT
program) is not enough. When a user is entering data, it is never acceptable to stop the
program, exit the program, run a sort, create a sorted file, then start the program again.

We have become accustomed to having the computer do the work for us, and
rightly so. A program should not require the user to do anything that the program can
perform without the user’s intervention.

There are alternatives when data must be sorted. For example, when the user
enters an item, the program can pause and use the qsort() function to insert the new
item into the current database. If the database is large, however, the pause could be so
long that you could go get lunch! Even a simple insert at the beginning of a list can be
time consuming—every record in the database must be moved. The size and number
of these records can be the critical factor.

Many programs must present the user’s data in a sorted format. Because speed
is critical, sorting each time the data is displayed usually is unacceptable—the data
must be stored in sorted order.

Many programs work to keep as much of the user’s current data as possible in
memory. Searching a large quantity of data in memory should be not only quick, but
instantaneous! If the data is not well organized, the search must be linear (record after
record). On average, the program must look at half the records to find a matching
record, assuming that the records are stored randomly.

Data Management: Sorts, Lists, and Indexes

345

C C
CC
C

C
C
C C10

In general, a linear search of a block of data or sorting after a data item has been
added or edited is too slow and therefore inadequate.

The program’s data must be organized better than the order in which it was
entered. One way to organize is to use a linked list. In a linked list, you start with a
pointer that points to, or identifies, the first member of the list. Each member (except
the last) has a pointer that points to the next member in the list. The last member’s
pointer is a NULL pointer to indicate the end of the list. Often there is a separate pointer
to the last member in the list—this enables you to add to the end of the list. A single
linked list is shown in Figure 10.3.

Figure 10.3. A single linked list.

When you add a new member to a linked list, the program simply follows the list
until it finds the member that will precede the new member and inserts the new
member at that point. When the program must display sorted data to the user, it uses
the linked list pointers to find the necessary data. Because the links are already sorted,
the program’s performance is fast.

Using Dynamic Memory

Often you must rely on dynamic memory allocation (memory allocated using one of
the memory allocation functions) because you cannot tell how much user data will be
provided by the user. When allocating memory, the program must track each block of

Part II • Managing Data in C

346

memory, usually with a linked list. In this situation, it may (or may not) be that the
links are simply arranged in the order that the memory blocks are allocated. When a
memory block is freed, it is removed from the linked list.

The example program in this section allocates memory blocks for each record
that the user enters. These blocks are pointed to by links.

Disk-Based Lists

When you create a linked list as a disk-based file, the list’s members must be the same
size. If your program has different sized members of a single linked list, the best solution
is to use a single union to create a single record of the correct size. The size of the union
is determined by its largest member, so the members will be the same size.

Double Linked Lists

In a double linked list, each member has a pointer not only to its successor in the list,
but also to its predecessor. Figure 10.4 shows how a double linked list is created. Notice
that the pointer to the end of the list is mandatory. This pointer is necessary so that the
end of the list can be accessed.

Figure 10.4. A double linked list.

Data Management: Sorts, Lists, and Indexes

347

C C
CC
C

C
C
C C10

Figure 10.5 shows the structure’s list pointers. (Figure 10.5 and Figure 10.4 are
the basis for Figures 10.6 through 10.9.)

Figure 10.5. The CUSTOMER structure’s linked list pointers.

You can perform a trick with a double linked list. When you add a member to
a double linked list, the program can examine the key fields of the first and last
members to determine whether the list should be traveled from the beginning or the
end. This increases the program’s performance. (It doesn’t make sense to start at the
first member if the new member will be added near the end of the list.)

Listing 10.4, the LINKLIST.C program, demonstrates the use of a double linked
list with dynamically allocated members. The program is simple, without much
optimization. The program always has sorted access to the items in the list.

Listing 10.4. LINKLIST.C.

/* LINKLIST, written 1992 by Peter D. Hipson

 * A double linked list program. This program has

 * better error checking than the CDB program.

 * To improve the program, make the ZIP code field a

 * character field. A character field is better for ZIP

 * codes because many non-US ZIP codes also

 * contain letters.

 */

continues

Part II • Managing Data in C

348

Listing 10.4. continued

#include <string.h>

#include <ctype.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#define TRUE 1

#define FALSE (!TRUE)

#define INCREMENT_AMOUNT 1 /* Add one record at a time */

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

/* Define the structure for the customer database. */

struct _CUSTNAME;

typedef struct _CUSTNAME {

 int nRecordType; // 1 == Customer record.

 struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none

 struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none

 char szName[61]; // 60 chars for name; 1 for null at end

 char szAddr1[61]; // 60 chars for address; 1 for null at end

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 chars for city; 1 for null at end

 char szState[3]; // 2-character state abbrev. plus null

 int lZip; // Print as %5.5ld for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount the customer has purchased

 } CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;

typedef CUSTNAME *PCUSTNAME;

void GiveHelp(void);

void main()

Data Management: Sorts, Lists, and Indexes

349

C C
CC
C

C
C
C C10

{

FILE *DataFile;

PCUSTNAME FirstCustomer = NULL;

PCUSTNAME LastCustomer = NULL;

PCUSTNAME Customer = NULL;

PCUSTNAME TempCustomer = NULL;

char szFileName[257];

char szBuffer[257];

int nNotDone = TRUE;

int nRecord = 0;

int nDebug = FALSE;

int nNeedSaving = FALSE;

double dSales = 0.0; /* Forces loading of floating-point support */

 printf(“Please enter customer save file name: “);

 gets(szFileName);

 DataFile = fopen(szFileName, “wt”);

 if (DataFile == NULL)

 {/* Test for file open. If the file can’t be opened, exit with

 message. */

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

 fclose(DataFile);

 printf(“Demo of a linked list concepts\n”

 “\n”

 “ Commands are:\n”

 “ A - Add a customer/supplier record.\n”

 “ D - Display current list.\n”

 “ X - Exit from program.\n”

continues

Part II • Managing Data in C

350

Listing 10.4. continued

 “ Z - Toggle debug mode.\n”

 “ ? - Display the command list.”

 “ H - Display the command list.”

 “ S - Save the list.\n”

 “\n”

);

 nRecord = 0;

 while (nNotDone)

 {

 printf(“Enter command (A, D+, D-, S)?”);

 gets(szBuffer);

 switch(szBuffer[0])

 {

 case ‘H’: /* Give some help */

 case ‘h’:

 case ‘?’:

 GiveHelp();

 break;

 case ‘A’: /* Add a record */

 case ‘a’:

 Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),

 INCREMENT_AMOUNT);

 printf(“Enter name %d: “, ++nRecord);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szName) - 1] = ‘\0’;

 strcpy(Customer->szName, szBuffer);

 if (strlen(Customer->szName) > 0)

 {/* Insert this record in the list, sorted by name. */

 nNeedSaving = TRUE;

Data Management: Sorts, Lists, and Indexes

351

C C
CC
C

C
C
C C10

 if (FirstCustomer == NULL)

 {

 printf(“It is first record \n”);

 Customer->NextCustomer = NULL;

 Customer->PrevCustomer = NULL;

 FirstCustomer = Customer;

 LastCustomer = Customer;

 TempCustomer = NULL;

 }

 else

 {

 TempCustomer = FirstCustomer;

 }

 while (TempCustomer)

 {

 if (nDebug)

 {

 printf(“TESTING FOR ADD: ‘%s’ ‘%s’\n”,

 Customer->szName,

 TempCustomer->szName);

 }

 if (strcmp(Customer->szName,

 TempCustomer->szName) < 0 ||

 TempCustomer == LastCustomer)

 {

 if (strcmp(Customer->szName,

 TempCustomer->szName) < 0 &&

 TempCustomer == FirstCustomer)

 {

 if (nDebug)

 {

 printf(“Assigning as first\n”);

 }

 Customer->NextCustomer = FirstCustomer;

 FirstCustomer = Customer;

 Customer->PrevCustomer = NULL;

continues

Part II • Managing Data in C

352

Listing 10.4. continued

 TempCustomer = Customer->NextCustomer;

 TempCustomer->PrevCustomer = Customer;

 }

 else

 {

 if (strcmp(Customer->szName,

 TempCustomer->szName) > 0 &&

 TempCustomer == LastCustomer)

 {

 if (nDebug)

 {

 printf(“Assigning as last\n”);

 }

 Customer->PrevCustomer =

 LastCustomer;

 LastCustomer = Customer;

 Customer->NextCustomer = NULL;

 TempCustomer = Customer-

 >PrevCustomer;

 TempCustomer->NextCustomer =

 Customer;

 }

 else

 {

 if (nDebug)

 {

 printf(“Assigning inside \

 list\n”);

 }

 Customer->PrevCustomer =

 TempCustomer->PrevCustomer;

 Customer->NextCustomer =

 TempCustomer;

 TempCustomer->PrevCustomer =

 Customer;

 TempCustomer = Customer-

 >PrevCustomer;

 TempCustomer->NextCustomer =

 Customer;

Data Management: Sorts, Lists, and Indexes

353

C C
CC
C

C
C
C C10

 }

 }

 TempCustomer = NULL;

 }

 else

 {

 TempCustomer = TempCustomer->NextCustomer;

 }

 }

 Customer->nRecordNumber = nRecord;

 if (!nDebug)

 {

 do

 {

 printf(“Enter 1 for customer, 2 for supplier \

 “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer

 ->nRecordType);

 }

 while (Customer->nRecordType != CUSTOMER_RECORD

 &&

 Customer->nRecordType != SUPPLIER_RECORD);

 printf(“Enter address line 1: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szAddr1) - 1] = ‘\0’;

 strcpy(Customer->szAddr1, szBuffer);

 printf(“Enter address line 2: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szAddr2) - 1] = ‘\0’;

 strcpy(Customer->szAddr2, szBuffer);

 printf(“Enter City: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szCity) - 1] = ‘\0’;

 strcpy(Customer->szCity, szBuffer);

continues

Part II • Managing Data in C

354

Listing 10.4. continued

 printf(“Enter state postal abbreviation: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szState) - 1] = ‘\0’;

 strcpy(Customer->szState, szBuffer);

 printf(“Enter ZIP code: “);

 gets(szBuffer);

 sscanf(szBuffer, “%ld”, &Customer->lZip);

 printf(“Enter total sales: “);

 gets(szBuffer);

 sscanf(szBuffer, “%f”, &Customer->dSalesTotal);

 }

 }

 else

 {

 printf(“\aSorry, name must not be blank!\n”);

 }

 break;

 case ‘Z’: /* Debug mode toggle */

 case ‘z’:

 nDebug = !nDebug;

 break;

 case ‘D’: /* Display all records */

 case ‘d’:

 TempCustomer = FirstCustomer;

 printf(“Display customers\n”);

 while (TempCustomer)

 {

 if (nDebug)

 {

 printf(

 “Name ‘%10s’ Me %lp Next %lp Prev %lp\n”,

 TempCustomer->szName,

 TempCustomer,

Data Management: Sorts, Lists, and Indexes

355

C C
CC
C

C
C
C C10

 TempCustomer->NextCustomer,

 TempCustomer->PrevCustomer);

 }

 else

 {

 printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5ld’\n”,

 TempCustomer->szName,

 TempCustomer->szCity,

 TempCustomer->szState,

 TempCustomer->lZip);

 }

 TempCustomer = TempCustomer->NextCustomer;

 }

 break;

 case ‘X’: /* Exit; prompt for save if needed */

 case ‘x’:

 nNotDone = FALSE;

 szBuffer[0] = ‘\0’;

 while (nNeedSaving &&

 szBuffer[0] == ‘\0’)

 {

 printf(“\nSave the data? (y|n)”);

 gets(szBuffer);

 if (szBuffer[0] == ‘n’ ||

 szBuffer[0] == ‘N’)

 {

 nNeedSaving = FALSE;

 }

 else

 {

 if (szBuffer[0] != ‘y’ &&

 szBuffer[0] != ‘Y’)

 {

continues

Part II • Managing Data in C

356

Listing 10.4. continued

 printf(“\nWrong answer, “

 “please respond with ‘y’ or ‘n’”);

 szBuffer[0] = ‘\0’;

 }

 }

 }

 if (!nNeedSaving)

 {/* Do not need to save, so just exit */

 break;

 }

/* Else fall through to save routines */

 case ‘S’: /* Save all records */

 case ‘s’:

 printf(“Saving customers\n”);

 DataFile = fopen(szFileName, “wt”);

 if (DataFile == NULL)

 {/* Test for file re-open; if file can’t be opened, exit

 with message */

 printf(“ERROR: File ‘%s’ couldn’t be opened.\n”,

 szFileName);

 exit(4);

 }

 TempCustomer = FirstCustomer;

 while (TempCustomer)

 {

 if (nDebug)

 {

 fprintf(DataFile,

 “Name ‘%10s’ Me %lp Next %lp Prev %lp\n”,

 TempCustomer->szName,

Data Management: Sorts, Lists, and Indexes

357

C C
CC
C

C
C
C C10

 TempCustomer,

 TempCustomer->NextCustomer,

 TempCustomer->PrevCustomer);

 }

 else

 {

 fprintf(DataFile,

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5ld’\n”,

 TempCustomer->szName,

 TempCustomer->szCity,

 TempCustomer->szState,

 TempCustomer->lZip);

 }

 TempCustomer = TempCustomer->NextCustomer;

 }

 nNeedSaving = FALSE;

 fclose(DataFile);

 break;

 }

 }

}

void GiveHelp()

{

 printf(

 “\n”

 “This program shows how a double linked list is created and\n”

 “used. It enables you to add records, display the list of\n”

 “records (which are always sorted by name), and save the\n”

 “list of records to the disk file.\n”

 “\n”

 “LINKLIST supports the following commands:\n”);

 printf(

 “\n”

continues

Part II • Managing Data in C

358

Listing 10.4. continued

 “ A - Add a customer/supplier record.\n”

 “ Adds a record. Each added record is placed\n”

 “ in the list in the correct order. Added\n”

 “ records are sorted by name.\n”);

 printf(

 “\n”

 “ D - Display current list.\n”

 “ Prints the current list of records in sorted\n”

 “ order. This list contains name and address\n”

 “ information or, in the debug mode, name and\n”

 “ pointer information.\n”);

 printf(

 “\n”

 “ X - Exit from program.\n”

 “ Ends the program. If records have been added\n”

 “ and not saved, prompts for save. All saves\n”

 “ are made to the file specified when the\n”

 “ program was started.\n”);

 printf(

 “\n”

 “ Z - Toggle debug mode.\n”

 “ Changes the information displayed for the\n”

 “ user. When on, debug mode shows where the newly\n”

 “ entered name is being placed in the list, and \

 the\n”

 “ list pointers are displayed when a display command \

 is\n”

 “ entered.\n”);

 printf(

 “\n”

 “ ? - Display the command list.\n”

 “ H - Display the command list.\n”

 “ Displays this help information.\n”);

 printf(

 “\n”

Data Management: Sorts, Lists, and Indexes

359

C C
CC
C

C
C
C C10

 “ S - Save the list.\n”

 “ Saves (to the specified save file) the current \

 list\n”

 “ of records in sorted order. This list contains \

 name\n”

 “ and address information or, in the debug mode,\n”

 “ name and pointer information.\n”

 “\n”);

 printf(

 “Additional feature: This program includes a\n”

 “prompt to save when the exit command is given.\n”

 “This prompt is given only if the records have\n”

 “not been saved since the last added record.\n”);

 printf(

 “Additional feature: This program has a debug mode so that\n”

 “the user can see how the program works. The debug mode \

 enables\n”

 “the user to print the linked list and its pointers.\n”);

}

This program was developed from the CDB.C program, which was presented in
Chapter 8, “Dynamic Memory Allocation.” In this section, you look at the
program, and the code that manages the linked list. First, in the following code
fragment, is a nonspecific structure definition (yes, this is a definition, not a
declaration) that creates the _CUSTNAME structure name:

struct _CUSTNAME;

This allows _CUSTNAME to be used in the declaration of the structure as a set of
pointers, as the third and fourth lines in the following code show:

typedef struct _CUSTNAME {

 int nRecordType; // 1 == Customer record.

 struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none

 struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none

 char szName[61]; // 60 chars for name; 1 for null at end

 char szAddr1[61]; // 60 chars for address; 1 for null at end

Part II • Managing Data in C

360

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 chars for city; 1 for null at end

 char szState[3]; // 2-character state abbrev. plus null

 int lZip; // Print as %5.5ld for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount the customer has purchased

 } CUSTNAME;

This section of the CUSTNAME structure declares members that point to the next member
or the preceding member in the linked list.

The following code shows how the pointers to the first and last members in the
linked list are defined:

PCUSTNAME FirstCustomer = NULL;

PCUSTNAME LastCustomer = NULL;

These lines could have been coded as

struct _CUSTNAME *FirstCustomer;

struct _CUSTNAME *LastCustomer;

I suggest that you use the pointer names defined (if you write your structure prototype
as I do) when you create the typedef structure.

Next, a few pointers are created for the program to use when a member is created
or inserted into the list:

PCUSTNAME Customer = NULL;

PCUSTNAME TempCustomer = NULL;

The next significant part of the program is the section for adding a record, which
is called when the user enters the A command. First, the program allocates a block of
memory to hold the CUSTNAME structure using calloc(), which initializes this memory
to zero. (Remember, malloc() does not initialize memory.) After the memory has been
allocated, the program prompts for the name to be added:

case ‘A’: /* Add a record */

case ‘a’:

 Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),

 INCREMENT_AMOUNT);

 printf(“Enter name %d: “, ++nRecord);

 gets(szBuffer);

Data Management: Sorts, Lists, and Indexes

361

C C
CC
C

C
C
C C10

 szBuffer[sizeof(Customer->szName) - 1] = ‘\0’;

 strcpy(Customer->szName, szBuffer);

 if (strlen(Customer->szName) > 0)

If the user has entered a name (and not just pressed Return), this member must
be added to the linked list. This program inserts members into the list in sorted order.
Your program could insert members based on another criterion, for example, ZIP code
or customer number.

Nothing prevents you from having two or more sets of links. You might have the
list linked based on customer name, ZIP code, and customer number. Each additional
key, however, slows the program’s performance when a record is inserted and requires
an additional two pointers for the customer structure (the preceding pointer and the
next pointer). When you create a linked list with more than one set of links, simply
treat each set of links as a separate linked list.

When a record is inserted into a linked list, there are four possible scenarios. One,
the list might have nothing in it, and this is the initial member. Thus, both
FirstCustomer and LastCustomer must be initialized to this member, as follows:

{/* Insert this record in the list, sorted by name. */

 nNeedSaving = TRUE;

 if (FirstCustomer == NULL)

 {

 printf(“It is first record \n”);

 Customer->NextCustomer = NULL;

 Customer->PrevCustomer = NULL;

 FirstCustomer = Customer;

 LastCustomer = Customer;

 TempCustomer = NULL;

 }

 else

 {

 TempCustomer = FirstCustomer;

 }

 while (TempCustomer)

 {

 if (nDebug)

 {

Part II • Managing Data in C

362

 printf(“TESTING FOR ADD: ‘%s’ ‘%s’\n”,

 Customer->szName,

 TempCustomer->szName);

 }

If this is not the list’s initial member, the program must go down the list searching
for the correct insertion point. The record could be inserted in three places:

• At the beginning of the list, as the new first member.

• In the middle of the list.

• At the end of the list, as the last member.

Here is the code for inserting a member at the beginning of the list:

if (strcmp(Customer->szName,

 TempCustomer->szName) < 0 ||

 TempCustomer == LastCustomer)

{

 if (strcmp(Customer->szName,

 TempCustomer->szName) < 0 &&

 TempCustomer == FirstCustomer)

 {

 if (nDebug)

 {

 printf(“Assigning as first\n”);

 }

 Customer->NextCustomer = FirstCustomer;

 FirstCustomer = Customer;

 Customer->PrevCustomer = NULL;

 TempCustomer = Customer->NextCustomer;

 TempCustomer->PrevCustomer = Customer;

When the member will be the first member in the list, the program updates the
FirstCustomer variable and the old first member. The FirstCustomer variable and the
old first member’s previous member pointer (->PrevCustomer) point to this new
member. The new member’s previous member pointer (->PrevCustomer) points to
NULL, and the new member’s next member pointer (->NextCustomer) points to the old
first member (which has become the second member in the list).

Data Management: Sorts, Lists, and Indexes

363

C C
CC
C

C
C
C C10

In Figure 10.6, the bold lines show which pointers must be changed when a
record is inserted in the beginning of the list. Compare this figure with Figure 10.4.

Figure 10.6. Inserting a new member at the beginning of a linked list.

When the member will be the last member in the list, the LastCustomer variable
and the old last member must be updated:

}

else

{

 if (strcmp(Customer->szName,

 TempCustomer->szName) > 0 &&

 TempCustomer == LastCustomer)

 {

The LastCustomer variable and the old last member’s next member pointer
(->NextCustomer) will now point to the new member. The new member’s next
member pointer (->NextCustomer) will point to NULL, and the new member’s previous
member pointer (->PrevCustomer) will point to the old last member (which has
become the next-to-last member in the list).

The bold lines in Figure 10.7 show which pointers must be changed when a
record is inserted at the end of the list. Compare this figure with Figure 10.4.

Part II • Managing Data in C

364

Figure 10.7. Inserting a new member at the end of a linked list.

The third insertion point is the middle of the list. Following is the code for
inserting a member in the middle of the linked list:

 if (nDebug)

 {

 printf(“Assigning as last\n”);

 }

 Customer->PrevCustomer = LastCustomer;

 LastCustomer = Customer;

 Customer->NextCustomer = NULL;

 TempCustomer = Customer->PrevCustomer;

 TempCustomer->NextCustomer = Customer;

}

else

{

 if (nDebug)

 {

 printf(“Assigning inside list\n”);

 }

The program must update what will be the previous customer’s next member
pointer (->NextCustomer) to point to the new member. The new member’s prior
member pointer (->PrevCustomer) will point to this previous customer member as

Data Management: Sorts, Lists, and Indexes

365

C C
CC
C

C
C
C C10

well. The program must also update what will be the next customer’s prior member
pointer (->PrevCustomer) to point to the new member. The new member’s next
member pointer (->NextCustomer) will point to this next customer member as well.

See Figure 10.8, which shows what is happening when a member is inserted into
the middle of the list. The bold lines indicate which pointers must be changed when
a record is inserted in the middle of the list. Compare this figure with Figure 10.4.

Figure 10.8. Inserting a new member in the middle of a linked list.

The user must provide the program with other information, such as the address,
city, and state. The program can get this information after the record has been inserted
into the list. (However, you could change the program so that the information is
obtained before the record insertion.)

 Customer->PrevCustomer =

 TempCustomer->PrevCustomer;

 Customer->NextCustomer = TempCustomer;

 TempCustomer->PrevCustomer = Customer;

 TempCustomer = Customer->PrevCustomer;

 TempCustomer->NextCustomer = Customer;

 }

}

The code to display records in the list in sorted order is simple because the
program maintains sorted links.

Part II • Managing Data in C

366

TempCustomer = FirstCustomer;

printf(“Display customers\n”);

while (TempCustomer)

{

 if (nDebug)

 {

 printf(

 “Name ‘%10s’ Me %lp Next %lp Prev %lp\n”,

 TempCustomer->szName,

 TempCustomer,

 TempCustomer->NextCustomer,

 TempCustomer->PrevCustomer);

 }

 else

 {

 printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5d’\n”,

 TempCustomer->szName,

 TempCustomer->szCity,

 TempCustomer->szState,

 TempCustomer->nZip);

 }

 TempCustomer = TempCustomer->NextCustomer;

 }

 break;

First, the program gets a pointer to the first member of the list and saves the
pointer in FirstCustomer. When the first member of the linked list is obtained, it is
displayed. The first member (and each following member, except the last one) has a
pointer to the next member. The final member in the list has a pointer to NULL, which
ends the while() loop. Just before the end of the while() loop, the pointer to the next
customer record is assigned to TempCustomer. This allows the loop to display all the
records.

The loop’s output depends on the program’s debug mode. In debug mode (used
when the program is developed), the pointers are printed; otherwise, the names and
addresses are printed.

Data Management: Sorts, Lists, and Indexes

367

C C
CC
C

C
C
C C10

With a linked list, it is easy to retrieve records in sorted order. Using multiple
links, a program can retrieve records based on different criteria. A double linked list
enables you to access the list in either forward order or backward order.

Linked lists do create a problem, however. The only way to access a specific
member in the list is with a linear search. Because the list’s members may be located
randomly in memory, the only access you usually have to the list’s members is to follow
the chain of links. Therefore, finding a member in the middle of the list is not more
efficient than finding a specific member in an unsorted list. Your program will know
when the key field is greater than the member being tested, without searching the entire
list. But you typically will be looking at approximately n/2 members (where n is the
number of members in the list) to retrieve a specific member.

Indexing

Using an index to access data in a file is one way of gaining fast access to a large file of
large data objects. Rarely can all of a user’s data fit in memory at one time, so you must
use a file as temporary or permanent storage.

With an index, the program’s data is separated into two objects: the data and the
index. The data is usually not arranged in a specific order; new records are added to the
end of the block or the file. The index (there may be more than one index) is always
sorted. It contains the minimum necessary to allow the program to access the data,
typically a key value that the index is sorted on and a pointer to the corresponding data.

Figure 10.9 shows an indexed data file system that consists of a data file and two
index files used to access the data. The records in this example are simple; many
applications have thousands of bytes per record.

Each record in the data file is 183 bytes long. Each record contains a name, a
company name, and an address that consists of the street, city, state, and ZIP code. The
two index files are an index for the name field and an index for ZIP codes. Note that
you cannot predict the order of records that do not have unique ZIP codes. In this
example, either record with the ZIP code of 03468 could have been first.

The main factors for choosing an indexed data access system follow:

The main data file does not need to be sorted.

There can be more than one index, resulting in fast access to a given record.

Indexes can be created “on the fly,” as the need arises.

Part II • Managing Data in C

368

The ZIP code index in Figure 10.9 has only 13 bytes per record. These short
records can be sorted more quickly than the 183-byte records that make up the entire
file.

The INDEX.C program in Listing 10.5 creates an indexed structure. This
program writes records to a data file and retains an index array in memory. The array
is then used to access the records.

Figure 10.9. An indexed data file system.

Listing 10.5. INDEX.C.

/* INDEX, written 1992 by Peter D. Hipson

 * This program shows indexed access to a file. It

 * has better error checking than the CDB program in

 * Chapter 8.

 */

#include <search.h>

#include <string.h>

#include <ctype.h>

#include <stdio.h>

#include <process.h>

#include <stdlib.h>

#define TRUE 1

#define FALSE (!TRUE)

#define INCREMENT_AMOUNT 1 /* Add one record at a time */

#define INDEX_SIZE 400 /* Maximum number of records */

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

Data Management: Sorts, Lists, and Indexes

369

C C
CC
C

C
C
C C10

/* Define the structure for the customer database. */

struct _CUSTNAME;

typedef struct _CUSTNAME {

 int nRecordType; // 1 == Customer record

 struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none

 struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none

 char szName[61]; // 60 chars for name; 1 for null at end

 // In some cases, you would not need to

 // duplicate this field in both the index and

 // the record.

 char szAddr1[61]; // 60 chars for address; 1 for null at end

 char szAddr2[61]; // 60 chars for address; 1 for null at end

 char szCity[26]; // 25 chars for city; 1 for null at end

 char szState[3]; // 2-char state abbreviation plus null

 long lZip; // Use integer. Print as %5.5d for leading 0

 int nRecordNumber; // Which record number?

 double dSalesTotal; // Amount the customer has purchased

 } CUSTNAME;

typedef CUSTNAME far *FPCUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;

typedef CUSTNAME *PCUSTNAME;

typedef struct _INDEXREC {

 char szName[61]; // 60 chars for name; 1 for null at end

 long Customer; // Pointer to customer record in file

 } CUSTINDEX;

typedef CUSTINDEX far *FPCUSTINDEX;

typedef CUSTINDEX near *NPCUSTINDEX;

typedef CUSTINDEX *PCUSTINDEX;

void GiveHelp(void);

int compare(const void *, const void *);

continues

Part II • Managing Data in C

370

Listing 10.5. continued

void main()

{

FILE *DataFile;

FILE *IndexFile;

PCUSTNAME FirstCustomer = NULL;

PCUSTNAME LastCustomer = NULL;

PCUSTNAME Customer = NULL;

PCUSTNAME TempCustomer = NULL;

PCUSTINDEX CustIndex = NULL;

PCUSTINDEX pTempCustIndex = NULL;

CUSTINDEX TempCustIndex;

char szIndexFile[257];

char szDataFile[257];

char szBuffer[257];

/* Strings for _splitpath(), which parses a file name */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char szExt[_MAX_EXT];

int i;

int nDesiredRecord;

int nNotDone = TRUE;

int nRecord = 0;

int nDebug = FALSE;

int nNeedSaving = FALSE;

long lFilePosition;

double dSales = 0.0; /* Forces the loading of floating-point support

 */

Data Management: Sorts, Lists, and Indexes

371

C C
CC
C

C
C
C C10

 CustIndex = (PCUSTINDEX)calloc(sizeof(CUSTINDEX), INDEX_SIZE);

 if (CustIndex == NULL)

 {

 fprintf(stderr, “Couldn’t allocate necessary index memory!\n”);

 exit(16);

 }

 memset(CustIndex, 0, sizeof(CUSTINDEX));

 Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME), INCREMENT_AMOUNT);

 if (Customer == NULL)

 {

 fprintf(stderr, “Couldn’t allocate necessary record memory!\n”);

 exit(16);

 }

 printf(

 “Please enter customer save file name-\n”

 “Extensions of .DAT and .IND will be used: “);

 gets(szBuffer);

 _splitpath(szBuffer,

 szDrive,

 szDir,

 szFname,

 szExt);

 strcpy(szIndexFile, szDrive);

 strcat(szIndexFile, szDir);

 strcat(szIndexFile, szFname);

 strcat(szIndexFile, “.IND”);

 strcpy(szDataFile, szDrive);

 strcat(szDataFile, szDir);

 strcat(szDataFile, szFname);

 strcat(szDataFile, “.DAT”);

continues

Part II • Managing Data in C

372

Listing 10.5. continued

 DataFile = fopen(szDataFile, “wb”);

 if (DataFile == NULL)

 {/* Test for file open. If file can’t be opened, exit with message.

 */

 printf(“ERROR: Data file ‘%s’ couldn’t be opened.\n”,

 szDataFile);

 exit(4);

 }

 fclose(DataFile);

 IndexFile = fopen(szIndexFile, “wb”);

 if (IndexFile == NULL)

 {/* Test for file open. If file can’t be opened, exit with message.

 */

 printf(“ERROR: Index file ‘%s’ couldn’t be opened.\n”,

 szIndexFile);

 exit(4);

 }

 fclose(IndexFile);

 printf(“Demo of an indexed file/array.\n”

 “\n”

 “ Commands are:\n”

 “ A - Add a customer/supplier record.\n”

 “ D - Display current list (from file).\n”

 “ X - Exit from program.\n”

 “ Z - Toggle debug mode.\n”

 “ ? - Display the command list.\n”

 “ H - Display the command list.\n”

 “\n”

);

 nRecord = -1;

Data Management: Sorts, Lists, and Indexes

373

C C
CC
C

C
C
C C10

 while (nNotDone)

 {

 printf(“Enter command?”);

 gets(szBuffer);

 switch(szBuffer[0])

 {

 case ‘H’: /* Give some help */

 case ‘h’:

 case ‘?’:

 GiveHelp();

 break;

 case ‘A’: /* Add a record */

 case ‘a’:

 memset(Customer, 0, sizeof(CUSTNAME));

 printf(“Enter name %d: “, ++nRecord);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szName) - 1] = ‘\0’;

 strcpy(Customer->szName, szBuffer);

 if (strlen(Customer->szName) > 0)

 {/* Insert this record in the list, sorted by name. */

 nNeedSaving = TRUE;

// Add to file and index:

 Customer->nRecordNumber = nRecord;

 if (!nDebug)

 {

 do

 {

 printf(“Enter 1 for customer, 2 for supplier \

 “);

continues

Part II • Managing Data in C

374

Listing 10.5. continued

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer-

 >nRecordType);

 }

 while (Customer->nRecordType != CUSTOMER_RECORD

 &&

 Customer->nRecordType != SUPPLIER_RECORD);

 printf(“Enter address line 1: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szAddr1) - 1] = ‘\0’;

 strcpy(Customer->szAddr1, szBuffer);

 printf(“Enter address line 2: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szAddr2) - 1] = ‘\0’;

 strcpy(Customer->szAddr2, szBuffer);

 printf(“Enter City: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szCity) - 1] = ‘\0’;

 strcpy(Customer->szCity, szBuffer);

 printf(“Enter state postal abbreviation: “);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szState) - 1] = ‘\0’;

 strcpy(Customer->szState, szBuffer);

 printf(“Enter ZIP code: “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &Customer->nZip);

 printf(“Enter total sales: “);

 gets(szBuffer);

 sscanf(szBuffer, “%f”, &Customer->dSalesTotal);

 }

 DataFile = fopen(szDataFile, “ab”);

 if (DataFile == NULL)

 {

Data Management: Sorts, Lists, and Indexes

375

C C
CC
C

C
C
C C10

 printf(

 “ERROR: Data file ‘%s’ couldn’t be “

 “opened for update.\n”,

 szDataFile);

 exit(4);

 }

 fseek(DataFile, 0, SEEK_END);

 CustIndex[nRecord].Customer = ftell(DataFile);

 strcpy(CustIndex[nRecord].szName, Customer->szName);

 printf(“Index %d ‘%s’ is at ‘%ld’\n”,

 nRecord,

 CustIndex[nRecord].szName,

 CustIndex[nRecord].Customer);

 fwrite(Customer, sizeof(CUSTNAME), 1, DataFile);

 fclose(DataFile);

 }

 else

 {

 printf(“\aSorry, name must not be blank!\n”);

 }

 break;

 case ‘Z’: /* Debug mode toggle */

 case ‘z’:

 nDebug = !nDebug;

 break;

 case ‘D’: /* Display a record */

 case ‘d’:

 printf(“Display customer (total %d).\n”, nRecord + 1);

 qsort(CustIndex,

 nRecord + 1,

 sizeof(CUSTINDEX),

 compare);

continues

Part II • Managing Data in C

376

Listing 10.5. continued

 for (i = 0; nDebug && i <= nRecord; i++)

 {/* In debug mode, display the sorted index list. */

 printf(“Record %2d szName ‘%s’\n”,

 i,

 CustIndex[i].szName);

 }

 memset(Customer, 0, sizeof(CUSTNAME));

 memset(&TempCustIndex, 0, sizeof(CUSTINDEX));

 printf(“Enter name”);

 gets(TempCustIndex.szName);

 printf(“Searching with a linear search\n”);

 nDesiredRecord = -1;

 for (i = 0; i <= nRecord; i++)

 {/* Linear search; could be bsearch() */

 if (stricmp(TempCustIndex.szName,

 CustIndex[i].szName) == 0)

 {

 nDesiredRecord = i;

 break;

 }

 }

 if (nDesiredRecord >= 0)

 {

 DataFile = fopen(szDataFile, “rb”);

 if (DataFile == NULL)

 {

 printf(

 “ERROR: Data file ‘%s’ couldn’t be \

 opened.\n”,

 szDataFile);

Data Management: Sorts, Lists, and Indexes

377

C C
CC
C

C
C
C C10

 exit(4);

 }

 fseek(DataFile,

 CustIndex[nDesiredRecord].Customer, SEEK_SET);

 fread(Customer, sizeof(CUSTNAME), 1, DataFile);

 printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5d’\n”,

 Customer->szName,

 Customer->szCity,

 Customer->szState,

 Customer->nZip);

 fclose(DataFile);

 }

 else

 {

 printf(“LINEAR SEARCH: Sorry, the name ‘%s’ couldn’t \

 be found\n”,

 TempCustIndex.szName);

 }

 printf(“Searching with a binary search\n”);

 if ((pTempCustIndex = (PCUSTINDEX)bsearch(&TempCustIndex,

 CustIndex,

 nRecord + 1,

 sizeof(CUSTINDEX),

 compare)) != NULL)

 {

 DataFile = fopen(szDataFile, “rb”);

 if (DataFile == NULL)

 {

 printf(

 “ERROR: Data file ‘%s’ couldn’t be \

 opened.\n”,

 szDataFile);

continues

Part II • Managing Data in C

378

Listing 10.5. continued

 exit(4);

 }

 fseek(DataFile,

 pTempCustIndex->Customer, SEEK_SET);

 fread(Customer, sizeof(CUSTNAME), 1, DataFile);

 printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5d’\n”,

 Customer->szName,

 Customer->szCity,

 Customer->szState,

 Customer->nZip);

 fclose(DataFile);

 }

 else

 {

 printf(“BSEARCH: Sorry, the name ‘%s’ couldn’t be \

 found\n”,

 TempCustIndex.szName);

 }

 break;

 case ‘X’: /* Exit; prompt for save if needed. */

 case ‘x’:

 nNotDone = FALSE;

 szBuffer[0] = ‘\0’;

 while (nNeedSaving &&

 szBuffer[0] == ‘\0’)

 {

 printf(“\nSave the data? (y|n)”);

Data Management: Sorts, Lists, and Indexes

379

C C
CC
C

C
C
C C10

 gets(szBuffer);

 if (szBuffer[0] == ‘n’ ||

 szBuffer[0] == ‘N’)

 {

 nNeedSaving = FALSE;

 }

 else

 {

 if (szBuffer[0] != ‘y’ &&

 szBuffer[0] != ‘Y’)

 {

 printf(“\nWrong answer, “

 “please respond with ‘y’ or ‘n’”);

 szBuffer[0] = ‘\0’;

 }

 }

 }

 if (!nNeedSaving)

 {/* Don’t need to save, so just exit */

 break;

 }

/* Else fall through to the save routines */

 case ‘S’: /* Save all records */

 case ‘s’:

 printf(“Saving customer index file.\n”);

 IndexFile = fopen(szIndexFile, “wb”);

 if (IndexFile == NULL)

 {/* Test for file open. If file can’t be opened, exit

 with message. */

 printf(“ERROR: Index file ‘%s’ couldn’t be \

 opened.\n”,

 szIndexFile);

continues

Part II • Managing Data in C

380

Listing 10.5. continued

 }

 else

 {

 fwrite(CustIndex,

 sizeof(CUSTINDEX) * (nRecord + 1),

 1,

 IndexFile);

 fclose(IndexFile);

 nNeedSaving = FALSE;

 }

 break;

 default:

 printf(“\aUnknown operation ‘%c’\n”,

 szBuffer[0]);

 break;

 }

 }

}

int compare(

 PCUSTINDEX CustIndex1,

 PCUSTINDEX CustIndex2)

{

// Uncomment the following printf() to see how qsort and qsearch work.

//

// printf(“Comparing %s and %s\n”,

// CustIndex1->szName,

// CustIndex2->szName);

 return(stricmp(

 ((PCustIndex) CustIndex1)->szName,

 ((PCustIndex) CustIndex2)->szName));

}

Data Management: Sorts, Lists, and Indexes

381

C C
CC
C

C
C
C C10

void GiveHelp()

{

 printf(

 “\n”

 “This program shows how an indexed file list is created and\n”

 “used. It enables you to add records, display a specified\n”

 “record, and save the list of records to the disk file.\n”

 “\n”

 “INDEX supports the following commands:\n”);

 printf(

 “\n”

 “ A - Add a customer/supplier record.\n”

 “ Adds a record. Each added record is placed\n”

 “ in the list in the correct order.\n”);

 printf(

 “\n”

 “ D - Display current list.\n”

 “ Prints the user-specified record. This\n”

 “ command lists the name and address\n”

 “ information, assuming the name has been found.\n”);

 printf(

 “\n”

 “ X - Exit from program.\n”

 “ Ends the program. If records or the index have\n”

 “ not been saved, will prompt for save. All saves \

 are\n”

 “ made to the file specified when the program was \

 started.\n”);

 printf(

 “\n”

 “ Z - Toggle debug mode.\n”

 “ Changes the information displayed for the\n”

 “ user. When on, debug mode shows the sorted\n”

 “ index list.\n”);

continues

Part II • Managing Data in C

382

Listing 10.5. continued

 printf(

 “\n”

 “ ? - Display the command list.\n”

 “ H - Display the command list.\n”

 “ Displays this help information.\n”);

 printf(

 “\n”

 “ S - Save the list.\n”

 “ If records and the index have not been saved, this \

 option\n”

 “ saves the records the user has entered. All saves \

 are made\n”

 “ to the file specified when the program was \

 started.\n”);

 printf(

 “Additional feature: In this program includes a prompt\n”

 “to save when the exit command is given. (This prompt\n”

 “is given only when the records have not been saved since\n”

 “the last added record).\n”);

 printf(

 “Additional feature: This program has a debug mode so that\n”

 “the user can see how the program works. This debug mode \

 allows\n”

 “the user to print the linked list and its pointers.\n”);

}

First the CUSTNAME structure (which is identical to the structure used in many of
the other example programs) is defined. Then an index on the customer’s name is
defined.

In general, the field you are indexing on should be unique (although this is not a
requirement). When you use the index to retrieve records, a unique field ensures that
only one name is returned for each requested search, which can make your program
simpler because is does not have to process multiple matches.

Data Management: Sorts, Lists, and Indexes

383

C C
CC
C

C
C
C C10

The definition of the index structure follows:

typedef struct _INDEXREC {

 char szName[61]; // 60 chars for name, 1 for null at end.

 long Customer; // Pointer to actual customer record in file.

 } CUSTINDEX;

typedef CUSTINDEX far *FPCUSTINDEX;

typedef CUSTINDEX near *NPCUSTINDEX;

typedef CUSTINDEX *PCUSTINDEX;

Pointers are defined for the structure, like any other typedef’d structure. A
compare() function is also defined for use when sorting (and searching) the index. The
advantage of an indexed file is that it is always sorted. However, you can avoid re-
sorting the entire index when a record is added or an index field is changed. A typical
trick is to retain the existing records in the sorted index, and when a record is added
or changed, add it to a special area at the end of the index. If a binary search of the sorted
portion of the index does not find the record, a linear search is used on the special
section of nonsorted records. When the count of records in the unsorted section
exceeds a predetermined value, the program re-sorts the index.

Linear Search Versus Binary Search

A linear search starts with the first record in the list or file, and reads each
record until it finds a match to the key or the file ends. In a linear search, the
list or file does not need to be sorted, and the records in the list do not have
to be in any particular order.

A binary search proceeds as follows:

1. The binary search starts with the middle item in the list. If the key is less
 than the selected item, the binary search takes the item halfway between
 the current item and the beginning of the list. If the key is greater than
 the selected item, the binary search takes the item halfway between the
 current item and the end of the list. With one comparison, the binary
 search eliminates half of the file.

2. If the key is less than the item found in step 1, the half less than the item is
 selected. If the key is greater than the item found in step 1, the half that is

Part II • Managing Data in C

384

 greater than the item is selected. Of this half, the middle item is then again
 selected.

3. This process is repeated until a match is found or it is shown that the key is
 not part of the list.

For example, suppose the key (the item you want to find) is 5. Your list
contains the following numbers: 1, 2, 5, 12, 23, 24, 34, 35, 38, 45, 47, 50,
60, 65, 66, 76, 78, and 80. The first selection is 38 (the middle item in the
list). Because 5 is less than 38, the next selection is 23, (halfway between 1
and 38). Because 5 is smaller than 23, the next selection is 5 (halfway be-
tween 1 and 23). This is a match, so the search stops.

The maximum number of comparisons with a binary search is small—in a
file of 65,000 items, at most only 16 comparisons must be made. With a
linear search, an average of 32,000 comparisons are required.

The winner? A binary search is always the winner when the list can be (or is)
sorted. If the list cannot be sorted, a linear search must be performed.

Fortunately, the C compiler provides a binary search function called bsearch().
This function requires a sorted list and the address of a compare function. The
bsearch() and bsort() functions use the same compare function, so that only one
compare function needs to be written when using either bsearch() or bsort(). In our
sorting and searching, we are working with an array of index records, and these index
records are what must be dealt with by the compare function. Because with bsort()
and bsearch() the compare is passed the address of the array members, the compare
function is defined as accepting two pointers to CUSTINDEX structures.

int compare(const void *, const void*);

When the user wants to add a record to the customer database, the program first
uses memset() to clear the Customer structure. It then prompts for the name. If the user
enters a name, the program processes it.

The code for adding a record follows:

 case ‘A’: /* Add a record */

 case ‘a’:

Data Management: Sorts, Lists, and Indexes

385

C C
CC
C

C
C
C C10

 memset(Customer, 0, sizeof(CUSTNAME));

 printf(“Enter name %d: “, ++nRecord);

 gets(szBuffer);

 szBuffer[sizeof(Customer->szName) - 1] = ‘\0’;

 strcpy(Customer->szName, szBuffer);

 if (strlen(Customer->szName) > 0)

 {/* Insert this record in the list, sorted by name. */

 nNeedSaving = TRUE;

// Add to file and index:

 Customer->nRecordNumber = nRecord;

To add the record to the database, the program first opens the database file. The
file is closed when it is not in use so that the database is as safe as possible if the computer
fails. If you do not close files in your program, you should at least call fflush() after
every write to the file.

The file is opened in the append mode so that existing records are not lost. If the
file were opened in the write mode, the operating system would delete the contents of
the file.

DataFile = fopen(szDataFile, “ab”);

if (DataFile == NULL)

{

 printf(

 “ERROR: Data file ‘%s’ couldn’t be “

 “opened for update.\n”,

 szDataFile);

 exit(4);

}

After the file is opened, the program goes to the end of the file:

fseek(DataFile, 0, SEEK_END);

The ftell() function returns the current file pointer for the record that will be
added. This value is assigned to the index array’s pointer to this record. Next, strcpy()
copies the key into the index array:

Part II • Managing Data in C

386

CustIndex[nRecord].Customer = ftell(DataFile);

strcpy(CustIndex[nRecord].szName, Customer->szName);

After the index has been set up, the program writes the record to the database and
closes the file:

fwrite(Customer, sizeof(CUSTNAME), 1, DataFile);

fclose(DataFile);

When the user requests a record, the program searches for the record using both
a linear search and the bsearch() function. I used both search techniques in List-
ing 10.5 simply to show how they are implemented; your program should use one or
the other (probably bsearch() because it is easy to implement and fast).

To use a binary search, the index must be sorted. When the user wants the names
displayed, the program sorts the index list. The programmer can choose to sort the
index either as names are added (which slows the process of adding names) or when
the sorted index list is used. This program would have been better if it included a flag
to indicate when the list was already sorted.

The following code shows how a record is retrieved and displayed:

case ‘D’: /* Display a record */

case ‘d’:

 printf(“Display customer (total %d).\n”, nRecord + 1);

 qsort(CustIndex,

 nRecord + 1,

 sizeof(CUSTINDEX),

 compare);

 for (i = 0; nDebug && i <= nRecord; i++)

 {/* In debug mode, display the sorted index list. */

 printf(“Record %2d szName ‘%s’\n”,

 i,

 CustIndex[i].szName);

 }

In the debug mode, the program first shows the programmer the index list. This
display is useful when you want to see the results of the sort.

Data Management: Sorts, Lists, and Indexes

387

C C
CC
C

C
C
C C10

Following the display of the index list, the user is prompted to provide a name
to search for:

memset(Customer, 0, sizeof(CUSTNAME));

memset(&TempCustIndex, 0, sizeof(CUSTINDEX));

printf(“Enter name”);

gets(TempCustIndex.szName);

printf(“Searching with a linear search\n”);

After the user enters a name, the program does a linear search. This search starts
at the first name, then searches each name in order, until either the list ends or the name
is found:

nDesiredRecord = -1;

for (i = 0; i <= nRecord; i++)

{/* Linear search; could be bsearch() */

 if (stricmp(TempCustIndex.szName,

 CustIndex[i].szName) == 0)

 {

 nDesiredRecord = i;

 break;

 }

}

If the supplied key name is found, the program opens the database file (read
mode) and uses fseek() to find the correct record. After finding the record, the
program reads it in and displays the information for the user. If the supplied key name
is not found, the program simply gives the user a message that the name wasn’t found.

if (nDesiredRecord >= 0)

{

 DataFile = fopen(szDataFile, “rb”);

 if (DataFile == NULL)

 {

 printf(

 “ERROR: Data file ‘%s’ couldn’t be opened.\n”,

 szDataFile);

Part II • Managing Data in C

388

 exit(4);

 }

 fseek(DataFile,

 CustIndex[nDesiredRecord].Customer, SEEK_SET);

 fread(Customer, sizeof(CUSTNAME), 1, DataFile);

 printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5d’\n”,

 Customer->szName,

 Customer->szCity,

 Customer->szState,

 Customer->nZip);

 fclose(DataFile);

 }

 else

 {

 printf(“LINEAR SEARCH: Sorry, the name ‘%s’ couldn’t be found\n”,

 TempCustIndex.szName);

 }

After the linear search is finished, the program does a binary search. This search
is performed with one statement:

if ((pTempCustIndex = (PCUSTINDEX)bsearch(&TempCustIndex,

 CustIndex,

 nRecord + 1,

 sizeof(CUSTINDEX),

 compare)) != NULL)

{

If the supplied key name is found, the program opens the database file (read
mode) and use fseek() to find the correct record. After seeking to the record, the
program reads it in and displays the information for the user. If the supplied key name
is not found, the program displays a message that the name wasn’t found.

DataFile = fopen(szDataFile, “rb”);

if (DataFile == NULL)

{

Data Management: Sorts, Lists, and Indexes

389

C C
CC
C

C
C
C C10

 printf(

 “ERROR: Data file ‘%s’ couldn’t be opened.\n”,

 szDataFile);

 exit(4);

}

fseek(DataFile,

 pTempCustIndex->Customer, SEEK_SET);

fread(Customer, sizeof(CUSTNAME), 1, DataFile);

printf(

 “Name ‘%10s’ City ‘%10s’ State ‘%2s’ “

 “ZIP ‘%5.5d’\n”,

 Customer->szName,

 Customer->szCity,

 Customer->szState,

 Customer->nZip);

fclose(DataFile);

}

else

{

 printf(“BSEARCH: Sorry, the name ‘%s’ couldn’t be found\n”,

 TempCustIndex.szName);

}

break;

When the program ends (or when the user requests a save), the index array is
saved to a file. The index array in the saved file could be re-read into the index array
later when the user reuses the data file. To conserve on disk space, the program writes
only the index entries that have been used, not the entire index array.

case ‘S’: /* Save all records */

case ‘s’:

 printf(“Saving customer index file.\n”);

 IndexFile = fopen(szIndexFile, “wb”);

Part II • Managing Data in C

390

 if (IndexFile == NULL)

 {/* Test for file open. If file can’t be opened, exit with message.

 */

 printf(“ERROR: Index file ‘%s’ couldn’t be opened.\n”,

 szIndexFile);

 }

 else

 {

 fwrite(CustIndex,

 sizeof(CUSTINDEX) * (nRecord + 1),

 1,

 IndexFile);

 fclose(IndexFile);

 nNeedSaving = FALSE;

A quick look at the compare function shows that the szName members of the
index array are being compared using stricmp(). I have included a (commented out)
printf() that shows how the sort and the search use the compare function.

int compare(

 PCUSTINDEX CustIndex1,

 PCUSTINDEX CustIndex2)

{

// Uncomment the following printf() to see how qsort and qsearch work.

//

// printf(“Comparing %s and %s\n”,

// CustIndex1->szName,

// CustIndex2->szName);

 return(stricmp(

 CustIndex1->szName,

 CustIndex2->szName));

}

Indexes can reside permanently in a disk file. The index for large databases can
be much too large to fit into memory. To search a disk-based index, you must write
a binary search function. Typically, such a function would know—by a global variable
or a passed parameter—the number of records in the index, the size of the index
records, and the index file’s name or file handle.

Data Management: Sorts, Lists, and Indexes

391

C C
CC
C

C
C
C C10

Your disk-based bsearch function would then read the middle record. Compute
this record’s position using an fseek(). For example:

/* The code assumes that more than one record is in

 * the index file.

 */

long lFirstRecord = 0;

long lLastRecord = lTotalRecords;

long lCurrentRecord = ((lLastRecord - lFirstRecord) / 2);

long lOffset = lLastRecord - lFirstRecord;

 while(lOffset > 0)

 {

 lCurrentRecord = ((lLastRecord - lFirstRecord) / 2);

 fseek(IndexFile, lCurrentRecord *

 sizeof(CUSTINDEX) * (lCurrentRecord), SEEK_SET);

// Read the record into Index (not shown)

 if (Key < Index) /* This compare depends on Key’s data type */

 {

 lLastRecord = lCurrentRecord;

 }

 if (Key > Index) /* This compare depends on Key’s data type */

 {

 lFirstRecord = lCurrentRecord;

 }

 if (Index == Key) /* This compare depends on Key’s data type */

 {

 return(lCurrentRecord);

 }

 lTotalRecords = lLastRecord - lFirstRecord;

 lOffset = lLastRecord - lFirstRecord;

 }

Part II • Managing Data in C

392

/* The record was not found! */

 return (-1);

This binary search function is simplified. I did not show the reading of the index
file, nor are the compares accurate because they assume that Index and Key are numeric,
which may not be true.

Indexing a file can greatly enhance the access to specific records, especially when
a record must be accessed using more than one key (or index) value.

Fixed-field Disk Files

The best examples of fixed-field disk files are files created using a structure. Because
the structure’s length is fixed and each member’s location is known, you can al-
ways determine the location of any structure and its members in the file.

I recommend reading a file written with a structure into an identical structure.
After the data is placed in the structure, you can work on it using the individual
structure members. A possible exception to the reading of individual records is when
a large block of the file is read into a structure array, and the array is searched for the
correct key or another data object.

Many of the example programs write fixed-field files. For example, the INDEX.C
program (Listing 10.5) creates two fixed-field files.

B-trees

None of the data management techniques in this chapter have addressed the problem
of a data list that changes frequently, must be searched quickly, and is too large to
constantly re-sort. Some problems with the techniques covered so far include:

• A linked list presents data that appears to be sorted, but the list can be searched
only with a linear search.

• An indexed list is easy to search, but it must be resorted when an index value is
added, deleted, or changed.

The solution is to use the B-tree technique, a different method of storing data.
The B-tree technique arranges data in a structured format. Figure 10.10 shows some

Data Management: Sorts, Lists, and Indexes

393

C C
CC
C

C
C
C C10

sample data (used also in the “Linear Search Versus Binary Search” sidebar), and its
organization in a B-tree.

Figure 10.10. A B-tree’s organization.

Data organization in a B-tree resembles an upside down tree. Usually, the first
data object has a key that half of the remaining data keys are less than (called the left
side) and the other half of the data keys are greater than (called the right side). The tree
continues in the same manner for all remaining data objects.

The following terms are used when discussing B-trees:

Node A data item in a B-tree.

Root node The first node in a B-tree.

Left side Data items on the left side are less than the current
data item.

Right side Data items on the right side are greater than the
current data item.

Balance How well the tree is organized. (Most B-trees exhibit
some imbalance.)

Figure 10.11 shows these terms and their relationships.

Part II • Managing Data in C

394

Root node

Root node’s
left side

Root node’s
right side

Node 65 is right
child of node 50
and parent of
node 76

Node 12’s
left side

Node 12’s
right side

Figure 10.11. B-tree terms and relationships.

B-trees present some problems to the programmer, such as the following:

As records are added to the tree, it must be reorganized to ensure that each
node has a balanced number of data objects on its right and left sides.

When a B-tree member is changed or deleted, the tree must be reorganized
to eliminate the hole that is created. This reorganization can be complete,
which rebalances the tree, or partial, which may create a dummy member to
take the place of the missing member.

When sorted data objects are added to the B-tree, the tree’s balance suffers
unless the tree is reorganized.

When programming a B-tree implementation from scratch, you must have the
following functionality:

AddRecord() Adds a record to the B-tree. If a record with
the key being added exists, you must decide
what action to take: add the record as a
duplicate record, have and increment an
occurrence counter, or do not add the dupli-
cate record.

DeleteRecord() Deletes a record in the B-tree. The B-tree
must be reorganized, or a dummy record must
be inserted to replace the deleted record.
Using a dummy record usually implies that
there is a deleted flag field.

Data Management: Sorts, Lists, and Indexes

395

C C
CC
C

C
C
C C10

SearchRecord() Searches for a key value and returns the
information necessary to access the record.
This function could return the record struc-
ture if desired.

PrintTree() Debugging tool. This function is needed if
you are creating your own B-tree functions,
but is normally not used in a final program.

There are a number of supporting functions as well. These functions are not
always present in any specific B-tree implementation.

Listing 10.6, the BTREE.C program, implements a basic B-tree structure. The
program contains the following functions:

Search() Finds a record in the B-tree.

SearchAndAdd() Finds a record in the B-tree; if the key does
not exist, the record is added.

Insert() Inserts a record into the B-tree.

CopyItem() Copies a node to another node.

NewItem() Creates a new node.

TreePrint() Prints the current tree.

DeleteItem() Deletes a node from the current B-tree.

UnderFlow() Used by DeleteItem() to adjust the B-tree
when an item has been deleted.

Delete() Used by DeleteItem() to delete items from
the B-tree.

PrintHelp() Prints a help screen.

Listing 10.6. BTREE.C.

/* BTREE.C

 * This is a simple B-tree program. It should be compiled

 * under ANSI C.

 * [BTREE.C of JUGPDS Vol.19]

 */

continues

Part II • Managing Data in C

396

Listing 10.6. continued

#include <stdlib.h> // For standard functions

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For exit(), etc.

#include <malloc.h> // For malloc(), calloc(), realloc(), free()

#include <search.h> // For qsort()

#include <time.h> // To initialize the random-number functions

/* B-tree search and add, find, and delete

 * Adapted from

 * ALGORITHMS+DATA STRUCTURES=PROGRAMS by N. Wirth

 *

 * Implemented for BDS C by H. Katayose (JUG-CP/M No.179)

 * Implemented for ANSI C by P. Hipson (CUG)

 */

/* PAGE_SIZE is better at 8 (less memory fragmentation) */

#define PAGE_SIZE 2

#define HALF_PAGE_SIZE (PAGE_SIZE / 2)

#define PAGE struct _page

#define ITEM struct _item

#define ROOT 0

#define RIGHT 1

#define LEFT 2

#define TRUE (1)

#define FALSE (0)

/* Storage allocation structures used by malloc() */

struct _header

{

 struct _header *_ptr;

 unsigned _size;

};

Data Management: Sorts, Lists, and Indexes

397

C C
CC
C

C
C
C C10

struct _header _base; /* Declare this external data to */

struct _header *_allocp; /* be used by malloc() */

/* B-tree structures */

struct _item

{

 int nKeyValue;

 PAGE *RightReference;

 int nCount;

};

struct _page

{

 int nItemCount;

 PAGE *LeftReference;

 ITEM Item[PAGE_SIZE];

};

/* Function prototypes */

int Search(int nKeyValue, int * nLevelCount, PAGE *a, ITEM *v);

int SearchAndAdd(int nKeyValue, PAGE *a, ITEM *v);

int Insert(PAGE *a, int i, ITEM *u, ITEM *v);

int CopyItem(ITEM *DestinationItem, ITEM *SourceItem);

int NewItem(PAGE **Page);

int TreePrint(PAGE *p, int l, int nRightLeft, int nPosition);

int DeleteItem(int nKeyValue, PAGE *a);

int UnderFlow(PAGE *c, PAGE *a, int s);

int Delete(PAGE *p, PAGE *a, int k);

void PrintHelp(void);

/* The main program */

int main()

{

int i;

int j;

continues

Part II • Managing Data in C

398

Listing 10.6. continued

int nKeyValue;

int h;

int nLevelCount = 0;

char chOperation;

char szCommand[132];

PAGE *q;

PAGE *root;

ITEM u;

 printf(“\n\nBTREE: Demo program for B-trees\n”

 “\n”

 “Command are:\n”

 “ A # - Adds key # (integer 0 - 32767).\n”

 “ D # - Deletes key # (integer 0 - 32767).\n”

 “ S # - Searches for key # (integer 0 - 32767).\n”

 “ R # - Adds # random keys (integer 0 - 2000).\n”

 “ H - Prints a help screen.\n”

 “ T - Prints the current B-tree structure.\n”

 “ X - Exits, after a confirming prompt.\n\n”);

 root = NULL;

 while (TRUE)

 {

 printf(“\n\nCommand ?”);

 gets(szCommand);

 sscanf(szCommand, “%c %d”, &chOperation, &nKeyValue);

 switch(chOperation)

 {

 case ‘h’:

 case ‘H’:

 PrintHelp();

 break;

Data Management: Sorts, Lists, and Indexes

399

C C
CC
C

C
C
C C10

 case ‘r’:

 case ‘R’:

 printf(“ADDING %d NODES\n”, nKeyValue);

 srand((unsigned)time(NULL));

 if (nKeyValue > 2000)

 {

 nKeyValue = 2000;

 }

 for (i = 0; i < nKeyValue; i++)

 {

 j = rand();

 if (SearchAndAdd(j, root, &u))

 {

 q = root;

 NewItem(&root);

 root->nItemCount = 1;

 root->LeftReference = q;

 CopyItem(&root->Item[0], &u);

 }

 }

 TreePrint(root, 0, ROOT, 0);

 break;

 case ‘s’:

 case ‘S’:

 nLevelCount = 0;

 if ((Search(nKeyValue, &nLevelCount, root, &u)))

 {

 printf(“SEARCH KEY %d found by searching %d \

 levels\n”,

 nKeyValue,

 nLevelCount);

 }

 else

 {

continues

Part II • Managing Data in C

400

Listing 10.6. continued

 printf(“SEARCH KEY %d NOT FOUND searching %d \

 levels\n”,

 nKeyValue,

 nLevelCount);

 }

 break;

 case ‘a’:

 case ‘A’:

 printf(“ADD KEY %d\n”, nKeyValue);

 if (SearchAndAdd(nKeyValue, root, &u))

 {

 q = root;

 NewItem(&root);

 root->nItemCount = 1;

 root->LeftReference = q;

 CopyItem(&root->Item[0], &u);

 }

 TreePrint(root, 0, ROOT, 0);

 break;

 case ‘t’:

 case ‘T’:

 printf(“PRINT TREE\n”);

 TreePrint(root, 0, ROOT, 0);

 break;

 case ‘d’:

 case ‘D’:

 printf(“DELETE KEY %d\n”, nKeyValue);

Data Management: Sorts, Lists, and Indexes

401

C C
CC
C

C
C
C C10

 if (DeleteItem(nKeyValue, root))

 {

 if (root->nItemCount == 0)

 {

 q = root;

 root = q->LeftReference;

 }

 }

 TreePrint(root, 0, ROOT, 0);

 break;

 case ‘x’:

 case ‘X’:

 printf(“Confirm exit, y|n:”);

 scanf(“%c”, &chOperation);

 if (chOperation == ‘y’ ||

 chOperation == ‘Y’)

 {

 exit(0);

 }

 break;

 default:

 printf(“\aUnknown operation ‘%c’\n”,

 chOperation);

 break;

 }

 }

 return(0);

}

int Search(

 int nKeyValue,

 int *nLevelCount,

continues

Part II • Managing Data in C

402

Listing 10.6. continued

 PAGE *a,

 ITEM *v)

{

int i;

ITEM u;

// printf(“Search()...\n”);

 if (a == NULL)

 {

 return(FALSE);

 }

 for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue;

 i++)

 {

 ;

 }

 if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

 {

 return(TRUE);

 }

 else

 {

 ++(*nLevelCount);

 return(Search(nKeyValue, nLevelCount,

 i ? a->Item[i - 1].RightReference : a->LeftReference, &u));

 }

}

int SearchAndAdd(

 int nKeyValue,

 PAGE *a,

 ITEM *v)

Data Management: Sorts, Lists, and Indexes

403

C C
CC
C

C
C
C C10

{

int i;

ITEM u;

// printf(“SearchAndAdd()...\n”);

 if (a == NULL)

 {

 v->nKeyValue = nKeyValue;

 v->nCount = 1;

 v->RightReference = NULL;

 return TRUE;

 }

 for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue;

 i++)

 {

 ;

 }

 if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

 {

 a->Item[i].nCount++;

 }

 else

 {

 if (SearchAndAdd(nKeyValue,

 i ? a->Item[i - 1].RightReference : a->LeftReference, &u))

 {

 return (Insert(a, i, &u, v));

 }

 }

 return FALSE;

}

int Insert(

 PAGE *a,

continues

Part II • Managing Data in C

404

Listing 10.6. continued

 int i,

 ITEM *u,

 ITEM *v)

{

PAGE *b;

int j;

int h;

// printf(“Insert()...\n”);

 if (a->nItemCount < PAGE_SIZE)

 {

 for (j = a->nItemCount; j >= i + 1; j—)

 {

 CopyItem(&a->Item[j], &a->Item[j - 1]);

 }

 ++a->nItemCount;

 CopyItem(&a->Item[i], u);

 return(FALSE);

 }

 else

 {/* Page a is full. Split it and assign the emerging item to v. */

 NewItem(&b);

 if (i <= HALF_PAGE_SIZE)

 {

 if (i == HALF_PAGE_SIZE)

 {

 CopyItem(v, u);

 }

 else

 {

 CopyItem(v, &a->Item[HALF_PAGE_SIZE - 1]);

Data Management: Sorts, Lists, and Indexes

405

C C
CC
C

C
C
C C10

 for (j = HALF_PAGE_SIZE - 1; j >= i + 1; j--)

 {

 CopyItem(&a->Item[j], &a->Item[j - 1]);

 }

 CopyItem(&a->Item[i], u);

 }

 for (j = 0; j <= HALF_PAGE_SIZE - 1; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE]);

 }

 }

 else

 {

 i -= HALF_PAGE_SIZE;

 CopyItem(v, &a->Item[HALF_PAGE_SIZE]);

 for (j = 0; j <= i - 2; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE + 1]);

 }

 CopyItem(&b->Item[i - 1], u);

 for (j = i; j <= HALF_PAGE_SIZE - 1; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE]);

 }

 }

 if (HALF_PAGE_SIZE == 0)

 {

 a->nItemCount = 1;

 b->nItemCount = 1;

 }

 else

 {

 a->nItemCount = HALF_PAGE_SIZE;

 b->nItemCount = HALF_PAGE_SIZE;

 }

continues

Part II • Managing Data in C

406

Listing 10.6. continued

 b->LeftReference = v->RightReference;

 v->RightReference = b;

 }

 return(TRUE);

}

int CopyItem(

 ITEM *DestinationItem,

 ITEM *SourceItem)

{

// printf(“CopyItem()...\n”);

 DestinationItem->nKeyValue = SourceItem->nKeyValue;

 DestinationItem->RightReference = SourceItem->RightReference;

 DestinationItem->nCount = SourceItem->nCount;

 return(0);

}

int NewItem(

 PAGE **Page)

{

// printf(“NewItem()...\n”);

 if ((*Page = (PAGE *)malloc(sizeof(**Page))) == NULL)

 {

 fprintf(stderr, “Couldn’t allocate memory!\n”);

 exit(16);

 }

/* malloc() doesn’t initialize storage, so we do. */

Data Management: Sorts, Lists, and Indexes

407

C C
CC
C

C
C
C C10

 memset(*Page, 0, sizeof(**Page));

 return(0);

}

int TreePrint(

 PAGE *Page,

 int nLevel,

 int nRightLeft,

 int nPosition)

{

int i;

int j;

 if (Page != NULL)

 {

 for (i = 0; i < Page->nItemCount; i++)

 {

 switch(nRightLeft)

 {

 case ROOT: /* Should have only one root */

 printf(“\n”);

 printf(“(ROOT %2d) “, nLevel);

 break;

 case LEFT: /* Happens all the time */

 printf(“(L %2d %2d) “, nLevel, nPosition);

 break;

 case RIGHT:/* Happens all the time */

 printf(“(R %2d %2d) “, nLevel, nPosition);

 break;

 default: /* Should never happen */

 printf(“ERROR “);

 break;

 }

continues

Part II • Managing Data in C

408

Listing 10.6. continued

 for (j = 0; j < nLevel; j++)

 {/* Adjust the starting column for the variable */

 printf(“.....”);

 }

 printf(“%5d \n”, Page->Item[i].nKeyValue);

 if (Page->Item[i].RightReference != NULL)

 {

 TreePrint(Page->Item[i].RightReference,

 nLevel + 1, RIGHT, i + 1);

 }

 }

 if (Page->LeftReference != NULL)

 {

 TreePrint(Page->LeftReference, nLevel + 1, LEFT, 0);

 }

 }

 return(0);

}

int DeleteItem(

 int nKeyValue,

 PAGE *a)

{

int i;

int k;

int l;

int r;

PAGE *q;

Data Management: Sorts, Lists, and Indexes

409

C C
CC
C

C
C
C C10

// printf(“DeleteItem()...\n”);

 if (a == NULL)

 {

 printf(“Key is not in tree! Cannot delete this key.\n”);

 return FALSE;

 }

 else

 {/* Binary array search */

 for (l = 0, r = a->nItemCount - 1; l <= r;)

 {

 k = (l + r) / 2;

 if (nKeyValue <= a->Item[k].nKeyValue)

 {

 r = k - 1;

 }

 if (nKeyValue >= a->Item[k].nKeyValue)

 {

 l = k + 1;

 }

 }

 q = (r == -1) ? a->LeftReference : a->Item[r].RightReference;

 if (l - r > 1)

 {/* Found; now delete Item[k] */

 if (q == NULL)

 {/* a is a terminal page */

 —(a->nItemCount);

 for (i = k; i < a->nItemCount; i++)

 {

 CopyItem(&a->Item[i], &a->Item[i + 1]);

 }

 return (a->nItemCount < HALF_PAGE_SIZE);

 }

 else

 {

 if (Delete(q, a, k))

 {

continues

Part II • Managing Data in C

410

Listing 10.6. continued

 return(UnderFlow(a, q, r));

 }

 }

 }

 else

 {

 if (DeleteItem(nKeyValue, q))

 {

 return UnderFlow(a, q, r);

 }

 }

 }

}

int UnderFlow(

 PAGE *c,

 PAGE *a,

 int s)

{

PAGE *b;

int i;

int k;

int mb;

int mc;

// printf(“UnderFlow()...\n”);

 mc = c->nItemCount;

 if (s < mc - 1)

 {

 ++s;

 b = c->Item[s].RightReference;

 mb = b->nItemCount;

Data Management: Sorts, Lists, and Indexes

411

C C
CC
C

C
C
C C10

 k = (mb - HALF_PAGE_SIZE + 1) / 2;

 CopyItem(&a->Item[HALF_PAGE_SIZE - 1], &c->Item[s]);

 a->Item[HALF_PAGE_SIZE - 1].RightReference = b->LeftReference;

 if (k > 0)

 {

 for(i = 0; i < k - 1; i++)

 {

 CopyItem(&a->Item[i + HALF_PAGE_SIZE], &b->Item[i]);

 }

 CopyItem(&c->Item[s], &b->Item[k - 1]);

 c->Item[s].RightReference = b;

 b->LeftReference = b->Item[k - 1].RightReference;

 mb -= k;

 for (i = 0; i < mb; i++)

 {

 CopyItem(&b->Item[i], &b->Item[i + k]);

 }

 b->nItemCount = mb;

 a->nItemCount = HALF_PAGE_SIZE - 1 + k;

 return(FALSE);

 }

 else

 {

 for (i = 0; i < HALF_PAGE_SIZE; i++)

 {

 CopyItem(&a->Item[i + HALF_PAGE_SIZE], &b->Item[i]);

 }

 for (i = s; i < mc; i++)

 {

 CopyItem(&c->Item[i], &c->Item[i + 1]);

 }

continues

Part II • Managing Data in C

412

Listing 10.6. continued

 a->nItemCount = PAGE_SIZE;

 c->nItemCount = mc - 1;

 }

 }

 else

 {

 b = (s == 0) ? c->LeftReference : c->Item[s - 1].RightReference;

 mb = b->nItemCount + 1;

 k = (mb - HALF_PAGE_SIZE) / 2;

 if (k > 0)

 {

 for(i = HALF_PAGE_SIZE - 2; i >= 0; i--)

 {

 CopyItem(&a->Item[i + k], &a->Item[i]);

 }

 CopyItem(&a->Item[k - 1], &c->Item[s]);

 a->Item[k - 1].RightReference = a->LeftReference;

 mb -= k;

 for (i = k - 2; i >= 0; i--)

 {

 CopyItem(&a->Item[i], &b->Item[i + mb]);

 }

 a->LeftReference = b->Item[mb].RightReference;

 CopyItem(&c->Item[s], &b->Item[mb - 1]);

 c->Item[s].RightReference = a;

 b->nItemCount = mb - 1;

 a->nItemCount = HALF_PAGE_SIZE - 1 + k;

 return(FALSE);

 }

 else

 {

 CopyItem(&b->Item[mb], &c->Item[s]);

 b->Item[mb].RightReference = a->LeftReference;

Data Management: Sorts, Lists, and Indexes

413

C C
CC
C

C
C
C C10

 for (i = 0; i < HALF_PAGE_SIZE - 1; i++)

 {

 CopyItem(&b->Item[i + mb], &a->Item[i]);

 }

 b->nItemCount = PAGE_SIZE;

 c->nItemCount = mc - 1;

 }

 }

 return(TRUE);

}

int Delete(

 PAGE *p,

 PAGE *a,

 int k)

{

PAGE *q;

// printf(“Delete()...\n”);

 if ((q = p->Item[p->nItemCount - 1].RightReference)!= NULL)

 {

 if (Delete(q, a, k))

 {

 return(UnderFlow(p, q, p->nItemCount - 1));

 }

 }

 else

 {

 p->Item[p->nItemCount - 1].RightReference = a

 ->Item[k].RightReference;

 CopyItem(&a->Item[k], &p->Item[p->nItemCount - 1]);

 —(p->nItemCount);

 return(p->nItemCount < HALF_PAGE_SIZE);

 }

}

continues

Part II • Managing Data in C

414

Listing 10.6. continued

void PrintHelp()

{

 printf(

 “\n\nBTREE: Demo program for B-trees\n”

 “\n”

 “Command are:\n”

 “ A # - Adds key # (integer 0 - 32767).\n”

 “ D # - Deletes key # (integer 0 - 32767).\n”

 “ S # - Searches for key # (integer 0 - 32767).\n”

 “ R # - Adds # random keys (integer 0 - 2000).\n”

 “ H - Prints a help screen.\n”

 “ T - Prints the current B-tree structure.\n”

 “ X - Exits, after a confirming prompt.\n\n”);

 printf(“\n”

 “All keys (the items that are placed in the tree) are \

 integers,\n”

 “ranging from 0 to 32767. Each item is added to the tree when \

 the\n”

 “Add command is issued.\n”);

 printf(“\n”

 “A new key is added with the Add command. Enter an A and an\n”

 “integer value.\n”);

 printf(“\n”

 “An existing key can be deleted by using the Delete command.\n”

 “Enter a D followed by an integer key value. If the value \

 entered\n”

 “is not a valid key, the program will tell you so.\n”);

 printf(“\n”

 “When you search for a key, the tree is traversed. If the key\n”

 “is found, the level where it was found is provided. If the \

 key\n”

 “is not found, a message is printed.\n”);

Data Management: Sorts, Lists, and Indexes

415

C C
CC
C

C
C
C C10

 printf(“\n”

 “The Repeat command is used to build a table of random keys. \

 The\n”

 “rand() function is called the specified number of times. No\n”

 “test for duplicates is made, but duplicates for random-number\n”

 “counts of less than several hundred are infrequent.\n”);

 printf(“\n”

 “To print the entire tree structure, use the Tree command. \

 This\n”

 “command is entered as a T. There are no parameters for “

 “this command.\n”);

 printf(“\n”

 “To end the program, use the Exit command. Enter an X, with no\n”

 “parameters. You will be prompted to confirm that you want to\n”

 “exit.\n”);

 printf(“\n”

 “If you don’t enter the key (or count for Repeat), the \

 previous\n”

 “value for the count is used.\n”);

}

The BTREE program arranges its tree in a way that you might not expect. The
memory allocation functions could be called for each node, but this would be
inefficient. Rather, each allocated block has from two to eight nodes. (You could have
more than eight, but the B-tree’s performance might suffer.) I chose a block that would
contain two data items (or nodes).

/* PAGE_SIZE is better at 8 (less memory fragmentation).*/

#define PAGE_SIZE 2

#define HALF_PAGE_SIZE (PAGE_SIZE / 2)

Three structures are created for the B-tree. First, a structure is created for the
malloc() function:

/* Storage allocation structures used by malloc() */

Part II • Managing Data in C

416

struct _header

{

 struct _header *_ptr;

 unsigned _size;

};

struct _header _base; /* Declare this external data to */

struct _header *_allocp; /* be used by malloc() */

The next structure, called _item, contains information specific to each data item
(node) in the B-tree. This is the structure that would contain your item-specific data,
such as the node’s key (this is an integer in the example program, but it could be a
character string as well), a pointer to a structure containing the item’s data, or an index
into a file that would have the item’s data.

struct _item

{

 int nKeyValue;

 PAGE *RightReference;

 int nCount;

};

The third structure, _page, forms the building block for the B-tree. This
structure contains a count of items (from 1 to PAGE_SIZE), the block’s left branch, and
an array of PAGE_SIZE Items. The nItemCount variable indicates how many of the items
are used.

struct _page

{

 int nItemCount;

 PAGE *LeftReference;

 ITEM Item[PAGE_SIZE];

};

The majority of BTREE.C’s main function processes keyboard input. This code
is similar to the code in other example programs, so this section describes only the three
most important blocks. The first block is executed when the user searches for a record.
The Search() function is called, and is passed parameters that include the key the user
is searching for and the root node for the B-tree.

case ‘s’:

case ‘S’:

 nLevelCount = 0;

Data Management: Sorts, Lists, and Indexes

417

C C
CC
C

C
C
C C10

 if ((Search(nKeyValue, &nLevelCount, root, &u)))

 {

 printf(“SEARCH KEY %d found by searching %d levels\n”,

 nKeyValue,

 nLevelCount);

 }

 else

 {

 printf(“SEARCH KEY %d NOT FOUND searching %d levels\n”,

 nKeyValue,

 nLevelCount);

 }

 break;

The SearchAndAdd() function searches for the item. If the item cannot be found,
SearchAndAdd() adds the user’s key to the B-tree. This function returns TRUE if the item
was not added because the B-tree does not exist yet. If the B-tree does not exist yet, the
B-tree is created and the item is added as the root of the node.

case ‘a’:

case ‘A’:

 printf(“ADD KEY %d\n”, nKeyValue);

 if (SearchAndAdd(nKeyValue, root, &u))

 {

 q = root;

 NewItem(&root);

 root->nItemCount = 1;

 root->LeftReference = q;

 CopyItem(&root->Item[0], &u);

 }

 TreePrint(root, 0, ROOT, 0);

 break;

The DeleteItem() function is called when the user wants to delete a key. If the
item being deleted is the current root, DeleteItem() returns TRUE, signaling that a new
root must be created from another node.

case ‘d’:

case ‘D’:

Part II • Managing Data in C

418

 printf(“DELETE KEY %d\n”, nKeyValue);

 if (DeleteItem(nKeyValue, root))

 {

 if (root->nItemCount == 0)

 {

 q = root;

 root = q->LeftReference;

 }

 }

 TreePrint(root, 0, ROOT, 0);

 break;

Let’s look at some of the functions that do the work in the BTREE program. The
Search() function simply follows the tree, starting at the given node, until the specified
key is found or it is known that the key is not in the B-tree. The Search() function
works recursively: it calls itself each time it searches a node and does not find a match
for the specified key. By calling itself, Search() can use a simple function to perform
a search to any level:

int Search(

 int nKeyValue,

 int *nLevelCount,

 PAGE *a,

 ITEM *v)

{

int i;

ITEM u;

// printf(“Search()...\n”);

 if (a == NULL)

 {

 return(FALSE);

 }

 for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue;

Data Management: Sorts, Lists, and Indexes

419

C C
CC
C

C
C
C C10

i++)

 {

 ;

 }

 if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

 {

 return(TRUE);

 }

Search uses a simple integer comparison to check for a match. If the key had been
a character string, you could use a call to strcmp() or some other character comparison
function.

The recursive call to Search() follows. The recursion is performed by using a
comparison of the variable i and by passing the current node’s right or left node to
search.

 else

 {

 ++(*nLevelCount);

 return(Search(nKeyValue, nLevelCount,

 i ? a->Item[i - 1].RightReference : a->LeftReference, &u));

 }

}

The SearchAndAdd() function is similar to the Search() function. When
Search() ends, however, it simply returns a flag showing that the key was not found.
When SearchAndAdd() returns, it adds the key to the current B-tree.

int SearchAndAdd(

 int nKeyValue,

 PAGE *a,

 ITEM *v)

{

int i;

ITEM u;

// printf(“SearchAndAdd()...\n”);

Part II • Managing Data in C

420

If the function was passed a NULL pointer, the program is preparing to add this
key to a node. Then SearchAndAdd() prepares to add the key as the node, and returns
TRUE to tell the caller that a node has been created.

The root node is created in the main program because the root node is “owned”
by the main program, not by the B-tree functions:

if (a == NULL)

{

 v->nKeyValue = nKeyValue;

 v->nCount = 1;

 v->RightReference = NULL;

 return TRUE;

}

The following code, which is similar to the code in Search(), is used to find a
match:

for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue;

 i++)

{

 ;

}

if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

{

In the following code, if a match is found, a counter of matches is incremented.
This allows our version of B-tree to have duplicate keys, with only one copy of the key
kept in memory.

 a->Item[i].nCount++;

}

else

{

 if (SearchAndAdd(nKeyValue,

 i ? a->Item[i - 1].RightReference : a->LeftReference, &u))

 {

If the SearchAndAdd() function does not find the key, the Insert() function adds
the key to the B-tree (in the correct place), as follows:

 return (Insert(a, i, &u, v));

 }

 }

Data Management: Sorts, Lists, and Indexes

421

C C
CC
C

C
C
C C10

 return FALSE;

}

The Insert() function adds the current key value to the passed node by
computing the number of items in the current block. If the block is too full, the
function splits it into two blocks:

int Insert(

 PAGE *a,

 int i,

 ITEM *u,

 ITEM *v)

{

PAGE *b;

int j;

int h;

// printf(“Insert()...\n”);

 if (a->nItemCount < PAGE_SIZE)

 {

 for (j = a->nItemCount; j >= i + 1; j—)

 {

 CopyItem(&a->Item[j], &a->Item[j - 1]);

 }

 ++a->nItemCount;

 CopyItem(&a->Item[i], u);

 return(FALSE);

 }

 else

 {/* Page a is full. Split it and assign the emerging item to v. */

 NewItem(&b);

 if (i <= HALF_PAGE_SIZE)

 {

 if (i == HALF_PAGE_SIZE)

 {

Part II • Managing Data in C

422

 CopyItem(v, u);

 }

 else

 {

 CopyItem(v, &a->Item[HALF_PAGE_SIZE - 1]);

 for (j = HALF_PAGE_SIZE - 1; j >= i + 1; j--)

 {

 CopyItem(&a->Item[j], &a->Item[j - 1]);

 }

 CopyItem(&a->Item[i], u);

 }

 for (j = 0; j <= HALF_PAGE_SIZE - 1; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE]);

 }

 }

 else

 {

 i -= HALF_PAGE_SIZE;

 CopyItem(v, &a->Item[HALF_PAGE_SIZE]);

 for (j = 0; j <= i - 2; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE + 1]);

 }

 CopyItem(&b->Item[i - 1], u);

 for (j = i; j <= HALF_PAGE_SIZE - 1; j++)

 {

 CopyItem(&b->Item[j], &a->Item[j + HALF_PAGE_SIZE]);

 }

 }

 if (HALF_PAGE_SIZE == 0)

 {

 a->nItemCount = 1;

 b->nItemCount = 1;

Data Management: Sorts, Lists, and Indexes

423

C C
CC
C

C
C
C C10

 }

 else

 {

 a->nItemCount = HALF_PAGE_SIZE;

 b->nItemCount = HALF_PAGE_SIZE;

 }

 b->LeftReference = v->RightReference;

 v->RightReference = b;

 }

 return(TRUE);

}

The CopyItem() function copies information from the source item to the
destination item. In the days of non-ANSI C, structures could not be assigned to each
other. ANSI C supports structure assignments, however, so you could replace
CopyItem() with assignment statements.

int CopyItem(

 ITEM *DestinationItem,

 ITEM *SourceItem)

{

// printf(“CopyItem()...\n”);

 DestinationItem->nKeyValue = SourceItem->nKeyValue;

 DestinationItem->RightReference = SourceItem->RightReference;

 DestinationItem->nCount = SourceItem->nCount;

 return(0);

}

The NewItem() function is used to create a new node. NewItem() uses malloc()
to allocate memory for the new node, then clears the memory.

int NewItem(

 PAGE **Page)

{

Part II • Managing Data in C

424

// printf(“NewItem()...\n”);

 if ((*Page = (PAGE *)malloc(sizeof(**Page))) == NULL)

 {

 fprintf(stderr, “Couldn’t allocate memory!\n”);

 exit(16);

 }

/* malloc() doesn’t initialize storage, so we do... */

 memset(*Page, 0, sizeof(**Page));

 return(0);

}

The TreePrint() function prints the B-tree. This function knows which level it
is being called for and prints this information with the current node’s values.

int TreePrint(

 PAGE *Page,

 int nLevel,

 int nRightLeft,

 int nPosition)

{

int i;

int j;

If TreePrint() is called with a NULL node, it does nothing. Otherwise, TreePrint()
prints the level, prints whether it is the left or right node of its parent, and indents the
node’s numeric value (its key value) by four spaces for each level.

if (Page != NULL)

{

 for (i = 0; i < Page->nItemCount; i++)

 {

 switch(nRightLeft)

 {

 case ROOT: /* Should have only one root */

 printf(“\n”);

 printf(“(ROOT %2d) “, nLevel);

 break;

Data Management: Sorts, Lists, and Indexes

425

C C
CC
C

C
C
C C10

 case LEFT: /* Happens all the time */

 printf(“(L %2d %2d) “, nLevel, nPosition);

 break;

 case RIGHT:/* Happens all the time */

 printf(“(R %2d %2d) “, nLevel, nPosition);

 break;

 default: /* Should never happen */

 printf(“ERROR “);

 break;

 }

 for (j = 0; j < nLevel; j++)

 {/* Adjust the starting column for the variable */

 printf(“.....”);

 }

After the necessary header information is displayed, the key value is printed.
Remember, the key does not need to be an integer. If it was a character string, you
would probably have to change the following line:

printf(“%5d \n”, Page->Item[i].nKeyValue);

After printing the key value, TreePrint(), like Search(), calls itself recursively,
and is passed information on whether the right node or the left node is being followed:

 if (Page->Item[i].RightReference != NULL)

 {

 TreePrint(Page->Item[i].RightReference,

 nLevel + 1, RIGHT, i + 1);

 }

 }

 if (Page->LeftReference != NULL)

 {

 TreePrint(Page->LeftReference, nLevel + 1, LEFT, 0);

 }

 }

 return(0);

}

Part II • Managing Data in C

426

The DeleteItem() function deletes a node. DeleteItem() first checks that a node
and an item to be deleted have been passed.

int DeleteItem(

 int nKeyValue,

 PAGE *a)

{

int i;

int k;

int l;

int r;

PAGE *q;

// printf(“DeleteItem()...\n”);

 if (a == NULL)

 {

 printf(“Key is not in tree! Cannot delete this key.\n”);

 return(FALSE);

 }

 else

Remember binary searches from earlier in the chapter? The following binary
search uses the same technique: halving the list you are searching, depending on the
result of the comparison of a given node and the user’s key:

{/* Binary array search */

 for (l = 0, r = a->nItemCount - 1; l <= r;)

 {

 k = (l + r) / 2;

 if (nKeyValue <= a->Item[k].nKeyValue)

 {

 r = k - 1;

 }

 if (nKeyValue >= a->Item[k].nKeyValue)

 {

 l = k + 1;

 }

 }

Data Management: Sorts, Lists, and Indexes

427

C C
CC
C

C
C
C C10

 q = (r == -1) ? a->LeftReference : a->Item[r].RightReference;

 if (l - r > 1)

 {/* Found; now delete Item[k] */

 if (q == NULL)

 {/* a is a terminal page */

 --(a->nItemCount);

 for (i = k; i < a->nItemCount; i++)

 {

 CopyItem(&a->Item[i], &a->Item[i + 1]);

 }

 return (a->nItemCount < HALF_PAGE_SIZE);

 }

 else

 {

 if (Delete(q, a, k))

 {

 return(UnderFlow(a, q, r));

 }

 }

 }

 else

 {

 if (DeleteItem(nKeyValue, q))

 {

 return(UnderFlow(a, q, r));

 }

 }

 }

}

The UnderFlow() function readjusts the B-tree. It shifts the remaining nodes,
attempting to keep the B-tree as balanced as possible:

int UnderFlow(

 PAGE *c,

 PAGE *a,

 int s)

{...}

Part II • Managing Data in C

428

DeleteItem() calls the Delete() function to delete the node. This function takes
care of some of the housekeeping because there can be more than one key per block.

int Delete(

 PAGE *p,

 PAGE *a,

 int k)

{...}

The rest of this section describes ways to make some of the routines in BTREE
more generic (or more specific, depending on how you look at things).

First, the key is changed to a character field (16 characters long). Then a new field
called lFileIndex is added to each node; this field is an index to a file’s record. To use
this new field, Search() should return it as one of its parameters. The lFileIndex field
should be set when calling SearchAndAdd().

The rest of this section describes the changes you must make to the B-tree
functions. Change all references to the functions for the nKeyValue variable to reflect
both the new variable’s type and the change in its name.

Use a new parameter to change the SearchAndAdd() function and the Search()
function so that they pass back the lFileIndex variable.

Change TreePrint() so that it prints the lFileIndex variable in the debug mode.

Change the main function so that it can handle a character-based key.

Make the following changes to the program’s source code. The Item structure
should have the following variables:

struct _item

{

 char szKeyValue[16];

 long lFileIndex;

 PAGE *RightReference;

 int nCount;

};

Change all references to nKeyValue to reflect the new data type of szKeyValue.
This means changing references such as the following:

for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue; i++)

to

Data Management: Sorts, Lists, and Indexes

429

C C
CC
C

C
C
C C10

for (i = 0; i < a->nItemCount &&

 strcmp(szKeyValue, a->Item[i].szKeyValue) > 0; i++)

and changing the reference

if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

to

if (strcmp(szKeyValue, a->Item[i].szKeyValue) == 0 &&

 i < a->nItemCount)

Both of these references are in the Search() function.

In the SearchAndAdd() function, change

v->nKeyValue = nKeyValue;

to

strcpy(v->szKeyValue, nKeyValue);

and change

for (i = 0; i < a->nItemCount && nKeyValue > a->Item[i].nKeyValue; i++)

to (as in Search())

for (i = 0; i < a->nItemCount &&

 strcmp(szKeyValue, a->Item[i].szKeyValue) > 0; i++)

and the reference

if (nKeyValue == a->Item[i].nKeyValue && i < a->nItemCount)

to

if (strcmp(szKeyValue, a->Item[i].szKeyValue) == 0 &&

 i < a->nItemCount)

In CopyItem(), change

DestinationItem->nKeyValue = SourceItem->nKeyValue;

to the following (with an added line for the new lFilePointer structure member):

strcpy(DestinationItem->szKeyValue, SourceItem->szKeyValue);

DestinationItem->lFilePointer = SourceItem->lFilePointer;

In the DeleteItem() function, change

if (nKeyValue <= a->Item[k].nKeyValue)

Part II • Managing Data in C

430

to

if (strcmp(szKeyValue, a->Item[k].szKeyValue) <= 0)

and change

if (nKeyValue >= a->Item[k].nKeyValue)

to

if (strcmp(szKeyValue, a->Item[k].szKeyValue) >= 0)

These changes are simple to make. Should the key be some other data type,
similar changes would have to be made.

Summary

In this chapter, you learned about data management.

• Data often must be sorted. You can perform a sort externally by using files and
calling DOS’s sort program or by calling another commercial sort routine.

• If data can be sorted in memory, you can use the C qsort() function.

• There is no provision for merging sorted data files under DOS, but this
chapter presented a merge utility you can use.

• Most operating systems do not have a command for purging a data file of
duplicates. This chapter presented a purge utility for this purpose.

• Linked lists organize data so that it may be retrieved in a specified order
(usually sorted). Each member in a linked list has a pointer to the next mem-
ber in the list. Usually, this pointer is the only way to find the members of a
linked list.

• Linked lists can be used to group data based on a specific attribute.

• In a double linked list, the current data object is linked both with its successor
and its predecessor.

• Indexed files enable a programmer to sort a much smaller set of data, which is
then used to access specific data objects. Each record in the index file needs to
contain only the key value and a pointer to its corresponding data object.

Data Management: Sorts, Lists, and Indexes

431

C C
CC
C

C
C
C C10

• A single data file may have more than one index file, each one indexing a
different data file field.

• A B-tree organizes data so that specific data items are accessed easily.

• B-tree programs work with in-memory and file-based data structures. For
acceptable performance, however, the tree must be in memory.

Part II • Managing Data in C

432

Table of Contents

433

C C
CC
C

C
C
C CC

Part III

Working with Others

Advanced C

434

C and Other Languages

435

C C
CC
C

C
C
C C11C C

CC
C

C
C
C C11

C and Other Languages

Many discussions in previous chapters did not pertain to a particular compiler. In this
chapter, almost everything is dependent on the type of compiler. As in other chapters,
I assume that you are using a Microsoft compiler. However, I have noted when some-
thing applies to a Borland or a Watcom compiler.

Nothing in the ANSI standard restricts C programs from containing functions
written in another language. If your compiler is not covered, do not assume that you
cannot mix languages. Most compilers include at least a provision for writing functions
in assembly.

You may be asking why anyone would mix languages when C can do almost
anything. Here are some good reasons:

You have a library of application-specific functions written in another
computer language, such as Pascal or FORTRAN. For mathematical
applications, FORTRAN still has many advantages.

You must create a function that is faster than what an optimizing compiler
can produce. With assembly, you can directly control the computer’s CPU

Part III • Working with Others

436

and get every ounce of performance out of it. (Remember, though, that it is
easy to create assembly functions that are not as efficient as a function
written in C and compiled with the compiler’s optimization turned on.)

Your project is on a tight schedule, so you must purchase a library of
functions to save development time.

When you purchase a library of functions, be sure it includes the source code. You
cannot depend on the supplier of the code to respond to your needs, and without
source code you are on your own. I have never used code written by someone else
without making at least one change. As well, if the supplier goes out of business, you
can keep your product running if you have source code.

Peter’s rule: When you buy a library of functions, get the source code. If it is
unavailable, look for a different product.

Other Languages

This chapter considers four languages other than C: assembly, BASIC, FORTRAN,
and Pascal. All have been around for many years and are standardized. If your program
must interface with a language not mentioned in this chapter, do not despair. Check
whether the language you are using calls functions in a manner similar to one of the
languages described here.

Table 11.1 shows the types of routines for each language. The major difference
is that in FORTRAN a function returns a value, but a subroutine does not have a
return value. When a function executes, a dummy variable with the same name as the
function is created to hold the return value. (An example of this is shown in
Listing 11.7, later in this chapter.)

C and Other Languages

437

C C
CC
C

C
C
C C11

Table 11.1. Routine types for different languages.

Language Returns a value Has no return
value

assembly Procedure Procedure

BASIC FUNCTION Subprogram

C function (void) function

FORTRAN FUNCTION SUBROUTINE

Pascal Function Procedure

Do not ignore your C compiler’s power. Almost all C compilers produce a mixed
(or perhaps a pure) assembly listing of the functions being compiled. Typical assembly-
listing options that you can use are shown in Table 11.2.

Table 11.2. C compiler assembly-listing options.

Option Description Compiler

/Fa Produces an assembly Microsoft
output file

/Fc Produces a mixed object Microsoft
and source listing file

/Fl Produces an object Microsoft
listing file

/S Produces a mixed Borland C++
assembly/source listing
file

WDISASM Produces (with options) Watcom
(a stand-alone assembly/object listing
program) files

Part III • Working with Others

438

If you use the options listed for Microsoft compilers, you must use the full
compiler, not QuickC or QuickC for Windows. Neither of the QuickC compilers
produces an assembly or object listing.

Watcom’s utility (WDISASM) has a number of options documented in the manual.
It can disassemble .OBJ files produced by any Microsoft compatible compiler (one
that produces compatible .OBJ files). You must check that the disassembly is correct,
however, because not all .OBJ files disassemble correctly. Sometimes, disassembly by
hand (a long and tedious process) is the only way to find out what the compiler did for
a given block of code.

Do not overlook using the DOS DEBUG command to look at .EXE and .OBJ files.
It has a crude disassembler, and it can help you see what is happening. Most debuggers
can provide a disassembly listing as well.

Some compilers (such as Watcom’s C/386) do not provide an assembly listing,
but do come with a utility program to produce assembly. In Watcom, for example, the
WDISASM utility disassembles an .OBJ file.

You can save hours of programming if you use the compiler’s assembly listing
option to produce an assembly program that is compatible with C programs. You can
save time also if you already know the arguments that are passed to the function. Create
a dummy function with as much of the necessary functionality as possible, then use
the output of the compiler’s assembly listing as the starting point for your assembly
routine.

Assembly

Assembly is not a language. Rather, it is a method to use the CPU’s native machine
language. You must specify everything when writing in assembly: where data objects
come from, where they will go, the basic operations, and so on. To use assembly
language, you must be very familiar with how the CPU works.

Listing 11.1, CALLASM, is a simple example of how assembly works. It is
written in assembly, and can be linked with the C libraries.

C and Other Languages

439

C C
CC
C

C
C
C C11

Listing 11.1. CALLASM.ASM.

;

; CALLASM.ASM: This program calls the C printf() function

; and prints a string on the terminal.

;

 NAME CALLASM

 EXTRN _printf:BYTE ; Prototype for

printf()

 EXTRN __acrtused:BYTE ; Used to initialize C

; startup code

DGROUP GROUP _DATA,CONST,_BSS ; Establish the DGROUP

_TEXT SEGMENT WORD PUBLIC ‘CODE’ ; Name the code

; segment _TEXT

 ASSUME CS:_TEXT,DS:DGROUP,SS:DGROUP

 PUBLIC _main ; Our function is

; main()

_main: mov word ptr nCount,0000H ; Initialize nCount to

; zero

 mov ax,offset DGROUP:szBuffer ; Get address of

; szBuffer[]

 push ax ; Push on stack as the

; last\parameter to

printf()

 mov ax,offset DGROUP:L1 ; Get format string

; address

 push ax ; Push on stack as the

; next parameter to

; printf()

 call near ptr _printf ; Now call printf()

 add sp,0004H ; Discard printf()’s

; parameters

 mov word ptr nCount,ax ; Save printf()’s

; return value

; Done, return to

; caller

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC ‘DATA’ ; Set up the data

; segment

continues

Part III • Working with Others

440

Listing 11.1. continued

; PUBLIC is the same

; as C’s

; extern variables

 PUBLIC szBuffer ; szBuffer is a public

; name

 PUBLIC nCount ; nCount is a public

; name

szBuffer LABEL BYTE

 DB “This is an assembly program.”

 DB 0aH,00H ; append the \n for

; newline

nCount LABEL BYTE

 DB 00H,00H ; nCount, init to zero

_DATA ENDS

CONST SEGMENT WORD PUBLIC ‘CONST’

L1 LABEL BYTE

 DB “%s”,00H ; Our format string, a

; constant, in the

; CONST

; segment

CONST ENDS

_BSS SEGMENT WORD PUBLIC ‘BSS’ ; The BSS segment is

; used

; by C to find the

; stack and

; has other uses,

; including

; storage for global

; variables

; not initialized

; explicitly

_BSS ENDS ; by the program

 END ; End of our program

C and Other Languages

441

C C
CC
C

C
C
C C11

Nobody recommends that you write an assembly program that calls C functions.
Instead, write the program as a C program, then call the functions coded in assembly
from C.

FORTRAN

FORTRAN was the first programming language developed, although the first
compilers were created by Grace Hopper in the early 1950s. These compilers were
simple and inefficient, and the “languages” they supported were never named.

FORTRAN (short for FORmula TRANslation) can trace its roots to the early
1950s, when John Backus and Irving Ziller at IBM set out to develop a new computer
language for the soon to be released IBM 704 computer. The development team grew
to many more members, and in April 1957, they completed the first FORTRAN
compiler.

The IBM 704 was the first computer to implement floating point in hardware.
Until that time, computers used software emulation to perform floating-point math.

A typical FORTRAN program is shown in Listing 11.2, DEMO.FOR.

Listing 11.2. DEMO.FOR.

* DEMO.FOR

* A simple, typical FORTRAN program. This program

* is equivalent to the standard HELLO.C program.

*2345678----

 program hello

 print *, ‘Hello (FORTRAN)’

 end

Part III • Working with Others

442

Pascal

Pascal is taught extensively at schools and universities, but has never caught on in a
nonacademic environment, mostly due to the lack of good compilers. Apple released
a UCSD Pascal system for the Apple II, but the implementation was crude and almost
impossible to use productively, requiring a custom operating system incompatible
with the existing Apple II operating system. Pascal became popular on PCs due only
to the efforts of Borland, who released a good and inexpensive compiler called Turbo
Pascal.

Although Pascal is still used today (and some Pascal compilers, most notably
Turbo Pascal, remain), you will seldom see libraries of Pascal code that you will want
to include in your C application. It is more likely you will have to convert a Pascal
program to C. This conversion is easier if you can call Pascal functions from the C code,
and convert each function one at a time. A typical Pascal program is shown in
Listing 11.3.

Listing 11.3. HELLO.PAS.

/* HELLO.PAS

 * A simple, typical Pascal program. This program

 * is equivalent to the standard HELLO.C program.

 */

program hello

begin

 writeln(‘Hello, from Pascal’);

end.

The example program looks very much like a C program. The comments are
delimited in the same manner (using /* and */), statements end with a semicolon, and
the begin and end keywords are similar to braces in C.

C and Other Languages

443

C C
CC
C

C
C
C C11

BASIC

BASIC (Beginner’s All-Purpose Symbolic Instruction Code) is the first language used
by most beginning programmers. It is simple and easy to learn, but not used for serious
programming due to its limitations.

There are few reasons to interface BASIC code with C and even fewer methods.
Several BASIC compilers are available, but none produce code compatible with C code
created with a C compiler. The best way to interface BASIC and C is to convert the
BASIC code to C, producing a new program that is bound to be better than the
original.

A simple BASIC program is shown in Listing 11.4, HELLO.BAS. It’s the
shortest example of a hello program!

Listing 11.4. HELLO.BAS.

PRINT “Hello”

Calling Other Languages from C

Usually, you write the main body of your program in C. Then you may use a few
functions written in another language because you want to enhance the speed of the
program (assembly code can be much faster than code written in a higher level
language) or because you do not want to rewrite the functions in C.

This section describes how to create a basic C application and how to call a
function created in another language. First, the main program is created in C, as shown
in Listing 11.5, CALLNOTC.C. This program calls a non-C function called max()
to determine the maximum of two numbers.

Listing 11.5. CALLNOTC.C.

/* CALLNOTC program, written 1992 by Peter D. Hipson */

Listing 11.5./* This C program calls C, FORTRAN, or assembly */

continues

Part III • Working with Others

444

Listing 11.5. continued

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

int cdecl maximum(int nVar1, int nVar2);

int main()

{

int nVar1 = 0;

int nVar2 = 1;

char szBuffer[256];

 printf(“Enter the same number twice to end\n”);

 while(nVar1 != nVar2)

 {

 printf(“Enter two integers, separated with blanks”);

 gets(szBuffer);

 sscanf(szBuffer, “%d %d”, &nVar1, &nVar2);

 printf(“The values entered are %d and %d. The larger is %d\n”,

 nVar1,

 nVar2,

 maximum(nVar1, nVar2));

 }

 return(0);

}

/* This is maximum() written in C */

int maximum(

C and Other Languages

445

C C
CC
C

C
C
C C11

 int nVar1,

 int nVar2)

{

 if (nVar1 < nVar2)

 {

 return(nVar2);

 }

 else

 {

 return(nVar1);

 }

}

In the maximum() function, four lines of code do most of the work: a compare
and two return values. Many programmers consider multireturns in a single function
to be poor programming style. I do not agree, but I do not use goto except to a single
label near the end of the function just before the cleanup code.

To see what a typical C compiler does with the maximum() function, look at the
following output from the Microsoft C 7.00 compiler (without optimization):

 _maximum:

 *** 00008a 55 push bp

 *** 00008b 8b ec mov bp,sp

 *** 00008d 81 ec 00 00 sub sp,OFFSET L00390

 *** 000091 56 push si

 *** 000092 57 push di

; ; Line 50 if (nVar1 < nVar2)

 *** 000093 8b 46 06 mov ax,WORD PTR 6[bp]

 *** 000096 39 46 04 cmp WORD PTR 4[bp],ax

 *** 000099 7c 03 e9 00 00 jge L00387

; ; Line 51 {

; ; Line 52 return(nVar2);

 *** 00009e 8b 46 06 mov ax,WORD PTR 6[bp]

 *** 0000a1 e9 00 00 jmp L00386

; ; Line 53 }

; ; Line 54 else

 *** 0000a4 e9 00 00 jmp L00388

 L00387:

; Line 54 else (continued...)

continues

Part III • Working with Others

446

Listing 11.5. continued

; ; Line 55 {

; ; Line 56 return(nVar1);

 *** 0000a7 8b 46 04 mov ax,WORD PTR 4[bp]

 *** 0000aa e9 00 00 jmp L00386

; ; Line 57 }

 L00388:

; ; Line 58}

; Line 58 (end of the function, cleanup:)

 L00386:

 *** 0000ad 5f pop di

 *** 0000ae 5e pop si

 *** 0000af 8b e5 mov sp,bp

 *** 0000b1 5d pop bp

 *** 0000b2 c3 ret OFFSET 0

Local Size: 2

; Line 0

Next, Microsoft C’s /Ox (maximum optimize) switch was turned on so that you
could see what a compiler can do using maximum optimization. The following output
was produced:

 _maximum:

 *** 00007a 55 push bp

 *** 00007b 8b ec mov bp,sp

; nVar1 = 4

; nVar2 = 6

 *** 00007d 8b 56 04 mov dx,WORD PTR [bp+4] ;nVar1

 *** 000080 8b 5e 06 mov bx,WORD PTR [bp+6] ;nVar2

;|*** if (nVar1 < nVar2)

; Line 50

 *** 000083 3b da cmp bx,dx

 *** 000085 7e 05 jle $I433

;|*** {

;|*** return(nVar2);

; Line 52

 *** 000087 8b c3 mov ax,bx

 *** 000089 5d pop bp

 *** 00008a c3 ret

 *** 00008b 90 nop

C and Other Languages

447

C C
CC
C

C
C
C C11

;|*** }

;|*** else

; Line 54

 $I433:

;|*** {

;|*** return(nVar1);

; Line 56

 *** 00008c 8b c2 mov ax,dx

;|*** }

;|*** }

; Line 58

 *** 00008e 5d pop bp

 *** 00008f c3 ret

_maximum ENDP

_TEXT ENDS

END

;|***

;|*** // #endif

Notice that the optimized code is slightly smaller and a bit more complex. This
code might be more difficult to debug, but this drawback is unimportant because
code is seldom debugged at the machine-language level after optimization.

Calling Assembly from C

Can a programmer using assembly language write a smaller, faster function than the
compiler? To test this, I wrote the maximum() function in assembly. So that I would
not be biased by looking at what the compiler produced for optimized code, I
wrote the assembly function before I produced the two listings of maximum() shown
in the preceding section.

Listing 11.6 is my version of maximum(). It is a bit shorter and faster than the
version from the compiler, even when the compiler version is fully optimized.

Listing 11.6. MAXIMUM.ASM.

;

; A hand optimized assembly function for C.

; cmacros.inc are a handy group of macros that make

continues

Part III • Working with Others

448

Listing 11.6. continued

; writing C-compatible functions easier.

;

include e:\windev\include\cmacros.inc

;

; int maximum(int, int);

;

; This version was optimized by hand for both

; minimum size and fastest execution. The

; compiler’s code is twice as long.

;

;

 NAME MAXIMUM

DGROUP GROUP _DATA

_TEXT SEGMENT WORD PUBLIC ‘CODE’

 ASSUME CS:_TEXT,DS:DGROUP,SS:DGROUP

 PUBLIC _maximum

_maximum: enter 0000H,00H

 mov ax,word ptr +6H[bp]

 cmp word ptr +4H[bp],ax

 jle short L6

 mov ax,word ptr +4H[bp]

L6: nop ;Handy label target...

 leave

 ret

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC ‘DATA’

_DATA ENDS

 END

C and Other Languages

449

C C
CC
C

C
C
C C11

In my version of maximum(), I used the enter and leave operands, which are
useful for creating functions called by higher level languages such as C.

One of the tested values is returned in AX. If the value in AX is the larger of the
two values, AX does not need to be reloaded and can just return that value. Otherwise,
the other value is placed in AX and then returned.

Because this version is optimized by hand, it executes faster and makes better use
of memory. For more complex functions, however, this improvement is more difficult
to obtain. By breaking your assembly code into smaller and smaller parts and analyzing
the resultant code, you can be confident that it will be faster without performing some
extensive benchmarks.

Calling FORTRAN and Pascal from C

Writing maximum() in FORTRAN is an easy task, as shown in Listing 11.7. Optimi-
zation is less of a concern in FORTRAN than in assembly because FORTRAN is a
high-level language. Not all C compilers support FORTRAN functions.

Listing 11.7. The maximum() function in FORTRAN.

*

* The C function maximum() written in FORTRAN

*

 integer function maximum(nVar1, nVar2)

 integer*2 nVar1, nVar2

 maximum = nVar2

 if (nVar1 .gt. nVar2) maximum = nVar1

 end

When this function is called from C, the calling C program file must tell the C
compiler that the function is written in FORTRAN. This is accomplished by properly
declaring the maximum() function:

int __fortran maximum(int, int);

Part III • Working with Others

450

The call fails if the function is not declared correctly (using the __fortran
keyword) because of the way that the arguments are passed to a FORTRAN program’s
functions. Except for the differences in languages, functions written in FORTRAN
and in Pascal are handled the same way.

Calling C Functions from Other Languages

The opposite of calling from C a function written in another language is calling from
a second language a function written in C. There are several problems in doing this.
For example, many C library functions rely on the execution of C initialization code,
which may not be present when a program written in another language calls a C
function. You can partially alleviate this problem in assembly by writing the
program’s main function in C, thereby forcing the assembly program to behave like
a C program.

A C program can grow quite large when it is linked, so many programmers write
in assembly to keep the program smaller. If the C function called from another
language does not make any calls to C library functions, no library functions are
included in the executable program. This makes the program smaller and eliminates
the task of ensuring that C has properly initialized itself.

This section presents a few examples of other languages calling a C function.
These examples use CALLNOTC.C (Listing 11.5), which was used also in the
previous section. The maximize() function is written in C (see Listing 11.8), and the
main, calling program is written in another language. Because maximize() does not call
any other functions, I did not have to address the issue of calling C’s startup code.
However, I have included the necessary mechanism to initialize C, in case you
need it.

Listing 11.8. MAXIMUM.C.

/* MAXIMUM.C function, written 1992 by Peter D. Hipson */

/* This is a C function called by FORTRAN or assembly */

#include <stdio.h>

#include <stddef.h>

C and Other Languages

451

C C
CC
C

C
C
C C11

#include <stdlib.h>

#include <string.h>

#include <time.h>

int cdecl maximum(int nVar1, int nVar2);

int maximum(

 int nVar1,

 int nVar2)

{

 if (nVar1 < nVar2)

 {

 return(nVar2);

 }

 else

 {

 return(nVar1);

 }

}

The maximum() function could be written in assembly, but some other function
that must do special things such as interact with hardware might have to be written in
assembly.

Calling C from Assembly

An assembly program can call a C function, subject to either of two conditions. One,
the C library must be linked with the assembly program. Any C functions called
(CALLNOTC, in Listing 11.5, calls several) are processed by library functions, whose
references must be resolved.

Two, the C library’s startup code must be included and called. With Microsoft
C, this is accomplished by linking with the necessary library (I used SLIBCE.LIB in
developing CALLNOTC.ASM, in Listing 11.9) and defining the external symbol,
_acrtused. When the startup code from the C library is executed, it properly initializes
the C environment.

Part III • Working with Others

452

Listing 11.9. CALLNOTC.ASM.

;/* CALLNOTC program, written 1992 by Peter D. Hipson */

;

;/* This is an assembly program that calls FORTRAN or assembly */

;

;#include <stdio.h>

;#include <stddef.h>

;#include <stdlib.h>

;#include <string.h>

;#include <time.h>

;

;int cdecl maximum(int nVar1, int nVar2);

;

; Enable 386 instruction set

.386

 NAME callnotc

; maximum(), sscanf(), gets(), and printf() are called

 EXTRN _maximum:BYTE

 EXTRN _sscanf:BYTE

 EXTRN _gets:BYTE

 EXTRN _printf:BYTE

; _acrtused is used to initialize C at runtime

 EXTRN __acrtused:BYTE

; The datagroup is _DATA (misc data), CONST (constants),

; and _BSS (uninitialized data)

DGROUP GROUP _DATA,CONST,_BSS

_TEXT SEGMENT WORD PUBLIC USE16 ‘CODE’

 ASSUME CS:_TEXT,DS:DGROUP,SS:DGROUP

; The program’s main function, called by C’s startup code.

; Microsoft C naming conventions require the underscore

C and Other Languages

453

C C
CC
C

C
C
C C11

; prefix. Other compilers may use an underscore

; following the name.

 PUBLIC _main

_main: push bp ; Start up, save registers,

 mov bp,sp ; and get ready to run

 sub sp,0000H

 push si

 push di

; Initialize nVar1 and nVar2 so that they are not the same!

 mov word ptr -104H[bp],0000H

 mov word ptr -106H[bp],0001H

; Call to printf(szMsg1);

 mov ax,offset DGROUP:szMsg1

 push ax

 call near ptr _printf

 add sp,0002H

 jmp near ptr Loop1

; Loop back to Loop1

Loop1: mov ax,offset DGROUP:szMsg2

 push ax

 call near ptr _printf

 add sp,0002H

 lea ax,-102H[bp]

 push ax

 call near ptr _gets

 add sp,0002H

 lea ax,-106H[bp] ; nVar2’s address

 push ax

 lea ax,-104H[bp] ; nVar1’s address

 push ax

continues

Part III • Working with Others

454

Listing 11.9. continued

 mov ax,offset DGROUP:szScanFormat

 push ax

 lea ax,-102H[bp] ; szBuffer (auto var on stack)

 push ax

 call near ptr _sscanf

 add sp,0008H

 push word ptr -106H[bp] ; nVar2

 push word ptr -104H[bp] ; nVar1

 call near ptr _maximum

 add sp,0004H

 push ax

 push word ptr -106H[bp] ; nVar2

 push word ptr -104H[bp] ; nVar1

 mov ax,offset DGROUP:szPrintFormat

 push ax

 call near ptr _printf

 add sp,0008H

 mov ax,word ptr -106H[bp]

 cmp word ptr -104H[bp],ax

 je short AllDone ; We are finished

 jmp near ptr Loop1 ; Go around another time

AllDone: mov ax,0000H ; A zero return code

 jmp near ptr Dummy

Dummy: pop di ; Clean up and go home

 pop si

 mov sp,bp

 pop bp

 ret

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC USE16 ‘DATA’

C and Other Languages

455

C C
CC
C

C
C
C C11

szMsg1 LABEL BYTE

 DB “Enter the same number twice to end”, 0AH, 00H

szMsg2 LABEL BYTE

 DB “Enter two integers, separated with blanks”, 00H

szScanFormat LABEL BYTE

 DB “%d %d”, 00H

szPrintFormat LABEL BYTE

 DB “The values entered are %d and %d, “

 DB “the larger is %d”,0AH, 00H

_DATA ENDS

CONST SEGMENT WORD PUBLIC USE16 ‘CONST’

CONST ENDS

_BSS SEGMENT WORD PUBLIC USE16 ‘BSS’

_BSS ENDS

 END

The program calls not only the C function (maximum()), but also a number of
other library functions, including printf(), gets(), and scanf(). These functions
form the basic I/O for the program. DOS I/O interrupt routines could have been called
directly, but because they do not do formatted I/O, the program would have to con-
vert the typed characters to integer numbers and convert the numbers back to
characters for output.

To summarize, write the main program in C (or another high-level language) if
possible. Then write in assembly the routines whose speed or size is critical. When
using an advanced compiler (such as Microsoft’s C 7.0), you can control how much
of the library code is included, the arrangement of the program’s segments (whether
there are separate data and code segments or a single segment for both), and the
allocation and use of memory.

When programming on a PC (under DOS), do not forget the available DOS
services. These services, listed in Table 11.3, are accessed using the Int 21 instruction.
If you are using a different operating system, it should have similar functions.

Part III • Working with Others

456

Table 11.3. MS-DOS Int 21 function codes.

Function Function DOS
(hex) (decimal) Description version

00H 0 Terminate the current 1.0+
program or process.

01H 1 Read a character from 1.0+
the console (with echo
to screen).

02H 2 Write a character to the 1.0+
screen.

03H 3 Read a character from AUX:. 1.0+

04H 4 Write a character to AUX:. 1.0+

05H 5 Send output to the printer. 1.0+

06H 6 Perform I/O from the 1.0+
console; DOS does not
process the characters.

07H 7 Get a character from the 1.0+
keyboard, waiting for a
keypress if no character
is available; the character
is not processed by DOS.

08H 8 Get a character from the 1.0+
keyboard, waiting for a
keypress if no character
is available.

09H 9 Print a string to the 1.0+
console; the string is
terminated with a dollar
sign.

0AH 10 Read a character string 1.0+
(a line, typed by the
user, up to a carriage
return) from the keyboard.

C and Other Languages

457

C C
CC
C

C
C
C C11

0BH 11 Test to see whether a 1.0+
character is available
from the keyboard.

0CH 12 Discard the contents of 1.0+
the input buffer, and get
the input.

0DH 13 Reset the specified disk 1.0+
drive.

0EH 14 Make the specified drive 1.0+
the current drive.

0FH 15 Open a file. 1.0+

10H 16 Close a file. 1.0+

11H 17 Find the first file meeting 1.0+
the provided specification.

12H 18 Find the next file after 1.0+
using Int 0x11.

13H 19 Delete the specified file. 1.0+

14H 20 Perform a sequential read. 1.0+

15H 21 Perform a sequential write. 1.0+

16H 22 Create a new file. 1.0+

17H 23 Rename a file. 1.0+

18H 24 Reserved.

19H 25 Get the current drive. 1.0+

1AH 26 Set the Disk Transfer 1.0+
Address (DTA).

1BH 27 Get the current default 1.0+
drive data.

Function Function DOS
(hex) (decimal) Description version

continues

Part III • Working with Others

458

Table 11.3. continued

Function Function DOS
(hex) (decimal) Description version

1CH 28 Get data for the specified 2.0+
drive.

1DH 29 Reserved

1EH 30 Reserved

1FH 31 Reserved

20H 32 Reserved

21H 33 Random file read. 1.0+

22H 34 Random file write. 1.0+

23H 35 Get the size of the 1.0+
specified file.

24H 36 Set the file’s current 1.0+
position.

25H 37 Set an interrupt vector. 1.0+

26H 38 Create a new Program 1.0+
Segment Prefix (PSP).

27H 39 Random block read.

28H 40 Random block write. 1.0+

29H 41 Parse a filename into a 1.0+
valid DOS filename

2AH 42 Get the date. 1.0+

2BH 43 Set the date. 1.0+

2CH 44 Get the time. 1.0+

2DH 45 Set the time. 1.0+

2EH 46 Set the write verify flag. 1.0+

2FH 47 Get the Disk Transfer 2.0+
Address (DTA).

C and Other Languages

459

C C
CC
C

C
C
C C11

30H 48 Get the DOS version 2.0+

31H 49 Terminate-and-Stay-Resident 2.0+
(TSR).

32H 50 Reserved

33H 51 Get or set the break flag, 2.0+
and get the boot drive.

34H 52 Reserved

35H 53 Get the interrupt vector. 2.0+

36H 54 Get the drive allocation 2.0+
information.

39H 57 Create a directory. 2.0+

3AH 58 Delete a directory. 2.0+

3BH 59 Set the current directory. 2.0+

3CH 60 Create a file. 2.0+

3DH 61 Open a file. 2.0+

3EH 62 Close a file. 2.0+

3FH 63 Read from a file (can also 2.0+
read from a device).

40H 64 Write to a file (can also 2.0+
read from a device).

41H 65 Delete a file. 2.0+

42H 66 Set the file pointer. 2.0+

43H 67 Get (or set) a file’s 2.0+
attributes.

44H 68 IOCTL processing. 2.0+

45H 69 Duplicate a file handle. 2.0+

46H 70 Redirect a file handle. 2.0+

Function Function DOS
(hex) (decimal) Description version

continues

Part III • Working with Others

460

Table 11.3. continued

Function Function DOS
(hex) (decimal) Description version

47H 71 Get the current directory. 2.0+

48H 72 Allocate a memory block. 2.0+

49H 73 Release a memory block. 2.0+

4AH 74 Resize a memory block. 2.0+

4BH 75 Execute (run) a program 2.0+
(EXEC).

4CH 76 Terminate a process with 2.0+
a return code (which can
be tested in a batch file).

4DH 77 Get the return code from 2.0+
a child process.

4EH 78 Find the first file. 2.0+

4FH 79 Find the next file, after 2.0+
finding the first file.

50H 80 Reserved

51H 81 Reserved

52H 82 Reserved

53H 83 Reserved

54H 84 Get the verify flag. 2.0+

55H 85 Reserved

56H 86 Rename a file. 2.0+

57H 87 Get (or set) the file 2.0+
date and time.

58H 88 Get (or set) the 3.0+
allocation strategy.

C and Other Languages

461

C C
CC
C

C
C
C C11

Function Function DOS
(hex) (decimal) Description version

59H 89 Get extended error 3.0+
information following a
DOS error.

5AH 90 Create a temporary file. 3.0+

5BH 91 Create a new file. 3.0+

5CH 92 Lock (or unlock) a file 3.0+
region.

5DH 93 Reserved

5EH 94 Get the machine name, get 3.1+
(or set) the printer setup.

5FH 95 Device redirection. 3.1+

60H 96 Reserved

61H 97 Reserved

62H 98 Get the Program Segment 3.0+
Prefix (PSP) address.

63H 99 Get the DBCS lead byte 2.25
only table.

64H 100 Reserved

65H 101 Get the extended country 3.3+
information.

66H 102 Get (or set) the code page. 3.3+

67H 103 Set the file handle count. 3.3+

68H 104 Commit a file. 3.3+

69H 105 Reserved

6AH 106 Reserved

6BH 107 Reserved

6CH 108 Extended open file. 4.0+

Part III • Working with Others

462

Calling C from FORTRAN and Pascal

A C function is called from a FORTRAN or a Pascal program in a manner similar to
the way any other type of function is called from FORTRAN or Pascal. The main
program must be told that the function is written in C (so that the parameters are
passed properly), and C library functions must not be called.

Because C is not the language of the main program, the C initialization code
cannot be called, which means the C library functions cannot be called. This restric-
tion can limit the usefulness of a C function; you may decide that it is easier to write
the entire program in one language.

All the Things that Can Go Wrong

When you mix languages in your programming, you can easily get things mixed up.
Much of the discussion in this section is specific to Microsoft’s C compilers. However,
other compilers often behave in a similar manner. Borland’s C compilers, for example,
offer similar methods for argument passing.

Following are some of the more common things that can ruin your day:

If you are calling a C function from another language, you must tell the
compiler the calling convention. You can tell C that a function will be using
FORTRAN calling conventions, then call the function from a FORTRAN
program without telling the FORTRAN program that the function is
written in C. If the function is written in C with C’s calling conventions,
however, the calling program must know this.

When assembly is called from C, the parameters must be read from the
stack in the correct order. A C function expects its arguments to be passed
in right to left order. A FORTRAN or a Pascal function expects arguments
in a left to right order.

A function using the C calling conventions expects its caller to clean the
arguments from the stack. A FORTRAN or a Pascal function takes the
arguments from the stack itself.

The value being returned must be in the correct place. Generally, AX is
used for 2-byte return values, and AX and DX are used for 4-byte return
values.

C and Other Languages

463

C C
CC
C

C
C
C C11

The compiler modifies the function’s name. If it is a C function, an under-
score is added (either before or after the name, depending on the compiler)
and its case is not changed. If it is a FORTRAN or a Pascal function, an
underscore is not added and the name is converted to uppercase. When
calling C functions from assembly, the underscore is often forgotten,
leading to unresolved references.

When accessing a multidimensional array, C and Pascal vary the subscripts
in row-major order. FORTRAN and BASIC vary them in column-major
order.

The C array nArray[2][10][20] is typically nArray(20,10,2) in
FORTRAN.

In C, arrays are indexed from zero. In FORTRAN, arrays typically are
indexed from one. In Pascal, the lower bound is specified by the program-
mer. Exceeding the bounds of an array is common in mixed C/FORTRAN/
Pascal code because the initial starting points for the bounds differ.

Do not call C library code from a program that has a main procedure
written in FORTRAN or Pascal.

Do not call library functions from a function written in a language different
from the language of the main program. It may be possible to call the main
program language’s library functions, but make sure that you use the correct
calling conventions.

In all, mixed language programming is not used frequently. It is complex and
prone to subtle failures that may be difficult to find and correct. Mixed language pro-
gramming should be used as a last resort.

Looking at Data

Each programming language views data a little differently. Table 11.4 is a cross-
reference of simple data types used in C, BASIC, FORTRAN, and Pascal. The
similarity in the data types of FORTRAN and Pascal shows the common roots
between those two languages.

Part III • Working with Others

464

Table 11.4. Data types.

C/C++ BASIC FORTRAN Pascal

short variable% INTEGER*2 INTEGER2

int INTEGER INTEGER

unsigned short (unsigned not (unsigned not WORD

supported) supported)

unsigned (see
unsigned long

and unsigned
short)

long variable& INTEGER*4 INTEGER4

LONG INTEGER (default)

unsigned long (unsigned not (unsigned not (unsigned not
supported) supported) supported)

float variable! REAL*4 REAL4

variable REAL REAL

SINGLE

double variable# REAL*8 REAL8

DOUBLE DOUBLE PRECISION

long double

unsigned char CHARACTER*1 CHAR

(not the same
as LOGICAL)
LOGICAL *2

LOGICAL *4

Because BASIC does not predeclare scalar variables, a variable’s type is indicated
by a suffix code (%, &, !, or #). If the suffix is missing, the variable is assumed to be a
real (floating-point) variable.

C and Other Languages

465

C C
CC
C

C
C
C C11

Variables are classified according to

• Type (what is stored in them), such as integer, character, or floating point

• Size (how large they are)

If you picture a variable as a certain number of bytes holding a certain type of data, you
can easily convert from one language’s variable types to another.

Names and Limits

C allows a longer name length (the number of characters in a name that are signifi-
cant) than FORTRAN. In C, the limit is 32 characters for internal names and 6
characters for external names. With some versions of FORTRAN, the limit is 6
characters for internal or external names.

When an external name is processed by C compilers, an underscore is usually
added before or after the name. When programming in languages that do not use this
convention, you must explicitly add the underscore. In Listing 11.9, for example, the
printf() library function is called. The referenced name is _printf because the
compiler prefixes the name with an underscore, and you must do the same. A
FORTRAN or Pascal identifier does not have an added underscore.

When an external identifier is used in FORTRAN, the case of the name will have
been changed to uppercase. This can create problems when linking the program,
depending on the linker’s options. If you use the /NOIGNORECASE option (which tells
the linker that the case of the identifiers must match) when you create a mixed language
program, the linker may generate unresolved reference errors for names in the wrong
case.

Summary

In this chapter, you learned about mixed language programming.

• Programs written in C can call functions written in assembly, FORTRAN,
Pascal, and BASIC, provided the compiler supports mixed language calls to the
language to be called.

Part III • Working with Others

466

• A function written in C can be called from other languages. When a C func-
tion is called from an assembly program, library functions can be called
provided the C startup code is incorporated into the assembly program. If the
other language is not assembly, however, the C library functions cannot be
used.

• You must consider how each of the variable types, especially arrays, are
handled between C and other languages. Do not exceed the bounds of an
array. Arrays in FORTRAN are indexed starting with one; arrays in C are
indexed starting with zero.

• The FORTRAN compiler converts all external identifiers in FORTRAN
programs to uppercase. C and assembly external identifiers can be mixed case.

• Arguments for a C function are placed on the stack in the opposite order of
arguments in FORTRAN or Pascal.

• With most C compilers, it is easy to write the shell of an assembly function in
C, compile it with an assembly listing option, and convert the assembly listing
to an assembly file. This ensures that the parameters, calling protocol, and
return values are correctly coded.

C and Databases

467

C C
CC
C

C
C
C C12C C

CC
C

C
C
C C
12

C and Databases

Computers generally do two things: number management and data management.
Most end users (nonprogrammers) manage data or numbers, and most of the software
tools they use are related to these two tasks.

Number management is usually performed using a spreadsheet program. Spread-
sheets are complex programs that enable a person to manipulate numeric data, generate
what-if scenarios, create reports, and so on. Because spreadsheet programs have
become standardized, there are a limited number of add-on products.

With data management systems, the story is different. Many custom add-on
programs directly interact with the database program and with files created with the
database program.

This chapter covers the interaction of C programs with database programs and
the use of the data files created with database programs. When the name dBASE is
mentioned, the information usually applies to most other compatible programs, such
as FoxBase.

Part III • Working with Others

468

Products such as R:Base and Oracle are incompatible with dBASE. You can write
callable C functions for use with R:Base, but the real power when using R:Base files
comes from a library of functions (available from Microrim, which supplies R:Base)
that allow C programs to access R:Base database files using the same command
functionality as the R:Base interactive commands.

Interfacing with dBASE-Compatible Programs

The primary way to interface with database programs is with Clipper, a dBASE-
compatible compiler (just like a C compiler). Clipper is not a C compiler, however,
so some of the calling conventions are different.

For example, a C function called from a Clipper program (Summer 1987
version) does not receive its arguments directly. Clipper places the arguments in
external variables, and the called function must make assignments from these external
variables.

Because there are no interfacing standards, the procedures for interfacing C with
a database program differ depending on the product. Knowing how to interface C with
dBASE, for example, will not help you interface C with Clipper, FoxBase, or Paradox.

Using dBASE Files Directly

Rather than using Clipper, dBASE, or another database program to access a dBASE
file, it is more common to include in a program the support to directly access a dBASE
and dBASE-compatible file.

There are three main versions of dBASE that you must work with. The
dBASE II program is old and rarely used. dBASE III is more common, is still used
extensively, and is the standard that other programs follow when creating a dBASE-
compatible file. The dBASE IV program is the latest of the dBASE programs that you
might encounter. This chapter covers dBASE III and dBASE IV’s file features that are
compatible with dBASE III.

Accessing a file created by dBASE is as easy as accessing any other file. The format
of a simple dBASE file is shown in Figure 12.1. This figure shows the layout of the file
header, the column headers, and the data.

C and Databases

469

C C
CC
C

C
C
C C12

Figure 12.1. A dBASE file.

This chapter does not describe the special features of dBASE IV or how to access
indexes. By the end of this chapter, however, you should be able to read a dBASE file
and create a file that dBASE can read.

The dBASE file format is simple. Using a program such as DUMP, you could
easily dump a simple dBASE file and determine the use of each file variable. So that
you do not have to do this, however, this section describes the two structures that make
up the file’s header.

The first structure (called DB3HEADER in Listing 12.1) defines the file header and
describes the dBASE file. This information enables you to determine the file’s
contents, such as the file’s record layout, the number of records in the file, the date the
file was updated, and the version of dBASE that created the file.

#pragma pack 1 /* Pack to byte boundaries */

typedef struct {

/* Bit fields are arranged from least significant

 to most significant */

 unsigned int bfVersion:7;

 unsigned int bfHasMemo:1;

 unsigned int bYear:8;

 unsigned char bMonth;

 unsigned char bDay;

 long int lNumberRecords;

 short int nFirstRecordOffset;

 short int nRecordLength;

Part III • Working with Others

470

 unsigned char szReserved[20];

 } DB3HEADER;

The main header structure has a series of bit field variables. This allows a direct
test of the memo field bit, which is otherwise difficult to access, as follows:

unsigned short int bfVersion:7;

The bfVersion variable is a 7-bit bit field. Its value designates the version of
dBASE that created the database file. For most dBASE-compatible files, bfVERSION
contains one of the values in Table 12.1.

Table 12.1. Version codes for dBASE-compatible files.

File type Description

0x02 dBASE II file. Generally incompatible with dBASE III.

0x03 dBASE III or FoxBase file. The file could have been created
with dBASE IV, but the file is compatible with dBASE III.

0x04 dBASE IV file, partially compatible with dBASE III file I/O
routines.

0x75 FoxBase file. The memo file bit is usually set (see discussion
of bfHasMemo).

0x0B dBASE IV file. Memo file bit is usually set (see discussion of
bfHasMemo).

Generally, a value of 3 in the version field (bfversion) means that the file is
compatible with dBASE III. If the bfHasMemo variable (a single bit) is True, a .DBT
memo file is included:

unsigned short int bfHasMemo:1;

The functions in this chapter do not access memo files, so this bit and any memo fields
can be ignored.

ANSI standards require a bit field to be defined as a short int, so the bYear byte-
sized variable (the year that the database was last updated) is included as the final eight
bits in the bit field:

unsigned short int bYear:8;

C and Databases

471

C C
CC
C

C
C
C C12

This prevents us from taking the address of this variable, but we never need its address.
(If we needed the address of bYear, we could define a union to map a variable to this
address.)

The bMonth byte variable contains the month the database was last updated:

unsigned char bMonth;

The bDay byte variable contains the day the database was last updated:

unsigned char bDay;

The lNumberRecords variable contains the number of database records in the
database. The program uses this value to determine how many records must be read.

long int lNumberRecords;

The number of fields in each record and the location of the first record is
computed with the nFirstRecordOffset variable:

unsigned short int nFirstRecordOffset;

Because a file seek operation requires a long type, you must cast this variable to a long.
A short int is used because a dBASE header is never more than 64K.

The nRecordLength variable holds the length of each record in the database:

short int nRecordLength;

The first byte of each record is a flag field. This flag field contains a blank if the record
is not deleted, or * if it has been deleted.

The reserved fields should not be used or modified. Generally, they contain
zeros:

unsigned char szReserved[20];

After the header is read, the column definition records (often called field
definition records) can be read. There is one column definition record for each column
in the database.

You usually do not know how many columns will be defined in a database when
you write your program (and please do not guess a “really large number”). Therefore,
the program must compute the number of column definitions by reading the
information in the file header.

Part III • Working with Others

472

Each column definition is contained in a structure as shown:

typedef struct {

 char szColumnName[11];

 char chType;

 long lFieldPointer;

 unsigned char byLength;

 unsigned char byDecimalPlace;

 char szReserved[14];

 } COLUMNDEF;

The first field, szColumnName, contains the name of the column as a standard C
string (terminated with \0). This name may be up to 10 characters long, leaving a
final 11th byte to hold the terminating \0.

char szColumnName[11];

The column type is coded in the single character member called chType:

char chType;

This code can contain any of the characters shown in Table 12.2. The field definition
characters in Table 12.2 are valid for dBASE III. For other versions of dBASE, other
fields may be defined.

Table 12.2. dBASE column definition characters.

Value Identifier Description

N NUMERIC_FIELD The field is a number, either integer (if the
decimal places are 0) or floating point.

C CHARACTER_FIELD The field is a character string.

L LOGICAL_FIELD The field is logical, containing Y, y, N, n,
T, t, F, or f

M MEMO_FIELD The field is a pointer to a 512-byte memo
field in the .DBT file, so the file position is
computed as 512 times the field’s value. A
memo field has a fixed length of 512 bytes.

D DATE_FIELD The field is a date formatted as
YYYYMMDD.

C and Databases

473

C C
CC
C

C
C
C C12

F FLOAT_FIELD The field is a floating-point number. (Not
found in all database programs because this
type is not dBASE III-compatible).

P PICTURE_FIELD The field is in picture format. (Not found
in all database programs because this type is
not dBASE III-compatible.)

The lFieldPointer member is used by some versions of dBASE as the displace-
ment of the field in the record:

long lFieldPointer;

Because you should not depend on this field being set, the field offsets are
computed based on the sizes of the previous fields. For most versions of dBASE,
lFieldPointer is initialized to zero. Many programs that create a dBASE-compatible
file use this field for their own purposes—whether this is a good idea is up to you, the
programmer.

The byLength member contains the length of the field:

unsigned char byLength;

This length is the only indicator of where one field ends and the other begins. The
sum of byLength for each column, plus 1 for the record status byte, equals the file
header’s nRecordLength member. (The record status byte is also called the deleted flag
byte and is the first byte in every record.)

The program uses the byDecimalPlace member to determine the format of the
numbers in the column. If the value of byDecimalPlace is zero, the numbers in the
column are integer. If the value is greater than zero, the numbers are floating point.
Because decimal places are stored in the database, you can use simple scanf() calls to
read the column’s value. If necessary, the column’s value can be saved for later display
of the number.

unsigned char byDecimalPlace;

Finally, 14 bytes of space in the column definition are unused and marked as
reserved. You should not use these bytes:

char szReserved[14];

Value Identifier Description

Part III • Working with Others

474

Reading dBASE and dBASE-Compatible Files

Reading dBASE-compatible files is a simple process. These files consist of a file header,
column headers, and data. They are organized in a fixed manner, have a simple
structure, and have data that is generally in an ASCII format, easily read into a set of
variables using sscanf() function calls.

To read a dBASE file, you need only a simple program. Listing 12.1, DBREAD.C,
reads a dBASE III file and prints each record’s raw data to the screen.

Listing 12.1. DBREAD.C.

/* DBREAD, written 1992 by Peter D. Hipson */

/* This program reads dBASE III files. /*

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

/* Some defines useful for dBASE files: */

/* Actual record status defines (first byte of each record) */

#define DELETED_RECORD ‘*’

#define USABLE_RECORD ‘ ‘

/* Field (column) definitions (capital letters, please) */

#define NUMERIC_FIELD ‘N’

#define CHARACTER_FIELD ‘C’

#define LOGICAL_FIELD ‘L’

#define MEMO_FIELD ‘M’

#define DATE_FIELD ‘D’

#define FLOAT_FIELD ‘F’

#define PICTURE_FIELD ‘P’

/* End of dBASE defines */

#pragma pack(1) /* Pack to byte boundaries */

typedef struct {

C and Databases

475

C C
CC
C

C
C
C C12

/* Bitfields are arranged from least significant to most significant */

 unsigned int bfVersion:7;

 unsigned int bfHasMemo:1;

 unsigned int bYear:8;

 unsigned char bMonth;

 unsigned char bDay;

 long int lNumberRecords;

 short int nFirstRecordOffset;

 short int nRecordLength;

 unsigned char szReserved[20];

 } DB3HEADER;

typedef struct {

 char szColumnName[11];

 char chType;

 long lFieldPointer;

 unsigned char byLength;

 unsigned char byDecimalPlace;

 char szReserved[14];

 } COLUMNDEF;

int main()

{

FILE *DBFile;

DB3HEADER db3Header;

COLUMNDEF *ColumnDef;

unsigned char * pBuffer;

char szFileName[25];

int i;

int nColumnCount = 0;

int nResult;

continues

Part III • Working with Others

476

Listing 12.1. continued

long lCurrentRecord = 0;

double dSales = 0.0; /* Forces loading of floating point support.*/

 printf(“sizeof(DB3HEADER) = %d\n”, sizeof(DB3HEADER));

 printf(“sizeof(COLUMNDEF) = %d\n”, sizeof(COLUMNDEF));

 printf(“Please enter customer database name: “);

 gets(szFileName);

 DBFile = fopen(szFileName, “rb”);

 if (DBFile == NULL)

 {

 fprintf(stderr,

 “ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

 nResult = fread((char *)&db3Header,

 sizeof(DB3HEADER),

 1,

 DBFile);

 if (nResult != 1)

 {

 if (!feof(DBFile))

 {

 fprintf(stderr, “ERROR: File ‘%s’, read error (Database \

 header).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

C and Databases

477

C C
CC
C

C
C
C C12

 else

 {

 fprintf(stderr, “Unexpected end of database file ‘%s’.\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 }

 if (db3Header.bfHasMemo)

 {

 printf(“There is a .DBT memo\n”);

 }

 else

 {

 printf(“There is no a .DBT memo\n”);

 }

 printf(“Created with version %d of dBASE. \n”,

 db3Header.bfVersion);

 if (db3Header.bfVersion != 3 &&

 db3Header.bfVersion != 4)

 {

 printf(“The version of dBASE that created this file “

 “may not be compatible.\n”);

 }

 printf(“Updated last on: %d/”, db3Header.bMonth);

 printf(“%d”, db3Header.bDay);

 printf(“ 19%d\n”, db3Header.bYear);

 printf(“There are %ld records in the database. \n”,

 db3Header.lNumberRecords);

 printf(“The first record starts at byte %d. \n”,

 db3Header.nFirstRecordOffset);

 printf(“Each record is %d bytes long. \n”,

 db3Header.nRecordLength);

continues

Part III • Working with Others

478

 printf(“The reserved field contains ‘%s’ \n”,

 db3Header.szReserved);

 nColumnCount =

 (db3Header.nFirstRecordOffset - sizeof(DB3HEADER)) /

 sizeof(COLUMNDEF);

 printf(“There are %d columns in each record. \n”, nColumnCount);

/* Now allocate memory for each of the column definitions: */

 ColumnDef = (COLUMNDEF *)calloc(sizeof(COLUMNDEF), nColumnCount);

 if (ColumnDef == (COLUMNDEF *)NULL)

 {

 fprintf(stderr,

 “Couldn’t allocate memory for the column definitions \n”);

 fclose(DBFile);

 exit(4);

 }

 nResult = fread((char *)ColumnDef,

 sizeof(COLUMNDEF),

 nColumnCount,

 DBFile);

 if (nResult != nColumnCount)

 {

 if (!feof(DBFile))

 {

 fprintf(stderr, “ERROR: File ‘%s’, read error (Column \

 definitions).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

Listing 12.1. continued

C and Databases

479

C C
CC
C

C
C
C C12

 else

 {

 fprintf(stderr, “Unexpected end of database file ‘%s’”

 “ while reading column definitions.\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 }

 printf(“Column definitions: \n”);

 for (i = 0; i < nColumnCount; i++)

 {

 printf(“Name: ‘%10.10s’ “, ColumnDef[i].szColumnName);

 switch(ColumnDef[i].chType)

 {

 case NUMERIC_FIELD: /* Number field */

 printf(“ (Numeric)\n”);

 break;

 case CHARACTER_FIELD: /* Character field */

 printf(“ (Character)\n”);

 break;

 case LOGICAL_FIELD: /* Logical (using ‘Y’, ‘N’, etc */

 printf(“ (Logical)\n”);

 break;

 case MEMO_FIELD: /* Memo Index field */

 printf(“ (Memo file .DBT Index)\n”);

 break;

 case DATE_FIELD: /* Date in YYYYMMDD format */

 printf(“ (Date in YYYYMMDD)\n”);

 break;

continues

Part III • Working with Others

480

 case FLOAT_FIELD: /* Floating point field */

 printf(“ (Floating point)\n”);

 break;

 case PICTURE_FIELD: /* Date in YYYYMMDD format */

 printf(“ (Picture format)\n”);

 break;

 default: /* Unknown type of field */

 printf(“ (Field type unknown)\n”);

 break;

 }

 printf(“Length: %d\n”, ColumnDef[i].byLength);

 printf(“DecimalPoint: %d\n”, ColumnDef[i].byDecimalPlace);

 printf(“Reserved ‘%s’\n”, ColumnDef[i].szReserved);

 }

/* Next allocate the buffer to hold a database record

 * We add a byte for the terminating \0, which is not supplied by

 * dBASE as part of the record.

 */

 pBuffer = (unsigned char *)calloc(sizeof(char),

 db3Header.nRecordLength + 1);

 if (pBuffer == (unsigned char *)NULL)

 {

 fprintf(stderr,

 “Couldn’t allocate memory for the column buffer\n”);

 fclose(DBFile);

 exit(4);

 }

 nResult = fseek(DBFile,

 (long)db3Header.nFirstRecordOffset, SEEK_SET);

 if (nResult != 0)

Listing 12.1. continued

C and Databases

481

C C
CC
C

C
C
C C12

 {

 if (!feof(DBFile))

 {

 fprintf(stderr, “ERROR: File ‘%s’, seek error.\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 else

 {

 fprintf(stderr, “Unexpected end of database file ‘%s’”

 “ while reading record.\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 }

 for (lCurrentRecord = 0;

 lCurrentRecord < db3Header.lNumberRecords;

 ++lCurrentRecord)

 {

 nResult = fread((char *)pBuffer,

 db3Header.nRecordLength, 1, DBFile);

 if (nResult != 1)

 {

 if (!feof(DBFile))

 {

 fprintf(stderr, “ERROR: File ‘%s’, read error \

(records).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 else

continues

Part III • Working with Others

482

 {

 fprintf(stderr, “Unexpected end of database file ‘%s’”

 “ while reading records.\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 }

 pBuffer[db3Header.nRecordLength] = ‘\0’;

/* Where we print inside the switch, a program that would use the

 * database records would parse, and read each field, probably

 * using a built format string and a call to sscanf().

 */

 switch(pBuffer[0])

 {

 case USABLE_RECORD: /* Valid, undeleted record */

 printf(“Record ‘%s’\n”, &pBuffer[1]);

 break;

 case DELETED_RECORD: /* Record has been deleted. Usually,

 you’d ignore it. */

 printf(“Deleted ‘%s’\n”, &pBuffer[1]);

 break;

 default: /* The record’s status is unknown */

 printf(“Unknown ‘%s’\n”, &pBuffer[1]);

 break;

 }

 }

 return(0);

}

Listing 12.1. continued

C and Databases

483

C C
CC
C

C
C
C C12

In DBREAD, first the file is opened, then the file header is read into the
DB3HEADER structure. The information placed in this structure is used to read the
column definitions and the data records.

Next, the program allocates the memory for the column definitions by comput-
ing the number of columns:

nColumnCount =

 (db3Header.nFirstRecordOffset - sizeof(DB3HEADER)) /

 sizeof(COLUMNDEF);

The calloc() function uses the nColumnCount variable to allocate the required
memory. The column definitions are saved for later use.

ColumnDef = (COLUMNDEF *)calloc(sizeof(COLUMNDEF), nColumnCount);

After the memory is allocated, the column definitions are read. A loop is not
necessary; the program uses one read in which the number of bytes is computed from
the size of the structure and the number of columns in the database:

nResult = fread((char *)ColumnDef,

 sizeof(COLUMNDEF),

 nColumnCount,

 DBFile);

After all the columns have been read (determined by the return value from a call
to the fread() function), the program can process them as required. In this simple
example, the information is printed to the screen. A for() loop is an easy and effective
way to process the columns:

for (i = 0; i < nColumnCount; i++)

{

 printf(“Name: ‘%10.10s’ “, ColumnDef[i].szColumnName);

When the format of the records has been determined, the program can process
the records in the dBASE file. First, a buffer must be allocated to hold the records. The
buffer’s size is known (or can be computed from the size of each record, not forgetting
the byte for the record’s status):

pBuffer = (unsigned char *)calloc(sizeof(char),

 db3Header.nRecordLength + 1);

Because we do not use dBASE’s index files, we accept the records in the order that
they are stored in the file, using a simple for() loop. Before reading the records, I
recommend that you do a seek to the known point where the first record can be found.

Part III • Working with Others

484

This is necessary because dBASE adds a carriage return (0x0D) after the column
definitions and may well add another extra byte. This point is found in the file header,
in the nFirstRecordOffset member of the DB3HEADER structure.

nResult = fseek(DBFile,

 (long)db3Header.nFirstRecordOffset, SEEK_SET);

The program is now at the position of the first record in the dBASE file, so it can
read each record:

for (lCurrentRecord = 0;

 lCurrentRecord < db3Header.lNumberRecords;

 ++lCurrentRecord)

{

 nResult = fread((char *)pBuffer,

 db3Header.nRecordLength, 1, DBFile);

As each record is read, the first byte tells you the status of the record. If the first
byte is a blank, the record is not deleted. If the byte is *, the record has been deleted
and should not be processed (unless you are writing a deleted record processor!).

Creating dBASE and dBASE-Compatible Files

With a little care, you can read a dBASE file or create a dBASE-compatible file without
difficulty. The process of creating a dBASE-compatible file is basically the reverse of
reading a file.

Listing 12.2, DBWRITE.C, is a simple program that creates a simple dBASE III-
compatible .DBF file. This file can be read by any program that can read dBASE files.

Listing 12.2. DBWRITE.C.

/* DBWRITE, written 1992 by Peter D. Hipson */

/* This program creates a dBASE-compatible file. */

/* Derived from DBREAD.C */

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

C and Databases

485

C C
CC
C

C
C
C C12

/* Some defines that are useful for dBASE files: */

/* Record status defines (first byte of each record) */

#define DELETED_RECORD ‘*’

#define USABLE_RECORD ‘ ‘

/* Field (column) definitions (capital letters, please) */

#define NUMERIC_FIELD ‘N’

#define CHARACTER_FIELD ‘C’

#define LOGICAL_FIELD ‘L’

#define MEMO_FIELD ‘M’

#define DATE_FIELD ‘D’

#define FLOAT_FIELD ‘F’

#define PICTURE_FIELD ‘P’

/* End of dBASE defines */

#pragma pack(1) /* Pack to byte boundaries */

typedef struct {

/* Bit fields are arranged from least significant to most significant */

 unsigned int bfVersion:7;

 unsigned int bfHasMemo:1;

 unsigned int bYear:8;

 unsigned char bMonth;

 unsigned char bDay;

 long int lNumberRecords;

 short int nFirstRecordOffset;

 short int nRecordLength;

 unsigned char szReserved[20];

 } DB3HEADER;

typedef struct {

 char szColumnName[11];

 char chType;

 long lFieldPointer;

 unsigned char byLength;

 unsigned char byDecimalPlace;

 char szReserved[14];

 } COLUMNDEF;

continues

Part III • Working with Others

486

Listing 12.2. continued

int main()

{

FILE *DBFile;

DB3HEADER db3Header;

struct _DBRECORD {

 char sStatus[1]; /* Status does not count as a member */

 char sName[40];

 char sAddr1[40];

 char sAddr2[40];

 char sCity[20];

 char sState[2];

 char sZip[5];

 } OurRecord;

char *pOurRecord;

COLUMNDEF ColumnDef[6]; /* Six members in OurRecord */

char szBuffer[200]; /* Work buffer */

char szTime[26];

char szFileName[25];

int i;

int nColumnCount = 0;

int nResult;

long lCurrentRecord = 0;

double dSales = 0.0; /* Forces loading of floating-point support */

struct tm *NewTime;

time_t aClock;

/* Step 1. Determine the layout of the columns (fields). In this

 * example, they are predefined. In other programs, you

C and Databases

487

C C
CC
C

C
C
C C12

 * might determine the column layout by prompting the user

 * or by examining the user’s data.

 */

 printf(“Please enter new database name: “);

 gets(szFileName);

 DBFile = fopen(szFileName, “wb”);

 if (DBFile == NULL)

 {

 fprintf(stderr,

 “ERROR: File ‘%s’ couldn’t be opened.\n”, szFileName);

 exit(4);

 }

/* Step 2. Initialize and write the header record.

 */

 time(&aClock);

 NewTime = localtime(&aClock);

 memset(&db3Header, 0, sizeof(db3Header));

 /* Make it dBASE III-compatible */

 db3Header.bfVersion = 3;

 /* Make it a database with no memo fields */

 db3Header.bfHasMemo = 0;

 /* Set the date to now, but UPDATE when closing */

 /* because date may have changed */

 db3Header.bYear = NewTime->tm_year;

 db3Header.bMonth = (unsigned char)(NewTime->tm_mon + 1);

 db3Header.bDay = (unsigned char)NewTime->tm_mday;

 /* No records in the database yet */

 db3Header.lNumberRecords = 0;

continues

Part III • Working with Others

488

Listing 12.2. continued

 /* File header, plus column headers, plus a byte for the carriage

return */

 db3Header.nFirstRecordOffset = sizeof(DB3HEADER) + sizeof(ColumnDef)

 + 2;

 /* Make it the size of a record in the database */

 db3Header.nRecordLength = sizeof(OurRecord);

 nResult = fwrite((char *)&db3Header,

 sizeof(DB3HEADER),

 1,

 DBFile);

 if (nResult != 1)

 {

 fprintf(stderr, “ERROR: File ‘%s’, write error (Database \

header).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

/* Step 3. Initialize the column headers using the information from step

 1.*/

 memset(ColumnDef, 0, sizeof(ColumnDef));

/* Do the following for each column, either inline or using a loop */

 strcpy(ColumnDef[0].szColumnName, “Name”);

 ColumnDef[0].chType = CHARACTER_FIELD;

 ColumnDef[0].byLength = sizeof(OurRecord.sName);

 ColumnDef[0].byDecimalPlace = 0;

 strcpy(ColumnDef[1].szColumnName, “Address1”);

 ColumnDef[1].chType = CHARACTER_FIELD;

 ColumnDef[1].byLength = sizeof(OurRecord.sAddr1);

C and Databases

489

C C
CC
C

C
C
C C12

 ColumnDef[1].byDecimalPlace = 0;

 strcpy(ColumnDef[2].szColumnName, “Address2”);

 ColumnDef[2].chType = CHARACTER_FIELD;

 ColumnDef[2].byLength = sizeof(OurRecord.sAddr2);

 ColumnDef[2].byDecimalPlace = 0;

 strcpy(ColumnDef[3].szColumnName, “City”);

 ColumnDef[3].chType = CHARACTER_FIELD;

 ColumnDef[3].byLength = sizeof(OurRecord.sCity);

 ColumnDef[3].byDecimalPlace = 0;

 strcpy(ColumnDef[4].szColumnName, “State”);

 ColumnDef[4].chType = CHARACTER_FIELD;

 ColumnDef[4].byLength = sizeof(OurRecord.sState);

 ColumnDef[4].byDecimalPlace = 0;

 strcpy(ColumnDef[5].szColumnName, “Zipcode”);

 ColumnDef[5].chType = CHARACTER_FIELD;

 ColumnDef[5].byLength = sizeof(OurRecord.sZip);

 ColumnDef[5].byDecimalPlace = 0;

 nResult = fwrite((char *)ColumnDef,

 sizeof(ColumnDef),

 1,

 DBFile);

 if (nResult != 1)

 {

 fprintf(stderr, “ERROR: File ‘%s’, write error (Column \

headers).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

/* Step 4. Write a carriage return (and a NULL) to meet dBASE standards

 */

continues

Part III • Working with Others

490

Listing 12.2. continued

 nResult = fwrite((char *)”\x0D\0",

 sizeof(char) * 2,

 1,

 DBFile);

 if (nResult != 1)

 {

 fprintf(stderr, “ERROR: File ‘%s’, write error (Column \

headers).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 db3Header.nFirstRecordOffset = (int)ftell(DBFile);

/* Step 5. Get some records for the database. */

 memset(&OurRecord, 0, sizeof(OurRecord));

 printf(“Enter the name: (or no name to end)”);

 gets(szBuffer);

 strncpy(OurRecord.sName, szBuffer, sizeof(OurRecord.sName));

 while (strlen(szBuffer) > 0)

 {

 OurRecord.sStatus[0] = USABLE_RECORD;

 printf(“Enter address line 1: “);

 gets(szBuffer);

 strncpy(OurRecord.sAddr1, szBuffer, sizeof(OurRecord.sAddr1));

 printf(“Enter address line 2:”);

 gets(szBuffer);

 strncpy(OurRecord.sAddr2, szBuffer, sizeof(OurRecord.sAddr2));

 printf(“Enter city:”);

C and Databases

491

C C
CC
C

C
C
C C12

 gets(szBuffer);

 strncpy(OurRecord.sCity, szBuffer, sizeof(OurRecord.sCity));

 printf(“Enter state (2 characters only):”);

 gets(szBuffer);

 strncpy(OurRecord.sState, szBuffer, sizeof(OurRecord.sState));

 printf(“Enter Zipcode:”);

 gets(szBuffer);

 strncpy(OurRecord.sZip, szBuffer, sizeof(OurRecord.sZip));

/* dBASE records do not contain NULLs, but are padded with

 * blanks instead, so we convert the NULLs to spaces

 */

 pOurRecord = (char *)&OurRecord;

 for (i = 0; i < sizeof(OurRecord); i++)

 {

 if (pOurRecord[i] == ‘\0’)

 {

 pOurRecord[i] = ‘ ‘;

 }

 }

 nResult = fwrite((char *)&OurRecord,

 sizeof(OurRecord),

 1,

 DBFile);

 if (nResult != 1)

 {

 fprintf(stderr, “ERROR: File ‘%s’, write error (Column \

 headers).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 else

 {

continues

Part III • Working with Others

492

Listing 12.2. continued

 ++db3Header.lNumberRecords;

 }

 memset(&OurRecord, 0, sizeof(OurRecord));

 printf(“Enter the name: (or no name to end)”);

 gets(szBuffer);

 strncpy(OurRecord.sName, szBuffer, sizeof(OurRecord.sName));

 }

/* Step 6. Update the file header with the current time and

 * the number of records.

 */

 time(&aClock);

 NewTime = localtime(&aClock);

 /* Set the date to now */

 db3Header.bYear = NewTime->tm_year;

 db3Header.bMonth = (unsigned char)(NewTime->tm_mon + 1);

 db3Header.bDay = (unsigned char)NewTime->tm_mday;

 /* The number of records is already set */

 nResult = fseek(DBFile, (long)0, SEEK_SET);

 if (nResult != 0)

 {

 fprintf(stderr, “ERROR: File ‘%s’, seek error (rewrite of \

header).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

 nResult = fwrite((char *)&db3Header,

 sizeof(DB3HEADER),

C and Databases

493

C C
CC
C

C
C
C C12

 1,

 DBFile);

 if (nResult != 1)

 {

 fprintf(stderr, “ERROR: File ‘%s’, write error (Database header \

rewrite).\n”,

 szFileName);

 fclose(DBFile);

 exit(4);

 }

/* Finished. Close the file and end the program.

 */

 fclose(DBFile);

 return(0);

}

Your program that creates a dBASE file must do the following, in order:

1. Determine the record layout. This may have been already defined by the
application’s requirements, or you may be using information supplied by the
user. Each field must have a type and a length.

2. Initialize and write a dBASE file header (our DB3READ structure). You must
initialize the record size (sum of fields plus the leading record deleted byte), the
pointer to the first record, usually the byte after the end of header byte (see
step 4), the date, and the time.

3. Initialize and write the field headers (our COLUMNDEF structure). Be sure you
specify the field’s name, length, and type.

4. Write the end of the header byte (0x0D); following the header byte with a
NULL byte (0x00) is optional.

5. Write the records placed in the file at creation time. Be sure the deleted flag is
set to blank so that the initial records are not deleted.

Part III • Working with Others

494

6. Seek to the beginning of the file and reset the file header’s number of records
count, date, and time. (The date and time are reset because they have changed
since they were last written.) Rewrite the file header.

Each of these six steps were followed in DBWRITE.C and are indicated by comments
in the program.

Updating dBASE and dBASE-Compatible Files

When you update a dBASE file, I suggest that you update a copy of the original file.
If you update the original file, you risk damaging the original file if your program
crashes. I never work on the only copy of a file. Instead, I copy the original .DBF file
to a .BAK file or a temporary work file.

The steps for updating a dBASE file follow:

1. Read the file header and the column (field) header records.

2. Read the file’s data records if necessary. Append to the file any new records
that the user creates. If the user is deleting a record, mark it with the * delete
flag in the first column (the deleted field) of the data record. Modify records as
necessary. When modifying a record, many programs mark the original record
as deleted, then make the changed record a new record. Although this tech-
nique is acceptable, the database file may grow excessively if many records are
changed.

3. Write the updated file header record with a new date and record count.

Using a dBASE-compatible file structure increases your program’s flexibility
because the user can use other utilities (including a database program) to manipulate
the data files.

Summary

In this chapter, you learned about interfacing C with database programs and with files
created by dBASE-compatible programs.

• Database programs are one of the most common computer applications.

• The most common database file format is the dBASE III format. It is simple
and easy to use.

C and Databases

495

C C
CC
C

C
C
C C12

• A dBASE III .DBF file can be read using two structures, as shown in the
chapter.

• A dBASE III file can be created using simple C functions.

• A .DBF file can contain deleted records. It is possible to write a program that
recreates the database and undeletes the deleted records—if the database has
not been packed and the space that the deleted records occupied has not been
lost.

Part III • Working with Others

496

All About Header Files

497

C C
CC
C

C
C
C C13C C

CC
C

C
C
C C13

All About Header Files

Header files are a feature of the C language that helps the programmer write better
programs. There are two types of header files: the files that the programmer writes and
the files that come with your compiler. This chapter covers fifteen standard C header
files. First, though, the chapter reviews the usage of function prototypes and how to
make your prototypes more effective.

The terms header file and include file are commonly used interchangeably.
There are no differences between the two—header files are include files.

Function Prototypes

One of the most valuable improvements to C is the addition of function prototypes.
A function prototype specifies the order and types of arguments that will be passed to

Part III • Working with Others

498

a function. It specifies also the type of the function’s return value, if the function
returns a value. In early versions of C, the compiler would accept any arguments to a
function.

Suppose that a function called MultFloat() accepts two float arguments and
returns the product of the two arguments as a float. Using an early version of C that
does not have function prototypes, you could pass two integers to MultFloat(). These
arguments would be passed unchanged, and MultFloat()—unaware of the wrong
argument types—would return a bogus value or signal a floating-point error.

A function prototype consists of three major parts:

• The return value. If the function returns nothing, the prototype should have a
return type of void.

• The function’s name. I recommend that you use mixed case and no under-
scores. Underscores can be a problem with linkers that allow only six signifi-
cant characters.

• The function’s parameters. Be explicit about size and type when possible. If
you can, include the variable name that will be used by the function because
the name implies what the argument does.

The function prototype is the declaration of the function. The function itself is
defined (and has a body) later in the program or in a different source file.

Following is a function prototype for a function that compares two strings:

int OurStrCmp(void far *, void far *);

In this function prototype, a function returns an integer. The size of this integer is
unimportant and therefore undefined—it could be short or long, depending on the
compiler’s default integer size. If the size of the returned value is important, you must
specify the size. OurStrCmp() returns a value that is only less than zero, zero, or greater
than zero.

Both of the parameters passed to the function are defined as pointers to type void.
Here, the void type means the pointers have no specific type, and any pointer type can
be passed. If your function expects only a character string pointer, specify this in your
function prototype. If the arguments will not be modified when passing pointers,
specify this also using the const keyword.

All About Header Files

499

C C
CC
C

C
C
C C13

Because OurStrCmp() only compares strings, the prototype could be more
specific. Rewriting the function prototype for OurStrCmp() results in the following:

short int OurStrCmp(const char far *, const char far *);

Now the function prototype is more complete. However, let’s add the variable
names to make it more readable:

short int OurStrCmp(const char far * szStringA,

 const char far * szStringB);

This prototype is more detailed and allows the compiler to check the types of the
arguments passed to the function. In addition, when the function is created, the
prototype is used to check whether the function has been properly declared.

If you write your prototypes like the one presented here, the easiest way to write
the function for that prototype is to start with the prototype, delete the ending
semicolon, and add the function’s opening and closing braces. Although many
prototypes are written on one line, a function’s declaration is commonly written with
each argument on a new line, as follows:

short int OurStrCmp(/* Returns the result of the compare */

 const char far * szStringA, /* The first string to compare */

 const char far * szStringB) /* The second string to compare */

{

/* The body of the function */

} /* end: OurStrCmp() */

This function declaration fully documents the return value and the parameters.

When you create a header file, provide for the possibility that the header file is
included more than once. A typical way to do this is to create an identifier; if the
identifier exists, the header file has already been included. This could be coded as
follows:

#ifndef _MYHEADER

#define _MYHEADER

/* Other lines in this header file */

#endif /* _MYHEADER */

The _MYHEADER identifier must remain unique. This technique prevents errors from
symbols defined more than once.

Part III • Working with Others

500

The ANSI C Header Files

ANSI C compilers contain a number of standard header files. These files are used for
specific purposes—try not to include header files if you will not be using their
functionality. For example, if your program does not have any time-based functions,
including time.h will not improve your program but will slow the compiler.

Table 13.1 lists some common identifiers. The table includes both defined
identifiers and those that are integral parts of the C language.

Table 13.1. Typical header file identifiers.

Identifier Description

size_t An identifier that is guaranteed to hold the size of any
definable data object. This identifier is usually defined as
type unsigned int.

far With segmented (PC 80x86) architecture, a 32-bit pointer.
Usually consists of a segment (or selector) and an offset.

near With segmented (PC 80x86) architecture, a 16-bit pointer.
Usually consists of an offset, without any segment (or
selector) information. The object being identified is in the
default segment.

_ _FILE_ _ The filename of the current file (and header files that have
been included).

_ _LINE_ _ The current line number of the current file. Each included
header file has its own number.

const A modifier that tells the compiler that the variable should be
treated as a constant and should not be modified.

volatile A modifier that tells the compiler that the variable may be
changed in a way that the compiler cannot detect. Examples
of undetectable changes are when the variable is modified by
an interrupt handler or by a function that uses setjmp().

All About Header Files

501

C C
CC
C

C
C
C C13

The rest of this chapter describes the standard C header files. Header files specific
to particular C compilers are not included in the discussion. To learn about compiler-
specific header files, refer to your compiler’s documentation and look at the files
themselves.

Your compiler may not contain all the header files described in this chapter. If
that is the case, the contents of the header file (or files) are probably included in another
header file. A likely choice is the stdlib.h file, which often serves as a catchall.

The assert.h File (ANSI)

The assert.h header file is used for the assert() macro. Note that assert() is always
implemented as a macro and is never directly implemented as a function.

You can test a condition with the assert() macro. If the condition tests as TRUE,
nothing happens. If the condition tests as FALSE, the following message is printed to
stderr:

Assertion failed: condition, filename, linenumber

The condition is printed as a text string, along with the source file name and the
current line number in the current file. After the message is printed, the program calls
abort() to end the program—a failed assert() definitely ends your program!

To turn off the effect of the assert() macro, you must define the NDEBUG
identifier. When this identifier is defined, assert() evaluates as ((void)0), which is
effectively nothing.

The typical definition of the assert() macro is

#define assert(exp)((exp) ? (void) 0 : \

 assert(#exp, _FILE_ _,_ _LINE_ _))

If the expression evaluates to FALSE, the condition, filename and line number in the
assert() macro are passed to a function. If the condition evaluates to TRUE, the macro
evaluates to ((void)0).

The assert() macro is a valuable tool when you are debugging your program,
but you must remember to define NDEBUG when creating the production version of the
program.

Part III • Working with Others

502

The ctype.h File (ANSI)

The ctype.h header file contains the character conversion functions that work with a
single character. For conversion functions that use strings, see the string.h header file.
A character can be classified as any one of the types shown in Table 13.2.

Table 13.2. Common character type identifiers not part of the

ANSI standard.

Identifier Description

_UPPER An uppercase letter

_LOWER A lowercase letter

_DIGIT A digit (0–9)

_SPACE A tab, a carriage return, a newline, a vertical tab, or a form
feed

_PUNCT A punctuation character

_CONTROL A control character

_BLANK A space character

_HEX A hexadecimal digit (0–9, a–f, A–F)

The following functions are defined in the ctype.h header file. Although these
functions are defined with a parameter type of int, they are typically passed a parameter
of char. The compiler performs the necessary conversion.

isalpha() Returns TRUE if the character is alphabetic

isupper() Returns TRUE if the character is uppercase

islower() Returns TRUE if the character is lowercase

isdigit() Returns TRUE if the character is a numeric digit

isxdigit() Returns TRUE if the character is a hexadecimal digit

isspace() Returns TRUE if the character is a whitespace character

ispunct() Returns TRUE if the character is a punctuation character

All About Header Files

503

C C
CC
C

C
C
C C13

isalnum() Returns TRUE if the character is alphabetic or numeric

isprint() Returns TRUE if the character is a printable character

isgraph() Returns TRUE if the character is a nonspace printable
character

iscntrl() Returns TRUE if the character is a control character

toupper() Converts the character to uppercase

tolower() Converts the character to lowercase

_tolower() Converts the character to lowercase

_toupper() Converts the character to uppercase

Many of these functions are also defined as macros. See Table 13.3. These macros
are used unless they are undefined using the #undef statement, which must be included
after the ctype.h header file is included.

Table 13.3. Character classification macros.

Macro Definition

isalpha(_c) ((_ctype+1)[_c] & (_UPPER|_LOWER))

isupper(_c) ((_ctype+1)[_c] & _UPPER)

islower(_c) ((_ctype+1)[_c] & _LOWER)

isdigit(_c) ((_ctype+1)[_c] & _DIGIT)

isxdigit(_c) ((_ctype+1)[_c] & _HEX)

isspace(_c) ((_ctype+1)[_c] & _SPACE)

ispunct(_c) ((_ctype+1)[_c] & _PUNCT)

isalnum(_c) ((_ctype+1)[_c] & (_UPPER|_LOWER|_DIGIT))

isprint(_c) ((_ctype+1)[_c] &

(_BLANK|_PUNCT|_UPPER|_LOWER|_DIGIT))

isgraph(_c) ((_ctype+1)[_c] &

(_PUNCT|_UPPER|_LOWER|_DIGIT))

iscntrl(_c) ((_ctype+1)[_c] & _CONTROL)

continues

Part III • Working with Others

504

Table 13.3. continued

Macro Definition

toupper(_c) ((islower(_c)) ? _toupper(_c) : (_c))

tolower(_c) ((isupper(_c)) ? _tolower(_c) : (_c))

_tolower(_c) ((_c)-'A'+'a')

_toupper(_c) ((_c)-'a'+'A')

_ _isascii(_c) ((unsigned)(_c) < 0x80)

_ _toascii(_c) ((_c) & 0x7f)

The character classification macros reference an array of bytes called _ctype. The
bits in this array are set based on the character’s classification. This allows a fast test of
a character’s attributes in a macro.

Both the toupper() and tolower() functions return the correctly converted
character or the supplied character if there is no conversion. It is no longer necessary
to check whether the character is uppercase or lowercase first.

The errno.h File (ANSI)

The errno.h header file has identifiers for the error codes returned by the errno()
function. C compilers may define different values for each identifier, so you should
never hard code an integer constant—use the identifier instead.

The errno() function is generally coded as a function, then defined to appear as
a variable called errno. Table 13.4 lists the common values for errno.

Table 13.4. Typical errno values.

Error code Description

E2BIG The argument list is too long.

EACCES You cannot access the file, probably because the file is not
compatible with your request or the file has an attribute
(such as read only) that is incompatible with your request.

All About Header Files

505

C C
CC
C

C
C
C C13

Error code Description

EAGAIN You cannot create any more child processes.

EBADF The specified file number is invalid (probably not a
currently opened file), or the file is opened in a mode
incompatible with the requested action.

EDEADLOCK The resource could not be locked (after a preset number of
tries), and a resource deadlock would occur.

EDOM The argument to a math function is not in the domain of
the function.

EEXIST The file that is to be created already exists.

EINVAL The specified argument is invalid.

EMFILE Too many files are open.

ENOENT The file or directory cannot be found.

ENOEXEC The file that was to be executed was not an executable file.

ENOMEM There is not enough RAM.

ENOSPC The disk drive is full.

ERANGE The argument to a math function was too large, resulting in
a partial or total loss of significance.

EXDEV An attempt was made to rename (using rename()) a file to a
new directory on a different drive.

Other errno values are specific to the environment or compiler. The use of errno
is generally defined in a function’s error conditions. For example, the description for
the read() function includes information that errno may be set to EBADF if a bad file
handle is encountered.

Include <io.h>, <errno.h>

Syntax int read(int handle, void *buffer, unsigned int

count);

Part III • Working with Others

506

Returns The number of bytes read or 0 at the end-of-file if the
function was successful. Returns -1 if the function was
not successful.

errno: EBADF

The float.h File (ANSI)

The floating-point header file, float.h, includes important information about the
implementation’s floating-point capabilities. This header file was discussed in
Chapter 2, “Data Types, Constants, Variables, and Arrays.”

The float.h header file is important to any program that uses floating-point
math.

As the following list shows, most of the float.h header file deals with various
constants. You can use these constants if necessary. For example, I use the FLT_MIN
value to indicate a value that is missing (which is different from a zero value in my
program).

DBL_DIG For a data type of float, the number of
decimal digits of precision

DBL_EPSILON For a data type of float, the smallest value
such that 1.0 + DBL_EPSILON != 1.0

DBL_MANT_DIG For a data type of double, the number of bits
in the mantissa

DBL_MAX For a data type of double, the maximum value

DBL_MAX_10_EXP For a data type of double, the maximum
decimal exponent

DBL_MAX_EXP For a data type of double, the maximum
binary exponent

DBL_MIN For a data type of double, the minimum
positive value

DBL_MIN_10_EXP For a data type of double, the minimum
decimal exponent

All About Header Files

507

C C
CC
C

C
C
C C13

DBL_MIN_EXP For a data type of double, the minimum
binary exponent

FLT_DIG For a data type of float, the number of
decimal digits of precision

FLT_EPSILON For a data type of float, the smallest value
such that 1.0 + FLT_EPSILON != 1.0

FLT_MANT_DIG For a data type of float, the number of bits in
the mantissa

FLT_MAX For a data type of float, the maximum value

FLT_MAX_10_EXP For a data type of float, the maximum
decimal exponent

FLT_MAX_EXP For a data type of float, the maximum binary
exponent

FLT_MIN For a data type of float, the minimum
positive value

FLT_MIN_10_EXP For a data type of float, the minimum
decimal exponent

FLT_MIN_EXP For a data type of float, the minimum binary
exponent

FLT_RADIX For a data type of float, the exponent radix

FLT_ROUNDS For a data type of float, addition rounding

LDBL_DIG For a data type of long double, the number of
decimal digits of precision

LDBL_EPSILON For a data type of long double, the smallest
value such that 1.0 + LDBL_EPSILON != 1.0

LDBL_MANT_DIG For a data type of long double, the number of
bits in the mantissa

LDBL_MAX For a data type of long double, the maximum
value

LDBL_MAX_10_EXP For a data type of long double, the maximum
decimal exponent

Part III • Working with Others

508

LDBL_MAX_EXP For a data type of long double, the maximum
binary exponent

LDBL_MIN For a data type of long double, the minimum
positive value

LDBL_MIN_10_EXP For a data type of long double, the minimum
decimal exponent

LDBL_MIN_EXP For a data type of long double, the minimum
binary exponent

The io.h File

The io.h header file supplements the stdio.h header file of ANSI C. The file, as shown
in this book, is used with various Microsoft versions of C. The io.h header file contains
various low-level I/O function prototypes.

The limits.h File (ANSI)

All parts of the C language contain limits. Many of the limits that apply to floating-
point math are in the float.h header file. The integer limits are in the limits.h header
file and are shown in the following list:

CHAR_BIT The number of bits in a char

SCHAR_MIN The minimum signed char value

SCHAR_MAX The maximum signed char value

UCHAR_MAX The maximum unsigned char value

CHAR_MIN and SCHAR_MIN The minimum char value

CHAR_MAX and SCHAR_MAX The maximum char value

MB_LEN_MAX The maximum number of bytes in a
multibyte char

SHRT_MIN The minimum (signed) short value

All About Header Files

509

C C
CC
C

C
C
C C13

SHRT_MAX The maximum (signed) short value

USHRT_MAX The maximum unsigned short value

INT_MIN The minimum (signed) int value

INT_MAX The maximum (signed) int value

UINT_MAX The maximum unsigned int value

LONG_MIN The minimum (signed) long value

LONG_MAX The maximum (signed) long value

ULONG_MAX The maximum unsigned long value

Rather than hard code numeric values for these values, always use the identifiers.

The locale.h File (ANSI)

There are more ways to tell the time than there are hours in a day. Many countries have
a special way of writing the time and date, and sometimes one country has more than
one way to specify the time or date.

The locale.h header file defines how time and dates are formatted for the current
country. You can set the locale by calling the C setlocale() function, with one of the
parameters in Table 13.5 as the first parameter. The second parameter is either the
character string "C" (for United States defaults) or " " for the native country’s defaults.
Any other string for the second parameter depends on the implementation of the
compiler.

Table 13.5. Locale identifiers used with the lconv structure.

Identifier Description

LC_ALL Sets all categories.

LC_COLLATE Sets the collate order. Used by strcoll() and strxfrm()

LC_CTYPE Sets the character set queries for ctype.h

LC_MONETARY Sets the display format for currency. No C functions use this
information.

continues

Part III • Working with Others

510

Table 13.5. continued

Identifier Description

LC_NUMERIC Sets the display format for numbers. Used by printf() and
scanf() type functions.

LC_TIME Sets the display format for the time. This affects strftime(),
ctime(), and asctime().

The localeconv() function returns a pointer to the internal lconv structure,
which contains the formatting information. The format and contents of lconv depend
on the compiler, and as such are not documented here.

Although you can get a pointer to the lconv structure, you must use the
setlocale() function to modify it rather than modify it directly. This limits your
direct use of the structure to read only. Save the information pointed to by localeconv()
in a buffer in your program because the structure pointed to by localeconv() may
change or move.

The malloc.h File

Your system may have a header file called malloc.h. This header supplements the
stdlib.h header file that is part of ANSI C. The malloc.h header file contains
functions, identifiers, and other things that deal with memory allocation.

The math.h File (ANSI)

The math.h header file defines prototypes for the various floating-point functions. The
math.h file and the errno.h file are often included with the float.h header file.

All About Header Files

511

C C
CC
C

C
C
C C13

The memory.h File

The memory.h header file contains function prototypes for the memory functions and
buffer manipulation functions. Many ANSI C compilers include these functions in the
string.h header file. See Table 13.6.

Table 13.6. Memory functions.

Function Description

memchr() Returns a pointer to the first byte in a block matching the
specified character

memcmp() Compares two blocks of memory, returning any differences

memcpy() Copies two nonoverlapping blocks of memory

memmove() Copies two blocks of memory, which may or may not
overlap

memset() Fills a block of memory with the specified byte

The memory functions are used in much the same way as the string functions.
Memory functions, however, work with a specific length; string functions expect a
terminating NULL to mark the end of the string.

The search.h File

The search.h header file contains function prototypes for the search and sort routines.
Many ANSI C compilers contain these functions in the stdlib.h header file. The
search function, bsearch(), performs a binary search. The sort function, qsort(),
performs a quick sort. Both functions require a user-written compare function.

Part III • Working with Others

512

The setjmp.h File (ANSI)

The setjmp() and longjmp() functions are defined in the setjmp.h header file. The
ANSI C standard defines setjmp() as a macro. However, some compiler producers
have written setjmp() as a function.

The signal.h File (ANSI)

ANSI C uses a signal to tell the program that an error has occurred. The signal.h
header file defines the conditions that are trapped and optionally passed to the
program. See Table 13.7.

Table 13.7. Signal values.

Value Description

SIGINT An interrupt, such as a Ctrl-C keypress. Required by ANSI.

SIGILL An illegal instruction or an anomaly in the program’s
execution that is usually caused by corrupted memory.
Required by ANSI.

SIGFPE A floating-point error or another math error exception.
Required by ANSI.

SIGSEGV An attempt to access memory was made that the program
does not allow. Required by ANSI.

SIGTERM The program was requested to end (probably caused by the
operating system shutting down). Required by ANSI.

SIGBREAK A Ctrl-Break sequence.

SIGABRT Abnormal termination, perhaps triggered with a call to
abort(). Required by ANSI.

The two functions that deal with signaling are raise(), which triggers a signal
condition, and signal(), which sets up the handler for the error condition.

All About Header Files

513

C C
CC
C

C
C
C C13

The stdarg.h File (ANSI)

The stdarg.h header file has been designed to replace the varargs.h header file.
Generally, you cannot mix these two header files in the same source file.

An important part of C programming is the capability to use a variable number
of arguments. Just think of how printf() or scanf() would work without this
capability.

If your program uses the stdarg.h header file, a function with a variable number
of arguments must have at least one fixed (always present) argument. This fixed
argument is passed to the va_start() routine to enable access to the variable
arguments.

The program in Listing 13.1, VARGS.C, shows two ways to use a variable
number of arguments. The OurErrors() function shows the use of vfprintf() as well.
Because the vfprintf() is new, many programmers do not fully understand it yet.

Listing 13.1. VARGS.C

/* VARGS, written 1992 by Peter D. Hipson */

/* This program demonstrates stdarg.h */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#define TRUE 1

#define FALSE (!TRUE)

int AddList(int nFirst, ...);

int OurErrors(char * OutputFormat, ...);

void main()

{

int nSum;

continues

Part III • Working with Others

514

Listing 13.1. continued

 nSum = AddList(10, 20, 30, 40, 50, 60, 70, 80, 90, INT_MIN);

 (void)OurErrors("%s - %d, %s\n", "First", nSum, "Second");

}

int AddList(

 int nFirst,

 ...)

{

int nReturnValue = nFirst;

int nThisValue;

va_list Arguments;

 va_start(Arguments, nFirst);

 while((nThisValue = va_arg(Arguments, int)) != INT_MIN)

 {

 nReturnValue += nThisValue;

 }

 va_end(Arguments);

 return(nReturnValue);

}

int OurErrors(

 char * OutputFormat,

 ...)

{

va_list Arguments;

 va_start(Arguments, OutputFormat);

All About Header Files

515

C C
CC
C

C
C
C C13

 vfprintf(stderr, OutputFormat, Arguments);

 va_end(Arguments);

 return(0);

}

The stddef.h File (ANSI)

The stddef.h header file is one of the more important header files for the C compiler.
This header file contains many common constants, identifiers, types, and variables, for
example, NULL and offsetof(). The NULL identifier is defined as zero or as a pointer that
is guaranteed to point to nothing. The offsetof() macro determines the offset from
the beginning of a structure to a given member. Most nontrivial programs should
include stddef.h.

The stdio.h File (ANSI)

Most of the higher level I/O functions are in the stdio.h header file. This file is used
in most (if not all) programs, because a program without I/O is rather uncommuni-
cative!

One item defined in stdio.h is the structure that the FILE* type points to. Note,
however, that you should never modify this structure’s members.

Also defined in stdio.h are the constants that fseek() uses, including SEEK_CUR
(the current file position), SEEK_END (the end of the file), and SEEK_SET (the beginning
of the file).

The stdio.h header file also contains the prototypes for the various I/O
functions and the standard file identifiers—stdin, stdout, stderr, stdaux, and
stdprn.

Part III • Working with Others

516

The stdlib.h File (ANSI)

The stdlib.h header file contains the definitions and declarations for commonly used
library functions. These library functions are usually found in the stdlib.h header file
because they do not fit elsewhere or cannot be placed in other header files for technical
reasons. This section describes some of the functions in the stdlib.h header file.

String Conversion

The string conversion functions convert strings to their numeric equivalent. The
conversion process is performed in accordance with the locale settings, so that the
thousands separator (a comma in the United States) may be recognized. The three
ANSI functions for string conversion are strtod(), strtol(), and strtoul().

Memory Allocation

If a compiler does not have a separate memory allocation header file (such as malloc.h),
the memory allocation functions are defined in stdlib.h.

Random Numbers

The C random number function is called rand(). The random numbers may be seeded
using srand(). The sequence of random numbers repeats, however, if srand() receives
the same seed each time. A common trick is to seed the random numbers with the
current time or the elapsed time between two (or more) keystrokes.

Communications with the Operating System

You can issue operating system commands with the system() function. This function’s
behavior is not defined by ANSI C, with two exceptions. If the system() function is
called with a NULL parameter, it returns TRUE if a command interpreter is present. If the
system() parameter is called with NULL and signal() returns zero, you cannot issue
commands to the operating system.

All About Header Files

517

C C
CC
C

C
C
C C13

You can use the atexit() function to tell the operating system which functions
should be called when the program ends. Although you can include functions, they
cannot be removed after installation.

You can use abort() to end your program. Regardless of the use of the SIGABORT
signal error handler, abort() will not return to the caller.

Search Functions

The bsearch() function is often defined in stdlib.h. Why bsearch() is defined here
and qsort() is not is beyond me.

Integer Math

ANSI C has two integer math functions. These functions enable you to divide two
integer values, and provide both a quotient and a remainder in one call. As well, these
functions produce more predictable results than the division operator.

Multibyte Characters

Because ANSI C supports multibyte character sets (useful for languages that do not use
the roman character set), there are functions to support character sets that have more
than 256 characters. These characters are represented with a two-byte sequence, and
their values depend on both the compiler and the language. You must read your
compiler’s documentation to determine which functions are provided and how to use
them.

The string.h File (ANSI)

The various string manipulation functions are defined in the string.h header file. This
file also contains various memory functions (such as the ones found in the memory.h
header file).

Part III • Working with Others

518

The time.h File (ANSI)

The time functions are in the time.h header file. ANSI C added the strftime()
function to the C language, which helps you format a time string.

The varargs.h File

In most C compilers, the varargs.h header file has been replaced with the stdarg.h
header file. You usually cannot mix these two header files in the same source file.

Summary

In this chapter, you learned about the ANSI standard header files.

• Although there are standards for header files, most compilers add header files
that offer additional functionality (such as graphics) or split the functionality
of existing ANSI header files into several new files (such as Microsoft’s use of
the memory.h header file).

• The varargs.h and the stdarg.h files both define the passing of a variable
number of arguments to a function. In general, the stdarg.h header file is
considered the ANSI standard way to pass a variable number of arguments.

Table of Contents

519

C C
CC
C

C
C
C CC

Part IV

Documenting the

Differences

Advanced C

520

ANSI C’s Library Functions

521

C C
CC
C

C
C
C C14C C

CC
C

C
C
C C14

ANSI C’s Library

Functions

This chapter presents the ANSI C standard functions. I have not included functions
that are not ANSI—there are several hundred additional non-ANSI functions that
vary both in function and implementation between different compilers. For the non-
ANSI functions, it is preferable to use the documentation that is supplied with the
compiler because there may be differences between different implementations of a
non-ANSI function that you would not expect.

Part IV • Documenting the Differences

522

Functions

The ANSI C libarary functions are presented below in alphabetical order.

abort()

Header: process.h & stdlib.h

Syntax: void abort(void);

Description: Aborts (ends) the current program or process.

Parameters: None.

Returns: Does not return to caller.

Example: if (nDisaster)

{

abort();

}

Note: Generally, use abort() only if recovery is not possible. Open files
will probably be lost and any work entered by the user and not
saved cannot be recovered.

abs()

Header: math.h & stdlib.h

Syntax: int abs(int nValue);

Description: Returns the absolute value of the provided parameter.

Parameters: nValue—A signed integer whose absolute value is desired.

Returns: Returns the absolute value of the provided parameter.

Example: printf(“abs(-20) = %d\n”, abs(-20));

/* Will print: abs(-20) = 20 */

ANSI C’s Library Functions

523

C C
CC
C

C
C
C C14

acos()

Header: math.h

Syntax: double acos(double dValue);

Description: Provides the principal arc cosine of dValue.

Parameters: dValue—Type double, ranging -1 to 1.

Returns: Arc cosine, a value between zero and 3.1415926.

Example: dArcCos = acos(0.4);

/* dArcCos will be 1.047 */

Note: Sets errno to EDOM if the parameter passed is outside the allowed
range.

asctime()

Header: time.h

Syntax: char * asctime(const struct tm *

 TimePointer);

Description: Converts time as contained in parameter TimePointer to a
character string. The string’s format follows the example:
Wed Jun 24 22:21:00 1992\n\0.

Parameters: A pointer to a properly initialized time structure.

Returns: A character pointer to a string. You should copy this string to your
program’s own memory if you wish to save it.

Example: struct tm tmTime;

time_t lTime;

 time(&lTime);

 tmTime = localtime(<ime);

 printf(“Time: ‘%s’”, asctime(&tmTime);

Note: Initialize the time structure (tm in the example) using time() and
localtime().

Part IV • Documenting the Differences

524

asin()

Header: math.h

Syntax: double asin(double dValue);

Description: Returns the arcsine of parameter dValue.

Parameters: dValue—Which must be in the range of -1 and 1.

Returns: The arcsine of dValue.

Example: dArcSine = asin(0.5);

/* dArcSine will be 0.5236 */

assert()

Header: assert.h

Syntax: void assert(unsigned nConditional);

Description: The assert() macro prints a message.

Parameters: nConditional—A conditional expression, such as (nCount < 0).

Returns: No return value.

Example: assert(nCount < 0);

Note: If the conditional expression evaluates to 0, then a message
containing the conditional expression, the source filename, and
line number is printed to stderr, and the program ends.

atan()

Header: math.h

Syntax: double atan(double dValue);

Description: Returns the arctangent of dValue.

Parameters: dValue—The value for which arctangent is desired.

ANSI C’s Library Functions

525

C C
CC
C

C
C
C C14

Returns: The arctangent of dValue.

Example: double dTangent

 dTangent = atan(0.25);

Note: Also see atan2().

atan2()

Header: math.h

Syntax: double atan2(double dValue1, double

 dValue2);

Description: Returns the arctangent of dValue1 and dValue2.

Parameters: dValue1—The first value whose arctangent is desired.

dValue2—The second value whose arctangent is desired.

Returns: The arctangent of dValue1 and dValue2.

Example: double dTangent

 dTangent = atan2(0.25, 3.2);

Note: Also see atan().

atexit()

Header: stdlib.h

Syntax: int atexit(void (* function)(void));

Description: Tells the system to call function when the program ends.

Parameters: function—Pointer to the function to be called.

Returns: Zero if atexit() is successful.

Example: atexit(OurExitFunction);

Note: Functions are called in a last in, first out manner. There is no way
to remove a function once it has been passed using atexit().

Part IV • Documenting the Differences

526

atof()

Header: math.h & stdlib.h

Syntax: double atof(const char * szString);

Description: Converts characters to a double value.

Parameters: szString—Pointer to a string containing the character represen-
tation of the double number.

Returns: A double value.

Example: dValue = atof(“1234.56”);

/* dValue will be 1234.56 */

Note: Conversion continues until the first invalid character is reached.
You can test errno to determine any errors that occurred.

atoi()

Header: stdlib.h

Syntax: int atoi(const char * szString);

Description: Converts characters to a short integer value.

Parameters: szString—Pointer to a string containing the character represen-
tation of the integer.

Returns: A short integer.

Example: nValue = atoi(“1234”);

/* nValue will be 1234 */

Note: Conversion continues until the first invalid character is reached.
You can test errno to determine any errors that occurred.

atol()

Header: stdlib.h

Syntax: long atol(const char * szString);

ANSI C’s Library Functions

527

C C
CC
C

C
C
C C14

Description: Converts characters to a long (32-bit) integer.

Parameters: szString—Pointer to a string containing the character
representation of the integer.

Returns: A long integer.

Example: lValue = atol(“12345678”);

/* lValue will be 12345678 */

Note: Conversion continues until the first invalid character is reached.
You can test errno to determine any errors that occurred.

bsearch()

Header: search.h & stdlib.h

Syntax: void * bsearch((void *key, const void *base,

 size_t num, size_t width,

 int (*compare)(const void *elem1,

 const void

 *elem2));

Description: Searches a sorted list for the given key value.

Parameters: key—Pointer to the key value to search for.

base—Pointer to the array to search.

num—Number of elements in the array being searched.

width—Size of an element in the array being searched.

compare—Pointer to a function that is doing the compare.

Returns: Either a pointer to a matching element or NULL if the key was not
found in the list.

Example: /* See Chapter 10, “Data Management: Sorts, Lists,

 and Indexes.”*/

Note: The array to be searched must be sorted; if it is not, the results are
undefined.

Part IV • Documenting the Differences

528

calloc()

Header: malloc.h & stdlib.h

Syntax: void * calloc(size_t nCount, size_t nSize);

Description: Allocates an array.

Parameters: nCount—Number of elements.

nSize—Size of each array element.

Returns: Either a pointer to the array or NULL if the memory couldn’t be
allocated.

Example: int *pOurArray;

 pOurArray = calloc(100, sizeof(int));

Note: The calloc() function initializes the memory to zero.

ceil()

Header: math.h

Syntax: double ceil(double dValue);

Description: Returns the smallest integer value not less than dValue.

Parameters: dValue—Number for which the ceiling value is desired.

Returns: The integer ceiling value, converted to a double.

Example: dCeil = ceil(-2.2);

/* dCeil will be -2.0 */

Note: See floor().

clearerr()

Header: stdio.h

Syntax: void clearerr(FILE * filepointer);

Description: Clears an existing end of file or other error condition for the
given file.

ANSI C’s Library Functions

529

C C
CC
C

C
C
C C14

Parameters: filepointer—Pointer to a stream file.

Returns: No return value.

Example: if (ferror(OpenFile))

 {

 clearerr(OpenFile);

 }

Note: See ferror() and fopen().

clock()

Header: time.h

Syntax: clock_t clock(void);

Description: Provides the number of clock ticks (amount of CPU time) used by
the program since it started.

Parameters: None.

Returns: CPU time.

Example: printf(“CPU time is %d\n”, clock() /

 CLOCKS_PER_SEC);

Note: The time returned is not elapsed time, but actual CPU time. In
multitasking systems, returned time varies greatly from elapsed
time. You convert this time returned by dividing it with the macro
CLOCKS_PER_SEC which is defined in time.h.

cos()

Header: math.h

Syntax: double cos(double dValue);

Description: Returns the cosine of dValue (in radians).

Parameters: dValue—Value to compute the cosine of.

Returns: Cosine of dValue.

Part IV • Documenting the Differences

530

Example: dReturned = cos(0.5)

/* dReturned will be 0.877583 */

Note: When dValue is a large value, the result may not be significant.

cosh()

Header: math.h

Syntax: double cosh(double dValue);

Description: Returns the hyperbolic cosine of dValue (in radians).

Parameters: dValue—Value to compute the hyperbolic cosine of.

Returns: Hyperbolic cosine of dValue.

Example: dReturned = cosh(0.5)

/* dReturned will be 1.1276 */

Note: When dValue is a large value, the result may not be significant.

ctime()

Header: time.h

Syntax: char * ctime(const time_t * TimeBuffer);

Description: Converts the time pointed to by TimeBuffer into a printable
format.

Parameters: TimeBuffer—Pointer to a data object of type time_t, properly
initialized (perhaps by using time()).

Returns: Pointer to a character string, which is formatted as the example:
Fri Jun 26 15:17:00 1992\n\0

Example: time_t OurTime = time(NULL);

 printf(ctime(&OurTime);

Note: This function is equal to calling asctime(localtime(TimeBuffer)).

ANSI C’s Library Functions

531

C C
CC
C

C
C
C C14

difftime()

Header: time.h

Syntax: double difftime(time_t starttime, time_t

 endtime);

Description: Computes and returns the difference between starttime and
endtime (in seconds).

Parameters: startime—Time interval start.

endtime—Time interval end.

Returns: Double time difference, in seconds.

Example: time_t StartTime = time(NULL);

time_t EndTime;

char szBuffer[100];

 printf(“Wait a few seconds, and press

 return\n”);

 gets(szBuffer);

 EndTime = time(NULL);

 printf(“You waited %f seconds\n”,

 difftime(EndTime, StartTime);

Note: Don’t forget that the difference is in seconds.

div()

Header: stdlib.h

Syntax: div_t div(int numerator, int denominator);

Description: Returns both the quotient and remainder from the division of
numerator by denominator.

Parameters: numerator—Integer value to be divided.

denominator—Integer value to divide by.

Returns: Structure div_t containing the result of the division.

Part IV • Documenting the Differences

532

Example: div_t DivResult;

 DivResult = div(100, 3);

Note: Also see ldiv().

exit()

Header: process.h & stdlib.h

Syntax: void exit(int nExitCode);

Description: Causes the program to end.

Parameters: nExitCode—An integer passed back to the parent process.

Returns: Does not return.

Example: exit(0);

Note: On MS-DOS systems, only the low order byte of nExitCode is
available.

exp()

Header: math.h

Syntax: double exp(double dValue);

Description: Returns the exponential value of dValue, such that exp(x)=ex.

Parameters: dValue—Value whose exponential value is desired.

Returns: Exponential value of dValue.

Example: double dExp;

 dExp = exp(.5);

/* dExp will be 1.6487 */

Note: An ERANGE error occurs if dValue is too large.

ANSI C’s Library Functions

533

C C
CC
C

C
C
C C14

fabs()

Header: math.h

Syntax: double fabs(double dValue);

Description: Returns the absolute value of dValue.

Parameters: dValue—Double for which absolute value is desired.

Returns: The absolute value of dValue.

Example: double dAbs = fabs(-0.2);

/* dAbs will be 0.2 */

Note: Also see abs().

fclose()

Header: stdio.h

Syntax: int fclose(FILE * OpenFile);

Description: Closes the open stream file pointed to by OpenFile.

Parameters: OpenFile—Pointer to a FILE structure.

Returns: Zero if the function is successful.

Example: fclose(OpenFile);

Note: If the function fails, then errno contains the error code.

feof()

Header: stdio.h

Syntax: int feof(FILE * OpenFile);

Description: Tests for an end of file condition on OpenFile.

Parameters: OpenFile—Pointer to a FILE structure for an opened file.

Returns: A non-zero if the file is at end of file.

Part IV • Documenting the Differences

534

Example: int nEndOfFile = feof(OpenFile);

/* nEndOfFile is zero if not end of file */

Note: Also see clearerr() for clearing the end of file condition.

ferror()

Header: stdio.h

Syntax: int ferror(FILE * OpenFile);

Description: Tests for any error conditions for the stream file OpenFile.

Parameters: OpenFile—Pointer to a FILE structure for an opened file.

Returns: A non-zero if there is an error associated with OpenFile.

Example: int nError = ferror(OpenFile);

/* nError will be zero if no errors. */

Note: Also see clearerr() for clearing errors.

fflush()

Header: stdio.h

Syntax: int fflush(FILE * OpenFile);

Description: For output files, fflush() writes any unwritten characters in the
file’s buffer to the file. For input files, fflush() will undo the last
ungetc(). If OpenFile is NULL, then all open files are flushed.

Parameters: OpenFile—Pointer to a FILE structure for an opened file or NULL
for all files.

Returns: A non-zero if an error is associated with OpenFile.

Example: int nError = fflush(OpenFile);

/* nError is zero if no errors in flushing.

 */

Note: Also see clearerr() for clearing errors. Frequently flushing
output files helps prevent data loss if the computer crashes.

ANSI C’s Library Functions

535

C C
CC
C

C
C
C C14

fgetc()

Header: stdio.h

Syntax: int fgetc(FILE * OpenFile);

Description: Gets the next character from OpenFile.

Parameters: OpenFile—Pointer to a FILE structure for an opened input file.

Returns: The next character from OpenFile, or EOF if either an error occurs
or the end-of-file is reached.

Example: char chChar = (char)fgetc(OpenFile);

/* chChar contains the next character

 from the file. */

Note: Also see clearerr() for clearing errors. Getting single characters
at a time can be inefficient; if possible, use fgets() to get an entire
line at a time.

fgetpos()

Header: stdio.h

Syntax: int fgetpos(FILE * OpenFile, fpos_t *

 Position);

Description: Saves the current position of OpenFile in the variable pointed to
by Position.

Parameters: OpenFile—Pointer to a FILE structure for an opened input file.

Position—Pointer to a variable of type fpos_t.

Returns: A non-zero if there is an error.

Example: fpos_t Position;

 fgetpos(OpenFile, &Position);

/* Position will contain the file current

 position. */

Note: Usually, you use fseek() to reset the file to the point indicated by
Position.

Part IV • Documenting the Differences

536

fgets()

Header: stdio.h

Syntax: char * fgets(char * szBuffer, int

 BufferSize, FILE * OpenFile);

Description: Gets a string from the file, stopping when either a newline
character is encountered or
BufferSize - 1 characters have been read.

Parameters: szBuffer—Buffer to store characters in.

BufferSize—Size of the buffer.

OpenFile—Pointer to a FILE structure for an opened input file.

Returns: NULL if an error occurs; otherwise, szBuffer is returned.

Example: char szBuffer[100];

 gets(szBuffer, sizeof(szBuffer),

 OpenFile);

Note: A newline character is never discarded. Don’t assume there will
always be a newline character; test to be sure.

floor()

Header: math.h

Syntax: double floor(double dValue);

Description: Returns the largest integer (converted to double) that is not greater
than dValue.

Parameters: dValue—Value to use for the computation.

Returns: Double value representing the largest integer not larger than
dValue.

Example: double dFloor = floor(3.14159);

/* dFloor will be 3.0 */

Note: See ceil().

ANSI C’s Library Functions

537

C C
CC
C

C
C
C C14

fmod()

Header: math.h

Syntax: double fmod(double x, double y);

Description: Returns the remainder of x / y.

Parameters: x—Numerator, double value to be divided.

y—Denominator, double value to divide by.

Returns: Remainder of the division.

Example: double dMod = fmod(3.14159, 3.0);

/* dMod will be 0.14159 */

Note: If y is non-zero, then the result has the same sign as x.

fopen()

Header: stdio.h

Syntax: FILE * fopen(const char * szFileName, const

 char * Mode);

Description: Opens the file, using the filename and mode provided.

Parameters: szFileName—Pointer to a character string containing a valid
filename.

Mode—Pointer to a character string containing the mode descrip-
tor characters.

Returns: Pointer to a FILE structure for the file that was opened or NULL if
the file couldn’t be opened.

Example: FILE * OurFile;

 OurFile = fopen(“ourfile.dat”, “r”);

Note: The mode characters include those shown in Table 14.1, which
follows. Each character can be used with other characters except
where indicated otherwise.

Part IV • Documenting the Differences

538

Table 14.1. File opening mode letter descriptions.

Mode
Character Description

r Read (cannot be used with write, w, or append, a).

w Write (cannot be used with read, r, or append, a).

a Append (cannot be used with read, r, or write, w).

b Binary (cannot be used with text, t).

t Text (cannot be used with binary, b).

+ Opens for both read and write (used with read and write).
With write, truncates file to zero length.

fprintf()

Header: stdio.h

Syntax: int fprintf(FILE * OpenFile, const char *

 szFormat, ...);

Description: Does formatted output to the file pointed to by OpenFile.

Parameters: OpenFile—Pointer to an open stream (text mode) file.

szFormat—A format descriptor string.

Returns: Number of characters written. If negative, then an error occurred.

Example: fprintf(stderr, “The number one is”

 “%d\n”, 1);

Note: See the section on printf() format codes at the end of this
chapter.

fputc()

Header: stdio.h

Syntax: int fputc(int nCharacter, FILE * OpenFile);

ANSI C’s Library Functions

539

C C
CC
C

C
C
C C14

Description: Writes the character contained in nCharacter to the file pointed
to by OpenFile.

Parameters: nCharacter—Character to be written.

OpenFile—Pointer to an opened file.

Returns: The character written or EOF if an error occurs.

Example: fputc(‘!’, stderr);

 fputc(‘\n’, stderr);

Note: Use errno to determine what error occurred.

fputs()

Header: stdio.h

Syntax: int fputs(const char * szBuffer, FILE *

 OpenFile);

Description: Writes the string pointed to by szBuffer to the file specified.

Parameters: szBuffer—Pointer to a string to be written.

OpenFile—Pointer to an opened file.

Returns: EOF if an error occurs, otherwise a non-negative value.

Example: fputs(“Now is the time...\n”, stderr);

Note: Also see fprintf().

fread()

Header: stdio.h

Syntax: size_t fread(void * Array, size_t

 ElementSize, size_t

 NumberElements, FILE *

 OpenFile);

Description: Reads an array from the file.

Part IV • Documenting the Differences

540

Parameters: Array—Pointer to the array (which may be a character array).

ElementSize—Size of each element in the array.

NumberElements—Number of elements in array.

OpenFile—Pointer to an opened file.

Returns: Number of elements read.

Example: int nTimes[20];

 fread(nTimes, sizeof(nTimes[0]),

 sizeof(nTimes) / sizeof(nTimes[0]),

 OpenFile);

Note: The number of elements read may be less than the number
requested.

free()

Header: malloc.h & stdlib.h

Syntax: void free(void * Pointer);

Description: Frees the memory (which was allocated with calloc() or malloc())
pointed to by Pointer.

Parameters: Pointer—Pointer to a dynamically allocated memory block.

Returns: No return value.

Example: int *nArray = calloc(20, sizeof(int));

 free(nArray);

Note: See calloc() and malloc().

freopen()

Header: stdio.h

Syntax: FILE * freopen(const char * szFileName,

 const char * szMode, FILE *

 OpenFile);

ANSI C’s Library Functions

541

C C
CC
C

C
C
C C14

Description: Allows a specific file to be associated with an already opened file.
Usually used to allow stdin, or one of the other pre-opened
standard files, to be associated with a specific file.

Parameters: szFileName—Pointer to the filename of the file to be opened.

szMode—Mode string (see fopen() for details).

OpenFile—Pointer to an opened file.

Returns: Pointer to a FILE structure.

Example: FILE * File = freopen(“OurFile.dat”, “r”,

 stdin);

/* scanf() will now read from ‘OurFile.dat’

 */

Note: Also see fopen().

frexp()

Header: math.h

Syntax: double frexp(double dValue, int *

 nExponent);

Description: Normalizes a floating point number and places the exponent in
the integer pointed to by nExponent.

Parameters: dValue—Floating point value to be normalized.

nExponent—Pointer to an integer to hold the exponent (2 raised
to the .power nExponent).

Returns: The parameter dValue normalized.

Example: int nExponent;

double dNormal = frexp(3.14159,

 &nExponent);

/* dNormal will be 0.785398, nExponent will

 be 2 */

Note: In the preceding example 0.785398 * (2 * 2) = 3.14159.

Part IV • Documenting the Differences

542

fscanf()

Header: stdio.h

Syntax: int fscanf(FILE * OpenFile, const char *

 szFormat, ...);

Description: Reads formatted input from the specified stream (text mode) file,
with the format of the input determined by the format string
pointed to by szFormat.

Parameters: OpenFile—Pointer to an opened file.

szFormat—Format string (see the section on format strings
below).

Returns: Number of arguments scanned or EOF if the end of the stream was
reached.

Example: fscanf(OpenFile, “%s %d”, szBuffer,

 &nCount);

Note: fscanf() has a variable number of arguments determined by the
format string.

fseek()

Header: stdio.h

Syntax: int fseek(FILE * OpenFile, long lOffset, int

 nOrigin);

Description: Moves the file pointer for the specified file to the position
specified by lOffset relative to the origin specified by nOrigin.

Parameters: OpenFile—Pointer to an opened file.

lOffset—Where to move the file pointer.

nOrigin—Origin point from which to compute the new file
pointer position.

Returns: Zero if the function is successful, non-zero if it fails.

ANSI C’s Library Functions

543

C C
CC
C

C
C
C C14

Example: fseek(OpenFile, 256l, SEEK_CUR);

/* Skip the next 256 bytes */

Note: Table 14.2 lists the valid seek origins.

Table 14.2. File seek origins.

Origin point Description

SEEK_SET From the start of the file (a negative value for the offset
value is not acceptable).

SEEK_CUR From the current position of the file’s pointer (either a
negative or positive value for the offset value is accept-
able).

SEEK_END From the end of the file (a negative value for the offset
value is acceptable).

You cannot seek before the beginning of a file, but you can seek past the end
of the file.

fsetpos()

Header: stdio.h

Syntax: int fsetpos(FILE * OpenFile, const fpos_t *

 Position);

Description: Sets a file’s position, using the fpos_t
variable filled in using fgetpos().

Parameters: OpenFile—Pointer to an opened file.

Position—Pointer to an fpos_t data
object, filled in using fgetpos().

Returns: Zero if successful, otherwise a non-zero value.

Part IV • Documenting the Differences

544

Example: fpos_t Position;

 Position = 100;

/* Position is now at byte 100. */

 fsetpos(OpenFile, &Position);

Note: Also see fgetpos().

ftell()

Header: stdio.h

Syntax: long ftell(FILE * OpenFile);

Description: Returns the current read or write point for the specified file.

Parameters: OpenFile—Pointer to an opened file.

Returns: The read or write position for the file.

Example: long lPosition = ftell(OpenFile);

Note: The result received from ftell() can later be used with fseek().

fwrite()

Header: stdio.h

Syntax: size_t fwrite(const void * Array, size_t

 ElementSize, size_t

 NumberElements, FILE *

 OpenFile);

Description: Writes NumberElements of Array to the specified file.

Parameters: Array—Pointer to an array (often a character string).

ElementSize—Size of each element in the array.

NumberElements—Number of elements to write.

OpenFile—Pointer to an opened file.

Returns: Number of elements written. If the returned value is less than
NumberElements then an error occurred.

ANSI C’s Library Functions

545

C C
CC
C

C
C
C C14

Example: int nArray[] = {1,2,3,4,5,6,7,8,9};

 fwrite(nArray,

 sizeof(nArray[0]),

 sizeof(nArray) / sizeof(nArray[0]),

 OpenFile);

Note: Check errno if an error occurred, to determine what the error is.

getc()

Header: stdio.h

Syntax: int getc(FILE * OpenFile);

Description: Gets the next character from the specified file.

Parameters: OpenFile—Pointer to an opened file.

Returns: The character retrieved from the file or EOF if there is an error.

Example: char chChar;

 chChar = (char)getc(stdin);

/* Gets one character from the keyboard */

Note: This function is generally equal to fgetc() except that it may be
implemented as a macro.

getchar()

Header: stdio.h

Syntax: int getchar(void);

Description: Gets the next character from stdin.

Parameters: None.

Returns: The next character from stdin.

Example: char chChar;

 chChar = getchar();

Note: This function is the same as using getc(stdin).

Part IV • Documenting the Differences

546

gets()

Header: stdio.h

Syntax: char * gets(char * szBuffer);

Description: Gets the next line from stdin, until either the end of the stdin file
is reached or until a newline character is encountered.

Parameters: szBuffer—Pointer to a character string to hold the characters
read.

Returns: Pointer to szBuffer or NULL if an end of file condition is encoun-
tered.

Example: char szBuffer[100];

 gets(szBuffer);

Note: Careful: There is no check for buffer overrun! It may be better to
use fgets() rather than this function.

gmtime()

Header: time.h

Syntax: struct tm * gmtime(const time_t *

 TimeValue);

Description: Breaks down TimeValue and places the result into the tm structure.

Parameters: TimeValue—Pointer to a time_t variable.

Returns: A returned pointer to a structure of type tm.

Example: tm TimeStruct;

time_t OurTime;

 OurTime = time(NULL);

 TimeStruct = (tm*)gmtime(&OurTime);

Note: Remember to consider the effects of different time zones and
daylight savings time.

ANSI C’s Library Functions

547

C C
CC
C

C
C
C C14

isalnum()

Header: ctype.h

Syntax: int isalnum(int Character);

Description: Tests to see if the specified character is an alphanumeric character
(a–z, A–Z, or 0–9).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is alphanumeric or a zero if it is not.

Example: if (isalnum(‘a’))

 printf(“‘a’ is alphanumeric \n”);

Note: See isalpha().

isalpha()

Header: ctype.h

Syntax: int isalpha(int Character);

Description: Tests to see if the specified character is an alphabetic character
(a–z or A–Z).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is alphabetic or a zero if it is not.

Example: if (isalpha(‘a’))

 printf(“‘a’ is alphabetic \n”);

Note: See isalnum().

iscntrl()

Header: ctype.h

Syntax: int iscntrl(int Character);

Description: Tests to see if the specified character is a control character
(‘\x00’–‘\x1f ’).

Part IV • Documenting the Differences

548

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is a control character or a zero if it is
not.

Example: if (iscntrl(‘\a’))

 printf(“‘\a’ is a control character”

 “ (the bell?) \n”);

Note: See isalpha().

isdigit()

Header: ctype.h

Syntax: int isdigit(int Character);

Description: Tests to see if the specified character is a numeric digit (0–9).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is a numeric digit or a zero if it is not.

Example: if (isdigit(‘1’))

 printf(“‘1’ is a digit \n”);

Note: See isalnum().

isgraph()

Header: ctype.h

Syntax: int isgraph(int Character);

Description: Tests to see if the specified character is a printable character
(except a space).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is printable, or a zero if it is not.

Example: if (isgraph(chChar))

 putc(chChar);

Note: To test for a blank character, use isspace().

ANSI C’s Library Functions

549

C C
CC
C

C
C
C C14

islower()

Header: ctype.h

Syntax: int islower(int Character);

Description: Tests to see if the specified character is lowercase (a–z).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is lowercase or a zero if it is not.

Example: if (islower(chChar))

 putc(chChar);

Note: Also see isupper().

isprint()

Header: ctype.h

Syntax: int isprint(int Character);

Description: Tests to see if the specified character is a printable character
(including spaces).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is printable, or a zero if it is not.

Example: if (isprint(chChar))

 putc(chChar);

Note: To test for all characters except for a blank character, use
isgraph().

ispunct()

Header: ctype.h

Syntax: int ispunct(int Character);

Description: Tests to see if the specified character is valid punctuation, such as
the period (.), comma (,), or exclamation point (!).

Part IV • Documenting the Differences

550

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is punctuation or a zero if it is not.

Example: if (ispunct(chChar))

 putc(chChar);

Note: None.

isspace()

Header: ctype.h

Syntax: int isspace(int Character);

Description: Tests to see if the specified character is a valid whitespace
character.

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is a valid whitespace character or a zero
if it is not.

Example:
 if (isspace(chChar))

 putc(chChar);

Note: To test for a non-blank character, use isgraph(). Valid whitespace
characters include those shown in Table 14.3:

Table 14.3. Valid whitespace characters.

Character Description (hex value)

‘ ‘ The space character.

‘\f’ The form feed character (\x0C’).

‘\n’ The newline character (\x0A’).

‘\r The carriage return character (\x0D’).

‘\t The tab character (\x09’).

‘\v The vertical tab character (\x0B’).

ANSI C’s Library Functions

551

C C
CC
C

C
C
C C14

isupper()

Header: ctype.h

Syntax: int isupper(int Character);

Description: Tests to see if the specified character is uppercase (A–Z).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is uppercase or a zero if it is not.

Example: if (isupper(chChar))

 putc(chChar);

Note: To test for a lowercase character, use islower().

isxdigit()

Header: ctype.h

Syntax: int isxdigit(int Character);

Description: Tests to see if the specified character is a valid hexadecimal digit
character (a–f, A–F, and 0–9).

Parameters: Character—The character to be tested.

Returns: A non-zero if the character is a valid hexadecimal digit or a zero if
it is not.

Example:
 if (isxdigit(chChar))

 putc(chChar);

Note: To test for a decimal-only digit, use isdigit().

labs()

Header: math.h & stdlib.h

Syntax: long labs(long lValue);

Description: Returns the absolute value of lValue.

Part IV • Documenting the Differences

552

Parameters: lValue—The value for which absolute value is desired.

Returns: Absolute value of lValue.

Example:
long lReturned;

 lReturned = labs(-234556);

Note: Also see abs().

ldexp()

Header: math.h

Syntax: double ldexp(double lValue, int nPower);

Description: Multiplies a floating point value by two raised to nPower(lValue
* 2nPower).

Parameters: lValue—Value to multiply.

nPower—Power to raise two by.

Returns: (lValue * (2 * nPower))

Example:
 if (ldexp(.785398, 2) == 3.14259)

 printf(“It works!\n”);

Note: See frexp().

ldiv()

Header: stdlib.h

Syntax: ldiv_t ldiv(long numerator, long

 denominator);

Description: Returns both the quotient and remainder from the division of
numerator by denominator.

Parameters: numerator—Long integer value to be divided.

denominator—Long integer value to divide by.

ANSI C’s Library Functions

553

C C
CC
C

C
C
C C14

Returns: Structure ldiv_t containing the result of the division.

Example: ldiv_t DivResult;

 DivResult = ldiv(100, 3);

Note: Also see div().

localeconv()

Header: locale.h

Syntax: struct lconv * localeconv(void);

Description: Returns the structure type lconv filled in with appropriate values
for the location.

Parameters: None.

Returns: Pointer to an lconv structure.

Example: lconv OurConversions;

 OurConversions = (lconv *)localeconv();

Note: See setlocale() for more information.

localtime()

Header: time.h

Syntax: struct tm * localtime(const time_t *

 TimeValue);

Description: Breaks down TimeValue, and places the result into the tm
structure.

Parameters: TimeValue—Pointer to a time_t variable.

Returns: A pointer to a returned structure of type tm.

Example: tm TimeStruct;

time_t OurTime;

 OurTime = time(NULL);

 TimeStruct = (tm *)localtime(&OurTime);

Part IV • Documenting the Differences

554

Note: Remember to consider the effects of different time zones and
daylight savings time.

log()

Header: math.h

Syntax: double log(double dValue);

Description: Computes the natural logarithm (base e) of dValue.

Parameters: dValue—Value to compute the natural logarithm of.

Returns: Logarithm of dValue.

Example: printf(“Log of 3.14159 is %f”,

 log(3.14159));

/* Log of 3.14159 is 1.144729 */

Note: See log10().

log10()

Header: math.h

Syntax: double log10(double dValue);

Description: Computes the logarithm (base 10) of dValue.

Parameters: dValue—Value to compute the logarithm of.

Returns: Logarithm of dValue.

Example: printf(“Log10 of 3.14159 is %f”,

 log10(3.14159));

/* Log10 of 3.14159 is 0.49715 */

Note: See log().

longjmp()

Header: setjmp.h

ANSI C’s Library Functions

555

C C
CC
C

C
C
C C14

Syntax: void longjmp(jmp_buf jumpbuffer, int

 nReturnCode);

Description: Restores the environment to what was saved in jumpbuffer by
setjmp(), which causes execution to continue from the call to
setjmp(), with setjmp() returning nReturnCode.

Parameters: jumpbuffer—Buffer of type jmp_buf initialized by setjmp().

nReturnCode—Value that setjmp() returns when longjmp() is
called.

Returns: longjmp() does not return, execution continues with setjmp().

Example: See Figure 14.1 for an example.

Note: See setjmp().

As Figure 14.1 shows, the error handler usually uses longjmp() to get past a
part of the program that is causing an error. Since this error handler doesn’t have any
access to the failing function’s variables, it cannot make any changes or set any flags.

Figure 14.1. Program flow using setjmp() and longjmp().

Part IV • Documenting the Differences

556

malloc()

Header: malloc.h & stdlib.h

Syntax: void * malloc(size_t SizeToAllocate);

Description: Allocates memory (uninitialized).

Parameters: SizeToAllocate—Size of the memory block to allocated.

Returns: Pointer to the memory block allocated or NULL if the memory
could not be allocated..

Example: int * nArray;

 nArray = (int *)malloc

 (sizeof(int) * 500);

 memset(nArray, 0, sizeof(int) * 500)

Note: Memory allocated using malloc() is never initialized; however,
memory allocated using calloc() is.

mblen()

Header: stdlib.h

Syntax: int mblen(const char * szString, size_t

 nCount);

Description: Examines nCount characters, starting from the location pointed to
by szString, looking for the number of bytes in the next multibyte
character.

Parameters: szString—Pointer to the first byte of the multibyte character.

Returns: Zero if szString is NULL, -1 if this is not a multibyte character or
the number of characters in the multibyte character.

Example: int nCount;

 nCount = mblen(szString, 3);

Note: See the other multibyte character functions, which follow.

ANSI C’s Library Functions

557

C C
CC
C

C
C
C C14

mbstowcs()

Header: stdlib.h

Syntax: size_t mbstowcs(wchar_t * pWideChar, const

 char * szString, size_t

 nCount);

Description: Converts the multibyte characters pointed to by szSting into
wide character codes and places the result into pWideChar,
converting up to nCount characters.

Parameters: pWideChar—Pointer to a string buffer to receive the wide
character conversion.

szString—Source multibyte character string.

nCount—Size of pWideChar.

Returns: Number of characters converted or -1 if an error occurs.

Example: No example provided.

Note: Also see mblen() and mbtowc().

mbtowc()

Header: stdlib.h

Syntax: int mbtowc(wchar_t * pWideChar, const

 char * pMultiByte, size_t

 nCount);

Description: Converts a single multibyte character pointed to by pMultiByte
into a wide character code and places the result into pWideChar,
examining up to nCount characters.

Parameters: pWideChar—Pointer to a buffer to receive the wide character
conversion.

pMultiByte—Source multibyte character string.

nCount—Size of pWideChar.

Part IV • Documenting the Differences

558

Returns: Number of characters converted or -1 if an error occurs.

Example: No example provided.

Note: Also see mblen() and mbtowcs().

memchr()

Header: memory.h & string.h

Syntax: void * memchr(const void * szString, int

 chChar, size_t nLength);

Description: Searches for the first occurrence of chChar in szString limiting
the search to the first nLength characters.

Parameters: szString—Pointer to the string to search.

chChar—Character to search for.

nLength—Number of characters to search in szString.

Returns: Pointer to the located character or NULL if it cannot be found.

Example: char szString[] = {“Now is the time for

 all good men”};

 printf(“Is it the time %s”,

 memchr(szString, ‘f’,

 strlen(szString));

/* Will print Is it the time for all good men */

Note: See memcmp() and memset(). Notice that memchr() doesn’t assume
the string is a NULL terminated character string.

memcmp()

Header: memory.h & string.h

Syntax: int memcmp(const void * pBuffer1, const void

 * pBuffer2, size_t nLength);

Description: Compares up to nLength characters of pBuffer1 with pBuffer2,

ANSI C’s Library Functions

559

C C
CC
C

C
C
C C14

Parameters: pBuffer1—Pointer to the first buffer.

pBuffer2—Pointer to the second buffer.

nLength—Number of bytes to compare.

Returns: Zero if they are equal, < 0 if pBuffer1 is less than pBuffer2,
or > 0 if pBuffer1 is greater than pBuffer2.

Example: char szString1[] = {“Now is all the time

 for all good men”};

char szString2[] = {“Now is not the time

 for all good men”};

 if (memcmp(szString1, szString2,

 strlen(szString1)) == 0)

 {

 printf(“‘%s’ ‘%s’ are equal”,

 szString1,

 szString2);

 }

/* Will not print since the strings are not

 equal */

Note: See memchr() and memset(). Notice that memcmp() doesn’t assume
the string is a NULL terminated character string.

memcpy()

Header: memory.h & string.h

Syntax: void * memcpy(void * pDestination, const

 void * pSource, size_t

 nLength);

Description: Copies nLength bytes from pSource to pDestination. Source and
destination must not overlap.

Parameters: pDestination—Pointer to the destination buffer.

pSource—Pointer to the source buffer.

nLength—Number of bytes to copy.

Part IV • Documenting the Differences

560

Returns: The pointer pDestination.

Example: char szString1[] = {“Now is all the time

 for all good men”};

char szString2[] = {“Now is not the time

 for all good men”};

 memcpy(szString1, szString2,

 strlen(szString2));

 printf(“‘%s’ and ‘%s’”,

 szString1,

 szString2);

Note: See memmove() and memset(). Notice that memcpy() should not be
used where the source and destination overlap.

memmove()

Header: string.h

Syntax: void * memmove(void * pDestination, const

 void * pSource, size_t

 nLength);

Description: Copies nLength bytes from pSource to pDestination. Source and
destination may overlap.

Parameters: pDestination—Pointer to the destination buffer.

pSource—Pointer to the source buffer.

nLength—Number of bytes to copy.

Returns: The pointer pDestination.

Example: char szString1[100] = {“Now is all the

 time for all good

 men”};

char szString2[100] = {“Now is not the

 time for all good

 men”};

ANSI C’s Library Functions

561

C C
CC
C

C
C
C C14

 memmove(&szString2[10], szString2,

 strlen(szString2));

 printf(“‘%s’”,

 szString2);

Note: See memcpy() and memset(). Notice that memcpy() should not be
used where the source and destination overlap, while memmove()
works correctly when there is overlap; however, this function may
be slower.

memset()

Header: memory.h & string.h

Syntax: void * memset(void * pBuffer, int nByte,

 size_t nLength);

Description: Fills nLength bytes of pBuffer with nByte.

Parameters: pBuffer—Buffer that is to be filled.

nByte—Byte to fill the buffer with.

nLength—How many bytes to fill.

Returns: The pointer pBuffer.

Example: int * Array;

 Array = (int *)malloc

 (sizeof(int) * 100);

 memset(Array, 0, sizeof(int) * 100);

/* Zeros out the allocated array */

Note: This function is very useful to initialize both auto and allocated
data objects, which are not otherwise initialized.

mktime()

Header: time.h

Syntax: time_t mktime(struct tm * Time);

Part IV • Documenting the Differences

562

Description: Converts the tm time structure to calendar time (Coordinated
Universal Time). If the values are out of range, they are adjusted
as necessary.

Parameters: Time—Pointer to a tm time structure.

Returns: A time_t structure.

Example: struct tm Time;

 memset(Time, 0, sizeof(Time);

/* fill in Time with values */

 mktime(&Time);

Note: Also see time().

modf()

Header: math.h

Syntax: double modf(double dValue, double *

 dIntegral);

Description: Computes the fractional and integral parts of dValue.

Parameters: dValue—Real number for which integral and fractional parts are
desired.

dIntegral—Pointer to a double that will receive the integral part
of dValue.

Returns: The fractional part of dValue.

Example: double dIntegral;

double dFractional = modf(4.1234,

 &dIntegral);

/* dIntegral will be 4, dFractional will be 0.1234 */

Note: See fmod().

offsetof()

Header: stddef.h

ANSI C’s Library Functions

563

C C
CC
C

C
C
C C14

Syntax: size_t offsetof(composite Structure, name

 Member);

Description: Returns the offset (in bytes) of Member from the beginning of
Structure.

Parameters: Structure—A structure.

Member—A member in Structure.

Returns: Offset in bytes.

Example: struct tm Time;

 printf(“the offset of tm_year is %d”,

 offsetof(struct tm, tm_year));

Note: Remember that Structure is the type name, not the variable
name.

perror()

Header: stdio.h & stdlib.h

Syntax: void perror(const char * szPrefix);

Description: Prints an error message corresponding to errno to stderr. If
szPrefix is not NULL, that string is prefixed to the message
printed.

Parameters:

Returns: Zero if successful, otherwise a non-zero value.

Example: /* Set errno to an error value (usually set by a library

function) */

 errno = EACCES;

 perror(“DUMMY ERROR HERE”);

/* prints: DUMMY ERROR HERE: Permission denied */

Part IV • Documenting the Differences

564

pow()

Header: math.h

Syntax: double pow(double x, double y);

Description: Raises x to the power y.

Parameters: x—Number to raise to power y.

y—Power to raise x to.

Returns: x to the power y.

Example: printf(“3 to the power 5 = %f\n”,

 pow(3.0, 5.0));

/* Prints: 3 to the power 5 = 243.000000 */

Note: See exp().

printf()

Header: stdio.h

Syntax: int printf(const char * szFormat, ...);

Description: Prints, to stdout formatted output as defined by szFormat.

Parameters: szFormat—A format descriptor string.

Returns: Number of characters written. If negative, then an error occurred.

Example: printf(“The number one is %d\n”, 1);

Note: See the section on printf() format codes at the end of this
chapter.

putc()

Header: stdio.h

Syntax: int putc(int nChar, FILE * OpenFile);

Description: Writes nChar to the stream file OpenFile.

ANSI C’s Library Functions

565

C C
CC
C

C
C
C C14

Parameters: nChar—Character to be written.

OpenFile—Pointer to an opened file.

Returns: Character nChar if successful, otherwise EOF.

Example: putc(‘A’, stdout);

Note: Same as fputc() except that putc() can be implemented as a
macro.

putchar()

Header: stdio.h

Syntax: int putchar(int nChar);

Description: Writes nChar to the stream file stdout.

Parameters: nChar—Character to be written.

Returns: Character nChar if successful, otherwise EOF.

Example: putchar(‘A’);

Note: Same as fputc(nChar, stdout) except that putc() can be imple-
mented as a macro.

puts()

Header: stdio.h

Syntax: int puts(const char * szString);

Description: Writes szString to the stream file stdout.

Parameters: szString—Pointer to the character string to be written.

Returns: Non-zero positive value if successful, otherwise EOF.

Example: putchar(“Now is the time.\n”);

Note: Also see fputs() and putc().

Part IV • Documenting the Differences

566

qsort()

Header: search.h & stdlib.h

Syntax: void qsort(void * Array, size_t

 NumberElements, size_t

 ElementSize, int (*compare)

 (const void *, const void *));

Description: Sorts Array using a quicksort method.

Parameters: Array—Pointer to an array to be sorted (can be an array of any
type).

NumberElements—Number of elements in Array to be sorted.

ElementSize—Size of each element in Array.

Compare—Pointer to a function to do compare of array elements.

Returns: No return value.

Example: See Chapter 10, “Data Management: Sorts, Lists, and Indexes.”

Note: With a creative Compare function, qsort() can do any sort
imaginable.

raise()

Header: signal.h

Syntax: int raise(int nException);

Description: Simulates occurrence of an error condition.

Parameters: nException—The error condition that is to be signaled.

Returns: Zero if successful, otherwise a non-zero value.

Example: raise(SIGINT);

Note: This function is most useful when you have installed your own
exception handler. See signal().

ANSI C’s Library Functions

567

C C
CC
C

C
C
C C14

rand()

Header: stdlib.h

Syntax: int rand(void);

Description: Returns a pseudorandom number in the range of zero to RAND_MAX
(usually 32767).

Parameters: None

Returns: Random number.

Example: int nRandom = rand();

/* nRandom will be a random number */

Note: Don’t forget to seed the random number using srand().

realloc()

Header: malloc.h & stdlib.h

Syntax: void * realloc(void * pBuffer, size_t

 nNewSize);

Description: Changes the size of the buffer pointed to by pBuffer.

Parameters: pBuffer—Pointer to an allocated buffer.

nNewSize—New size for the buffer (either smaller or larger).

Returns: Pointer to a new buffer, with pBuffer’s contents copied to it or
NULL if a new buffer could not be allocated.

Example: char * pBuffer = malloc(sizeof(char) * 100);

 strcpy(pBuffer,

 “Now is the time for all good men”);

/* now shrink it... */

 pBuffer = realloc

(pBuffer, strlen(pBuffer) + 1);

/* This example shrinks the buffer to fit the contents

*/

Note: Always save the pointer in case the buffer can’t be resized. Never
refer to the old pointer after this function successfully returns.

Part IV • Documenting the Differences

568

remove()

Header: io.h & stdio.h

Syntax: int remove(const char * szFileName);

Description: Deletes the file with name that is pointed to by szFileName.

Parameters: szFileName—Pointer to a character string containing the name
of an existing file.

Returns: Zero if successful, otherwise a non-zero value.

Example: remove(“test.dat”);

Note: Be careful to not delete a file that is currently opened because the
results may be unpredictable.

rename()

Header: io.h & stdio.h

Syntax: int rename(const char * szOldName, const

 char * szNewName);

Description: Renames files.

Parameters: szOldName—Pointer to a string that contains the old filename.

szNewName—Pointer to a string containing the new filename.

Returns: Zero if successful, otherwise a nonzero value.

Example: rename(“OldData.Dat”, “NewData.Dat”);

Note: Very useful under PC DOS because it allows renaming a file to a
different directory.

rewind()

Header: stdio.h

Syntax: void rewind(FILE * OpenFile);

ANSI C’s Library Functions

569

C C
CC
C

C
C
C C14

Description: Resets the file pointer for OpenFile to the beginning of the file.

Parameters: OpenFile—Pointer to an opened file.

Returns: No return value.

Example: rewind(OpenFile);

Note: Much the same as calling fseek(OpenFile, 0, SEEK_SET).

scanf()

Header: stdio.h

Syntax: int scanf(const char * szFormat, ...);

Description: Reads from stdin formatted input.

Parameters: szFormat—Pointer to a string containing format codes.

Returns: Number of items that were scanned and stored or EOF if the end
of the file was encountered.

Example: int i;

 scanf(“%d”, &i);

/* i will be whatever (numeric) value

 entered */

Note: See the section on scanf() format codes at the end of this chapter.

setbuf()

Header: stdio.h

Syntax: void setbuf(FILE * OpenFile, char *

 pBuffer);

Description: Sets a buffer for the file OpenFile.

Parameters: OpenFile—Pointer to an opened file.

pBuffer—Pointer to a buffer of at least BUFSIZ bytes.

Returns: No return value.

Part IV • Documenting the Differences

570

Example: char szBuffer[123];

char * pBuffer = malloc(BUFSIZ);

 setbuf(stdin, pBuffer);

 printf(“enter a string\n”);

 gets(szBuffer);

 printf(“enter a second string\n”);

 gets(szBuffer);

 printf(“‘%s’\n”, pBuffer);

Note: Be sure the buffer is large enough (use BUFSIZ).

setjmp()

Header: setjmp.h

Syntax: int setjmp(jmp_buf jumpbuffer);

Description: Saves the environment to jumpbuffer, which then can be used by
longjmp() to return to the point saved.

Parameters: jumpbuffer—a buffer of type jmp_buf.

Returns: setjmp() returns zero when being initialized or the return code
specified by longjmp(), which will not be zero.

Example: See Figure 14.2 for an example.

Note: See longjmp().

As Figure 14.2 shows, the error handler usually uses longjmp() to get past a part
of the program that is causing an error. Because this error handler doesn’t have any
access to the failing function’s variables, it cannot make any changes or set any flags.

ANSI C’s Library Function

571

C C
CC
C

C
C
C C14

Figure 14.2. Program flow using setjmp() and longjmp().

setlocale()

Header: locale.h

Syntax: char * setlocale(int Category, const char *

 Locale);

Description: Sets the category for the locale.

Parameters: Category—Category to set (see Table 14.4).

Locale—The locale to set.

Part IV • Documenting the Differences

572

Returns: String indicating the current locale.

Example: setlocale(LC_ALL, “C”);

Note: Because most compilers and operating systems support only the
“C” locale, this function doesn’t have an effect. As new locales are
added, this function will be more useful. Check the documenta-
tion supplied with your compiler for other information.

Table 14.4. Locale categories.

Category Description

LC_ALL Entire environment.

LC_MONETARY Money format.

LC_COLLATE Collate sequence.

LC_NUMERIC Number format.

LC_CTYPE Character handling.

C_TIME Time-related items

setvbuf()

Header: stdio.h

Syntax: int setvbuf(FILE * OpenFile, char * pBuffer,

 int nMode, size_t nSize);

Description: Sets a buffer for the file OpenFile.

Parameters: OpenFile—Pointer to an opened file.

pBuffer—Pointer to a buffer.

nMode—Mode for the file buffer (see Table 14.5).

nSize—Buffer.

Returns: Zero if successful, otherwise a nonzero value.

ANSI C’s Library Function

573

C C
CC
C

C
C
C C14

Example: char szBuffer[123];

char * pBuffer = malloc(BUFSIZ * 2);

 setvbuf(stdin, pBuffer, _IOFBF, BUFSIZ *

 2);

 printf(“enter a string\n”);

 gets(szBuffer);

 printf(“enter a second string\n”);

 gets(szBuffer);

 printf(“‘%s’\n”, pBuffer);

Note: Be sure the buffer is large enough to be effective. Table 14.5 shows
the allowable modes.

Table 14.5. Function setvbuf()’s modes.

Mode Description

IOFBF The input and output will be fully buffered.

IOLBF The output will be line buffered (buffer is flushed
when a newline is encountered or the buffer is full).

IONBF No buffering is performed (All parameters except
OpenFile and nMode are ignored).

signal()

Header: signal.h

Syntax: void (* signal(int nSignal,

 void (* function)(int)))(int);

Part IV • Documenting the Differences

574

Description: Tells the system to call function whenever the error condition
specified by nSignal is raised by either an error condition or the
raise() function.

Parameters: nSignal—The error condition to be modified.

function—The function to be called when the error condition is
raised. See Table 14.6 for other values for function.

Returns: SIG_ERR if an error occurs, otherwise the previous signal handler.

If function is one of the defined constants shown in Table 14.6, then the action
described will be taken. Notice that after the error condition occurs, signal() must
again be called because the system first makes a call to signal(nSignal, SIG_DFL).

Table 14.6. Signal predefined actions.

Defined value Description

SIG_DFL The default action will occur.

SIG_IGN The condition will be ignored.

SIG_ACK Used in some systems to tell the operating system
the handler is ready to receive the next error signal.

sin()

Header: math.h

Syntax: double sin(double dValue);

Description: Computes the sine of dValue.

Parameters: dValue—Value to compute the sine of.

Returns: The sine of dValue.

Example: dValueSine=sin(.5);

/* dValueSine will be 0.4794 */

ANSI C’s Library Function

575

C C
CC
C

C
C
C C14

Note: See acos(), asin(), and cos().

sinh()

Header: math.h

Syntax: double sinh(double dValue);

Description: Computes the hyperbolic sine of dValue.

Parameters: dValue—Value to compute the hyperbolic sine of.

Returns: The hyperbolic sine of dValue.

Example: dValueSine = sinh(.5);/* dValueSine will be 0.5210 */

Note: See acos(), asin(), and cos().

sprintf()

Header: stdio.h

Syntax: int sprintf(char * pBuffer,

 const char * szFormat, ...);

Description: Prints, to the buffer pointed to by pBuffer, formatted output as
defined by szFormat.

Parameters: pBuffer—Pointer to a destination buffer.

szFormat—A format descriptor string.

Returns: Number of characters written. If negative, then an error occurred.

Example: char szBuffer[100];

sprintf(szBuffer,

 “The number one is %d\n”, 1);

Note: Be sure the destination buffer is large enough. See the section on
format codes at the end of this chapter.

Part IV • Documenting the Differences

576

sqrt()

Header: math.h

Syntax: double sqrt(double dValue);

Description: Computes the square root of dValue.

Parameters: dValue—Value for which square root is desired.

Returns: Square root of dValue.

Example: double dSquareRoot = sqrZXt(2);

/* dSquareRoot will be 1.41 */

Note: The argument must not be negative.

srand()

Header: stdlib.h

Syntax: void srand(unsigned int nSeed);

Description: Seeds (sets the starting point) of the random number generator.

Parameters: nSeed—A seed value.

Returns: No return value.

Example: srand((unsigned)time(NULL));

Note: The sequence of numbers returned by rand() is identical if
identical seeds are used. Using the time() function assures a
reasonably random starting point.

sscanf()

Header: stdio.h

Syntax: int sscanf(const char * szInput,

 const char * szFormat, ...);

Description: Reads from the buffer pointed to by szInput, formatted input.

ANSI C’s Library Function

577

C C
CC
C

C
C
C C14

Parameters: szInput—Pointer to a buffer containing the string to be read.

szFormat—Pointer to a string containing format codes.

Returns: Number of items that were scanned and stored or EOF if the end
of the file was encountered.

Example: int i;

char szInput[] = {“1 2 3 4”};

 scanf(szInput, “%d”, &i);

/* i will be 1 */

Note: See the section on scanf() format codes at the end of this chapter.

strcat()

Header: string.h

Syntax: char * strcat(char * szDestination,

 const char * szSource);

Description: Concatenates the string pointed to by szSource to szDestination.

Parameters: szDestination—String that will have szSource appended to it.

szSource—The string to append to szDestination.

Returns: Pointer szDestination.

Example: char szString[100] = {“Now is the time”};

 strcat(szString, “ for all good men”);

/* szString will be Now is the time for all

 good men */

Note: Be sure the destination is large enough to hold the resultant string
and that it has been properly initialized. The destination can be a
string of zero length.

strchr()

Header: string.h

Syntax: char * strchr(const char * szString, int chChar);

Part IV • Documenting the Differences

578

Description: Searches for the first occurrence of chChar in szString.

Parameters: szString—Pointer to the string to be searched.

chChar—Character to search for.

Returns: Pointer to the first occurrence of chChar or NULL if it is not
found.

Example: char szString[100] =

{“Now is the time for all good men”};

 printf(“Not the time %s”,

 strchr(szString, ‘f’));

/* Will print Not the time for all good men */

Note: See memchr().

strcmp()

Header: string.h

Syntax: int strcmp(const char * szString1,

 const char * szString2);

Description: Compares two strings and returns a value indicating if they are
equal or if one is less than the other.

Parameters: szString1—The first string to compare.

szString2—The second string to compare.

Returns: Zero if they are equal, < 0 if szString1 is less than szString2, or
> 0 if szString1 is greater than szString2.

Example: char szString1[] =

{“Now is all the time for all good men”};

char szString2[] =

{“Now is not the time for all good men”};

 if (strcmp(szString1, szString2) == 0)

 {

 printf(“‘%s’ ‘%s’ are equal”,

 szString1,

ANSI C’s Library Function

579

C C
CC
C

C
C
C C14

 szString2);

 }

/* Will not print since the strings are not equal

 */

Note: See memchr(). Notice that memcmp() doesn’t assume the string is a
NULL terminated character string.

strcoll()

Header: string.h

Syntax: int strcoll(const char * szString1, const char *

 szString2);

Description: Compares two strings using the collating sequence selected by
setlocale() and returns a value indicating whether they are
equal or if one is less than the other.

Parameters: szString1—The first string to compare.

szString2—The second string to compare.

Returns: Zero if they are equal, < 0 if szString1 is less than szString2, or
> 0 if szString1 is greater than szString2.

Example: char szString1[] =

{“Now is all the time for all good men”};

char szString2[] =

{“Now is not the time for all good men”};

 if (strcoll(szString1, szString2) == 0)

 {

 printf(“‘%s’ ‘%s’ are equal”,

 szString1,

 szString2);

 }

/* Will not print since the strings are not equal

 */

Note: See memchr(). Notice that memcmp() doesn’t assume the string is a
NULL terminated character string. This function is equal to strcmp()
when the default collating sequence specified by locale “C” is used.

Part IV • Documenting the Differences

580

strcpy()

Header: string.h

Syntax: char * strcpy(char * szDestination,

 const char * szSource);

Description: Copies the string to szDestination that is pointed to by szSource.

Parameters: szDestination—A string that has szSource copied to it.

szSource—The string copied to szDestination.

Returns: Pointer szDestination.

Example: char szString[100] = {“Now is the time”};

 strcpy(szString, “ for all good men”);

/* szString will be for all good men */

Note: Be sure the destination is large enough to hold the resultant string.

strcspn()

Header: string.h

Syntax: size_t strcspn(const char * szString,

 const char * szChars);

Description: Returns the length of the initial string that does not contain any
characters found in szChars.

Parameters: szString—Pointer to a string to be searched.

szChars—String containing characters to be searched for.

Returns: Length of the initial string that contains no characters from
szChars, up to the length of szString.

Example: char szString[100] =

{“Now is the time for all good men.”};

int nCount = strcspn(szString, “fzx”);

 printf(“Never a good time %s”,

 &szString[nCount]);

ANSI C’s Library Function

581

C C
CC
C

C
C
C C14

/* will print Never a good time for all good men.

 */

Note: Also see strspn().

strerror()

Header: string.h

Syntax: char * strerror(int nError);

Description: Returns a pointer to a string describing the error contained in
nError.

Parameters: nError—Error value (usually from errno).

Returns: Pointer to an error message or a message indicating a message
doesn’t exist for this error.

Example: printf(“Had an error: %s\n”,

 strerror(ENOMEM));

Note: See errno and the header file errno.h.

strftime()

Header: time.h

Syntax: size_t strftime(char * szBuffer, size_t

 nBufferSize, const char *

 szFormat, const struct tm * Time);

Description: Prints to szBuffer the time contained in Time according to the
format specified in szFormat (see Table 14.7 for the format
characters).

Parameters: szBuffer—Pointer to the destination buffer that will receive the
formatted time string.

nBufferSize—Size of szBuffer.

szFormat—Pointer format string.

Time—Pointer to a tm time structure.

Part IV • Documenting the Differences

582

Returns: The number of characters placed in szBuffer or NULL if an error
occurs.

Example: time_t OurTime;

 OurTime = time(NULL);

 strftime(szBuffer, sizeof(szBuffer),

 “Today is %A %B %d, %Y”,

 localtime(&OurTime));

 printf(“%s\n”, szBufer);

/* Will print Today is Friday June 26, 1992 */

Note: See the format characters in Table 14.7. This function makes the
creation of attractive time displays easy.

Table 14.7. Function strftime()’s format codes.

Format Description

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Full date and time (like ctime()) representation
appropriate for the locale.

%d Numeric day of the month.

%H Hour in 24–hour format (00–23).

%I Hour in 12–hour format (01–12).

%j Day of the year (001–366).

%m Month (01–12).

%M Minute (00–59).

%p AM/PM indicator for a 12–hour clock.

%S Seconds (00–61).

ANSI C’s Library Function

583

C C
CC
C

C
C
C C14

%U Week of the year as a decimal number; Sunday is
taken as the first day of the week (00–53).

%w Day of the week, (0–6; Sunday is 0).

%W Week of the year; Monday is taken as the first day of
the week (00–53).

%x Date representation for current locale.

%X Time representation for current locale.

%y Year without the century (00–99).

%Y Year with the century.

%z Time zone name or abbreviation; no characters if time
zone is unknown.

%% Percent sign.

strlen()

Header: string.h

Syntax: size_t strlen(const char * szString);

Description: Returns the length of a string.

Parameters: szString—Pointer to the string for which length is desired.

Returns: Number of characters in szString (excluding the terminating
NULL).

Example: char szString[100] =

”Now is the time for all good programmers to...”};

 printf(“Length of ‘%s’ is \n %d”,

 szString, strlen(szString));

/* the length printed is 46 */

Note: This function returns the number of characters in the string, not
the defined size. To get the defined size, use sizeof().

Part IV • Documenting the Differences

584

strncat()

Header: string.h

Syntax: char * strncat(char * szDestination, const char *

 szSource, size_t nCount);

Description: Concatenates nCount characters of string pointed to by szSource
to szDestination.

Parameters: szDestination—String that will have szSource appended to it.

szSource—String to append to szDestination.

nCount—Number of characters from szSource to append.

Returns: Pointer szDestination.

Example: char szString[100] = {“Now is the time”};

 strncat(szString, “ for all good men”, 15);

/* szString will be Now is the time for all good m

 */

Note: Be sure the destination is large enough to hold the resultant string,
and that it has been properly initialized. The destination can be a
string of zero length.

strncmp()

Header: string.h

Syntax: int strncmp(const char * szString1, const char *

 szString2, size_t nCount);

Description: Compares up to nCount characters of the two strings and returns
a value indicating whether they are equal or if one is less than the
other.

Parameters: szString1—The first string to compare.

szString2—The second string to compare.

nCount—Number of characters to compare.

ANSI C’s Library Function

585

C C
CC
C

C
C
C C14

Returns: Zero if they are equal, < 0 if szString1 is less than szString2, or
> 0 if szString1 is greater than szString2.

Example: char szString1[] =

{“Now is all the time for all good men”};

char szString2[] =

{“Now is all the time for all Bad men”};

 if (strncmp(szString1, szString2, 20) == 0)

 {

 printf(“‘%s’ ‘%s’ are equal”,

 szString1,

 szString2);

 }

/* Will print since the strings are equal

 for the first 20 characters*/

Note: See strcmp().

strncpy()

Header: string.h

Syntax: char * strncpy(char * szDestination, const char *

 szSource, size_t nCount);

Description: Copies to szDestination up to nCount characters from the string
pointed to by szSource.

Parameters: szDestination—String that will have szSource copied to it.

szSource—String copied to szDestination.

nCount—Number of characters to copy.

Returns: Pointer szDestination.

Example: char szString[100] = {“Now is the time”};

 strncpy(szString, “ for all good men”, 10);

/* szString will be for all g */

Note: Be sure the destination is large enough to hold the resultant string.

Part IV • Documenting the Differences

586

strpbrk()

Header: string.h

Syntax: char * strpbrk(const char * szString, const char *

 szCharacters);

Description: Finds the first occurrence of any character from szCharacters
found in szString.

Parameters: szString—Pointer to a string to search.

szCharacters—Pointer to a string containing characters to
search for.

Returns: Pointer to the first character found in szString that is in
szCharacters.

Example: char szString1[] =

{“Now is all the time for all good men”};

char * pChars;

 pChars = strpbrk(szString1, “fzxy”);

 if (pChars)

 {

 printf(“found at ‘%s’\n”,

 pChars);

 }

 /* Will print found at ‘for all good men’ */

strrchr()

Header: string.h

Syntax: char * strrchr(const char * szString, int chChar);

Description: Finds the last occurrence of chChar found in szString.

Parameters: szString—Pointer to a string to search.

chChar—Character to search for.

ANSI C’s Library Function

587

C C
CC
C

C
C
C C14

Returns: Pointer to the last occurrence of chChar found in szString.

Example: char szString1[] =

{“Now is all the time for all good men”};

char * pChars;

 pChars = strrchr(szString1, ‘a’);

 if (pChars)

 {

 printf(“found at ‘%s’\n”,

 pChars);

 }

/* Will print found at ‘all good men’ */

strspn()

Header: string.h

Syntax: size_t strspn(const char * szString, const char *

 szChars);

Description: Returns the length of the initial string that contains characters
found in szChars.

Parameters: szString—Pointer to a string to be searched.

szChars—String containing characters that must be contained.

Returns: Length of the initial string that contains only characters from
szChars, up to the length of szString.

Example: char szString[100] =

{“Now is the time for all good men.”};

char szOutput[100];

 memset(szOutput, 0, sizeof(szOutput));

 strncpy(szOutput, szString,

 strspn(szString, “woN si teh”));

Part IV • Documenting the Differences

588

 printf(“%s”,

 szOutput);

/* will print Now is the ti */

Note: Also see strcspn().

strstr()

Header: string.h

Syntax: char * strstr(const char * szString, const char *

 szCharacters);

Description: Finds the first occurrence of szCharacters in szSting.

Parameters: szString—Pointer to the string to search.

szCharacters—Pointer to the characters to search for.

Returns: Pointer to the point where the characters were found.

Example: char szString[100] =

{“Now is the time for all good men.”};

 printf(“‘%s’”, strstr(szString, “me”));

/* will print ‘me for all good men.’ */

Note: Basically a search for a substring in a string function.

strtod()

Header: stdlib.h

Syntax: double strtod(const char * szString,

 char ** pEnd);

Description: Converts the string to a floating point number, stopping when an
invalid character has been reached. The stopping point is stored
in the variable pointed to by pEnd if pEnd is not NULL.

Parameters: szString—Pointer to the string to convert.

pEnd—Pointer to a string pointer.

ANSI C’s Library Function

589

C C
CC
C

C
C
C C14

Returns: The floating point number converted.

Example: double dValue;

char szString[100] =

{“123.34 Now is the time for all good men.”};

char * pEnd;

 dValue = strtod(szString, &pEnd);

 printf(“Converted %f stopped at ‘%s’\n”,

 dValue,

 pEnd);

/*

 * Prints: Converted 123.340000 stopped at

 ‘ Now is the time for all good men.’

 */

Note: See strtol().

strtok()

Header: string.h

Syntax: char * strtok(char * szString, const char *

 szTokenSep);

Description: Breaks the string pointed to by szString into tokens, when each
token is separated by one (or more) of the characters found in
szTokenSep.

Parameters: szString—Pointer to a string to break into tokens. This string
will be modified, so use a copy if necessary.

szTokenSep—Pointer to a string of token separators.

Returns: Pointer to a token from szString.

Example: char szString[100] =

{“Now is the time for all good men.”};

char szTokens[] = {“ .”};

char * pToken;

Part IV • Documenting the Differences

590

 printf(“‘%s’\n”, szString);

 pToken = strtok(szString, szTokens);

 do

 {

 printf(“Token ‘%s’\n”, pToken);

 } while (pToken = strtok(NULL, szTokens));

 printf(“‘%s’\n”, szString);

/*

 * Prints:

 * ‘Now is the time for all good men.’

 * Token ‘Now’

 * Token ‘is’

 * Token ‘the’

 * Token ‘time’

 * Token ‘for’

 * Token ‘all’

 * Token ‘good’

 * Token ‘men’

 * ‘Now’

 */

Note: Don’t forget that this function modifies the string passed.

strtol()

Header: stdlib.h

Syntax: long strtol(const char * szString, char ** pEnd,

 int nBase);

Description: Converts the string to a long integer number, stopping when an
invalid character has been reached. The stopping point is stored
in the variable pointed to by pEnd if pEnd is not NULL. The
parameter nBase determines what base is used and must be
either 0 or 2 through 36. If nBase is zero, then the base of the

ANSI C’s Library Function

591

C C
CC
C

C
C
C C14

number is determined from the number’s format—if the number
starts with 0x or 0X, then it is base 16; if it starts with a zero, then
base 8 is assumed; otherwise it is decimal based.

Parameters: szString—Pointer to the string to convert.

pEnd—Pointer to a string pointer.

nBase—Base of the number to be converted.

Returns: The long integer converted.

Example: long lValue;

char szString[100] =

{“123.34 Now is the time for all good men.”};

char * pEnd;

 lValue = strtol(szString, &pEnd, 0);

 printf(“Converted %ld stopped at ‘%s’\n”,

 lValue,

 pEnd);

/*

 * Prints: Converted 123 stopped at

 ‘.34 Now is the time for all good men.’

 */

Note: See strtoul().

strtoul()

Header: stdlib.h

Syntax: unsigned long int strtoul(const char * szString,

 char ** pEnd,

 int nBase);

Description: Converts the string to an unsigned long integer number,
stopping when an invalid character is reached. The stopping point
is stored in the variable pointed to by pEnd if pEnd is not NULL. The
parameter nBase determines what base is used and must be

Part IV • Documenting the Differences

592

either 0 or 2 through 36. If nBase is zero, then the base of the
number is determined from the number’s format; if the number
starts with 0x or 0X, then it is base 16; if it starts with a zero,
 then base 8 is assumed; otherwise it is decimal based.

Parameters: szString—Pointer to the string to convert.

pEnd—Pointer to a string pointer.

nBase—Base of the number to be converted.

Returns: The long integer converted.

Example: unsigned long lValue;

char szString[100] =

{“123.34 Now is the time for all good men.”};

char * pEnd;

 lValue = strtoul(szString, &pEnd, 0);

 printf(“Converted %ld stopped at ‘%s’\n”,

 lValue,

 pEnd);

/*

 * Prints: Converted 123 stopped at ‘.34 Now is the time

for all good men.’

 */

Note: See strtol().

strxfrm()

Header: string.h

Syntax: size_t strxfrm (char * szDestination, const char *

 szSource, size_t nLength);

Description: Copies the string pointed to by szSource to the buffer pointed to
by szDestination, using the collating sequence set by setlocale
(). The function is identical to strncpy() when the locale is “C”,

ANSI C’s Library Function

593

C C
CC
C

C
C
C C14

except the string is not padded with NULL characters when szSource
is shorter than nLength.

Parameters: szDestination—Pointer to a buffer where szSource will be
copied to.

szSource—Pointer to a string to copy and convert.

nLength—Maximum number of characters to copy and convert.

Returns: Length of the converted string.

Example: char szSource[100] =

{“Now is the time for all good men.”};

char szDestination[100];

 strxfrm(szDestination, szSource,

 strlen(szSource));

 printf(“Converted \n’%s’ \nto \n’%s’\n”,

 szSource,

 szDestination);

/*

 * Prints:

 * Converted

 * ‘Now is the time for all good men.’

 * to

 * ‘Now is the time for all good men.’

 */

Note: See strncpy()

system()

Header: process.h & stdlib.h

Syntax: int system(const char * szCommand);

Description: Passes the string pointed to by szCommand to the operating
system’s command processor.

Part IV • Documenting the Differences

594

Parameters: szCommand—Pointer to a string containing an operating system
command, or NULL to determine if there is a command processor.

Returns: If szCommand is NULL, non-zero if there is a command processor,
otherwise a zero value. If szCommand is not NULL, then zero if there
was no error, or a non-zero value if the command processor
couldn’t be loaded.

Example: /* Check for command processor, and do a dir command if

present */

 if (system(NULL))

 {

 system(“dir *.*”);

 }

Note: Most operating systems have a loadable command processor.

tan()

Header: math.h

Syntax: double tan(double dValue);

Description: Returns the tangent of dValue, measured in radians.

Parameters: dValue—Value for which tangent is desired.

Returns: The tangent of dValue.

Example: double dResult;

 dResult = tan(1.5);

/* dResult will be 14.10142 */

Note: Also see tanh().

tanh()

Header: math.h

Syntax: double tanh(double dValue);

ANSI C’s Library Function

595

C C
CC
C

C
C
C C14

Description: Returns the hyperbolic tangent of dValue, measured in radians.

Parameters: dValue—Value for which hyperbolic tangent is desired.

Returns: The hyperbolic tangent of dValue.

Example: double dResult;

 dResult = tanh(1.5);

/* dResult will be 0.905148 */

Note: Also see tan().

time()

Header: time.h

Syntax: time_t time(time_t * TimeValue);

Description: Returns the current calendar time encoded into a time_t type.

Parameters: TimeValue—Pointer to a type time_t, which if not NULL, will also
receive the time.

Returns: The current time.

Example: char szBuffer[100];

time_t OurTime;

 OurTime = time(NULL);

 strftime(szBuffer, sizeof(szBuffer),

 “Today is %A %B %d, %Y”,

 localtime(&OurTime));

 printf(“%s\n”, szBuffer);

/* Will print Today is Saturday June 27, 1992 */

Note: Also see strftime() and ctime(). The function time()’s param-
eter is often NULL as shown in the preceding example.

Part IV • Documenting the Differences

596

tmpfile()

Header: stdio.h

Syntax: FILE * tmpfile(void);

Description: Creates a temporary work file and opens it for update. This file is
removed by the system either when it is closed or the program
ends.

Parameters: None.

Returns: Handle to a file or NULL if the function fails.

Example: FILE * TempWork = tmpfile();

Note: Be careful not to close the file in error because this removes the
file.

tmpnam()

Header: stdio.h

Syntax: char * tmpnam(char * szFileName);

Description: Creates a save name for a temporary work file. This function is
used when tmpfile() cannot be used, such as in situations where
the file must be closed for some reason.

Parameters: szFileName—Pointer to a buffer to hold the filename. This buffer
must be at least L_tmpnam characters long.

Returns: Pointer to the filename buffer. If szFileName is NULL, then the
buffer is a static internal buffer.

Example: char szBuffer[L_tmpnam];

 tmpnam(szBuffer);

 printf(“The temporary work file is ‘%s’\n”,

 szBuffer);

Note: Don’t forget to remove the file when the program ends.

ANSI C’s Library Function

597

C C
CC
C

C
C
C C14

tolower()

Header: ctype.h & stdlib.h

Syntax: int tolower(int chChar);

Description: Converts chChar to lowercase if it was originally uppercase. If
chChar was not uppercase, then it is returned unchanged.

Parameters: chChar—Uppercase letter to be converted to lowercase.

Returns: The character converted to lowercase.

Example: printf(“‘A’ in lowercase is ‘%c’\n”,

 tolower(‘A’);

/* Will print ‘A’ in lowercase is ‘a’ */

Note: See toupper().

toupper()

Header: ctype.h & stdlib.h

Syntax: int toupper(int chChar);

Description: Converts chChar to uppercase if it was originally lowercase. If
chChar was not lowercase, then it is returned unchanged.

Parameters: chChar—Lowercase letter to be converted to uppercase.

Returns: The character converted to uppercase.

Example: printf(“‘a’ in uppercase is ‘%c’\n”,

 toupper(‘a’);

/* Will print ‘a’ in uppercase is ‘A’ */

Note: See tolower().

ungetc()

Header: stdio.h

Syntax: int ungetc(int chChar, FILE * OpenFile);

Part IV • Documenting the Differences

598

Description: This function pushes back a character to the file OpenFile (which
was opened for input).

Parameters: chChar—Character to be pushed back to the file.

OpenFile—Pointer to an opened file.

Returns: The character that was pushed back.

Example: char szBuffer[129];

 printf(“Please press the ‘b’ key: “);

 szBuffer[0] = (char)getc(stdin);

 ungetc(‘A’, stdin);

 szBuffer[1] = (char)getc(stdin);

 printf(“szBuffer has %2.2s\n”, szBuffer);

/* Will print szBuffer has bA (if you type a ‘b’

 at the prompt) */

Note: The character need not be the same one as was last read. You may
ungetc() only one character before the character is read or
discarded (by a call to fseek(), fsetpos(), or rewind()).

va_arg()

Header: stdarg.h

Syntax: type va_arg(va_list param, type);

Description: Obtains the next argument from a list of variable arguments to a
function.

Parameters: param—Parameter list pointer.

type—Type of the next (to be fetched) parameter.

Returns: Value of the parameter being fetched.

Example: /* Program VARGS, written 17 June 1999 by Peter D.

ANSI C’s Library Function

599

C C
CC
C

C
C
C C14

 Hipson */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#define TRUE 1

#define FALSE (!TRUE)

int AddList(int nFirst, ...);

int OurErrors(char * OutputFormat, ...);

void main()

{

int nSum;

 nSum = AddList(10, 20, 30, 40, 50, 60, 70, 80,

 90, INT_MIN);

 (void)OurErrors(“%s - %d, %s\n”, “First”,

 nSum, “Second”);

}

int AddList(

 int nFirst,

 ...)

{

int nReturnValue = nFirst;

int nThisValue;

va_list Arguments;

 va_start(Arguments, nFirst);

Part IV • Documenting the Differences

600

 while((nThisValue = va_arg(Arguments, int)) !=

 INT_MIN)

 {

 nReturnValue += nThisValue;

 }

 va_end(Arguments);

 return(nReturnValue);

}

int OurErrors(

 char * OutputFormat,

 ...)

{

va_list Arguments;

 va_start(Arguments, OutputFormat);

 vfprintf(stderr, OutputFormat, Arguments);

 va_end(Arguments);

 return(0);

}

Note: See Chapter 13, “All About Header Files,” for more information.

va_end()

Header: stdarg.h

Syntax: void va_end(va_list param);

Description: Ends the processing of the variable number of arguments.

ANSI C’s Library Function

601

C C
CC
C

C
C
C C14

Parameters: param—Variable argument list.

Returns: No return value.

Example: (See va_arg(), preceding function described.)

Note: See Chapter 13, “All About Header Files,” for more information.

va_start()

Header: stdarg.h

Syntax: void va_start(va_list param, previous);

Description: Starts processing of a variable number of arguments.

Parameters: param—va_list variable, used by the va_ functions.

previous—Name of the last fixed parameter being passed to the
called function.

Returns: No return value.

Example: (See va_arg(), previously described.)

Note: See Chapter 13, “All About Header Files,” for more information.

vfprintf()

Header: stdio.h

Syntax: int vfprintf(FILE * OpenFile, const char *

 szFormat, va_list VarArgs);

Description: Prints to the specified file by using arguments passed by another
function.

Parameters: OpenFile—Pointer to an opened file.

szFormat—Pointer to a string containing format information.

VarArgs—Variable argument list.

Returns: Number of characters written or a negative value if there was an
error.

Part IV • Documenting the Differences

602

Example: /* Program VARGS, written 17 June 1999 by

 Peter D. Hipson */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

int OurErrors(char * OutputFormat, ...);

void main()

{

int nSum = 100;

 (void)OurErrors(“%s - %d, %s\n”,

 “First”, nSum, “Second”);

}

int OurErrors(

 char * OutputFormat,

 ...)

{

va_list Arguments;

 va_start(Arguments, OutputFormat);

 vfprintf(stderr, OutputFormat,

 Arguments);

 va_end(Arguments);

 return(0);

}

Note: See vprintf().

vprintf()

Header: stdio.h

Syntax: int vprintf(const char * szFormat, va_list

 VarArgs);

ANSI C’s Library Function

603

C C
CC
C

C
C
C C14

Description: Prints to stdout using arguments passed by another function.

Parameters: szFormat—Pointer to a string containing format information.

VarArgs—Variable argument list.

Returns: Number of characters written or a negative value if there was an
error.

Example: /* Program VARGS, written 17 June 1992 by

 Peter D. Hipson */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

int OurOutput(char * OutputFormat, ...);

void main()

{

int nSum = 100;

 (void)OurOutput(“%s - %d, %s\n”,

 “First”, nSum, “Second”);

}

int OurOutput(

 char * OutputFormat,
 ...)

{

va_list Arguments;

 va_start(Arguments, OutputFormat);

 vprintf(OutputFormat, Arguments);

 va_end(Arguments);

 return(0);

}

Note: See vfprintf().

Part IV • Documenting the Differences

604

vsprintf()

Header: stdio.h

Syntax: int vsprintf(char * szBuffer, const char *

 szFormat, va_list VarArgs);

Description: Prints, using arguments passed by another function, to the buffer
pointed to by szBuffer.

Parameters: szBuffer—Pointer to a buffer to write to.

szFormat—Pointer to a string containing format information.

VarArgs—Variable argument list.

Returns: Number of characters written or a negative value if there was an
error.

Example: /* Program VARGS, written 17 June 1992 by

 Peter D. Hipson */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

int OurOutput(char * OutputBuffer,

 char * OutputFormat, ...);

void main()

{

char szBuffer[100];

int nSum = 100;

 (void)OurOutput(szBuffer,

 “%s - %d, %s\n”,

 “First”, nSum, “Second”);

 printf(“%s”, szBuffer);

}

int OurOutput(

 char * OutputBuffer,

ANSI C’s Library Function

605

C C
CC
C

C
C
C C14

 char * OutputFormat,

 ...)

{

va_list Arguments;

 va_start(Arguments, OutputFormat);

 vsprintf(OutputBuffer, OutputFormat,

 Arguments);

 va_end(Arguments);

 return(0);

}

Note: See vfprintf() and vprintf().

wcstombs()

Header: stdlib.h

Syntax: size_t wcstombs(char * szDestination,

 const wchar_t * pWideChars,

 size_t nSize);

Description: Converts the wide characters in the buffer pointed to by
pWideChars to multibyte characters. Stores up to nSize characters
in szDestination.

Parameters: szDestination—Pointer to a buffer to receive the multibyte
characters.

pWideCharacters—Pointer to a buffer containing the wide
characters to be converted.

nCount—Size of szDestination.

Returns: Number of characters converted.

Example: wcstombs(szBuffer, szWideChars,

 sizeof(szBuffer));

Note: See wctomb().

Part IV • Documenting the Differences

606

wctomb()

Header: stdlib.h

Syntax: int wctomb(char * szDestination, const wchar_t

 WideChar);

Description: Converts a single wide character in the buffer pointed to by
pWideChars to a multibyte character.

Parameters: szDestination—Pointer to a buffer to receive the multibyte
characters.

WideChar—Wide character to be converted.

Returns: Number of bytes resulting from the conversion.

Example: wctomb(szBuffer, szWideChar[0]);

Note: See wcstombs().

printf() Format Codes

The printf() family of functions—printf(), fprintf(), sprintf(), vprintf(),
vfprintf(), and vsprintf()— uses a format string to describe the format of the
output. This format string enables the programmer to specify what is output.

The format string specifies the variables and how they are output. Because these
functions use a variable number of arguments, the function doesn’t know what
variables have been passed except to look at the format string. Making an error in one
variable’s type often causes problems with the variables that follow.

How is a variable formatted? The first character in a format specifier is a percent
sign, %. This format specifier has the following fields:

%[flags][size][.precision][prefix]type

The flags field is optional. Four values are allowed in this field, as shown in
Table 14.8.

ANSI C’s Library Function

607

C C
CC
C

C
C
C C14

Table 14.8. Flags used with printf() family of functions.

Flag character Description

‘-’ Left justify the output field within the width defined.

‘+’ Signed, positive values are always prefixed with a plus
sign. Negative values are prefixed with a minus sign.

‘ ‘ Signed, positive values are always prefixed with a blank.
Negative values are prefixed with a negative sign.

‘#’ Alternate conversion adds a leading zero for octal values,
a ‘0x’ or ‘0X’ for hexadecimal values, forces a floating
point number to always have a decimal point, and
removes floating point trailing zeros.

The following section describes each type of printf() field, and the meanings
for size, .precision, and prefix fields. Because all these fields depend on the type
field, the table is organized with subheads for each type.

c

The c type tells printf() to output a single character. This field is affected by the
following:

flags

Only the - (left justify) flag is used. If the width field specifies a width greater than
one, then the character can be either right justified (default) or left justified (using
the left justify flag).

width

Specifies the width of the output.

Part IV • Documenting the Differences

608

.precision

Ignored if present.

prefix

Ignored if present.

d and i

The d and i type tells printf() to output a signed decimal integer. This field is affected
by the following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored, and the formatted output’s actual width is used.

.precision

The precision specifies the minimum number of digits to appear. This causes output
that has fewer than the number of digits of width to be padded on the left with zeros.

prefix

The prefix allows specification of a short or long integer. Use h to specify a short
(16-bit) integer, and l to specify a long (32-bit) integer. The default is to the default
size for an integer for the system.

e and E

The e and E types tell printf() to output a floating point number, using an expo-
nential format. This output takes the form of [-]d.ddde[+|-]ddd. If the E type

ANSI C’s Library Function

609

C C
CC
C

C
C
C C14

is specified, then the form taken is [-]d.dddE[+|-]ddd with an uppercase E used to
indicate the exponent.

This field is affected by the following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored and the formatted output’s actual width is used.

.precision

Specifies the number of digits that follow the decimal point in the mantissa.

prefix

Two prefixes are recognized. The l prefix specifies the value is a double. The L
prefix specifies the value is a long double. When a float is passed as a parameter, it
is always passed as a double (unless it is cast as a float, which is not recommended).

f

The f type tells printf() to output a floating point number. This field is affected by
the following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored and the formatted output’s actual width is used.

Part IV • Documenting the Differences

610

.precision

Specifies the number of digits that follow the decimal point.

prefix

Two prefixes are recognized. The l prefix specifies the value is a double. The L prefix
specifies the value is a long double. When a float is passed as a parameter, it is always
passed as a double (unless it is cast as a float, which is not recommended).

g and G

The g and G types tell printf() to output using either the f, e, or E types, depending
on the value of the argument. The e type is used if the exponent for the conversion
would be less than -4 or greater than the precision. Trailing zeros are removed, and the
decimal point appears only if there is a decimal part of the number. See the f, e, or E
types for more information.

n

The n type tells printf() to save the current number of characters written so far to
the variable pointed to by the argument. No modifiers are allowed with the n type.

o

The o type tells printf() to output a decimal number in octal (base 8) format. This
field is affected by the following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored, and the formatted output’s actual width is used.

ANSI C’s Library Function

611

C C
CC
C

C
C
C C14

.precision

The precision specifies the minimum number of digits to appear. This causes output
that has fewer than the number of digits of width to be padded on the left with zeros.

prefix

The prefix allows specification of a short or long integer. Use h to specify a short (16-
bit) integer and l to specify a long (32-bit) integer. The default is to the default size
for an integer for the system.

p and P

The p and P types tell printf() to output a pointer. The pointer is printed in
hexadecimal notation, in a format that may be machine dependent. The case of the
type is used to specify the case of the hexadecimal digits. This field is affected by the
following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the
width is ignored, and the formatted output’s actual width is used.

.precision

The precision specifies the minimum number of digits to appear. This causes out-
put that has fewer than the number of digits of width to be padded on the left
with zeros.

prefix

With compilers that have segmented memory (and memory models) the prefix allows
specification of near or far pointers. Use F to specify a far (or long) pointer and N to
specify a near (or short) pointer. The default is to the default pointer type for the
program.

Part IV • Documenting the Differences

612

s

The s type tells printf() to output a string. This field is affected by the following:

flags

All flags as shown in Table 14.8 affect a field of this type except for the + (for plus
sign) and the ‘ ‘ (a blank, again for signs).

width

The width specifier defines the minimum width. If the string is longer than the
width and no .precision value is specified, then the output expands to the size of
the string.

.precision

Specifies the maximum number of characters to be output. If the string being
printed is larger than the width specification, then it will be truncated to .precision
size.

prefix

With compilers that have segmented memory (and memory models) the prefix allows
specification of a near or far pointer. Use F to specify a far (or long) pointer and N
to specify a near (or short) pointer. The default is to the default pointer type for
the program.

u

The u type tells printf() to output an unsigned decimal integer. This field is affected
by the following:

flags

All flags as shown in Table 14.8 affect a field of this type, except there can never be
a minus sign.

ANSI C’s Library Function

613

C C
CC
C

C
C
C C14

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored and the formatted output’s actual width is used.

.precision

The precision specifies the minimum number of digits to appear. This causes output
that has fewer than the number of digits of width to be padded on the left with zeros.

prefix

The prefix allows specification of a short or long integer. Use h to specify a short (16-
bit) integer and l to specify a long (32-bit) integer. The default is to the default size
for an integer for the system.

x and X

The x and X types tell printf() to output an unsigned, hexadecimal integer. The case
of the hexadecimal digits matches the case of the type field. This field is affected by the
following:

flags

All flags as shown in Table 14.8 affect a field of this type.

width

Specifies the minimum width. If the formatted result is less than the width, then it is
padded with blanks. If the formatted result is greater than the width, then the width
is ignored and the formatted output’s actual width is used.

.precision

The precision specifies the minimum number of digits to appear. This causes output
that has fewer than the number of digits of width to be padded on the left with zeros.

Part IV • Documenting the Differences

614

prefix

The prefix allows specification of a short or long integer. Use h to specify a short (16-
bit) integer and l to specify a long (32-bit) integer. The default is to the default size
for an integer for the system.

scanf() format codes

The scanf() family of functions—scanf(), fscanf(), and sscanf()—uses a
format string to describe the format of the input. This format string allows the
programmer to specify what is read. All arguments passed to these functions that are
to receive values are passed as addresses. Failure to provide addresses causes the
program to fail.

The format string specifies what the variables will be when they are filled in,
their types, and the format of the input data. Because these functions use a variable
number of arguments, the function doesn’t know what variables have been passed
except to look at the format string.

How is a variable formatted? The first character in a format specifier is a percent
sign, %. This format specifier has the following fields:

%[*][width][typelength]type

The * specifies that the next field of type is to be skipped. The specification of
type is important to ensure the field is correctly skipped.

The optional specification width specifies the maximum width that is scan-
ned for this field. The field may well be shorter than width, depending on the type
specification.

The typelength specifier provides information about the size of the object
that receives the input. Using an ‘h’ character specifies a short (16-bit) object while
the ‘l’ character specifies a long (32-bit) object. When used with floating point
arguments, the ‘l’ character specifies a long double object (its size being implementa-
tion dependent).

ANSI C’s Library Function

615

C C
CC
C

C
C
C C14

c

The c type tells scanf() to input one (or more) characters, which may include
whitespace characters (the s type does not include whitespace characters). This field
is affected by the following:

width

Specifies the width of the input field. If not specified, then the width is assumed to be
one character.

typelength

None allowed.

d

The d type tells scanf() to input a signed decimal integer. This field is affected by the
following:

width

Specifies the maximum width.

typelength

The typelength specifier provides information about the size of the object that
receives the input. Using an ‘h’ character specifies a short (16-bit) object while the
‘l’ character specifies a long (32 bit) object.

o

The o type tells scanf() to input a decimal number in octal (base 8) format. This field
is affected by the following:

Part IV • Documenting the Differences

616

width

Specifies the maximum width.

typelength

The typelength specifier provides information about the size of the object that will
receive the input. Using an ‘h’ character specifies a short (16-bit) object while the ‘l’
character specifies a long (32-bit) object.

x

The x type tells scanf() to input an unsigned, hexadecimal integer. This field is
affected by the following:

width

Specifies the maximum width.

typelength

The typelength specifier provides information about the size of the object that re-
ceives the input. Using an ‘h’ character specifies a short (16-bit) object, while
the ‘l’ character specifies a long (32-bit) object.

i

The i type tells scanf() to input a signed decimal integer, which may be in a decimal,
octal, or hexadecimal format. The first characters in the string are examined, and if
they are 0x, then the number is assumed to be base hexadecimal. If there is a leading
0 with no following x, then the base is assumed to be octal. If the leading character is
not a 0, then the number is assumed to be decimal. This field is affected by the
following:

width

Specifies the maximum width.

ANSI C’s Library Function

617

C C
CC
C

C
C
C C14

typelength

The typelength specifier provides information about the size of the object that re-
ceives the input. Using an ‘h’ character specifies a short (16-bit) object, while the
‘l’ character specifies a long (32-bit) object.

u

The u type tells scanf() to input an unsigned decimal integer. This field is affected by
the following:

width

Specifies the maximum width.

typelength

The typelength specifier provides information about the size of the object that receives
the input. Using an ‘h’ character specifies a short (16-bit) object, while the ‘l’ character
specifies a long (32-bit) object.

e, f, and g

The e, f, and g types tell scanf() to input a floating point number.

This field is affected by the following:

width

Specifies the maximum width.

typelength

With floating point arguments, the ‘l’ character specifies a long double object (its
size being implementation dependent).

Part IV • Documenting the Differences

618

n

The n type tells scanf() to save the current number of characters scanned so far to
the variable pointed to by the argument. No modifiers are allowed with the n type.

p

The p and P types tell scanf() to input a pointer. The pointer is scanned in hexa-
decimal notation, in a format that may be machine dependent. This field is affected
by the following:

width

Specifies the maximum width.

typelength

No typelength specifier is used.

s

The s type tells scanf() to input a character string, which consists of a group of
nonwhitespace characters. Input is assigned up to the first whitespace character. This
field is affected by the following:

width

Specifies the maximum width.

typelength

No typelength specifier is used.

ANSI C’s Library Function

619

C C
CC
C

C
C
C C14

[...]

The [...] type tells scanf() to input a character string, consisting of all characters
that are found in the brackets. Prefixing the characters with a ̂ causes all characters that
are not in the group to be read.

Typically, this input format is used to read strings that contain blanks or other
whitespace characters. This field is affected by the following:

width

Specifies the maximum width.

typelength

No typelength specifier is used.

Summary

This chapter covered the various ANSI standard library functions:

• The functions are prototyped in the standard header files.

• Programmers must be careful to pass the correct parameters to those functions
that take a variable number of arguments (such as printf()) because the
compiler cannot check argument types.

• About 150 non-ANSI functions are available with many compilers. Using the
non-ANSI function may create problems when the program is ported to a
different compiler.

Part IV • Documenting the Differences

620

Preprocessor Directives

621

C C
CC
C

C
C
C C15C C

CC
C

C
C
C C15

Preprocessor Directives

To help you gain a better understanding of how a C compiler produces the object
module, this chapter looks at the process of compiling. Most compilers take the
following steps, in this order:

1. Preprocess the input file, in this order:

a. Process the #preprocessor directives.

b. Strip comments from the source (as necessary).

c. Expand all macros.

2. The syntax checker processes the file to check for syntax errors.

3. The code generator generates the necessary object module.

All preprocessor commands begin with a pound symbol (#). It must be the first
nonblank character, and for readability, a preprocessor directive should begin in
column 1. Notice that a defined identifier is always a macro and can be referred to in
that way.

Part IV • Documenting the Differences

622

The C preprocessor offers four operators to help you in creating macros (see the
section “The #define Directive”) and the #if series of directives.

The Macro Continuation Operator (\)

A macro usually must be contained on a single line. The macro continuation operator
is used to continue a macro that is too long for a single line. When you are breaking
a macro over several lines, use the macro continuation operator as the last character in
the line to be continued. Here’s an example of a multiline macro:

#define PRINTMSG(operand) \

 printf(#operand " = %d\n", operand)

This line is exactly equivalent to the following:

#define PRINTMSG(operand) printf(#operand " = %d\n", operand)

The macro continuation operator allows your macros to be read and formatted
more easily. It doesn’t affect the operation of the macro.

The Stringize Operator (#)

The stringize operator is used in creating a macro. It takes the particular operand to
the macro and converts it to a string. To see how this works, look at this example:

#define PRINTMSG(operand) printf(#operand " = %d\n", operand)

When an integer variable (nCount) is being used as a counter, for example, you
might use the statement to display nCount’s value for debugging:

PRINTMSG(nCount + 1);

This statement then is expanded by the preprocessor to create the following
source line:

printf("nCount + 1 " " = %d\n", nCount + 1);

This sample line of code shows that the variable’s name has been included
(using string literal concatenation) as part of the format string that printf() uses.

Preprocessor Directives

623

C C
CC
C

C
C
C C15

The stringize operator causes the particular operand to a macro to be converted
to a string, by taking the literal characters of the operand and enclosing them within
double quotes.

The Characterize Operator (#@)

The characterize operator, which works much like the stringize operator, is used in
creating a macro. It takes a particular single character operand to the macro and
converts it to a character literal, by surrounding it with single quotes. To see how this
works, look at the following example:

#define MAKECHAR(operand) #@operand

When you want to create a character literal, as part of a case: statement, for
example, you can use the MAKECHAR macro:

 switch(nCount + 1)

 {

 case MAKECHAR(A):

/* Action for capital A */

 break;

 case MAKECHAR(B):

/* Action for capital B */

 break;

 default:

 break;

 }

The first case statement then is expanded by the Pre-Processor to create the
following:

case 'A':

In this sample line of code, the operand has been surrounded by single quotes,
yielding a character literal. This example isn’t the most useful for using the character-
ize operator, but it gets the point across.

The characterize operator causes the particular operand to a macro to be
converted to a character literal, by taking the characters of the operand and enclosing
them within single quotes. This operator fails if it is given a single quote character.

Part IV • Documenting the Differences

624

The Token Paste Operator (##)

The token paste operator tells the preprocessor to paste, to the token on the other
side, the operand that either precedes or follows it. For example, you might code a
macro to print one of several variables that have meaningful names:

#define PRINTCOUNTER(variable) \

 printf("counter %d is %d", variable, nCounter#variable)

This macro definition can then be used in a program such as the following:

int nCounter1;

int nCounter2;

int nCounter3;

int nCounter4;

 PRINTCOUNTER(1);

This call to the macro can be expanded to

printf("variable %d is %d", 1, nCounter1);

You decide how to use this operator. It has many uses when you create macros
to help debug programs that use structures heavily.

The Defined Identifier Operator (defined())

The defined() operator is used with the #if and #elif preprocessor commands.
This operator returns a logical true (nonzero) value if the identifier used as its operand
is currently defined and a logical false (zero) if the operand is not defined.

The primary use for defined() is in testing two different identifiers to see
whether they are defined. You can use nested #ifdef statements; using defined(),
however, makes the code easier to understand.

Preprocessor Directives

625

C C
CC
C

C
C
C C15

The #define Directive

The #define command defines macros. C’s macros help you create powerful function-
ality. Macros can be defined with substitutable parameters or as simple identifiers.
The simplest macro probably is the following:

#define TRUE 1

This macro defines the identifier TRUE that always has the numeric value of 1
substituted for it. For example, the following lines have a conditional statement (and
some comments):

#define TRUE 1

/* Later in the program... */

 if (nOurTime == TRUE)

 {/* Process our time... */

/* our time code is here. */

 }

After the preprocessor finishes, this simple bit of code then reads:

if (nOurTime == 1)

{

}

This code fragment shows that the preprocessor has substituted the number 1 for
the identifier TRUE. In this example, TRUE is the simplest form of a macro—so simple
that it usually is referred to as the definition of an identifier. A more complex macro
might have one or more operands, which enable you to test and create different
statements, such as MACROS (see Listing 15.1).

Listing 15.1. MACROS.C.

/* Program MACROS, written 23 June 1992 by Peter D. Hipson */

/* A program that shows macros. */

#include <stdio.h>

#include <stdlib.h>

continues

Part IV • Documenting the Differences

626

Listing 15.1. continued

/*

 * The DONOTHING identifier, although it is defined, is basically

 * a no-operation. An example of its use is shown in the body

 * of the program. Some programmers define DONOTHING as a

 * semicolon; doing so, however, can create problems and is

 * not recommended.

 */

#define DONOTHING

/*

 * Both TRUE and FALSE, below, can be considered to be macros

 * that don't have any operands. When they are included in a

 * source line, they expand to their literal contents.

 */

#define TRUE 1

#define FALSE (!TRUE)

/*

 * Now define some stock macros. Both MIN() and MAX() may be

 * included (in lowercase) in stdlib.h (with many C compilers);

 * I define them in uppercase, however, to remind me that they

 * are macros, subject to side effects.

 */

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

/*

 * SWAP() is a neat little variable swapper that swaps the

 * contents of two variables in-place without temporary storage.

 * The only caution is that the variables must be of the same

 * size (but can be of differing types if necessary).

 *

 * Notice SWAP()'s use of braces around the expressions, in

 * case the macro is invoked as a single line after an if()

 * statement that has no braces itself. Failure to include

 * the braces can lead to some strange problems with macros

Preprocessor Directives

627

C C
CC
C

C
C
C C15

 * that have more than one statement included in them, such

 * as is the case with SWAP().

 */

#define SWAP(a, b) {a ^= b; b ^= a; a ^= b;}

/*

 * Notice that PRINTAB() uses the stringize operator to form

 * its format string. This usage enables you to have a nice

 * printf() statement without having to do a lot of typing.

 */

#define PRINTAB(a, b) printf(#a" = %d "#b" = %d \n", a, b)

int main()

{

int nOurTime = FALSE;

int nSum;

int a = 10;

int b = 11;

/* The DONOTHING identifier tells you that the for()'s statement(s)

 * have not been omitted:

 */

 for (nSum = 0; nSum == nOurTime; nSum++)

 DONOTHING;

 if (nOurTime == TRUE)

 {/* Process our time... */

/* our time code is here. */

 }

 PRINTAB(a, b);

continues

Part IV • Documenting the Differences

628

Listing 15.1. continued

 SWAP(a, b);

 PRINTAB(a, b);

 return(FALSE);

}

Each of the macros in the MACROS program is useful in a real program. The
MIN() and MAX() macros are the most useful to me. The SWAP() macro has been around
a long time. (I came across it when I was writing assembly code for main-
frame computers.) It enables two variables to be swapped without using any temporary
storage—a handy tool if you are either short of memory or cannot allocate a temporary
variable because of context.

The #error Directive

The #error directive typically is used as part of an #if type conditional preproces-
sor statement. For example, if you include in MACROS.C the #error directive as
shown in the final line of this code fragment:

/* Program MACROS, written 23 June 1999 by Peter D. Hipson */

#include <stdio.h>

#include <stdlib.h>

#error "This is an error"

This directive, when encountered by the compiler, prints on the compiler’s stderr
stream a message similar to the following:

D:\ADC\SOURCE\MACROS.C(6) : error C2189: #error : "This is an error"

Notice that the compiler’s error message includes the source file’s name and line
number, and a compiler error message that includes the string included in the #error
directive.

Preprocessor Directives

629

C C
CC
C

C
C
C C15

The #include Directive

The #include directive tells the compiler to include a header file at the current point
in the source file. Header files generally don’t contain actual executable statements,
but rather contain #define identifiers, function prototypes, and so on.

When you are including a header file, delimit the operand using either double
quotes or a <> pair surrounding the operand.

The directive #include "ourfile.h" causes the compiler to search for the
header file first in the current directory and then in the directories specified in the
include search order.

The directive #include <ourfile.h> causes the compiler to search for the
header file in the directories specified in the include search order.

If the header file specified in the #include directive has a fully qualified path
name, this path is used to find the header file.

The #if Directive

The #if directive is a useful part of the preprocessor’s directives. It enables you to
conditionally include (and exclude) parts of your source code. Unlike the other
preprocessor directives usually grouped at the beginning of a source file, the #if
directive may be found at any point in the source file.

The #if directive is followed by a constant expression (which the preprocessor
evaluates) and has several restrictions, including the following:

• The expression must evaluate to constants. A variable cannot be used in the
#if directive.

• The expression must not use sizeof(), a cast, or enum constants.

• The expression is evaluated mathematically; string compares do not work.

The #if directive enables you to compile code conditionally based on factors
such as which operating system your program will run under and the compiler’s
memory model. When the #if directive is used, you can combine the #if directive
with either the #else or the #elif directives.

Part IV • Documenting the Differences

630

The block of source code affected by the #if directive is ended with an #else,
#elif, or #endif directive.

The #ifdef Directive

To test whether an identifier has been defined, you can use the #ifdef directive. The
identifier to be tested can be one you create (using #define) or a predefined ident-
ifier created by the C compiler.

You might use the #ifdef directive to avoid creating problems with macro
redefinitions or for specific macros being redefined with slightly different (but
functionally identical) operands.

The most common use I have for the #if directive is to comment out large blocks
of code that may contain embedded comments. Because you cannot use a surround-
ing comment with such a block of code, a simple workaround procedure is to use #if
as shown in this example:

 for (nSum = 0; nSum == nOurTime; nSum++)

 DONOTHING;

#ifdef DONOTCOMPILE /* Never compile this code */

 if (nOurTime == TRUE)

 {/* Process our time... */

/* our time code is here. */

 }

#endif /* DONOTCOMPILE */

 PRINTAB(a, b);

Notice that the if() block of code (with its comments) has been removed using
an #ifdef/#endif directive pair. I make sure that the identifier DONOTCOMPILE never is
defined. You can choose to use a different identifier; DONOTCOMPILE, however, is
descriptive.

A second use of the #ifdef directive is to enable you to undefine an identifier if
you know that you will redefine it.

Preprocessor Directives

631

C C
CC
C

C
C
C C15

#ifdef SWAP

#undef SWAP

#endif

#define SWAP(a, b) {a ^= b; b ^= a; a ^= b;}

In this code fragment, you want to define a macro called SWAP(); however, you
want to avoid any problems in redefining an existing SWAP() macro. This code is
necessary to avoid an error message if SWAP() already exists and then is redefined.

The #ifndef Directive

To test whether an identifier has not been defined, you can use the #ifndef directive.
The identifier to be tested can be one you create (using #define) or a predefined
identifier created by the C compiler. If the identifier has not been defined, the
statements following the #ifndef directive are executed until either a #endif, #elif,
or #else is encountered.

An example of the #ifndef directive is the code used to prevent a header file that
is included twice from creating problems with macro redefinitions. An example of the
use of #ifndef to prevent problems with multiple inclusion of a header file is shown
in the following code fragment. This code fragment assumes that the header file’s name
is OURHEAD.H.

#ifndef _ _OURHEAD

/* The include file's lines are here... */

#define _ _OURHEAD

#endif /* _ _OURHEAD */

Notice that the first time the header file is included, the identifier __OURHEAD
will not have been defined, and the test will succeed. The lines for the header file
are processed and the final line defines the identifier __OURHEAD. If this header file is
included a second time, the identifier __OURHEAD then is defined, and the test fails. The
lines for the header file are ignored.

A second use of the #ifndef directive is to enable you to define an identifier if
it has not been defined yet. In the following classic example, the NULL identifier (which
is in a number of header files) is defined.

Part IV • Documenting the Differences

632

#ifndef NULL

#define NULL (int *)0

#endif

In this code fragment, be sure that the NULL identifier is defined. If it is defined,
you accept the definition; if it is not defined, you define it. This code is necessary to
avoid an error message if NULL already exists and then is redefined.

The #else Directive

Like the C language’s if() statement, the preprocessor has an if/else construct.
Often, you must use either one block of code or another depending on the results of
a given test. You can make two separate #if tests, each having the opposite effect; this
technique, however, creates code that is generally unreadable and difficult to maintain.
(You might change one #if and forget to update the other.)

Typically, #else is used when you need to use one block of source code (which
can include other preprocessor directives), or another, but never both. An example of
the #else is shown in the following code fragment:

#if defined(VERSION1)

/* Lines for the first version. */

#else /* it's not VERSION1 */

/* Lines for the other versions. */

#endif /* VERSION1 testing */

The same code written without the #else is more complex and more difficult to
understand:

#if defined(VERSION1)

/* Lines for the first version. */

#endif /* Not VERSION1 */

#if !defined(VERSION1)

/* Lines for the other versions. */

#endif /* Not VERSION1 */

Using #else when it’s needed can make your preprocessor code more
manageable.

Preprocessor Directives

633

C C
CC
C

C
C
C C15

The #elif Directive

To make the creation of nested testing using preprocessor directives easier, ANSI C
has introduced the #elif directive. It follows an #if (or another #elif) directive,
effectively ending the #if (or #elif)’s block and introducing a new conditional block.

Typically, #elif is used where you need multiple tests, for example, to test for
two or more versions of a compiler. An example of the #elif is shown in the
following code fragment:

#if defined(VERSION1)

/* Lines for the first version. */

#elif defined(VERSION2)

/* Lines for the second version. */

#elif defined(VERSION3)

/* Lines for the third version. */

#endif /* VERSION? */

The same code written without the #elif is more complex and more difficult to
understand:

#if defined(VERSION1)

/* Lines for the first version. */

#else /* Not VERSION1 */

#if defined(VERSION2)

/* Lines for the second version. */

#else /* Not VERSION2 */

#if defined(VERSION3)

/* Lines for the third version. */

#endif /* VERSION3 */

#endif /* VERSION2 */

#endif /* VERSION1 */

Using #elif when it’s needed can make your preprocessor code more
manageable.

The #endif Directive

The #endif directive ends the nearest #if preceding it. Every #if requires an #endif
statement; #else and #elif directives, however, do not require separate #endif
statements.

Part IV • Documenting the Differences

634

The following code fragment shows nesting of conditional preprocessor state-
ments and the effect of the #endif statements. Notice how the comments following
the #endif directives make the code easier to read and modify. Try to get into the
practice of commenting your preprocessor directives just as you would comment
your regular C source code.

#ifdef DLL /* Creating a Dynamic Link Library */

#ifndef MT /* DLLs must be multitasking */

/* Error message for this condition! */

#error "Cannot define DLL without MT"

#else

/* whatever is required for a DLL */

#endif /* MT */

#endif /* DLL */

Using nested conditional preprocessor directives enables you to make
complex decisions about what is being done with the program. Your program
(commonly) might have three versions: a low-priced entry version, a higher-priced
full-featured version, and a freebie demo version. Using #if directives enables you to
maintain one set of source code that compiles differently depending on which version
of the program is being created.

The #line Directive

By using the #line directive, you can change either the current line number (which
then is successively incremented for following lines) or, optionally, the filename
associated with the current source file.

When you are using an integrated debugger, which checks the error and warning
messages produced by the compiler, changing the line or filename can produce results
that may not be what you expect. When you are using #line, make sure that you
understand what its effects will be in your environment.

The current line number is always available in the predefined identifier _ _LINE
_ _, and the current filename is available in the predefined identifier _ _FILE _ _. Both
of these identifiers are used with the assert() macro, and you can create error message
substitutions using them. Let’s look at an example of using the #line directive.

Preprocessor Directives

635

C C
CC
C

C
C
C C15

/* Source file is OURFILE.C */

 printf("This file is '%s' the line is '%d' \n", _ _FILE _ _,

 _ _LINE _ _);

#line 10000 "DEBUGIT.C"

 printf("This file is '%s' the line is '%d' \n", _ _FILE _ _,

 _ _LINE _ _);

Here are the results of running this program fragment:

This file is 'OURFILE.C' the line is '3'

This file is 'DEBUGIT.C' the line is '10002'

The #line directive can be useful when your source files don’t have meaningful
names and renaming them is not practical.

The #pragma Directive

The #pragma directive is, by ANSI standards, implementation-defined. It is used to
issue special commands to the compiler, using a standardized method. Do not assume
that any specific operand with #pragma is present when using a given compiler. Two
pragmas are relatively common—message and pack. Your compiler probably offers
several other pragmas in addition to these two.

The message Pragma

The message pragma enables you to write a message to stderr while the file is
compiling. When you are debugging, check to see which identifiers are defined. The
following code fragment has a message indicating which of the three versions of the
program is being compiled:

#if defined(VERSION1)

#pragma message "The first version."

#elif defined(VERSION2)

#pragma message "The second version."

#elif defined(VERSION3)

#pragma message "The third version."

#endif /* VERSION? */

Part IV • Documenting the Differences

636

The pack Pragma

The pack pragma enables you to control the packing of structure members. This
pragma usually is used with a parameter; used without a parameter, however, it restores
the default packing value. Figure 15.1 shows an example of the effects of packing
structures. This packing, called data alignment, affects the way each element in a
structure is stored.

Figure 15.1. The effect of packing and the pack pragma.

All computers most efficiently access objects aligned on boundaries that are even
multiples of the memory bus width. For an 80286 CPU, which accesses memory in
16-bit widths, accessing words that are aligned to even bytes is optimal. For an 80386/
486—that is, a 32-bit processor that accesses memory in 32-bit widths—memory is
accessed optimally using every other even address. The effects of accessing data objects
that are not optimally aligned are difficult to predict. On one hand, aligning on a byte
boundary makes the aggregate data objects smaller (and if they are used in arrays, the
size difference can be significant), and the speed of even alignment may also be
significant for an object that is accessed often.

Many programmers experiment with alignment to find the optimal compromise
between size and speed. I usually use byte alignment for infrequently accessed objects
and word alignment for objects that are accessed more frequently.

Preprocessor Directives

637

C C
CC
C

C
C
C C15

The #undef Directive

At times you might need to redefine a macro, often when an identifier has been
defined outside your program and you are using it for a different purpose. To remove
a definition of a macro, you should use the #undef directive. The following code
segment shows how this directive is used:

#if defined(VERSION1)

#undef VERSION1

#endif

#define VERSION1 "The is Version 1.0"

Using #undef to remove a definition of a predefined macro is not a good idea.

Predefined Macros

ANSI C defines a number of macros. Although each one is available for your use in
programming, the predefined macros should not be directly modified.

The _ _DATE_ _Macro

The _ _DATE _ _macro contains the current date as a character literal in the following
format:

"MMM DD YYYY"

where MMM is the three-character month abbreviation, in mixed case; DD is the current
day, padded with a blank if the day is less than 10; and YYYY is the year.

The _ _TIME_ _Macro

The _ _TIME _ _macro contains the current time as a character literal in the following
format:

"HH:MM:SS"

where HH is hours, MM is minutes, and SS is seconds.

If any of the three is less than 10, the field is padded with a leading 0.

Part IV • Documenting the Differences

638

The_ _FILE_ _Macro

The _ _FILE _ _macro contains the current filename as a string literal. This macro’s
contents can be changed using the #line directive.

The_ _LINE_ _Macro

The _ _LINE _ _macro contains the current line number as a decimal constant. This
macro’s contents can be changed using the #line directive.

The_ _STDC_ _Macro

The _ _STDC _ _macro is defined as a decimal constant (value of 1) when the compiler
complies with the ANSI standard.

NULL

NULL is defined as a pointer guaranteed not to point to anything valid. This pointer
often is used as both an initializing value and an error return. You generally should use
the NULL macro rather than 0 when you are assigning a null pointer to a pointer variable.

NULL commonly is assigned to variables of other types; you must be sure, how-
ever, that the results are what are expected. You should not assume that NULL is the
equivalent to zero (which is often defined as a macro called FALSE), because this may
not be the case.

The offsetof() Macro

The offsetof() macro returns the offset (in bytes) of a member of a structure from
the beginning of the structure.

Preprocessor Directives

639

C C
CC
C

C
C
C C15

Summary

In this chapter, you learned about the preprocessor’s directives.

• The preprocessor directives enable you to control the compilation of the
program and to optionally include or exclude parts of a program based on
predefined identifiers.

• Preprocessor directives can be in header files and in your source files.

• All identifiers defined with the #define directive are macros; a macro that has
no parameters, however, often is referred to as simply a defined identifier.

• ANSI standard C defines a number of macros that can be used in program-
ming to assist in debugging and development of a program.

Part IV • Documenting the Differences

640

Debugging and Efficiency

641

C C
CC
C

C
C
C C16C C

CC
C

C
C
C C16

Debugging and

Efficiency

Just because a program has been written does not mean that it works correctly or is
efficient. This chapter looks at debugging a program and methods for making the
program more efficient.

Debugging

It is a rare program that works the first time. Many C programs are complex, containing
thousands of lines of code. Even if the programmer has not made any syntax errors, the
assumptions made when writing a program can create serious problems.

642

Part IV • Documenting the Differences

Debugging a program involves several steps:

1. Correct all warnings and errors that the compiler finds. Many programmers
assume that the default error level is enough. This is incorrect—set the error
level as high as possible. Correct all warnings and errors, or understand why
you do not have to correct them.

2. After the program compiles without warnings or errors, the real debugging
takes place. Use the program and make sure that it performs as you expect.
This process, called alpha testing, may take some time. The more problems you
find and correct, however, the fewer the user will find.

3. After finding and correcting problems during the alpha testing, find a few
qualified users to test the program in an environment as close as possible to
that which the program will be used in. This testing is called beta testing. Make
sure that the testers really use the program. Generally, beta testers get a free
copy of the product for their effort.

4. After beta testing, the product should be bug free. Any problems found by you
(in alpha testing) and your test users (in beta testing) should be corrected. Beta
testers often test two or three versions of the product.

5. Now that the product is finished, you ship it. Remember the first customer’s
name, because this is the person who finds the first bug, usually within a few
minutes of using the product. Find ways to minimize the bug’s effect. After the
product has been used for a few months, create an updated version that
corrects all the bugs the users have discovered.

The first part of debugging is finding the errors, the second part is correcting
them, and the third and final part is ensuring the correction does not create new errors.

Common Bugs

Following are some of the most common errors made when programming in C:

• Using uninitialized variables

• Misusing the assignment and equality operators

• Unexpected side effects

• Misuse of global variables

Debugging and Efficiency

643

C C
CC
C

C
C
C C16

• Misuse of automatic variables

• Using variables of different sizes or types together

• Incorrect operator precedence

• Not using the proper array bounds

• Misusing pointers

• Assuming the order of evaluation for function parameters

• Assuming the order of evaluation for operations where the order of evaluation
is undefined

Each of these errors is discussed in this section.

Uninitialized Variables

Using a variable that has not been initialized is a problem when the variable is a floating-
point variable. Almost anything can happen, such as a trashed operating system,
Windows programs that create UAEs, or OS/2 programs that do not work correctly.

Misused Operators

Misusing the assignment operator (=) and the equality (==) operator is another
common bug. For example, the following for() loop will never end:

for (i = 0; i = 1; i++)

You will get a warning—assignment within conditional expression—but if you do
not understand the warning message, you may think the compiler is referring to the
initialization section (where i is initialized to 0) of the for() loop. The variable i is
initialized to 0, then it is assigned the value of 1 in the test section of the for() loop,
then it is incremented at the end. The next time around, i is again set to 1, and so on.
If the loop is tight (no calls to I/O functions or functions that may call DOS), it’s
power-switch time.

In the next example, the compiler does not return a warning:

i == 20;

This line of code compares i and 20, then throws away the result. If you don’t look
sharply, you’ll spend a lot of time wondering why i is never set to 20.

644

Part IV • Documenting the Differences

Side Effects

Most macros can cause strange side effects. Consider the following, where max() is a
macro:

i = max(i++, j);

If i and j are originally 1, what is i on return? Try it, and you will find that
i is still 1. The i variable is incremented after the max() macro is evaluated but before
the result of the max() macro is assigned to i.

So, what is the result of the following?

i = max(++i, j);

The result is not 2, but 3. The i variable is incremented when the comparison is
performed, and because the variable is then 2, it is assigned to i. But there is a prefix
increment on the assignment, so the variable is incremented again!

Be careful when you use prefix and postfix increments and decrements with
macros, or you may get different results than what you expect.

Global Variables

Never use a global variable as a scratch variable. Even if you know that the global
variable is not used elsewhere, you may choose to use it later, and then... When you
change the value assigned to a global variable, think about the effects your change will
have on the other places where the variable is used.

Automatic Variables

When a variable is defined inside a block and has not been declared with the static
identifier, the variable is called an automatic variable and exists only while the block
is executing.

Automatic variables do not retain their value between calls to the function.
Automatic variables cannot be passed back to the calling function (the compiler creates
a static variable to pass back if necessary). They are not initialized and therefore may
contain unpredictable values.

Debugging and Efficiency

645

C C
CC
C

C
C
C C16

Mixed Variable Sizes and Types

Another common bug results when you use variables of different sizes or types
together. You cannot successfully assign the unsigned int uSomething, which has a
value of 45000, to the signed int iElse. The results are not right, because iElse will
have a value of -20536.

The same is true if you try to assign lThing, which has a value of 2345678, to
iElse. The result (-13619) is again incorrect. Unlike signed errors, size errors return
a warning.

Operator Precedence

I have adopted a simple rule regarding operator precedence: When in doubt, use
parentheses, lots of parentheses, because they override any other order of precedence.

In the following example:

int i = 3;

int j = 5;

if (i = max(i, j) == 5)

1 is assigned to i. This is the TRUE condition because max(i, j) is equal to 5.

When the example is changed to the following:

int i = 3;

int j = 5;

if ((i = max(i, j)) == 5)

the correct value, 5, is assigned to i. The parentheses force the assignment to occur first,
even though the conditional test normally has a higher order of precedence.

When in doubt, use parentheses. Table 16.1 lists the operator precedence for C.
When more than one operator belongs to the same group, they have the same
precedence and are evaluated according to the rules of associativity.

646

Part IV • Documenting the Differences

Table 16.1. Operator precedence in C.

Operator Function Group Associativity

() Function call 1 Left to right

[] Array element 1 Left to right

. Structure or 1 Left to right
union member

-> Pointer to 1 Left to right
structure member

++ Postfix increment 1 Left to right

—- Postfix decrement 1 Left to right

:> Base operator 1 Left to right

! Logical NOT 2 Right to left

~ Bitwise complement 2 Right to left

- Arithmetic negation 2 Right to left

+ Unary plus 2 Right to left

& Address 2 Right to left

* Indirection 2 Right to left

sizeof Size in bytes 2 Right to left

++ Prefix increment 2 Right to left

—- Prefix decrement 2 Right to left

(type) Type cast 3 Right to left

* Multiplication 4 Left to right

/ Division 4 Left to right

% Remainder 4 Left to right

+ Addition 5 Left to right

- Subtraction 5 Left to right

Debugging and Efficiency

647

C C
CC
C

C
C
C C16

Operator Function Group Associativity

continues

<< Left shift 6 Left to right

>> Right shift 6 Left to right

< Less than 7 Left to right

<= Less than or equal to 7 Left to right

> Greater than 7 Left to right

>= Greater than or equal to 7 Left to right

== Equality 8 Left to right

!= Inequality 8 Left to right

& Bitwise AND 9 Left to right

^ Bitwise exclusive OR 10 Left to right

| Bitwise inclusive OR 11 Left to right

&& Logical AND* 12 Left to right

|| Logical OR* 13 Left to right

e1?e2:e3 Conditional* 14 Right to left

= Simple assignment 15 Right to left

*= Multiplication
assignment 15 Right to left

/= Division assignment 15 Right to left

%= Modulus assignment 15 Right to left

+= Addition assignment 15 Right to left

-= Subtraction assignment 15 Right to left

<<= Left-shift assignment 15 Right to left

>>= Right-shift assignment 15 Right to left

&= Bitwise-AND assignment 15 Right to left

648

Part IV • Documenting the Differences

Table 16.1. continued

Operator Function Group Associativity

^= Bitwise-exclusive-OR 15 Right to left
assignment

|= Bitwise-inclusive-OR 15 Right to left
assignment

, Comma* 16 Left to right

* Everything preceding the operator is evaluated before the operator is processed

Not Using Proper Array Bounds

Arrays always start at 0. For example, if iArray is defined as

int iArray[25];

the first element is iArray[0], and the last element is iArray[24].

The next example goes a step further:

for (i = 1; i <= 25; i++)

{

iArray[i] = i;

}

This example fails, perhaps causing one of those difficult problems that take so much
time to find and correct. The example assigned something to the 26th element of an
array that is defined with only 25 elements. Also, the first element is skipped because
the for() loop starts at 1, not 0.

A loop that correctly assigns all the elements of iArray follows:

for (i = 0; i < 25; i++)

{

 iArray[i] = i;

}

Debugging and Efficiency

649

C C
CC
C

C
C
C C16

Misused Pointers

When you understand pointers, arrays, and indirection, you know you are a real C
programmer. Until that day, you will sometimes use them incorrectly. Pointers and
indirection can cause major problems when functions are involved.

If you do not feel comfortable with the concepts of pointers, this is a good time
to review Chapter 3, “Pointers and Indirection.”

Order of Evaluation

The order of evaluation for function parameters cannot be guaranteed. The following
code is unacceptable because you do not know when YourFunc() will be evaluated:

OurFunct(x = YourFunc(), x);

The second parameter, x, could be either the new value from YourFunc() or what x
contained before the call to YourFunc().

The order of evaluation for some other operations is also undefined. For
example, in the following code:

int i = 0;

int nArray[10];

nArray[i] = i++;

you cannot determine whether nArray[0] or nArray[1] is assigned; it could be either
one. To correct this, ANSI C defines sequence operators, which guarantee that the
compiler has evaluated everything that must be evaluated at that point.

Rules for Debugging

When you debug a program, the following rules will help you and perhaps save a bit
of time:

1. Assume nothing. Do not assume that a variable has the correct value, even if
you see that the variable was assigned a value. Print the variable’s value at the
time of the failure. Some other part of the program may have trashed it.

2. When the value of a variable changes to something unexpected, check the
logical tests to see whether you have inadvertently assigned a value rather than
tested it.

650

Part IV • Documenting the Differences

3. Take a break. By working on something else for a while, more often than not
you will suddenly realize the cause of the original problem.

4. If the bug is not in the section of code you originally suspected, it is some-
where else. Do not fall into the trap of thinking, “The bug can’t be in this part
of the code because I checked it.”

5. Correct all the compiler’s warnings. Set the warning level as high as possible. If
you are writing Windows programs, use STRICT to assure the maximum
checking.

6. Pointers cause the most problems. Array-bound overwriting causes almost as
many problems. Strings are arrays. In most C compilers, nothing detects when
a string’s bounds are exceeded. If the string is on the stack when its bounds are
exceeded (because it is an auto variable), the program will probably do some
strange things.

7. Back up your disk. One of my first C programs promptly trashed my disk. The
only blessing was that I did not have a backup of the program that did the
dirty work—it did itself in!

8. From time to time there are compiler bugs, but they are not usually the reason
your program fails.

9. Have another C programmer look at your code.

10. When all else fails, rewrite the code so that it works differently.

You are not guaranteed a perfect program just because you avoid these common
errors. The most common bug is the simple program logic bug. The program doesn’t
work the way you think it does. The program is syntactically correct and does not have
any programming bugs, but its logic is incorrect. With a lot of work, a debugger, and
patience, you can trace the program’s execution. Eventually, you can find the spot
where the results are not what you expected, and perhaps the bug.

Using the assert() Macro

The C language provides the programmer with an important feature, the assert()
macro. This macro enables you to make a conditional test, then prints an error message
and ends the program if the test fails.

Debugging and Efficiency

651

C C
CC
C

C
C
C C16

Listing 16.1, ASSERT.C, shows how the assert() macro is used. You must be
careful and read the message correctly. Note that assert() activates when the test is
FALSE (fails).

Listing 16.1. ASSERT.C.

/* ASSERT, written 1992 by Peter D. Hipson */

/* This program shows the assert() macro. */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define TRUE 1

#define FALSE (!TRUE)

void main()

{

int nValue = 1;

char szBuffer[256];

 while (TRUE)

 {

 printf(“Enter anything but 25 to test the assert() macro: “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &nValue);

 assert(nValue == 25);

 }

}

652

Part IV • Documenting the Differences

Typical output from the assert() macro follows:

assert

Enter anything but 25 to test the assert() macro: 345

Assertion failed: nValue == 25, file assert.c, line 27

abnormal program termination

The filename and the line number are provided; both of these can be changed with the
#line directive.

When you have finished debugging a program, it is not necessary to comment
out the assert() calls. Instead, you should define the NDEBUG identifier and simply
recompile the program. The preprocessor strips out the assert() calls for you. Later,
if you discover that the program still has bugs, a quick recompile without defining the
NDEBUG identifier will restore all your assert() calls.

Debug Strings and Messages

Writing lines to the screen, a communications port, the printer, or a file while a
program is executing can be a powerful debugging tool. Because this technique does
not require a debugger, it can be easy to implement.

You can trace the entire program’s execution using such a technique, but you
must carefully plan your debugging session. Listing 16.2, DBGSTRNG.C, shows the
use of a debugging output function.

Listing 16.2. DBGSTRNG.C.

/* DBGSTRNG, written 1992 by Peter D. Hipson */

/* This program has a debug output function */

#include <limits.h>

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define TRUE 1

#define FALSE (!TRUE)

Debugging and Efficiency

653

C C
CC
C

C
C
C C16

#undef DebugString

#ifdef NDEBUG

#define DebugString(exp, file, msg) ((void)0)

#else

void _ _cdecl _DebugString(void *, FILE *, void *, void *, unsigned);

#define DebugString(exp, file, msg) \

 ((exp) ? _DebugString(#exp, file, msg, _ _FILE_ _, _ _LINE_ _) :

(void) 0)

#endif /* NDEBUG */

void main()

{

int nValue = 1;

char szBuffer[256];

 while (nValue)

 {

 DebugString(nValue >= 15 && nValue <= 20, stderr, szBuffer);

 printf(“Enter 10 to 25 for message, 0 to end loop: “);

 gets(szBuffer);

 sscanf(szBuffer, “%d”, &nValue);

 DebugString(nValue >= 10 && nValue <= 25, stderr, szBuffer);

 }

}

void _ _cdecl _DebugString(

 void * szTest,

 FILE * File,

654

Part IV • Documenting the Differences

 void * szMessage,

 void * szFile,

 unsigned nLine)

{

 fprintf(File,

 “\n’%s’ MSG ‘%s’ IN ‘%s’ LINE ‘%d’\n”,

 szTest,

 szMessage,

 szFile,

 nLine);

}

For example, using the _DebugString() function to debug a program run
produces the following typical run of DBGSTRNG.C:

dbgstrng

Enter 10 to 25 for message, 0 to end loop: 10

‘nValue >= 10 && nValue <= 25’ MSG ‘10’ IN ‘dbgstrng.c’ LINE ‘48’

Enter 10 to 25 for message, 0 to end loop: 1

Enter 10 to 25 for message, 0 to end loop: 14

‘nValue >= 10 && nValue <= 25’ MSG ‘14’ IN ‘dbgstrng.c’ LINE ‘48’

Enter 10 to 25 for message, 0 to end loop: 15

‘nValue >= 10 && nValue <= 25’ MSG ‘15’ IN ‘dbgstrng.c’ LINE ‘48’

‘nValue >= 15 && nValue <= 20’ MSG ‘15’ IN ‘dbgstrng.c’ LINE ‘41’

Enter 10 to 25 for message, 0 to end loop: 19

‘nValue >= 10 && nValue <= 25’ MSG ‘19’ IN ‘dbgstrng.c’ LINE ‘48’

‘nValue >= 15 && nValue <= 20’ MSG ‘19’ IN ‘dbgstrng.c’ LINE ‘41’

Enter 10 to 25 for message, 0 to end loop: 0

When using a function such as DebugString(), you are not restricted to using
stderr. Instead, you might open a communications port or the printer as the
debugging file or write the output to a file. When writing to a file, be sure you flush

Debugging and Efficiency

655

C C
CC
C

C
C
C C16

the file’s buffer after each write. Otherwise, you could lose the most important part of
the program’s output if the program fails without closing the file or flushing the buffer.

When programming under Windows, you could call OutputDebugString()
rather than fprintf(). The OutputDebugString() Windows function writes a string
to the debugging terminal (or whatever destination you choose if you use the DBWIN
program), without halting the program or destroying the contents of the Window’s
screen.

Debuggers

Every compiler comes with a debugger. Regardless of the environment (DOS,
Windows, OS/2, or UNIX), the concept behind the use of a debugger is the same:
to allow access to various commands while the program runs so that you can monitor
its execution.

Typical services offered by most debuggers follow:

• Execution in an environment similar to the typical operating environment.
This involves using as little memory as possible (a requirement that was
difficult with DOS on a PC, but is easier with the rapid acceptance of
protected-mode operating systems such as Windows and OS/2) and not
interfering with the output device (the screen). To avoid interfering with the
screen, the debugger generally uses a serial terminal, a second monitor (often a
monochrome adapter, or MDA), or two workstations (with network-based
debugging).

• Memory examination. This includes simple memory dumps, examination of
external variables (by name), and examination of local variables.

• Memory modification. This generally is limited to changing variables, both
global and local.

• Program breakpoints. At a program breakpoint (a specified point of interrup-
tion), the debugger is given control before the line or instruction is executed.
At a breakpoint, you might examine variables, registers, or memory.

• Memory breakpoints. These are similar to program breakpoints, but the
memory specified need not be an instruction. For example, the breakpoint

656

Part IV • Documenting the Differences

could be at a data object. Memory breakpoints are useful if you want to
determine what part of the code is modifying a variable. You could specify a
value at the given location, and when the value is stored there, the breakpoint
is entered.

• Program modification. Some debuggers enable you to correct minor errors,
then continue program execution. This feature is useful for programs with
complex setup or initialization processes.

• Execution stepping. Almost all debuggers can execute statements one line at a
time. This technique, called stepping, enables you to trace the flow of the
program (for example, the number of times the loop executed, and the func-
tions and subroutines that were called). Some debuggers enable you to trace in
both the high-level language (such as C) and assembly (or machine) language.
Tracing the program’s flow in C is often the fastest and most valuable option
because you can see the effects of each program statement.

When using a debugger, you must balance the learning curve (that is, how long
it takes you to learn to use the debugger), the amount of time needed to set up the
program and the debugger, and how quickly you can find the problem.

In C programming on the PC, each compiler has its own debugger. There are also
a number of stand-alone debuggers, most of which require additional hardware (plug-
in cards or special switches). Soft-Ice/W, Multiscope, and Periscope are examples of
debuggers that are not compiler-specific. Each offers features unavailable in compiler-
supplied debuggers.

Codeview

Microsoft’s Codeview debugger has been around for a long time. Its predecessors
include the DOS DEBUG command (a crude and simple debugger) and the
SYMDEB debugger.

You can debug most complex programs with Codeview. Codeview enables you
to debug to a serial monitor or to configure two monitors for debugging. Under
Windows, you can debug to a separate window. Unless you have a large screen monitor
and a high-resolution video system (1024 x 768 at a minimum), however, this mode
of debugging can be difficult.

Debugging and Efficiency

657

C C
CC
C

C
C
C C16

QuickC for Windows

QuickC for Windows from Microsoft offers an integrated debugger. (It doesn’t have
its own name because it is part of QuickC’s Integrated Development Environment.)
This debugger can debug only at the C source level; it cannot debug in assembly.
Therefore, you must have the source code for the sections of the program that you
want to debug.

When using QuickC’s debugger, you lose the advanced features of the Windows
debugging kernel, which helps find programming errors caused by incorrect calls to
Windows functions.

Turbo Debugger

Borland’s Turbo Debugger enables you to debug programs compiled with Borland’s
compilers. This debugger offers many of the features found in Microsoft’s Codeview,
including dual-monitor support and the ability to use a debugging terminal.

Watcom’s VIDEO Debugger

When using Watcom’s 32-bit compiler (Watcom C/386), you have access to their
debugger, called VIDEO. This debugger offers many interesting features. The
compiler is compatible with DOS, Windows, and OS/2, so the debugger supports each
of these environments, as well as QNX.

VIDEO, like many of the other debuggers, offers dual-monitor support. It also
debugs using two PCs linked by serial ports, by parallel ports, or over networks.

Efficiency

Program efficiency is an important aspect of programming. It does not matter how well
your program performs if it takes forever and a day to accomplish the job. Efficiency
consists of many parts—you cannot use some aspects of creating an efficient program
while ignoring others.

Statements that slow a program usually are in loops. For example, a typical for()
loop that calls some functions can use a lot of time. When you write a loop, consider
how many times the loop will be executed, which functions are called, and what the
functions are doing. If the loop will be executed a large number of times (thousands

658

Part IV • Documenting the Differences

of times or more), you should consider optimizing the loop. When efficiency is the
most important objective, you can sometimes make the program run faster by coding
a frequently called function inline, instead of calling the code as a function.

32-Bit Programs

Most PC programming uses the 16-bit programming model. Every time a long int
is added, two 16-bit adds are performed. For programs that will be running only
on 386 (or higher) CPUs, it might be more efficient to use the 32-bit instructions that
these CPUs offer. Remember, however, that a program written for the 32-bit
instruction set of the 386 cannot run on a 286 or an original PC.

Programs written using the 32-bit mode of the CPU run only in protected mode.
Therefore, an interface is required between DOS (which runs only in real mode) and
your application running in 32-bit mode. This interface is called DPMI (DOS
Protected Mode Interface). Following is a list of common DPMI products:

• Microsoft Windows 3.1 in 386 enhanced mode provides DOS sessions with
DPMI service by Windows. This interface is included with Windows 3.1 at no
charge.

• DOS/4G from Rational Systems, Inc. (and DOS/4GW, which is supplied
with Watcom’s C/386 compiler) provides the necessary DPMI services for
your programs. DOS loads DOS/4G each time a program that must use its
services is loaded by the user or executed by DOS.

• Phar Lap 386/DOS-Extender from Phar Lap Software, Inc. is another DPMI
interface. It is similar to DOS/4G in that it is loaded each time a program
requiring its services is executed.

• OS/386 from ERGO Computing, Inc. provides DPMI services. Because
OS/386 is a TSR, it must be loaded only once. The drawback is that the
DPMI interface continues to occupy memory after the program that required
it completes its execution.

• Intel Code Builder is another DPMI system.

• OS/2 V2 from IBM. This is not a true DPMI because it is not MS-DOS. It is,
however, a competent 32-bit platform, offering one of the best 32-bit environ-
ments with some MS-DOS compatibility. Watcom’s C-386 is an excellent
32-bit compiler for OS/2.

Debugging and Efficiency

659

C C
CC
C

C
C
C C16

• Windows NT from Microsoft is a 32-bit operating system that is not CPU-
dependent. The user interface of this OS, which was initially produced for
386/486 CPUs and the MIPS ARC CPU, resembles Windows 3.1. To write
Windows NT software, you must have a special version of Microsoft C7 that
produces 32-bit code.

A number of 32-bit C compilers support C++ as well as standard C program-
ming. The more popular 32-bit C compilers include the following:

• Watcom C/386 is an excellent compiler that you can use to develop applica-
tions that execute under MS-DOS, OS/2 V2, and Windows 3.x. This com-
piler supports only C programming, but the C++ version should be available
soon. A royalty-free copy of DOS/4GW is included with Watcom C/386, and
the compiler supports all other DPMI interfaces (see the preceding list).
Watcom’s compiler provides the only 32-bit support for Windows 3.1. The
ability to write 32-bit Windows programs is a powerful feature that should not
be ignored by Windows programmers.

• Microway NDP C/C++ is an expensive compiler that offers much to program-
mers writing math-intensive code. This compiler has excellent support for
math coprocessors but lacks a DPMI interface program, so one must be
purchased separately.

• Zortech C/C++ is a compiler that can produce either 16-bit or 32-bit pro-
grams. It comes with a DPMI program (called DOSX) that you can use
royalty-free, or you can use Phar Lap’s DOS Extender.

• Intel’s Code Builder provides a 32-bit compiler based on Microsoft’s C
compilers. This product is most compatible with the Microsoft compiler.
Version 1.1 supports 386MAX and QEMM-386 as well.

Creating 32-bit code can improve your program’s performance from several
standpoints. One, you can perform math on 32-bit data objects. Two, your program
can access protected-mode memory. Many DPMI programs provide access to virtual
memory, allowing truly large programs. Finally, 32-bit programs are more compact
(after they are loaded into memory). In summary, if you can live with applications that
run only on 386 (and greater) systems, converting to a 32-bit compiler can substan-
tially improve the performance of your programs.

660

Part IV • Documenting the Differences

Compiler Optimization

One of the easiest ways to gain more performance from your applications is to have the
compiler optimize the program. Most compilers allow optimization for size (impor-
tant if you are developing for a plain DOS environment with its 640K memory limit)
or speed. Some compilers optimize both for size and for speed, although you cannot
ensure that compromises between the two will produce code that is both small and
efficient.

Typical optimizations are shown in Table 16.2. If an optimization is not offered
by your compiler, another optimization might perform a similar task.

Table 16.2. Typical optimizations for compilers.

Microsoft Borland Watcom Function

/G0 -1- Generate code for 8086

/G1 -1 Generate code for 80186

/G2 -2 Generate code for 80286

/G3 -3 Generate code for 80386

/G4 N/A Generate code for 80486

/Gc -p FORTRAN/Pascal calling
conventions

/Gr -pr Register calling
conventions

/Gs -N- Remove stack overflow
checks

/Gy Function-level linking
(links only called
functions)

/O, /Ot -Ox, -G, /ot Minimize execution
-Ot speed (default)

/Oa -Oa, -G- /oa Assume no aliasing

Debugging and Efficiency

661

C C
CC
C

C
C
C C16

Microsoft Borland Watcom Function

/Obn -Oi Control inline
expansion (n
is a digit from 0
through 2)

/Oc -Oc Enable block-level
common subexpression
optimization (default)

/Od -Od /od Turn off all
optimization

/Oe -Oe Ignore register keyword
and allow compiler to
perform global register
allocation

/Of Turn on P-code quoting
(default)

/Of- Turn off P-code quoting

/Og -Og Enable global-level
common subexpression
optimization

/Oi -Oi /oi Generate intrinsic
functions

/Ol -Ol /ol Enable loop
optimization

/On -Ol-Om Turn off potentially
unsafe loop
optimizations

/Oo Turn on post code-
generation optimizing
(default)

/Oo- Turn off post code-
generation optimizing

continues

662

Part IV • Documenting the Differences

Table 16.2. continued

Microsoft Borland Watcom Function

/Op Improve float
consistency

/Oq N/A Turn on P-code
optimization

/Or N/A Enable single exit
point from functions
(useful when debugging
with CodeView)

/Os -O1, -Os /os Minimize executable
file size

/Ov N/A Sort local variables by
frequency of use; P-
code only (default)

/Ov- N/A Sort local variables in
the order that they
occur; P-code only

/Ow Assume aliasing across
function calls

/Ox -Ox /oxat Maximize optimization

/Oz Turn on potentially
unsafe loop
optimizations

As you can see from Table 16.2, each compiler offers some similar optimization
options. The Microsoft compiler offers more different optimizations, but some of
these are specific to how the compiler works (such as the Microsoft compiler’s ability
to generate P-code).

Some of the more common optimizations include loop optimization, intrinsic
function generation, and common subexpression optimization. These are the subjects
of the following sections.

Debugging and Efficiency

663

C C
CC
C

C
C
C C16

Loop Optimization

In loop optimization, expressions that always result in the same value are moved outside
the loop. An example of this follows:

// Local (auto) variables:

 int i = 0;

 int x = 1;

 int y = 2;

 while(i < 250)

 {

 i += x + y;

 OurFunction(i);

 }

The value of the i variable is incremented by the sum of x and y. The values of
x and y do not change in the loop, so their sum does not change. However, x and y are
summed each time the loop is iterated. Perhaps the programmer could be more careful,
but I have found it difficult to catch simple things such as invariant expressions.

When the compiler performs a loop optimization, it modifies the code to
resemble the following:

// Local (auto) variables:

 int i = 0;

 int x = 1;

 int y = 2;

// Compiler added temporary storage:

 int _ _temp = x + y;

 while(i < 250)

 {

 i += _ _temp;

 OurFunction(i);

 }

Notice that the compiler has created a new temporary variable (which actually
doesn’t have a name). This temporary variable is assigned the sum of x and y. In the
loop, i is incremented by the value of the temporary variable, so the sum does not have
to be recomputed for each loop iteration.

664

Part IV • Documenting the Differences

Sometimes loop optimization can create problems during debugging. For
example, suppose there is a problem in the temporary variable’s computation (such as
a divide-by-zero error). The line number for the error will not match a line in the
program, making it difficult to determine the location of the error. As well, when
tracing the program’s execution, the machine instructions will not have a linear
correspondence to the source code lines, making it more difficult to debug the
program. For these reasons, you might want to turn off loop optimization when you
initially debug your program.

Generating Intrinsic Functions

The library functions are defined as separate, callable functions. Some compilers,
however, can generate inline code for many library functions. Inline code generation
for these functions saves the overhead of a function call, which can be important when
the function is called from a loop that has many iterations.

The functions in Table 16.3 have intrinsic forms. Only the ANSI functions are
listed. Each compiler, however, offers a number of other intrinsic functions that are
compiler-specific.

Table 16.3. ANSI-supported intrinsic functions.

Function Microsoft Borland Watcom C/386

abs() √ √

acos() √

asin() √

atan() √

atan2() √

ceil() √

cos() √

cosh() √

div() √

exp() √

fabs() √ √ √

Debugging and Efficiency

665

C C
CC
C

C
C
C C16

Function Microsoft Borland Watcom C/386

floor() √

fmod() √

inp() √

inpw() √

labs() √

labs() √

ldiv() √

log() √

log10() √

memchr() √ √

memcmp() √ √ √

memcpy() √ √ √

memset() √ √ √

movedata() √

outp() √

outpw() √

pow() √

rotl() √

rotr() √

sin() √

sinh() √

sqrt() √

stpcpy() √ √

strcat() √ √ √

strchr() √ √
continues

666

Part IV • Documenting the Differences

Table 16.3. continued

Function Microsoft Borland Watcom C/386

strcmp() √ √

strcpy() √ √ √

strlen() √ √ √

strncat() √

strncmp() √

strncpy() √

strnset() √

strrchr() √

tan() √

tanh() √

The only disadvantage to using intrinsic functions is that they increase the size
of the compiled code. For example, if strlen() is called 50 times in a program, an
intrinsic function will generate 50 copies of the code that does the string copy, whereas
the library function would generate one copy.

Common Subexpression Optimization

When performing common subexpression optimization, the compiler replaces redun-
dant expressions with a single common subexpression. This process is similar to loop
optimization. An example of a common subexpression follows:

k = 20;

i = k + 10;

j = k + 10;

The compiler optimizes this code as

k = 20;

int _ _temp = k + 10;

i = _ _temp;

j = _ _temp;

Debugging and Efficiency

667

C C
CC
C

C
C
C C16

As in loop optimization, the compiler creates a temporary variable that holds an
interim value. Often, the compiler can store the result of the computation in a register,
so no memory is used. However, the statement’s location in the code (including the
presence of intervening statements), dictates how the compiler processes the source
code.

Common subexpression optimization is subject to the same problems as loop
optimization (see the “Loop Optimization” section).

Direct Video I/O

At one time, almost all programs did direct video I/O because the original PC video
systems (such as the CGA) were not designed for speed. To update the video quickly,
programs had to write directly to the video’s memory.

You should consider several factors when deciding whether your program should
support direct video. First, the display adapters in use today (some are EGA, but most
are VGA) are better performers than the old CGA standard of 10 years ago.

Second, to support direct video I/O, your program must support a number of
standards. Each system (CGA, MDA, EGA, and VGA) manages its display memory
differently, with different buffer locations and arrangements in memory.

Do you access video memory directly? For most applications, there are better
ways. For example, if you write a Windows or OS/2 application, accessing video
memory directly is unacceptable because Windows manages the video. In addition, the
efficiency of VGA video systems makes direct I/O unnecessary.

Some programmers assume that you must use direct video I/O to perform
random writes to the screen (perhaps to place a message box in the center of the screen).
This is untrue. On the PC, you can use the ANSI.SYS device driver for many screen
operations, such as color changes and direct cursor addressing.

Floating-Point Optimization

You can significantly improve a program that relies on floating-point math (that is, a
program that has data types of float, double, or long double) by using the proper
floating-point compile and link options.

668

Part IV • Documenting the Differences

Microsoft C has five options (and various suboptions) for floating-point support.
You can choose from three libraries when linking floating-point programs. These
libraries control calls to floating-point routines:

• The Alternate Math Package Library (mLIBCA.LIB) generates calls to
floating-point math routines. There are both the true floating-point functions
and routines to emulate the math coprocessor. If a coprocessor is installed, this
package simply ignores it. This library produces the smallest executable
program, but it does not support long double data types.

• The Emulator Library (mLIBCE.LIB) generates calls to a library of functions
that emulate the 80x87 math coprocessors. Floating-point functions are
contained in the library; these functions also call the emulation routines rather
than use a floating-point coprocessor.

• The Coprocessor Library (mLIBC7.LIB) is not a library for support of
floating-point operations because all floating-point operations are coded inline
and are performed using an installed math coprocessor, which is required.
Floating-point functions are contained in the library, and these functions also
use the floating-point coprocessor directly. A math coprocessor is required to
execute a program linked with this library.

These libraries are used with the floating-point compiler options, which are as
follows:

/FPa Your code generates calls to a library. You can select which
library is linked: mLIBCA (the default), mLIBCE, or mLIBC7.
(mLIBC7 does not take advantage of inline instructions to the
math coprocessor).

/FPc Your code is similar to that generated with /FPa, except the
default library supports long double. You can select which
library is linked: mLIBCA, mLIBCE (the default), or mLIBC7.
(mLIBC7 does not take advantage of inline instructions to the
math coprocessor).

/FPc87 Your code requires a math coprocessor. This option is a good
choice if you know that the target computer has a math
coprocessor. The code is similar to that generated using /FPc.
You can select which library is linked: mLIBCA, mLIBCE, or
mLIBC7 (the default).

Debugging and Efficiency

669

C C
CC
C

C
C
C C16

/FPi Your code is generated using interrupts for floating-point
operations rather than inline floating-point instructions. The
software interrupt handler then checks whether a coprocessor is
installed. If a coprocessor is installed, the handler patches the
code to support the coprocessor. A problem with some compil-
ers is that this technique creates self-modifying code, some-
thing that does not work well under protected mode, in which
code segments can be read only. You can select which library is
linked: mLIBCA, mLIBCE (the default), or mLIBC7.

/FPi87 Your code is generated using interrupts for floating-point
operations. The software interrupt handler then checks to see if
a coprocessor is installed. If one is installed, the handler patches
the code to support the coprocessor. One problem with some
compiler versions is that this technique creates self-modifying
code, something that doesn’t work well under protected mode
where code segments may be read only. You can select which
library is linked: mLIBCA, mLIBCE, or mLIBC7 (the default).

The default option is /FPi, which works for most applications.

Inline Assembly

There is no argument about it—well-written assembly creates the fastest and smallest
programs. However, many programmers are uncomfortable writing even small
programs in assembly, let alone a major project. Writing an assembly program can take
five times as long as writing a C program, and there may be five times as many lines
in an assembly program, and five times as many chances to make a mistake.

One quick and not too difficult solution is to use inline assembly. In this
technique, you use C to develop the underlying foundation for a function, then write
the critical code in assembly. One useful feature of this technique is that you could
write the entire function in C, then after determining that the program is functioning
correctly, rewrite the function’s critical parts using inline assembly.

Inline assembly comes with a price, however. One problem is that the compiler
cannot perform many of the optimizations it can do for a normal C function. This is
not too critical if most of the function is written using inline assembly. If the function
is written primarily in C with only a small part using inline assembly, the lack of full
optimization may be a problem.

670

Part IV • Documenting the Differences

Another problem is that any function that relies on inline assembly is not very
portable. If you plan to run your application on different computer systems, you may
want to avoid inline assembly.

Linking for Performance

Some linker options affect the application’s performance. These options can create
problems if you do not understand what they do.

One important factor in creating an efficient executable program is to be sure
that the linker is not including any debugging information (such as line-number
tables) in the executable program. We often remember to compile the final versions
of our programs with the correct compiler options, then forget to change the link
options.

Many link programs have options that pack the executable program. These
options are categorized as follows:

• Packing redundant bytes. Using a simple compression technique, the link
program can pack multiple occurrences of bytes with the same value. Most
linkers pack only bytes that are zero (because multiple bytes of a nonzero value
are rare). When the program is loaded, the loader expands these bytes to their
original count. This process reduces the size of the executable file and may
shorten the load time.

• Packing CODE segments. When a program is created on the PC using the Large
or Medium compiler option, each source file has its own code segment. Often,
several of these segments can be combined, and then calls to functions in the
combined segment can be converted to NEAR calls (which are faster than FAR
calls).

• Packing DATA segments. When a program is created on the PC using the Large
or Compact compiler option, each source file has its own data segment (assum-
ing that the segment has sufficient data). Often, several of these segments can
be combined into one.

One way to make an application more efficient is to write it as an overlay
program. The main advantage is that RAM does not have to be permanently allocated
for infrequently called functions. This leaves more memory for data storage (perhaps
eliminating the creation of temporary work files). A disadvantage of overlays is that

Debugging and Efficiency

671

C C
CC
C

C
C
C C16

many linkers require you to determine which functions are part of which overlays. In
addition, overhead is incurred when functions not currently in memory must be
loaded.

Pascal and cdecl Calling Conventions

Calling conventions are the rules on how parameters are passed to a function being
called, and whether the caller or the function being called is responsible for removing
the parameters from the stack when the function is finished.

For many functions, using the Pascal calling method is slightly more efficient
than the native C calling conventions. The degree of performance improvement
depends on the number of parameters and how often the function is called. Note that
the Pascal calling conventions cannot be used with a function that has a variable
number of arguments.

Precompiled Headers

Using a precompiled header increases the performance of the compiler when it is
compiling the program but does not affect the performance of the application while
it is executing. If you are spending too much time compiling your programs, look into
the benefits of precompiled headers. Borland compilers and Microsoft compilers
support precompiled headers.

Using 80286/80386/80486 Instruction Sets

The use of the 80286 (or 80386 or 80486) instruction set is an overlooked but
important way to improve program performance. An 80486 executes all instructions
that an 80286 executes, but the reverse is not true. After a program is compiled using
a specific CPU’s instruction set, it will not run on a CPU that is less than the target
CPU.

Windows supports only the 80286 instruction set and above, so you should
always compile Windows applications using the 80286 options.

672

Part IV • Documenting the Differences

Most of the power of the 80386/80486 cannot be utilized unless your applica-
tion supports the CPU’s 32-bit mode. Because this requires a 32-bit compiler, you
must plan ahead for 32-bit programs, ensuring that you have access to the necessary
compiler.

Using a Source Profiler

One way to make an application more efficient is to determine which functions take
the most time, then optimize them. Guesswork will not work—you cannot look at a
function and determine that it is using a lot of CPU resources. You must use a source
code profiler to determine where the most CPU time is being spent in your program.

Most source code profilers work by setting a very fast clock interrupt. Each time
an interrupt occurs, the profiler records the name and address of the function that is
executing. A second program then correlates the function and address information,
and creates a source file/function table that shows where most of the time was used.

Using Intrinsic Functions

When your application calls a library function (such as strlen()), overhead is
incurred: the function’s arguments are placed on the stack, registers are saved, and the
function is called. When the function returns, the arguments must be removed from
the stack and the registers must be restored.

Many modern C compilers enable you to substitute inline code for common C
library functions. This eliminates much of the overhead for a function call, but at the
expense of having more than one copy (usually many more copies) of the code that
performs the function.

When you use an intrinsic function in a loop and the function is called many
times, you can boost the loop’s performance substantially. (See Table 16.3 for a list of
which functions are available as intrinsic functions.)

Debugging and Efficiency

673

C C
CC
C

C
C
C C16

Using Memory Models

When programming for a computer that uses segmented memory architecture, such
as the PC, you can choose which memory model the compiler uses. For small
programs, any memory model usually works. The issue is to use the most efficient
memory model for the task at hand. Each memory model has both benefits and
drawbacks, as shown in Table 16.4.

Table 16.4. Memory models.

Model Description Attributes

Tiny One segment for both Fast and small, usable
data and code only with .COM files.

The total size of the data
and the code cannot
exceed 64K.

Small One segment for data, Fast and small, usable
and one for code only with .EXE files.

Neither the code nor the
data can exceed 64K each.

Medium One segment for data, Calls are slower, but
and separate code segments data can be accessed
for each source module quickly because it is

always in the default
data segment. The code
may be as large as
necessary (to the limits
imposed by the system
RAM), but the data
cannot exceed 64K.

Compact Separate data segments for Calls are faster, but
each module, and one segment data accesses are
for code generally performed using

FAR pointers, which slow
data access.The program’s

continues

674

Part IV • Documenting the Differences

Table 16.4. continued

Model Description Attributes

code cannot exceed
64K. The data is limited
only by the amount of
available RAM.
Individual data objects
cannot exceed 64K in
size.

Large Separate data segments for Calls are slow and data
each module, and separate accesses are generally
code segments for each performed using FAR
source module pointers, which slow

data access. The
program’s code and data
are limited only by the
amount of available RAM.
Individual data objects
cannot exceed 64K in
size.

Huge Separate data segments for Calls are slow and data
each module, and separate accesses are generally
code segments for each performed using FAR
source module pointers, which slow

data access. The
program’s code and data
are limited only by the
amount of available RAM.
Individual data objects
can be larger than 64K.

Most programs can be written using the Small model. Programs with a large
amount of code or data often need the Large (or Huge) model.

Debugging and Efficiency

675

C C
CC
C

C
C
C C16

Summary

In this chapter, you learned how to debug a program and improve a program’s
performance.

• There are a number of common bugs. Checking your code for these common
bugs first can save debugging time.

• The C assert() macro assists in debugging. It enables you to test a condition.
If the condition fails, the program ends with a diagnostic message.

• If a debugger is unavailable, writing a debug output function can save time in
determining the flow of a program.

• Most compilers come with a debugger.

• Most debuggers require a substantial setup and learning curve.

• A debugger is the only effective way to find some problems.

• When programming for efficiency, you can program in the 80386/80486
32-bit mode if your compiler supports such a mode.

• Using the compiler’s optimization can make your program run faster. Gener-
ally, you should develop the application with optimization turned off. When
the application is finished, turn on optimization and retest the application.
Sometimes, the compiler’s optimization will cause a program to fail that
worked with optimization turned off.

• Inline assembly can be useful for creating fast functions without resorting to
full assembly code.

• A source profiler can determine which parts of your program are executed
most frequently. By combining these routines, you get the maximum benefit
from hand optimization.

• Intrinsic functions allow the function’s code to be placed inline rather than
being called. Although intrinsic functions increase the program’s size, they can
greatly enhance the program’s efficiency.

• The memory model you choose for a program affects its performance. Choose
the Small model for small, simple programs.

676

Part IV • Documenting the Differences

The ASCII Character Set

679

C C
CC
C

C
C
C C7C C

CC
C

C
C
C CA

The ASCII

Character Set

Part V • Appendixes

680

Table A.1. The ASCII Character Set

Compiler Variations

681

C C
CC
C

C
C
C CBC C

CC
C

C
C
C CB

Compiler Variations

This appendix reviews four popular C compilers for the PC. Each compiler enables
you to compile ANSI C programs, and each offers enhancements as well. Though all
share a number of common enhancements, no one compiler offers everything.

These products are covered in alphabetical order by their supplier. This is not a
critical review of these compilers; my intent is to simply discuss the features and
possible shortcomings of each product.

I use all four of these products; however, it is impossible for me to be fully
conversant on all features and parts of these products. All are versatile products,
providing many features and utility programs. If I’ve not covered something regard-
ing any of the compilers, I apologize.

Borland also offers entry-level Windows-based development systems in Turbo
C++ for Windows and Turbo C++ for DOS. I do not have these products, so I cannot
comment on them, but both products have received good reviews in magazines and
should serve you well.

Part V • Appendixes

682

Borland’s C++ 3.1

It’s big! This compiler requires about 50M hard disk space and a reinforced bookshelf
to hold the documentation. Borland, in creating its premiere C++ compiler, made one
of its nicest products yet.

This product fully supports both DOS and Windows development environ-
ments. Generally, you can develop applications for the same environment in which
the IDE (integrated development environment) is running; I’d recommend using
the Windows version—it’s a slick, easy to use IDE.

With its EasyWin program, Borland C++ can migrate a character-based DOS
application to Windows by creating a single window that serves for the screen. This
window displays both STDOUT and STDERR, while the STDIN input comes
from the keyboard. The appearance of these applications is good; however, the
application does not have a menu bar. Borland C++ determines the type of applica-
tion by analyzing the main() function—if it has a main() function, the application is
a DOS application and will be built as an EasyWin program; if it has a WinMain()
function, it is a Windows program.

You can reduce disk storage requirements by installing only the system parts you
plan to use and leaving out some components, such as sample code, library source, and
Windows specific components. Not everyone wants to develop Windows programs.
However, Windows is becoming a popular environment for programmers who want
to create applications with slick user interfaces.

Some of the most significant features of the Borland C++ 3.1 compiler include:

• Powerful and slick Windows IDE for programmers who develop Windows
software.

• Competent DOS-based IDE, offering many features the Windows IDE offers
(although you can’t cut and paste from other applications, as you can with
Windows).

• For Windows developers, Borland offers the Workshop. This program enables
you to modify the resources of existing applications, such as dialog boxes,
menus, icons, cursors, and bitmaps. The Workshop is powerful: you don’t
need the source code for the program you are modifying. You can change
applications you didn’t write—modifying that menu you don’t like or that
awkward dialog box because it works on an .EXE file. You can, of course,

Compiler Variations

683

C C
CC
C

C
C
C CB

develop your own application’s resources using Workshop. This one program
replaces Microsoft’s DIALOG and IMAGEDIT programs, while adding many
new features.

• For Windows developers, Borland offers a powerful window-monitoring
facility. It lists, in a listbox, all existing windows and their relationships. This
feature is much more flexible than Microsoft’s SPY (which requires you to
hunt for a given window). After you select a window, you can monitor the
messages passed to and from it.

• For Windows developers, Borland offers an import library generation tool.
This program works much like Microsoft’s IMPLIB program, but runs under
Windows. You use an import library tool to develop .DLL (dynamic link
library) files.

• For Windows developers, Borland offers Turbo Debugger for Windows. This
debugger has many powerful features such as remote debugging, dual monitor
use, and network-based debugging.

• For Windows developers, Borland offers a source code profiler. This profiler is
useful for determining which parts of an application consume the most CPU
resources. It is tuned for Windows applications.

• For Windows developers, Borland offers a UAE monitor (much like
Microsoft’s Dr. Watson). This program, which runs constantly, traps hardware
exceptions generated by some types of programming errors and creates a log
file of information you can use to help debug the application.

• For Windows developers, Borland offers a file conversion utility to convert
OEM characters to ANSI. This program helps make files created under DOS
that have special characters Windows compatible, without a long conversion
edit session.

• For Windows developers, Borland offers a hot spot editor. This utility is from
Microsoft and is the standard Windows SDK hot spot editor.

• Borland’s C++ 3.1 offers precompiled headers. A flexible implementation,
precompiled headers help speed up the creation (compilation) of large, multi-
source file projects.

• Besides the various programs, an extensive online help system is provided.
Online help is becoming increasingly important because the documentation
for many compilers (including Borland’s) often exceeds 10,000 pages.

Part V • Appendixes

684

When managing large projects, a make facility is necessary. Borland’s compiler
offers both the IDE’s make facility and a stand-alone make that you can run under
DOS.

When used under Windows, Borland C++ creates a program group like the one
shown in Figure B.1. This group gives you access to each of the features Borland’s C++
offers to the Windows programmer.

Figure B.1. Borland’s C++ Group under Windows.

When you start the IDE under Windows, you get an attractive application that
enables you to do the following:

• Define what files make up the application.

• Define the application’s attributes (for example, whether it is a Windows
application or a DLL).

• Edit the application’s files.

• Compile and link the application.

• Debug and run the application.

DOS IDE

Windows IDE

Execution
profiler

UAE monitor

Convert files
to various
character set

Help files

Spy on
Windows
messages

Turbo
debugger
(for Windows)

Resource
Workshop

Compiler Variations

685

C C
CC
C

C
C
C CB

Various configuration options control the environment, compiler and linker
options, and project options. Borland’s C++ IDE (under Windows) is shown in
Figure B.2. Borland’s C++ IDE under DOS is shown in Figure B.3.

Figure B.2. Borland’s C++ IDE under Windows.

Notice the similarity between the IDE under DOS and the IDE under
Windows. The main difference is the lack of the push-button toolbar under DOS. In
the Windows IDE, it is found just under the menu structure. Under the DOS IDE,
the lack of this toolbar isn’t a major problem for most programmers because the
functions in the toolbar are available as menu functions.

A shortcoming of the Borland products is they produce only 16-bit code.
Hopefully, Borland will soon make a 32-bit code-generating compiler.

Generally, Borland’s C++ compilers are well designed and are a pleasure to use,
especially under Windows.

Part V • Appendixes

686

Figure B.3. Borland’s C++ IDE under DOS.

Microsoft

Microsoft currently markets two C compilers. Their main product, C/C++ V7.0,
is massive. It has documentation for C, C++, and Windows, and requires a large
amount of disk space.

Microsoft’s entry-level compiler, QuickC for Windows, is similar to Micro-
soft C 6.00. QuickC for Windows currently supports only Windows 3.0.

C/C++ 7.0

Microsoft’s mainline C compiler supports C++ and has a number of new features
including incorporation of the Windows SDK with Version 7.0. This compiler is
certainly technically competent, but some of its features lag behind the competition.

For one thing, although Microsoft’s compiler probably produces the best
compiled code—having extensive optimizations and a long track record as a trustwor-
thy compiler—it offers only a DOS-based IDE. The creators of Windows still haven’t
created a true, top-of-the-line Windows development system, which could be viewed
as a serious omission.

Compiler Variations

687

C C
CC
C

C
C
C CB

Some of the notable features of Microsoft’s C/C++ 7.0 include the following:

• Competent DOS-based IDE with many of the same features that are offered
by QuickC for Windows IDE. You must still use a DOS window to create and
compile your Windows applications.

• For Windows developers, Microsoft offers a series of programs to develop a
Windows program’s resources. These programs enable you to modify the
resources (objects such as dialog boxes, menus, icons, cursors, and bitmaps) of
applications you’re developing. These programs include Microsoft’s DIALOG
and IMAGEDIT.

• For Windows developers, Microsoft offers a window-monitoring facility called
SPY. After selecting a window, you can monitor the messages passed to and
from it, sending the output from SPY to either a window, a file, or the debug-
ging terminal if one is attached to COM1.

• For Windows developers, Microsoft offers an import library generation tool.
You use an import library tool to develop .DLL files.

• For Windows developers, Microsoft offers CodeView 4.0, a competent
debugger for Windows. This debugger has many powerful debugging services,
such as remote debugging and dual monitor use.

• For Windows developers, Microsoft offers a source code profiler, a useful
tool in determining which parts of an application consume the most CPU
resources. This profiler is tuned for Windows applications.

• For Windows developers, Microsoft uses Dr. Watson (which is part of Win-
dows 3.1) as a UAE monitor. This program runs constantly in the back-
ground. It traps hardware exceptions generated by some types of programming
errors and creates a log file that you can use to help debug the application.

• For Windows developers, Microsoft offers a hot spot editor, the standard
Windows SDK hot spot editor.

• Microsoft’s C/C++ 7.0 offers precompiled headers. Less flexible than Borland’s
implementation, they are still helpful to speed up the creation of large, multi-
source file projects.

• Besides the various programs, an extensive online help system is provided.
Online help is important because the documentation for many compilers
(including Microsoft’s) often exceeds 10,000 pages.

Part V • Appendixes

688

One downside is this compiler requires at least an 80386 CPU or faster. It cannot
run on an 80286 or slower CPU. For professional developers, this may not be an issue,
but for those of you who program as a hobby, it’s important to check whether the
compiler runs under your hardware.

When managing large projects, a make facility is necessary. Microsoft’s compiler
offers both the IDE’s make facility and a stand-alone make (NMAKE), both of which
you can run under the DOS prompt. NMAKE accepts standard .MAK files (which can
be written by hand); however, the IDE requires a make file it has created (because of
its rather strict contents rules). You can take the IDE’s make file and use it with
NMAKE without modifications.

When used under Windows, Microsoft C/C++ creates a program group like the
one shown in Figure B.4. This group gives you access to each of the features that
Microsoft’s C/C++ product offers to the Windows programmer.

Figure B.4. Microsoft’s C/C++ Group under Windows.

When the IDE starts under Windows, you are presented with a character-based
DOS application. This application enables you to do the following:

Online help

Windows
debugger

DOS
debugger Readme

files

WX Server
program

DOS-based
IDE

Compiler Variations

689

C C
CC
C

C
C
C CB

• Define the files that make up the application.

• Define the application’s attributes (such as whether it is a Windows or DOS
application).

• Edit the application’s files.

• Compile and link the application.

• Debug and run the application.

Various configuration options control the environment, compiler and linker
options, and project options. Microsoft’s C/C++ IDE (under Windows) is shown in
Figure B.5. Other powerful features include the extensive customizing ability of
the IDE, including the ability to create functions and complex macros, which
Borland’s IDE doesn’t enable you to do.

Figure B.5. Microsoft’s C/C++ IDE (in a Windows DOS Box).

Notice the similarity between the IDE under DOS and Borland’s IDE
under DOS.

Part V • Appendixes

690

With a DOS-based IDE, the loss of a toolbar is still the main difference. Perhaps
making up for this is the fact that for some computers, the DOS-based IDE is faster
when the computer is running in a character video mode. Lack of a toolbar doesn’t
present a major problem for most programmers because the functions in the toolbar
are available as menu functions.

Like the Borland compilers, a shortcoming of the Microsoft compilers is they
produce only 16-bit code. I hope Microsoft soon provides the 32-bit code generating
version of this product because many C programmers will be developing 32-bit code
in the near future.

Microsoft’s C/C++ compiler generally produces better and faster programs than
many of its competitors, mostly because of Microsoft’s extensive compiler develop-
ment experience. This program is a good choice if you don’t need a Windows-based
IDE and you can live with the requirement for an 80386 or better operating
environment.

QuickC for Windows 1.0

QuickC for Windows was introduced in 1991 by Microsoft as their first Windows-
hosted IDE product for C. This product had great potential; however, it has not kept
its popularity.

QuickC for Windows has a rather straightforward IDE, as shown in Figure B.6.
This IDE has an integrated debugger (not Codeview) that allows C source level
debugging.

Again, as for other Windows-based IDEs, QuickC for Windows offers a toolbar
to give quick access to features such as compile, compile and link, and access to some
debugger functions.

This product has several advantages.

• I’ve noticed (but others who have benchmarked QuickC for Windows don’t
agree with my results) that QuickC for Windows is a fast compiler.

• It is easy to use, with its projects easy to create and build.

• It offers the ability to create DOS applications under Windows, something no
other Windows-based IDE does.

• It does optimizations (but not to the level that C/C++ 7.0 does). Because this
compiler is similar to C 6, it probably could be effectively compared to C 6.

Compiler Variations

691

C C
CC
C

C
C
C CB

• It offers, for an attractive price, an entry into Windows programming. It
includes many of the features of the Windows SDK; most notably missing are
the help compiler and the debugging version of Windows, though both can be
purchased separately.

Figure B.6. Microsoft’s QuickC for Windows IDE.

The following section outlines some disadvantages of QuickC for Windows:

This product doesn’t interact well with Windows error trapping and debugging.
QuickC for Windows can trap UAE’s, but it doesn’t provide any information to
enable you to locate the error. It’s generally easier to bypass the QuickC for Wind-
ows IDE and run the errant program directly under Windows, let it UAE, and check
the DrWatson log file to determine where the failure occurred.

Again, when using the debugging version of Windows (an option with QuickC
for Windows), many of the usual errors Windows traps and makes known to the
programmer sometimes go unreported. Also, OutputDebugString() doesn’t function
when a program runs under QuickC for Windows IDE, making it difficult to write
debugging information to the debugging terminal.

Part V • Appendixes

692

A final and most serious defect of QuickC for Windows is that it supports
only Windows 3.0, but not the later versions such as Windows 3.1. Many QuickC
for Windows users hope Microsoft will correct this problem, but Microsoft has not
indicated it will upgrade this product soon. However, you can purchase the
Windows SDK, which is compatible with QuickC for Windows.

In all, QuickC for Windows is a good way to get started writing Windows
programs, but if you are developing software professionally, you may find QuickC for
Windows too restricted.

Watcom C/386 9.01

If Microsoft’s QuickC for Windows and Borland’s Turbo C++ for Windows are
cars…and Microsoft’s C/C++ 7.0 and Borland’s C++ 3.1 are pickup trucks…then
Watcom’s C/386 9.01 compiler is a dump truck—a big dump truck.

Give this compiler a job and it does it. Watcom’s C/386 might easily be
described as “for professional use only.”

The most important feature missing in Watcom’s package is the IDE. You must
provide your own source editor to create the source code files. With so many capable
source editors available, this is not a problem. You create the make files by hand.
Watcom includes an effective make facility for larger programs.

The most important aspect of Watcom C/386 is that it is a 32-bit compiler,
unlike the other compilers I’ve discussed. This means you can create true 32-bit
applications (which then require an 80386 or better to run) that take full advantage
of the more powerful 32-bit CPUs.

This product produces DOS applications (32-bit protected mode), Windows
programs (again, 32-bit, with a special library of 32-bit Windows functions), and
OS/2 V2.0 programs. It also produces AutoCAD ADS and ADI compatible code.

Watcom C/386 offers options that take advantage of some of the 80486’s
better instructions. Contrary to popular belief, the 80486 is not an 80386 with a built-
in math coprocessor, but an improved CPU, offering better instruction timings, a
built-in cache, and other features that the compiler can use.

Compiler Variations

693

C C
CC
C

C
C
C CB

Some of the Watcom C/386’s advantages include:

• Generates highly optimized 32-bit 80386/80486 code. This code allows an
application to support a “flat” model program up to 4,000M (4 gigabytes).

• Is both ANSI C and IBM SAA compatible. Its compatibility with Microsoft C
makes it easy to port applications written with Microsoft C.

• Supports Windows 3.x, DOS, OS/2 V2.0, and AutoCAD ADS and ADI.

• Gives optimizations for the 80486 processor.

• Watcom C/386 includes a 32-bit protected mode DOS Extender. This
product, from Rational Systems, has a royalty-free license. It also supports up
to 32M of virtual memory.

• The debugger works within large 32-bit applications, using a number of
different techniques.

• The compiler comes with a high performance 32-bit linker.

• The compiler executes under both DOS and OS/2.

• The compiler supports inline assembly.

• Source code profiler assists in code optimization.

• Graphics library supports EGA, VGA, and Super VGA modes.

• Includes support for PenPoint.

• Under OS/2, Watcom C/386 integrates with WorkFrame/2 to provide a solid
development environment.

• OS/2 applications can access up to 512M virtual memory.

• Windows programs can be fully 32-bit. You don’t need to develop part of the
program as a 16-bit application and part as a 32-bit.

• Watcom C/386 includes the Microsoft Windows SDK components.

• Creates 32-bit DLLs with Watcom C/386. These DLLs are easier to create
because you don’t need to consider the issues of segments.

• Watcom C/386 offers probably the most extensive optimization possible.

Part V • Appendixes

694

• Watcom C/386 provides excellent error checking, including checks for
questionable type matches, uninitialized variables, unreferenced variables,
questionable operations, and potentially incorrect statements.

Additionally, the Watcom C/386 includes the following utilities:

• A linker that supports 32-bit executable programs; this linker runs interactively
or in a command-line mode. The linker supports debugging symbolic infor-
mation (such as line numbers and variable names). There is also a protected
mode linker that enables you to link large programs.

• A make utility that is basically compatible with UNIX-type make programs,
such as Microsoft’s NMAKE program.

• A source profiler program that helps determine which parts of the program
consume the most CPU time.

• An object code librarian that creates .LIB files.

• A bind utility that creates 32-bit Windows programs.

• A disassembler that can disassemble .OBJ files. This disassembler works with
software created with Watcom C/386 and many other compilers and assem-
blers. This tool can be invaluable when debugging software at the machine-
code level.

• An object (.OBJ) file converter that converts .OBJ files to other (standard)
formats, such as Microsoft format.

• A comprehensive graphics library that is compatible with Microsoft’s graphics
functions.

The full Windows SDK is not included. Programmers who wish to develop
Windows programs will want the SDK for its tools and documentation. Acquisition
of the SDK solves the problem of a lack of Windows development documentation.
This situation is also true for OS/2 V2.0 software. You will want to use IBM’s
development tools with Watcom C/386 when developing OS/2 applications, some-
thing for which this compiler is well suited.

Overall, Watcom C/386 is an advanced optimizing compiler that offers many
tools, but has no IDE interface. The programmer must set up the project by hand,
invoke the source editor directly, and compile (or build) and correct bugs, as
programmers have done for years.

I hope Watcom soon offers an IDE for this compiler and thus effectively
eliminates the C/386’s only shortcoming.

Introduction to C++

695

C C
CC
C

C
C
C CCC C

CC
C

C
C
C CC

Introduction to C++

What is C++?

C++ was created as a preprocessor for C and was originally called C with classes.
This name proved to be too long and was shortened to C++. The relationship between
C and C++ is easy to understand: C++ is a superset of the C language. This associa-
tion makes it easier for a C programmer to become proficient in C++ programming;
however, if you are not yet proficient in C, jumping into C++ would be difficult.

The most commonly used basic reference for C++ is The Annotated C++
Reference Manual by Margaret A. Ellis and Bjarne Stroustrup (Addison-Wesley,
1990).

The C++ ANSI standards committee, X3J16, has not yet defined an ANSI
standard, but AT&T is setting the dominant standard. AT&T’s version 2.1 is the
most commonly followed implementation of C++. Only a few compiler producers still
use version 2.0. AT&T’s later standard, version 3.0, is beginning to be accepted and
will soon be the most commonly implemented C++ standard.

Part V •Appendixes

696

Object-Oriented Programming (OOP)

C++ was designed from the outset to support object-oriented programming (OOP).
To better understand OOP, you need to understand the concepts of abstraction,
encapsulation, and hierarchies.

Abstraction

Abstraction is the capacity to ignore the details of an object. In this case, the object can
be either a data object or a function.

When you write in a low-level language, you spend a lot of time working out the
details (at the machine level) of a process or the exact representation (the ordering of
bits and bytes) of data objects. With a higher-level language, you gain the advantage
of fewer details for which the programmer is responsible. For example, a function
written in assembly language might require thousands of lines of code to perform a
simple task, while a function written in C might do the same task using only hundreds
of lines. An even higher-level language might do the task with less than one hundred
lines of code.

Data abstraction might enable a programmer to look at a floating-point data
object that contains the value 3.1415926 without considering the likely hexa-
decimal or binary representations.

Encapsulation

Encapsulation is the process of making a class’s internal data parts invisible to the actual
program. The only way to access or modify a class’s data is to use one of the class’s
functions.

Limiting access to data offers two important benefits.

• First, you don’t need to consider the internal representation of the data when
accessing it. If the data is part of an array, you don’t need to question whether
the access exceeds the bounds because the encapsulation functions can check
for you.

Introduction to C++

697

C C
CC
C

C
C
C CC

• Second, the program is much sturdier because only a limited number of
functions actually modify the data, and all are located within a single, defined
part of the program. If the data is modified incorrectly, the encapsulation layer
must be improved with better error checking and correction.

If possible, encapsulate a class’s data. Doing so makes the application more
reliable, and easier to modify and improve as the application grows.

Hierarchies

Our lives are categorized by hierarchies: our houses are organized in blocks; those
blocks are in neighborhoods; those neighborhoods are in towns; those towns are in
counties; those counties are in states; and so on.

In programming, organizing objects into a hierarchy simplifies management of
the objects. For example, your database might have fields for a dozen variables. It is
easier to write these variables to a disk file as a single object rather than as a dozen
separate writes, one for each field.

Learning C++

The best way to learn C++ is to first learn C, and then write a C++ program with
most of the program in C and only a few lines in C++. Listing C.1, HELLOCPP.CPP,
is written this way. Also notice the new filename extension, .CPP—shorthand for
C++. .C++ isn’t a valid filename extension on many computer systems.

Listing C.1. HELLOCPP.CPP—A first C++ program.

#include <iostream.h>

// Stock C++ hello program

void main()

{

 cout << “Hello world, this is C++\n”;

}

Part V •Appendixes

698

Only two lines in HELLOCPP.CPP are different from a standard C program.
The first line differs because the include file, iostream.h, is a new concept to C
programmers. The header file iostream.h accesses C++’s standard I/O functions.
These functions are similar to C’s printf() and scanf(), and the header file is much
like stdio.h, which most C programs include.

The line that prints the message to the screen is the other difference:

cout << “Hello world, this is C++\n”;

This line may seem strange to the C programmer. It doesn’t appear to take the
form of a function call, yet it gets the message to the screen, as if by magic! To the C
programmer, using the right shift operator seems to be wrong as well.

C++ has slightly different I/O facilities. Known as streams (the same as in C),
these facilities have descriptive names, as shown in Table C.1.

Table C.1. C++ Standard streams.

stream Description

cout Output to the standard screen or
console, as in C’s stdout.

cin Input from the standard keyboard
or console, as in C’s stdin.

cerr Output to the error screen or
console, as in C’s stderr.
Characters sent to the error
screen cannot be redirected using
I/O redirection.

Also in the preceding example line, you use the << operator differently from how
it is defined in C, because with C++ you can redefine an operator’s function. This
redefinition is contextually significant: the meaning of the << operator when used
with the stream functions is different from how it’s used in some other context. With
stream functions, the >> and << operators are insertion operators that tell C++ what
is being sent to the screen or received from the keyboard.

Introduction to C++

699

C C
CC
C

C
C
C CC

In C, the comment delimiter is the characters /* and */. C++ has introduced
a new type of comment, in which all characters following // until the end of
the line are treated as a comment. This type of comment doesn’t require an
ending comment marker.

This can create a problem if you’re not careful how you use blanks in state-
ments that are part of mathematical equations. The following lines of code
(i = j+k/l) will be improperly parsed by a C/C++ compiler that allows the
// comment:

i = j+k//* divide by l */l;

+l;

The intent of this code is that the comment runs to just before the /*
delimiter and the variable l, but what happens is the compiler produces:

i = j + k + l;

because the // characters started a C++ single line comment that continues to
the end of the line. This isn’t what the programmer wants, however. Because
the code is syntactically correct, no warning or error is generated, and the
mistake probably won’t be found for some time—probably several hours after
the product has been shipped.

To avoid this sort of problem, always use spaces around all operators, includ-
ing comment operators, as in:

i = j + k / /* divide by l */ l;

+l;

With the spaces, the above fragment compiles correctly, and the spaces make
the source easier to read.

Simply stated, C++ accepts // as a delimiter for a single comment line, but it
is easy to create the // comment operator in error if you are not careful. C++
also accepts /* */ for opening and closing comment lines.

Part V •Appendixes

700

Unlike C, C++ is a more strongly typed language. C++ also requires you to fully
use function prototypes. Function prototypes allow the compiler to check and ensure
that all the types match.

Listing C.2 is a slightly more complex program, EXAMP1.CPP. It shows
input, output, and a for() loop. With your understanding of cout and cin, this
program is self-explanatory.

Listing C.2. EXAMP1.CPP—A C++ program with both input and output.

#include <iostream.h>

void main()

{

int nCount = 0;

int nStart = 0;

 cout << “Enter a starting point:”;

 cin >> nStart;

 cout << “nCount \nHex Decimal Octal \n”;

 for (nCount = nStart; nCount < nStart + 16; nCount++)

 {

 cout << hex << nCount << ‘\t’

 << dec << nCount << ‘\t’

 << oct << nCount << ‘\n’;

 }

}

The output of this program, where the starting point was 0, is shown in
Figure C.1.

This program shows more of the C++ stream functions, including the method
to change the output from decimal to hexadecimal and octal. With cout you can
actually do formatted output, but doing so isn’t a trivial matter.

Introduction to C++

701

C C
CC
C

C
C
C CC

Figure C.1. Output from EXAMP1.CPP.

Quick & Dirty: If you can’t figure out how to program something in C++,
simply do it in C. Then later, when you understand how to write the applica-
tion in C++, you can convert it. Reverting to C is acceptable when you are
first learning how to program in C++, but first try it in C++ before going
back to C.

The rest of this chapter covers some of C++’s main features.

Overloading Functions

When you overload something, you expect it to break. C++, however, enables you to
overload functions without much risk of breakage.

Part V •Appendixes

702

What is overloading? Many articles written about overloaded functions assume
the reader understands overloading. But many readers don’t because it isn’t an obvious
concept. For example, you have a program written in C that has floating-point
variables (doubles), short int variables, and long (32-bit) integer variables. You can
assume that in various places in your program you need to determine the maximum
of each data type. With C, you must write a function for each data type, and when
writing the code, be sure you call the correct function. If in error you call the integer
function to determine maximums and inadvertently pass double parameters, things
won’t work well!

Wouldn’t it be nice to have one generic, maximum function that handles all three
types? That simply isn’t possible. The function must know the data type when you
write it, not when it is called.

C++ gives you an alternative: you can have three functions, all with the same
name, but different parameter types. The C++ compiler looks at the parameters and
selects the correct function for the data type.

Listing C.3, EXAMP2.CPP, is a program that uses overloaded functions. It
shows a maximum function; however, you could choose any function that might use
different parameter types with different calls.

Listing C.3. EXAMP2.CPP—Program showing C++ function overloading.

// Program EXAMP2.CPP, written 27 July 1992 by Peter D. Hipson

// Shows the use of overloaded functions.

#include <iostream.h>

// A double, long, and an int max() function are defined. You can

// also have others, such as char, float, and so on.

double max(double a, double b);

int max(int a, int b);

long max(long a, long b);

void main()

{

int nValue1 = 0;

Introduction to C++

703

C C
CC
C

C
C
C CC

int nValue2 = 0;

long lValue1 = 0;

long lValue2 = 0;

double dValue1 = 0.0;

double dValue2 = 0.0;

 cout << “Enter two integer values: “;

 cin >> nValue1 >> nValue2;

 cout << “The max of “ << nValue1 << “ and “ << nValue2

 << “ is “ << max(nValue1, nValue2) << “\n”;

 cout << “Enter two long integer values: “;

 cin >> lValue1 >> lValue2;

 cout << “The max of “ << lValue1 << “ and “ << lValue2

 << “ is “ << max(lValue1, lValue2) << “\n”;

 cout << “Enter two floating point values: “;

 cin >> dValue1 >> dValue2;

 cout << “The max of “ << dValue1 << “ and “ << dValue2

 << “ is “ << max(dValue1, dValue2) << “\n”;

}

double max(

 double a,

 double b)

{

 if (a < b)

 {

 return (b);

 }

 else

 {

 return(a);

 }

}

continues

Part V •Appendixes

704

Listing C.3. continued

int max(

 int a,

 int b)

{

 if (a < b)

 {

 return (b);

 }

 else

 {

 return(a);

 }

}

long max(

 long a,

 long b)

{

 if (a < b)

 {

 return (b);

 }

 else

 {

 return(a);

 }

}

This program enables you to call max() without considering whether you need
to call the floating-point, integer, or long version of the function.

Declaring Variables When Needed

With C, you can declare a variable only at the beginning of a block. Your programs
often end up declaring variables far from where they are used, making correlation
between a variable and its usage difficult.

Introduction to C++

705

C C
CC
C

C
C
C CC

One C++ feature enables you to declare a variable wherever it is needed. In the
program EXAMP3.CPP (in Listing C.4), an index that will be used in a for() loop
is declared in the for() statement.

Listing C.4. EXAMP3.CPP—Program showing variable declaration in a

statement.

// Program EXAMP3.CPP, written 27 July 1992 by Peter D. Hipson

// Shows the use of variable declarations when needed.

#include <iostream.h>

void main()

{

int nStart = 0;

 cout << “Enter a starting point:”;

 cin >> nStart;

 cout << “nCount \nHex Decimal Octal \n”;

// Here, you declare an integer, nCount, which is used as the

// for() statement’s loop counter. The variable is actually

// declared in the for() loop statement.

 for (int nCount = nStart; nCount < nStart + 16; nCount++)

 {

 cout << hex << nCount << ‘\t’

 << dec << nCount << ‘\t’

 << oct << nCount << ‘\n’;

 }

}

Part V •Appendixes

706

In the program, the nCount variable is actually declared in the for() statement,
where it is first used:

for (int nCount = nStart; nCount < nStart + 16; nCount++)

This sequence makes it easier to construct loops and other blocks without plac-
ing the block’s variables in the program where they are obviously not used.

Default Function Argument Values

When writing functions, you may often create a function that requires many of its
parameters for some purposes, yet other calls need only the first few parameters.

You also sometimes need functions that seem to have a variable number of
arguments, and you don’t want to code a parameter describing the number of
arguments.

Finally, some functions often use default values for some parameters. It is then
up to the programmer to code these default values for each call of the function. Heaven
forbid should one of the defaults change: you’ll be changing each of the call by hand—
a long and tedious process.

C++ provides a solution: specify default values for parameters. This process is
simple, being done in the function’s prototype. Listing C.5 is the EXAMP4.CPP
program, which demonstrates how to implement default arguments to a function.

Listing C.5. EXAMP4.CPP—Program showing default values for

arguments.

// Program EXAMP4.CPP, written 27 July 1992 by Peter D. Hipson

// Shows the use of default values for functions arguments.

#include <limits.h>

#include <float.h>

#include <iostream.h>

// Defined are a double, long, and an int max() function. You can

// also have others, such as char, float, and so on.

//

// In this version, you have four parameters and find the max of

// the four. Because the minimum number of arguments is two, the final

Introduction to C++

707

C C
CC
C

C
C
C CC

// two arguments must default to a value that doesn’t cause

// error values.

double max(double a, double b, double c = DBL_MIN, double d =

DBL_MIN);

int max(int a, int b, int c = INT_MIN, int d =

INT_MIN);

long max(long a, long b, long c = LONG_MIN, long d =

LONG_MIN);

void main()

{

int nValue1 = 0;

int nValue2 = 0;

int nValue3 = 0;

long lValue1 = 0;

long lValue2 = 0;

long lValue3 = 0;

long lValue4 = 0;

double dValue1 = 0.0;

double dValue2 = 0.0;

 cout << “Enter three integer values: “;

 cin >> nValue1 >> nValue2 >> nValue3;

 cout << “The max of “ << nValue1 <<

 “ and “ << nValue2 <<

 “ and “ << nValue3 <<

 “ is “ << max(nValue1, nValue2, nValue3) << “\n”;

 cout << “Enter four long integer values: “;

 cin >> lValue1 >> lValue2 >> lValue3 >> lValue4;

 cout << “The max of “ << lValue1 <<

 “ and “ << lValue2 <<

 “ and “ << lValue3 <<

 “ and “ << lValue4 <<

continues

Part V •Appendixes

708

 Listing C.5. continued

 “ is “ <<

 max(lValue1, lValue2, lValue3, lValue4) << “\n”;

 cout << “Enter two floating point values: “;

 cin >> dValue1 >> dValue2;

 cout << “The max of “ << dValue1 << “ and “ << dValue2

 << “ is “ << max(dValue1, dValue2) << “\n”;

}

double max(

 double a,

 double b,

 double c,

 double d)

{

 if (a > b && a > c && a > d)

 {

 return (a);

 }

 if (b > a && b > c && b > d)

 {

 return (b);

 }

 if (c > a && c > b && c > d)

 {

 return (c);

 }

 return (d);

}

int max(

 int a,

 int b,

 int c,

 int d)

{

 if (a > b && a > c && a > d)

 {

Introduction to C++

709

C C
CC
C

C
C
C CC

 return (a);

 }

 if (b > a && b > c && b > d)

 {

 return (b);

 }

 if (c > a && c > b && c > d)

 {

 return (c);

 }

 return (d);

}

long max(

 long a,

 long b,

 long c,

 long d)

{

 if (a > b && a > c && a > d)

 {

 return (a);

 }

 if (b > a && b > c && b > d)

 {

 return (b);

 }

 if (c > a && c > b && c > d)

 {

 return (c);

 }

 return (d);

}

Notice this program incorporates function overloading as well. As shown, none
of these C++ features are mutually exclusive. Any unused parameters default to the
minimum value the data type can hold, which enables your maximum function to
work correctly. That way, you’ll never select an unused argument as the maximum—
nothing can be smaller than the default values.

Part V •Appendixes

710

References

In C, you can use a pointer to access a variable. Using a pointer allows a program to
use a variable in two different ways, using different names. Pointers have their
downside—they are often misunderstood, have the wrong value stored in them, and
are awkward because you must try to remember whether you are dealing with a pointer,
the object it is pointing to, or an object’s address.

C++ has a method that allows a variable to have more than one name. The
second name isn’t a pointer (once defined, it can access only the variable by which it
was defined), but is another way to access the variable’s storage.

EXAMP5.CPP, Listing C.6 is a program that shows the use of a reference
variable in a C++ program.

Listing C.6. EXAMP5.CPP—Program showing a reference variable.

// Program EXAMP5.CPP, written 27 July 1992 by Peter D. Hipson

// Shows the use of reference variable, externally used as a

// function’s return value...

#include <iostream.h>

// function max() returns a reference variable...

int max(int a, int b);

void main()

{

int nValue1 = 0;

int nValue2 = 0;

// Create a reference variable, which is not quite the same as a

// pointer to the original variable, because there is no actual

// pointer. A reference variable is more like a second name for

// a variable.

int &nRef1 = nValue1;

 cout << “Enter two integer values: “;

Introduction to C++

711

C C
CC
C

C
C
C CC

 cin >> nValue1 >> nValue2;

 cout << “The max of “ << nValue1 << “ and “ << nValue2

 << “ is “ << max(nRef1, nValue2) << “\n”;

}

int max(

 int a,

 int b)

{

 if (a < b)

 {

 return (b);

 }

 else

 {

 return(a);

 }

}

Notice in the cout statement

 cout << “The max of “ << nValue1 << “ and “ << nValue2

 << “ is “ << max(nRef1, nValue2) << “\n”;

that it refers to the variable nValue1 using the reference variable nRef1. The effect is
the same as you would get by using the name nValue1.

References as Return Values

Using a reference variable as a return value creates an interesting situation. In this case,
you can use the function’s name on the left side (as an lvalue) of an assignment
operator.

The EXAMP6.CPP program in Listing C.7 shows the effect of using a refer-
ence variable as a return value.

Part V •Appendixes

712

Listing C.7. EXAMP6.CPP—Program showing a reference variable.

// Program EXAMP6.CPP, written 27 July 1992 by Peter D. Hipson

// Shows the use of reference variable, externally used as a

// function’s return value...

#include <iostream.h>

// Defined is an int max() function.

int nLimit = 0;

// function max() returns a reference variable...

int &max(int a, int b);

void main()

{

int nValue1 = 0;

int nValue2 = 0;

// Create a reference variable, which is not quite the same as a

// pointer to the original variable, because there is no actual

// pointer. A reference variable is more like a second name for

// a variable.

int &nRef1 = nValue1;

 cout << “Enter two integer values: “;

 cin >> nValue1 >> nValue2;

 cout << “The max of “ << nValue1 << “ and “ << nValue2

 << “ is “ << max(nRef1, nValue2) << “\n”;

 cout << “The value of nLimit is “ << nLimit << “\n”;

 max(0, 0) = 99;

 cout << “The value of nLimit is “ << nLimit << “\n”;

Introduction to C++

713

C C
CC
C

C
C
C CC

}

int & max(

 int a,

 int b)

{

 if (a < b)

 {

 nLimit = b;

 return (nLimit);

 }

 else

 {

 nLimit = a;

 return(nLimit);

 }

}

To better understand the effects of running this program, take a look at its
output, shown in Figure C.2.

Figure C.2. Output from EXAMP6.CPP.

Part V •Appendixes

714

Notice after the statement

max(0, 0) = 99;

was executed the value of nLimit changed to 99. Only your creativity limits how
you use this ability of C++.

Classes

Classes are one of the most important elements of C++. They enable you to use one
of the most powerful features of the language—data object management. You might
think of classes as an extension to C’s user-defined types. In C, when defining a type
(using typedef), you can include only actual data objects in that type. No checking
takes place to find if correct values have been assigned to a C user-defined type.

Using C++ classes gives you many advantages. These advantages, described in
 the following section, are valuable in maintaining your application’s data integrity.

A class can have all the allowed data types within it, including other classes.
Nesting classes is done much the same as you would nest typedef’d objects in C.

A class has a constructor, a function called whenever a data object of that class
is created. You may have more than one constructor, each of which must have a
different number of parameters. The constructor is responsible for ensuring that each
member of the class is properly initialized and that any initialization values passed
to the constructor are valid.

A class has a number of manipulation functions that you can use to store values
in the class’s members, retrieve member values, print, output, input, or otherwise
manipulate its members.

A class also has a destructor, a function called whenever the class object is about
to be destroyed. This function can take care of housekeeping, such as freeing any
allocated memory.

Using a class requires you to determine, as well as you possibly can, what you
will use for members in the class. You never have a problem adding members as needed
or writing class functions to access new members; however, planning ahead helps
prevent unchecked changes that can cause problems.

Introduction to C++

715

C C
CC
C

C
C
C CC

Listing C.8, EXAMP7.CPP, is a program that creates a class based on the
database example program CREATEDB.C in Chapter 7, “C Structures.” The
CREATEDB.C program makes a database record for either a customer or a
supplier.

Listing C.8. EXAMP7.CPP—Program showing C++ classes.

// Program EXAMP7.CPP, written 27 July 1992 by Peter D. Hipson

// Shows C++ classes, initialization, and so on.

#include <string.h> // Used for strcpy(), str...(), etc.

#include <iostream.h> // C++’s stream I/O header.

// Define your class structure, similar to those

// created in earlier chapters showing database techniques.

#define CUSTOMER_RECORD 1

#define SUPPLIER_RECORD 2

/* Define your structure for the customer database. */

class Customer

{

public:

 Customer(); // The default constructor

 Customer(int nRecType, // The class constructor

 char * szCustName,

 char * szAddr,

 double dSales);

 void GetCustomer();

 void PrintCustomer(); // Print a customer’s information

 ~Customer(); // Destructor

private:

 int nRecordType;

 char szCustomerName[120];

 char szAddress[120];

 double dCurrentSales;

continues

Part V •Appendixes

716

Listing C.8. continued

};

Customer::Customer() // The class constructor, default values.

{

 nRecordType = CUSTOMER_RECORD;

 strcpy(szCustomerName, “-NONE-”);

 strcpy(szAddress, “-NONE”);

 dCurrentSales = 0.0;

}

Customer::Customer(int nRecType, // The class constructor, explicit

// values

 char * szCustName,

 char * szAddr,

 double dSales)

{

 nRecordType = nRecType;

 strcpy(szCustomerName, szCustName);

 strcpy(szAddress, szAddr);

 dCurrentSales = dSales;

}

void Customer::GetCustomer()

{

char szLine[2]; // Used to store a NEWLINE for cin.getline

// You get, from the console, the object’s data values, using a simple

// multiline format:

 cout << “Enter ‘“ << CUSTOMER_RECORD << “‘ for a Customer ‘“ <<

 SUPPLIER_RECORD << “‘ for a supplier: “;

 cin >> nRecordType;

// Below you don’t use cin, but cin.getline, which gets all

// characters until the delimiting character (the optional third

// character). If the delimiting character is omitted, a

// newline is assumed. When getting input, cin.getline() does not

// retrieve more characters than the second parameter specifies,

// taking into consideration the ending NULL for the string.

Introduction to C++

717

C C
CC
C

C
C
C CC

 cin.getline(szLine, sizeof(szLine)); // discard NEWLINE from last

// input.

 cout << “Enter the name: “;

 cin.getline(szCustomerName, sizeof(szCustomerName));

 cout << “Enter the address: “;

 cin.getline(szAddress, sizeof(szAddress));

 cout << “Enter the sales: “;

 cin >> dCurrentSales;

}

void Customer::PrintCustomer()

{

// You print the object’s data values, using a simple

// multiline format:

 cout << “Type\t” << nRecordType << “\n” <<

 “Name\t” << szCustomerName << “\n” <<

 “Address\t” << szAddress << “\n” <<

 “Sales:\t” << dCurrentSales << “\n”;

}

Customer::~Customer()

{

// Nothing done here. You don’t have anything to do when the

// object is destroyed.

}

void main()

{

// The first object is initialized with the default values.

Customer Customer1;

// The second object is initialized with explicit values.

Customer Customer2(CUSTOMER_RECORD, “John Smith”, “New York, NY 10000”,

1234.5);

continues

Part V •Appendixes

718

Listing C.8. continued

 Customer1.PrintCustomer();

 cout << “\n”;

 Customer2.PrintCustomer();

 cout << “\n”;

 Customer2.GetCustomer();

 cout << “\n”;

 Customer2.PrintCustomer();

 cout << “\n”;

}

In this program, you first create a class. Then you tell the compiler the class name
and describe the class:

class Customer

{

Following specification of the class name, describe those members in the class
that are to be public. If a member is public, you can access it from the actual program;
if a member is private, you can access it only from a function of the class.

public:

In the public section, declare two class constructors by overloading the class
constructor function. This way, you create a default constructor with no parameters
and a constructor that initializes the class to specified values. Then declare a function
to get, from the keyboard, the class’s data. You declare a function to print that data to
the screen. You also create a class destructor.

Both the constructor and the destructor are required in creating a class. If
you don’t need these functions, you still must create a function that does nothing. A
class constructor always has the same name as the class. The destructor also has the
same name as the class, but is preceded by a ~ character.

Introduction to C++

719

C C
CC
C

C
C
C CC

 Customer(); // The default constructor

 Customer(int nRecType, // The class constructor

 char * szCustName,

 char * szAddr,

 double dSales);

 void GetCustomer();

 void PrintCustomer(); // Print a customer’s information

 ~Customer(); // Destructor

Well hidden from your actual program, in the private section, are the actual data
objects for this class. You keep them hidden (by making them private) so the program
cannot modify them directly, but instead can modify them only through a function
of the class.

You define each variable just as you define a structure in C. Any data type is
permissible, including other classes.

private:

 int nRecordType;

 char szCustomerName[120];

 char szAddress[120];

 double dCurrentSales;

};

Once the class is defined, you must provide the functions that are part of the class.
You must define these functions after the definition of the class itself.

The first function you create is the class constructor that initializes the class’s
members to default values. These default values can be any that are appropriate for both
the data’s type and the application. Like a class destructor, a class constructor has
neither a return value type nor a return statement.

Customer::Customer() // The class constructor, default values.

{

 nRecordType = CUSTOMER_RECORD;

 strcpy(szCustomerName, “-NONE-”);

 strcpy(szAddress, “-NONE”);

 dCurrentSales = 0.0;

}

Part V •Appendixes

720

The next function is also a constructor (done by overloading the constructor
function) that allows your program to specify the values to assign to the class’s
members.

Customer::Customer(int nRecType, // The class constructor, explicit

 // values

 char * szCustName,

 char * szAddr,

 double dSales)

{

 nRecordType = nRecType;

 strcpy(szCustomerName, szCustName);

 strcpy(szAddress, szAddr);

 dCurrentSales = dSales;

}

You next define the class function that gets, from the keyboard, new values for
the class’s members. This function uses C++’s cin and cin.getline classes. Using
cin for numeric values is fine; however for character string values, cin.getline is
better because it limits the number of characters assigned and ignores any white-
space characters in the input string. Class functions, other than constructors and
destructors, can have return values. You can use these return values to indicate
either success or failure of the function, or to return a class member’s value.

void Customer::GetCustomer()

{

char szLine[2]; // Used to store a NEWLINE for cin.getline

// You get, from the console, the object’s data values, using a simple

// multiline format:

 cout << “Enter ‘“ << CUSTOMER_RECORD << “‘ for a Customer ‘“ <<

 SUPPLIER_RECORD << “‘ for a supplier: “;

 cin >> nRecordType;

// Below you don’t use cin, but cin.getline, which gets all

// characters until the delimiting character (the optional third

// character). If the delimiting character is omitted, assume a

// newline. When getting input, cin.getline() does not

// retrieve more characters than the second parameter specifies,

// taking into account the ending NULL for the string.

Introduction to C++

721

C C
CC
C

C
C
C CC

 cin.getline(szLine, sizeof(szLine)); // discard NEWLINE from last

 // input.

 cout << “Enter the name: “;

 cin.getline(szCustomerName, sizeof(szCustomerName));

 cout << “Enter the address: “;

 cin.getline(szAddress, sizeof(szAddress));

 cout << “Enter the sales: “;

 cin >> dCurrentSales;

}

The next function prints the class’s contents to the screen. You can also send the
contents to a file, a communications port, and so on. This function is simple, using
only cout to print.

void Customer::PrintCustomer()

{

// You print the object’s data values, using a simple

// multiline format:

 cout << “Type\t” << nRecordType << “\n” <<

 “Name\t” << szCustomerName << “\n” <<

 “Address\t” << szAddress << “\n” <<

 “Sales:\t” << dCurrentSales << “\n”;

}

The final function is the class destructor (which, like the constructor, is
required). Because nothing must be done when the class object is destroyed, you
simply return. Like a class constructor, a class destructor has neither a return value
type nor a return statement.

Customer::~Customer()

{

// Nothing done here. You don’t have anything to do when the

// object is destroyed.

}

Once you are skilled at using classes, you will find these features helpful. Pro-
per use of class objects limits the potential for program errors by requiring accessing
and modifying class members by using an interface layer of functions that perform
error checks.

Part V •Appendixes

722

Function /Header File Cross Reference

723

C C
CC
C

C
C
C CDC C

CC
C

C
C
C CD

Function/Header File

Cross Reference

The prototype for each function is in one or more header files. The following table lists
the header file(s), whether the function is ANSI, and the function’s prototype.

If the column labeled ANSI has no entry, the function is not part of the ANSI
standard. Many compilers may offer this function; however, you must carefully check
whether a given compiler supports the function as you expect.

Table D.1. Header/ Function Cross Reference.

Header file(s) ANSI Function prototype

process.h & stdlib.h ANSI abort()

math.h & stdlib.h ANSI abs()

continues

Part V • Appendixes

724

Table D.1. continued

Header file(s) ANSI Function prototype

io.h access()

math.h ANSI acos()

math.h acosl()

malloc.h alloca()

time.h ANSI asctime()

math.h ANSI asin()

math.h asinl()

assert.h ANSI assert()

math.h ANSI atan()

math.h ANSI atan2()

math.h atan2l()

math.h atanl()

stdlib.h ANSI atexit()

math.h & stdlib.h ANSI atof()

stdlib.h ANSI atoi()

stdlib.h ANSI atol()

math.h & stdlib.h atold()

malloc.h bcalloc()

malloc.h bexpand()

malloc.h bmalloc()

malloc.h brealloc()

malloc.h bfree()

malloc.h bfreeseg()

malloc.h bheapadd()

Function /Header File Cross Reference

725

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

malloc.h bheapchk()

malloc.h bheapmin()

malloc.h bheapseg()

malloc.h bheapset()

malloc.h bheapwalk()

malloc.h bmsize()

search.h & stdlib.h ANSI bsearch()

math.h cabs()

math.h cabsl()

malloc.h & stdlib.h ANSI calloc()

math.h ANSI ceil()

math.h ceill()

process.h cexit()

conio.h cgets()

conio.h cgets()

direct.h chdir()

direct.h chdrive()

io.h chmod()

io.h chsize()

float.h clear87()

stdio.h ANSI clearerr()

time.h ANSI clock()

io.h close()

io.h commit()

float.h control87()

continues

Part V • Appendixes

726

Table D.1. continued

Header file(s) ANSI Function prototype

math.h ANSI cos()

math.h ANSI cosh()

math.h coshl()

math.h cosl()

conio.h cprintf()

conio.h cputs()

io.h creat()

conio.h cscanf()

time.h ANSI ctime()

math.h dieeetomsbin()

time.h ANSI difftime()

stdlib.h ANSI div()

math.h dmsbintoieee()

io.h dup()

io.h dup2()

stdlib.h ecvt()

io.h eof()

process.h execl()

process.h execle()

process.h execlp()

process.h execlpe()

process.h execv()

process.h execve()

process.h execvp()

Function /Header File Cross Reference

727

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

process.h execvpe()

process.h & stdlib.h ANSI exit()

math.h ANSI exp()

malloc.h expand()

math.h expl()

math.h ANSI fabs()

math.h fabsl()

stdlib.h fatexit()

malloc.h fcalloc()

stdio.h ANSI fclose()

stdio.h ANSI fcloseall()

stdlib.h fcvt()

stdio.h fdopen()

stdio.h ANSI feof()

stdio.h ANSI ferror()

malloc.h fexpand()

stdio.h ANSI fflush()

malloc.h ffree()

stdio.h ANSI fgetc()

stdio.h fgetchar()

stdio.h ANSI fgetpos()

stdio.h ANSI fgets()

malloc.h fheapchk()

malloc.h fheapmin()

malloc.h fheapset()

continues

Part V • Appendixes

728

Table D.1. continued

Header file(s) ANSI Function prototype

malloc.h fheapwalk()

math.h fieeetomsbin()

stdio.h filbuf()

io.h filelength()

stdio.h fileno()

math.h ANSI floor()

math.h floorl()

stdio.h flsbuf()

stdio.h flushall()

malloc.h fmalloc()

stdlib.h fmblen()

stdlib.h fmbstowcs()

stdlib.h fmbtowc()

memory.h & string.h fmemccpy()

memory.h & string.h fmemchr()

memory.h & string.h fmemcmp()

memory.h & string.h fmemcpy()

memory.h & string.h fmemicmp()

string.h fmemmove()

memory.h & string.h fmemset()

math.h ANSI fmod()

math.h fmodl()

math.h fmsbintoieee()

malloc.h fmsize()

Function /Header File Cross Reference

729

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

stdlib.h fonexit()

stdio.h ANSI fopen()

float.h fpreset()

stdio.h ANSI fprintf()

stdio.h ANSI fputc()

stdio.h fputchar()

stdio.h ANSI fputs()

stdio.h ANSI fread()

malloc.h frealloc()

malloc.h & stdlib.h ANSI free()

malloc.h freect()

stdio.h ANSI freopen()

math.h ANSI frexp()

math.h frexpl()

stdio.h ANSI fscanf()

stdio.h ANSI fseek()

stdio.h ANSI fsetpos()

stdio.h fsopen()

string.h fstrcat()

string.h fstrchr()

string.h fstrcmp()

string.h fstrcpy()

string.h fstrcspn()

string.h fstrdup()

string.h fstricmp()

continues

Part V • Appendixes

730

Table D.1. continued

Header file(s) ANSI Function prototype

string.h fstrlen()

string.h fstrlwr()

string.h fstrncat()

string.h fstrncmp()

string.h fstrncpy()

string.h fstrnicmp()

string.h fstrnset()

string.h fstrpbrk()

string.h fstrrchr()

string.h fstrrev()

string.h fstrset()

string.h fstrspn()

string.h fstrstr()

string.h fstrtok()

string.h fstrupr()

stdio.h ANSI ftell()

stdlib.h fullpath()

stdlib.h fwcstombs()

stdlib.h fwctomb()

stdio.h fwopen()

stdio.h ANSI fwrite()

stdlib.h gcvt()

stdlib.h gcvt()

stdio.h ANSI getc()

Function /Header File Cross Reference

731

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

conio.h getch()

stdio.h ANSI getchar()

conio.h getche()

direct.h getcwd()

direct.h getdcwd()

direct.h getdrive()

stdlib.h getenv()

process.h getpid()

stdio.h ANSI gets()

stdio.h getw()

time.h ANSI gmtime()

malloc.h hugehalloc()

malloc.h heapadd()

malloc.h heapchk()

malloc.h heapmin()

malloc.h heapset()

malloc.h heapwalk()

malloc.h hfree()

math.h hypot()

math.h hypotl()

conio.h inp()

conio.h inpw()

ctype.h ANSI isalnum()

ctype.h ANSI isalpha()

ctype.h isascii()

continues

Part V • Appendixes

732

Table D.1. continued

Header file(s) ANSI Function prototype

io.h isatty()

ctype.h ANSI iscntrl()

ctype.h iscsym()

ctype.h iscsymf()

ctype.h ANSI isdigit()

ctype.h ANSI isgraph()

ctype.h ANSI islower()

ctype.h ANSI isprint()

ctype.h ANSI ispunct()

ctype.h ANSI isspace()

ctype.h ANSI isupper()

ctype.h ANSI isxdigit()

stdlib.h itoa()

math.h j0()

math.h j0l()

math.h j1()

math.h j1l()

math.h jn()

math.h jnl()

conio.h kbhit()

math.h & stdlib.h ANSI labs()

math.h ANSI ldexp()

math.h ldexpl()

stdlib.h ANSI ldiv()

Function /Header File Cross Reference

733

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

search.h lfind()

locale.h ANSI localeconv()

time.h ANSI localtime()

io.h locking()

math.h ANSI log()

math.h ANSI log10()

math.h log10l()

math.h logl()

setjmp.h ANSI longjmp()

stdlib.h lrotl()

stdlib.h lrotr()

search.h lsearch()

io.h lseek()

stdlib.h ltoa()

stdlib.h makepath()

malloc.h & stdlib.h ANSI malloc()

math.h matherr()

stdlib.h ANSI mblen()

stdlib.h ANSI mbstowcs()

stdlib.h ANSI mbtowc()

malloc.h memavl()

memory.h & string.h memccpy()

memory.h & string.h ANSI memchr()

memory.h & string.h ANSI memcmp()

memory.h & string.h ANSI memcpy()

continues

Part V • Appendixes

734

Table D.1. continued

Header file(s) ANSI Function prototype

memory.h & string.h memicmp()

malloc.h memmax()

string.h ANSI memmove()

memory.h & string.h ANSI memset()

direct.h mkdir()

direct.h mkdir()

io.h mktemp()

time.h ANSI mktime()

math.h ANSI modf()

math.h modfl()

memory.h & string.h movedata()

malloc.h msize()

malloc.h ncalloc()

malloc.h nexpand()

malloc.h nfree()

malloc.h nheapchk()

malloc.h nheapmin()

malloc.h nheapset()

malloc.h nheapwalk()

malloc.h nmalloc()

malloc.h nmsize()

malloc.h nrealloc()

string.h nstrdup()

stddef.h ANSI offsetof()

Function /Header File Cross Reference

735

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

stdlib.h onexit()

io.h open()

conio.h outp()

conio.h outpw()

stdio.h & stdlib.h ANSI perror()

math.h ANSI pow()

math.h powl()

stdio.h ANSI printf()

stdio.h ANSI putc()

conio.h putch()

stdio.h ANSI putchar()

stdlib.h putenv()

stdio.h ANSI puts()

stdio.h putw()

search.h & stdlib.h ANSI qsort()

signal.h ANSI raise()

stdlib.h ANSI rand()

io.h read()

malloc.h & stdlib.h ANSI realloc()

io.h & stdio.h ANSI remove()

io.h & stdio.h ANSI rename()

stdio.h ANSI rewind()

direct.h rmdir()

stdio.h rmtmp()

stdlib.h rotl()

continues

Part V • Appendixes

736

Table D.1. continued

Header file(s) ANSI Function prototype

stdio.h ANSI scanf()

stdlib.h searchenv()

stdio.h ANSI setbuf()

setjmp.h ANSI setjmp()

locale.h ANSI setlocale()

io.h setmode()

stdio.h ANSI setvbuf()

signal.h ANSI signal()

math.h ANSI sin()

math.h ANSI sinh()

math.h sinhl()

math.h sinl()

stdio.h snprintf()

io.h sopen()

process.h spawnl()

process.h spawnle()

process.h spawnlp()

process.h spawnlpe()

process.h spawnv()

process.h spawnve()

process.h spawnvp()

process.h spawnvpe()

stdlib.h splitpath()

stdio.h ANSI sprintf()

Function /Header File Cross Reference

737

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

math.h ANSI sqrt()

math.h sqrtl()

stdlib.h ANSI srand()

stdio.h ANSI sscanf()

malloc.h stackavail()

float.h status87()

string.h ANSI strcat()

string.h ANSI strchr()

string.h ANSI strcmp()

string.h strcmpi()

string.h ANSI strcoll()

string.h ANSI strcpy()

string.h ANSI strcspn()

time.h strdate()

string.h strdup()

string.h ANSI strerror()

time.h ANSI strftime()

string.h stricmp()

string.h ANSI strlen()

string.h strlwr()

string.h ANSI strncat()

string.h ANSI strncmp()

string.h ANSI strncpy()

string.h strnicmp()

string.h strnset()

continues

Part V • Appendixes

738

Table D.1. continued

Header file(s) ANSI Function prototype

string.h ANSI strpbrk()

string.h ANSI strrchr()

string.h strrev()

string.h strset()

string.h ANSI strspn()

string.h ANSI strstr()

time.h strtime()

stdlib.h ANSI strtod()

string.h ANSI strtok()

stdlib.h ANSI strtol()

stdlib.h ANSI strtold()

stdlib.h ANSI strtoul()

string.h strupr()

string.h ANSI strxfrm()

stdlib.h swab()

process.h & stdlib.h ANSI system()

math.h ANSI tan()

math.h ANSI tanh()

math.h tanhl()

math.h tanl()

io.h tell()

stdio.h tempnam()

Function /Header File Cross Reference

739

C C
CC
C

C
C
C CD

Header file(s) ANSI Function prototype

time.h ANSI time()

stdio.h ANSI tmpfile()

stdio.h ANSI tmpnam()

ctype.h toascii()

ctype.h & stdlib.h ANSI tolower()

ctype.h & stdlib.h ANSI toupper()

time.h tzset()

stdlib.h ultoa()

io.h umask()

stdio.h ANSI ungetc()

conio.h ungetch()

io.h & stdio.h unlink()

stdarg.h ANSI va_arg()

stdarg.h ANSI va_end()

stdarg.h ANSI va_start()

stdio.h ANSI vfprintf()

stdio.h ANSI vprintf()

stdio.h vsnprintf()

stdio.h ANSI vsprintf()

stdlib.h ANSI wcstombs()

stdlib.h ANSI wctomb()

io.h write()

math.h y0()

continues

Part V • Appendixes

740

Table D.1. continued

Header file(s) ANSI Function prototype

math.h y0l()

math.h y1()

math.h y1l()

math.h yn()

math.h ynl()

Index

741

C C
CC
C

C
C
C CCC C

CC
C

C
C
C CI

A computer language would be
ineffective if it did not offer a way

Index

Symbols

(stringize operator), 622-623
##(token paste operator), 624
#@ (characterize operator), 623
#include statement, 166-167
% format specifier, 614
& operator, 66, 154
“ delimiter, 166
* argv[] parameter, 100
* envp[] parameter, 100
* indirection operator, 69
/Fa option, 437
/Fc option, 437
/Fl option, 437
/FPa option, 668

/FPc option, 668
/FPc87 option, 668
/FPi option, 669
/FPi87 option, 669
/Ox switch, 446
/S option, 437
< delimiter, 166
<< operator, 154
= (assignment operator), 643
= operator, 74
== equality operator, 643
> delimiter, 166
>> operator, 154
[...] field, 619
\ (macro continuation operator), 622
\n newline character, 29

Advanced C

742

^ operator, 154
_ _DATE _ _macro, 637
_ _FILE _ _macro, 638
_ _FILE_ _ identifier, 500
_ _isascii(_c) macro, 504
_ _LINE _ _macro, 638
_ _LINE_ _ identifier, 500
_ _STDC _ _macro, 638
_ _TIME _ _macro, 637
_ _toascii(_c) macro, 504
_fsopen() function, 269
_tolower() function, 503
_tolower(_c) macro, 504
_toupper() function, 503
_toupper(_c) macro, 504
| operator, 154
~ operator, 154
1.23 constants, 27
1.23F constants, 27
1.23L constants, 27
123L constants, 26
123U constants, 26
123UL constants, 26
16-bit programs, 658
32-bit programs, 658-659
80x86

CPUs, 247
instruction sets, 671-672

A

abort() function, 517, 522
abs() function, 522
abstraction, 696
accessing

dBASE files, 468-473
random strings, 252
tree method, 321

acos() function, 523
ADDER.C program, 72-74
AddRecord() function, 394
addresses, I/O base, 296
alignment of data, 636
allocating

arrays, 244-247
dynamic memory, 227
memory, 516

alpha testing, 642
Alternate Math Package Library

(mLIBCA.LIB), 668
ANSI (American National Standards

Institute), 4-5
ARCADE.C program, 282-287
archive file attribute, 250
argc parameter, 100
arguments, command line, 99-100
Array parameter, 540, 544, 566
ARRAY1.C program, 49-51
ARRAY2.C program, 55-56
arrays, 46

allocating, 244-247
as pointers, 55
bounds, 648
character, 56-58, 74-75
declarations, 46-47
definitions, 47-48
index, 389
indexing, 48, 52-54
names, 68
of pointers, 58-62
of structures, 195, 200
single-dimensional, 52
structures of, 200-202

ASCII character set, 680
asctime() function, 523
asin() function, 524

Index

743

C C
CC
C

C
C
C CC

assembly language, 438
calling C functions, 451, 455
calling from C, 447
inline, 669
routine types, 437

assert() function, 524
assert() macro, 501, 650-652
ASSERT.C program, 651
assert.h header file, 501
assignment operator (=), 643
assignment within conditional

expression warning, 643
atan() function, 524
atan2() function, 525
atexit() function, 517, 525
atof() function, 526
atoi() function, 526
atol() function, 526
attributes, file

archive, 250
directory, 250
hidden, 250
normal, 250
read only, 250
system, 250

auto keyword, 7
automatic variables, 644
Average() function, 32

B

B-tree technique, 392-395
BADSTR.C program, 27-29
balance, 393
base 10 numbering system, 139-141
base parameter, 527
BASIC language, 437, 443
baud rate divisor register (LSB), 300

baud rate divisor register (MSB), 300
bDay variable, 471
beta testing, 642
bf HasMemo variable, 470
bf VERSION variable, 470
binary

files, 251-252
number system, 141-142
searches, 386, 426, 383-384

bit fields, 155-158
in structures, 206-208
storing, 208

bit operators, 154-155
bits, testing, 158
_BLANK identifier, 502
blank flags, 81
block comments, header, 16
bMonth variable, 471
Borland C++ compiler, 682-686

configuration options, 685
EasyWin program, 682
file conversion utility, 683
help system, 683
hot spot editor, 683
IDE, 685
import library generation tool, 683
make facility, 684
precompiled headers, 683
reducing storage requirements, 682
source code profiler, 683
Turbo Debugger, 683
UAE monitor, 683
window-monitoring facility, 683
Workshop program, 682

bounds, array, 648
break keyword, 8
breakpoints

memory, 655
program, 655

Advanced C

744

bsearch() function, 384, 517, 527
bsort() function, 384
BTREE.C program, 395-415
buffers, 90
BufferSize parameter, 536
bugs

automatic variables, 644
global variables, 644
improper array bounds, 648
macro side effects, 644
misused operators, 643
misused pointers, 649
operator precedence, 645-648
order of evaluation, 649
unititialized variables, 643
variable sizes and types, 645

building programs, 181
byDecimalPlace member, 473
bYear variable, 470
byLength member, 473
bytes, 143

deleted flag, 473
record status, 473
redundant, 670

C

c field, 607-608, 615
C functions, calling, 450

from assembly, 451, 455
from FORTRAN, 462
from Pascal, 462

C language
calling other languages from, 443,

449-450
assembly, 447
FORTRAN, 449-450

compilers, see compilers
portability, 4
power of, 4
routine types, 437
standards, 3

C with classes, see C++ language
C++ language, 695

classes, 714-715
declaring variables, 704-705
default parameter values, 706
overloading functions, 701-702
reference variables, 710
return values, 711

C/C++ compiler, 686-690
debugger, 687
DIALOG, 687
hot spot editor, 687
IDE, 687, 690
IMAGEDIT, 687
import library generation tool, 687
make facility, 688
online help system, 687
precompiled headers, 687
source code profiler, 687
SPY, 687
UAE monitor, 687

C_TIME category, 572
CALLASM.ASM program, 439-440
calling

C functions, 450
from assembly, 451, 455
from FORTRAN, 462
from Pascal, 462

conventions, 671
other languages

fromœ#r,
21, 508

CHAR_MAX identifier, 21-22, 508

Index

745

C C
CC
C

C
C
C CC

CHAR_MIN identifier, 21, 508
character

arrays, 56-58, 74-75
constants, 26
literals, 623
string constants, 26

Character parameter, 547-551
CHARACTER_FIELD identifier, 472
characterize operator (#@), 623
characters

\n newline, 29
ASCII, 680
column definition, 472-473
multibyte, 517
newline, 251
whitespace, 550

chChar parameter, 558, 578, 586,
597-598

cin stream, 698
classes, 714-715
clearerr() function, 269, 528
Clipper compiler, 468
clock() function, 529
close() function, 279
code

MS-DOS function, 456-461
segments, 670
source profilers, 672
version, 470
writing in multiple languages,

435-436
Code Builder compiler, 659
Codeview debugger, 656
column definition

characters, 472-473
records, 471

combining languages, 435-436

data type compatibility, 463-465
naming considerations, 465
problems, 462-463

command line arguments, 99-100
commands

DOS DEBUG, 438
DOS MODE, 301
link, 165

common subexpression optimization,
666-667

communications ports, 296-301
Compact memory model, 673
Compare parameter, 527, 566
compare() function, 326
compilers, 681

Borland C++, 682-686
configuration options, 685
EasyWin program, 682
file conversion utility, 683
help system, 683
hot spot editor, 683
IDE, 685
import library generation tool,

683
make facility, 684
precompiled headers, 683
reducing storage requirements,

682
source code profiler, 683
Turbo Debugger, 683
UAE monitor, 683
window-monitoring facility, 683
Workshop program, 682

C/C++, 686-690
debugger, 687
DIALOG, 687
hot spot editor, 687
IDE, 687, 690

Advanced C

746

IMAGEDIT, 687
import library generation tool,

687
make facility, 688
online help system, 687
precompiled headers, 687
source code profiler, 687
SPY, 687
UAE monitor, 687

Clipper, 468
Code Builder, 659
Microway NDP C/C++, 659
minimums, 5
optimization, 660-662
QuickC for Windows, 690-692

advantages, 690
disadvantages, 691-692

Watcom C/386, 438, 659, 692-694
working processes, 621
Zortech C/C++, 659

compiling
multifile programs, 164
multiple source files, 162-163

conditional preprocessor directives, 634
console I/O, 280-281, 287
const keyword, 7, 500
const modifier, 25
constants, 25

character, 26
character string, 26
DBL_DIG, 506
DBL_EPSILON, 506
DBL_MANT_DIG, 506
DBL_MAX, 506
DBL_MAX_10_EXP, 506
DBL_MAX_EXP, 506
DBL_MIN, 506

DBL_MIN_10_EXP, 506
DBL_MIN_EXP, 507
double-floating-point, 27
entering, 21
float-floating-point, 27
FLT_DIG, 507
FLT_EPSILON, 507
FLT_MANT_DIG, 507
FLT_MAX, 507
FLT_MAX_10_EXP, 507
FLT_MAX_EXP, 507
FLT_MIN, 507
FLT_MIN_10_EXP, 507
FLT_MIN_EXP, 507
FLT_RADIX, 507
FLT_ROUNDS, 507
int, 26
LDBL_DIG, 507
LDBL_EPSILON, 507
LDBL_MANT_DIG, 507
LDBL_MAX, 507
LDBL_MAX_10_EXP, 507
LDBL_MAX_EXP, 508
LDBL_MIN, 508
LDBL_MIN_10_EXP, 508
LDBL_MIN_EXP, 508
long double-floating-point, 27
long int, 26
SEEK_CUR, 515
SEEK_END, 515
SEEK_SET, 515
unsigned int, 26

constructors, 714
continue keyword, 8
_CONTROL identifier, 502
conventions, calling, 671
conversions, data type, 45

Index

747

C C
CC
C

C
C
C CC

converting
macros to strings, 622
strings, 516

Coprocessor Library (mLIBC7.LIB),
668

CopyItem() function, 395, 423
cos() function, 529
cosh() function, 530
cout stream, 698
cprintf() function, 281
cputs() function, 281
creat() function, 279
CREATEDB.C program, 209-212
creating

character literals, 623
dBASE files, 484, 493
identifiers, 499
libraries, 182
nodes, 423
root node, 420
temporary work files, 256

cscanf() function, 281
ctime() function, 530
ctype.h header file, 502-504
_CUSTNAME structure, 359

D

d field, 608, 615
data

alignment, 636
B-tree storing technique, 392-395
files, 321
objects, see variables
segments, packing, 670

data types
char, 20

conversions, 45
double, 20
float, 20
identifiers

floating-point, 22-25
int type, 21-22

int, 20
modifiers

long, 20
short, 20
unsigned, 20

databases, 467-468
DATE_FIELD identifier, 472
DB3HEADER structure, 483
dBASE, 467

accessing files, 468-473
files

creating, 484, 493
reading, 474
updating, 494
version codes, 470

interfacing with, 468
main header structure, 469-470

DBGSTRNG.C program, 652-654
DBL_DIG constant, 506
DBL_DIG identifier, 22
DBL_EPSILON constant, 506
DBL_EPSILON identifier, 23
DBL_MANT_DIG constant, 506
DBL_MANT_DIG identifier, 23
DBL_MAX constant, 506
DBL_MAX identifier, 23
DBL_MAX_10_EXP constant, 506
DBL_MAX_10_EXP identifier, 23
DBL_MAX_EXP constant, 506
DBL_MAX_EXP identifier, 23
DBL_MIN constant, 506
DBL_MIN identifier, 23

Advanced C

748

DBL_MIN_10_EXP constant, 506
DBL_MIN_10_EXP identifier, 23
DBL_MIN_EXP constant, 507
DBL_MIN_EXP identifier, 23
DBL_RADIX identifier, 23
DBL_ROUNDS identifier, 23
DBREAD.C program, 474-482
DBWRITE.C program, 484-493
de-dup, 336
DEBUG utility, 146
debuggers

Codeview, 656
QuickC for Windows, 657
services, 655-656
Turbo Debugger, 657
VIDEO, 657
see also, debugging

debugging, 641-642
alpha testing, 642
assert() macro, 650-652
beta testing, 642
bugs

automatic variables, 644
global variables, 644
improper array bounds, 648
macro side effects, 644
misused operators, 643
misused pointers, 649
operator precedence, 645-648
order of evaluation, 649
unititialized variables, 643
variable sizes and types, 645

rules, 649-650
without debuggers, 652
see also, debuggers, 655-656

decimal number system, 139-141
declarations, 30-33
declaring

arrays, 46-47
structures, 197
variables, 704

default keyword, 8
#define directive, 625
DEFINE.H header file, 179
defined() operator, 624
defines.h header file, 167
defining

arrays, 47-48
macros, 625
structures, 191

definitions, 33-35
Delete() function, 395
deleted flag byte, 473
DeleteItem() function, 395, 417,

426-428
DeleteRecord() function, 394
delimiters

“, 166
<, 166
>, 166

DEMO.FOR program, 441
denominator parameter, 531, 552
dependency lines, 184
destructors, 714
difftime() function, 531
_DIGIT identifier, 502
dIntegral parameter, 562
direct port I/O, 288-289
direct video I/O, 667
directives

#define, 625
#elif, 633
#else, 632
#endif, 633-634
#error, 628
#if, 629-630

Index

749

C C
CC
C

C
C
C CC

#ifdef, 630-631
#ifndef, 631-632
#include, 629
#line, 634-635
#pragma, 635
#undef, 637
conditional preprocessor, 634

directory file attribute, 250
disk files

fixed-field, 392
indexes in, 390

disk-based lists, 346
displaying records, 386
div() function, 531
DLL register, 301
DLM register, 301
do keyword, 8
DOS DEBUG command, 438
DOS MODE command, 301
DOS Protected Mode Interface

(DPMI), 658
DOS SORT utility, 322
DOS/4G product, 658
double

data type, 20
keyword, 8
linked lists, 346-347

double-floating-point constants, 27
DPMI (DOS Protected Mode

Interface), 658
DUMP.C program, 146-150
dup() function, 279
dup2() function, 279
dValue parameter, 523-524, 528-533,

536, 541, 554, 562, 574-576,
594-595

dValue1 parameter, 525
dynamic memory, 345

dynamic memory allocation, 227

E

e and E fields, 608-609, 617
E2BIG value, 504
EACCES value, 504
EAGAIN value, 505
EasyWin program, 682
EBADF value, 505
EDEADLOCK value, 505
EDLINE.C program, 257-266
EDOM value, 505
EEXIST value, 505
efficiency, program, 657-658
EINVAL value, 505
ElementSize parameter, 540, 544, 566
#elif directive, 633
#else directive, 632
else keyword, 8
EMFILE value, 505
Emulator Library (mLIBCE.LIB), 668
encapsulation, 696-697
#endif directive, 633-634
endtime parameter, 531
ENOENT value, 505
ENOEXEC value, 505
ENOMEM value, 505
ENOSPC value, 505
entering constants, 21
enum keyword, 8
environments

operating, 162
protected-mode, 231

eof() function, 279
equality operator (==), 643
ERANGE value, 505
errno() function, 504

Advanced C

750

errno.h header file, 504-506
#error directive, 628
EXAMP1.CPP program, 700
EXAMP2.CPP program, 702-704
EXAMP3.CPP program, 705
EXAMP4.CPP program, 706-709
EXAMP5.CPP program, 710-711
EXAMP6.CPP program, 712-713
EXAMP7.CPP program, 715-718
excluding portions of the source code,

629
EXDEV value, 505
execution stepping, 656
exit() function, 532
exp() function, 532
extern keyword, 8, 40, 164
external

names, 6
variables, 40, 171

F

f fields, 609-610, 617
fabs() function, 533
families of functions

printf(), 606-614
scanf(), 614-619

far identifier, 500
far pointers, 17
fclose() function, 269, 533
fcloseall() function, 269
fdopen() function, 268-269, 279
feof() function, 269, 533
ferror() function, 269, 534
fflush() function, 269, 534
fgetc() function, 269, 535
fgetchar() function, 269
fgetpos() function, 269, 535

fgets() function, 269, 536
field definition records, 471
fields

[...], 619
bit, 155-158

in structures, 206-208
storing, 208

c, 607-608, 615
d, 608, 615
e and E, 608-609, 617
f, 609-610, 617
flag, 471
g and G, 610, 617
i, 608, 616-617
n, 610, 618
o, 610-611, 615
p and P, 611, 618
s, 612, 618
szColumnName, 472
u, 612, 617
x and X, 613-616

file opening mode, 538
filenames

input, 112
output, 112

fileno() function, 269
FILEONE.C program, 6
filepointer parameter, 529
files

attributes
archive, 250
directory, 250
hidden, 250
normal, 250
read only, 250
system, 250

binary, 251-252
data, 321

Index

751

C C
CC
C

C
C
C CC

dBASE
accessing, 468-473
creating, 484, 493
reading, 474
updating, 494
version codes, 470

disk
fixed-field, 392
indexes in, 390

handles, 268-271, 280
header, 497, 629

assert.h, 501
ctype.h, 502-504
DEFINE.H, 179
defines.h, 167
errno.h, 504-506
float.h, 506-508
io.h, 508
limits.h, 508-509
locale.h, 509-510
malloc.h, 510
math.h, 510
memory.h, 511
precompiled, 671
PROTOTYP.H, 170, 180-181
search.h, 511
signal.h, 512
stdarg.h, 513
stddef.h, 515
stdio.h, 515
stdlib.h, 516-517
string.h, 517
time.h, 518
TWOFILE.H, 178
TYPEDEF.H, 168-169, 180
varargs.h, 518
VARS.H, 169-170, 180

I/O, 250-251

include, 167
defines.h header file, 167
prototyp.h header file, 170
typedef.h header file, 168-169
vars.h header file, 169-170

indexed, 321, 367, 383
MAKE, 182-184
map, 165
merging, 321, 329, 343-344
OBJ, 165
purging, 321, 336, 341-344
sorting, 322, 343-344
source, 161
stdaux, 273
stderr, 272-273
stdin, 271
stdout, 272
stdprn, 274
stream, 268
text, 251-252
work, temporary, 256, 267-268

FILETWO.C program, 6
fixed-field disk files, 392
FIXSTR.C program, 92-94
flags

blank, 81
fields, 471
printf() family of functions, 607

float data type, 20
float keyword, 8
float.h header file, 506-508
FLOAT_FIELD identifier, 473
floating-point constants, 27
floating-point optimization, 667-669
floor() function, 536
FLT_DIG constant, 507
FLT_DIG identifier, 23
FLT_EPSILON constant, 507

Advanced C

752

FLT_EPSILON identifier, 23
FLT_MANT_DIG constant, 507
FLT_MANT_DIG identifier, 24
FLT_MAX constant, 507
FLT_MAX identifier, 24
FLT_MAX_10_EXP constant, 507
FLT_MAX_10_EXP identifier, 24
FLT_MAX_EXP constant, 507
FLT_MAX_EXP identifier, 24
FLT_MIN constant, 507
FLT_MIN identifier, 24
FLT_MIN_10_EXP constant, 507
FLT_MIN_10_EXP identifier, 24
FLT_MIN_EXP constant, 507
FLT_MIN_EXP identifier, 24
FLT_RADIX constant, 507
FLT_RADIX identifier, 24
FLT_ROUNDS constant, 507
FLT_ROUNDS identifier, 24
flushall() function, 269
fmod() function, 537
fopen() function, 268-269, 537
for keyword, 9
format codes, 582-583
format specifiers, 614
_ _fortran keyword, 450
FORTRAN keyword, 7
FORTRAN language, 435, 441

calling C functions, 462
calling from C, 449-450
routine types, 437

fprintf() function, 538
fputc() function, 269, 538
fputchar() function, 269
fputs() function, 269, 539
fread() function, 269, 539
free() function, 235-237, 540

Microsoft C, 235

rules, 236
freopen() function, 268-269, 540
frexp() function, 541
fscanf() function, 269, 542
fseek() function, 269, 542
fsetpos() function, 269, 543
ftell() function, 256, 269, 385, 544
function/header cross reference table,

723-740
function codes, MS-DOS, 456-461
functions

_fsopen(), 269
_tolower(), 503
_toupper(), 503
abort(), 517, 522
abs(), 522
acos(), 523
AddRecord(), 394
asctime(), 523
asin(), 524
assert(), 524
atan(), 524
atan2(), 525
atexit(), 517, 525
atof(), 526
atoi(), 526
atol(), 526
Average(), 32
bsearch(), 384, 517, 527
bsort(), 384
calloc(), 232-235, 483, 528
case in, 6
ceil(), 528
cgets(), 281
clearerr(), 269, 528
clock(), 529
close(), 279
compare(), 326

Index

753

C C
CC
C

C
C
C CC

CopyItem(), 395, 423
cos(), 529
cosh(), 530
cprintf(), 281
cputs(), 281
creat(), 279
cscanf(), 281
ctime(), 530
Delete(), 395
DeleteItem(), 395, 417, 426-428
DeleteRecord(), 394
difftime(), 531
div(), 531
dup(), 279
dup2(), 279
eof(), 279
errno(), 504
exit(), 532
exp(), 532
fabs(), 533
fclose(), 269, 533
fcloseall(), 269
fdopen(), 268-269, 279
feof(), 269, 533
ferror(), 269, 534
fflush(), 269, 534
fgetc(), 269, 535
fgetchar(), 269
fgetpos(), 269, 535
fgets(), 269, 536
fileno(), 269
floor(), 536
flushall(), 269
fmod(), 537
fopen(), 268-269, 537
fprintf(), 538
fputc(), 269, 538
fputchar(), 269

fputs(), 269, 539
fread(), 269, 539
free(), 235-237, 540

Microsoft C, 235
rules, 236

freopen(), 268-269, 540
frexp(), 541
fscanf(), 269, 542
fseek(), 269, 542
fsetpos(), 269, 543
ftell(), 256, 269, 385, 544
fwrite(), 270, 544
getc(), 270, 545
getch(), 132, 280-281
getchar(), 270-271, 545
getche(), 281
gets(), 270-271, 327, 546
getw(), 270
GiveHelp(), 110
gmtime(), 546
halloc(), 229
headers, 14
inp(), 288
input/output, 90
inpw(), 288
Insert(), 395, 420-421
intrinsic, 664-666, 672
isalnum(), 503, 547
isalpha(), 502, 547
iscntrl(), 503, 547
isdigit(), 502, 548
isgraph(), 503, 548
islower(), 502, 549
isprint(), 503, 549
ispunct(), 502, 549
isspace(), 502, 550
isupper(), 502, 551
isxdigit(), 502, 551

Advanced C

754

kbhit(), 281
labs(), 551
ldexp(), 552
ldiv(), 552
localeconv(), 510, 553
localtime(), 553
log(), 554
log10(), 554
longjmp(), 512, 554
lseek(), 279
main(), 100
malloc(), 228-232, 556

Microsoft C, 228
rules, 228

maximum(), 445, 449
mblen(), 556
mbstowcs(), 557
mbtowc(), 557
memchr(), 511, 558
memcmp(), 511, 558
memcpy(), 511, 559
memmove(), 511, 560
memset(), 511, 229, 561
mktime(), 561
modf(), 562
modifying, 428
NewItem(), 395, 423
NumberWords(), 78, 81
offsetof(), 562
open(), 279
outp(), 288
OutputDebugString(), 655
outpw(), 288
overloading, 701-702
parameters, 164, 574
perror(), 563
pointers, 114-115, 119-120
pow(), 564

printf(), 270-272, 564
PrintHelp(), 395
PrintTree(), 395
prototypes, 164, 497-499, 723
PullDown(), 133
putc(), 270, 564
putch(), 281
putchar(), 270-272, 565
puts(), 270-272, 565
putw(), 270
qsort(), 114, 246, 322, 517, 566
raise(), 566
rand(), 516, 567
read(), 279
realloc(), 237-238, 243-244, 567
remove(), 267, 568
rename(), 568
rewind(), 270, 568
rmtmp(), 270
scanf(), 270-271, 569
Search(), 395, 418-419
SearchAndAdd(), 395, 417-419
SearchRecord(), 395
setbuf(), 270, 569
setjmp(), 512, 570
setlocale(), 509, 571
setvbuf(), 270, 572
signal(), 573
sin(), 574
sinh(), 575
sopen(), 279
sprint(), 92
sprintf(), 270, 575
sqrt(), 576
srand(), 516, 576
sscanf(), 270, 576
strcat(), 577

Index

755

C C
CC
C

C
C
C CC

strchr(), 577
strcmp(), 75, 329, 578
strcoll(), 579
strcpy(), 29, 580
strcspn(), 580
strerror(), 581
strftime(), 581-583
stricmp(), 329
string, 90
strlen(), 583
strncat(), 584
strncmp(), 584
strncpy(), 585
strpbrk(), 586
strrchr(), 586
strspn(), 587
strstr(), 588
strtod(), 516, 588
strtok(), 589
strtol(), 516, 590
strtoul(), 516, 591
strxfrm(), 592
switch(), 136
system(), 516, 593
tan(), 594
tanh(), 594
tell(), 279
tempnam(), 270
time(), 595
tmpfile(), 256, 268-270, 596
tmpnam(), 256, 266, 270, 596
tolower(), 503, 597
toupper(), 503, 597
TreePrint(), 395, 424
UnderFlow(), 395, 427
ungetc(), 270, 597
ungetch(), 281
unlink(), 267

va_, 600
va_arg(), 598
va_start(), 601
vfprintf(), 271, 601
vprintf(), 271-272, 602
vsprintf(), 271, 604
wcstombs(), 605
wctomb(), 606
write(), 279

FUNPTR.C program, 115-117
fwrite() function, 270, 544

G

g and G fields, 610, 617
getc() function, 270, 545
getch() function, 132, 280-281
getchar() function, 270-271, 545
getche() function, 281
gets() function, 270-271, 327, 546
getw() function, 270
GiveHelp() function, 110
global

memory, 247
scope, 31
variables, 644

gmtime() function, 546
goto keyword, 9

H

halloc() function, 229
header/function cross reference table,

723-740
header files, 497, 629

assert.h, 501

Advanced C

756

ctype.h, 502-504
DEFINE.H, 179
defines.h, 167
errno.h, 504-506
float.h, 506-508
io.h, 508
limits.h, 508-509
locale.h, 509-510
malloc.h, 510
math.h, 510
memory.h, 511
precompiled, 671
PROTOTYP.H, 170, 180-181
search.h, 511
signal.h, 512
stdarg.h, 513
stddef.h, 515
stdio.h, 515
stdlib.h, 516

communications with operating
system, 516-517

integer math, 517
memory allocation, 516
multibyte characters, 517
random numbers, 516
searches, 517
string conversion, 516

string.h, 517
time.h, 518
TWOFILE.H, 178
TYPEDEF.H, 168-169, 180
varargs.h, 518
VARS.H, 169-170, 180

headers
block comments, 16
functions, 14

HELLO.BAS program, 443
HELLO.C program, 14-15

HELLO.PAS program, 442
HELLOCPP.CPP program, 697
_HEX identifier, 502
hex number system, 142-144
hidden file attribute, 250
hierarchies, 697
high-level I/O, 278
Huge memory model, 674
Hungarian notation, 13

I

i field, 608, 616-617
I/O (input/output), 249

base address, 296
console, 280-281, 287
direct port, 288-289
files, 250-251
functions, 90
high-level, 278
low-level, 278-280
port, 280-281, 287
video direct, 667

identifiers
_ _FILE_ _, 500
_ _LINE_ _, 500
_BLANK, 502
CHAR_BIT, 21, 508
CHAR_MAX, 21-22, 508
CHAR_MIN, 21, 508
CHARACTER_FIELD, 472
const, 500
_CONTROL, 502
creating, 499

Index

757

C C
CC
C

C
C
C CC

DATE_FIELD, 472
DBL_DIG, 22
DBL_EPSILON, 23
DBL_MANT_DIG, 23
DBL_MAX, 23
DBL_MAX_10_EXP, 23
DBL_MAX_EXP, 23
DBL_MIN, 23
DBL_MIN_10_EXP, 23
DBL_MIN_EXP, 23
DBL_RADIX, 23
DBL_ROUNDS, 23
_DIGIT, 502
far, 500
FLOAT_FIELD, 473
FLT_DIG, 23
FLT_EPSILON, 23
FLT_MANT_DIG, 24
FLT_MAX, 24
FLT_MAX_10_EXP, 24
FLT_MAX_EXP, 24
FLT_MIN, 24
FLT_MIN_10_EXP, 24
FLT_MIN_EXP, 24
FLT_RADIX, 24
FLT_ROUNDS, 24
_HEX, 502
INT_MAX, 22, 509
INT_MIN, 22, 509
L_tmpnam, 266
LC_ALL, 509
LC_COLLATE, 509
LC_CTYPE, 509
LC_MONETARY, 509
LC_NUMERIC, 510
LC_TIME, 510
LDBL_DIG, 24
LDBL_EPSILON, 24

LDBL_MANT_DIG, 24
LDBL_MAX, 24
LDBL_MAX_10_EXP, 25
LDBL_MAX_EXP, 25
LDBL_MIN, 25
LDBL_MIN_10_EXP, 25
LDBL_MIN_EXP, 25
LDBL_RADIX, 25
LDBL_ROUNDS, 25
LOGICAL_FIELD, 472
LONG_MAX, 22, 509
LONG_MIN, 22, 509
_LOWER, 502
MB_LEN_MAX, 22, 508
MEMO_FIELD, 472
NDEBUG, 501
near, 500
NUMERIC_FIELD, 472
PICTURE_FIELD, 473
_PUNCT, 502
SCHAR_MAX, 21, 508
SCHAR_MIN, 21, 508
SHRT_MAX, 22, 509
SHRT_MIN, 22, 508
size_t, 500
_SPACE, 502
string, 129
testing, 630, 631
UCHAR_MAX, 21, 508
UINT_MAX, 22, 509
ULONG_MAX, 22, 509
_UPPER, 502
USHRT_MAX, 22, 509
volatile, 500
see also, keywords, 7
see also, macros, 621

#if directive, 629-630
if keyword, 9

Advanced C

758

#ifdef directive, 630-631
#ifndef directive, 631-632
in-memory data object, see indexed

files, 321
#include directive, 629
include files, see header files
incrementing pointers, 67
INDEX.C program, 368-382
indexed files, 321, 367, 383
indexes

array, saving, 389
in disk files, 390

indexing
arrays, 48, 52-54
pointers, 89

indirection, 65, 69
initializing

single-dimensional arrays, 52
structures, 192
variables, 15, 35-36

inline assembly, 669
inp() function, 288
input filename, 112
input/output (I/O), 249

base address, 296
console, 280-281, 287
direct port, 288-289
files, 250-251
functions, 90
high-level, 278
low-level, 278-280
port, 280-281, 287
video direct, 667

inpw() function, 288
Insert() function, 395, 420-421
insertion operators, 698

instructions
80x86 set, 671-672
Int 21, 455

Int 21 instruction, 455
int constants, 26
int data type, 20
int keyword, 9
INT_MAX identifier, 22, 509
INT_MIN identifier, 22, 509
integers

overflow, 31
storing, 151-154
variables, 30

Intel Code Builder product, 658
interface cards, 288
interfaces

DPMI, 658
user, 162

interfacing with dBASE, 468
interrupt enable register, 300
interrupt identifier register, 300
intrinsic functions, 664-666, 672
io.h header file, 508
IOFBF mode, 573
IOLBF mode, 573
IONBF mode, 573
isalnum() function, 503, 547
isalnum(_c) macro, 503
isalpha() function, 502, 547
isalpha(_c) macro, 503
iscntrl() function, 503, 547
iscntrl(_c) macro, 503
isdigit() function, 502, 548
isdigit(_c) macro, 503
isgraph() function, 503, 548
isgraph(_c) macro, 503
islower() function, 502, 549

Index

759

C C
CC
C

C
C
C CC

islower(_c) macro, 503
isprint() function, 503, 549
isprint(_c) macro, 503
ispunct() function, 502, 549
ispunct(_c) macro, 503
isspace() function, 502, 550
isspace(_c) macro, 503
isupper() function, 502, 551
isupper(_c) macro, 503
isxdigit() function, 502, 551
isxdigit(_c) macro, 503
_item structure, 416

J—K

jumpbuffer parameter, 555, 570
JUSTIFY.C program, 103-109,

136-137

kbhit() function, 281
key parameter, 527
keywords

auto, 7
break, 8
case, 8
char, 8
const, 7
continue, 8
default, 8
do, 8
double, 8
else, 8
enum, 8
extern, 8, 40, 164
float, 8
for, 9

FORTRAN, 7
_ _fortran, 450
goto, 9
if, 9
int, 9
long, 9
PASCAL, 7
register, 9
reserved, 7-10
return, 9
short, 9
signed, 7
sizeof, 9
static, 9
struct, 9, 191-194
switch, 10
typedef, 10, 208
union, 10
unsigned, 10
void, 10
volatile, 7
while, 10

L

L_tmpnam identifier, 266
labs() function, 551
languages

assembly, 438
calling C functions, 451, 455
calling from C, 447
inline, 669
routine types, 437

BASIC, 437, 443
C

calling other languages from, 443,
447-450

Advanced C

760

compilers, see compilers
portability, 4
power of, 4
routine types, 437
standards, 3

C++, 695
classes, 714-715
declaring variables, 704
default parameter values, 706
overloading functions, 701-702
reference variables, 710
return values, 711

combining, 435-436
data type compatibility, 463-465
naming considerations, 465
problems, 462-463

FORTRAN, 435, 441
calling C functions, 462
calling from C, 449-450
routine types, 437

Pascal, 442
calling C functions, 462
calling from C, 449-450
routine types, 437

Large memory model, 674
LC_ALL category, 572
LC_ALL identifier, 509
LC_COLLATE category, 572
LC_COLLATE identifier, 509
LC_CTYPE category, 572
LC_CTYPE identifier, 509
LC_MONETARY category, 572
LC_MONETARY identifier, 509
LC_NUMERIC category, 572
LC_NUMERIC identifier, 510
LC_TIME identifier, 510
LDBL_DIG constant, 507

LDBL_DIG identifier, 24
LDBL_EPSILON constant, 507
LDBL_EPSILON identifier, 24
LDBL_MANT_DIG constant, 507
LDBL_MANT_DIG identifier, 24
LDBL_MAX constant, 507
LDBL_MAX identifier, 24
LDBL_MAX_10_EXP constant, 507
LDBL_MAX_10_EXP identifier, 25
LDBL_MAX_EXP constant, 508
LDBL_MAX_EXP identifier, 25
LDBL_MIN constant, 508
LDBL_MIN identifier, 25
LDBL_MIN_10_EXP constant, 508
LDBL_MIN_10_EXP identifier, 25
LDBL_MIN_EXP constant, 508
LDBL_MIN_EXP identifier, 25
LDBL_RADIX identifier, 25
LDBL_ROUNDS identifier, 25
ldexp() function, 552
ldiv() function, 552
left side, 393
lFieldPointer member, 473
LIB utility, 182
libraries, 165

creating, 182
mLIBC7.LIB, 668
mLIBCA.LIB, 668
mLIBCE.LIB, 668
reserved names, 10-11

LIFETIME.C program, 40-41
limits.h header file, 508-509
line control register, 301
line dependency, 184
#line directive, 634-635
line numbers, modifying, 634
line status register, 301

Index

761

C C
CC
C

C
C
C CC

linear searches, 345, 367, 383-384
link commands, 165
linked lists, 344-345

disk-based, 346
double, 346-347
dynamic memory, 345
linear searches, 367

linking
for performance, 670-671
multifile programs, 164-165
multiple source files, 162-163

LINKLIST.C program, 347-359
list pointers, 346
Listing 1.1. External name lengths for

FILEONE.C and FILETWO.C, 6
Listing 1.2. HELLO.C, 14-15
Listing 1.3. A typical source file header

block, 16-17
Listing 2.1. BADSTR.C, 27-29
Listing 2.2. An example of a global

variable, in a single source file, 32
Listing 2.3. An example of a global

variable, in three source files, 33-34
Listing 2.4. SCOPE.C, 37
Listing 2.5. SCOPE1.C, 38-39
Listing 2.6. LIFETIME.C, 40-41
Listing 2.7. CASTS.C, 42-44
Listing 2.8. ARRAY1.C, 49-51
Listing 2.9. ARRAY2.C, 55-56
Listing 2.10. REPEAT.C, 59-60
Listing 3.1. POINTERS.C, 69-71
Listing 3.2. The output from

POINTERS.C, 72
Listing 3.3. ADDER.C, 72-74
Listing 3.4. NUMWORD.C, 76-77
Listing 3.5. NUMWORD1.C, 79-81
Listing 3.6. NUMWORD3.COD, the

assembly listing for the pointer version

of NumberWords(), 82-85
Listing 3.7. NUMWORD4.COD, the

assembly listing for the array indexed
version of NumberWords(), 85-89

Listing 3.8. FIXSTR.C, 92-94
Listing 3.9. RAGSTR.C, 95-96
Listing 4.1. MAINARGS.C, 101-102
Listing 4.2. JUSTIFY.C, 103-109
Listing 4.3. FUNPTR.C, 115-117
Listing 4.4.MENU1.C, 121-129
Listing 4.5. State machine from

JUSTIFY.C, 136-137
Listing 5.1. DUMP.C, 146-150
Listing 5.2. WCHBYTE.C, 152-153
Listing 6.1. An example of a main

include file for a large project, 167
Listing 6.2. An example of the defines.h

include file, 167
Listing 6.3. An example of the

typedef.h include file, 168-169
Listing 6.4. An example of the vars.h

include file, 169-170
Listing 6.5. An example of the

prototyp.h include file, 170
Listing 6.6. TWOFILE1.C, 171-175
Listing 6.7. TWOFILE2.C, 176-178
Listing 6.8. TWOFILE.H, 178
Listing 6.9. DEFINE.H, 179
Listing 6.10. TYPEDEF.H, 180
Listing 6.11. VARS.H, 180
Listing 6.12. PROTOTYP.H, 180-181
Listing 6.13. TWOFILE.MAK, a

MAKE file to compile TWOFILE,
183

Listing 6.14. TWOFILE, an advanced
MAKE file for the TWOFILE
program, 184-186

Listing 7.1. STRUCT1.C, 193-194

Advanced C

762

Listing 7.2. STRUCT2.C, 195-197
Listing 7.3. STRUCTA.C, 198-199
Listing 7.4. STRUCT3.C, 200-202
Listing 7.5. STRUCT4.C, 203-205
Listing 7.6. CREATEDB.C, 209-212
Listing 7.7. OFFSETOF.C, 213-215
Listing 7.8. STRUPTR.C, 216-219
Listing 7.9. UNION.C, 220-225
Listing 8.1. MALLOC2.C, 230-231
Listing 8.2. CALLOC1.C, 233-235
Listing 8.3. CDB.C, 238-243
Listing 8.4. SORTALOC.C, 244-246
Listing 9.1. TEXTFILE.C, 252-256
Listing 9.2. EDLINE.C, 257-266
Listing 9.3. STDAUX.C, 273-274
Listing 9.4. STDPRN.C, 275-276
Listing 9.5. STDFILE.C, 276-278
Listing 9.6. ARCADE.C, 282-287
Listing 9.7. PRNPORT.C, 289-295
Listing 9.8. SENDCOMM.C, 301-308
Listing 9.9. READCOMM.C, 309-317
Listing 10.1. SORTFILE.C, 323-326
Listing 10.2. MERGFILE.C, 330-334
Listing 10.3. PURGFILE.C, 336-341
Listing 10.4. LINKLIST.C, 347-359
Listing 10.5. INDEX.C, 368-382
Listing 10.6. BTREE.C, 395-415
Listing 11.1. CALLASM.ASM,

439-440
Listing 11.2. DEMO.FOR, 441
Listing 11.3. HELLO.PAS, 442
Listing 11.4. HELLO.BAS, 443
Listing 11.5. CALLNOTC.C, 443-446
Listing 11.6. MAXIMUM.ASM,

447-448
Listing 11.7. The maximum() function

in FORTRAN, 449
Listing 11.8. MAXIMUM.C, 450-451

Listing 11.9. CALLNOTC.ASM,
452-455

Listing 12.1. DBREAD.C, 474-482
Listing 12.2. DBWRITE.C, 484-493
Listing 13.1. VARGS.C, 513-515
Listing 15.1. MACROS.C, 625-628
Listing 16.1. ASSERT.C, 651
Listing 16.2. DBGSTRNG.C, 652-654
Listing C.1. HELLOCPP.CPP—A first

C++ program, 697
Listing C.2. EXAMP1.CPP—A C++

program with both input and output,
700

Listing C.3. EXAMP2.CPP—Program
showing C++ function overloading,
702-704

Listing C.4. EXAMP3.CPP—Program
showing variable declaration in a
statement, 705

Listing C.5. EXAMP4.CPP—Program
showing default values for arguments,
706-709

Listing C.6. EXAMP5.CPP—Program
showing a reference variable, 710-711

Listing C.7. EXAMP6.CPP—Program
showing a reference variable, 712-713

Listing C.8. EXAMP7.CPP—Program
showing C++ classes, 715-718

lists, linked, 344-345
disk-based, 346
double, 346-347
dynamic memory, 345
linear searches, 367

literals, character, 623
lNumberRecords variable, 471
local

memory, 247
scope, 31

Index

763

C C
CC
C

C
C
C CC

Locale parameter, 571
locale.h header file, 509-510
localeconv() function, 510, 553
localtime() function, 553
lOffset parameter, 542
log() function, 554
log10() function, 554
LOGICAL_FIELD identifier, 472
long double-floating-point constants,

27
long int constants, 26
long keyword, 9
long modifier, 20
LONG_MAX identifier, 22, 509
LONG_MIN identifier, 22, 509
longjmp() function, 512, 554
loop optimization, 663-664
low-level I/O, 278-280
_LOWER identifier, 502
LSB (baud rate divisor register), 300
lseek() function, 279
lValue parameter, 552

M

machines, state, 135-136
macro continuation operator (\), 622
macros

_ _DATE _ _, 637
_ _FILE _ _, 638
_ _isascii(_c), 504
_ _LINE _ _, 638
_ _STDC _ _, 638
_ _TIME _ _, 637
_ _toascii(_c), 504
_tolower(_c), 504
_toupper(_c), 504
assert(), 501, 650-652

converting to strings, 622
defining, 625
isalnum(_c), 503
isalpha(_c), 503
iscntrl(_c), 503
isdigit(_c), 503
isgraph(_c), 503
islower(_c), 503
isprint(_c), 503
ispunct(_c), 503
isspace(_c), 503
isupper(_c), 503
isxdigit(_c), 503
multiple line, 622
NULL, 638
offsetof(), 213-216, 515, 638
redefining, 637
side effects, 644
tolower(_c), 504
toupper(_c), 504
see also, identifiers

MACROS.C program, 625-628
main() function, 100
MAINARGS.C program, 101-102
MAKE files, 182-184
malloc() function, 228-232, 556

Microsoft C, 228
rules, 228

malloc.h header file, 510
MALLOC2.C program, 230-231
managers, object library, 181-182
map files, 165
math.h header file, 510
maximum() function, 445, 449
MAXIMUM.ASM program, 447-448
MAXIMUM.C program, 450-451
MB_LEN_MAX identifier, 22, 508
mblen() function, 556

Advanced C

764

mbstowcs() function, 557
mbtowc() function, 557
Medium memory model, 673
Member parameter, 563
members

byDecimalPlace, 473
byLength, 473
lFieldPointer, 473
nFirstRecordOffset, 484

memchr() function, 511, 558
memcmp() function, 511, 558
memcpy() function, 511, 559
memmove() function, 511, 560
MEMO_FIELD identifier, 472
memory

allocation, 516
breakpoints, 655
dynamic, 227, 345
global, 247
local, 247
models, 17-18, 673

Compact, 673
Huge, 674
Large, 674
Medium, 673
Small, 673
Tiny, 673

memory modification, 655
memory.h header file, 511
memset() function, 229, 511, 561
MENU1.C program, 121-129
menus, relationship to pointers,

120-121
MERGFILE.C program, 330-334
merging files, 321, 329, 343-344
message pragma, 635
Microsoft C

calloc() function, 232

free() function, 235
malloc() function, 228
realloc() function, 237-238

Microsoft C/C++ compiler,
see C/C++ compiler

Microsoft Windows 3.1, 658
Microway NDP C/C++ compiler, 659
mktime() function, 561
mLIBC7.LIB (Coprocessor Library),

668
mLIBCA.LIB (Alternate Math Package

Library), 668
mLIBCE.LIB (Emulator Library), 668
Mode parameter, 537
models, memory, 17-18, 673

Compact, 673
Huge, 674
Large, 674
Medium, 673
Small, 673
Tiny, 673

modem control register, 301
MODEM status register, 301
modes

file opening, 538
IOFBF, 573
IOLBF, 573
IONBF, 573

modf() function, 562
modification

memory, 655
program, 656

modifiers
const, 25
data type

long, 20
short, 20

Index

765

C C
CC
C

C
C
C CC

unsigned, 20
static, 40

modifying
functions, 428
line numbers, 634

modules, object, 181
MS-DOS function codes, 456-461
MSB (baud rate divisor register), 300
multibyte characters, 517
multifile programs

compiling, 164
linking, 164-165

multiline macros, 622

N

n field, 618
n fields, 610
names

array, 68
external, 6
reserved library, 10-11

nBase parameter, 591-592
nBufferSize parameter, 581
nByte parameter, 561
nChar parameter, 565
nCharacter parameter, 539
nclude files, see header files, 497
nColumnCount variable, 483
nConditional parameter, 524
nCount parameter, 528, 557, 584-585,

605
nCurrentParameter variable, 112
NDEBUG identifier, 501
near identifier, 500
near pointers, 17
nError parameter, 581
nested testing, 633

NewItem() function, 395, 423
newline character, 251
nException parameter, 566
nExitCode parameter, 532
nExponent parameter, 541
nFirstRecordOffset member, 484
nFirstRecordOffset variable, 471
nLength parameter, 558-561, 593
nLineWidth variable, 113
nMode parameter, 572
nNewSize parameter, 567
nodes, 393

creating, 423
root, 393, 420

nOrigin parameter, 542
normal file attribute, 250
notation, Hungarian, 13
nRecordLength variable, 471
nReturnCode parameter, 555
nSeed parameter, 576
nSignal parameter, 574
nSize parameter, 528, 572
NULL macro, 638
NULL pointers, 345
num parameter, 527
number systems

binary, 141-142
decimal, 139-141
hex, 142-144
octal, 144-145

NumberElements parameter, 540, 544,
566

numbers
line, modifying, 634
random, 516

NumberWords() function, 78, 81
numerator parameter, 531, 552
NUMERIC_FIELD identifier, 472

Advanced C

766

NUMWORD.C program, 76-77
NUMWORD1.C program, 79-81
NUMWORD3.COD program, 82-85
NUMWORD4.COD program, 85-89
nValue parameter, 522

O

o fields, 610-611, 615
OBJ files, 165
object library managers, 181-182
object modules, 181
object-oriented programming (OOP),

696
abstraction, 696
encapsulation, 696-697
hierarchies, 697

octal number system, 144-145
offsetof() function, 562
offsetof() macro, 213-216, 515, 638
OFFSETOF.C program, 213-215
offsets, 17
one’s complement operator (~), 157
OOP (object-oriented programming),

696
abstraction, 696
encapsulation, 696
hierarchies, 697

open() function, 279
OpenFile parameter, 533-545, 565,

569, 572, 598, 601
operating environments, 162
operators

(stringsize), 622-623
(token paste), 624
#@ (characterize), 623

&, 66, 154
*, 69
<<, 154
=, 74
= (assignment), 643
== (equality), 643
>>, 154
\, 622
^, 154
|, 154
~, 154
bit, 154-155
defined(), 624
insertion, 698
precedence, 645-648

optimization
common subexpression, 666-667
compiler, 660-662
floating-point, 667-669
loop, 663-664

options
/Fa, 437
/Fc, 437
/Fl, 437
/FPa, 668
/FPc, 668
/FPc87, 668
/FPi, 669
/FPi87, 669
/S, 437

origin points
SEEK_CUR, 543
SEEK_END, 543
SEEK_SET, 543

OS/2 V2 product, 658
OS/386 product, 658

Index

767

C C
CC
C

C
C
C CC

outp() function, 288
output filename, 112
OutputDebugString() function, 655
outpw() function, 288
overflow, integer, 31
overlay programs, 670
overloading functions, 701-702

P

p and P fields, 611, 618
pack pragma, 636
packing

code segments, 670
data segments, 670
redundant bytes, 670

_page structure, 416
param parameter, 598, 601
parameters, 498

* argv[], 100
* envp[], 100
argc, 100
Array, 540, 544, 566
base, 527
BufferSize, 536
Category, 571
Character, 547-549, 550-551
chChar, 558, 578, 586, 597-598
Compare, 566
compare, 527
default values, 706
denominator, 531, 552

dIntegral, 562
dValue, 523-524, 528-533, 536,

541, 554, 562, 574-576, 594-595
dValue1, 525
ElementSize, 540, 544, 566
endtime, 531
filepointer, 529
function, 574
jumpbuffer, 555, 570
key, 527
Locale, 571
lOffset, 542
lValue, 552
Member, 563
Mode, 537
nBase, 591-592
nBufferSize, 581
nByte, 561
nChar, 565
nCharacter, 539
nConditional, 524
nCount, 528, 557, 584-585, 605
nError, 581
nException, 566
nExitCode, 532
nExponent, 541
nLength, 558-561, 593
nMode, 572
nNewSize, 567
nOrigin, 542
nReturnCode, 555
nSeed, 576
nSignal, 574
nSize, 528, 572
num, 527
NumberElements, 540, 544, 566
numerator, 531, 552

Advanced C

768

nValue, 522
OpenFile, 533-545, 565, 569, 572,

598, 601
param, 598, 601
pBuffer, 561, 567-569, 572, 575
pBuffer1, 559
pBuffer2, 559
pDestination, 559-560
pEnd, 588, 591-592
pMultiByte, 557
Pointer, 540
Position, 535, 543
previous, 601
pSource, 559-560
pWideChar, 557
pWideCharacters, 605
SizeToAllocate, 556
startime, 531
Structure, 563
szBuffer, 536, 539, 546, 581, 604
szCharacters, 586-588
szChars, 580, 587
szCommand, 594
szDestination, 577, 580, 584-585,

593, 605-606
szFileName, 537, 541, 568, 596
szFormat, 538, 542, 564, 569, 577,

581, 601-604
szInput, 577
szMode, 541
szNewName, 568
szOldName, 568
szSource, 577, 580, 584-585, 593
szString, 526-527, 556-558, 565,

578-580, 583, 586-592
szString1, 578-579, 584
szString2, 578-579, 584
szTokenSep, 589

Time, 562, 581
TimeBuffer, 530
TimeValue, 546, 553, 595
type, 598
VarArgs, 601-604
WideChar, 606
width, 527
x, 537, 564
y, 537, 564

PASCAL keyword, 7
Pascal language, 442

calling C functions, 462
calling from C, 449-450
routine types, 437

pBuffer parameter, 561, 567-569,
572, 575

pBuffer1 parameter, 559
pBuffer2 parameter, 559
pDestination parameter, 559-560
pEnd parameter, 588, 591-592
perror() function, 563
Phar Lap 386/DOS-Extender product,

658
PICTURE_FIELD identifier, 473
pMultiByte parameter, 557
Pointer parameter, 540
pointers, 66-68

arrays as, 55
arrays of, 58-62
far, 17
function, 114-115, 119-120
incrementing, 67
indexing, 89
list, 346
misusing, 649
modifying variables, 72
near, 17
NULL, 345

Index

769

C C
CC
C

C
C
C CC

relationship to menus, 120-121
string, 95
to structures, 216

POINTERS.C program, 69-72
points, origin

SEEK_CUR, 543
SEEK_SET, 543

port I/O, 280-281, 287
portability, 4
ports

communications, 296-301
printer, 289, 295

Position parameter, 535, 543
pound symbol (#), 621
pow() function, 564
#pragma directive, 635
pragmas

message, 635
pack, 636

precedence, operator, 645-648
precompiled header files, 671
predefined actions

SIG_ACK, 574
SIG_DFL, 574
SIG_IGN, 574

previous parameter, 601
printer ports, 289, 295
printf() family of functions, 606-614
printf() function, 270-272, 564
PrintHelp() function, 395
PrintTree() function, 395
PRNPORT.C program, 289-295
profilers, source code, 672
programming, OOP, 696

abstraction, 696
encapsulation, 696
hierarchies, 697

programs

16-bit, 658
32-bit, 658-659
ADDER.C, 72-74
ARCADE.C, 282-287
ARRAY1.C, 49-51
ARRAY2.C, 55-56
ASSERT.C, 651
BADSTR.C, 27-29
breakpoints, 655
BTREE.C, 395-415
building, 181
CALLASM.ASM, 439-440
CALLNOTC.ASM, 452-455
CALLNOTC.C, 443-446
CALLOC1.C, 233-235
CASTS.C, 42-44
CDB.C, 238-243
CREATEDB.C, 209-212
DBGSTRNG.C, 652-654
DBREAD.C, 474-482
DBWRITE.C, 484-493
DEMO.FOR, 441
DUMP.C, 146-150
EDLINE.C, 257-266
efficiency, 657-658
EXAMP1.CPP, 700
EXAMP2.CPP, 702-704
EXAMP3.CPP, 705
EXAMP4.CPP, 706-709
EXAMP5.CPP, 710-711
EXAMP6.CPP, 712-713
EXAMP7.CPP, 715-718
FILEONE.C, 6
FILETWO.C, 6
FIXSTR.C, 92-94
FUNPTR.C, 115-117
HELLO.BAS, 443
HELLO.C, 14-15

Advanced C

770

HELLO.PAS, 442
HELLOCPP.CPP, 697
INDEX.C, 368-382
JUSTIFY.C, 103-109, 136-137
LIFETIME.C, 40-41
LINKLIST.C, 347-359
MACROS.C, 625-628
MAINARGS.C, 101-102
MALLOC2.C, 230-231
MAXIMUM.ASM, 447-448
MAXIMUM.C, 450-451
MENU1.C, 121-129
MERGFILE.C, 330-334
modification, 656
multifile

compiling, 164
linking, 164-165

NUMWORD.C, 76-77
NUMWORD1.C, 79-81
NUMWORD3.COD, 82-85
NUMWORD4.COD, 85-89
OFFSETOF.C, 213-215
overlay, 670
POINTERS.C, 69-72
PRNPORT.C, 289-295
prototyping, 162
PURGFILE.C, 336-341
RAGSTR.C, 95-96
READCOMM.C, 309-317
REPEAT.C, 59-60
SCOPE.C, 37
SCOPE1.C, 38-39
SENDCOMM.C, 301-308
SORTALOC.C, 244-246
SORTFILE.C, 323-326
STDAUX.C, 273-274
STDFILE.C, 276-278
STDPRN.C, 275-276

STRUCT1.C, 193-194
STRUCT2.C, 195-197
STRUCT3.C, 200-202
STRUCT4.C, 203-205
STRUCTA.C, 198-199
STRUPTR.C, 216-219
TEXTFILE.C, 252-256
TWOFILE1.C, 171-175
TWOFILE2.C, 176-178
UNION.C, 220-225
VARGS.C, 513-515
WCHBYTE.C, 152-153

protected-mode environments, 231
protecting strings, 90-92
PROTOTYP.H header file, 170,

180-181
prototypes, function, 164, 497-499,

723
prototyping programs, 162
pSource parameter, 559-560
PullDown() function, 133
_PUNCT identifier, 502
PURGFILE.C program, 336-341
purging files, 321, 336, 341-344
putc() function, 270, 564
putch() function, 281
putchar() function, 270-272, 565
puts() function, 270-272, 565
putw() function, 270
pWideChar parameter, 557
pWideCharacters parameter, 605

Q

qsort() function, 114, 246, 322, 517,
566

QuickC for Windows compiler,
690-692

Index

771

C C
CC
C

C
C
C CC

advantages, 690
debugger, 657
disadvantages, 691-692

R

ragged-right string arrays, 92
RAGSTR.C program, 95-96
raise() function, 566
rand() function, 516, 567
random numbers, 516
read only file attribute, 250
read() function, 279
READCOMM.C program, 309-317
reading dBASE files, 474
realloc() function, 237-238, 243-244,

567
record status byte, 473
records

adding, 384-385
column definition, 471
displaying, 386
field definition, 471
retrieving, 386

recursive, 114
redefining macros, 637
redundant bytes, packing, 670
reference variables

as return values, 711
in C++, 710

references, structure, 194
register keyword, 9
registers

DLL, 301
DLM, 301
interrupt enable, 300
interrupt identifier, 300
line control, 301

line status, 301
LSB, 300
modem control, 301
MODEM status, 301
MSB, 300

remove() function, 267, 568
rename() function, 568
REPEAT.C program, 59-60
reserved

keywords, 7-10
library names, 10-11

retrieving records, 386
return keyword, 9
return values, 498
rewind() function, 270, 568
right side, 393
rmtmp() function, 270
root nodes, 393, 420

S

s field, 612, 618
saving index arrays, 389
scanf() family of functions, 614-619
scanf() function, 270-271, 569
SCHAR_MAX identifier, 21, 508
SCHAR_MIN identifier, 21, 508
scope, 37

global, 31
local, 31

SCOPE.C program, 37
SCOPE1.C program, 38-39
scratch variables, 644
Search() function, 395, 418-419
search.h header file, 511
SearchAndAdd() function, 395,

417-419
searches

Advanced C

772

binary, 383-386, 426
linear, 345, 367, 383-384

SearchRecord() function, 395
SEEK_CUR constant, 515
SEEK_CUR origin point, 543
SEEK_END constant, 515
SEEK_END origin point, 543
SEEK_SET constant, 515
SEEK_SET origin point, 543
segments, 17

code, 670
data, 670

SENDCOMM.C program, 301-308
serial boards, 296-300
setbuf() function, 270, 569
setjmp() function, 512, 570
setlocale() function, 509, 571
sets, ASCII character, 680
setvbuf() function, 270, 572
shared variables, 164
shells, 162
short keyword, 9
short modifier, 20
SHRT_MAX identifier, 22, 509
SHRT_MIN identifier, 22, 508
SIG_ACK predefined action, 574
SIG_DFL predefined action, 574
SIG_IGN predefined action, 574
SIGABRT value, 512
SIGBREAK value, 512
SIGFPE value, 512
SIGILL value, 512
SIGINT value, 512
signal() function, 573
signal.h header file, 512
signed keyword, 7
SIGSEGV value, 512
SIGTERM value, 512

sin() function, 574
single-dimensional arrays, intializing,

52
sinh() function, 575
size_t identifier, 500
sizeof keyword, 9
SizeToAllocate parameter, 556
Small memory model, 673
sopen() function, 279
sort/merges, 330
SORTALOC.C program, 244-246
SORTFILE.C program, 323-326
sorting files, 322, 343-344
source code profilers, 672
source files, 161

compiling, 162-163
linking, 162-163

_SPACE identifier, 502
specifiers

format, 614
width, 112

speed registers, 301
spreadsheets, 467
sprint() function, 92
sprintf() function, 270, 575
sqrt() function, 576
srand() function, 516, 576
sscanf() function, 270, 576
startime parameter, 531
state

machines, 135-136
variables, 135

statements
#include, 166-167
typedef, 167

static keyword, 9
static modifier, 40
static variables, declaring, 30

Index

773

C C
CC
C

C
C
C CC

stdarg.h header file, 513
stdaux file, 273
STDAUX.C program, 273-274
stddef.h header file, 515
stderr file, 272-273
STDFILE.C program, 276-278
stdin file, 271
stdio.h header file, 515
stdlib.h header file, 516

communications with operating
system, 516-517

integer math, 517
memory allocation, 516
multibyte characters, 517
random numbers, 516
searches, 517
string conversion, 516

stdout file, 272
stdprn file, 274
STDPRN.C program, 275-276
stepping, 656
storing

bit fields, 208
data, B-tree technique, 392-395
integers, 151-154

strcat() function, 577
strchr() function, 577
strcmp() function, 75, 329, 578
strcoll() function, 579
strcpy() function, 29, 580
strcspn() function, 580
stream files, 268
streams, 698

cerr, 698
cin, 698
cout, 698

strerror() function, 581
strftime() function, 581-583

stricmp() function, 329
string

functions, 90
identifiers, 129
pointers, 95

string.h header file, 517
stringize operator (#), 622-623
strings, 56-58, 74-75

converting, 516
converting from macros, 622
protecting, 90-92
ragged-right, 92
random access, 252

strlen() function, 583
strncat() function, 584
strncmp() function, 584
strncpy() function, 585
strpbrk() function, 586
strrchr() function, 586
strspn() function, 587
strstr() function, 588
strtod() function, 516, 588
strtok() function, 589
strtol() function, 516, 590
strtoul() function, 516, 591
struct keyword, 9, 191-194
STRUCT1.C program, 193-194
STRUCT2.C program, 195-197
STRUCT3.C program, 200-202
STRUCT4.C program, 203-205
STRUCTA.C program, 198-199
Structure parameter, 563
structure_name, 192
structures, 191

arrays of, 195, 200
bit fields, 206-208
_CUSTNAME, 359
DB3HEADER, 483
declaring, 197

Advanced C

774

defining, 191
initializing, 192
_item, 416
of arrays, 200-202
of structures, 203
_page, 416
pointers to, 216
references, 194

STRUPTR.C program, 216-219
strxfrm() function, 592
switch keyword, 10
switch() function, 136
system dependent, 231
system file attribute, 250
system() function, 516, 593
systems, number

binary, 141-142
decimal, 139-141
hex, 142-144
octal, 144-145

szBuffer parameter, 536, 539, 546,
581, 604

szCharacters parameter, 586-588
szChars parameter, 580, 587
szColumnName field, 472
szCommand parameter, 594
szDestination parameter, 577, 580,

584-585, 593, 605-606
szFileName parameter, 537, 541,

568, 596
szFormat parameter, 538, 542, 564,

569, 577, 581, 601-604
szInput parameter, 577
szMode parameter, 541
szNewName parameter, 568
szOldName parameter, 568
szSource parameter, 577, 580,

584-585, 593
szString parameter, 526-527, 556-558,

565, 578-580, 583, 586-592
szString1 parameter, 578-579, 584
szString2 parameter, 578-579, 584
szTokenSep parameter, 589

T

tag_name, 192
tan() function, 594
tanh() function, 594
tell() function, 279
tempnam() function, 270
temporary

variables, 663
work files, 256, 267-268

testing
alpha, 642
beta, 642
bits, 158
identifiers, 630-631
nested, 633

text files, 251-252
TEXTFILE.C program, 252-256
Time parameter, 562, 581
time() function, 595
time.h header file, 518
TimeBuffer parameter, 530
TimeValue parameter, 546, 553, 595
Tiny memory model, 673
tmpfile() function, 256, 268-270, 596
tmpnam() function, 256, 266, 270,

596
token paste operator (##), 624
tolower() function, 503, 597
tolower(_c) macro, 504
toupper() function, 503, 597
toupper(_c) macro, 504
transmit buffer, 300
tree access method, 321

Index

775

C C
CC
C

C
C
C CC

TreePrint() function, 395, 424
truncation, 45
Turbo Debugger, 657, 683
TWOFILE.H header file, 178
TWOFILE.MAK MAKE file

advanced version, 184-186
simple version, 183

TWOFILE1.C program, 171-175
TWOFILE2.C program, 176-178
type casting, 41-42
type parameter, 598
typedef keyword, 10, 208
typedef statement, 167
TYPEDEF.H header file, 168-169, 180

U

u field, 612, 617
UART (Universal Asynchronous

Receiver/Transmitter), 296
UCHAR_MAX identifier, 21, 508
UINT_MAX identifier, 22, 509
ULONG_MAX identifier, 22, 509
#undef directive, 637
UnderFlow() function, 395, 427
ungetc() function, 270, 597
ungetch() function, 281
union keyword, 10
UNION.C program, 220-225
unions, 219-220, 225
unititialized variables, 643
Universal Asynchronous Receiver/

Transmitter (UART), 296
unlink() function, 267
unsigned int constants, 26
unsigned keyword, 10
unsigned modifier, 20
updating dBASE files, 494

_UPPER identifier, 502
user interfaces, 162
USHRT_MAX identifier, 22, 509
utilities

DEBUG, 146
DOS SORT, 322
LIB, 182
WDISASM, 437-438

V

va_ function, 600
va_arg() function, 598
va_start() function, 601
values

default parameter, 706
E2BIG, 504
EACCES, 504
EAGAIN, 505
EBADF, 505
EDEADLOCK, 505
EDOM, 505
EEXIST, 505
EINVAL, 505
EMFILE, 505
ENOENT, 505
ENOEXEC, 505
ENOMEM, 505
ENOSPC, 505
ERANGE, 505
EXDEV, 505
return, 498
SIGABRT, 512
SIGBREAK, 512
SIGFPE, 512
SIGILL, 512
SIGINT, 512

Advanced C

776

SIGSEGV, 512
SIGTERM, 512

VarArgs parameter, 601-604
varargs.h header file, 518
VARGS.C program, 513-515
variables, 35

automatic, 644
bDay, 471
bf HasMemo, 470
bf VERSION, 470
bMonth, 471
bYear, 470
declaring, 704
external, 40, 171
global, 644
initializing, 15, 35-36
integer, defining, 30
life span, 39
lNumberRecords, 471
nColumnCount, 483
nCurrentParameter, 112
nFirstRecordOffset, 471
nLineWidth, 113
nRecordLength, 471
reference

as return values, 711
in C++, 710

scope, 37
scratch, 644
shared, 164
size, 465
state, 135
static, declaring, 30
temporary, 663
type, 465
type casting, 41-42

types, 35-36
unititialized, 643

VARS.H header file, 169-170, 180
version codes, 470
vfprintf() function, 271, 601
VIDEO debugger, 657
video I/O, direct, 667
void keyword, 10
volatile identifier, 7, 500
vprintf() function, 271-272, 602
vsprintf() function, 271, 604

W

Watcom C/386 compiler, 438, 659,
692-694

WCHBYTE.C program, 152-153
wcstombs() function, 605
wctomb() function, 606
WDISASM utility, 437-438
while keyword, 10
whitespace characters, 550
WideChar parameter, 606
width parameter, 527
width specifier, 112
Windows NT operating system, 659
work files, temporary, 256, 267-268
Workshop program, 682
write() function, 279
writing code in multiple languages,

435-436

X—Z

x and X fields, 613-616

Index

777

C C
CC
C

C
C
C CC

x parameter, 537, 564

y parameter, 537, 564

Zortech C/C++ compiler, 659

Advanced C

778

	Overview
	Introduction
	Part I Honing Your C Skills
	Chapter 1 The C Philosophy
	Chapter 2 Data Types, Constants, Variables, and Arrays
	Chapter 3 Pointers and Indirection
	Chapter 4 Special Pointers and Their Use
	Chapter 5 Decimal, Binary, Hex, and Octal
	Chapter 6 Separate Compilation
 and Linking
	Part II Managing Data in C
	Chapter 7 C Structures
	Chapter 8 Dynamic Memory Allocation
	Chapter 9 Disk Files and Other I/O
	Chapter 10 Data Management: Sorts, Lists, and Indexes
	Part III Working with Others
	Chapter 11 C and Other Languages
	Chapter 12 C and Databases
	Chapter 13 All About Header Files
	Part IV Documenting the Differences
	Chapter 14 ANSI C’s Library Functions
	Chapter 15 Preprocessor Directives
	Chapter 16 Debugging and Efficiency
	Appendix A The ASCII Character Set
	Appendix B Compiler Variations
	Appendix C Introduction to C++
	Appendix D Function/Header File Cross Reference
	Index

