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Preface

This is a two-semester text covering techniques in linear algebra and
multivariable calculus which every practitioner of mathematical
sciences ought to know. It is intended as an advanced course for
degrees that require a strong mathematical background. In keeping
with its subject, the book adopts a how to do it approach. However,
a broad explanatory perspective is offered to underpin this approach
and so to skirt the proverbial pitfall of the cook-book method - a
student all stuffed up with recipes and not knowing where to go
when faced with a nonstandard problem.

So the aim here is two-fold: to equip students with the routine
skills necessary in most modern applications, and to help
develop a firm understanding of the underlying mathematical
principles. Emphasis has therefore been placed equally on
heart-of-the-matter, down-to-earth explanations, and on the
presentation of an abundant stock of worked examples and exercises.

As regards the explanatory material, the guiding principle has
been to keep the argument informal but nonetheless careful and
accurate. This does justice to the mathematics without becoming
obsessive over the kind of detail that a fully rigorous approach would
require. The explanations are always concrete and geometric in
nature. In fact, the geometric approach naturally leads to the
adoption of linear algebra, the language of vectors, as a unifying
frame for both parts of the course. A topic like non-linear
programming then comes across as a fine exemplar of the interplay
of the two areas.

Though unified, the two parts can each stand alone and serve as
one-semester courses in, respectively, advanced linear algebra and
advanced calculus.

A textbook's teaching strength ultimately lies in the exercise it
poses for the reader's mind; here at worst, that is served in

IX



x Preface

cornucopian helpings. All the problems are either hand-picked from
the received literature or hand-crafted, and much mileage is expected
of them. Some are plainly routine, others are challenging and
rewarding; quite a few are accompanied by hints. The special
attention accorded to the exercises is reflected in the inclusion of a
very large number of complete solutions. These have often allowed the
author's lectures to diverge from the set piece, responding to the
needs of the moment and of the particular audience - like a
performer's improvised coda.

The material, essentially in its entirety, forms a staple course for
second and third year students at LSE reading for the
mathematically based degrees: mathematics, statistics, actuarial
science, computer science, operational research, management science,
mathematical economics, econometrics. Topics required for such
wide-ranging mathematical modelling of human activity are therefore
extensive and include almost all the familiar techniques of classical
applied mathematics. Notable exceptions to such syllabuses, and
consequently not covered in the book, are: contour integrals (with
the associated complex analysis), divergence and curl. On the other
hand the material contained here steps outside the classical tradition
by considering convexity, the separating hyperplane theorem, some
game theory (all beloved of the Economist), and Riemann-Stieltjes
integration (to allow Probabilists a simultaneous treatment of
discrete and continuous random variables). However, tools and
techniques are at the forefront; any applications to the social sciences
are rare and indeed interspersed discreetly, so that traditional
applied mathematicians and engineers will feel at home with this book.

The text is practically self-contained, but, not unnaturally for a
second course, the topics included by way of revision are dealt with
rapidly. Even so, such passages are garnished with some novelties
and surprises to keep up the reader's attention and appetite. For
example, the linear algebra preliminaries hint at infinite-dimensional
spaces (as a preamble to the calculus of variations). In the theory of
ordinary differential equation a novel approach is offered via a
simple algebraic sum-theorem; this theorem allows difference
equations and differential equations the 'exact same' treatment and is
seen to be responsible for the analogies between the two topics.

The book's other claims to attention and originality (any humour
apart) include: the development of an approach for 'mere mortals' to
the Riemann-Stieltjes integral (usually a topic banished to theory
books only) - appropriately kitted out with 'calculus-like' exercises; a
very extensive discussion of multiple integrals (a topic more feared
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than revered by students); a geometric approach to the simplex
method, based on oblique co-ordinate systems; a marshalling of
exercises on convex sets and convex functions (usually a Cinderella
affair in textbooks at this level) and likewise on non-linear programming.

However, in most other respects this text book, as any, owes
much to its many nameless predecessors, which have all played a
role in setting the received tradition; but there is a particular debt to
the books suggested to LSE students for further reading, which often
inspired drafts of lecture notes at various stages. These are:

Applied Linear Algebra, B. Noble, Prentice-Hall, 1969;
Applied Linear Algebra, R.A. Usmani, Dekker, 1987;
Mathematical Analysis, T.M. Apostol, Addison-Wesley, 1965;
Differential and Integral Calculus, S. Banach, PWN, 1957;
Advanced Calculus, M.R. Spiegel, McGraw-Hill, 1974;
Laplace Transforms, M.R. Spiegel, McGraw-Hill, 1965;
Differential Equations and the Calculus of Variations, L. Elsgolts, Mir, 1970;
Differential and Integral Calculus, G.M. Fichtenholz, Fizmatgiz, 1958.

Above all, the book owes a special debt to Ken Binmore, from
whom the author inherited not only the pleasant duty of teaching
the original methods course at LSE but also some notes - a valuable
graft of teaching method. There are thus some exercises and at least
one passage (cf. pages 326-327) shamelessly quoted verbatim from
Binmore's Calculus, the antecendent text in the LSE series. That is,
in part, testimony to series continuity and, in all truth, as well an
intentional personal tribute.

Warmest thanks are due also to my depertmental colleagues for
reading, or proof reading, parts of this book, especially to Mr.
Adonis Demos, my teaching assistant, and to Dr. Graham Brightwell
and Dr. Elizabeth Boardman. My last, but not least, thanks go to
David Tranah of CUP for much patience and help in effecting the
transition from lecture notes to book.

Adam Ostaszewski



Some notation and conventions

We follow standard notation and conventions such as those of K.G.
Binmore's Calculus.

« denotes an approximate equality.
X denotes the complex conjugate of A.
U denotes the set of real numbers.

For a, b real numbers (a, fc] denotes the interval of numbers x with
a < x < b; similarly [a, b) denotes the numbers x with a < x < b. (a, b)
may ambiguously denote the point with co-ordinates a and b or the
interval of numbers x with a < x < b.

A number b is an upper bound for a set S £ U if for each seS we
have s ^ b. The number d is a lower bound for S if for each seS we
have d^s.

A set in the plane (in the space IR3, etc) is 'closed' if the boundary
of the set belongs to the set. On the other hand a set in the plane is
'open' if for each point of the set the whole of some disc centred at
the point is contained entirely in the set (thus the set is open to
small movements in all directions away from any point). Notice that
if a set is closed it is not open since arbitrarily small movements in
certain directions away from a point on the boundary lead out of the set.

(fly) denotes a matrix whose general entry in row i and column ; is fly.

If A = (fly) then A* denotes the matrix (o^), its complex conjugate transpose.

i4y denotes the appropriate minor of A - it is the determinant of the
matrix obtained from A by deleting the i-th row and j-th column.
[a,|b], [a:b], (a|b), [a,b] all denote a matrix with columns a and b.
The notation

a b

xn
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is supposed to draw the readers attention to the fact that a, b , . . . etc are
columns in the displayed matrix.
(A | b) denotes the matrix obtained by adding the column b to the
matrix A. T:A-^B means that T is a transformation with A as its
domain of definition and taking values in B. The set of values which T
assumes on A is denoted by T(A). This is called the range or image of
A under T.
It is also denoted by R(T).
The transformation T is one-to-one (or, injective) if Tax = Ta2

implies that ax = a2.
If S is a set of vectors lying in a vector space V, Lin (S) is the smallest
vector subspace of V containing the vectors of 5; it is called the
linear span of S.
#(S) denotes the cardinality of the set S (i.e. how many elements it has).
If x(t) is a function of £, x denotes the derived function.

=> means 'implies'

omeans 'implies and is implied by', i.e. 'if and only if

3x means 'there is an x such that'

n always denotes an integer
/(n)(x) denotes the n-th derivative of/(x).
/x(x, y) denotes (df/dx) (x, y).
Whenever convenient we shall write

N
J c J c

"f(x,y)dx

to denote

\dy.

E[X~\ denotes the expected value of the random variable X which is
defined to be

xf(x)dx,
0

where f(x) is the probability density function of the random variable X.
A 'function is integrable' will always mean that the appropriate
integral of the function (as per context) exists. The Reader should be
wary that [•••] may denote just square bracketting or the staircase
function (see p. 236).





LINEAR ALGEBRA

Vector spaces (revision)

In both Part I and Part II we shall be working in the n-dimensional space
Mn. The current chapter concentrates on linear transformations and how
to represent them most conveniently by matrices. The next chapter will
consider the geometric properties of Un.

Un is the mathematician's first generalisation of familiar Euclidean
three space IR3 whose points are described by the three co-ordinates
(x1,x2,x3). Realising that the handling of large amounts of data, that
the description of the behaviour of a complicated machine (and more
generally of a dynamical system) via, say, the readings on several of many
dials (Fig. 1.1), all have in common the requirement of storing parameters
quite like x t , x 2 , x 3 though rather more numerous than three, the
mathematician introduces the collection of column n-vectors

(1)

(alternatively written using the symbol for transposition as

Not content with this he introduces a more general notion, that of a
vector space (of which Un is in a sense the prime and canonical example).
He then strives to formulate analogues of familiar notions of
three-dimensional geometry which help him to understand the more
formidable examples of vector spaces. In practice he tries to show that
'the vector space' under consideration either is Un in disguise or that Un

approximates to it fairly well.
It will be a relief to know that although our main concern is with Un,

here and there we shall point to naturally occurring Vector spaces' of a
different sort.

1



Vector spaces (revision)

Fig. LI

1.1 Vector spaces

In order for a collection of objects X to be regarded as a vector space
we have to be able to do two things with these objects: (1) add any two
objects x and y to get an object x + y also in X; (2) scale up any x in
X by any factor a to give ax, another object in X. The scaling factors,
like a, known as scalars, are either from R or C (= complex numbers).
(It is possible to consider more general scalars, but we don't.) How we
choose to add or scale depends on the context or application but there
is a proviso nevertheless that certain 'laws of addition etc' are satisfied.
We leave aside such formalities, taking them as read.

1.2 Examples

1. R":(xlf x2, . . . , xj + (yl9 y2,..., yj = {x, + yl9 x2 + y29..., xn + yj

a(x l9 x2, . . . , xj = (ax1? ax2, . . . , ccxj.

2. Polynomials of degree ^ n with real coefficients, i.e. of the form:

a(x) = anxn + an_ 1x
n~A H \-alx-\-a0 with all afeR.

The natural way to add and scale is:

a{anx"

+(aa0).
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Although the objects under consideration here are distinct from those in
Un +1 nevertheless we can regard them as forming Un + i in masquerade. The
coefficients in a(x) can be arranged as an (n + l)tuple thus:

(an9an-!,...,al9aoy.

Now note that cca(x) gives rise to the (n + l)tuple
(ocan,ocan _ ! , . . . , ocauoca0)\

whilst a(x) + b(x) as above, gives

{an-\-bn9an.1 +&„_!, . . . ,«! + &1,o0 + &0)
f-

So these (n -f l)tuples are added and scaled by the same rules as in
Example 1, i.e. the polynomials of degree ^ n differ from IRn+1 in notation
only. (That is, if we choose to ignore other properties of polynomials such
as the fact that the variable in a(x) can be substituted for.)

3. All polynomials with real coefficients. These can be added and scaled in
the obvious way, but now that the restriction on degree has been removed,
this vector space 'is' not Un for any n.

4. All real-valued functions. The set of functions whose domain of
definition is S taking real values, is denoted by Us. If / , g are in Us we
can define a function /z, so that h = f + g, thus (see Figure 1.2)

h(s)=f(s) + g(s)9

i.e.
(f

and

Fig. 1.2
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Again this space is not in general R" particularly if S is the interval [a, ft].
Nevertheless the function defined by f(x) = ex on [0,1] can be
approximated reasonably by the polynomial function

•A* .A* t̂ - ^

1 + x + — + — + — 4- + .
2 6 24 120 720

Observe that if S = {1,2,3} then each function/eR{1 '2 '3) is
identifiable with the element of (R3 (/(I), /(2), /(3))'. Furthermore,
just as in Example 2, the rules for addition and scaling are identical;
thus IR{1'2'3} 4is' U3. Us is particularly useful in the mathematical
study of dynamical systems, when S is the time domain.

In brief: Vector space theory is the study of systems of objects that can
be added and scaled.

1.3 Check your vocabulary

In this paragraph we refresh rusty old memories and remind ourselves of
a stock of words used in studying Rn. We have to remember that these
concepts are applicable to all vector spaces.

Linear combinations
If x! , . . . , xk are vectors and a1? . . . , ak are scalars and x satisfies

x = a1x1 + a 2 x 2 H hakxk,

then we say that x is a linear combination of x1,...,x fc.
If for some scalars OLU . . . , ak not all zero we have

0 = a1x1 + a 2 x 2 + l-afcXfc,

then we say that the vectors x l 9 . . . ,x f c are linearly dependent. Indeed it
follows in this case that one of these vectors (at least) is a linear combination
of the others.

If, for given vectors xu...9xk9 it is true that the equation

0 = a1x1 H f-akxk

can hold only when OLX = a2 = • • = ak = 0, then we say that xl9...9xk are
linearly independent.

Examples

(i) (1,3,2)'= (1,1,0)' + 2(0,1,1)' so {(l,3,2y,(l,l,0)', (0,1,1)'} are
linearly dependent vectors.
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(ii) (1,0,0)r, (0, l,0)r, (0,0, 1)' are linearly independent because the
equation

(0,0,0)' = a i ( l ,0 ,0) ' + a2(0,1,0)' + a3(0,0,1)'

= (^uoc2,cc3y.

implies at = a2 = a3 = 0.

Basis and dimension
We say that the set of vectors {x1,...,xk} spans the vector space

X if each vector in X is a linear combination of the vectors x t , . . . , xk.
The trivial calculation of the last paragraph shows that any (ax, a2, a3)'

is a linear combination of (1,0,0)', (0,1,0)' and (0,0,1)' so these three
vectors span !R3.

Example
The solutions (see Part II, Chapter 20) of the equation

dx2

are known to take the form y — A cos x + B sin x where A and B
are constants. This says that the two vectors in Uu /x(x) = sin x and
/2(x) = cosx span the space of solutions of the differential equation (see
also Section 1.7).

A finite dimensional space is one that is spanned by a finite set of
vectors {x1 , . . . ,xk}.

A set {xl9...9xk} is a basis if each vector can be uniquely
expressed as a linear combination of x1 , . . .xk . This is equivalent to
saying that {xl 5 . . . ,xk} spans the space and xl9...,xk are linearly
independent. To see why this is, suppose

and

subtracting

So if xu...,xk are linearly independent (a1— px) = 0 = (a2 — /?2) = • • •
and hence we have uniqueness. We leave the converse as an exercise.

In any given finite dimensional vector space it is true that any two
bases contain the same number of vectors. (This is non-trivial.) The
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number involved is called the dimension. If {x1,...,xfc} is a basis and

x = a1x1 4- —l-akxk ,

then the uniquely determined scalars a l9...,a fc are called the
co-ordinates of x with respect to the basis {xl9...9xk}.

1.4 Subspaces

A subspace of a vector space X is a subset Y of X which is rather
special in that addition and scaling applied to vectors from Y
produces vectors in Y. Thus Y can be regarded as a vector space in
its own rights. Compare the example in Figure 1.3.

Fig. 1.3. The plane z = 0 is a vector space in its own right. It is of course U2 in
disguise

Symbolically, Y is a subspace if both conditions

0) yi + y 2 e r for y
(ii) aye Y for ye Y and all a,

are satisfied or, the single (more compact) condition holds:

ayi + PlieY for all y i ,y 2 e y and all scalars a,/?.

Example 1
Y = {(A,/i, A+ /*)':>!,JUGIR} is a subspace of 1R3.

We can see this intuitively by noting that Y is the plane with equation

z = x 4- y.

(See Figure 1.4.) Formally, for (A, /*, X + /x)r, (A, M, A + M)f in Y

= (a/I + jSA, a/x + pM, <xk + a/x + 0A 4- j?M)'

= ((aA 4- j?A), (a/z + jSM), M 4- jSA) + ( ^ +



1.5 Linear equations and rank

plane z = 0
line x + y = 0 in
the plane z - 0

Example 2
In the space

functions. Clearly,
= R((M) let D(0,1) be the set of differentiable

The function a1f1 •+• a 2 / 2 is also differentiable, i.e. is in D(0,1). Thus
D(0,1) is a subspace. See Part II, Chapter 20 for applications of this fact.

1.5 Linear equations and rank

The linear equations

are a bore to write out in full. The wily way to save time is to
rewrite this as follows

021

whence arise matrices. To save more time in theoretical deliberations

Xl"

x2
=

V
b2

bm
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the abbreviated form of the above equation is used:

It is useful to place the problem of solving the equations 'in
perspective' and to focus interest on the transformation that takes
the column vector in Un

x =

* i

x2

into the vector y = (yu...9 ymy in Um where

y = Ax.

The set

N(A)={x:Ax = 0}

is known as the kernel or null space of the transformation, and the set

R(A) = {y:for some x, y = Ax}

is known as the range of the transformation. They are of particular
interest; both are subspaces (check!). Note that Ax = b is soluble if
and only if beR(A). (See Figure 1.5.) That is, of course, a mere
restatement. Recall that

rank(y4) = dimension of the range of A,
nullity (A) = dimension of the kernel of A.

Observe that

Ax = 021*1 +022*2
= *1

"011"

021

0ml

+ x2

' a 1 2 '

0 2 2

0m2

Fig. 1.5
Is b in here ?
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so the range of A is the subspace of lRm spanned by the columns of A. Hence

ran(4) = maximum number of independent columns = column-rank
and in fact, also
rank(/4) = maximum number of independent rows = row-rank.

1.6 Calculation of rank

In general this may be done by reducing a matrix to echelon form
and counting the number of non-zero rows. Thus, for example:

1
3

- 3

1 2
1 1
1 4

1*2+1*3

- 3 r i + r 2

1 1 2 3
0 - 2 - 5 - 7
0 2 5 7

1
0
0

1
2
0

2
5
0

3
7
0

so the rank here is 2. (We have shown the appropriate row
manipulations below the arrow.) We note one more step in the reduction

-1 - 1
5 7
0 0

[2r,-rJ.

Notice that the 'row operations' used here correspond exactly to
manipulation of equations. In reality it is the equations that are
being cast into an echelon form while redundant equations are
deleted. Clearly this does not alter row rank. The fact that the
column rank is at the same time unchanged will be explained later
(see Chapter 3, Section 3.6).

If we are dealing with a square matrix, we can use determinants to
check whether a matrix is of full rank:

1
2
1

1
0
2

2'
1
0

The matrix is non-singular so the rank is 3. This is also a convenient
method for testing whether given vectors are linearly independent.
The first example above tells us that the row vectors (1,1,2,3), (3,1,1,2),
(—3,1,4,5) are not linearly independent. The second, on the other
hand, tells us that (1,1,2), (2,0,1), (1,2,0) are linearly independent.

Nullity may be calculated from rank by using the relationship

rank + nullity = dimension.

Note that the term 'dimension' above refers to the dimension of the
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domain space ('dim-dom' would be the appropriate mnemonic); so if
the matrix A which we are testing is of size m xn and the
transformation we have in mind is y = Ax the dimension required by
the equation is n.

Thus, for example,

nullity
1 1
3 1

- 3 1

Notice that, however,

nullity

"l 3

1 1

2 1

3 2

To determine the kernel
equations

x x + x 2 + 2x

— 3xx + x2 + 4x

or, equivalently,

2 3"
1 2
4 5

- 3 "

1

4
=

= 4

3 - 2

of the matrix

3 + 3x4 =

3 + 2X4 =

3 + 5x4 =
i
::}•

- 2 = 2.

A above, we need to solve the

2x2

— x3 — x4 = 0
+ 5x3 + 7x4 = 0J'

Thus x belongs to the kernel of A if

(xl9 x2, x3, x4)
r = (!{x3 + x4}, - | 7x4}, x3, xj

Hence ker(A) is the span of (1, - 5,2,0)', (1, -7 ,0 ,2) ' . (We have
scaled up by a factor of 2 for convenience.)

1.7 The solution set

Consider the equation Ax = b. If k = nullity A = dim N(A), there is
a basis {xl9...9xk} for the subspaceN(A); i.e. any vector x
satisfying Ax = 0 can be written in the form

x = ockxk.

Now suppose that w is one particular solution of the equation Ax = b
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while z is any other solution. Thus

AYI — b and Az = b.

Subtracting we obtain A(z — w) = 0, so z — w belongs to N(A). Thus
for some a1?..., ak we have

z — w = f-akxfc,

or

This expression is significant as we shall see in coming chapters
(Part II, Chapter 20, Section 20.8.3). Here we note that the set

w + N(A)

is obtained by translating all vectors in N(A) by w. Thus the
solution set of Ax — b is the translate of the subspace iV(̂ i). (See
Figure 1.6.) Of course if N(A) — {0} the solution set is just {w}, a set
consisting of a unique point.

Fig. 1.6

1.8 The Wronskian

Suppose given some functions / i , / 2 , . - , / n in Uia'b\ say for example:
cosx, sinx, 1 ( = the function which is identically 1). Are they linearly
independent of each other?

If, as in the example, fl9 f2,...,/„ can be differentiated a number
of times (n — 1 times, to be precise), we can apply some familiar
vector space methods.

We have to consider the equation

« i / i + •••+<*„/„ = 0.
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Thus for all x it is being asserted that

«i/i(*)+•••+«•./,(*) = 0.

The function on the left-hand side of the equation is identically zero.
Hence its derivative is identically zero. Thus:

Repeating this argument, we have

=0,

We now have that for a fixed value of x, the n equations above are
satisfied by some numbers a1,a2,...,an. Let us treat these numbers
as the unknowns in a system of n simultaneous equations where the
(known) coefficients are the numbers ff(x). Suppose that for some
value of x, say x0, where a < x0 < b9 the determinant of coefficients

W(xo) =
f'2(xo)

fn(Xo)

is non-zero. Then the equation

/'i(*0) /'2(*o) /:(*0) = 0

has precisely one solution, viz. ax = a2 = ••• = an = 0. Consequently
we have:

The functions / l 9 / 2 , . . . , / n in Mia'b) are linearly independent
if for some value of x in (a, b\ the Wronskian determinant
W(x) is non-zero.

Example
For the functions cos x, sin x, 1 we compute that

1 cos x sin x
0 — sin x cos x
0 — cos x — sin x

= sin2 x + cos x = 1 # 0,
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so, the functions cos x, sin x, 1 are linearly independent in any
interval (a, b). (Note that in this example the choice of x0 is almost
irrelevant since the Wronskian is non-zero at all points; this is
evidently a stronger property than that required.)

We note that though the Wronskian condition is sufficient for
linear independence it is by no means a necessary condition i.e.
W(x) = 0 does not imply linear dependence. (It implies 'functional'
dependence.)

1.9 Exercises

1. Determine whether the following sets of vectors in IR4 are linearly independent
(i) (2,1,1,1)',(1,2, -1,1)',(3,1,0,2)',(1,2,3,4)'

(ii) (1,2,0,1)', (2,1,0,1)'
(iii) (2,1,1,1)', (1,2, -1,1)', (3,1,0,2)', (3, -3,0,2)'.

2. In each case in question 1 find a basis for the subspace spanned by the given
set of vectors.
3. Calculate the rank of the following matrix and find a basis for its kernel.

1

l

3

1

2

3

0

4

3

3

1

7

- 1

8

1

2

- 1

3

1

4. Prove that the matrix A given below is non-singular.

A =

Calculate its inverse and hence solve 4x = (l,2,3)'. Is this the easiest way to
solve the equation?
5. Find all the solutions to the equation

1

3

2

2

1

3

3

2

1

"1

2

1

2

4

2

r
3

2_

when (i) b = (1,2,1)' and (ii) b = (1,2, If. In case (i) write down a basis for the
subspace of which the solution set is a translate.
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6. Justify the following formula for van der Monde's determinant:

1 1 ... 1

XQ X J Xff

^2 V 2 V 2

xn

7. Calculate the Wronskian for the functions e x p ^ x), exp(a2x),..., exp(anx) and
hence show that the set is linearly independent provided that a1>a2,...,all are
all distinct.
8. Prove that ex,xex,x2ex are linearly independent.
9. Write down a basis for the space of polynomials of degree n or less.



Geometry in Un

2.1 Affine sets

The general equation of a line / in the plane is, as we already know, given
by the single linear equation

a1xl + a2x2 = b.

At a geometric level there is little to distinguish this line from the one

Fig. 2.1

parallel to it passing through the origin (Fig. 2.1). The latter has equation

axxx + a2x2 = 0.

However this particular line constitutes a one-dimensional vector subspace.
Let us call it V. Thus

V={(xlix2)
t:a1x1+a2x2 = 0}.

15
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If w is some fixed point on the line £ the general point z of £ satisfies
z - w e K Writing x = z — w we see that z = w + x, i.e. z is obtained
by shifting a general point x of V through the fixed vector w.

Now note that in three-dimensional space the equation axxx + a2x2 = b
no longer describes a line, but a plane. Actually, of course, the general
equation of a plane is now

alxlx1 a2x2
= b.

A line may be obtained as the intersection of two planes in 3-space;
it takes, for that same reason, n — 1 equations to characterise a
one-dimensional subspace of Un. The general result is embodied in the
next theorem.

Theorem
A subset V of Un (or Cn) is a vector subspace of dimension k

if and only if it is the solution set of an equation Ax = 0 where A is of
rank n — k.

Proof. If A has- rank n — k then its nullity is k as required.
Conversely, let V have dimension k and suppose v l 5 v 2 , . . . , v k is a
basis for V. Extend this to a basis v 1 , v 2 , . . . , v k , v k + 1 , v k + 2 , . . . , v I I of
the whole of IRW. Any vector x may thus be represented uniquely as

x = a l V l + ••• + akvk + a k + 1 v k + 1 + ••• + anvn,

or, equivalently, in matrix form as

x =

We shall abbreviate this to

x = Ma.

Now the matrix M is of size n xn and has rank n (since its n
columns are linearly independent). Thus an inverse M " 1 exists and we
have

V1 V 2 ••• V k Vfc + 1 ' " ^n <x2

a*

Let us write this out in full:
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a,

17

mk

w.

From it we may extract the equation

w.

Denoting the right-hand side by Ax we have

1 = ••• =(xn = 0oAx = 0.

Since the rows of M " 1 are linearly independent, the n — k rows of A
(viz. mk+l,mk + 2,...9mn) are also linearly independent; hence the rank
of A is n — k.

Definition
An affine set is any set of the form

Motivated by the last theorem we say that the affine set (*) has
dimension k when A has rank n — k. Let us consider why this
definition depends on the set itself rather than the choice of matrix A.

We have already seen Chapter 1, Section 1.7 that any solution of
the equation Ax = b takes the form w + z where w is any particular
solution of the equation and z satisfies Ax = 0. (See Figure 2.2.) The
affine set (1) is thus a translate of a vector subspace N(A) (of the
dimension k) and here it is clear that k depends on the subspace

V parallel subspace

Fig. 2.2
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rather than on its representation via A. Of course, any vector
subspace may be characterised as an affine set that passes through
the origin.

Example
The line t illustrated in Figure 2.3 is the solution set of the

equation

1

2

1

2

1

- 1

1

1

0

X

y
z

=

1

2

1

(Evidently the matrix has rank 2.)

Fig. 2.3

In Rn the affine set with equation

a1x1+a2x2 + — + anxn = b

(where at least one coefficient is non-zero) is called a hyperplane. It is
of dimension n — 1 (i.e. one less than the space) since the corresponding
row matrix A = (ai,a2,...,an) is of rank 1. Observe that this notion
generalises the concept of a plane in (R3.

2.2 Equations of lines and planes

A line t is a one-dimensional affine set, i.e. it is the translate of a
one-dimensional vector subspace S. Let s be any one non-zero vector in
S. Thus an arbitrary vector y in S is just of the form as. Thus a point x
on the line f may be written as

x = a -I- as, (1)
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Fig. 2.4

where a is a fixed point of t. This we call the parametrisation of a 'line
through a in direction s' the parameter being a. See Figure 2.4.

If we want to obtain a parametrisation for the line / 'through a and
b' we note that the line is necessarily in direction b — a and so its general
point x is

x = a + a(b — a)

= (1 -<x)a + ab.

Note that if x lies between a and b the scaling factor a satisfies 0 ^ a
and in fact is equal to the ratio AX.AB. See Figure 2.5.

(2)

a(b - a)

Fig. 2.5

Writing s = (s1 , s 2 , . . . ,s j ,a = (aua2,...,anY and x = (xux2,...9xj
the last two equations become

a = -
S2

X2~

- a2

(3)

(4)

Observe that if a is given, the co-ordinates of the point are determined.
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Suppressing any reference to the value a gives the following system of
equations in the case of (3).

x1-al

5 3 >

In the matrix reformulation of the above system of equations, the matrix
of coefficients will clearly have rank n — 1.

Remarks
The restriction a ^ 0 in (1) gives the ray with vertex a in direction

s.
The restriction 0 ^ a ^ 1 in (2) gives the parametrisation of a line

segment joining a to b.

2.3 The notion of length

The distance of the point (x1,x2,x3)r from the origin of IR3 is, by
Pythagoras' theorem

Since a similar formula holds in two dimensions, we generalise this notion
of length (Fig. 2.6) by defining the norm or length of the vector
x = (x1,x2,.. . ,xw)r in Un to be the number

Thus, for example, ||(1,1,2)'|| = 7 ( 1 + 1 4- 4} = ^ 6 .

Fig. 2.6
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Remark
Recall that a vector / in R[011 may be regarded as having f(t)

as its t co-ordinate, for 0 < t ^ J. One may go on to define its length by
means of an analogous formula

11/11 =^J \f(t)\2dt.

Evidently, this formula is valid for continuous functions. The formula here
is not purely an analogy. It provides the basis for analysing dynamical
(i.e. time dependent) systems by vector space methods.

2.4 Inner product and the notion of angle

We define the inner product or scalar product of two vectors
x = (x1 ,x2 , . . . ,xn) t and y = {yi9y2,'~,ynf i n K"> written as <x,y> to be
the number

It is obvious that

1. <x,x>=||x||2,
2. <x,y> = <y,x>,
3. <ax + j?y,z> = a<x,z>

Using these facts, we may therefore compute that

| |x-y | | 2 = < x - y , x - y > = < x , x - y > - < y , x - y >

= <x,x>-<x,y>-<y,x> + <y,y>

(5)

Now consider the two dimensional plane through the three points 0, x, y
(Fig. 2.7). Since our general notion of length agrees with that in two and

X
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three dimensions we may quote the Cosine Rule as saying

| | x - y | | 2 = ||x||2 + | |y | | 2 -2 | |x | | iy | | cos0 .

Comparing this equation with (5) we see that

<x,y> = ||x||Jy||cos0.

We are thus able to introduce the notion of angle between two vectors
in Un by reference only to length and inner product.

2.5 Hyperplanes

We have already defined hyperplanes in IR" as being given by an equation
of the form

a 1 x 1 +a 2 x 2 +•••+<*„<*„ = ?.

Let us rewrite this in inner product notation:

. . ,aj , (x 1 , . . . ,x n y> = p. (6)

Suppose for the moment that the vector a = (a1, a2,..., anj has unit length.
Thus the vector p = p-(au a2,..., aj satisfies the equation (6). Now if x
is any point such that the (two-dimensional) triangle OxP is right-angled
at P we shall have (see Figure 2.8)

<a,x> = ||x|H|a||cos0

= II x || cos 0

Conversely, if <a,x> = p, then the triangle OxP is right-angled at P.
We thus see that if || a || = 1 the equation (6) describes a hyperplane
perpendicular to a and at a distance p from the origin. Clearly, if p > 0

H
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Fig. 2.9. p < 0

then a points towards the half-space separated from 0 by the hyperplane.
Directions are reversed if p < 0 as in Figure 2.9. (Evidently the hyperplane
passes through 0 if p — 0.)

Example
Find the equation of the plane through (1,2,3)', (3,1,2)\ (2,3,1)'.

What is the distance of the hyperplane from the origin?
Let the equation be ax + by + cz = p, where (a, b9 c)1 is a unit vector.

We then have

a + 26 + 3c = p,

3a + b + 2c = p,

2a -I- 3b + c = p.

Thus

a

ft

c

=

1 2 3"

3 1 2

2 3 1

- 1
P

P
_ P

18

- 5

1

7

7

- 5

1

1

7

- 5

1

1

1

P

18

3

3

3

_P

6

r
1

1

Hence

Thus the distance from the origin is ^12 . The equation of the plane is
however more elegantly written in the scaled up form

x + y + z = 6.
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2.6 The inner product in C"

In the space Cn we define the inner product by the formula:

<x,y> = xlyl + x2y2 + ••• + xnyn.

This ensures that

so that < x, x > is real and non-negative and takes the same form as the
Pythagorean formula for the square of the distance from 0 to (x t , . . . , xn)

f.
Let us define the norm in Cn by the formula

The following properties for the inner product resemble those for
(i) <x,x) = ||x||2

(ii) <x,y> = <y,x>
(iii) <ax + j?y,z> = a<

Notice that by (ii) we have
(iv) <x,ay + 0z>

Remark
In the space of functions C1013 the appropriate inner product is

Jo
</,</>= f(t)g(t)dt.

We can use the properties noted above to derive the very important
Cauchy-Schwartz Inequality

Proof. Let a = rew be an arbitrary complex number. Then

0 ^ || x +ay ||2 = <x + ay,x + ay> = <x,x + ay> -f a<y,x

= <x,x> + a<x,y>-f a<y,x> + aa<y,y>

Write <x,y> in the form Rei<f> so that <y,x> = Re~i(t>. We now choose
the complex number a so that its argument, 8, satisfies 0 = 0. Then
a<y,x> = rei0Re~i(l> = rR which is a real number. Hence we now have

Since this quadratic expression in r is non-negative for all values of r, its
discriminant must be non-positive. (The quadratic then has at most one
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real root.) Thus

4Kx,y>|2-4-||x||2-||y||2<0,

which is the desired result.
We may deduce the corollary known as the Triangle Inequality

Hx + yK||x|| + ||y||.

Proof. Taking a = 1 in our earlier computation we have:

Hx + y||2 = ||x||2 + 2Ke«x ,y»+ | |y | | 2

I II *7 II 2

But by the Cauchy-Schwartz inequality:

llx - y||

Fig. 2.10

The justification for the name of the inequality is given in Figure 2.10.
The triangle here has vertices at 0, x and y. We have

2.7 Orthogonality

We say that x and y are orthogonal (and write x l y ) if

<x,y> = 0.

Evidently, this says that the angle between the two vectors is a right
angle. We have chosen to write the definition in terms of the inner product
notation; this makes it applicable to any vector space in which there
exists an inner product formula satisfying the 'three laws'.
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x + y

0

Fig. 2.11

Note how Pythagoras' theorem can now be stated (cf. Figure 2.11):

if x l y then ||x||2 + ||y||2 = ||x + y||2.

The proof in Un (or C") is as follows:

y||2 = y,x

Definition
A set of vectors {e1 ,e2 , . . . ,en} is said to be orthonormal, if

<el,eJ> = 0 if i*

i.e. the vectors are of unit length and mutually orthogonal.
Observe that if {e1,e2,...,ew} is an orthonormal set lying in an n

dimensional space then it is necessarily a basis. To see this, it is sufficient
to prove that the vectors are linearly independent. With this in mind
suppose that

But, for each i,

Note that generally, if

then



2.8 The Gram-Schmidt process 27

and so

x r = <

2.8 The Gram-Schmidt process

Suppose given a basis {vx, v2, . . . , \n} for a vector space. We can construct
from it a new orthonormal basis {ex, e2 , . . . , en} by choosing appropriate
combinations of the v's. The Gram-Schmidt process does this by
considering successively the subspaces spanned by vl9 {v1,v2},

vector to be
chosen subspace spanned

by Vj, v2 = span

Fig. 2.12

{v1,v2 ,v3}, . . . ,e tc . (see Figure 2.12). Then we choose e l 9 e 2 , . . . , e n in turn
so that

= a 2 1 v 1 +a 2 2 v 2 ,

where the scalars a0 are selected so that

|| e£ ||
2 = 1 for all i and < ei9 e, > = 0 if i *j.

It is not necessary to solve for the <x0 as though they were unknowns. A
more convenient trick is this. To obtain ex rescale vx to unit length, thus
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Now suppose ex and e2 span the same subspace as ex and v2. Since v2

is a combination of ex and e2 we know, by Section 2.7, that

Hence e2 is parallel to the vector

so rescaling the latter vector will give us e2 (or its negative). The procedure
can be repeated. Thus e3 may be selected as a rescaled version of

Example
Find an orthonormal basis for the subspace spanned by

(1,2,2)', (2,1,2)'.

Solution. We take el = (1,2,2)77(1 + 4 + 4} = 1/3(1,2,2)'. Now
<v2,ei> = <(2,1,2)', 1/3(1,2,2)') = 8/3. The vector e2 is parallel to

(2,1,2)' - |(1,2,2)' = £(10,-7,2)'.

So we take e2 = (10, - 7,2)'A/{100 + 49 + 4} = 1/7153(10, - 7,2)'.

2.9 Exercises

1. Determine the equation of the hyperplane in IR3 which passes through the
points (l,2,3)',(l,0,l)',(l,2,l)'.

2. Write down the equation of a line which passes through the points
(1,2,3)', (1,0,1)'.

3. Explain why (1,2/3,5/3)r lies on the line segment joining (1,2,3)' and (1,0, If.
4. Prove that

l|x + y||2 + ||x-y||2 = 2ix| |2 + 2iy||2.

Interpret this result geometrically. [Hint: parallelograms?]
5. If < x, y > = 0 for each y in IR", prove that x = 0.
6. (i) If x and y are in IRn prove that

(ii) If x and y are in C" prove that

<x,y> = i | |x4-y | | 2 - | | |x -y | | 2 + ^|
4

7. A line in (R3 is defined by the equations

xi ~ 3 x2 — 1 x3 — 2
2 = 1 = 1
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Find a unit vector which is parallel to this line.
8. Find the equation of a plane in 1R3 which passes through the point (1,2, 1)'

and is orthogonal to (2,1, If. What is the distance of this plane (i) to the origin,
(ii) to the point (1,2,3)'.

9. Find the equation of a plane in U3 which passes through the point (3,1,2)'
and is parallel to both vectors (1 ,0 , -1) ' and (1,2,3)'.
10. Find the equation of a plane in U3 which passes through the points (3,1,2)'
and (2,1,3)' and is parallel to (1,2,3)'.
11. Use the Gram-Schmidt process to find an orthonormal basis for the span
of (2,1,2)' and (2,0,1)'.



Matrices

3.1 Linear transformations

We begin with a rapid revision of a number of facts concerning matrices
and rank; a more leisurely pace is taken up from Section 3.7 onwards.

Let V and W be vector spaces with respective dimensions n and
m. We say that the transformation T.V-+ W is linear if, for all
vectors v1,v2in K and scalars a1,a2,

= «i Tyl + a2 Tv2.

As usual we denote the range of T by

R(T)={Tv:yeV}

and its kernel or null space by

as illustrated in Figure 3.1. We begin with the important relation

rank (T) + nullity (T) = dim V,

where

rank(T) = dim/?(T) and nullity (T) = dim N( T).

Let v 1 } . . . , v k b e a basis for N(T). We may extend this to a basis
vi>-••>**>vfc+i>--->v« of ^ Let r = n - / c . We put

"i = r v k + 1 , u2 = Tvk + 2 , . . . , u r = Tvk + r.

Consider a vector T\ in K(T). Let us write

then

Tv = ax TVi + ••• + ockT\k

30
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V

31

R(T)
N(T)

Fig. 3.1

since T\1 = T\2=-= T\k = 0. Thus {ul 9. . . , ur} spans R(T). To see that
these vectors are independent suppose

Thus

or

Hence we are in N(T) so for some constants yl9..., yk

or

But vx, . . . , vn are linearly independent vectors, so every coefficient /^ and
yt must be zero. Thus r = dim R(T) as required.

3.2 Representation by a matrix

As in the last section let T be a linear transformation of an n dimensional
vector space V into an m dimensional vector space W. Let vl9...,ynbe
a basis for V. Thus we may write any vector v in V in the form

and so we may regard the column vector (x1,...,xn)
t in Un as a

representation of the vector v in V. Now let wl 5 . . . , wm be a basis for W.
Since Tvl 9 . . . , Tvn are vectors in W we may write
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We can now find Tv from the equations above:

2nw2
+ amnwm)

1 +(a21x1 +a2Hxn)w2

Hence if we write

Tv = ^ Wi

and compare the two expressions for Tv we obtain

'21 ' 2 2

a1

a->

or y = Ax. Thus the matrix >4 represents the transformation T relative
to the basis v l 9 . . . , \n for V and the basis wl 5 . . . , wm for W. Of course,
given an m x n matrix >1 we can use 4̂ to define a transformation of Un

into [Rm by sending the column vector x to the column vector y where
y = Ax. However, this is not the only way to obtain a transformation
from a matrix A. Given a basis vx , . . . , vn for V and a basis wx, . . . , wm for
W we may send v = xx\t -\ h xn\n to y1^¥1 + y2w2 H h ymwm where
y = Ax. For this reason it is usual to confuse a matrix A with the
transformation which it defines, but only provided the context makes
clear what spaces and bases are implied.

3.3 Invertible transformations

A transformation T: F-> Wis said to be invertible if it is one-to-one and
its range is all of W, these being the necessary and sufficient conditions
to find for any vector w in W precisely one vector v in V with Tv = w.
We will write T - 1 w for the unique v such that Tv = w, provided T is
invertible.

The condition that T be one-to-one is equivalent to N(T) = {0}. For
if 0 # VGN(T) then Tv = 0 = TO, so that two vectors are mapped to 0.
On the other hand, if Tvx = Tv2, so that T(vx - v2) = 0, then
vx — v2eAT(T); so if two distinct vectors are mapped to the same image,
the null space will contain a vector different from zero.
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Evidently if T is invertible dim W = dim R(T) = rank T = dim V; this
is because rank T = dim V — dim N(T) = dim V — 0. Conversely, if
R(T) = W and dim VF = dim V, then once again nullity T = dim V —
rank T = 0 and so T is invertible.

Note that T" 1 is also a linear transformation (assuming T is
invertible). For if wt = Tvx and w2 = Tv2 then for any scalars a, jS

T(av1+)?v2) = aw1+iSw2.

Hence

So T'1: W-> V is also linear. This rather simple observation enables us
to derive a non-trivial fact. Let the matrices A and B represent T and
T"1 relative to preselected bases in V and W. Both matrices are square
and of the same size (why?) and AB = BA = I. Indeed, for any vectors v
in V and w in W9 T(T~ xw) = w and T~l(Ty) = v.

Notice that if for some matrices C and D, we have CA = / = AD, then

C = CI = CAD = ID = D.

Thus the matrix B with AB = BA = I is unique. Exercise: if ,41? = / and
A is square show that BA = I.

3.4 Change of basis

Let {v1,v2,...,vll} be a basis of V. If v is in V then the column vector
x = ( x l v . . , x j with

gives the co-ordinates of v with respect to the basis {v1 ,v2 , . . . ,vM} and
thus represents v. But if we switch to another basis {u 1 , u 2 , . . . , u n } for V
we will obtain a new co-ordinate vector X = (Xl9...9XJ for v where
this time

We examine the transformation ( x t , . . . , xn)r - » ( X t , . . . , XJ. Exactly as in
Section 2 we may write
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Thus

+plHXm)v1

Thus

x2

Pll Pl2

P21 P22

Pnl Pnl

Pin

Pin

x;

This should not really surprise us since P = (p0) represents the identity
transformation v-+v of V into V when {v1,v2,...,vn} acts as a basis in
K regarded as the domain of the transformation, while {u1 ,u2 , . . . ,un}
acts as a basis for V regarded as the range space of the transformation.

We note that the identity transformation is very obviously invertible,
so the matrix P has an inverse and we are justified in writing the equation

X = P ' 1 x .

Examples
(i) In (R2 the basis change is made from the natural basis

ex = (1,0)',e2 = (0, iy to the basis (1, l)',(l,2)r. Find new co-ordinates of
an arbitrary vector in terms of its original co-ordinates.

We have

and

thus

Hence

-[I U
P~X =
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Fig. 3.2. v represented by (xu x2/ and by (Xu X2)
f as x ^ + x2e2 = Xlul + X2u2

So

See Figure 3.2.

Remark
We remark here that if the original basis {v 1 ,v 2 , . . . ,v l l} is the

natural basis then, for example,

P21

Pnl

and this is the first column of P. We have in this case the interesting
and rather simple relationship

P = [u 1 , u 2 , . . . , u J ,

i.e. the columns of P consist of the new basis vectors.

(ii) In U2 a basis change is made from the natural basis to (cos 0, sin 6)\
(— sin 6, cos 6y (Figure 3.3). By the remark above

[~cos0 — si

| sin 0 cos 0

sin0~|

cos 0J
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Fig. 33

so

p-i =
— sin ^ cos0

Remark
Observe that if a change of basis is made from the natural basis

to an orthonormal basis, then

so that

3.5 Equivalent matrices

Let T: V-+ W be represented by A relative to the basis {v1,v2,...,vB} in
V and {wl9 w2, . . . , wn} in W. If we make a change of basis in both V
and W we have for some matrices P, Q

where X, Y are new co-ordinate vectors in V and W respectively. Hence
T is now represented by Q~lAP, as a simple substitution for Y and X
in the equation y = Ax will prove. We say that the two matrices A, B
are equivalent if for some non-singular matrices P, Q we have

B = Q1AP.

Thus two matrices are equivalent if they represent the same
transformation relative to different bases.
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Let A be m x n and consider the transformation T: x -> y = Ax of IR"
into Rm. Let r - rank X = dim R(T). Of course R(T) is the column space
of A because if A — [ax, a2, •.., an] where a1? a2,.. . , an are the columns
of A then

Ax = x ^ i + x2a2 + ••• + xnan.

Thus r is the maximum number of linearly independent columns. Let
{wl5 w2,. . . , wr} be a basis of #(T); for example, take any r linearly
independent columns of A Pick v1,v2,. . . ,vr so that

wx = Avl9 w2 = Ay 2,..., wr = A\r.

For example, if a l 9 a 2 , . . . , ar are linearly independent take \1 = e l 5

v2 = e 2 , . . . , v r = er.
Since nullity A = n - r we may pick v r + 1 , v r + 2 , . . . , v I I to be a basis for

N(^). Then v l 9 . . . , vr, v r + 1 5 . . . , vM is a basis for Un (why?). Now extend
{ w 1 , w 2 , . . . , wr} to a basis { w 1 , w 2 , . . . , w r , . . . , wm} of !Rn. Then relative to
these bases T is represented by

so that for some non-singular matrices P, Q we have

oTo
Evidently, if A is non-singular, then r = n.

3.6 Elementary matrices

A matrix obtained from the identity matrix by means of an elementary
row or column operation is called an elementary matrix. There are thus
three kinds of elementary matrix; typical examples are as follows.
(Undisplayed entries are zero.)

1 0 0 0 0 0
0 1

1

1 0 0 0 0 0
1

1

1 0 0 0 0 0
X

1

Recall that to perform an elementary row operation on a matrix A is
the same as premultiplying A by the corresponding elementary matrix
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(one obtained from the identity by the same row operation).
It is easy to see that elementary matrices are non-singular, their inverses

being elementary matrices of the same type.
Clearly column operations amount to basis changes; to see this note

that a column operation on a matrix A is equivalent to post-
multiplication, say to AE, but since E is non-singular E represents a
basis change for which P = E. Similarly row operations amout to basis
changes in the range space, since they take the form EA.

We know that any matrix A may be reduced by row and column
operations to the echelon form

We thus infer that for some non-singular matrices

Q-lAP = \

and in fact each of P and Q is a product of elementary matrices. Clearly,
if A is non-singular then k = n (otherwise Q~iAPek+i — 0, hence
A(Pek+l) = 0, so N(A) # {0}). Thus for A non-singular we conclude
A = QP~X and so A is itself a product of elementary matrices.

For a general matrix A we infer from the equation above that
k = rank A, since that is the dimension of the range space of Q~lAP.
The latter matrix represents the same linear transformation as does A
(though relative to different bases), so it must have identical rank.

We conclude our revision of rank by deducing that A and A1 have
identical rank. First note that if P is non-singular then (P"1)' = (/")"" *•
Indeed, since PP~ l = / we have, taking transposes, (P~1)tPt = /, and
the result follows. But now

where r = rank A. Taking transposes we obtain

Now interpreting Pl and Ql as the matrices corresponding to basis
changes, we read off that r = rank Ax.
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3.7 The orthogonal complement S1

Recall that, by definition, a line segment / is perpendicular to a plane
P if it is perpendicular to every line in that plane (Figure 3.4). We
generalise this as follows. If S is any set in Rn we say that v is orthogonal
to S if for all s in S

<v,s> = 0,

that is, v is perpendicular to every vector lying in S. For a given 5 the
set of such vectors v, is called the orthogonal complement of S and is
denoted by S 1; that is,

In Figure 3.5 we sketch three examples of S1 when S is (a) a pair of
vectors, (b) a line through 0 and (c) a plane through 0.
We note that S1 is always a vector space, even if S is not a subspace.
This is easily verified; if u and v are in S1 then, for all s in S

Evidently S ^ S 1 1 , since if s is in S, then for every v in S1 we have
<s,v> = 0. When 5 is a subspace (and in fact only then) the inclusion
may be improved to an equality. The reason for this is the following.
Suppose that { u u . . . , ^ } is an orthonormal basis for S and that
{ u k + 1 , . . . , u k + ^ } is an orthonormal basis for S1. {ul,...9uk+^} is then
an orthonormal basis for the whole space R". Indeed, if this were not a
basis we could extend the linearly independent set { u x , . . . , u k + / } to an
orthonormal basis, say to { u x , . . . , uk + , , . . . , un}. But, then un would be
orthogonal to the vectors {u l 9 . . . ,u f c} and, since these vectors span 5, un

would also be orthogonal to the whole of S. Evidently, that puts un into
S 1 and so makes it linearly dependent on { u k + 1 , . . . , u k + , } , which is

Fig. 3.4
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5={slfs2}

(a)

plane through
Oand S

(b)

Sl

Fig. 3.5

absurd. Thus { u l 9 . . . , u k + <f} is an orthonormal basis for IRn and we now
read off the information that

3.8 The orthogonal complement of N(A)

If A is the 1 x 2 matrix (al9a2) we see (Figure 3.6) that N(A) is the line
with equation

which has normal direction (al,a2f. Thus NiA)1 is the set of multiples
of (aua2y; thus N(A)1 = R(A<). Similarly, if A is the 2 x 3 matrix

ax a2 a

we have (x1,x2,x3) f6iV(i4) if and only if

Cl^X^ ~\~ (X2X2 T" ^ 3 X 3 ^ U I
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Fig. 3.6

Thus (al9a29a3y and (b1,b2,b3)
t are each orthogonal to every vector x

in N(A). But R(Af) here is the set of linear combinations of (al,a2,a3)
t

and (bl9b2, b3f and such vectors thus lie in N(A)1. We now give a proof
that this phenomenon occurs generally.

Theorem
For any real matrix A

R(A') = N(A)1.

Proof. Since N(A)11 = N(A) it suffices to prove that RiA1)1 = N{A) or,
equivalent^, R(A)1 = N(A'y

Suppose then that z e R(A)1. Thus for every y e R{A\ < y, z > = 0. Hence
for every vector x, since AxeR(A\ we have

0 = z'Ax = = < A% x >.

Thus Alz is orthogonal to each and every vector x. Hence Alz = 0. Thus
zeN(AfX i.e. RiA)1 c N(A').

Now suppose zeN(Af). We show zeR^) 1 .
Consider any y in R(A). Let y = Ax. Then

A'z = 0 => 0 = xf A'z = (Axfz = y'z = < y, z >,

so z is orthogonal to any y in R(A). Thus N(A') ^ /^(A)1 and the
theorem is proved.

Example
Prove that for a real mxn matrix A

rank (A1 A) = rank (AAf) = rank (A).

Proof. In fact we show R(AAf) = R(A). This is equivalent to showing
) 1 = N(At)1 or N(v4A') = N(A').
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If zeN(Af) then Afz = 0, so AAxz = 0, giving zeN(AAl).
Thus N(A') c N(AAr).

IfzeiV(XAr) then AAfz = 0,sozUA'z = 0or || Az||2 = 0. Hence Az = 0.
Thus JV(4Xf) c N(A').

3.9 Rank of
Let A be m x k and B be ic x n. Now if xelR" then Bx is in IRfc and
ABx is in Um. We note that /^(AB) is the image under A of R(B)
whereas R(A) is the image of all of (Rounder A, see Figure 3.7.

<R(A)

Fig. 3.7

We

Also

have

rank (AB) = dim R(Al

rank (AB) = rank ((XI
= rank(B'^

?)^dim^(/l) =

l')^rank(Br) =

0 /

^ ^

rank (X).

rank(B).

Thus
rank (AB) ^ rank A, rank B.

We can get a lower estimate on rank (AB) by considering the action of
A on R(B). Let T be the transformation from R(B) to (Rm where

Tz = Az forzER(B).
Then

Hence

Now

N(T) = N(A)nR(B).

nullity (T) ^ nullity (A) = k - rank (A).

rank (T) = rank (AB),

rank (T) + nullity (T) = dim R(B) = rank (£),

rank (B) - rank (AB) = nullity (T)^k- rank (A).
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Thus
rank (A) + rank (B) - k ^ rank (AB).

Example
If C = ,42* and both C and A have rank fc, what is the rank of B?

Solution. By the first inequality, k = rank C ̂  rank B. By the second
inequality, k + rank (B) — k ^ rank (C) = fc. Hence rank (B) = fc.

3.10 Rank via subdeterminants

If A is any matrix, then a matrix obtained from A by the deletion of
some of the rows and/or columns of A is called a submatrix of A.

Theorem
An m x n matrix A has rankr if and only if

(i) every square (r + 1) x (r + 1) submatrix is singular, and
(ii) at least one r xr submatrix is non-singular.

Proof. Let A have rank r. Write A = [a l 5 . . . , a J where a l 5 . . . , an are the
columns of A. We may suppose that ax , . . . , ar are the maximum number
of linearly independent rows of {a t , . . . , an}. Choose r such rows to obtain
an r x r non-singular submatrix.

We now drop the assumption that a! , . . . ,a r are linearly independent,
but continue to assume that A has rank r. To see that any (r + 1) x (r + 1)
submatrix is singular, consider for example a submatrix B which is also
a submatrix of [a1 ? . . . ,a r+ J . Now for some scalars ccu...,ar+ x not all
zero we have

Striking out irrelevant rows in this relationship shows that B has rank
at most r so is singular.

The theorem is now clear.

Example
The matrix A below has rank 2.

1 1 2
2 1 1
5 1 - 2
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Indeed det (A) = 0, so all (i.e. all one of) 3 x 3 submatrices of A are
singular, and

,2 1,

is clearly non-singular (since det B = — 1).

3.11 Solubility of equations

We close this discussion of matrices with a trivial remark: the equation
Ax — b has a solution if and only if beR(A). This is of course equivalent
to demanding that rank(,4|b) = rank (4). We shall have more to say on
this topic in the chapter on inverses (see Section 8.3).

3.12 Revision exercises

l. If

- 2

form (AB)1 and BfAf and verify that these are equal. Use these examples show
that each of the following assertions is not true in general

(i) AB = BA,
(ii) (ABf = AlB\

(iii) A = A* and B = Bl implies AB = (AB)1. (Note if A = Al we say that 4 is
symmetric.)

2. If ,4 is symmetric show that BfAB is symmetric.
3. If

1 0 - 2

- 1 3 0

calculate BlB and BB* and hence verify that these are both symmetric but not
equal.

Revision of partitioned matrices: If

\ B (
A3 AJ \B2

where the A( and B, are submatrices, recall that

AAB
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4. If

2 - 5

- 2 4

- 1

0
2

5
- 3

2

- 1
- 1

2
4

- 1

3"
6
1

- 1
2

calculate AB by straightforward multiplication and also by block manipulations
(see the formula cited above).

5. If AltA2,A3 are non-singular matrices prove that

Ax
0
0

0
A2

0

0
0

A3

A;1

0
0

0
AV
0

0
0

A3
l

6. In IR3, the basis is changed from {(l,0,0)',(0, l,0)',(0,0,1)1} to {(1,2,3)%
(3,1,2)', (2,3,1)'}. Express the new co-ordinates in terms of the old.

7. If new co-ordinates are given in terms of the old by the equation

x2
x3

=
"1
2

1

2
1
1

l"
0
1

x2

*3

and the old co-ordinates refer to the natural basis, what is the new basis?
8. In IR2 new axes are obtained by rotating the old axes through n/6. Express

the equation of the ellipse

x2 + 2x2 = l

in terms of new co-ordinates XltX2-
9. Explore the effect of multiplying the matrix

A =

a b c

d e f

g h i

on the left or right by the elementary matrices

0
1

0

1

0
0

0
0

1

1

0
X

0
1
0

0
0

\m

1

0

p

k

1

0

0

0
1

1

0

p

0
k

0

0

0
1.

10. Let {pl9 p2, p3)\(ql9 q2, q3)' be non-zero vectors in R3. Explain why (rl,r2,r3)
t

is orthogonal to both these vectors if and only if



46 Matrices

Solve these equations for (rl,r2,r3)
t and deduce that the vector

r = Pi P2 P3

is orthogonal to p, g. (Here ct = (1,0,0)', e2 = (0, 1,0)', e3 = (0,0,1)'.)
11. Using the last example find the orthogonal complement in R3 of the subspace
5 spanned by (0,0, - 1 ) ' and (1,2,3)'.
12. For each of the following matrices find R{A), N(A\ R(A% N{Af) and draw
diagrams to illustrate these subspaces. In each case check that

(b)(a)

13. Find the ranks of the following matrices. From each matrix pick out a set
of linearly independent columns and a set of linearly independent rows which
both contain the same number of vectors as the rank.

(i) c: o - 2
5
1

1
1
1

1
- 2

2
(")

' 2

3
1

14. Show that the theorem of Section 3.8 remains true when A is a complex
matrix provided that A1 is replaced by A*, the complex conjugate of the transpose.
(All the theorems about rank are therefore also true for complex matrices if A*
replaces A\)
15. If P is non-singular show that the two systems of linear equations

^x = b; PAx = Pb

have the same solution set.
In solving the equations Ax = b by successive elimination of the variables we

are essentially reducing the augmented matrix (A | b) to echelon form by a sequence
of row operations. Explain this and what it has to do with the previous paragraph
and the fact that

= (PA\Pb).

16. Consider the n straight lines in U* defined by

aix + biy = ci ( i= 1,2,...,n).

Explain why the condition that they should all pass through a common point
is that the matrices

(a|b), (a|b|c)
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should have the same rank (the « x l column vectors a, b and c are defined in
the obvious way).
17. Prove that three points (Xf,^)' (i = 1,2,3) are collinear (i.e. lie on the same
line) if and only if the matrix

x2 y2

has rank less than 3.
18. Show that AB is singular if A is m x n and B is n x m where w < m.
19. Show that AB has the same rank as A if B is non-singular.
20. Find a relationship between the dimensions of the solution subspaces of the
two systems of linear equations

and show that when A is a square matrix, they are the same.
21. Given a real m x n matrix A and a n w x l column vector b, show that only
one of the following systems can be consistent.

(i) Ax = b (ii) /4'y = 0 and y'b^O.

(Hint: Use the theorem of Section 3.8.)
22. A subspace S of dimension (n — 2) in R" is given as the solution set of the
equations

<u,x> =

Show that the general hyperplane containing S has for some k the equation

<u + Av,x> = 0.

How does this generalize to an affine subspace S of dimension (n — 2)?
23. If S s Rn show that x is orthogonal to every element of 5 if and only if x is
orthogonal to every element of Lin (S).
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4.1 Direct sums

If X is an n dimensional vector space and {xl 5 . . . , \n} is a basis consider
the subspaces

y = L i n { x l J . . . , x k } ,

Z = Lin {x k + ! , . . . ,x n } .

If x is any element of X, then

x = a1x1 + --. + afcxk + afc + 1xfc+! + ••• + <xnxn

= (a1x1 -f ••• + afcxk) + (ak + 1xfc+1 + ••• + anxII),

where als...,aM are unique. Thus x may be written uniquely as

x = y + z with yeY and zeZ.

Generally, if Y and Z are subspaces of a vector space AT such that any
x in X may be written uniquely as

x = y 4- z with ye Y and zeZ,

then we say that X is a direct sum of Y and Z; symbolically this is rendered

X=Y®Z.

Example

If 5 is a subset of R" recall that S1 is defined by

5 1 = {x:<x,s> = 0 for all seS}.

If S happens to be a subspace we have the result

To see this suppose that x = s + t = s' + t'; then 0 = (s — s') + (t — t') and

48
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Fig. 4.1

since (s — S')GS and (t-t')eS1 we have by Pythagoras' theorem (see
Figure 4.1) that

0 H | s - s ' | | 2 + | | t - t ' | | 2 ,

so

0 = s - s' and 0 = t - 1 ' ,

thus securing uniqueness. We have already shown that SuS1 spans Rn

(see Chapter 3, Section 3.7).

4.2 Projections

If X = Y®Z we define a mapping P:X -+ Y as follows. If x is in X then
there is a unique y in Y and a unique z in Z such that x = y + z. We let
Px be y. Thus

z = (/ - P)x.

Px is called the projection of x onto Y parallel to Z. For a physical
explanation of this terminology in three dimensions, consider an
'idealised' pin-hole projector which sends out a single beam of light (i.e.
in the form of a straight line) and a two dimensional screen. The image
(a point of light) on the screen obtained when the projector is placed at
some point in space depends on both the position of the screen and the
direction in which the projector emits the light beam. It projects from
x onto the 'screen' Y parallel to a 'direction' Z. Now consider a
one-dimensional screen (an infinitely thin line of screen material) and a
projector which emits a sheet of light (two-dimensional emission). The
sheet of light may be characterised as being parallel to a given
two-dimensional space Z. We place the projector at a point x and the
projected sheet lights up a single point on the screen (at the intersection
of the light sheet and screen).
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We claim that P is a linear transformation. This results from the
uniqueness of the representation. Suppose x = y + z and x' = y' + z' with
y and y' in Y and z and z' in Z. Then for any scalars a and /} we have

and so P(ax + j?x') is the point ay + jSy'.
Note that for any z in Z, since z = 0 + z we have Pz = 0; conversely,

if Px = 0 then x = (/ — P)x and this is in Z by our earlier observation.
Thus N(P) = Z.

Clearly the range of P is Y; now let y be in Y, then y = y + 0, so
Py = y. But, for any x, Px is in 7, so P(P\) = (Px). Thus

P2 = P

and we refer to this relation by saying that P is idempotent.

4.3 Idempotents are projections

Let P be a linear mapping with P2 = P; we are going to. show that P
represents a projection. With this in mind, let Y= range P and Z = N(P).
We claim that X=Y@Z.

Given x consider x — Px. Clearly

P(x - Px) = Px - P2x = Px - Px = 0.

Thus z = x - PxeZ and y = Pxe Y and, of course, x = y + z. Next, we
must check whether this representation for x is unique. Suppose therefore
that x = y' + z' with y'e Y and z'eZ. Observe that

y — y' = z' — z

so

Put y' = Px'. Then

y = Px = P2x = P(Px) = Py.= Py' = P(Px') = P2x' = Px' = y'.

Hence also z = z'. Thus P projects onto Y parallel to Z.

44 Orthogonal projections

If S is a subspace of Un the projection P onto S parallel to S1 is referred
to more simply as the orthogonal projection onto S.
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Let us identify P with the matrix which represents it. Then P2 = P;
moreover, for any x and y in Un we note that Px lies in S while (/ — P)y
lies in S1 so the two vectors are orthogonal, i.e.

< Px, (/ - P)y > = 0 for any x and y.

Thus

xrPr(/ - P)y = 0 for any x and y.

Taking for x the basis vector ef (with 1 in position i and zeros
elsewhere) and for y the vector e, we obtain that the ij'th element of
P\I - P) satisfies

Since this result is valid for all i and j we have

P\I-P) = 0

or Pr = P'P. From this we deduce P" = P'P" = P\ so that P is symmetric.
The argument above may be reversed (also we have R(P)L = N(P') = N{P)).
Thus orthogonal projections are precisely those which are represented
by symmetric idempotent matrices.

4.5 Representation of an orthogonal projection

The easiest way to arrive at a formula for the orthogonal projection of
a point onto a subspace 5 is to refer to an orthonormal basis for S.
However, this is not necessarily the most convenient way to calculate
the projection, as we shall see in the next section. If {e1 ,e2 , . . . ,ek} is an
orthonormal basis for S the projection is

Px = <x,e1>e1 + ••• + <x,ek>ek.

Indeed, if {ex , . . . , ek, ek + x , . . . , en} is an orthonormal basis for the whole
of space then

X — K X > e i ) e i + •** + (*»efc)efc) + ( ( X » e H
inS inS1

and so the result follows.

4.6 Projection onto a column space

Let A be a matrix or size m x n and of rank n. We know that the rank
of A* A is also n, and we note that A1 A is square of size nxn.lt is natural
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to consider its inverse (A'A)~l. The relation

is of interest, since it shows that the matrix L = (A*A)~l A1 is a left inverse
for A in the sense that LA = /. One is immediately tempted to study the
matrix AL; now, clearly not much more can at first be said than that
ALAL = AL (playing on the fact that LA = /). Thus XL is an idempotent.
A natural question is whether it is symmetric. Indeed it is. Thus P = AL
represents an orthogonal projection onto its own range. We determine
that range. If y = Px then y = ALx so y is in R{A). But if z is in R(A)
then z = Ax\ say, and z = A(LA)xf = AL(Ax'\ so z is in the range of P.

We have thus arrived at a more useful formula for the determination
of an orthogonal projection. For example if {xl9...,xk} is any basis for
a subspace S of Un form the matrix A whose columns are the vectors
{xl9...9xk}. Then A is n x k and of rank k. Now calculate P as above.
This is less messy than the construction of an orthonormal basis for S
out of {x! x4}.

Example
Let S = Lin(l, — 1)'. Find a matrix which represents orthogonal

projection onto S.
Take

-[-:}
Then

Thus

Note that

= ir x~y i
We check this result (Figure 4.2) using the formula of Section 4.5.
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(x,yY

Fig. 4.2

47 Least squares analysis

We use projection matrices to find the best straight line through a given
set of points which arise, say, as experimental data. For example, suppose
that a car travels with constant velocity v starting at some point a. The
distance y it has travelled by time t is measured for various values of t
and tabulated thus:

t

y
0
2

3
5

5
6

8
9

10
11

The tabulated points are plotted in Figure 4.3. It soon transpires that
the plotted points are not collinear, that is, if we seek values a and v so

11

9

6
5

-

-

/

i
3

/

/

1
5

y

8

/

\ ^
10 t

Fig. 4.3
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that y = OL + vt describes the car's motion we find that the equations to
be satisfied by a and v shown below are inconsistent.

5 = a + 3v

6 = ot + 5v

9 = a + 8t;

l l = a + 1 0 t ;

(1)

(2)

(3)

(4)

(5)

or

1
1
1
1
1

0
3
5
8

10

b = /4x, where b = (2,5,6,9,11)'

and x = (a, v)' while

A =

For instance, the first two equations give v = 1 while the first and third
equations give u = 0.8. Let us assume that experimental errors r l 5 . . . ,r5

have crept into the data. Then b — r = Ax may give a consistent set of
equations where r = (rx,r2,...,r5)f. However, we do not know r, the
vector of errors.

One technique for assessing a and v is to regard r as a variable and
to seek values for x and for r satisfying the equation Ax + r = b with the
added requirement that r is selected in such a way that || r || is a minimum.
In other words we are seeking a and v subject to the 'total' error Zr?
being held down to a minimum consistent with the data. Note that
our 'total' error is expressed as a convenient measure of the individual
errors Without permitting counterbalancing of positive and negative
errors.

Since we are minimising || Ax — b||, over all x we can see this as the
problem of finding a point Ax (in R(A)) which is at minimum distance
to the point b. But that evidently occurs at the foot of the perpendicular
from b to the subspace R(A) (Figure 4.4). We thus require to calculate
the orthogonal projection P onto the column space of the matrix A
precisely as in Section 4.6.

Let us just check the intuitively derived statement, viz. that the distance
is minimised at the foot z of the perpendicular from b to R(A). This
follows from Pythagoras' theorem. Consider any other y in R(A). Then,
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Fig. 4.4

Fig. 4.5

R(A)

S = R(A)

since z — b is orthogonal to z - y we have (see Figure 4.5)

| | y - b | | 2 = | | y - z | | 2 + | | b - z | | 2

We return to the calculation. If z is at the foot of the perpendicular
let z = Ax'. Then Ax' = Pb = ALb, where L is the left inverse of A as
calculated in Section 4.6. But then x' = LAx' = LALb = Lb = (A'A)' U'b.

In our example we have

Lo 3 5 8 lOj , , L

1
1
1
1
1

o"
3
5
8

10

26 198

This has as inverse

1 1" 198 - 2 6 '

3T4I - 2 6 5
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Also Afb = (33,227)'. Thus

x' = (632,277)'«(2.012,0882/
314

and so we have estimated (cc9v) as (2.012,0.882).
In a later chapter we shall return to the subject of projections and

their relation to various generalisations of the inverse of a matrix (such
as the left inverse introduced above).

4.8 Exercises

1. Let 5 be the subspace of R3 spanned by (1,2,3) and (1,1, - 1 ) . Find a matrix
so that P(x1,x2,x3)r is the orthogonal projection of (x1 ,x2 ,x3) t onto S.

2. An input variable 0 and a response variable y are related by a law of the form

with a, b being constants. Observation of y is subject to error; use the following
data to estimate a and b by least squares'.

e

y

0

4.1

TT/6

3.4

7C/4

2.7

71/3

2.1

7T/2

1.6

3. Find the least squares fit for a curve of the form

m
= —he

x
given the following data points.

X

y

l

5

2

3

3

2

5

1

Why would it be wrong to suppose this was equivalent to the problem of fitting
a curve of the form

through the data points (xy, x)?
4. The following table shows the amount of electricity, y, generated by a steam

plant in the United Kingdom in the ten years, t, 1945-1954, and the amount x
of coal used in the generation. Estimate a linear relationship between y, x and
t by least squares.

t

X

y

1945

23

37

1946

23

41

1947

27

43

1948

29

47

1949

30

49

1950

33

55

1951

35

60

1952

36

62

1953

37

65

1954

40

72
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5. Find the least squares solution to the system:

1

x, =a.

6. A variable y is linearly related to a variable x. k observations on y, all subject
to error are available corresponding to each of the values x1 ,x2 , . . . ,xn . Denote
by ytj the 7th observation corresponding to the value xt. Show that the line fitted
to such data by least squares is the same as that fitted to the data set (xi9yf) for
i= l , 2 , . . . ,w with

1 k

7. Show that if Ax = b is consistent then every solution of A1 Ax = A'b also
solves the original system.

8. Suppose 5: F-» V is a linear transformation and X and Y are subspaces of
V such that S(X) c X and S(Y) c Y. Show that if

V = X@Y

then

9. Let X be a subspace of the space V. Let P denote the orthogonal projection
onto X and let Q = / - P. Show that

Lin {XvY} = Lin (XuQ(r)}

for any subspace Y. Interpret this result on a diagram when X and Y are
1-dimensional subspaces of R3.
10. Let A and B be matrices of respective sizes mxk and m xj . Let C be the
partitioned matrix (A\B). Denote by PA the orthogonal projection onto R(A)
and let QA = I-PA- Show that

(i) ^ 1

(ii)
(hi)

Interpret these results on a diagram where A and B are both 3 x 1 columns.
[Hint: For (iii) use Question 9.]
11. With the same assumptions on A, B and C as in the previous question show
that

[Hint: Interpret this result geometrically and use the previous question.]
12. For any vector x in U" show that P = xx' is an orthogonal projection onto
Lin {x}.
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13. Verify that for V=Rn and L,M subspaces of V

holds if and only if

L n M = {0} and Lin ( L u M ) = K

where Lin (S) is the smallest vector subspace containing S. Assuming (*) prove that

L 1 n M 1 = {0}

and that

Deduce that L 1 0 M 1 = K



Spectral theory

5.1 Eigenvalues and eigenvectors - revision

We confine our attention for the moment to square matrices A. We
say that X is an eigenvalue (characteristic root, latent root) of the
matrix A if and only if

A\ = Xx

for some x # 0. A vector x ^ 0 which satisfies the equation is called
an eigenvector corresponding to the eigenvalue X. If x is an
eigenvector then so is ax for any a ^ 0. A normalised eigenvector x
satisfies ||x|| = 1.

Let X be an eigenvalue of the n x n matrix A, then

(A - XI)x = 0

has a non-zero solution so the matrix A — XI is singular and
therefore has a zero determinant, i.e.

\A-XI\=0.

We call p(X) = \A — XI\ the characteristic polynomial of A. It is a
polynomial of degree n if A is of size n x n. Let us write

Since this polynomial has n (possibly complex) roots Al5 A 2 , . . . , A n we
have also the representation

p(X) = (Xl-X)(X2-X) . . . ( A . - X).

Recall that some of the roots (or rather their values) may be
repeated in the listing Xu X2,..., Xn and that the number of times a
root is repeated is called its multiplicity. Thus the square matrix A
has n eigenvalues, multiple roots being counted according to

59
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multiplicity. It is sometimes useful to observe that

so that

trace (4) = {Xx + k2 + ••• + kn).

The collection of eigenvalues of A (also known as the spectrum of
A) plays an important part in constructing a new basis relative to
which the transformation A is represented by a simpler matrix. The
hopeful simplification is of course a diagonal matrix with the
eigenvalues as entries. The idea lying behind the simplification is that
if eigenvectors are chosen as basis elements the transformation acts
on each basis element by simply scaling it; the scaling factor here is
of course the corresponding eigenvalue. More will be said on this
point in the following section.

The choice of the term 'spectrum' is of interest. Recall that the
passage of a ray of white light through a prism gives rise to a
spectrum of rays of different colour. However, light of a single colour
is transformed by the prism into the same colour, just as an
eigenvector is transformed into itself, apart from a scaling factor.
This is not just an analogy, the connection being in the way that the
phenomenon of light is represented in physics.

5.2 Similarity

Recall that the matrix equation

where A is m x n defines a linear transformation from Un to Um, the
natural bases being selected in these spaces.

By choosing new bases in IR" and IRm we can represent the same
linear transformation by a matrix of the form

If the new basis vectors in IR" are arranged as the columns of a
matrix P and the new basis vectors in IRm are likewise arranged as
the columns of Q, then as we have seen in the chapter on matrices
the old and new co-ordinates are related by

x = PX and y = QY.
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Then Q\ = APX and so the new representing matrix is B = Q 1AP.
We say that A and B are equivalent matrices.

If A is an n x n matrix, it defines a linear transformation of Un

into itself (with respect to the natural basis). In this case we are
obviously interested in having both basis changes coincide, viz.
P = Q. The question then arises: how simple can we make the matrix
representation B of our linear transformation y = Ax given that P = <2? If

B = P~~lAP,

we say that A and B are similar. What then is the simplest matrix B
similar to A!

If A has n linearly independent eigenvectors the answer is easy. We
simply take these eigenvectors to be our new basis (i.e. the columns
Pi>P2> >P* of P). Write

Then

^iPl + ^2P2 + ••• + YnPn = y = Ax

+X2Ap2

i.e.

Y2 =
or

Thus with respect to the new basis P l , P 2 , . . . , P n the linear
transformation y = Ax is represented by a matrix which is diagonal
the diagonal entries being the eigenvalues of A. Equivalently:

D

0

0

provided the columns of P are n linearly independent eigenvectors of A.
When does A have n linearly independent eigenvectors? This is

easily shown to be the case when all the eigenvalues of A are distinct.
What happens if the eigenvalues are not distinct?
The results above remain valid provided that any eigenvalue of
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multiplicity greater than 1, equal say to /c, has k linearly independent
eigenvectors. Alas, this is not always the case. The dimension of the
eigenspace (the subspace spanned by the eigenvectors corresponding
to that eigenvalue) might well take any value between 1 and k.

A matrix which does not have n linearly independent eigenvectors
is called defective. It is not similar to a diagonal matrix. It may be
shown that such a matrix will be similar to a block diagonal matrix,
i.e. a partitioned matrix in the form (undisplayed entries are zero)

J =

Jl

Jl

Jr

where each block is of either of the two Jordan types:

~A 1 0

A 1

1

A

If a matrix is in block diagonal form with the blocks as above, we say
that the matrix is in Jordan canonical form.

53 Unitary and orthogonal transformations

In what follows we shall suppose that we are working in the space
C". As usual if the space is IR\ the assertions should be translated
according to Table 5.1.

Table 5.1

Cn

transpose
A1

orthogonal matrix
symmetric matrix

conjugate transpose
A*
unitary matrix
hermitian matrix
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Consider again a n n x n matrix A which defines the linear transformation

y = Ax

from C to itself where it is understood that the natural basis is to be used.
We know that for a non-defective matrix A, we can choose a new

basis Pi, p2>--->Pn (consisting of n linearly independent eigenvectors
of A) with respect to which the linear transformation takes the form

where B is a diagonal matrix whose diagonal entries are the
eigenvalues of the matrix A. Equivalently,

0

and p1? p 2 , . . . , pn are the columns of P.
The natural basis is orthonormal. Our natural greed for simple

forms impels us to demand that our new basis also be orthonormal.
That is to say we ask the question: for what matrices A can we find
an orthonormal set of eigenvectors?

If p x , . . . , pn is an orthonormal set the matrix P will be called
unitary (i.e. P* = P"1). In this case we have that

B =

0

= P*AP.

The answer is gratifyingly simple. A matrix has this property if
and only if it is normal, i.e. A*A = AA*. (See Exercises 6.6.)

The most important class of normal matrices are the hermitian
matrices which have the property that A = A*. Other examples of
normal matrices are unitary matrices (PP* = / = P*P) and
skew-symmetric matrices (A = — A*).

Hermitian matrices have the two further pleasant properties that
all their eigenvalues are real and that eigenvectors corresponding to
distinct eigenvalues are necessarily orthogonal. The proof of the first
fact is easy. Suppose that

Ax = kx,

then
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Hence

Also
x*(Ax) = (x* A)x = Xx*x = X || x ||2.

Therefore, since || x || ^ 0,

A = I

and so X is real. In particular we draw attention to the result below:

The eigenvalues of a real symmetric matrix are all real.

As regards the second property, let A # ^ be distinct eigenvalues and
let p and q be corresponding eigenvectors. We have

Ap*q = (Ap)*q = (Ap)*q = pMq = /ip*q.

Thus

and so p*q = 0.

Example
Consider the real symmetric matrix

1 3 0
3 - 2 - 1
0 - 1 1

Thus

\A-XI\ =
\-X 3 0

3 - 2 - A - 1
0 - 1 1-/1

—12.

One root of this is obviously X=\. Hence we have the factorisation
for p(X) as (1 — X){4 + k\X — 3). Thus the eigenvalues are 1, — 4,3
which are all real. They are distinct in this case so we expect the
corresponding eigenvectors to be orthogonal. We have, solving
Ax — Ax succesively for A = 1, — 4, 3:

= 0,

so x2 = 0 and x3 = 3xl5 i.e. x = (x1,0, ix^1 = x1(l,0,3)*. Thus the

1 -
3
0

1 3
- 2 -

1
1

1

0
—1

1
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eigenspace for A = 1 is spanned by (1,0,3)'. Proceeding to A = — 4 we obtain

"1+4 3 0
3 - 2 + 4 - 1
0 - 1 1 + 4

= 0,

so

i.e.

= 5x3 and — 5xx = 3x2 = 15x3

= (-3x3 ,5x3 ,x3)' = x3(-3,5, l) ' .

Thus the eigenspace for A — — 4 is spanned by (— 3,5,1)'. Finally for
A = 3 we have

(A - 3/)x =
1 - 3 0

3 - 2 - 3 - 1
0 - 1 1 - 3

x = 0,

so that

i.e.

x 2 =—2x 3 and 2xx = 3x2 = — 6x3,

x = ( - 3x3, - 2x3, x3)' = x3( - 3 , - 2 , 1)'.

The eigenspace to value 3 is spanned by (3,2, — l)r. Normalising the
three vectors we have just calculated, gives the orthonormal set:

Pi =
1 1 3

5
1

> P3 =
1

/ i A

V

3
2

- 1

We may check orthogonality:

<P3,Px > = -4^(3-1 + 2-0 + ( - l)-3} = 0.

Hence
1
0
0

0
- 4

0

o"
0
3

= p*= P* 3 - 2 - 1
0 - 1 1

P,
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where

' "

1 - 3 3

5 2

V35 ^Jl4
1 - 1

V35

Example
Consider the real symmetric matrix

A =

We have

\A->

7
- 1 6

- 8

1/1 =

- 1 6
7
8

'l-k

- 1 6

- 8
8
C

- 1 6
7-/1

-5-/1

=/I3-9/12-405/1-2187.

Those interested may check that the roots are kx — 27 and
X2 = X^= — 9. The single root kx = 27 yields without difficulty the
eigenvector qx = (— 2,2,1)'. The eigenvalue — 9 has multiplicity 2.
Since A is real and symmetric (and hence normal) the general theory
assures us that:

(i) The eigenvectors corresponding to — 9 are all orthogonal to
those corresponding to 27

(ii) We can find two orthonormal eigenvectors corresponding to
— 9 (since it has multiplicity two).

To find the eigenvectors corresponding to — 9 we consider

(A + 9/)x =
7 + 9 - 1 6 - 8
- 1 6 7 4-9 8
- 8 8 - 5 + 9

x = 0,

which system reduces to the one equation 2xx — 2x2 — x3 = 0. The
eigenvectors in this eigenspace are thus

(x1,x2,2x1 -2x 2 ) ' = (xl9092xJ + (0,x2, -2x 2 ) '

= x1(l,0,2)' + x 2 (0 , l , -2 ) '

and therefore form together with the zero vector a two-dimensional
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space. The vectors (1,0,2)' and (0,1, — 2)' are a basis for this space.
We can find two orthonormal eigenvectors by using the

Gram-Schmidt process. Take q2 = (1,0,2)' and
q3 = j?(l,0,2)' + y(0,1,-2) ' , then

We want q2 and q3 to be orthogonal and so we choose /? = 4 and
y = 5. Then q3 = 4(1,0,2)' + 5(0,1, - 2)' = (4,5, - 2)'. An orthonormal
set may now be obtained by normalising the chosen vectors. We have

P i = :
1

- 2
2
1

1

'7* P3 =
1

745

4

5

- 2

Thus

7
16

-8

- 1 6
7

8

- 8
8

- 5
P =

27

0

0

0
- 9

0

0
0

- 9

where

P =

J- 2

T" 75 745
2 0 i -
3 ^ 4 5

1 _2_ -J^_
3 7/5 r?45

5.4 Spectral decomposition

Let A be a normal matrix (usually hermitian, or real and symmetric).
Then we know that

X*AX = A =

Ai 0

0 A2

0 0

where the columns of the unitary matrix X are an orthonormal set
of eigenvectors Xi,x2,.. . ,xn. To say that X is unitary means that

X*X = XX* = /.
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Let us examine the implications of the equations X*X = I and
XX* = / for the eigenvectors xl9 x 2 , . . . , xn. We observe that the equation

/ = x*X = [x1,x2..xr] =
x*xx

simply confirms that {xl9x2,..-9xH} is orthonormal because
x*xJ=<xJ. ,xJ>. But

is more interesting. Note that

is an n x n matrix being an (n x 1) x (1 x n) matrix product.
The spectral decomposition of A is the formula

A = A^X* + A2
X2X* + •" ^nXnX*'

The proof of this formula is trivial. We have that

-f — h Anxnx* = Ax^* *

= AI = A.

The geometric interpretation of the matrices Et = x(xf is of interest
(Figures 5.1 and 5.2). We have already shown the first of the following
properties:

(i) Ex + E2 + —h En = I,
(ii) EiEj = 0(i^j%

(iii) £? = £,.
To prove (ii) observe that EiEJ = (xfxf)(xjxf) = x^xfx^x,. = xfix* = 0
provided that i ̂ j. To prove (iii) we write
E] = (xfxf )(xjxf) = Xi(x*Xi)x* = xy 1 -x* = xfx* = Eh

Item (iii) says that Et is an idempotent and hence it represents a
projection. In fact E( is the orthogonal projection of Cn onto the
subspace spanned by xt.

Since {x1,x2, . . . ,x l l} is a basis for Cn, any x in Cn may be
expressed uniquely in the form

= a1x1 +a 2 x 2
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Fig. 5.1
(1,0) '

y = Ax

Fig. 5.2

Hence

~ Z a .̂x,- =

5*5 Quadratic forms

A quadratic form is an expression

x*Ax,

where A is a hermitian matrix.
Let the eigenvalues o{ Abe Xl,X1,...,kn. These are all real. Let

the corresponding orthonormal eigenvectors be p l9 p 2 , . . . , pn. If we



70 Spectral theory

change from the natural basis to the basis P i ,p 2 , . . ,p n , then the new
co-ordinate vector X is related to the old co-ordinate vector x by the
equation:

where P is the matrix whose columns are p1,p2, . . . ,pn . The quadratic
form then becomes

x*Ax = X*P*APX = X*AX

i.e. the transformation X = P*\ reduces the quadratic form to a 'sum
of squares'.

Application
What sort of curve in U2 is 5x2 + 4xy + 2y2 = 1? We observe that

so that we are dealing with a quadratic form. We calculate the eigenvalues:

\A-U\ =
5 - A

= (5-A)(2-A)-4
2 2-k

= A2 — 7A H- 6 = (A — 6)(A — 1).

Hence is new co-ordinates the quadratic form reduces to 6X2 + y2,
so the curve in question is an ellipse. For more information we need
to calculate the eigenvectors

[-i-J Gi
or

x = 2y = —2x.

Thus eigenvectors are of the form a(2,1)' and /?(1, — If. For an
orthonormal set we take a = /? = 1/^/5. Then

X

y

2 - \

75 75

1 2

X

Y
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y

<x

71

The principal axes of the ellipse are the .Y-axis given by Y = 0 (which
in the old co-ordinates is given by — x + 2y = 0) and the 7-axis
given by X = 0 (which in the old co-ordinates is given by 2x + y = 0).
See Figure 5.3.

5.6 Positive and negative definite forms

A hermitian matrix is positive definite if and only if all its eigenvalues
are positive. If all the eigenvalues are non-negative, the matrix is
non-negative definite. Similar definitions hold for negative definite
and non-positive definite.

Suppose that A is positive definite then the eigenvalues satisfy Xx > 0,
X2 > 0, . . . , Xn > 0 and so

unless X1 = X2=--=Xn = 0 i.e. X = 0. But then x = PX = 0. This result
and similar ones are illustrated in Figure 5.4 and incorporated in
Table 5.2.

Let A be positive definite. Then
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z

x = x*Ax

(a)

saddle
point

z = x*Ax

(c)

Fig. 5.4. (a) positive definite, (b) negative definite, (c) neither positive definite nor
negative definite

Table 5.2

A positive definite

A non-negative definite

A negative definite

A non-positive definite

A 1 <0,A 2 <0, . . . ,A J I <0

\*A\>0
for x # 0

\*Ax<0
for x # 0
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Further, if we partition A as shown,

73

then the matrix An_ x is also positive definite because xM n _ tx = XMX > 0
(x # 0) where X* = (x*|0). It follows that \An. l \ > 0.

The same argument shows that all the principal minors of a positive
definite matrix are positive. A principal minor is, we recall, the
determinant of a submatrix of A whose diagonal lies along the diagonal
of A.

Less easy to prove, but much more useful is the converse result which
is quoted below.

Theorem
Let A be a hermitian matrix:

02i 022 0:

0*1 0*2 0r

Then:
(i) A is positive definite if and only if

u
011 012

021 022

011 012 013

021 022 023

031 032 033

(ii) A is negative definite if and only if

011 012

021 022

0n 012 013

021 022 023

031 032 033

Note that (ii) follows from (i) because A is positive definite if and only if
— A is negative definite.
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Example
Prove that the quadratic form below is positive definite.

(x y z)

"l
1
0

1

4
2

o"
2
3

X

y
z

We have that

1 >0,
1 1

1 4

1 1 0
1 4 2
0 2 3

= (12 + 0 + 0) - (4 + 3 + 0) = 5 > 0

5.7 Functions of matrices

Let A be a non-defective matrix. Then A = PAP1 where A is a diagonal
matrix the entries of which are the eigenvalues of A and P is the matrix
whose columns are the corresponding eigenvectors. We observe that

= PA*P"1 = P

It follows that for any polynomial f(x) we have

f(A) =

If f(x) is not a polynomial, we use the formula above to define f(A). In
particular, if A is non-negative definite, so that Ax ^ 0, X2 ^ 0,. . . , Xn ^ 0,
then

K12

Observe that on this definition A111 A112 = A and so our definition is
consistent.
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5.8 Spectral decomposition of a non-square matrix

Let A be a non-square matrix. Unless A is normal (i.e. A*A = AA*\ the
analysis of Section 5.4 does not apply. But all is not lost as we now explain.

We begin by considering the two square hermitian matrices A*A and
AA*. Both these matrices are non-negative definite. The proof is simple;
we have that

x*A*Ax = (Ax)*Ax = || Ax ||2 ^ 0,

x*AA*x = (A*x)*A*x =» || A*x ||2 ^ 0.

Hence all the eigenvalues of A*A and AA* are non-negative. We next
show that A*A and AA* have precisely the same non-zero eigenvalues.

Theorem
Let A be any mxn matrix. Then the hermitian matrices A* A and

AA* have the same non-zero eigenvalues k1,k2,...,kk.
A corresponding orthonormal set {xu x 2 , . . . , xk} of eigenvectors for A* A

and a corresponding orthonormal set {yi,y2»---»yjk} of eigenvectors for
AA* may be chosen so that

xt = ~r A* yj AXj.
\lAj

Proof. Suppose that A*Ax = kx with x # 0. Then AA*(Ax) = k{Ax).
Hence each eigenvalue k of A*A is an eigenvalue of AA* and y = Ax is
a corresponding eigenvector, unless Ax = 0. But then Ax = A*Ax =
A*0 = 0 and so k = 0.

This shows that each non-zero eigenvalue of A*A is an eigenvalue of
AA*. The same argument proves the converse and so A*A and AA*
have the same non-zero eigenvalues.

Let {xu x2 , . . . , xk} be an orthonormal set of eigenvectors corresponding
to the non-zero eigenvalues ku k2,...,kk of A* A. Then we have seen that
{Axu Ax2,..., Axk) are eigenvectors for the non-zero eigenvalues kl9

kl9...9kk of AA*.
Also,

T h u s t h e v e c t o r s { y i , y 2 , -»yk}» w h e r e

1 ,
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are an orthonormal set of eigenvectors corresponding to the non-zero
eigenvalues Xu A2,...,Ak of AA*. Finally, observe that

A yt = ——- A Ax{ = —— xf =

The numbers y/Al9 N / ^2» -> \ / ^ a r e

matrix 4 . Hence also the formula
the singular values of the

is called the singular values decomposition of the matrix A. The proof is
as follows. Selecting xk + 1 , x k + 2 , . . . ,x n to be eigenvectors to the value
zero in such a way that {xl 5x2,. . . ,xn} is also an orthonormal set (cf.
Section 5.4) we have

xfxf = £ (Axjx* =

(Observe that A*Ax( = 0impliesx*A*Axt = 0, i.e. || Axt||
2 = 0so Axt = 0

and this explains the disappearance of terms beyond k in the summation.)
The singular values decomposition may also be expressed in the
alternative form

x1'2

x\>2

— x? —

The columns of Y and X are orthonormal and in particular, these
matrices both have rank k.

Example
Consider

0
1
1

f
0
1
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Then

A*A

•E1}
Thus

0
1
1

r
0
I

, AA* =

=

0
1
1

1
0
1

r
0
I

0
I
I

f~ r\c
1*
1
2

ro i n
Li o ij'

= ( 2 - A ) 2 - l
= A2-4A + 3

2-X 1
1 2-X

- A 0 1
0 1 - A 1
1 1 2-X

We now compute the eigenvectors corresponding to the eigenvalues
Aj = 1 and A2 = 3 for the matrix A*A and then use the theorem.

so x -h >> = 0 and the eigenvectors are a(l, — l)f.

so x — y = 0 and the eigenvectors are j8(l, I)1.
Thus we may take

- ^ [ ! ] a n d

so that

1
0

1
.1

l"

0
1. V 2 L - 1

- 1
1
0

and

1

V3

"o
1
1

f
0
1
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The singular values decomposition of A is now

A =

0 l"
1 0

.1 1_

>yj

2

= 1

—

- 1
1
0

f

0.

f
- l

0.

iYixi

- i ) +

i
l

2

V
V12

i r
i i

.2 2.

Y
l

2.
(1,1)

Alternatively,

A =

"o
1
1

l"
0
1

=

"-1

1

V2

0

1

1

2
[i V3J

1

V2
1

V2

1
"V2

1

V2

5.9 Exercises

1. Find orthogonal matrices which reduce the following hermitian matrices
to diagonal form.

<•••

"l

0

1

0

4

0

r
0

1

(iii)

53 4 1

4 3 8 - 4

1 - 4 53

[Try X = 54]
2. Find the principle axes of the following quadratic forms

(i) 10x2 + 4xy + ly2 = 100,
(ii) x2 + 5 x y - l l ) ; 2 = 4,

(iii) - x2 - 2^3xz - 4yz + 3z2 = 25,
(iv) x2 + 2y2 + 6yz + 4z2 = \.

Determine which are positive definite, etc.
3. Which of the following quadratic forms are positive definite, etc.

(i) xxx2 -h2x1x3 + 4x^4 + x2x3 + x2,
(ii) x2 + 2xtx2 4- x2 -h 2xxx3 + 2x2x3 + x2,

(iii) 2x2 + 8x^2 - 12x^3 -I- 7x2 - 24x2x3 -h 15x2.
4. Write down explicitly the spectral decomposition for the matrix
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1

0
1

0
4

0

l"
0

5. Find a square matrix B with the property that

B2 =

6. Given the matrix

"l
0
1

0
4
0

f
0
1

A =
0 2 -

find an orthonormal set of eigenvectors {x1,x2} for the non-zero eigenvalues of
A*A and an orthonormal set of eigenvectors {yi,y2} for the non-zero
eigenvalues of AA*. Write down the singular values decomposition for A.
Describe the linear transformation represented by ytx* and y2x*. Finally,
express A in the form

0 V
7. Prove that a square matrix A is singular if and only if it has a zero eigenvalue.
8. Explain why trace(A) = kx + k2 + —(- kn and det(,4) = AAA2 • • • kw where

kl9 k2,..., kn are the eigenvalues of A.
9. Prove that if kl9 k2,..., kk are distinct eigenvalues of a square matrix A then

the corresponding eigenvectors Pi,p2,--,Pk are linearly independent.
10. How are the eigenvalues of Ak related to those of A (where A is square)? If
A is non-singular, how are the eigenvalues of A'1 related to those of A!
11. If A is normal, show that k is an eigenvalue if and only if I is an eigenvalue
of A*.
12. Prove that the eigenvalues of a unitary matrix have modulus 1.
13. If the eigenvalues of the normal matrix A are real, prove that A is hermitian.
14. Show that the eigenvalues of

with A and B square are simply the eigenvalues of A and B.
15. Show that if A is positive definite hermitian and B is hermitian, then there
exists a non-singular P such that

P*AP = I

P*BP = D

where D is diagonal. [Hint: consider A~l/2.~\
16. Show that a 2 x 2 matrix A = (al7) is non-negative definite if det(A) ^ 0
and flu ^ 0 .



Reduction to upper triangular form

6.1 Upper triangular and block diagonal forms

In this section we explain how a square matrix A may be reduced by a
similarity transformation to upper triangular form. It is of interest to
note that using this process it is possible to make a further reduction
(see for example D. Russell, Mathematics of Finite Dimensional Control
Systems) by means of a similarity to the following block diagonal matrix

Ji + Ni 0 0
0 X2I2 + N2

where Al9 A2,..., Ak lists the distinct eigenvalues of A, Ix is of size mlxm1

and mx is the multiplicity of Al512 is of size m2 x m2 and m2 is the
multiplicity of A2, etc. whereas Nu N2, ...,Nk are matrices whose entries
along the below the diagonal are zero. Thus A is upper-triangular. The
Jordan canonical form is of course, a special case of the above form.
The advantage of the present form is that a computational procedure is
available, whereas for the Jordan form the calculations are very much
more complicated.

6.2 Reduction to upper triangular form

For the time being let XuA2,...,An be the n eigenvalues of A listed in
any order but with repetitions in cases of multiplicity. Let vt be an
eigenvector to value Xl and let us assume for the moment that
vi = (vii>yi2>• • )f ha s i>i19*0. We will deal with the case i;xl = 0 later.

Step 1 with viX # 0

Let Px = [v 1 , e 2 , e 3 , . . . , e j , where as usual e1,e2,e3, . . . ,en denote the
natural base vectors: ex =( l ,0 , . . . ,0) ' etc. in Un.
80
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Since vx x ^ 0 the matrix Px has rank n and hence P~1 exists. (Observe
that Px is in echelon form.) Now

Cl2

0 c
n2

where a 1 ,a 2 ,a 3 , . . . are the columns of the matrix A and the constants
Cy are so selected as to satisfy

c2 3e2

etc.,

which is clearly possible since v 1 , e 2 , . . . , e n form a basis for Utt. We thus
have

where Ax is (n — 1) x (n — 1) and dx is a row vector. Observe that

det(Ax - U) = (Ai - A)det(A1 - A/),

but

= det P;x det (/I - A/) det /%

= det(/4-A/) .

Hence the eigenvalues of Ax are precisely A2, A3,...,An. This concludes
the first step.

Step 1 with t?n = 0

In this case pick some other co-ordinate of vx, say vlj9 which is non-zero.
This is clearly possible since vx is itself non-zero (why?). We now take
Pi to be the same as before but with its 7th column replaced by ex; thus

Px — [v1 ,e2 ,e3 , . . . , e J _ 1 , e ; - ,e J + 1 , . . . , e n j .

Just as before Px is of rank n (swopping the first and ;th column will
give an echelon form). The preceding argument is now once again
applicable. (Check!)
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Step 2

The next step is to apply the first step to the submatrix Ax this time
using the eigenvalue A2. Thus we obtain an (n — 1) x (n — 1) matrix say
P2 such that

Now let P2 be the bordered matrix

It may be checked that the inverse of this matrix is

and it is now easy to compute the result

X,
0
0

a

X2

0

>1

AK

= A2

At the next step we work on A3 using A3 and first obtaining a matrix
P3 of size (n — 2) x (n — 2); we then let P3 be the bordered matrix

p , =
p ,

where / 2 is a 2 x 2 identity matrix and 0 represents zero matrices of
appropriate sizes. Again it may be checked that the inverse of this matrix
is

so the previous step may be mimicked.
Repeating this process n — 1 times in all finally gives

P~}lP~l1 -"P^Pi1 APXP2• • • Pn = A, where A is upper triangular.

6.3 Example

A =
2

- 1
- 1

2
- 1
- 2

- 1
1
2
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Thus

det(A-XI) =
2-X 2
- 1 -1-X
- 1 - 2

1
2-X

= - P + ix2 - ix + I = - (x -1)3.
Solving {A - XI) = 0 for X = 1 yields

1*!+ 2x 2 -x 3 =0 > |
— x t — 2x2 + x3 = 0

— xx — 2x2 + x3 =0)

So the eigenspace consists of vectors of the form (x1,x2,x1 + 2x2)
r, i.e.

is spanned by (1,0, l)r and (0, l,2)r. Thus we may take

p —
1
0
1

0
1

0

0'
0
1

so that
1
0

- 1

0 0"
1 0
0 1

Now

-

1

0
0

1

0
1

1
0
1

0
1

0

0
1

0

2
- 1
- 4

0

0
1_

0"
0
1

—f
1

3

2
- 1
- 1

"1
0
1

2 - 1
- 1 1
- 2 2

2 - f
- 1 1
- 2 2

1
0
1

0
1
0

o"
0
1_

Thus

A1 =

Solving (A1 —1)\ = 0 yields

- 4 x 1 + 2 x 2 = 0 j

The solution space is spanned by (1,2)'. We now take
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We thus have (after bordering P2 to obtain P2):

Thus

1
0
0

1
0
0

1
0

.0

0
1

- 2

0
1

- 2

0
1
0

0
0
1

o'
0
1

- l "
1
1

1
0
0

"l
0
0

2
- 1
- 4

0 -
1
2

—

-l"
1
3_

1
1
3.

"l
0
0

0
1
2

0"
0
1

P=pip2=
1
0
1

0
1
0

o"
0
1

1
0
0

0
1
2

o'
0
1

=

"l
0
.1

0
1
2

o"
0
1.

6.4 Further examples of reduction to upper triangular form

1 An example with vlx = 0

We recall we have to pick vlj¥
z0 (possible since yx # 0) and then use

For example, if

A = - 1
- 1

2 - 1
- 1 1
- 2 2

then we have seen in Section 6.3 that X = 1 is the only eigenvalue and
that the eigenspace is generated by the vectors (1,0, l)r (0, l,2)r. Suppose
we take for vx the vector

0
1
2

which has v11=0. Let us follow through step 1 for this case.
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Thus

"o
1
2

1
0
0

0
0
1

hence

o - i f c o
- 1 0 0

0 - 2 - 1

Thus

1 0
0 0

-2 1

1 0
0 0

-2 1

2 2 - 1
- 1 - 1 1
- 1 - 2 2

0 2 - 1
1 - 1 1
2 - 1 2

Now let

85

"o
1
2

1
0
0

1
0
0

—

2

o'
0
1

1

1

f
- 1

0̂

2 - 1

1 0

The eigenvalues of At are still + 1, + 1. Solving

we have

a-b =

We take

SO
1 0

1 1

1 0

- 1 1
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1
0
0

0
1

- 1

0
0
1

1 - 1
0 2
0 1

f
1
0

'l
0
0

0
1
1

o"
0
1

1
0
0

0
1

- 1

0
0
1

0
1
1

1
- 1

0
==

1 0 1
0 1 - 1
0 0 1

Here

0
1

2

1
0
0

o"
0
1

1
0
0

0
1
1

0
0
1

=

0
1
2

1
0
1

0
0
1

2. A 4 x 4 example

Using a similarity transformation reduce to upper triangular form

'4 1 0 l"

A =
2 4 0 0
0 - 1 4 - 1
0 0 2 4

We have

= (4 - A)2{(4 - X)2 + 2} - l-2-{(4 - X)2 + 2} - 1{2( - 2)}

= (4 -X)\

We find vx with (A - 4/)v1 = 0. Say

x
y
z
t

then

2x

-y
2z

= 0

= 0
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giving

0
1
0

- 1

We take

Now

Thus,

Thus

0
-1
0
0

0 4 0
4 2 0
0 0 4

-4 0 2

-1
0
0

-1

0 1 0 0"
1 0 0 0
0 0 1 0

- 1 0 0 1

0 0
0 0

- 1 0
0 - 1

(interpreting Pl as

column operations).

4 2 0
0 4 0
0 0 4
0 2 2

(interpreting Pt
 i as

row operations).

4 0 1
0 4 - 1
2 2 4

has eigenvalue 4, so we solve

(A,-41) = 0,
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or

giving

We now take

Now

- 1
0

1 0 0
-1 1 0
0 0 1

so that
1
1

.0

0
1
0

o"
0
1

0
1

- 1
0

0
0
1
0

0
0
0
1

2 0
4 0

-4 4
0 2

(treating P2

as column
operations)

1
0
0
0

0
1
1
0

0
0
1
0

o"
0
0
1_

AtP2 =

Now

Solving

4 2 0 0
0 4 0 1
0 0 4 0
0 0 2 4

(treating P2 * as row operations)

4 0
2 4

(A2-4I)

gives u = 0 so

-0-
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Thus

0
1

3

1
0
0
0

P2

"l
0
0
0

i)

0
1
0
0

"l
0
0

.0

0
0
0
1

= J

0
1

-1
0

ancI

0
1
0
0

0'
0
1
0

1
0
0
0

0
0
0
1

p

0
0
0
1

'4
0
0
0

o'
0
1
0

o"
0
1
0.

2
4
0
0

0
1

- 1
0

= —

0
1
0
4

0
0
1
0

—

-1

0
1
0
1

' (

o"
0
4
2_

0'
0
0
1

0
- 1

'l
0
0
0

1
0

-1
0

4
0
0
0

0
1
0
0

0
0
0
1

1

oy

2
4
0
0

0
0
0
1

o'
0
1
0

0
1
4
0

0"
0
1
0

0
0
2
4

6.5 Application: simultaneous differential equations

We consider the following simultaneous system of differential equations

d

It
* 2

x.

* 2

xn

9i(t)

where xl9 x 2 , . . . ,xn are functions of t and the matrix A consisting of
constants is of size n x n. We will write this in the form

x = Ax + g,

where x denotes the column of derivatives of the components of x. The
system may easily be solved by first finding a similarity transformation
reducing A to upper triangular form. Say
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where B is in upper triangular form. Let us make the change of variable
x = Pz, i.e. z = P~ *x. Then since P is a constant matrix we have

Pi. = APz + g.

or

We have thus to solve the equation,

z = £z + f,

where f = P~*g and 5 is upper triangular. This is particularly easy to
solve when we remember that the last row of the equation involves
only zn (which can thus be solved immediately), the last but one only
zn_1 and zn (which by now is known), etc. Let us consider the matrix
A of Section 6.3 and take g = 0. Using the similarity computed there
we have

z =

so z3 = z3 hence z3 = K1e
t where Kx is a constant. Thus

or

and using an integrating factor (see Part II, Chapter 20) we have

jt{e-%}=e-%-e-% = Kv

Thus on integrating

1
0
0

0
1
0

- l "
1
1

where K2 is a constant. Now

z1=z1-z3==zl-K1e
t

and using an integrating factor again we have

d _t _, . _t

— {e z x \ - e z x - e zx - - v
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Thus on integrating we obtain

91

We now have the vector z and hence also x = Pi.

6.6 Exercises

1. Find a similarity transformation for each of the following matrices
which reduces it to upper triangular form:

1
0
0

- 1
1

- 1

1
1

3

9
0
3

3 - l "
6 4
3 9_

2 6 O"
- 1 - 2 - 1

2 3 4_

" 2 0 - 4 "
- 1 2 4

5 2 8

"3 - 3
2 8
1 1

- 3 "
2
7

3 1 2
-1 1 - 1
-1 - 1 0

2. Show that a diagonal matrix is normal.
3. Show that a unitary matrix Q exists so that Q*AQ is upper triangular.
[Hint: In the standard procedure rescale \t to unit length, apply Gram-Schmidt
to \u e2 , . . . ,en obtaining an orthonormal system v1? u2 , . . . , un and use these to
construct Pl.~\
4. For any unitary matrix P show that if A is normal then P*AP is normal.
Show also that if P is a unitary matrix and P*AP is normal then A is normal.
5. If B is upper triangular and normal show that B is a diagonal matrix.
[Hint. Consider the (i,i) entry of B*B and of BB*. Show successively, starting
with the first row, that all rows of B are zero off the diagonal.]
6. Show that if A is normal then A may be reduced by a unitary matrix to a
diagonal matrix. (Hint: first reduce A to upper triangular form.]



Reduction to tridiagonal form

We present a method due to Householder for reducing a symmetric
matrix to tridiagonal form by means of an orthogonal transformation.
The reduced matrix has zero entries in all positions except possibly those
on: the main diagonal, the superdiagonal (i.e. the diagonal immediately
above) and the subdiagonal (the diagonal below). This form has some
important properties useful in the location of the eigenvalues of the
original matrix. No such method seems available for non-symmetric (or
non-hermitian) matrices.

7.1 Reflection matrices

Let x be any vector in Un and let ex = (l,0,...,0)r be as usual, the first
basis vector of the natural basis. Now let H be the hyperplane which
internally bisects the angle between x and et and has a unit normal
vector v co-planar with x and ex (we show how to find v later in
Section 7.4). Extend el by a factor of || x ||. Noting that x — ex || x || is
parallel to v (see the illustration in Figure 7.1),

llxii cos e
Q\ =<X,V>

92



7.2 Householder's method 93

we have

x-e 1 | | x | |= (2 | |x | | cos0)v = 2<x,v>v.

We re-write the formula

ex ||x|| = x —2v<v,x> = x —2vv'x

= (/ - 2vvr)x.

Thus H = (I — 2vvr) transforms x to ex || x ||, i.e. H lines x up on the first
basis element and so reflects across the bisector. H is called a reflection
matrix.

We now show that H is both symmetric and orthogonal so that in
fact it is self-inverse. Symmetry is clear from the formula. H2 = I may
be verified as follows

H'H = HH = (/ - 2vv')(/ - 2vv')

= / - 4vvr + 4v(v'v)v'

= /
(because v'v =1).

Thus H~l = H and so, assuming A is a symmetric matrix, HAH will
also be a symmetric matrix similar to A. It will therefore have the same
eigenvalues as A.

Although the matrix H was constructed with a view to reflecting the
vector x onto ex || x || we ought also to note how H transforms other
vectors z. Since we have

y = H z = (/ - 2vv')z

= z -2<v ,z>v

= z-(2||z||cos<A)v,

where ij/ is the angle between v and z the argument developed for x now
shows that y is the 'mirror image' of z in the hyperplane H with normal
v (see Figure 7.2).

7.2 Householder's method

The reduction of a symmetric matrix A of size nxn proceeds by a
sequence of steps. The first step is to define a vector xx in Un~x to be the
first column of A with its first element deleted, thus

a21'

n , where A = {
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Fig. 7.2

Now let Hi be a reflection matrix reflecting xx across the angle bisector
between xx and the first basis element in IR""1. Observe that

** V-L±]

0

We have thus gained a row of zeros from the third element onwards in
the first row and similarly in the first column.

The next step is to perform the same operations on the smaller matrix
HlAn_1H1 thus introducing still more zeros. More precisely, a reflection
matrix H2 of size (n — 2) x (n — 2) is constructed by reference to the
vector x2 consisting of the first column of H1An^lHl with its first entry
deleted. One then verifies that

(where / 2 is the 2 x 2 identity matrix) is similar to Bx and has the same
first row and first column as B1. Thus the upper left-hand corner identity
12 has the effect of keeping unaltered the arrangement obtained in the
first step. Since H2HlAn_lH1H2 has a first column and first row
containing zeros everywhere except the first two entries, B2 has the form
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*1

0
0

a2

b2

0

0

fr2

/

0
0

o ...
0

2

where ax =all9 etc.
The general step should now be clear: working with reflection matrices

Hk on successively smaller submatrices An_k we set

. 0 H J ""*L0 Hk_

After n — 2 steps we will have achieved the desired matrix:

'a, bx 0 0 0 ..."
bx a2 b2 0 0
0 fo2 a3 b3 0

0

7.3 Evaluation of p(k)

The first advantage of the tridiagonal form is in the computation of the
characteristic polynomial

p(A) = det

Expanding successively the upper left-hand corner subdeterminants of
size 1 x 1 , 2 x 2 , 3 x 3 , etc., which we denote by pk(X) (for k = 1,2,3,...),
we observe the following pattern:

po(A) = 1 (included for later convenience)

0

0

X [

a2

1
A,

0
b2

X

0
0

fr3

0
0
0

= (fl2-A)Pl(A)-6jp0(A)
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= (*2 - tip*-1W - H- iPk-2(4

Of course pn(A) is p(X).
Now a second and more important property of the tridiagonal form

is the fact that the above sequence of polynomials is what is called a
Sturm sequence, meaning that:

(a) the zeros of all the polynomials are real;
(b) the zeros of pk(k) and pk+ t(A) interlace (see Figure 7.3);
(c) the number of zeros of pn{k) which are less than Xo is the same

as the number of changes of sign in the sequence:

1. PittoX Pi(K\ Pa^o)* • • • >Pnttol

\

Fig. 73

Any zero values appearing in this list should be suppressed for the
purposes of counting sign changes.

7.4 Finding a bisecting hyperplane and its normal

We begin by working in the two-dimensional subspace spanned by
and x. Let u be the unit vector

x
u = .

Observe that the vectors ex ± u are angle bisectors for the angle between
el and x, the choice of 'plus' giving the internal bisector and 'minus' the
external bisector (cf. Figure 7.4).

Now normalise the vectors w = e1 ± u; we obtain

= (1 ±2u1 +u2) + w2 + ••• + u2
n

= 2±2u1 (since u is a unit vector).
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-u/

+u

If v is the unit vector v = w/|| w ||, we have

2(1 ±i
and of course

Vj =
±Uj

y/{2(l±u1)} 2vt

Suppose we take the minus sign, then v is the external bisector and defines
the normal direction to a hyperplane bisecting the angle between e, and
x. If, on the other hand, we take the plus sign, then v is the internal
bisector and defines the normal direction to a hyperplane bisecting the
angle between e, and — x. Either sign thus gives a reflection matrix.
Clearly (why?) only the minus sign secures Hx > 0.

Example
Reduce to tridiagonal form the following matrix.

3 1 0 0 0
1 3 0 0 0
0 0 3 1 1
0 0 1 3 1
0 0 1 1 3
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We only have to work on

3

1
1

1 1

3 1
1 3

Call this matrix Av Our first step is to construct a reflection matrix for
the vector x = (1,1)1. Normalizing we have u = (l/^/2)(l, If. Let us use
the formulas developed above choosing the negative sign. Thus we have:

1

"75 = or, say.

Hence

a

-1 and so vvr =
- 1

so

,=I- 2vv' =

l - 2 a 2

1 ! 1
72 4?

Now we may calculate that

and

a2 (72-1)72+1 1
1 1

J_
72"

1

• C ' ] •
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so that letting

H =
1
0

0
1

we have HAH equal to

3
1

0
0
0

1
3
0
0
0

0
0
3

V2

0

0
0

V2

4
0

0
0
0
0
2

7.5 Exercises

1. Find an orthogonal matrix for each of the following matrices which reduces
it to tridiagonal form.

"3

0
1

0

5

2

l"

2

4

0 0 0

- V 3 V3 1
V3 V3 "2

V3J

0 0

1 V2

o V2 2 V2

o 2 V2

1 - 2

' i V 2

V2 2

o V3

o I

1 0 0 0

0 2 3 4

0

0
1 0

0 1

0

V3
2

- V 3

0
1

- V 3
4

2 4

4 2

2 2

7 - 1

- 1 - 1

In each case determine how many positive eigenvalues the matrices have.
2. Why are the roots of the sequence pk(X) all real (see Section 7.3)?
3. Examine why the roots of the Sturm sequence interlace.
4. Verify for the case of 3 x 3 matrices the assertion that the number of
eigenvalues to the left of Ao equals the number of sign changes in the Sturm
sequence.
5. Show that in the case of 2 x 2 matrices the reflection matrix H is equal to

u2 - i

6. A tridiagonal matrix Thas all its diagonal entries equal to a and its sub- and
super-diagonal entries equal to b (with b # 0).

Show for some constant Ak # 0 dependent on X, that the Sturm
sequence po(X), pt(A),... ,pn(A) of the matrix T — XI consisting of its
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principal subdeterminants in ascending order is given by

where tx and t2 are the roots of the quadratic

t2-(a-l)t + b2.

Hence show that the eigenvalues of T are of the form

( m l , . . . , n ) .
n+ 1

(Hint: Make use of the (n + l)sr roots of unity: exp {i(2mn)/(n + 1)}.)
7. Develop the argument of Section 7.2 for the general step. In particular check
that bordering the matrix Hk as indicated in the step from Bk _ 1 to Bk ensures
that the work done at the previous step is not altered, viz. the leftmost n x (k — 1)
submatrix and the uppermost (k — 1) x n submatrix of Bk_ t are equal to the
corresponding submatrices of Bk.
8. Show that if a is a root of the polynomial

then |a| ^ 1 + A where A = max {1(2,1:0 ̂  i< n}.

(Hint: p(a) = 0 implies |a|n ^ A{\*\» ~ l}/{|a| - 1}.)



8
Inverses

In this chapter we shall be concerned with matrices that are not
necessarily square. If A is of size m x n we shall be interested in
generalizing the notion of an inverse. Recall that for the existence
of an ordinary inverse it is necessary that A be square (i.e. m = n).
An n xn matrix B is then an ordinary inverse for A if and only if
AB = BA — I. We then write B = A'1. An n x n matrix A has an
ordinary inverse A ~l if and only if it is non-singular for which
various criteria are given in Chapter 3. In particular, it is necessary
and sufficient that its* determinant be non-zero or that A have full
rank n. If A is not square of if A is a singular matrix, it cannot
have an ordinary inverse. Instead we must look for matrices which
satisfy only some of the properties of an ordinary inverse. Two
immediate candidates are: a left inverse, that is a matrix L of size
n x m such that

where /„ is an n x n identity matrix, and a right inverse, that is a
matrix R of size nxm satisfying

An even more general notion will be considered in Section 8.4,
where we seek a matrix B of size nxm satisfying

ABA = A.

Ordinary inverses have an important role to play in the
construction of left, right and generalised inverses.

8.1 Calculation of ordinary inverses I - standard
techniques (revision)

Only a non-singular, square matrix can have an ordinary inverse. If A
is non-singular it can be reduced by a sequence of elementary row

101
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operations to the identity matrix /. If the same sequence of row operations
is carried out on the matrix / instead, the result will be the matrix A'1.
To see this let Ex, E2, £ 3 , . . . , Ek be the elementary matrices corresponding
to the elementary row operations (cf. Chapter 3 on matrices), then

so

and

With an alternative technique in mind, we shall use the notation A(j

to denote the determinant of that submatrix of A which is obtained by
deleting the ith row and the 7th column of A. The adjugate matrix of A
(we prefer this to the term 'adjoint' which is also used for something
else) is the matrix B whose 1,7th entry is (— l)i+jAji9 thus

B =

The numbers Au are called the minors of A and the numbers ( - l)i+iAij

are called the cofactors. We have

+ A
-A
+ A

u

21

31

-A
+ A
+ A

12

22

32

+ ̂ 13

"^23

+ ̂ 33

+ A
-A
+ A

u

12

13

-A

-A

21

22

23

+ A
-A
+ A

31

32

33

Now observe that if i =j this formula is the same as that obtained by
expanding det A by its 7th row. Thus (AB)ti = det A On the other hand,
if i 7*7, the formula is that obtained by replacing the ith row of A by
itS7'th row and expanding the determinant of the resulting matrix by its
ith row. Since a determinant with two equal rows is zero, it follows
that (AB)tj = 0 when i ^7 . We conclude that AB = (det A) I. Hence
A is non-^singular if and only if det A is non-zero and

det A

This is the Cramer rule.

8.2 Calculation of ordinary inverses II - exotic techniques

(i) We sketch a technique for inverting a matrix given in partitioned
form. Suppose A and P are invertible matrices.
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where W = (S - RPlQ)~l and X = P " 1 + p - ^ W K P " 1 . This may
readily be verified by multiplying the two matrices. The formula is useful
for reducing the size of matrices requiring inversion. Note the special
case when Q is a column:

Here u and v are n x 1 column vectors, a is a scalar and if, p and q are
given by the formulas

p = — OLA~1VL,

q '= - a v M " 1 .

(ii) Suppose that H, A and D are non-singular matrices and that

H = A + BDC.
Then

H-i = A-1-AiB(D-1^CA-1B)-1CA1.

Again there is an important special case to note. If H = A + bbr then

where b and c are column vectors. This idea is known as tearing.

8.3 Left and right inverses

Let A be an m x n matrix with real entries. We shall relate the existence
of left and right inverses to a consideration of the system of equations

Theorem
The following are equivalent:

(i) A has a right inverse, e.g. At(AAt)~1\
(ii) Ax = b has a solution for every b;

(iii) A has rank m (i.e. its rank is the left side ofmx n).
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Proof. Suppose that A has a right inverse. Then for any b in IRm we have

so that x = Rb is a solution to the equation Ax = b.
Clearly (ii) implies (iii). (See Chapter 1, Section 1.5.) Now if A has rank

m then also the m x m square matrix AAX has rank m (see Chapter 3,
Section 3.8). Hence the matrix A\AAl)~l is well-defined and is a right
inverse for A because A{A\AAty1} = (AAt)(AAty1 = 1.

Theorem
The following are equivalent:

(i) A has a left inverse, e.g. (A^y^A1;
(ii) Ax = b has a unique solution whenever the system Ax = b is

consistent;
(iii) A has rank n (i.e. its rank is the right side ofmx n).

Proof. Suppose A has a left inverse Land that the equation Ax = b
has a solution. Then Lb = LAx = Ix = x. Thus the solution is
necessarily Lb.

To see that (ii) implies (iii) note that the equation Ax = 0 is
consistent since it has a trivial solution. Thus the unique solution
is x = 0. But this is to say that N(A) = {0}, i.e. that the nullity of
A is zero. (See Chapter 3, Section 2.) But then the rank must be n.

If the rank of A is n then the rank of the n x n square matrix A1 A is
also n. Hence the matrix (Ar>4)~Mf is well-defined and is a left inverse
for A because {(AtAy1At}A = (AtAy1(AtA) = I.

8.4 Generalised inverses

Let A be an arbitrary m xn matrix. Any n x m matrix B which satisfies

ABA = A

is called a weak generalised inverse of A. We shall use the notation A9

to denote any weak generalised inverse of A. In general a given matrix
A will have many weak generalised inverses. For instance if C is a matrix
such that AC — 0 and if B is a weak generalised inverse of A, then so
also is B + C provided C is n x m.

Example
For any matrix A, a left inverse L or a right inverse R (when one

or other exists) is also a weak generalised inverse. We have

ALA = /4(L,4) = AI =

= (AR)A = IA =
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Theorem
Suppose that ABA = A. Then:

(i) AB projects Um onto the column space R(A) of A,
(ii) BA projects Un parallel to the null space N(A).

Proof. We have the following equations:

{AB)2 = (AB)(AB) = (ABA)B = AB,

(BA)2 = (BA)(BA) = B(ABA) = BA.

So the two matrices AB and BA are idempotents and hence represent
projections. (See Chapter 4.) To show that the range of AB is the same
as that of A, observe that any vector Ax may be rewritten as
(ABA)\ = AB(Ax) and so is in the range of AB; evidently any vector ABz,
is in the form A(Bz) and so is in the range of A. Now for (ii) we verify
that the null spaces of BA and of A are identical:

Ax = 0=>BAx = 0
BAx = 0=> ABAx = 0=>Ax = 0.

This completes the proof.
Like left and right inverses, a generalised inverse A9 is intimately

connected with the solubility of the equation Ax = b. Observe that, if
the latter system has a solution at all, b is in the range A. Hence since
AB projects onto R(A) the projection must leave b unchanged, i.e.
ABb = b. Conversely, if this equation holds then x = Bb is a solution of
Ax = b. Thus a generalised inverse will give a solution whenever a
solution exists. But the general solution of Ax = b takes the form x0 + w
where w is any solution of the equation Ax = 0. Thus w lies in the null
space of A. But / — BA is a projection onto the null space of BA (by
part (ii) of the theorem above). Thus w takes the form (/ — BA)z for some
z. In conclusion we have:

The system Ax = b is consistent if and only if b = AA9b. When
consistent, its solutions are given by the formula:

x = A9b + (/ - A9A)z

where z is arbitrary.
The existence of these formulae does not imply that the use of

generalised inverses is the optimal way for solving systems of linear
equations. Usually this will not be the case.

As we have already noted the weak generalised inverse is not unique.
Among the many generalised inverses there is one that deserves special
attention. It is the inverse that makes AB and BA orthogonal projections
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onto their respective ranges and furthermore and satisfies BAB = B. This
is called the strong generalised inverse. Some properties of this inverse
are discussed in Questions 10,11 and 12 of Exercises 8.6. Here we stop
only to prove its uniqueness.

Suppose that both G and H satisfy the definition of a strong generalised
inverse of A. Then we have working on the first two terms of GAG that

G = (GA)G = AXGXG (since GA = (GA)X)

= (AHAfG'G = (HAfA'G'G

= HAAXGXG (since HA = (HA)X)

= HAGAG (since AXGX = {GA)X = GA)

= HAG.

But the same argument can be followed using H for G and working on
the last two terms of HAH. Thus

H = H{AH) = HHXAX

= HHX(AGA)X = HHXAX(AG)X

= HHXAXAG

= H{AH)AG (since AH = (AH)X = HXAX)

= HAG.

Hence H = G.

8.5 Computation of generalised inverses

We suggest three methods, the usefulness of each of which depends
on circumstance. The first method is rather special.

Method I

Suppose that A is of rank k and can be partitioned as below:

-im
where B is square of size k x k and is also of rank k. Then we claim that
the matrix

A9 =
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is a weak generalised inverse. To see this note first that

107

VB I cl [rMjl VB I clj i lo~| VB_

YD I £ j L o I o j YD I E \ YDB-1 I o j |_J>
-PH c 1.

ID DB'lC\
We need to see that E = DB~1C. Let us write

[Pi I P2I [h 1 0 ] [Qi
IP* I PA LO I Oj IQ3

where the first and third matrices in the line above are non-singular. This
is possible (Chapter 3, Section 3.5) since the matrix A has rank k and
the two matrices just mentioned represent inverses of the row and column
operations required to bring A to reduced echelon form. We may now
compute:

[Pi I o] rei I Q2i=rfig

Hence

We need to justify the fact that both Px and Qx are invertible. Now
k = rank B = rank Px gx ^ rank Px. But Px is square of size fc x k9 so we
conclude its rank is /c. Similarly for Qx.

We remark that if the top left corner B of A is not of rank k then
appropriate modifications can be carried out by column and row
operations to make the new upper left corner have rank k (how and why?).

Method II
This is a method which in fact yields the (unique) strong generalised
inverse. For the moment we take for granted that, if the m x n matrix
A is of rank k, then we may write

where the m x k matrix B and the k x n matrix C are both of rank k.
Assuming this has been done, we can compute a left inverse for B, say
L, and a right inverse for C, say R. Now note that
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is a weak generalised inverse for A; indeed,

AA9A = A{RL)A = BC(RL)BC = B{CR)(LB)C = BIIC = BC = A.

The cases L = {Bf B)"* Bf and R = C(CC) ~* are particularly interesting.
Then

AAg = BCC\CCY
A9 A = ^

= B(BlB)- lB*

= c\ccylc
are symmetric and it may also be checked that A9AAg = A9 hence the
strong generalised inverse is

AG = Ct(CCty1(BtBy1Bt.

We return to the question of writing A in the form BC. The matrix
B is constructed so as to consist of precisely k linearly independent
columns of A, where k is the rank of A. Thus B is of size mxk and of
rank k. With this choice for B the equation A = BC expresses the fact
that the columns ax, a2, . . . , an of A are combinations of the columns
bi9 b 2 , . . . ,b k of B. To see this write

[a1,a2,...,an] = [b1,b2,...,bk]
-In

and note that this matrix equation reduces to a system of equations with
the cs as unknowns; for example we have

Finally, notice that by the Example of Chapter 3, Section 3.9 the matrix
C has rank k.

Example

1
1
2

1
2
1

2
3
3

=

1
1
2

f
2
1

p ° '1=
|_0 1 lj

BC.

It is obvious that the first two columns of A are linearly independent
and that the third is their sum. Thus

1
1

_2_
= 1-

1
1
2_

+ 0-
1
2
1

r2
1

= 0-
"1
1
2_

+ 1-
1
2
1
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'l
3
2

= 1-
r
i
2

+ 1-
Y
2
1

We may now calculate the strong generalised inverse of A. We have:

1 1
1 2
2 1 }

Hence,

33

1 0
0 1
1 1

2 - 1
- 1 2

1 1

ir 2 - m r 6 - s i n i 2-|
3L-1 2jllL-5 6jLl 2 lj

- 4 7-1 j _
l 7 - 4 J 33

1 - 1 5 18
1 18 - 1 5
2 3 3

Method III

Given the singular values decomposition of an m x n matrix A, it is easy
to write down the value of AG. If

is the singular values decomposition then

We have that

ABA = rxr* £ - L xsy: £ V A, y, xf
1 1 v** 1

r s f V *
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The orthonormality of the sets { x 1 , . . . , x k } and { y i , . . . , y k } has been
used very strongly here. The matrix

AB =

and similarly the matrix

I

y.*? = £

is symmetric and hence both represent orthogonal projections.
We note for reference that the orthogonal projection of Rm onto the

range R(A) of A is

The orthogonal projection of Un parallel to N(A) is

8.6 Exercises

1. Find the equations which u,v,w,x,y and z must satisfy in order that

p "' '1
Li i 2]

u v

y z

hence find all the right inverses of the matrix

A
Ll 1 2j

Show that this matrix has no left inverse.
2. Show that the matrix

Li i ij
has no left inverse and no right inverse.

3. If A, B and A + B are non-singular matrices prove that

4. Calculate the inverse of the non-singular matrix
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'o
2

1

1

0

2

2

1

0

by the following methods: (i) Cramer's rule, (ii) elementary operations.
5. Explain Cramer's rule for the solution of systems of linear equations on the

basis of Section 8.1.
6. Explain why a weak generalised inverse of the matrix

0

6

6

2

4 4
10 4

is —
18

- 5
1

7

0

0

7
- 5

1

0

0

1
7

- 5

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

What is the weak generalised inverse of the following matrix?

4 4

0

6

6

2

4

10

7. Use the generalised inverse given in the last question to write down a formula
for the solutions of the system

0 6~

6 0

6 6

2 2

4 4

0 4

u
i;

w
X

=

"3"

4

5

2

3
7

8. Express the matrix

1 1 0

0 1 1

- 1

1

- 1

in the form A = BC where B and C are both of rank 2 and of sizes 3 x 2 and
2 x 4 respectively.

Hence calculate AG and find the matrix which represents the orthogonal
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projection of R3 onto the column space of A.
9. If

A = \

where A is of rank k and B is a non-singular k x k matrix prove that

Hence express AG in terms of the matrices A9 B, C and D.
10. Let G be the (strong) generalised inverse of Section 8.5, Method II. Show
that GAG = G. Prove that:

(i) AG projects R" onto R(/f) parallel to N(G\
(ii) GX projects R" onto K(G) parallel to N(A).

11. Suppose that Ax = b is consistent. Explain why x = AGb is the solution
nearest to the origin (i.e. the solution which minimises || x ||).
12. Let A be an m x n matrix. Show that the general least squares solution' of
the system Ax — b is given by

x = AGb + (/ - AGA)z.

13. Use the singular values decomposition of the matrix

[0 f

1 0

1 1_

to calculate the value of AG. Write down orthogonal projections of Rm onto
R(A) and of Rn parallel to N(A).
14. Suppose that the real matrices A and B satisfy ABXB = 0. Prove that AB* = 0.
[Hint: Consider the equation CC = 0.]
15. Let (A*Af be any weak generalised inverse of A'A. Prove that A(AtAyAt is
then the orthogonal projection of Rm onto R(A). [Hint: Use the last question.]
16. Suppose that A has a right inverse B and that B satisfies

Show that B = A'C for some (m x m) matrix C. Deduce that C is non-singular
and conclude that there is exactly one right inverse for A satisfying ( + ).
17. Show that if A has a right inverse then R = AT(AAT)~l is the strong
generalized inverse of A and that X = Kb is the solution of Ax = b nearest
the origin. [Hint: Use Jf(A) = ^A')1, consider u = Rb - z where z is any other
solution and apply Pythagoras' theorem.]
18. Deduce from the last question that if A is any matrix then of all the least
squares solutions of the possibly inconsistent system Ax = b the one nearest the
origin is x = AGb. [Hint: If A = BC, replace BCx = b by Bi = b and Cx = z
where B has a left inverse and C has a right inverse.]



Convexity

9.1 Lines and line segments
The line which passes through two vectors a and b is the set of all x
such that

x = aa + /?b

where a + /? = 1 (Figure 9.1). The line segment (or chord) joining a and
b is the set of all x which satisfy

x = aa + pb

where a + j ? = l , a ^ 0 a n d / ? ^ 0 (Figure 9.2).

9.i Fig. 9.2

9.2 Convex sets

A set is convex if and only if whenever the set contains a and b it then
also contains the line segment which joins them (Figure 9.3).

Example
Prove that the n-dimensional ball

is convex in IRn.

113
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(a) (c)

(d) " (e) (f)

Fig. 9.3. (a)-(c) convex sets, (d)-(f) non-convex sets

Suppose that x and y lie in B. We have to show that ax -I- /fy lies in
B provided that a + /? = 1, a ^ 0 and p^0. But

< (xr + pr = r.

so ax + py lies in £ (Figure 9.4).

convex hull
of S

Fig. 9.4 Fig. 9.5
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9.3 Convex hull

Given a set S its convex hull is the smallest convex set which contains
S (Figure 9.5). We will see below that such a smallest convex set exists
and that it is possible to characterise the points which lie in it. For this
we need the following notion.

9.4 Convex combinations

A convex combination of a set of vec to r s {xl9x2,...,xk} is a n exp re s s ion

of the form

y = a 1 x 1 + a 2 x 2 + - . - + a k x k

in which ax + a2 + • • • + ak = 1, ax ^ 0, a2 ^ 0, . . . , ak ^ 0.
A convex combination of the set {x1 ,x2 , . . . ,xk} can be identified

geometrically with a point in the convex hull of {x 1 ,x 2 , . . . ,x k }. It may
also be interpreted physically: suppose weights a l9...,a fc are distributed
at positions x x , . . . , xk in a plane made of infinitely thin carboard (so that
the cardboard is itself weightless), then the centre of gravity of this plane,
that is the position at which it would balance on a needle point, will be
at (x1x1 + ••• + akxk (Figure 9.6).

y = ofjXj + a 2 x 2 + . . . + otk\k

(«! + a2 + . . . + otk = 1,
xk-\ at > 0, a2 > 0,. . ., ak > 0)

Fig. 9.6

The convex hull of a set S may be characterized as the set of all
convex combinations of points taken from that set. In particular a convex
set contains all convex combinations of its points. We sketch a proof.
It is an easy exercise to check that the set of convex combinations of
members of S is a convex set. We need to show also that if a convex set
C contains 5 then it also contains all convex combinations of members
of 5. If the combination is of two members of S it will be in C by the
definition of convexity. If the combination is of three members of S we
show how to reduce the problem of membership of C back to
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combinations of two points of S. Say the combination is

y = a1s1 + a 2

where ax + a2 + a 3 = l , a x ^ 0 , a 2 ̂ 0 , a n d a 3 5*0 and 8^82,83 are points
of 5. Since not all the coefficients are zero we may assume without loss
of generality that a t + a2 ^ 0. Pu t

a< a2

yi=———si + — — s 2 .
+ +

We have arranged for the coefficients here to sum to unity, so y t is a
member of C by the convexity of C. But likewise we see that because
y = ( a i + a2)yi + a s 3 t h e latter point also belongs to C. The reduction
argument generalises. Fo r instance, if we consider a combination of four
points, say

y = a ^ + a 2 s 2 + (X3S3 + a4s4 ,

with the usual assumptions, then we put

which is a combination of three members of S so is in C by our previous
argument. We leave the details to the reader.

9.5 Affine and linear analogues

An affine set may be characterised by the fact that, if it contains the
points a and b then it contains the straight line through them. The affine
hull of a set is the smallest affine set which contains S. It may be identified
with the set of all affine combinations of points of S, an affine combination
of the vectors {x1? x2 , . . . ,xk} being an expression of the form

y = oi1xl + a2x2 + ••• + akxk

in which ax + a2 + — h a k = 1.
We already know what a linear combination is. Instead of a 'linear

set' we usually speak of a 'subspace'. Instead of a 'linear hull of 5' we
usually speak of the 'subspace spanned by S\ or the 'linear span of S\

9.6 Dimension of convex sets

Given a convex set S we define its dimension to be that of its affine hull
A. Thus a triangular lamina in (R3 has dimension 2 since its affine hull
is a plane (Figure 9.7).
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part of affine hull

tetrahedron

A simplex in Un is the convex hull of any n + 1 points which do not
lie in a hyperplane (i.e. an affine set of dimension n — 1). Thus a simplex
in Un has dimension n. In IR3 a simplex is a tetrahedron (Figure 9.8).

The convex hull of an arbitrary finite collection of points is called a
convex polytope. This notion generalises convex polygons and polyhedra.

9.7 Some properties of convex sets

Bodily movement of a convex set around in space will obviously not
affect its convexity. This fact is contained in the following more general
theorem.

Theorem
If S and T are convex, then for scalars k and \i so is the set

XS + fiT which consists of all vectors of the form As + fit where s is in S
and t is in T.
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Proof. Let a and b be points in AS + \xT and let a + jS = 1 with a
and jS^O. We have that for some s l 5s2 in S and t l 5 1 2 in T

a = Asx + /xt!, b = As2 + \xi2.

Hence*

aa + ph = a(Asx -f /xtj + j3(As2

= As + /it.

Thus as + /?t lies in the set XS + iiT (the point s = asx + /?s2 lies in S
because S is convex; similarly for t = oct1 + /?t2).

The intersection of a collection of sets is the set of points which
belong to every one of the sets in the collection.

Theorem
The intersection of any collection of convex sets is again convex.

Proof. Let a and b belong to the intersection. Then a and b belong to
each of the sets in the collection. Since these sets are convex, so does
aa + j?b provided a + j? = 1, a ^ 0 and /? ^ 0. Thus aa + /?b belongs to
the intersection. (See Figure 9.9.)

» ray
intersection

Fig. 9.9 Fig. 9.10

9.8 Cones

A ray (with vertex 0) in the direction of a is the set of all x of the form

x = aa

where a ^ 0 (Figure 9.10).
A cone is a set with the property that if it contains a then it
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(a) (b)
Fig. 9.11. (a), (b) convex cones, (c) non-convex cone

contains the ray through a. A convex cone is a cone which is a convex
set (Figure 9.11).

A set 5 is a convex cone if and only if whenever a and b are in S,
then so is

provided a ^ 0 and /? ^ 0.
The smallest convex cone containing a given set 5 is the set of all

expressions of the form

y = a 1 x 1 + a 2 x 2 + •••+akxfc

where ar ^ 0, a2 ^ 0 , . . . , <xk ^ 0 and {x^ x 2 , . . . , \k} is any finite set of
points of S.

9.9 Exercises

1. Which of the following sets in IR2 are convex and which are not?

{(x,y)':x2 + 2y2

{(x,y)':x2 + 2y2
x,yy:x2 + 2y2

x,y)':x2 + 2y2

2. The same as question 1 for the following sets.

{(x,y,z)':x>0,)>>0} {(x,y,z)':x2 + 2y2 + 3z2<l}
{(x,>;,z)r:z > x2 4- 2y2} {{x.y.zf'.z ^ x2 + 2y2}

3. The non-negative orthant 0 of !Rn is the set

Prove that 0 is a convex cone.
4. Prove that any affine set is convex.
5. If 5 is a convex set in (Rn and T is the set of all y of the form y = Ax
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where A is an m x n matrix and x lies in S, prove that T is a convex set
in !Rm.
6. Determine the dimension of the convex hull of the following sets of
points in IR3.

(i) (o,o,oy,(0,0,i)*,(o,i,oy,(i,o,o)*,(i,I,ly
(ii) (o, o, i)', (o, I, oy, (o, i, ly, (o, 2, if.

7. Prove that the set of all (xux2,...,xnf which satisfy

a11x1+a12x2 + — + alnxn^bx

a21xx + a22x2 + — + a2nxn ^ b2

is convex.

8. Sketch the following sets in IR2:

(i) (3,3)'+ ,4 (ii) ,4 + £ (ih'M - B

where

A = {(x,y)r:x2 + y2 < 1} and B = {(x,y)':0<x<l, 0 < y < l } .

9.10 Further exercises

1. Show that

{a} + conv (B) c conv ({a} + B)

and that

A + conv (B) ^ conv (A + £).

Infer that

conv (,4) + conv (B) £ conv (A + B)

and deduce that equality obtains.
2. Sketch the convex hulls of the following sets.

(a) {(2,2)<}u{(x,);y:x = y 2 - l } ,

(b) {(2,2y}u{(x,yy:x2 = y2 + l & x ^ 0 }

(c) {(0,0)'} u {(x,x2 + 1)': - oo < x < oo}

(e) {(x,y)r:0 ^ x ^ 2,y = 4x2 - x4}
(f) {(0,0y}u{(x,yy:(x-3)2 + y2 =
(g) {(62 cos 0,6 sin 0)': 0 ^ 0 ^ 5TT/4}
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(h) {(0,y,0)r: - oo < y < 00} u {(1,0, l)',(0,0, 1)'}

(i) {(0,y,0)r: - 00 < y < 00} u {(x,0, 1)': - 00 < x < 00}

3. If a, b, c are three vectors in W and

x = aa M- fib + yc

is a combination of a, b, c find a formula in terms of a, b, a, ft for a point z in
conv {a, b} so that x is a convex combination of z and c.
(Hint: Draw a triangle with vertices at a, b, c and consider the line through c and x.)
4. If x0, x t , . . . , x n + ! are vectors in U" show by considering the n + 1 vectors

Xj XQ, X2 XQ, . . . , Xn+ j XQ

that there are constants <x0, OL1 , . . . , an not all zero satisfying

aoxo + a ^ + ••• +aB + 1 x n + 1 = 0 ,

and

<*() + <*! + • • • + a n + 1 = 0 .
Letting / = {i: a, > 0} show that

conv {Xi'.iel} nconv {

(Hint: Consider the previous question.)
5. Prove Radon's Theorem: If X = {xl 5 . . . ,xm} is a finite set of vectors in U"
such that m^n + 2 then X can be partitioned into two sets Xx and X2 such
that conv(Ar

1)nconv(Ar
2) # 0 . (Hint: use the method of the last question.)

6. Prove Helly's Theorem: If A 1 ? . . . , A m are convex subsets of IR" with m ^ n + 1
such that every intersection of w + 1 of these sets is non-empty, then the
intersection f]JL r Ax is non-empty. (Hint: Apply induction. Suppose true for
a given m ^ n + 1 and consider / I l 5 . . . , A m + 1 . Pick x, in
X j n • • • n ^4. _ t n /I. + j n • • • n Xm + j and, using the last question, show that
xeconv (XJ nconv (X2) lies in the intersection by assuming that Xx = {x1}..., x}})
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The separating hyperplane theorem

10.1 Hyperplane and halfspaces

Recall that an affine set of dimension n — 1 in Un is called a hyperplane.
A hyperplane is therefore defined by one linear equation

provided not all the coefficients vu t;2,...,t;n are zero. Alternatively, we
can write this in the form

in which case the vector v = (vl9t>2,..., vn)' may be regarded as the normal
to the hyperplane.

Any hyperplane H defines two half-spaces. One of these is defined by
the inequality

This is the half-space towards which the normal v points. The other
half-space is defined by the inequality

To pass from the interior of one half-space to the interior of the other
it is necessary to cross the hyperplane <x, v> = p.

10.2 Separation

A hyperplane H separates two sets A and B if they lie in different
half-spaces determined by H (Figure 10.1).

122
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Examples
(i) The hyperplane 3x + 4y = 2 in U2 separates the points (0,0)' and

(1,1)' (Figure 10.2). Observe that

30 + 40 ̂  2,
but

3 1 + 4 1 ^ 2 .
(ii) The hyperplane 3x + 4y = 2 in IR2 separates the sets A and B

defined respectively by the inequalities

(the sets A and B are both discs which touch the line 3x + 4y = 2). See
Figure 10.3.

(0,0)

Fig. 10.2 Fig. 10.3
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10.3 Separating hyperplanes and convex sets

This section depends on certain results from analysis, but we shall not
make a fuss about these. We give a geometrical argument which will at
least make for plausibility.

Theorem
Let B be a non-empty convex set in Un and let a be any point of

Rn which does not lie in the interior of B. Then there is a hyperplane H
which separates a and B.

Fig. 10.4

Proof. See Figure 10.4 for an illustration of the theorem. We suppose
first that B is compact, i.e. closed and bounded (closed in that B contains
all of its boundary). We also suppose to begin with that a is not a boundary
point of B. Then by our assumptions on B there is a point b in B which
is closest to a, i.e.

min ||a — y|| = | | a - b | |

and let d be this minimum distance (cf. Figure 10.5). Now let H be the
hyperplane through a which is normal to the vector v = b — a. Then H

Fig. 10.5
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is determined by the equation

<v ,x -a>=0 .

If it were true that B contained a point b1? on the opposite side of
H from b, then it would also be true that there was a point b2 on the
line segment joining b to bx closer to a than b. But, since B is convex,
b2 would belong to B and thus b could not be the closest point of B to
a (cf. Figure 10.6).

Fig. 10.6

Now suppose that a is a boundary point of B; then it must be the
limit of a sequence of points {an} outside B which are not boundary
points of B. Associated with each point an is a separating hyperplane Hn

given by an equation

<vn,x-an> = 0.

If the normals yn are chosen to be of unit length then the sequence {vn}
is bounded (lies on the unit sphere, in fact) and hence has a convergent
subsequence say with limit v, as in Figure 10.7. (This is by the
Bolzano-Weierstrass theorem of analysis; see for example K.G. Binmore,

Fig. 10.7
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Mathematical Analysis.) The hyperplane defined by

< v , x - a > = 0

then separates a and B. We are now in a position to prove:

Theorem of the separating hyperplane
Let A and B be two non-empty convex sets with no points in

common. Then there exists a hyperplane H which separates A and B.

Fig. 10.8

Proof. The theorem is illustrated in Figure 10.8. Consider the set A — B
consisting of all vectors of the form a — b where a lies in A and b lies in
B. This set is convex and the point 0 does not belong to the set, for
if it did there would be point a0 in A and b0 in B such that

0 = a0 - b0,
i.e.

so A and B would have a common point, a contradiction.
Now by the last theorem we can find a hyperplane H through 0 which

has the whole of A — B on one side. Suppose that H is given by

<v,x> = 0

and A — B lies in the half-space determined by

<v,x>^0.

Then, for each a in A and b in B, we have

i.e.

The last inequality says that for any b in B the number < v, b > is a lower
bound for the set of numbers T = {<v,a>:aeA}. If T had a minimum
it would then be true that min T ^ < v, b >. Since b was arbitrary we could
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then conclude that min T is an upper bound for the set of numbers
S = {<v,b>:beJ?}. If the set S had a maximum we would then be able
to say that

max S ^ min T.

We would then infer that any number p between these two is
simultaneously greater than or equal to each member of S and smaller
than or equal to each member of T. This, as we show below, would
provide us with a separating hyperplane. See Figure 10.9.

<V,b> (bGB) <v,a> (aeA)

Fig. 10.9

max S
(or, sup S)

Unfortunately not every set which is bounded below has a minimum,
for example {(l/n):/t= 1,2,3,...} does not. However, every set Z which
is bounded from below does have a greatest lower bound. For example
0 is the greatest lower bound of the set {{l/n):n = 1,2,3,...}. This greatest
lower bound of Z is called its infimum and is denoted by inf Z.
Evidently we have for every z in Z that

inf Z ^ z.

The inf is often a good substitute when a minimum is not available. Of
course if the minimum exists it is equal to the infimum. Similarly, a set
Z which is bounded from above has a least upper bound known as its
supremum, denoted sup Z. Again we have for any z in Z that

z ^ sup Z.

When a set has a maximum the supremum will be equal to it. The
supremum is likewise a good substitute when the maximum does not
exist. In this connection see Part II Section 1.3.

Returning to our main argument, even if T does not have a minimum
the set of lower bounds of T has a greatest member, namely inf T. Since
for any b in B, < v, b > is among the lower bounds of T, it must be the
case that <v,b> is less than or equal to the greatest of all the lower
bounds. Thus
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Thus inf T is an upper bound for the set S and hence is greater than or
equal to the smallest of all the upper bounds, i.e.

sup S ^ inf T.

Now, if p satisfies

we conclude that it is simultaneously greater than or equal to each member
of S and smaller than or equal to each member of T. In other words:

for any a in A and any b in B. Hence the hyperplane determined by

<X,V>=/7

separates A and B. The set A lies in the half-space <v,x> ^p and B in
the half-space <v,x> ^ p .

Note. The conditions of the separating hyperplane theorem may be
relaxed, and this is sometimes important.

The theorem remains true if we only assume that A and B are
non-empty convex sets whose relative interiors have no points in
common. To find the relative interior of a convex set, first find its affine
hull. The points of the relative interior are then those points which are
not boundary points relative to the affine hull See Figure 10.10.

Some such condition on the sets A and B is clearly necessary. For
example, if A and B are two non-parallel hyperplanes then their interiors
(relative to the whole space W) have no points in common but they
cannot be separated. See Figure 10.11.

relative
boundary

affine hull

Fig. 10.10
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Fig. 10.11

A stronger but less complicated condition under which the theorem
is still true is the following. The theorem of the separating hyperplane
holds if A is a non-empty convex set while B is a convex set having a
non-empty interior which does not have points in common with A.

10.4 Supporting hyperplanes

Let S be a non-empty convex set in Un. Let a be a boundary point of
S. If if is a hyperplane through a then it determines two half-spaces. If
S lies entirely inside one of these half-spaces, then H is called a supporting
hyperplane at a. (The half-space in which S lies is called a supporting
half-space.) See Figure 10.12.

The theorem of the separating hyperplane assures the existence of at
least one supporting hyperplane at each boundary point a. If there is
only one supporting hyperplane at a, it is sensible to call it the tangential
hyperplane at a.

Given a supporting hyperplane

<v,x-a> = 0

to the non-empty convex set S at the boundary point a, let us choose

I supporting
/ hyperplanes

hyperplane

Fig. 10.12
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Fig. 10.13

the normal v to point away from S (so that S lies in the half-space

The convex cone generated by such normals to the supporting
hyperplanes at a is called the normal cone at a. (We usually draw this
normal cone with its vertex transferred to the point a.)

If S is a convex cone to start with, the normal cone at its vertex 0
is called the polar cone to S. See Figure 10.13.

10.5 Extreme points

Recall that a set S is convex if and only if for any a and b in
the set S the point

x = aa + J?b

is also in the set S provided that a ^ 0, /? ^ 0 and a + jS = 1.
A point x in a convex set S is an extreme point of S if x cannot be

expressed in the form

x = aa + j3b

where a and b are in S a, /? ^ 0 and a + /? = 1 unless a = 0 or j? = 0. See
Figure 10.14.

Geometrically this just means that x cannot be in the middle of any
line segment which joins two points of S.
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no extreme points

extreme
points

^ extreme
points

Fig. 10.14

It is obvious that every extreme point must be a boundary point.
Open sets contain none of their boundary points and hence cannot have
any extreme points at all. When discussing extreme points it is therefore
sensible to confine attention to closed, convex sets. A closed set is one
which contains all its boundary points.

Observe, however, that not every boundary point of a closed, convex
set is an extreme point of the set. See Fig. 10.15.

boundary point
which is not an
extreme point

extreme
points

Fig. 10.15

A closed convex set which contains the whole of at least one line is
called a closed convex cylinder. Closed convex cylinders may also be
characterised as those closed convex sets which have no extreme points
at all. See Figure 10.16.

Note that a half-space is an example of a closed, convex cylinder and
hence has no extreme points.

We conclude this section with two results which are geometrically
'obvious' (Their proofs are not quite so obvious.)
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R

Fig. 10.16

Theorem
Let S be a closed convex set which is not a cylinder. Then every

supporting hyperplane to S contains an extreme point of S.

(The idea of the proof is that, if H did not contain an extreme point, it
would have to contain a whole line of points of 5, thus S would be a
cylinder. Try to prove this in R, then in U2 and then in IR3 to see the
shape of the proof. Compare Figure 10.17.)

boundary
point

supporting
hyperplane

at a

Fig. 10.17

Theorem
A closed and bounded convex set in

extreme points.
ln is the convex hull of its

(Note that this result is false for unbounded closed convex sets. For
example, a closed convex cylinder has no extreme points. The theorem
is illustrated in Figure 10.18.)
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Fig. 10.18

10.6 Extremal rays

A closed convex cone C has only one extreme point (unless it is a cylinder,
in which case it has no extreme points at all). The extreme point is its
vertex at the origin. Little profit can therefore be expected from the study
of the extreme points of a convex cone. We consider instead extremal rays.

If a closed convex cone is sliced by an appropriate hyperplane, then
the rays through the extreme points of the convex set formed by the
intersection of the cone and the hyperplane will be the extremal rays.
(Cf. Figure 10.19.)

extremal rays

piece of a
convex cone

Fig. 10.19

10.7 Exercises

1. Sketch the following subsets of IR2 and decide whether or not they
are convex.

x 4- 2y ^ 1
y-2x^-2

x^O
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x + 3y ^ 1

x ^ 1 - 3y

For each convex set, identify its extreme points (where they exist) and, in each
case, find all supporting hyperplanes at an extreme point of your choice. Also
find the normal cone at this point.
2. Find a separating hyperplane in 1R2 for the convex sets A and B determined by

x^OJ

3. Let S be the convex hull of the points (1,2/, (2, 1)', (2,2)r and (3,2)' in U2. Let
C be the convex cone generated by these points. Determine the extreme points
of S and the extremal rays of C.
4. Explain why the supporting hyperplane to a convex cone must contain the
vertex 0.
5. Justify the assertion that a closed convex set is the intersection of its supporting
half-spaces.
6. Given that the set of linear inequalities

at xxx + a12x2 +

021*1 + 022*2 +

alnxn

+ am2x2 + •••+ amnxn < bm

has at least one solution, show that the set of all solutions is convex and has at
least one extreme point.
7. With reference to Question 2 of Section 9.10, find the extreme points of the
convex hulls of the sets (a)-(i).
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Linear inequalities

11.1 Notation

In this chapter we use extensively some notation for a partial ordering
of column vectors. We list for reference the following terminology for
a n n x l column vector x = (x1,x2,...,xn)r.

x > 0 xpositive xx >0,x2 >0,. . . ,*„ > 0
x ^ 0 x non-negative xt ^ 0, x2 ^ 0,..., xn ^ 0
x ̂  0 x semi-positive x ^ 0 and x ^ 0

The notation in this area is not yet standardised. For example, some
authors use the notation x » 0 for x > 0, x ^ 0 for x ^ 0 and x > 0 for
x^O.

Entirely non-standard is the following notation which we find
convenient:

For example

(0,l,2)<^2(0,0,0)<.

Example
Prove that

(1) <u,v).= urv > 0 for every u ^ O
if and only if

(2) v^-0.

Proof. First suppose (2) holds. So let u and v be such that

u^jO and v^.O

then <u,v> = nt\ = ulv1 +u2v2 H Vunvn^ujvj>0, so that (1) holds.

135
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Now suppose that (1) holds. By taking u = ef + <5ey = (0,0,..., 1,0,..., <5,
0,..., 0)', where 5 is a small positive number, we obtain a vector which
is strictly positive at its 7th co-ordinate as required in (1). So,
urv = vi + Svj > 0. Now take limits as d tends tc zero to obtain v{ ^ 0.
Also taking u = e, we obtain u'v = vj > 0. Thus v is semi-positive as
required in (2).

11.2 Orthants

The set {x:x ^0} is called the non-negative orthant. The set

{x:x^0}

is the non-negative orthant with the point 0 removed. The set

is the non-negative orthant with one of its faces removed. The positive
orthant is the non-negative orthant with all its faces removed, i.e.
{x:x>0}.

The non-negative orthant in Un is an example of a closed, convex
cone (with vertex 0). The other orthants mentioned are all convex sets.

11.3 Solution sets of linear inequalities

Let A be an m x n matrix. Recall that the solution set of Ax = b is an
affine set (possibly empty). The solution set of Ax = 0 is a subspace of
Un (and always contains x = 0). The solution set of the system of
inequalities

is a closed convex set with a finite number of extreme points. To see this,
let the rows of A be a ' ^ a ^ , . . . ^ . Then the system ^ x ^ b becomes

The solution set is therefore the intersection of a finite number of closed
half-spaces.

Observe that the solution set may turn out to be empty. Evidently
the solution set of the system Ax ^ 0 always contains x = 0. It is a closed
convex cone with a finite number of extremal rays.
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More complicated systems can be reduced to those above. For
example, the system

Ax^b

may be written in the form

i ) V o
Similarly the system

may be re-written in the form

A

-A

I

x >

b

- b

0

11.4 Duality

The basic duality result that we shall prove is the following. One and
only one of the two systems of inequalities

has a solution. This is illustrated

/

r//////////////y

/

in Figure 11.1. The first system has no

\ !

\ ! >̂

\

\

(a) (W

Fig. 11.1. Either Ax = 0 meets the quadrant - (a) - or else R(Al) does - (b)
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solution if and only if the two non-empty convex sets

have no point in common. But this happens if and only if there is a
separating hyperplane. Such a hyperplane must contain the subspace
Thus, for some vector v (normal to the hyperplane) we have

<v,a> = 0 if ,4a = 0,

<v,b>>0 if b ^ O .

But <v,a> = 0 for each a in stf if and only if v lies in J / 1 . But
stfL = N(A)1 = RiA'). Thus v = A'y for some y in Um.

Also < v, b > > 0 for each b ^ 0 such that bj > 0. So by the earlier result
in Section 11.1 v ̂  0 and Vj > 0 as required.

We conclude that the system

Ax =

has no solution if and only if the system

does have a solution.
From this preliminary work we can deduce the following useful duality

results (and many others besides - see the exercises). Of each of the
following pairs of systems in the table below, one and only one has a
solution.

References

Lemma 1

Lemma 2

Lemma 3

Farkas' lemma

Primal system

x^OJ

x>Oj

x^Oj

^x>o}

Dual system
A'y>0

A'y^O

y>oj
A'y^O)
bry<OJ

Ax^b)
Lemma 4

bry>Ol
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Proofs

Lemmas 1 and 2. Both lemmas require very similar ideas so we prove
only Lemma 1. Suppose the primal system has no solution, then for each
j the system

has no solution. Thus for each j there is a solution, call it Y(/) for the
system

Consider the vector z = Y(l) + Y(2) + • • • + Y(n). Then, for any ;', the jth
co-ordinate of A'z is A'Y(l),. + A'Y(2),. 4- • • • + A'Ytfj + • • • + A'Y(n);
which is greater than or equal to At\(j)j (why?) and this is positive since
Y(/) solves (*). Thus Alz > 0. Thus z solves the dual system. Conversely,
suppose z solves the dual system then, for every ;, z solves the system (*)
and hence for each j the system

has no solution. But, this says that the primal system has no solution.

Lemma 3. We start with the dual system:

) . {A<
> viz.
) . {A\ _
> viz. y>0.

>oj \ijy

By Lemma 1 this has no solution if and only if the following system has
no solutions:

J
Write Xr = (xr | zr) where x and z and n x 1 column vectors. Then the system
reduces to

A\= — z

i.e. ^ I
x ^ OJ

and(x|z)/0

The last step requires explanation. The system on the left cannot have
a solution with x = 0; for if x = 0 then z= — A\ = 4-0 = 0 and hence
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X = 0, a contradiction. Thus any solution of the left system will certainly
solve the system on the right. Conversely, any solution of the system on
the right generates a solution of the system on the left. It suffices to set
z at the value of — Ax and then since Ax ^ 0 we have z ̂  0.

Farkas' lemma. Start with the dual system:

b'y<Oj

This has no solution if and only if

A1

has a solution. Write Xr = (x'|z) where this time x is an n x*l column
vector and z is a scalar. The system now becomes:

Ax = bz)

z > 0

If this has a solution then so does the system

Ax = b]

(simply divide the former system's x-solution by z ̂  0). Conversely, if
this last system has a solution then so does the preceding one (take z = 1).

Lemma 4. Again we start with the dual system:

A1

i.e. I
-V

' m + n + l0.

-b'y>Oj
This has no solution if and only if

(A\I\-b)X =

has a solution. Write Xr = (xr|£r|z) where x and % are n x 1 and m x 1
column vectors respectively and z is a scalar. The system now becomes

z > 0

i.e.



11.5 Exercises

The system on the right has a solution if and only if

141

has a solution (as in the previous lemma: division by z in one direction
and put z = 1 for the converse).

11.5 Exercises

1. Determine which of the following assertions are true and which are false.

1
2

4

>
1
2

3

1
2

4,

r
2

4

1
2

3

1

2

3

2. Prove the following:
(i) u'v > 0 for each u ̂  0 with u # 0 if and only if v > 0;

(ii) u'v > 0 for each u > 0 if and only if v ̂  0 and v ̂  0.
3. What is the obvious definition of the column cone of a matrix A! If b ̂  0,

explain why the system

has a solution if and only if b lies in the column cone of A.
4. Sketch and describe the solution sets of the following systems,

(i)

(ii)

(iii)

(iv)

5. One of the solution sets in Question 4 is a bounded convex set. Find its
extreme points and hence write down a formula for the solutions.
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6. One of the solution sets in Question 4 is an unbounded convex set, but not
a cone. Find the convex hull of its extreme points.

7. One of the solution sets in Question 4 is a cylinder. Which?
8. The second of the solution sets in Question 4 is a convex cone. Find points

on its extremal rays and hence write down a formula for the solutions.
9. Use the Farkas lemma to show that one and only one of the systems:

has a solution. [Hint: Ayy = OoA'y ^ 0 and - A'y ^ 0.]
10. Use Question 9 to show that of the two systems:

one and only one has a solution. Give a simpler proof based directly on
the fact that R(A) = NiA')1.
11. Use Farkas' lemma to find the dual to:

where P = [py] is a square matrix of size n x n and e = (1,1,. . . , 1)'. If
for each j

and all the entries p(j are non-negative show that the dual cannot be
solved.
[Hint: For any z

where zm = max{z1 , . . . ,zn}.]
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Linear programming and
game theory

12.1 Introduction

We discuss only some of the theoretical aspects of linear programming.
One practical technique is outlined in the next chapter but short of that
we refer the reader to courses on operational research.

The primal linear programming problem is to find

max cf x

subject to the constraints

,4x^b,

x^O.

The associated dual linear programming problem is to find

min b'y

subject to the constraints
A'y ^ c,

y^o.
(Here A is an m x n matrix, b an m x 1 column vector and c an n x 1
column vector.)

The connection between these problems will be discussed later on. For
the moment we consider the terminology and elementary theory of the
primal problem.

An n x 1 column vector which satisfies the constraints

is called a feasible solution. We shall use F to denote the set of all feasible
solutions. The set F may be empty (i.e. there may be no solutions, the

143
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inequalities 4x ^ b, x ^ 0 having no common solution). In this case the
problem is of little interest.

A feasible solution which maximises the objective/unction c'x is called
an optimal solution. It may be that cfx is unbounded on the set F. In
this case there will be no optimal solutions.

We know that F is a closed convex set with a finite number of extreme
points. Also F is not a cylinder, being a subset of the orthant {x:x ^ 0}.
Hence it contains at least one extreme point (see Figure 12.1).

Fig. 12.1

Fig. 12.2. Provided \\c\\ = 1

Given A, the equation

c'x = <c,x> = A

defines a hyperplane. The geometric interpretation of the vector c and
the scalar A are indicated in Figure 12.2 (see also Chapter 2, Section 5).

It is important to recall that, if the hyperplane is moved parallel to
itself in the direction of the vector c, then the value of A increases.

We are seeking the maximum value of A such that the hyperplane
<c, x > = A cuts the set F.

Figure 12.3(a) indicates a situation in which no such maximum exists
(the objective function crx = <c,x> being unbounded above).

Given that a maximum value A* of A does exist, then <c,x> = A*
cannot pass through an interior point of F. (If it did, then we could find
a value of A a little larger than A* and <c,x> = A would still cut F.)

It follows that <c,x> = A* is a supporting hyperplane to F. Hence it
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igf. J2.3. (a) Xx < A2, (b)

optimal
solutions

optimal
solutions

Fig. 12.4

passes through an extreme point of F. Such an extreme point x* is
therefore an optimal solution (cf. Figure 12.4).

From the above discussion, it is clear that we need only examine the
extreme points of F in seeking an optimal solution. In particular, given
that optimal solutions exist, we can find an optimal solution by evaluating
the objective function at each extreme point to see at which it is the
largest. This idea is the foundation for various numerical techniques for
solving linear programming problems.

12.2 The duality theorem

Recall the primal and dual linear programming problems

Maximise c'x Minimise Vy

subject to subject to

Ax < b, A'y ^ c,
x ^ 0. y ^ 0.

The dual assumes the same form as the primal problem if we consider
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the problem of maximising (— b)ry subject to

(-A)'y^-c,

y^O.

The reason for considering the two problems together is the following
theorem.

Duality theorem
Suppose that both the primal and dual problems have feasible

solutions. Then both have optimal solutions and

max c'x = min bfy.

Proof. Since the primal problem is feasible

has a solution.
By Lemma 4 of Chapter 11, it follows that

b'y<oj
lias no solution.

Next consider the system

Ax^b]

By Lemma 4 again

M'|c)Y5

( A \<(b

i-e- l - c ' J X < U .4
, this system has no solution if and only

v A'y ^ cz '

cOj Z ^
>

(i)

(2)

if the system

(3)

has a solution. Here

where y is m x 1 and z is a scalar. Since the system (1) is insoluble, there
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cannot be a solution to (3) with z = 0. Hence we may suppose that z > 0
in (3). Thus (3) is equivalent to

(4)

To summarise: system (2) is insoluble if and only if system (4) is soluble.
We have yet to use the fact that the dual problem has a feasible

solution, i.e. that

has a solution. This implies that system (4) has a solution provided that
X is sufficiently large. Hence (2) has no solution if X is sufficiently large.
But this simplies that crx is bounded above for x satisfying Ax < b and
x ^ 0. Hence

M = max c'x

exists. A similar argument establishes the existence of

m = min b'y.

Now observe that

X > Mo(2)insolubleo(3)solubleoA > m.

It follows that M = m and the theorem is proved.

12.3 Economic interpretation

Suppose that the co-ordinates of the n x 1 production vector x represent
quantites of processed goods. The co-ordinates of the m x l resource
vector z represent quantities of raw materials. To produce x one consumes
z where

z = Ax.

An entrepreneur can sell his products at fixed prices represented by
the co-ordinates of the price vector c. He seeks to maximise his revenue

c'x

subject to the constraints
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where b represents his stock of raw materials. (The production process
is assumed to involve negligible cost.)

Now consider the problem of an auditor who has to assign a value
to the stock b. He wishes to value the stock as low as is consistent with
the fact that it can be converted into processed goods and sold at price
c. Thus the auditor seeks to minimise

b'y

subject to the constraints

The co-ordinates of the m x 1 column vector y are the 'prices' to be
assigned to the various raw materials stocked. Since these prices are for
book-keeping purposes, we call y the shadow price vector.

The constraint A'y ^ c should be explained. We cannot value the
resource vector z = Ax at less than the amount for which we can sell the
corresponding production x. Hence

y'z ^ cfx,
i.e.

y'Ax ^ c'x.

But this inequality must hold for each x. We can therefore apply it
with x = (£, 0,0,... , 0)', x = (0, <5,0,..., 0)f etc., where S is a small enough
number, and hence obtain that y'A ^ c\ i.e.

A'y ^ c.

A co-ordinate of A'y may be interpreted as the cost of producing a
unit of the corresponding processed good, given that raw materials are
to be valued at shadow prices y.

If the optimal shadow price vector y* is unique, then a small change
8b in the stock vector b will leave y* unchanged. (See Figure 12.5, where
it is clear that for small enough 8b the hyperplane with normal b + 8b
continues to support the feasible set of the dual problem at y*.) But the
change in b will imply a change 8x* in the optimal production x*. By
the duality theorem

c'(x* + 8x*) = (b + 8b)ry*,

c'x* = b'y*.

Hence

cf8x* = 8b'y*.
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V//.

^
V

a*
\

Fig. 12.5

It follows that if extra stock is bought at the shadow price levels y*
then the cost will be exactly balanced by the revenue on the extra
production. Thus y* represents the price levels below which it becomes
worth purchasing extra stock.

We end this section with some remarks about the nature of the optimal
solutions x* and y*.

The expression

may be interpreted as the value (at price y) of the stock which is left
unused in the production of x.

Equally, we may consider

which is the loss involved in producing x given that the stock is valued
at price y.

Since Ax ^ b we have that y*Ax < y'b. Also, A*y ^ c, so xfAxy ^ x'c.
By the duality theorem y*rb = x*'c. It follows that

y*rb = x*rc < x*M'y* = y«Mx* = y*fb.

We have shown that y*fb = y*fAx* i.e.

Since y* ^ 0 and b - Ax* ^ 0, it follows that
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- i.e the shadow price of a raw material which is not entirely used up
in producing the optimal production vector x* is zero.

Using the same argument as above, it can also be shown that

<x*,yl l y*-c>=0.

Since x* ^ 0 and A'y* ^ c, it follows that

- i.e. if the price of the raw material required to produce one unit of a
given processed good exceeds the revenue in selling it, then none of that
good will be produced at the optimum.

12.4 The Lagrangian

The Lagrangian L(x, y) for the primal linear programming problem:

Maximise crx
subject to the constraints

Ax^b)

is defined by

If we write the dual linear programming problem in the form:

Maximise — bry
subject to the constraints

- A'y < - c
y^O

we obtain the Lagrangian L'(x, y)

We are interested in the saddle points of Lagrangians. The Lagrangian
just defined being a very simple function (linear in both arguments) we
can give a simplified definition of a saddle point. We say that (x*, y*) is
a saddle point for the Lagrangian L(x, y) provided that x* ^ 0 and y* ^ 0
and

L(x,y*KL(x*,y*K.L(x*,y)

for each x ^ 0 and y ^ 0 (see Figure 12.6).
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Fig. 12.6. Left: a saddle point on a general surface; right: a ruled surface with a
saddle point

Using the results of the last section one can show the following theorem.

Theorem
The vectors x* andy* are optimal for the primal and dual problems

if and only if(x*,y*) is a saddle point for L{x,y).

12.5 Game theory

We confine our attention to two-person, zero-sum games. For such a
game one requires two strategy sets X and Y and a payofffunction K(x, y).

Player I chooses a strategy x from the set X and Player II a strategy
y from the set Y. Player I then receives a reward of K(x, y) and Player
II a reward of — K(x,y).

If Player I knows that Player II will select strategy y*9 then Player I
will choose his strategy x* so that

K(x*,y*)=maxK(x,y*)
X

in order to maximise his gain.
Suppose Player II knows that his strategy choice will become known

to Player I, he therefore has little option but to choose his strategy y*
(if he can) so that

K(x*9 y*) = max K(x9 y*) = min max K(x9 y)
x y x
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in order to minimise his loss. Similar considerations with Players I and
II reversed would lead to the conclusion that

K(x*, y*) = min K(x, y*)= max min K(x, y).
y x y

We are faced with the question: when does there exist a pair (x*, y*)
for which

K(x*, y*)= max min K(x, y) = min max K(x, y).
x y y x

If such a pair (x*9y*) exists, then it is an equilibrium point for the
game in the sense that if the game is played over and over again, it will
profit neither player to deviate from the equilibrium strategy, unless the
other does so as well. The number K(x*,y*) is the value of the game.

If we restrict our attention to the case when the strategy sets X
and ymay be regarded as closed convex sets of Un and Um respectively
K(x, y) is convex in x and concave in y (see Section 15.1), then
(x*, y*) is an equilibrium point if and only if it is a saddle-point for
K(x,y)-i.e.

( y K ^ y K ( y )
Any linear programming situation therefore provides an example of

a game. The two players are the entrepreneur and the auditor and the
payoff function is the Lagrangian

This can be regarded as the 'value' of the company. The entrepreneur
seeks to make it large by his choice of x. The auditor seeks to make it
small by his choice of y. As we know an equilibrium (x*, y*) exists
provided that both the primal and the dual problems have feasible
solutions.

12.6 Finite matrix games

The most important result in game theory is von Neumann's celebrated
Minimax theorem which asserts that every finite matrix game has an
equilibrium point (x*, y*) (provided 'mixed strategies' are allowed).

For a finite matrix game we require an m x n matrix A. Player I has
first of all m pure strategies from which he may choose. Similarly Player II
has n pure strategies.

The pay-off to Player I if he chooses his jth pure strategy, while
Player II chooses his fcth pure strategy is ajk.

A strategy (sometimes called a 'mixed strategy') for Player I is a vector



12.6 Finite matrix games 153

P = (PuP2>->Pm)t f o r which px ^0 ,p 2 ^ 0 , . . . , p m ^ 0 and

Pl+P2+'~+Pm=l'
This choice of strategy is interpreted to mean that the yth stategy is
chosen with probability Pj. The pure strategies are therefore identified
with the vectors (1,0,..., 0)f, (0,1,. . . , 0)', etc.

Similarly a strategy for Player II is a vector q = (ql9 q2,..., qj for
which qx ^ 0, q2 > 0,. . . , qn ̂  0 and

The expected reward for Player I if the strategies chosen are p and
q is equal to

m n

v'M = 1 1 ajkPjik
j = l k = l

and we therefore define the payoff function X(p,q) by

Von Neumann's theorem is then the assertion that K(p, q) has a saddle
point. This can be proved directly from the theorem of the Separating
Hyperplane. It is perhaps more instructive to explain first how each
player is faced with a linear programming problem and then to deduce
von Neumann's theorem from the duality theorem.

Consider the finite matrix game with payoff matrix

A =

0 1 1 <*12 ••* <*\n

fl21 0 2 2 02n

wii BIZ win

We shall suppose that each of the entries of A is non-negative. (This
can be ensured by adding one and the same constant, say c, to each
entry of A, an activity which will not affect the equilibrium strategies x*
and y* of the two players as it is equivalent to demanding an admission
fee of c from Player II before the game is played.)

Player I can ensure that his expected payoff is at least as large as X
provided that he can find (Pi,P2»--->Pm)r s u c ^ that

(la)
(Expected gain if II chooses first pure strategy)

"inPl + 02nP2 + •'• + "mnPm
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(lb)

If e = (1,1,1, . . . , 1)' we can write this system in the form

A'p ^ Xe)

e r p = l (2)

Observe that whatever Player IPs choice of strategy q (subject to
e'q = 1 and q ^ 0) we have that the expected payoff for Player I is

pUq = q'A'p ^ Aq'e = X.

Observe also that the set of all vectors of the form A*p where e'p = 1
and p ^ 0 is the set of all convex combinations of the columns of A1 —
i.e. it is the convex hull of the rows of A. Since the entries of A are
non-negative, this set lies in the non-negative orthant and so a X > 0 can
be found to satisfy (2) for a suitable choice of p. Indeed if p is any fixed
vector of the required form we may inspect the left-hand sides of (la)
and denoting by A(p) the least value occurring, we see that (1) is satisfied
when X = A(p). Player I thus seeks to maximize A(p) over all permissible
vectors p. See Figure 12.7.

Alternatively we may regard Player I as seeking to maximise X subject
to the constraints (2). We put y = p/A. Then Player I seeks to minimise

convex hull of
the rows of A

0

Xe,

/ * =
//

mm
( 1 , 1 ) '

Fig. 12.7
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subject to the constraints

Aly > e,

y^O.

Similar arguments lead to Player II seeking to minimise \i subject to
the constraints

e'q=l I (3)

We put x = q//i. Then Player II seeks to maximise

- = - erq = e' x

subject to the constraints

x^O.

Thus Player II seeks to solve a feasible primal problem and Player
I a feasible dual. By the duality theorem both have optimal solutions
x* and y* and, moreover,

and thus both players can solve their problems simultaneously.
[Note that we have used e to denote ambiguously both the w x l

vector associated with Player I and the n x 1 vector associated with
Player II consisting entirely of ones.]

We now briefly develop the parallel approach using the separating
hyperplane theorem.

We begin by interpreting (2) geometrically.
Let

which we have noted is the convex hull of the rows of A. For any X let

K(X) = {x:x ^ Ae} = Xe 4- {z:z ^ 0}.

Thus K(X) is the translate by Ae of the non-negative orthant. It is thus
a convex cone (see Chapter 10). Now Player I seeks the largest value of
X such that

0. (4)
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Such a value evidently exists (why?). If A* is this largest value let p* with
e'p* = 1 satisfy

. (5)
Thus

A'p* ^ A*e

and so for any mixed strategy q

p*lAq ^ AVq = A*, (6)
so Player I has an expected reward of at least A* no matter what strategy
Player II employs.

Now 91 is disjoint from the interior of K(A*) for otherwise we could
find k > X* so that (4) holds. Hence there is a separating hyperplane
between 91 and X(A*). Evidently A*p* is by (5) on the hyperplane which
thus supports X(/i*). In this case the hyperplane must also pass through
the apex of the cone K(A*) (see Question 11 of Exercise 12.8) and so its
equation is

<v,x-/ l*e> = 0

for some non-zero vector v. We assume v is so chosen that K(A*) is in
the half-space

It now follows that for any z ^ 0, since /l*e + z is in X(2*) that

or

;iVe + v'z ^ AVe.

Thus for any z ^ 0

v'z ^ 0,

from which it follows that v ̂  0 and so v'e > 0. Put

4
v'e

Then erq* = 1 so q* is a mixed strategy available to Player II. But for
any p since ,4'p is in 91 we have

q q
any p, since ,4'p is in 91 we have

<v,/4fp>sU*v'e

hence

v'eqMrp ^ AVe
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or
pUq* (7)

Thus by employing q* Player II can ensure that his loss is not greater
than X*. Together (6) and (7) prove that (p*,q*) is an equilibrium.

12.7 Example

Consider the matrix game with payoff

1 0

3

1

- 1

1

II
(Thus if I chooses pure strategy 2 and II chooses pure strategy 1 the
payoff to I is 3 and to II is — 3.)

From the analysis above we know that at the equilibrium point
Player I has maximised X and Player II has minimised \i subject to

(1) e 'q=l (2)

For system (1) we are interested in the convex hull of the rows of A\ for
the system (2) in the convex hull of the columns of A. We refer now to
Figure 12.8.

The convex hull of the rows of A comprises the line segment L
joining the points (0,1)' and (3, - 1)'. The line / through the two points
has equation

x 2 - l x x - 0

-1-1 3-0

i.e.

2xl + 3x2 = 3.

To find A* in this case we first solve simultaneously the last equation
with xx = x 2 . Then

5xx = 3.

Since this gives a point of the line segment L (rather than just of /) we
have for some p* that
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X2

1st row of A

2 3 \ r

j
L = convex hull of

rows of A i ^^t
2nd row of A f ' *J?+

1 st column of A

M = convex hull of
columns of A

2nd column of A

5' 5/

i^. 72.8

We note that for any q

5'

hence Player I can secure an expected reward of f.
Before finding p* we repeat the calculation above for the system (2).
The convex hull of the columns of A comprises the line segment M

joining the points (1 , -1 ) ' and (0,3)f. The line through these two points
thus has equation

x 2 — 3 Xj — 0

- l - 3 = 1 - 0
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i.e.
4xx H-x2 = 3.

To find n* in this case we first solve simultaneously the last equation
with xx =x2. Then

5xx = 3.

Again this gives a point of the line segment M itself and so for some q*
it is true that

Kl, ly = Aq*

Again too we note that for any p

Hence Player II can ensure that his expected loss no matter what Player I
does is not greater than f. We have thus discovered that A* = f = fi* and
the value of the game is | - i.e. the expected payoff for Player I at the
equilibrium is f. (Von Neumann's theorem assures us that A* = /**, and
we observe that this is borne out by our calculations.)

Finally we find p* and q*. One way to do this is to refer to A'1

assuming this exists. In our case, since the rows are linearly independent,
we have an inverse and

J 3 | 3

We obtain that

n
Oj

•R] -1J]
i.e. Player I choses pure strategy 1 with probability f and pure strategy
2 with probability \. Player II on the other hand choses his pure strategy
1 with probability f and pure strategy 2 with probability f.

12.8 Exercises

1. Solve the following linear programming problem. Maximise z = x + y subject
to the constraints
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2. Write down the dual of the linear programming problem. Minimise
u — x + 2y — z subject to the constraints

and hence compute the minimum. Find also the maximum of u subject to the
constraints (if such exists).

3. Two products x and y pass through machine operations (I, II, III and IV) in
being manufactured. The machine times in hours per unit are

X

y

I

2
I
4

II

4
2

III

3
2

IV

1
45

The total time available on machines I, II, III and IV respectively is 45,100,300
and 50 hours. Product x sells for £6 and product y for £4 a unit.

What combination of x and y should be produced to maximise revenue?
4. An entrepreneur can produce manufactured goods x and y which each sell

at a price of £ 1 per unit. To manufacture x and y respectively he requires
quantities u and v of raw materials, where

w = x + 2 y |

v = 2x + y)

If he begins with a stock of 3 units of raw material u and 4 units of raw
material v, at what prices for the raw materials will it pay him to buy a little
more?

5. Consider the problem: Maximise c'x subject to the constraints

Show that the dual problem is to minimise b'z subject to the simple constraints

A*z ^ c.

6. Suppose that x* > 0 is optimal for the standard primal problem. If the rows
of A are a\, a'2,..., a^ explain why

y*>0

This equation implies that c lies in the normal cone at x* to the feasible set
of the primal problem. Explain this.

7. Find the equilibrium strategies and value of the finite matrix game with

A =
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8. Find the equilibrium strategy for Player II and the value of the finite matrix
game with

0 - 1 - 5

9. Explain why chess may be regarded as a two-person, zero-sum game.
10. Write down the Lagrangian for the primal linear programming problem
introduced in Section 12.4. This has a saddle point at (x*, y*). To what does this
assertion reduce when x = q//i, y = p/A, x* = q*/fi, y* = p*/A? What is the
significance (if any) of your answer?
11. The hyperplane v'x = c is known to support the non-negative orthant
{x:x ^ 0}. Assume that v'x < c for all x ^ 0. Assume further that for some fixed
z ^ 0, v'z = c. Show by considering the sequence of points z, 2z, 3z,..., nz,... which
are all in the orthant that c < 0. Deduce that the hyperplane passes through the
origin, i.e. that c — 0.
12. Find a vector of the form (X,A,Xf belonging to the convex hull C of the
three points

(4,1,2)', (1,3,1)', (2,2,4)'

and prove that for this A one of the players in the zero-sum game with payoff
matrix

"A 1 2

1 3 2
2 1 4

can ensure that the expected loss is A. Find a normal vector to the plane in
U3 separating C from the translate by (A, A, A)' of the positive quadrant. How
can this normal vector be used to show that A is the most favourable possible
expected loss for the aforesaid player?
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The simplex method

We describe an algorithm due to van Dantzig for solving the linear
programme

max c'x

subject to

Ai
and

x^O.

(*)

(**)
We already know that if the feasible set F is bounded, the optimal x is
an extreme point of F. Since the extreme points of F form a finite set
(this is geometrically obvious - see Section 11.3 for an indication of a
proof), it would in principle suffice to check the value of c'x at each
extreme point. The algorithm not only locates the extreme points for us,
but presents them in such an order that the value of the objective function
c'x increases. In the example illustrated in Figure 13.1 we have:

A =

Observe that the lines c'x = 2xx + 3x2 = I for X increasing pass through
the sequence of points (0,0), (0,5) and (2,4) which are all connected
successively by edges on the boundary of the feasible set. The algorithm
when started at (0,0) will present (0,5) for evaluation, then (2,4) and stop
there since that is where the maximum occurs.

13.1 The key idea

There is a very easy way to locate algorithmically an extreme point other
than the origin. Search along one of the co-ordinate axes. The advantage

1
1
4

2
1

2
and b =

10
6

19

162
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Fig. 13.1

of this idea is that all but one variable is zero. Since the objective function
2xx + 3x2 increases fastest with x2 (per unit increase) we search the
x2-axis (where xx = 0). To find the extreme point consider the
constraining inequalities. With xx = 0 they take a very simple form. We
have from (*) that:

xx + 2x2 ^ 10 becomes 2x2 ^ 10 or x2 ^ 5,

xx + x2 ^ 6 becomes x2 ^ 6,

xj -h 2x2 ^ 19 becomes 2x2 ^ 19 or x2 ^ 9.5

(1)

(2)

(3)

The extreme point occurs at the largest value of x2 which satisfies all
the constraints. That, clearly, occurs at the most restrictive constraint
x2 ^ 5. We have thus reached the extreme point (0,5). The procedure is
very simple indeed, and evidently works when we are confronted with
an n variable problem since on an axis all variables except one are zero.

Now either the optimum is (0,5) or else we need to proceed to a
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further extreme point. We thus have to ask ourselves whether there is
an equally easy way to find another extreme point at which the objective
function is greater than 20 + 3*5 = 15. Van Dantzig's idea was to
construct a new co-ordinate system with its origin at (0,5) and with axes
along the boundary of the feasible set, the aim being to repeat the same
process as above for calculating the next extreme point. Naturally the
co-ordinate system has to have oblique axes, but then our earlier
calculation nowhere used the orthogonality of the natural axes.

JC, + 2X-y = I

Fig. 13.2. New co-ordinate through (0,5)

We set about determining the form of the co-ordinate system with
axes as illustrated in Figure 13.2. The parallels in this system are given by

and by
2x2 = /.

for constants k and /.
Observe that we know the equation of the next edge as the one which

corresponds to the most restrictive constraint identified at the last step
viz. (1).

The new co-ordinate axis is obtained when / = 10. Introduce a new
variable u. We would like this new axis to have equation u = 0. We can
arrange for that to happen with either of two choices:

u = 1 0 - ( x t + 2x2) or u = x1 + 2 x 2 - 10.

Which should it be?
Since we would want points in the feasible set to satisfy u ^ 0 (because

the co-ordinate variables in the original statement of the problem were
also non-negative) we are led to select

u= 1 0 - ( x j +2x2) .
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Having determined that the new co-ordinate system has axes u = 0
and x1 — 0 we need to reformulate the original problem using the
variables x1 and u instead of xx and x2. This we can do by employing
the equation which defines u to eliminate all reference to x2 in all the
other constraints.

Performing this elimination first on (*) (viz. Ax ̂  b) we have

- u ^ O or w^O, (1')

x 1 +i{10-M-x 1 }^6 or I J ^ - I K ^ I , (2')

4x1 + {10-u-x 1 }<10 or 3 x 1 - « ^ 9 , (3')

(and we notice that u ̂  0 as pre-arranged). Next we transform the vector
inequality (**) viz. x ̂  0 which now reads:

i . e .X j+w^ . (1")

(Notice that the latter is really a restatement of (1) without using x2.)
Next we observe that the objective function itself is transformed as

follows

2xx + 3x2 = 2x1 + f { 1 0 - M - x 1 }

= 15 + | x 1 - | w .

The constant occurring in the last line has to equal the value of the
objective function at the extreme point (0,5). To see this note that xx = 0
and u = 0 defines that extreme point, so on substituting these values in
the objective function a value of 15 must be returned. Thus the constant
term records the objective value at the current extreme point. Note also
that 15 is not the maximum we are seeking since the objective function
may be increased by setting u = 0 and then allowing xx to increase
(subject of course to the constraints).

We thus know that we must look for a further extreme point and
have ended up with the problem:
maximise

subject to

iX l+iii<5, (4)

K-IM^I, (5)

3xl-u^9i (6)

^ O and w^O.
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(Notice that (5) and (6) are (2') and (3') while (4) arises from (1").)
This is once again in the form of the original problem and we may

take u = 0 and seek the most restrictive constraint. The constraints this
time are as follows.

(4) becomes \xx ^ 5 ,

(5) becomes \xx < 1,

(6) becomes 3 x t ^ 9 ,

and the most restrictive as far as maximising xx is concerned is (5). Thus
at the next extreme point we have u = 0 and xl=2. The objective function
value here is 15 + ^-2=16, certainly an improvement on the last value
returned.

The next step is obvious. We attempt a further increase in the objective
function by the same trick. We use the second constraint (5) to introduce
a new co-ordinate variable, call it v, and we have:

v = 1 —\xx +^u

(so that the extreme point is now represented by u = 0 and v = 0). We
ought now to rewrite the constraints eliminating xx in favour oft;. Before
doing so, let us first re-write the objective function in terms of our new
variables. We have

15 + \xx - f u = 15 - \u + {1 - v + \u)

= 16 — u — v.

This last expression has the significant property that all variables have
negative coefficients. Since the variables are all non-negative (u ^ 0, v ̂  0)
the objective function cannot take a value greater than 16 in the feasible
set. We have thus solved the linear programme.

13.2 Systematic approach

Now that the pattern of activity has emerged we set about performing
the calculation in a systematic way. This is done by means of an array
of numbers comprising the coefficients and the constant terms which we
have been considering above. The array is known as a tableau. Before
we can introduce it we explain the philosophy of the notation. Instead
of introducing the letters w, v in an ad hoc way, we note that their role
is to convert inequalities into equations and that they in effect take up
the 'slack' in the inequalities. A systematic way to do this is to extend
the original list of variables in the problem by introducing one slack
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variable into each inequality at the outset, thus:

xx + 2x2 + x3 = 10,

4 x x + 2 x 2 + x5 = 19.

The feasible set is now given in terms of the extended list of variables by:

subject to the equations above.
Note that u = x3 and i? = x4. Note also that the edges of the feasible

set F (Figure 13.3) are respectively given by

x x = 0 , x2 = 0, x3 = 0, x4 = 0, x5 = 0.

Extreme points in a Wo variable problem are characterised by the
fact that precisely two of the extended list of variables are zero. In official
parlance the variables that are non-zero at an extreme point are called
the basic variables of the extreme point and the others are called non-basic.
Thus the non-basic variables are those that refer to the 'new co-ordinate
frame' which was constructed through the extreme point as origin. On
the other hand the basic variables are those that evaluate slack. In other
words they are the 'generalised slack variables'.

Secondly we give the objective function a name, say M. Thus:

M = 2x1 + 3x2

= 15 + i x 1 - § M

= 16 — u — v.

X2

13.3
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13.3 The general setting

In general we can expect an objective function of n variables xx, x2 , . . . , xn,
thus:

M = c'x,

and m linear inequalities

where for the time being we shall suppose that b ̂  0. The latter may be
converted to equations by the introduction of one slack variable per
inequality: xn+x, xn + 2 , . . . , xn+m. We then select one variable which is to
be increased as in the original example. For the sake of argument let
this be xx. (In the example it was x2.) Setting x2 = 0, x3 = 0,...,xn — 0
we have that as xx increases the point (xlJ0,.. . ,0,0) moves along a
straight line segment or edge of the feasible set until one of the
constraining inequalities becomes active (viz. the inequality is actually
an equation). Since to begin with all the slack variables are non-negative
(usually in fact they are positive), the situation just envisaged brings one
of the slack variables to zero. (We hope that only one slack variable
becomes zero). Say this is xn+l. We change to an oblique co-ordinate
system in which the reference variables (the non-basic variables) are
x2 , . . . ,xw,xn + 1 and the basic variables which measure slack relative to
the new variables are x x, xn + 2 , . . . , xn+m. The process is then repeated by
selecting another non-basic variable for increase.

13.4 Simplex tableaux

Our original argument may be re-written in the tabular form below

Ratios
10/2 =J>
6/1

19/2 = 9.5

M
0
0
0
1

* 1

1
1
4

- 2

x2

(D
i
2

- 3

1
0
0
0

0
1
0
0

x5

0
0
1
0

b
10
6

19
0

where the last line records the equation M — 2x1 — 3x2 = 0. Our
technique is now to

— select the column corresponding to the most negative entry on
the bottom line
—calculate the ratios of the entries in the b column to the
corresponding coefficient in the selected column
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— circle that coefficient in the selected column which
corresponds to the least ratio. The circled entry is known as the pivot.

This done we use the pivotal row (the row in which the pivot lies)
to eliminate by row operations all other entries in the selected
column. (This is known as Gauss-Jordan elimination.) The result is
another tableau:

Ratios
5/(1/2) =10
1/(1/2) = 2

^ _ 9/3 = 3
2 0 0 | 15

Repeating this process yields

M

0
0
0
1

1/2

®
3

-1/2

x2

1

0
0
0

1/2
-1/2

- 1

3/2

x4

0
1

0
0

x5

0
0
1

0

b
5
1

9
15

M

0

0

0

1

0

1

0

0

x2

1

0

0

0

* 3

+ 1

- 1

2

1

- 1

+ 2
- 6

1

0

0

1

0

b

4

2

3

16

Since there are no negative entries in the bottom row we have
completed our task.

The ratio calculations are of course related to our earlier
determination of the most restrictive constraint. The most
restrictive corresponds to the least ratio. To see this refer to the
first tableau and note that if xx is set equal to zero the positivity of
the slack variables implies the same inequalities as in Section 13.1.

We have for xl = 0 that:

or x2 < 5,

or x2 ^ 9.5,

hence the constraints on x2 are obtained by taking the ratio of the
constant appearing on the right to the coefficient of x2. But that is
what we calculated at the side of the tableau.

Remarks
1. Observe that if a constant appearing in the b column is

positive and the coefficient in the pivotal column is negative then
the ratio should be ignored. To see why observe that a constraint

2x2

x2

2x2

+
+

* 3

X 4

+ *5

= 10,
= 6,

= 19,

so
so

so

since x3

since x4

since x 5

^ 0

>o

hence 2x2

hence x2 s

hence 2x2

^1C

^ 1 9
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is automatically satisfied when x2 ^ 0. Likewise if the constant is
zero and the coefficient in the pivotal column is negative the ratio is
ignored. However a constraint like

can only be satisfied for x2 ^ 0 if x2 = 0. The ratio here is not ignored.
Evidently, if there are no ratios to consider (as a result of the

above rule concerning negative ratios) then the maximum of c'x is + oo.
2. We have assumed throughout that x = 0 satisfies Ax ^ b since

b ^ 0. We will consider in the next section how to solve the linear
programme when the origin is not in the feasible set.

3. It is usual to omit the first column (under M) from the tableaux
since it is never altered. Similarly it is unnecessary to write down
the variable names in the tableau. Further simplifications are
possible, for instance: omitting the identity submatrix in the tableau
(the coefficients at the basic variables create an identity array) at
the expense of slight notational changes. We will not pursue this
abbreviation since it requires care in remembering which are the
basic variables. In any event involved calculations are best
consigned to the computer.

4. Degeneracy problems occur if some of the constraints happen to be
redundant (in the presence of other constraints). Let us follow through
what happens to our initial example when we use

A =

Here the constraint xx + 2x2 < 10 is redundant. See Figure 13.4. The
effect on the tableau calculation is as follows. In the first tableau we
have two choices for a pivot.

Ratios

10/2 = 5

6/1

10/2 = 5

1
1

4

2
1

2

and b =
10
6

10

1

1

4

- 2

©
1

©
- 3

1

0

0

0

0

1

0

0

0

0

1

0

10

6

10

0
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\

Fig. 13.4

Let us be obdurate and take the pivot in the first row (despite the fact
that our picture tells us to ignore the first constraint altogether). Then
we have

Ratios

5/(1/2) =10

1/(1/2) = 2

0/3 = 0

1/2

1/2

(D
-1/2

1

0

0

0

1/2

-1/2

-1

3/2

0

1

0

0

0

0

1

0

5

1

0

15

Note that the second tableau tells us to follow the edge x5 = 0 in search
of the next extreme point. (We had of course just been searching for an
extreme point along x3 = 0 when we opted for the pivot in the first row).
Now note the objective value in the third tableau:

0

0

1

0

1

0

0

0

4/6
-1/3

-1/3

4/3

0

1

0

0

-1/6

-1/6

1/3

1/6

5

1

0

15

It is the same value as before. The reason is clear: we have changed edges
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without changing extreme point. But since we have arrived at the
maximum the calculation has not been upset.

It is possible (in more general cases) for the calculation to cycle round
a number of edges without moving on to the optimum extreme point.
However, practitioners point out that cycling is rarely encountered in the
real world, so we prefer not to take this question any further.

13.5 Calculation of a basic solution for b non-positive

Consider the modified problem illustrated in Figure 13.5:

maximise

2xj + 3x2

subject to
xx + 2x2 ̂  10,

x1 + x2 > 6, (i.e. -xx - x2 ^ - 6),

Feasible set for
modified
problem

Fig. 13.5

As a first step we rewrite the inequalities as equations with slack variables
just as before. Note that the middle equation has been written so as to keep
x4 non-negative just like the other slack variables.

Xj +2x 2 + x3

X l + X2 ~ X 4

4*!+ x2 +
X1,X2,X3,X4,X5^0

= 10 "\

(1)
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This approach has a serious obstacle in that xx = x2 = 0 does not satisfy
(1) since x4 would need to be — 6 which is not non-negative. So we create
a further variable known as an artificial variable and consider the system:

Cj + 2x2 + x3

c, + xo + -

= 10

= 19

5 , X6 ^ U

(2)

This has the non-negative solution x t = x2 = x4 = 0, x3 = 10, x6 = 6,
x5 = 19. Our aim now is to find a solution of the system (2) with x6 = 0.
We therefore attack the problem of finding a solution of (2) with x6 at a
minimum. This leads us to solve the auxiliary problem:

maximise

subject to

x1-h2x2 + x3

xx 4- x2 4- — x4

4xx + 2x2 +

=10,

x6 = 6,

=19,

The linear programme above will have as its solution max = 0 if and only
if the original problem has a feasible solution. One might at first be
tempted to believe that the tableau for the auxiliary problem should be
as below.

1
1

4

0

2
1

2

0

1

0

0

0

0
- 1

0

0

0

0

1

0

0
1

0

1

10

6

19

0

However, the slack variables in this problem happen to be x3, x5, x6 but
the bottom line does not conform to the requirement that the objective
function (of the auxiliary problem) must be expressed in the non-basic
variables of the current extreme point viz. x1 ,x2 ,x4 . To counter this we
quickly eliminate x6 from the bottom line using the second row (since
that row defines x6 in terms of the non-basic variables x1?x2 ,x4). This
we now do. The tableau below also shows the pivot and additionally
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carries the objective function of the original problem (in brackets).
Reasons for this will soon become apparent.

1

1

4

1

2

1

0

0

0

-1

0

0

0

1

0

1

0

10

6

19

10/2 = 5

6/1

19/2 = 9.5

- 1 - 1 0 1 0 0 - 6

( - 2 - 3 0 0 0 0 0)
We now have (applying Gauss-Jordan elimination to the bracketted
row too):

5/(1/2) =10

1/(1/2) = 2

9/3 = 3

and finally

1/2

©
3

-1/2

(-1/2

1

0

0

0

0

1/2

-1/2

-1

1/2

3/2

0

-1

0

1

0

0

0

+ 1

0

0

0

1

0

0

0

5

1

9

-1

15)

0

1

0

0

(0

1

0

0

0

0

1

-1

2

0

1

1

-2

6

0

-1

0

0

1

0

0

-1

2

-6

1

1

4

2

3

0

16)
This gives xx = 2, x2 = 4, xs = 3, x3 = x4 = x6 = 0. Since x6 = 0 we
consider what happens if we suppress the x6 column in our last tableau
and use the bracketted row in the place of the current bottom row. The
answer is clear. Since setting x6 = 0 in (2) gives back the system (1), we
obtain a tableau for the original problem corresponding to the extreme
point xx = 2, x2 = 4, x5 = 3, x3 = x4 = 0. Thus the tableau is written in a
form where x3 and x4 are the non-basic variables.

0

1

0

0

1

0

0

0

1

-1

2

1

1

-2

6

-1

0

0

1

0

4

2

3

16
We leave it to the reader to complete the calculation from here.
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13.6 Exercises

1. A plant makes two products A,B each needing to be processed by three
machines. Time spent in process on each machine and hours available are itemised
in the table

Machine 1.
2.
3.

Product
A

2
1
1

B

1
1
3

Hrs available
per week

70
40
90

The profit on product A is $2, on product fl, it is $3 per item.
(a) If profit is to be maximised, what amounts of each product should be

made?
(b) The option has arisen of hiring an extra person to run the machines. If

he/she can operate the machines for up to 10,10,20 hrs per week (respectively)
up to what wage is it profitable to employ him/her?

(c) If a person is employed what is in fact the most economical way to
distribute his 40 hour week between the three machines? (You will probably have
to do this one from first principles.)
2. Maximise 3x + 2y + z subject to

6x + 3y 4- 2z < 10

2x+ y + 2 z ^ 6

6x-6y+ z^6
x,y9z ^ 0.

[Remember to disregard 'negative ratios'.]
3. Maximise x + y + z subject to

12

12

3x-6>>+ z ^ 3

x,y9z >0.

When selecting the pivot note that for a positive c the relation — cxt ^ 0 is
always satisfied in the feasible set, so disregard the ratio 0/ — c; on the other
hand ex, < 0 is satisfied in the feasible set only for x, = 0 so the ratio 0/ + c is
not to be disregarded.

13.7 Further exercises

1. (From Vajda.) At a signal-controlled intersection a two-way road meets three
one-way roads as illustrated in Figure 13.6. Permitted movements a,b,c,d,e can
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Fig. 13.6

be paired together by appropriate green signals being phased in the traffic lights.
The average flow is tabulated below and possible phasing is (a, 5), (d, e), (a, c),
(b,c), (b,e) (check this!). The green time has to be allocated in such a way that
the smallest number of vehicles allowed through on green via a, b, e, d, or e is
maximised.

What porportion of green time should be given to the various phasings?

a

1

b

3

c

15

d

12

e

18

2. (Multiple solutions.) In the final tableau, if a zero appears in a column
corresponding to a non-basic variable then we may obtain yet another tableau
using that column to locate a further pivot. Evidently, the Gauss-Jordan
elimination leaves the value of the objective function unchanged. Why does this
correspond to multiple solutions?
3. Examine the relationship of the tableaux for a given problem (regarded as
primal) to its dual.
4. (Tie-breaking.) If two 'pivotal ratios' (i.e. ratios examined to determine the
pivot) are equal, then a zero will appear in the last column of the next tableau.
What is the geometric significance of this and why will this mean that the tableau
next after this may well have the same value for the objective value? Use geometric
reasoning to suggest a tie-breaking rule between competing ratios. (Instead of
a zero variable, use a very small value and examine ratios of pivotal column
elements against corresponding elements from each of the other columns.)
5. (Checking rule.) Against each row i of your tableau place the coefficient a, of
the basic variable which it had in the original expression for the objective function.
Do likewise for each column j corresponding to the non-basic variables. If d} is
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the entry in column j in the bottom row then

where c,s are indicated in the tableau below:

177

Cm

T
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Partial derivatives (revision)

14.1 Tangent plane to a surface

The tangent plane to the surface z = /(x, y) at the point (X, Y, Z) where
Z = f{X, Y) takes the form

i(y-Y).

To obtain the numbers / and m we use calculus as follows. The plane
y=Y determines a section of the surface as illustrated in Figure 14.1.
We work in that plane. The section of surface is, of course, a curve whose
equation is z = / (x , Y). This is a function of the one variable x. At the
point x = X the function has gradient

f(X + h,Y)-f{X9Y)
lim
h->0 h

and this is of course the partial derivative

The tangent plane's trace on y — Y is a tangent line to the curve
z = /(x, Y); its equation is, evidently, z — Z = l(x — X\ i.e. its gradient is
/ and that must equal the derivative obtained above. Repeating this
analysis in the plane x = X, we arrive at the conclusion that the tangent
plane has equation

[\yY).
oy

14.2 The directional derivative

The function <t>(t) = f(X + tul9Y+tu2) arises when we take a vertical
section of the surface z = /(x, y) by a plane through (AT, Y, 0) parallel to

US
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= fix, y)

plane y - Y

the vector u = (ul, u2)\ as illustrated in Figure 14.2. The curve thus traced
has slope </>'(0) at the point (X, Y,Z). The value of this slope can be
obtained by using the chain rule. We have

d<P_dfdx dfdy
dt dx dt dy dt

where V/ is the row matrix

'df d_
' dy,

The slope obtained above is known as the directional derivative off(x, y)
in direction u.
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Fig. 14.2

14.3 The derivative Df

We claim that V/ may properly be regarded as 'the derivative of / ' . To
say such a thing requires us to review the meaning attached to the usual
derivative

dx

of a function z = <f>(x) of one variable. (j)'(X) is a number that gives the
best coefficient (or, multiplier) m for which the expression

z = Z + m(x - X)

is a good approximation to the function z = </>(*) near x = X (Figure 14.3).

z = <f>(x)

Z + m(x - X)

Fig. 14.3
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It is 'best' in the sense that the error is of order (x — X)2 (compare
Taylor's theorem). Now note that if x = X + h and y=Y+k

181

k)-f(X9Y)

dx dy

so that V / is the 'best' matrix multiplier M in the linear approximation

So it is sensible to think of V / as lDf\
Now consider the vector-valued function

z = (Zl,z2)' = (Mx,y), f2(x,y))< = f(x,y).

Repeating the earlier analysis for each co-ordinate variable Zj and z2 gives

dx dy dx dy

This last expression may be re-written as

dx dy

dx dy

So it is natural to define the derivative Df in this case to be the matrix

dx dy

dx dy

since it is the best matrix multiplier M in the approximation

(3
Consider what meaning should be attached to the term D2f when, as
initially, we are concerned with the real-valued function z — / (x, y). We
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evidently have

Df =
dJ. dl
dx* dy

So treating the first and second co-ordinates as though they were the
functions f1 and f2 we obtain that D2f = D(Df) is:

dx2 dydx

d2/ e2/
dxdy dy2

One could proceed to obtain D 3 / , . . . but we would have to agree on
some convention regarding its representation, since matrices would not
suffice. One spectacular idea would be to introduce 'solid' matrices
(Figure 14.4). Less spectacular, and easier to handle, would be to re-write

Fig. 14.4

D2/as

/d2f d2f d2f d2f
\dx2' dydy* dxdy' d2y

and to continue from there. Fortunately, we have no need for D3/,. . .in
this course (or for tensors, which would be the appropriate mathematical
tool).

Example
Compute the directional derivative of the directional derivative

of /(x, y) when both are in the same direction u.

Solution. We have

D(Z)/u)u = ~(Df-u)Ul + A (Dfu)u2
ox dy
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d {df df } d (df df
= —< — u l H u2 }ul H < —wx H 1

dx [dx dy J dy [dx dy

d2f 2 , ^ 2 / 5 2 / 2

f'l-
L«2JThis result will be useful to us when we study convex functions.

14.4 Exercises

1. A function f(xl9...,xj is said to be homogeneous of degree r if

Show that in this case the partial derivatives df/dxt are homogeneous of degree
r - 1 .
2. Show that /(x, y) is homogeneous of degree r if and only if it is of the form
xrF(y/x) for some function F(t).
3. Derive Euler's Equation for a differentiable homogeneous function of degree
r, / (x, y), viz.

dx dy

Conclude that if r is an integer and / is r-fold differentiable, then

How do both equations generalise to n variables?
[Remark. If a function / satisfies Euler's Equation then it is necessarily
homogeneous of degree r. See Exercises 20.4, question 7(a).]
4. Suppose the function /(x, y, u, v) is homogeneous in x, y of degree r and is
homogeneous in u, v of degree s i.e.

/(/ex, ky, w, v) = krf(x, y9 w, u),

f(x, y, ku, kv) = ksf(x, y, w, r).

Show that

^ d\( df df
- + i ; - x— + y—
du dv/\ du dv
( d d\f df df

— I x \-y— u hi;—
\ du dv/\ dx dy
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Convex functions

15.1 Convex and concave functions

Let X be a convex subset of R" and let y = /(x) be a real-valued function
defined on X. We say tha t / i s convex on X if the epigraph, i.e. the set of
those points (x, y) in Rn+1 with

y>f(*)

for x in the set X, is convex. The function y = /(x) is concave if y = — /(x)
is convex. See Figure 15.1.
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It is obvious that a function y = /(x) is convex if and only if all chords
drawn through two points of the graph lie above the graph. Similarly,
chords to a concave function lie below the graph. See Figure 15.2.

chord

convex
function

Fig. 15.2

This geometric idea can be put into analytic language and yields the
useful fact that a function / is convex on the set X if and only if

for each a ^ 0 and each ft ̂  0 satisfying a + p = 1 and for each xx and x2

in the set X. See Figure 15.3.

Fig. 15.3

For concave functions the inequality is replaced by

15.2 Examples

The functions (i) y = x2 (ii) y = ex and (iii) y = 3x2 + 4x2 are all convex.
The functions (iv) y = - (x - I)2 and (v) y = log x (x > 0) are concave. See
Figure 15.4.
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Fig. 15.4

15.3 Differentiable convex functions

If the function y = f(x) is differentiable at each point of a convex set X,
then a tangent hyperplane can be drawn for each point § in the set X
(cf. Figure 15.5).

y t

y = fix)

= /(*)

= /«) + v/«)(* - i)
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For the function to be convex it is clear that each such tangent
hyperplane must be a supporting hyperplane to the set of points above
the graph. The condition

for each x and § in the set X is therefore necessary and sufficient that /
be convex on X.

Now suppose that y = /(x) is twice differentiable on X. Let a and b
lie in X and let u be a unit vector pointing from a to b. Write b = a + tu.
From the condition above we have

since

and

See Figure 15.6.

slope

slope
V/(a)u

slope
V/(b)u

Fig. 15.6

Thus V/(x)u = Df(\)u increases as x moves in the direction of u. Its
directional derivative in this direction must therefore be non-negative, i.e.

D {Df (x)u}u = ulD2f(\)u ^ 0.

This is true for all unit vectors u. Hence / is convex on X if and only



188 Convex functions

if the matrix

D2f(x)

is non-negative definite for each x in X.

15.4 Examples

(i) Consider the function

>> = exp(18x3),

we have

D{exp(18x3)} = 18-3x2exp(18x3)

)} = 18-6-xexp(18x3)H-18-3x218-3x2exp(18x3)

= 18-3exp(18x3)(2x+ 18-3x4).

Fig. 15.7
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The condition for convexity is

2x + 18-3x4^0

189

Outside the region —1/3 < x < 0 the function is therefore convex (cf.
Figure 15.7). Inside this region D2{exp(18x3)} ^ 0 and so the function
is concave. See Figure 15.8.

Fig. 15.8
concave

Fig. 15.9
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(ii) Consider the function y = log x (x > 0).

D{logx} = l/x

D2{\ogx}=-\ (x>0)

Thus y — log x is concave for x > 0. The tangent line when x = 1 is
given by y = (x — 1). Note that

l o g x ^ x - 1

and thus y = (x — 1) is a supporting hyperplane to the set of those
(x,y) satisfying y ̂  logx and x > 0. See Figure 15.9.

(iii) Consider the function y = /(x1,x2) = x\ + xxx2 + x2. We have

Sf
- = 3x1 + X2

dx2
= xx +2x2

i6:1)
dx1dx2 dx\

and the determinant of this matrix is 12xx — 1. For D2f to be
non-negative definite or non-positive definite we need (cf. Section 5.6)
that 12xx- 1 ^ 0 , i.e.

Consequently 6xx >0 and hence the function is convex in this
region, but it is neither convex nor concave elsewhere,

(iv) For what values of p and q is the function

1 1
y = 1

Xl X2

(a) convex, (b) concave in the region xx > 0, x2 > 0?
We have

dx1

dxxdx2

dx0

d f
dx\

82f

d

dx,

d

V
L3x2
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For the function to be convex or concave we need

det D2f = pq(p + l)(q + I ) * - * " 2 * - * " 2 ^ 0,
i.e.

Given that this holds the function is convex if p(p + 1) ̂  0. The
condition for convexity is therefore

p(p+

q(q+1)^0

The condition for concavity is that pq(p + l)(g + 1 ) ^ 0 and
p(p+ 1 ) ^ 0 i.e.

i.e. and

15.5 Exercises

1. Explain why a function cannot be convex on the set X unless X is a convex set.

2. Where are the following functions (a) convex, (b) concave?

(i) y = e^x (x^O) (ii) y = log(l+x2) (x real)

(iii) (x real) (iv) y = x3 (x real)
1+x2

(v) /(x,y,z) = x2 + 2>>2 + 3z2 ((x,y,z) in R3)
(vi) /(x,>\z)= - x 2 - 2 y 2 - 3 z 2 + 7x + 4y ((x,y,z) in U3)

(vii) /(x, j) = 3x2 + 2xy + Ay1 + x + 3y + 5 ((x, y) in R2)
(viii) /(x, y) = log (xy) (x > 0 and y > 0)

3. Let
/(x,y) = e x p { - x 2 - y 2 } .

Calculate D2f and find the region X in which det D2f ^ 0. Also calculate fxx

and /yy and find the regions in which these are non-negative. Prove that / is
concave on X.

Find the equation of the supporting hyperplane at the point
(-13/36))

to the convex set defined by

z ^exp{ — x2 — y2}

where (x,y) lies in X.
4. An affine function is given by /(x) = Ax + b. Prove that it is both
convex and concave.



192 Convex functions

5. Under what conditions is the real-valued function defined on U" by the formula

fix) = x'Ax

(where A is symmetric) (a) convex, (b) concave?
6. A function y = fix) is differentiable and concave on Rn. If

explain why /(x) < / (§) for all x in Rn.
7. Let y = fix) be convex on a subset X of R". Justify Jensen's Inequality
which asserts that

/(o^Xi + a2x2 + ••• + a n x j ^a j / fX i ) + a2/(x) + - + a n / ( x j , provided
ô  ^ 0 , a2 ^ 0 , . . . , a n ^ 0 , ô  + a 2 + —har t-h 1 and x l 5 x 2 , . . . , x n all lie in X.
[Hint: See Section 9.4]

15.6 Further exercises

1. Show that if g(x) and h(x) are concave functions defined on a convex set
C g r then the function

m(x) = min {g(x\ h(x)}

is concave. Is M(x) defined by

M(x) = max {g(x\ h(x)}

concave?
2. Show that 1/t is convex for t > 0 and deduce that if /(x) is a concave

function defined on R with /(x) > 0 for all x then l//(x) is convex.
3. Show that if /(x) is a convex function defined on a convex set C then

for 0 < p < q < r

f{x + qu) - f{x + pu) > f{x + pu) - f{x)

q-p *" p
and

fix + ru) - /(x + qu) fix + pu) - fix)

r-q p

4. If C is a closed convex set in IR3 show that the set

D = {ix,y)t:ix,y,z)teC for some z}

is convex and that the function g defined by
#(x, y) = min {z:(x, >>, z)r e C}

for (x,y)reD is a convex function.
5. If fix) and gix) are convex functions defined on C show that

a/(x) + ##(x) is convex for a, /? ^ 0.
6. If/(x) is a convex function on C and (f>: U -> R is increasing and convex show

that <f>ifix)) is convex.
7. Let C be a closed, bounded, non-empty convex set; show that the
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support function

/(x) = max {v'x:veC}

is convex. Give a geometric interpretation of this function.
8. The Minkowski functional of a closed, bounded, non-empty convex set

is defined by

Show that the function is convex. Compute the value of p when C is the
elliptical disc

x2 y2 ,

9. If C is a closed, non-empty, convex set its distance function is defined by

<f(x) = min{ | |x -c | | : ceC} .

Show that d is convex. (Note its occurrence in the proof of the separating
hyperplane theorem.)
10. Use the convexity of the function el and Jensen's inequality to prove
that, for x l 5 . . . , x n ^ 0 and a 1 , a 2 , . . . , a n ^0 with at + a 2 + — 1 - ^ = 1 it is
the case that

11. Using the result of the last question show that for p > 1

where

P q

(Hint: Replace x, by x,/S where S denotes the sum of the pth powers.) This
result is known as Holder's inequality.
12. Deduce from Holder's inequality the following inequality due to Minkowski

[ n ~i i /p r » ~i i /p r » i i / p

ZdxJ + WKj < | l>l ' J +[Il3'il "J •
What does this have to do with the triangle inequality?
13. A real-valued function /(x) defined on a convex subset C of W is
called quasiconvex if for any u and v in C we have

/(au + (l

whenever 0 ^ a < 1. Show that if / is convex then it is also quasiconvex.
Show that / is quasiconvex if and only if each of the level sets
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is convex. Show that an increasing function is quasiconvex and give an
example of a quasiconvex function which is not convex.
14. State and prove a generalization of the Jensen inequality appropriate
to quasiconvex functions. If C = conv {xli...,xn} and / is a quasiconvex
function defined on C show that / has a maximum over C at one of the
points x ! , . . . , \ n . Deduce that the maximum occurs at an extreme point of C.
15. If a real-valued function / defined on a convex set satisfies ( + ) with
strict inequality it is said to be strongly quasiconvex. Show that if a
strongly quasiconvex function / defined on a convex set C has a local
minimum at a point of C then it has a global minimum at the point.

Remark
A pseudoconvex function is a real-valued function / defined on a

convex set C c R» satisfying /(x) ^ /(£) whenever V/ft)-(x - £) > 0. Thus
every differentiate convex function is pseudoconvex. Every pseudoconvex
function is in fact quasiconvex.

16. I f / and g are convex functions defined on Un let f*g denote the
function defined by

f*g(x) = inf {/(u) + g(\):u + v = x}.

Show that f*g is convex.
17. If g:Un-> U is a convex function show that

is a convex function. Show also that a solution of the problem

min /i(x, y)

subject to

x 4- y = 2a

is provided by

x = y = a.

18. Show that in the special case of a function of two variables,/(x, y) is convex
if and only if

(i) d2f/dx2 ^ 0, and
(ii)

Deduce that the following two functions are concave

(a) /(x, y) = x a / , where O<a,
(b) f{x9 y) = (axy + Pyy)ll\ where 0 ^ a, ft a + /? = 1 and y ^ 1.



16
Non-linear programming

16.1 Geometric considerations

Consider the problem of evaluating

M = /(x) = max /(x)
xeS

where S is a closed and bounded set in IR" and / is differentiable.
If the maximum is attained at an interior point as indicated in

Figure 16.1 there is not much more to say about the optimum

y = fix) x2

Fig. 16.1. ml<m2<m3<M

point x* than that

V/(x*) = 0.

What can be said if the optimum point x* lies on the boundary
of the set S? Consider the illustrations in Figure 16.2 and 16.3.

195
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y = fix)

V/(x*)

/(x) = m3

/(x) = m2

/(x) = mx

Fig. 16.2

V/(x*)

/(x) = mx

Fig. 16.3

The important point to note is that, in each case, the vector
V/(x*) points into the normal cone of the set 5 at the point x*.

16.2 Constraints

In practice, the set S is often specified by a number of
constraints - i.e. 5 is the set of all x for which the constraints

are all satisfied.
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16.4. gi(y) = 0, £2(y) = 0, g3(y) > 0

A constraint gt is said to be active at a point y in 5 (Figure 16.4)
if and only if

Let y be a point in the set S at which the active constraints are
0i»02»---»0i- Consider a path which leaves y and enters the set S.
Let u be the unit vector which is tangent to the path at y. As x
leaves y in the direction u, the functions g1(x),...,gi(x) cannot
decrease. Hence we must have that

> 0 (1)

(since these are the directional derivatives in the direction of u).
If it is true that conditions (1) imply that the unit vector u is

tangent to a path which enters S, then we say that the constraint
qualification is satisfied (cf. Figure 16.5).

The constraint qualification only fails to hold in exceptional
circumstances like that indicated in Figure 16.6. In particular, the
constraint qualification is always satisfied if the gradient vectors

are linearly independent.
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y

Fig. 16.5

Fi#. 16.6. Vg1(y)y = 0, Vg2(y)v = 0. Observe that v does not point into S

16.3 Kuhn-Tucker theorem

The general non-linear programming problem is to find x* such that

/(x*) = M = max/(x) (2)

where x is subject to the constraints

0 2 M > 0

gk(x) > 0

(3)

An x satisfying conditions (3) is said to be feasible. A feasible x*
satisfying condition (2) is said to be optimal (cf. Chapter 12).

We shall always suppose that our functions are all differentiable and
that the constraint qualification holds.

Kuhn-Tucker theorem
Suppose that x* is optimal for the general non-linear programming

problem above. Then the following conditions hold:
(i) x* is feasible,

(ii) there exist Xx ^ 0, X2 ^ 0, . . . , Xk ^ 0 such that

= 0.(SO V/(x*)
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The conditions above are known as the Kuhn-Tucker conditions. Of
these (i) is trivial and (ii) simply says that kt = 0 unless the constraint g{

is active at x*. Given this information (iii) may then be interpreted as
the assertion that V/(x*) points into the normal cone at x* (cf.
Figure 16.7).

Fig. 16.7

This fact evidently depends on the directions of the various gradients
and so ultimately on the form of (2) and (3). In this respect the mnemonic
"Maximize your objective and think positive" may be helpful.

Proof of the Kuhn-Tucker theorem. Let x* be optimal and let the active
constraints at x* be gi,g2,>••,#/• Suppose that

i.e. (4)

Assuming the constraint qualification, the vector u is tangent to a
path which leaves x* and enters the set S. Since /(x) is largest when
x = x*, it follows that

for all u satisfying (4) - i.e. for no u satisfying (4) is it true that

- V / ( x * ) u < 0 . (5)

We now appeal to the Farkas lemma with A = [ V ^ , . . . , V^] and
bf = — V/(x*). This asserts that one and only one of the systems

A'u^O)
Vu<oy (6)



200 Non-linear programming

has a solution. But we have seen that (4) and (5) are contradictory, i.e.
the second system of (6) is insoluble. We deduce from the first the existence
of kx ^ 0, k2 ^ 0, . . . , A, ^ 0 such that

V
(7)

This completes the proof (kj+19 kj+2,..., Xk being chosen so that

16.4 Concave programming

A concave programme is one in which the functions are all concave.

Theorem
For a concave programme, the Kuhn-Tucker conditions imply

that x* is optimal.

Proof. Since the functions 0i,02>--->0* a r e concave, the set S of feasible
x is convex (why?). Given any x in S, the line segment joining x and x*

Fig. 16.8

therefore lies in the set S (cf. Figure 16.8). Put u = x - x*. Then

i.e.

where 0i,02>--->0/ a r e ^ e active constraints at x*, i.e. (4) above holds.
The Kuhn-Tucker conditions (7) (by way of the Farkas lemma (6))
therefore imply that (4) and (5) are contradictory. Hence
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But / is concave, consequently

/(x) - /(%•) ^ V/(x*)u = V/(x*)(x - x*) ^ 0.

Thus /(x) ^ /(x*) for each feasible x.

16.5 Notes on the Kuhn-Tucker conditions

(i) Just as with linear programming, a duality theory can be
developed for the general non-linear problem. (In the case of concave
programmes the analogy is very close.) In particular the numbers
A1,A2,...,/lk can be interpreted as shadow prices once the problem has
been suitably formulated.

(ii) The 'Lagrange multipliers theorem' asserts that if x* is optimal
for the programme:

maximise /(x)

subject to the constraints

t h e n there ex is t real n u m b e r s X x , X 1 , . . . , ' k k s u c h that

V/(x*) + kx Vgx(x*) + . - + lkVgk(x*) = 0. (8)

Formal manipulation of the Kuhn-Tucker conditions for the given
system of equation constraints rewritten as a system of inequalities,
viz. gx(x) ^ 0, - gx{\) ^ 0,. . . , etc., gives the equation (8). (Why?)
Unfortunately these rewritten constraints do not satisfy the constraint
qualification (Section 16.2). Nonetheless by analogy the numbers in the
Kuhn-Tucker conditions are also called Lagrange multipliers.

(iii) Note that we did not need to assume the constraint qualification
in proving our theorem on concave programming.

(iv) In applications the constraints often take the form

and

If x* is optimal for maximising /(x) subject to these constraints, then



202 Non-linear programming

there exist kx ^ 0, X2 ^ 0 , . . . , Xm ̂  0 and \i± ̂  0, \x2 ^ 0 , . . . , /*„ ^ 0 such
that

^ i 0 i ( x * ) = ••• = *mgm(**) = / i i x j = / i 2 x f = ... = / i n x * = 0
and

Note that Vxx = (1,0,..., 0). Hence if x* is optimal, there exist
l ^ 0, A2 ^ 0,. . . , Xm ^ 0 such that

and

16.6 A worked example

Find the minimum of

z = x2 + y2 — 4x

subject to

x2 + 4 y 2 ^ l ,

x 4 - 2 ^ ^ 1 .

From Figure 16.9 it is clear that the answer is — 3 which is attained at

Fig. 16.9

the point (1,0). We shall, however, arrange the problem as a concave
programme and use the Kuhn-Tucker conditions. Consider then:
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maximise

{4x-x2-y2}

subject to

1 - x2 - Ay2 ^ 0,

x + 2y - 1 ^ 0.

Then (x, y) is optimal, provided that it is feasible and A ^ 0 and n ̂  0
exist for which

A(l - x2 - 4y2) = ,u(x + 2y - 1) = 0 (1)
and

(4 - 2x, - 2y) + A(- 2x, - Sy) + /i(l, 2) = 0. (2)

Equation (2) yields that

4 - 2 x = 2Ax-/i . 4 - 2 x = 2Ax-/z]
i.e. >. (3)

- 2y = Sky - 2\i - y = Aky - \i J
Suppose that A = 0. From equation (3) we obtain that y = \i — — 4 + 2x.

But this is inconsistent with the feasibility of (x, y). Hence X # 0.
Suppose that ju = 0. From equation (3), we have

— y = AXy i.e. y = 0 or A = — \.

If the latter 4 - 2x = 2 ( - £)x, and x = §. But x = f is inconsistent with
the feasibility of (x, y) whereas y = 0 is consistent only if (x, y) = (1,0).
Thus, either (x, y) = (1,0) or else A # 0 and ̂  ^ 0. But then from equation (1)

x + 2y - 1 = 0

and hence (x, y) = (1,0) or (x, y) = (0, \).
At (x,y) = (1,0) equations (3) become

0 = —/i

and so (1,0) is the optimal point.
At (x, y) = (0, | ) , the equations (3) become

LC' A=- |<OJ- i = 2A- / i j A = - |

and the Kuhn-Tucker conditions are not met.
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16.7 Exercises

1. Sketch the region in U2 determined by the constraints

Use the Kuhn-Tucker conditions to obtain the condition satisfied by Vg at the
point £ = (2, — 1)' if the function g has a maximum at £ subject to the given
constraints. Explain the geometric significance of your condition and sketch Vg
in your diagram.
2. Discuss the problem of evaluating

min{x~p + y~q}

subject to the constraints

ax + by ^ c \
1

3. Write down the Kuhn-Tucker conditions for the problem of evaluating

max {log{xy)}

subject to the constraints

x2 + 2y2 ^ 4
x2 + 2y2 < 6x - 5

Hence solve the problem.
4. What is the region determined by the concave constraints

Comment on this region and the 'constraint qualification'.

16.8 Further exercises

1. Find the maximum of the function

subject to

x2 + y2 + z2 = 1,
x + y + z = 0.

Is your optimum still optimal when the equations are replaced by the symbol
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2. Repeat question 1 with

/ = x2 + y2 + z2

and with the constraints

x -I- 3y + 2z = 0.

3. Repeat question 1 with

f = xyz

and the constraints

x + y + z = 5,
xy + yz + zx = 8,

but adding x, y, z ^ 0 for the problem with inequalities.
4. Minimise x2 + y2 + z2 subject to

xyz = c,
y = kx,

x,y,z>0,

5. Maximise xy2z2 subject to

x3 + y2 + z = 1,
x,y,z>0.

6. Minimise x + y subject to

What does this problem say about the possibility of carrying a ladder round a
corner of two corridors, with widths a and bl

1. Write down the Kuhn-Tucker conditions for the problem of maximising

xpy (p>0)

subject to

Deduce from these conditions a condition on p which ensures that the optimal
point (x,y) is (i) (1,2), (ii) (2,1).
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8. Determine the part of the boundary on which the problem

Max xpyq

subject to

(x + 2)2 + y2 ^ 10

with p > 0, q > 0 has a solution. How does the answer depend on the ratio p/ql
9. Use the convexity of

and the Kuhn-Tucker theorem to prove that for k

What does Jensen's inequality have to say about this result?
10. Compute the Kuhn-Tucker conditions when the objective function to be
maximized is the quadratic

c'x + \

with B a symmetric matrix and the constraints are

Ax^b.

Solve the problem when c = ( - 1,3)T, b = (7,8)T and

11. (a) Find the minimum and maximum of the function

subject to the constraints

x2 + y2 + z2 =
x +y +z = :

(b) Check whether the maximum obtained in part (a) also solves the programme

maximize
x4 + y4 + z4

subject to

+ y2 + z2 ^ O

+y +z ^ lj '



I I ADVANCED CALCULUS

17
The integration process

17.1 Integration as area

In elementary treatments it is customary to explain the symbol

\f(x)dx

as an anti-derivative, i.e. denoting any function F(x) such that

-^
dx

For example, we might write \xdx = (x2/2), since (d/dx)(x2/2) = x. The

notation is ambiguous because, of course, (d/dx)(x2/2 + c) = x, where c
is any constant. Indeed, quite generally, if Fx(x) and F2(x) are two
functions satisfying for some f(x)

~F1(x) = f(x) = ~F2(x\
dx dx

then

~(F1(x)-F2(x)) = 0.
dx

But it is known that if a function G(x) has derivative identically zero,
then G(x) is a constant. For this reason, if we are to have a clear conscience,
we should write

\>

But suppose we are to make sense of the symbol

|exp(-x2)dx.

207
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Now although exp( — x2) is an elementary function, in that it is made
up from the basic functions log, exp, polynomials, there is no elementary
function whose derivative is exp( — x2). In this case we are stuck: no
'formula' for F{x) can be found. To get unstuck we have to appeal to
the geometric interpretation of an integral as an area under a curve.

Let us briefly recall this. Let /(x) be a real-valued function. In general,
the domain of definition of f(x) need not be the whole of R so we shall
assume that f(x) is defined only on some open interval a < x < b.

Pick c in this interval and, for x satisfying:

let

a<x<b)
c<x )

A(x) = area under the curve between the c and x abscissae.

The usual argument now runs as follows. For small enough h

h)-A(x)*f(x)-h

a

Fig. 17.1

x + h

(see Figure 17.1) so that

We shall be able to justify this formula more precisely at the end of
Section 17.5. For the moment we have the plausible results

— A(x) = f(x)
dx
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and r= f(t)dt.

So the answer to our initial question is to recognise that we should
create a new function defined by means of area; we may then denote it by

f
Jo

exp(-t2)dt.

This function has been tabulated just like logarithms. Actually, a multiple
of the function above is more useful in applications, viz.

2 Cx

— txp{-t2)dt
V^Jo

and this has been christened the 'error function', denoted erf(x). We shall
now turn our attention to the calculation of area, something that our
definition above takes for granted.

17.2 A calculation

Find

1= exp(-t2)dt.

The practical problem is to approximate to the answer and to compute,
for a start, the area of the shaded region in Figure 17.2. That area is, of

fk

/(» = * '

10 i
Fig. 17.2

course, an under-estimate. We obtain
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But an approximation is no use, unless we know the extent to which we
are in error. So we shall next over-estimate the area by using the larger
unshaded rectangles. We now obtain

The numbers work out to be /(0) = 1, /(I) = 0.367 8794, /(1/2) =
0.778 8007, so that

If = 0.573 340 1 < I < I2
+ = 0.889400 3.

Not a very gratifying result, considering that the two estimates do not
agree even in the first place of decimal. We can, of course, use a larger
number of narrower rectangles (as in Figure 17.3). To cut a long story

fk

Fig. 17 3

short, it is not until we use a base width of 2"5 that we get even the first
place of decimal agreeing in both the under-estimate and the over-estimate.
The numbers are at that stage (order 5):

I" = 0.7368874 < I < 1+ = 0.756641 2.

In Sections 17.7 and 17.8 we shall see that, rather than increase the
number of rectangles, it would be wiser to opt for an alternative
approximation process.

The above calculation begs a very important question. How do we
know that the process of under-estimating and over-estimating area will
'eventually' yield 'the right answer'; that is, an answer up to a desired
degree of accuracy when enough subdivisions of [0,1] are made. In the
example to hand it would not be very difficult to prove that the
under-estimates and over-estimates will agree in as many places of
decimal as we wish provided we use narrow enough bases for our
rectangles. We need, however, to guarantee this more generally and this
is the specific aim of the next two sections.



17.3 The Riemann definition

17.3 The Riemann definition

We start off by giving a formal definition of the definite integral

211

f
when the function is non-negative (so that its graph stays above the
x-axis). We do not stop to consider functions of variable sign; they
are dealt with in the obvious way by summing the positive/negative
contributions arising from the subintervals where the integrand is
positive/negative. The definition builds on the procedure of the last section.

By a partition of the interval [a, b] we shall mean a finite set

* = 2> • • • > Xn)

where a = x0 < xx < ••• < xn = b. With its help we can obtain the lower
estimate by reference to rectangles below the curve (Figure 17.4). Proceed

Fig. 17.4

as follows. In each of the subintervals [ x o x j , [x1 ,x2] , [ x 2 ,x 3 ] , . . . ,
[ x n _ l 5 x j we calculate the minimum value of the function. More
precisely: in each subinterval we calculate the maximum of the lower
bounds on the function in that subinterval. The reason is that we
have to cater for the possibility that a minimum is riot attained by the
function. See Exercise 17.20 question 6. We use the symbol inf to denote
this greatest lower bound; see also Section 10.3. For 1 ^ r ̂  n, let

r = inf{/(x):xr_1

then let

L(P)= t "U*r-xr-i).

It now seems plausible to define the area under the curve as the smallest
number greater than all the lower estimates L(P) as P ranges over all



212 The integration process

partitions P. The symbol sup is used to denote the smallest among these
upper bounds (known as the supremum). Here again it might well be
that there is no 'attained' largest lower estimate for the area. We thus
have

f(x)dx = sup UP).f
Two questions immediately arise: is the number defined here finite, and,
would the same number be obtained if we looked at over-estimates?
Certainly, if/ is bounded, say by M, we have

= £ m r (x r -x r .^ £ M{xr-xr_x)
r = l r = l

which settles the first question. The upper estimates (over-estimates)
would be defined by refering in each subinterval [xr_l fxr] to the least
of the numbers bounding / from above in the subinterval [xr- i ,xr] .
Thus, if

Mr = sup {/(x):xr_! < x ^ xr)

(where we have again used the sup), the upper estimate would be

U(P)= £ Afr(xr-*,_!).

The largest number which is below all the over-estimates is denoted by

inW(P).
p

This is also a candidate for the area under the curve. To show that the
two are equal, amounts to the same question that we asked at the end
of Section 17.2. The answer is 'yes' provided the integrand/(x) is
continuous. The next section studies this notion. See also Appendix A.

17.4 Continuity

Consider carefully the behaviour at and close to x = 0 of the functions
graphed in Figure 17.5.

In (a) and (b) the value of/(x) either side of 0 is very nearly /(0)
provided x is close enough to 0. Another way to say this is that the
limiting value of/(x) as x approaches 0 from either side is/(0). If this is
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(a) (b)

(c) (d) (e)

/(O)

(f) (g) 00

Fig. 17.5. (a) Near x = O the graph is almost straight, (b) The oscillations decrease
either side of x = O. (c) A jump discontinuity: values to the right at least h away
fromf(O). (d) This time the discontinuity is at left, (e) Two-sided jump, (f) Infinite
jump, (g) There are x-s arbitrarily close to 0 where f(x) is h away from f(O).
(h) Infinitely many infinite jumps.

so, we say that / is continuous at 0.
In all the other cases illustrated we can pick arbitrarily small intervals

round 0 in which the function value f(x) is at some x at least a
predetermined value h away from/(0). (Compare the illustrations.) The
function is discontinuous and is said to have an oscillation of at least
JiatO.

The precise definition of 'continuity at x0' which follows simply says:
no matter what hurdle we set the function to jump, it will be unable
to jump as high as we ask anywhere in some particular vicinity of x0.
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Definition
Letf:(a,b)^U be a function. Let a<xo<b. We say that f is

continuous at x0 if for every e > 0 there is a 3>0 such that for any x
satisfying

a<x<b & xo — S<x<xo + d

we have

We further say that f is continuous if it is continuous at every point in its
domain of definition.

17.5 What the definition means

Let us explain the definition above carefully and in detail, because the
ideas involved here are common to a number of later definitions. The
order of events in the definition is crucial. First of all, a positive number
is assumed given. This is e. Its purpose is to give meaning to the words
'/(x) is close to /(x0)'. The rest of the definition then says that we are
able to control the closeness of f(x) to /(x0) by constraining the
position of x through requiring it to lie at most 5 either side of x0.

To illustrate this point concretely imagine the problem of accurately
computing n2. (Here the function we are concerned with is/(x) = x2 and
x0 will be n.) Our problem is that we do not actually know the value of
n, but we can compute it to any desired degree of accuracy. So, in order
to compute n2 we need to use instead of x0 an appropriate approximation
x. How close must x be to x0? Evidently, we first need to know what is
the target accuracy in the answer for/(x0). If we required 20-figure
accuracy we would want our computed answer/(x) to be within at most
10"21 away from the actual answer. Writing e = 10~21 we require to
use an 3c which will guarantee that

The second item of information which we require, and this can only be
known once e has been given, is 'how close to x0 must x be'. The answer
to that question must take the form 'to within so and so' and this has
to be assessed somehow (see below). Say we assess it to be 6. When
we have found this d we can then assert that:

Given the target accuracy e for approximating/(x0) by/(x) we
can find S so that when x lies to within d of x0, the target
accuracy is achieved.
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Another way of visualising our discussion is this. We are given an
idealised calculator which computes x2 but: (i) it will print the answer
only to a finite number of decimal positions as output on a tape and we
are allowed to tell the machine how many decimal positions we require;
(ii) we can read in x as an input only to a finite number of decimal
positions though we are allowed to select to how many. Our problem
is to have n2 accurately. The solution takes us through the following steps.
(1) Specify the target output accuracy (e); this is equivalent to specifying

the number of decimal positions on the output side.
(2) Discover whether it is possible that the actual input n may be replaced

by an approximation (truncation of its decimal expansion) without
necessarily incurring loss of accuracy at the output side.

(3) Hence compute the input accuracy (3) required of the approximation
to n to guarantee the targetted output accuracy.

The formal definition above for the continuity of/at x0 says precisely
the same thing, only symbolically. Indeed the fact that we can find 3 i.e.
the knowledge that we can obtain n2 to within s, upon using any
approximation to n (which itself is to within 3 of n) amounts to saying
that the function/(x) = x2 is continuous at n. (It is of course also
continuous at all other locations for x0, not just for x0 = it) And that
is of course why continuity is so important.

We will now show that such a 3 may be found (see Figure 17.6).

= x2
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Fig. 17.6

Observe that

(x2 - x2) = (x - xo)(x + x0).

Suppose that x0 > 1. To begin with we constrain x so that
x0 — l < x < x o + l then

x + x0 ^ 2x0 + 1
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and

< | (x -x o ) | ( 2x o + l).

This will be less than s provided we ensure both that <5-(2x0 + 1) < fi and
that 8 < 1. (Why?) We leave it to the reader to complete the argument
for other values of x0.

Illustrative use of definitions: anti-differentiation

Armed with the notion of continuity and the Riemann definition of
integration we are in a position to give a proper proof (promised in
Section 17.1) that differentiation is the opposite of integration. Let/(r)
be a continuous function defined on [a, 6]. Put for x in [a, b]

• - 1F(x)= f(t)dt.
J a

Let £ be in (a, b) and suppose e is given. By continuity at £ there is a
8 > 0 such that

for any x with |x - f | < 8. Let 0 < \h\ < 5/2. First suppose h > 0. Now
for x in [{, £ + /i] we have that

so, integrating the inequality from £ to { +

Thus since ft > 0

or

A similar inequality obtains for 0 > h > — 5/2. This implies that the
limiting value of



17.7 Numerical integration

17.6 Which functions are continuous
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The practical answer is twofold.
First of all we note that the polynomials, ex and log x (the latter for

0 < x < oo) are continuous. Furthermore, if f(x) and g(x) are continuous
in (a, b) then so also are

f{x) + g(x)9 cf{x\ f(x)g(x).

So also isf(x)/g(x) provided that in (a,b) g(x) is never zero. But note that
l/x is discontinuous in any interval containing 0. Moreover if the values
of the continuous function fix) all lie in the range of the continuous
function h(x) then the composite function h(f(x)) is also continuous. In
other words if we combine continuous functions we obtain continuous
functions except when we attempt to divide by zero.

Secondly, if in doubt about continuity plot the graph of the function
and inspect whether there are any discontinuities.

17.7 Numerical integration

We saw in Section 17.2 that the calculation of area by upper and lower
estimates in terms of rectangles could be a slow process. In this section
we present two easy techniques which will often lead to more accurate
results with less calculating effort.

(i) Trapezoidal rule

Instead of drawing rectangles construct trapezoids using the chords
joining sucessive points on the the curve, as illustrated in Figure 17.7.

Fig. 17.7
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I

Fig. 17.8

Recall that the area of the trapezoid shown in Figure 17.8 is

\h-{l + k).

We thus obtain the estimate

i= lifcOv + iv-i).
r = 0

where we have assumed a spacing of h throughout the partition. Note that

so:

Evidently, an approximation is not much use unless we can guarantee
its order of accuracy. Fortunately it may be shown that the error
committed in each of the intervals [xr_l5xr] amounts to

h3

12 ; ( C J '

where £r is some point in the interval [xr_l5xr] and it is assumed that
the second order derivative f"(x) is continuous. The significance of this
formula in estimating the accuracy of a computation using the rule above
will become apparent in the example of the next section. We now
introduce a second method.

(ii) Simpson's rule
In the trapezoidal rule we were in effect replacing arcs of the curve f(x)
by chords, that is by linear approximations. We can go one better by
using a second order (parabolic) approximation. For this we must assume
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that the partition has equal spacing of width h and that n is even. We
can then arrange the subintervals in pairs which are contiguous thus:

[x0, x x ] , [x l 5 x 2 ] ; [x2,x3],[x3,x4]; . . . ;[xr t_2,xn_x],[xn_l 5xn].

For given r (odd), let us temporarily take axes through the point (xr, 0)
(cf. Figure 17.9). Writing x,y for our new variables the equation of the

fix)

yr-

quadratic
approximation

quadratic curve approximating to the curve of/in the short range [ — h, h]
will be, say,

y = Ax2 + Bx + C.

Then we have

2C/i.
2Ah3

But observe that, since the curve is assumed to pass through the points
(-/i,y1._1),(0,.yr),(fr,.yl.-i), we have on substituting:

from which we may deduce the values of A and B. Substituting in the
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calculation for Ir above we obtain

h(
= - { j

Now summing over consecutive pairs of intervals of the partition we
have the following estimate:

or

This is known as Simpson's rule. As before we need to know the accuracy
of this estimate. It may be proved that the error committed in the interval
[>,_! ,xr + 1] is

where <fr is some point in the interval [xr_ l9 xr+ J and it is assumed that
the fourth order derivative/(4)(x) is continuous. The proof of this formula
is much trickier than that in the trapezoidal rule. For a discussion of
this and of higher order approximations (the Newton-Coates quadrature
formulas) see, for example, Hildebrand's Introduction to Numerical
Analysis. We pass now to an illustrative example.

17.8 Example

Calculate

J. exp( — x2)dx.
o

We begin by calculating the derivatives.

f(x) = e x p ( - x2) f'(x) = - 2x exp ( - x2)
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/"(x) = ( 4 x 2 - 2 ) e x p ( - x 2 )

/<3>(x) = (_ 8x3 + 12x)exp( - x2)

/(x)(4) = (16x4 - 48x2 + 12)exp(- x2)

We may examine the behaviour of the quartic factor in /(4)(x) by
considering the graph of y = 16z2 — 48z + 12 sketched in Figure 17.10.
From it we see that / ( 4 ) is decreasing in [0,1]. The largest that

- 24 ^ - ^

Fig. 17.10. Graph of y = 16z2 - 48z +12

/(4)(x) can be in absolute value is therefore either |/(4)(0)| or |/(4)(1)|.
A rough calculation shows the maximum absolute value to be at 0.
So a bound on the error per pair of intervals in the Simpson rule will be

90 15

As regards the trapezoidal rule we note that, since /(3)(x) is positive in
[0 ,1] , /" is increasing and so in absolute value is greatest either at 0 or
at 1. Here a quick calculation reveals that the maximum of |/"| occurs
at 0. We may conclude that the error in any one interval of the trapezoidal
calculation is in absolute value no greater than
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Let us take h = 2"5 so that there are 32 subintervals or 16 pairs of
contiguous intervals. Then we have:

accuracy in Simpson formula sS 16-2~25(^)^6-36 x 10" 8

accuracy in trapezoidal rule ^ 32-5 ~ 1 5 ( i ) < 1-63 x 10~4

We now calculate the estimate for the integral. Since h = 2~s we are
assuming n = 32.

yo=/(O) = i
y32 =/(!) = 0.367 879 4

= 1-367 8794

y 2 = / ( 2/32) =
y 4 =/ (4 /32) =
y 5 = / ( 6/32) =
y8=f( 8/32) =

ylo=/(10/32) =
y12=/(12/32) =
y14=/(14/32) =
y16=/(16/32) =
y18=/(18/32) =
y2O=/(20/32) =
y22=/(22/32) =
>-24=/(24/32):
y26=/(26/32):
y28=/(28/32) =
y3O=/(30/32):

= 0.996101 3
= 0.9844964
= 0.9654545
= 0.939413
= 0.9069606
= 0.868 815
= 0.825 797
= 0.7788007
= 0.728763 3
= 0.676633 8
= 0.623 3443
= 0.5697828
= 0.5167705
= 0.4650431
= 0.4152368

y 1 = / ( 1/32) =
y 3 = / ( 3/32) =
y 5 = / ( 5/32) =
yi=f( 7/32) =
y 9 = / ( 9/32) =

y15=/(15/32) =
y17=/(17/32) =
ylo=/(19/32) =
y21=/(21/32) =
y23=/(23/32) =
y25=/(25/32) =
y27=/(27/32) =
y29=/(29/32) =
y31=/(31/32) =

0.990239
= 0.991249
= 0.9758815
= 0.9532753
= 0.9239461
= 0.888 5502
= 0.8478605
= 0.8027382
= 0.7541028
= 0.7029011
= 0.650077 2
= 0.5965444
= 0.5431598
= 0.490704
= 0.4398642
= 0.391223 3

Sum even =11.261413 Sum odd = 11.951102

The trapezoidal estimate is thus

f3V{1.3678794 + 2-(11.261413 +11.951 101)}
= 0.746 7641 ±0.000163.

On the other hand the Simpson rule gives

i-3V{1.3678794 + 4-(11.951101) + 2(11.261413)}
= 0.746 824 + 0.000 000 063 6.

The latter result is thus exact to six figures (within the accuracy
guaranteed by the hand calculator used in this calculation).



17.9 The Riemann-Stieltjes integral 223

17.9 The Riemann-Stieltjes integral

For reasons that will soon become apparent it will be useful to introduce
a generalization of the definition presented in Section 17.3. The
generalisation gives meaning to the symbol

f(x)d*(x)f
J awhere OL(X) is also a function which is defined on [a,b]. Before giving

the definition we shall motivate it in two ways.

(i) Corrugated area

Somewhere in Wonderland is a cardboard mill which presses mashed
raw material pulp into sheets. However, neither Rabbit nor his friends
and relations know how to lubricate the rollers.
(Acknowledgements to Winnie the Pooh.) The cardboard therefore comes
out in corrugated form (see Figure 17.11). It is possible to record how

/. <*(*)

Fig. 17.11

much mass has been turned into a length x of the sheet (the width
fortunately remains constant). Call this a(x). Now Alice, for reasons best
known to herself, has cut a piece of cardboard so that one edge resembles
the graph of the function/(x) as in Figure 17.12. Had the cardboard
been of uniform thickness and unit linear density, the card's mass would
have been given by the integral

f
J a

f(x)dx.

But the mass of sheet between length x and length x + h is evidently

<x(x + h) - <x(x) = doc(x).



224 The integration process

mass in dotted slab
/ = a(x + «

So for h small the corresponding part of the cut-out has mass

We are thus concerned with the limiting value of the sum E/(x)(5a(x)
which might naturally be written

f
Jc

f(x)da(x).

We may therefore think of this as 'corrugated area'.
Trite as this story is, it needs to be taken a little further. So far we

are tacitly modelling a situation where a(x) is an increasing function of
x. We should also make room for functions a(x) which might not be
continuous. We therefore need to refer to Mr Tomkins in Wonderland
(this time acknowledgements to Professor George Gamow) who knows
both about matter and anti-matter (negative mass). He can also cell us
that matter (= energy) is available only in discrete lumps. So, for instance
the jump function illustrated in Figure 17.13 corresponds to the inclusion
of a particular quantum of mass in the cardboard sheet not earlier than
at length /0. We close this discussion by noting that if the function a(x)
were differentiable then instead of writing

for the mass of a section, we could write
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Fig. 17.13. Quantum jump!

This is because

Thus the required mass of cardboard in this instance would be the
limiting sum

I/(x)a'(x)<5x,

where we have written dx for the increment ft. Our more general integral
here reduces to

f(x)oi'(x)dx.

In a later section we shall consider what happens if a is not differentiable.
In the meantime we can regard a(x) as being a 'weighting function', since
it corresponds to uneven mass/weight distribution.

(ii) Motivation from probability theory
Consider a large population of individuals each of whom posseses a certain
amount of income. Choose units appropriately so that the total income
is 1. Let

a(x) = proportion of people possessing an amount ^ x of income.

We can use a to estimate the income of a randomly selected individual
as follows. Divide the whole income range [0,1] into income brackets:

* 0 X1 ' • • Xr-l Xr '" Xn

0 1
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Our randomly chosen individual falls in the income bracket xr_1<x^xr

with probability a(xr) — a(xr_l) and thus has, with this probability, at
least xr_v Now we sum over all the income brackets and we obtain an
'expected' income of at least

More generally, if we are interested not in the expected income but in
the expected savings of a randomly selected individual, we might first
obtain the function f(x) which describes the amount saved given an
income level x and then 'argue' (this is a bit fudged) that the expected
savings come to 'about':

This expression looks very much like the Riemann sums of Section 17.3
except that

(i) mr or Mr is replaced by an intermediate value/(xr_x);
(ii) the incremental term (xr — xr_ J has been replaced by-

Our intention is to take some sort of a limit over all sums by passing
to fine enough partitions and calling the limit

[ f{x)doi{x).
o

In the example above note that because the population is finite, the
precise expected income or savings will be arrived at with a fine enough
partition.

What is fudged in the formula for the savings is whether we should
work w i t h / ^ . j ) or/(xr) or even some intermediate value f(tr) with
xr_1 ^ tr ^ xr. For a continuous function / these three possibilities will
be approximately equal (for a fine enough spacing). The matter is far
from clear when/is discontinuous and will be carefully examined in
Section 17.16.

Finally, observe how a(x) provides a 'weighting' of possible saving
levels/(x) (according to their probability). We can thus think of

f
Jo

f(x)d*(x)
Jo

as a 'weighted' integration process.
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17.10 Limits over partitions

The Riemann-Stieltjes integral of/ with respect to the weighting function
a over [a, b~] (or, integrator) is defined by reference to the approximating
sums

S(P,t)= E/(«r){«(*r)-«(x,-l)},
r = l

where P is the partition {x0 ,xx , . . . ,xn} , and t is a vector (tl9t2,...,tn)
which satisfies, for each r, xr_ 1 ^ tr ^ x r Our aim is to take limits as P
gets progressively finer. This presupposes that we are able to attach
significance to the three terms: finer, progressively, limits. The last term
concerns accuracy as in Section 17.6. The first term is easy and we attend
to it first.

Definition
We say that the partition Q = {y0, yx,..., ym} is finer than the

partition P — {x0, x1 ? . . . , xn}, if Q contains all the points of P and, possibly,
some others. Thus, in set notation P ^Q.

Xo Xl X2'" Xn

H 1 1 h : P

II II

H 1 h^-+ : Q
yo yi ^3 yn

The term requiring most attention is 'progressively'. Progress subsumes
direction. It will be helpful to consider the role of direction in two natural
cases where limit processes occur.

Case (i) 'Limit down a sequence'
One possible way to compute Jl (from first principles!) is to use the
iteration formula:

xn +1 = 1 + •
1+Xn

starting with xx = 1. We obtain successively x2 = 1.5 x3 = 1.4
x 4 = 1.41666-..x5 = 1.41344-.-x6 = 1.4142. Clearly, if the limit is x
(assuming the limit exists), we have

1 + x
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and hence

(x - l)(x + 1) = 1 i.e. x2 = 2.

Here the sequence of approximations will be 'progressively' more
accurate in the sense that for a given target degree of accuracy (e.g. 4
figure accuracy) we can find a position in the sequence starting at which
all further approximations have the required accuracy. In symbols: there
is a (starting) subscript n0 such that for all n^n0 the terms xn have the
target accuracy. We see from the above calculations that for 4 figure
accuracy the starting position is n = 6.

The notion of direction in the case discussed is derived from the
natural order relation ^ . We note that the term 'progressively' makes
use of a 'starting position' appropriate to a given target accuracy.

Case (ii) 'Limit along a curve'
This time we consider the graph of a function / such as is given in
Figure 17.14. We talk about the limiting value of / as t 'approaches' 0

Fig. 17 A 4

from the left. In the illustration f(t) approaches n as t approaches 0
from the left. What we mean is that f(t) is a good approximation to n
when t is close enough to 0. More precisely, if we wish to achieve a given
target accuracy in approximating n by f(t) we need to specify a starting
position t0 and require that for all t ^ t0 the value f(t) is to within the
required accuracy of n.

Again we were guided by an ordering relation of the f-axis and by a
'starting position'.

Conclusion. We may regard the calculation of S(P) (we omit reference
to t for simplicity) as though it were indexed by P in analogy to case (i).
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The notion of direction will be provided by the relation 'is finer than'
(by analogy to 'is greater than'). This is graphed in the picture below.

P

1 {O j i , ! , £ 1} _ _ { 0 , x> y, 2, 1}

{0, x,y
4-point

partitions

3-point
partitions{0, A, 1} {0, , , 1}

{0,1}
Partitions of [0,1]. Arrow indicates 'refined to' and provides a notion of direction
for the limit process

To say that S(P) is progressively closer to some limiting value we will
need to say that for a given target accuracy (measured say by e) there
is a starting position PQ such that, for all P finer than Po, S(P) is to
within e of I. Now let us make this official.

Definition
We say that the integral off with respect to a over [a,b~\ exists

if: there is a number I such that to any choice ofe>0 there corresponds
a partition Po with the property that all partitions P finer than Po satisfy

\S{P,t)-I\<e

and this happens no matter how we select t. (Of course t is subject to
xr_ j ^ tr ^ xrfor each r with 1 ^ r ̂  n.)

Remark
For a(x) = x the above definition agrees with the Riemann

definition when / is continuous.
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17.11 The practical approach

Having rolled off the definition we need to ask the practical
question: how is this integral computed? We shall soon see that in
practice the computation boils down to two processes: some
ordinary integration plus a combination of 'point evaluations' i.e. a
contribution of the form

where the summation is taken over some of the places cj where a, the
weighting function, has discontinuities. In a nutshell: integration plus
summation. We expand on this after looking at some special examples.

Example 1
(a a jump function). Let a be as illustrated, viz.,

k2

*1

1
1
1 u——1
1 1
1 1

1—fi i
i i
i \ c

a ib

Fig. 17.15

with k = k2 — k1>0. Compute the integral of / with respect to a,
assuming, that / is continuous at c.

Let P = {xo,x1,...,xw} be any partition which includes the point c.
Suppose c = xs. Then

- a (x n _ , )s+ i){a(xs+1) - a(x$)}

Since a is constant in all the subintervals [xr _ t , xr] except when r = s + 1
we obtain
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Now clearly the limiting value of this expression as P is progressively
finer must be f(c). Indeed, provided we can ensure that ts+1 is close
enough to c, f(ts+l) will be close to f(c). For example, if we wanted
5(P, t) to be to within e of the answer we would first need to know just
how close t must be to c to obtain

\f(t)-f(c)\<e/k.

Suppose that we need 11 — c\ < h. Then take Po = {a,c,c + h,b) and
observe that if P is finer than Po we shall have, for some s9xs = c
and xs+! ^ c + h. Consequently, the rather simple choice of Po

controls the closeness of t s + 1 to c. Under these circumstances, we have
of course

\kf(ts+1)-kf(c)\<e,

i.e. \S(P,t)-kf(c)\<e. This proves that

if(x)dx(x)=f(c)'k.

Remark 1
Our result is easy to understand in the light of the story in

section 17.9. Suppose the function cc(x) introduced in the story gives the
amount of pulp turned into cardboard sheet of length x and happens
to have a graph like that in Example 1. Let us see what implications this
holds. Clearly no pulp passes through the rollers for a while and the
segment of sheet between x = a and x = c on the conveyor belt is
actually void. When we reach x = c a lump k of pulp suddenly passes
onto the belt and thereafter no pulp follows. So Alice's sheet is mostly
void ('infinitely thin' we might say) except for a line of cardboard at x = c
of mass k. So the cut-out has mass f(x)-k. See Figure 17.16.

rollers / instantaneous
deposit of pulp

Fig. 17.16
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Remark 2
Clearly the calculation generalizes to a weighting function

a(x) with a finite number of jumps in [a,b] say at positions
cx<c < -" <cn where a < c1 and cn < b. We then have for /(x)
continuous that

f
J a

i= 1

where kt is the jump at x = cv

Remark 3
The calculation above continues to hold when the left subinterval

[a, c] degenerates into the point (so that a jumps immediately after a).
The same result also holds if we alter the value of f(c) to k2. Assuming
this latter alteration is made we can allow the right subinterval [c, fc] to
degenerate to a single point (this means that in this case a jumps only
at the end of the interval).

Example 1 and the modification just mentioned should be compared
closely with the next example.

Example 2 (behaviour exterior to [a, fo] irrelevant)
Compute the integral when a is 0 outside [0, b~] and 1 inside, as

in Figure 17.17.

T f

!

Fig. 17.17

We observe that

, t) = /(MWxO - <*(*o)} + f(t2){*(x2) -

One might say that the only discontinuities which contribute to an
integral J* are those which are visible in
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Example 3 (the sample distribution function)
Suppose ax,..., an are points on the real line arranged in some

definite order. (What the order is does not matter.) Define a function
Fn(x) by

This function is known in statistics under the name "sample distribution
function'. Its graph resembles a staircase (see Figure 17.18). (See also
Section 17.13.)

1
1

2
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1
3

0

1
1
1

^ \
1 1
1 1

al a3

1
1
1

—1

1
1
|
1
1
1

a2

1 „
1

Fig. 17.18. Sample distribution function for a sample with n = 3

Referring to the probability theory discussion of Section 17.9, suppose
au...9an were the observed incomes of a sample of n individuals in the
population. If the function a(x) giving the proportion of people with
income ^ x was not available, the function Fn(x) based on our
observation could be considered a natural estimate for a(x).

Let us use it to compute the 'expected' income. Recall that in our
example 0 ^ x ^ 1; assume further that 0 < at < 1 for all i. We obtain
from Example 1

f
Jo

xdFn(x)=

which is just the sample mean (or average). Let us denote it by a.
The quantity

xkdoc(x)
Ja



234 The integration process

is known as the kth order moment of the weighting function a, and the
related quantity

(x-d)kd(x(x)

is known as the /cth order moment about d. Let us compute in our
example the second order moment about the mean. We have

\ d ) 2(x-d)2dFn(x)= £<

1 £
-~ La \a2-2atd + a2)

n « = i

I f f - 21 f -
+ wa2

I - 2nd2 + i

The square root of this quantity is known as the sample standard deviation,
and, as the name implies, is a measure of how much the observations
deviate from the average. See also Chapter 3 for a discussion of topics
in statistics.

17.12 Practical issues - part II

Given a function a the procedure to follow in practice is this. First
decompose the interval [a, b] into subintervals, whose endpoints are the
positions where the weighting function a has discontinuities, as illustrated
in Figure 17.19.

Our aim is to make use of the following basic property of the integral.

f(x)dz(x) = P f{x)da{x) + f /(x)da(x).MX)= r
J a

(This is proved by messing about with partitions.) The implication is
that we may, if we wish, compute separately the contributions from
various subintervals. Next, we note the result

fd fd

f(x)da(x) = f(x)oc'(x)dx provided a is smooth in [c, d~\.
J c J c
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C2 C3

Fig. 17.19

By smooth we mean here that the function a is continuous in [c, d] and
differentiate in (c, d). Our result, intimated earlier, says that under
smoothness the Riemann-Stieltjes integral reduces to an ordinary
integral. A third basic fact which we need is

J a
=

J a
f(x)d{P(x) + y(x)} = T f{x)dP(x) + ^ f(x)dy(x)

and this holds provided any two of the integrals in the formula exist.
Before proceeding to the illustrated example let us consider the integral

of f(x) in the interval [c2, c3]. This would be easy if only the value of a
at c3 had been at the circled position of Figure 17.20, because then we

Fig. 17.20

should have had smoothness. We arrange for smoothness as follows. Let
the limiting value of a from the left be a(c3) -I- k3 (k3 being the positive
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size of the jump). Define a function ($ on the interval [c2,c3] thus:

Also let

?(*)
fO, x*c3

\-k39 x = c3.

Thus a(x) = /?(x) + y(x). Since j? is smooth and y is a jump function we
immediately have

-i ^ f(x)dy(x).
C2

where the last formula uses a! as a convenient abuse of notation.
Applying these results and Example 1 of Section 17.11, we see that

for the case illustrated at the beginning of the section, we have

I"*
Ja

f(x)dz(x) = p f(x)a'(x)dx + kJ(Cl) + k2f(c2)

f(x)ot'(x)dx.

17.13 Some examples

Example 1 (the staircase function)
Let a(x) = [x], where [x] denotes the greatest integer less than

or equal to x.
Thus [1/2] = 0 and [>] = 3, but note that [ - 1/2] = - 1 and

[ —7r] = —4. See the illustration in Figure 17.21.
We claim that
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I I I I I I I 1 I I
0 a

Fig. 17.21

Notice that even if a is an integer f(a) does not appear
in the summation. This is because [x] does not have a discontinuity at
a within the interval [a, ft]; compare this with Example 2 in Section 17.11.
To prove the formula observe that the discontinuities occur at the integer
points and that [x] is constant in each of the intervals (n,n + 1). The
jumps are all positive and equal to unity.

Example 2
Find

10

Of course x - [x] is the fractional part of x. Thus for example
n - [>] = 0.14159.... Note that - n - [ - n\ = 0.85840.... See the
graph in Figure 17.22.

rio rio pio
*d(x-[x])= xdx-\ xd[x]

k4
= - 4.5.

Note that we expect a negative answer since all the jumps in x — [x] are
negative.
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- 4 -ir - 3 - 2 -1 0

Fig. 17.22

17.4 Basic properties
In this section we list the linearity properties mentioned earlier and two
very important results which carry over from ordinary integration, viz.
change of variable and integration by parts.

1.

•c2g(x)}dt a ( x ) = c 1 f(x)doL(x) + c2\
J a J a

g(x)dz{x),

where cx and c2 are constants and / and g are integrable with respect to a.
2.

f
J a

f(x)d{cj(x)
J a

f(x)dy(x),

where c1 and c2 are constants and / and g are integrable with respect to a.
3.

f" fc f*
f(x)dtx(x)= f(x)da(x)+ f(x)da(x),

J a J a J c

provided any two of the three integrals exist.
4. Change of variable. Let <t>(t) be a strictly increasing and continuous

function from [c, d] onto [a, &], then

f 1 = f(4>(t))dOL(<t>{t)\
J c

where it is assumed that one or other side of the equation exists.

Example
Find

1=
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s e

Fig. 17.25

The weighting function is graphed in Figure 17.23. Put t = ex, i.e.
x = log t. Then, substituting in the usual way,

= £ log n = log 2 + log 3 + • • • + log [>a]
2

Note that we are making use of the function (j>(t) = log t which maps
[1, ea~\ onto [0, a] and is strictly increasing and continuous in the specified
range (cf. Figure 17.24).

log t

Fig. 17.24

5. Integration by parts

u(x)dv(x) = [u(x)v(x)fa - I v(x)du(x)

provided either side exists.
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Example
Find

I-f
JoThis may be done directly by computing areas as illustrated in

log 2 log 3 a

Fig. 17.25

Figure 17.25. But it is quicker to write

f
Jo

Note how so much like ordinary integration these manipulations
are, despite the wider range of functions to which the
manipulations are applicable.

17.15 Example (sum of the integers)

We use integration by parts to obtain formulas for the sum of the
integers from 1 to n and for their squares in 17.18.2. Observe that

]so" Mdx.
Jo

But,

•f \x\dx
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Hence,

L = sW - 0 - {L - [s] + (5 - [5])[5]},
or

2L = 5[s] + [s]-(5-[>])[>],

giving

17.16 When does the integral exist?

So far we have not troubled ourselves over this question, relying
in practical situations on the reduction to the Riemann integral.
The key to the problem is the family of functions which may be
represented as a difference of two increasing functions, i.e. as

where a and /? are increasing. The nice thing about such functions
is that a linear combination of them yields another function of the
same type (proof: exercise). Also, the product of two such functions
is again of the same type. It turns out that these are precisely the
functions whose graphs have finite length (it is tempting to say that
the graphs 'don't waggle about too much', in a sense that will be
made clear in the next section). In view of this very important
property they are known under the name 'functions of bounded
variation. We omit the proof of the fundamental result that: if f(x)
is a continuous function and a(x) is an increasing function and both
are defined on [a, b] then the integral

f(x)d*(x)f
J a

exists. See Appendix A.
It follows that the integral exists when / is continuous and a is

of bounded variation. And now we can make a very astute
inference using integration by parts: the integral also exists i f / i s of
bounded variation and a is continuous. The proof is easy. We know that

*(x)df(x)f
J a

exists. Integrate this by parts to obtain the required integral.
We close this section with an example of an integral which does

not exist.
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Warning example (same-sided discontinuity)
The integral

does not exist.
If P= {xo,xl9...9xn} is a partition of [0, 1] and tr satisfies

xr_ i ^ tr ^ xr we have since [x] is constant in [0,1]

1 if rw= 1,
0 i f t n < l .

Thus no matter how close xn _ j is to xn the sum S(P) can take the
values 0 and 1, depending on the choice of t (see Figure 17.26).

possible sites
for UJ

0

Fig. 17.26

xn-l

There is thus no limiting value.
This example shows that if /(x) and a(x) share a same-sided

discontinuity in [a, b] the integral

f
Jb

f(x)da(x)

will not exist.

17.17 Curve length and functions of bounded variation

We have already seen how well the continuous functions behave in
respect of integration. The 'intuitive' notion of a reasonably
behaved function no doubt sees it as a function that may easily be
drawn and consists alternately of stretches where it is increasing
followed by stretches where it is decreasing. The key issue here
appears to be whether the function does not waggle about too
much and whether it can be drawn at all.
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Now there is a rather obvious way of measuring how much the
graph of a function 'waggles about' over an interval [a, b] - it is to
measure its curve length. To do this we would, as a first step,
approximate the curve by a 'broken line' or 'polygonal arc' with

243

fix)

a
xo

Fig. 17.27

vertices along the curve (cf. Figure 17.27). Let us take vertices at the
points:

Here a = xo<xl < x2 < • • • <xn = b is (inevitably) a partition, call it P,
of [_a,b~\. Given this choice of P we arrive at the estimate for the curve
length of

KP)= £

It is not difficult to see that if Q is finer than P (i.e. Q includes the points
of P) then l(P) ^ l(Q). (If we put in one vertex B between Ar_ i and Ar

then, referring to Figure 17.28, by the triangle inequality Ar_xAr^
Ar_xB + BAr) Since the inclusion of more vertices seems intuitively to
give a better estimate we take as our definition of curve length

sup l(P).
p

Here we have again used the supremum as in Section 17.3. The next
example shows that not all continuous functions have finite curve length.
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Fig. 17.28

Example
Consider the function illustrated in Figure 17.29

= xcos -
X

where we take /(0) = 0 (for reasons of continuity). This function has
infinite curve length (see below). But note that the function

= x 2 cos-
x

has finite curve length.

Fig. 17.29
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The quantity l(P) is a little unmanageable if all we want to test is the
finiteness or otherwise of the curve length. We make the easy observation
that

r = l

Definition
77ie quantity

sup £ l/fr,)-/^.,)!,
P r = l

r/ie supremum taken over all partitions P of [a, ft] is ca//ed rne
variation off on [a,b] and is denoted Vf[a,b\

The point of this definition is that, by the earlier inequality, if the
variation is finite, so is the curve length and vice-versa. Note that the
formula now computes in absolute terms the amount of rise and fall in
the function / .

Returning to the examples above, note that if

[ n n-\ n-2 2 J

then in the case of the first function

as n tends to infinity. In the case of the second function note that for
the same partition Pn

/ I f(\- \ /YY \\ <1 >

Thus the curve length can be finite even though a function has infinitely
many 'humps' (it is just because the humps rapidly decrease in size that
the curve is of finite length).
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Definition
A function f is said to be of bounded variation if Vf[a,b] < oo.

The surprising fact, mentioned in Section 17.17, is that a function of
bounded variation is the difference of two increasing functions. We
mention that a natural alternative notation for the variation is

f
J a

\df(x)\9

the symbol implying that we sum absolute values of the increments df.

Example 1
If / is increasing Vf\_a,b] = f(b) — f(a).

I l/(*r)-/(*,-l)l= I/(X r)-/(X r_1)
r = l r = l

(This is illustrated in Figure 17.30.)

Fig. 17.30

Example 2
If / = a — P with a and /? both increasing then V

This time

\f(xr) ~ f(xr_ x)| = |a(xr) - P(xr) - (a(xr_,) - jS(xr

= |a(xr) - a(xr_ J - (/J(xP) - j?(xr_

^WxJ-^.OI + liSW-^r
- a(xr) - a(xr_ x) + (/J(xr) - j8(xr_

Summing we obtain (as in the previous example)
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Example 3
In the case illustrated in Figure 17.31

247

a

Fig. 17.31

This may be verified by considering partitions which include the points
cx and c2. Notice how this measures cumulatively (i.e. without
cancellations) the rise and fall of the function / .

Example 4
If / is continuous on [a, fr] and f'(x) exists and is bounded in

(a, b) then / is of bounded variation.
Let P = {xo ,x1 ,x2 , . . . ,xn} be a partition. Then we notice that

We are told this by the mean value theorem of differential calculus (which
asserts that some intermediate tangent is parallel to the chord illustrated,
cf. Figure 17.32). Hence

Fig. 17.32



248 The integration process

where M is the bound mentioned in the assumptions. Now summing we
obtain

so

This is an important example. It enables us to recognise quite quickly
that a function is of bounded variation if it enjoys the stronger property
that its domain [a, fc] may be split into a finite number of intervals in
the interior of each of which the derivative exists and is bounded. Such
functions are sometimes called 'subinterval - regular'. (See Figure 17.33.)

<*(*)

Fig. 17.33

17.18 Further properties of the integral

We start off with a deceptively simple result.

1. First mean value theorem
If a is increasing and f is continuous on [fl,b] then for some x 0 in [a, 6 ]

(bf(x)doi(x) = f(xo) I
J a J a

d<x(x).

In other words we may pull the integrand through the integral sign by
evaluating at an appropriate intermediate position. This is helpful in
estimation procedures. The proof is almost trivial. Let

m = min /(x), M = max /(x).
[a,b] [a,b]

Now /(x) is continuous so it takes all intermediate values between m
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and M (cf. Figure 17.34). But notice that

£ m(a(xr) - a(xr_,)) ^ 5(P,

i.e.

ro(a(b) - a(a)) ^ S(P, t)

so

Jb

or

f
J a

r) - «(xr_,

/(x)da(x)

Thus, at some x0, / takes the intermediate value indicated below (we
have just shown that it lies between m and M), viz.

bf(x)d0L{X)r
a(b) - (x(a)

This gives the required result. See below for an application.

2. Differentiability and other properties

Let a(t) be of bounded variation of [a, 6], let /(f) be bounded and
suppose \b

af{t)d(x(t) exists. Then

(i) /»(*)
Ja
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exists for each x with a^x^b and is itself of bounded variation on [a, &];
(ii) if a(r) is continuous at a point {, then so is the P defined above;

(iii) if f(t) is continuous at a point £ and if a(t) is differentiate at
f, then

WO=/«K«) for a<£<ft;
(iv) if #(t) is continuous on [a, fe], then for /? as defined above

[bg{x)dP(x)= \b g(t)f(t)daL(t).
J a

Example (sum of the squares)
We return to example 17.15 and apply (iv) above to the more meaty

problem of the squares: We have

s

So,

= f\2d[x] = rx- f"td[t]T - f" [
Jo L J o Jo JoJo

= „.!„.(„+1)- f"i[x]([x] + l)dx.
I Jo 2-

dx+ j"[x]dxl
.10

= n2(n + 1) - {S - n2 + (1 + 2 + • • • + (n - 1))}
= n\n + 1) - S + n2 - ±(n - l)n

3S = ±n{2n(n + 1) + In - (n - 1)}

the well-known formula. This technique may be used to obtain
higher powers as well.

3. The second mean value theorem
If<x(t) is continuous andf(t) is increasing in [a,/?] then there is a point
x0 in [a, fe] such that

= /(a) ['°da(x) + f(b) f
J a J

Thus the integral is a weighted average of the two extreme values f(a)
and f(b). This is proved by integration by parts. First notice that

bf(x)doi(x) = U(xMx)Ta - ^ ot(x)df(x). (1)
J a
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But by the first mean value theorem we have for some x0

251

f i*(x)df(x) = a(x0) f df(x) = a(xo){f(b) -

The right-hand side of (1) is thus equal to

{*(b)f(b) - <x(xo)f(b)} + {oc(x0)f(a) - x(a)f(a)}

and this is the required result.

Example
Estimate, as f-*oo,

dx

where 5 > 0. We take

/»(*) =1= sintdt,

and (see Figure 17.35)

10 x = b.
Then, since ft is not discontinuous at b and - / is increasing we have

JJC

So since

= si

<5 J ,

sin r dt

sin t rft.
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we have

17.19

1. Show

(i)

\I\<e~tS
1 ^ 5

Exercises

directly from the

f1x3^[x] = l,

process

definition of the integral that

J

(ii) I ' [2 - x]dx = I l [2 - x] <*[x] # I ' (2 - [x])<*[x].
Jo Jo Jo

2. Using only the definition of the integral show that

f(x)d(xlx}) = [ f(x)dx + 2/(2).

3. The functions a(f), )5(r) and y(t) are defined as follows.

t)y(t),

l- t<1/2
 y ( 0

If f(t) is defined and continuous on [ — 1,2] express the integral below as a
Riemann integral together with some jump contributions.

P f(x)da(x).

4. Calculate the following integrals

1o

f
f [5-xMlog[x]),

2

122x<*(x[2*]).

5. Using only the definition of the integral prove that

f
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6. Prove that

253

f
Jo

17.20 Exercises

1. The function /(x) is defined as in Figure 17.36 so that

f(x) = 2-" if 2-"-1<x^2-", /(0) = 0.

l /

J !
1 X

8 4

Fig. 17.36

Show that

(a) I'J
Jo

(b) fix)

(c) [f
Jo

2. Find

i:
What is the

2

r(*)*-2/3.

= 2-t-.og,/1ogar

(x)dx = tf(t)-y(tf.

/(x)d(2;c(l + [x])) where /(x)= exp(-t2)df

limit when n -> oo ?

3. Prove that

/ \ V^ I L"̂ J i
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(c) £ (- ir+ 7W = f 2"/'W(2[x/2] - lx])dx.

4. If {a,} is a sequence of real numbers defined for n ^ 1, let

Show, using integration by parts, that

Z *„/(*) = ( ! # ) { / ( « ) - / ( n + 1)}) + Add])fda] + 1).

5. Let <x> = x — [x]. Assuming / ' is continuous on [a,^], show that

I /(«)= I /W^x+ I /'(x)<

6. Amend the function in question 1 above so that /(0) = 1. Show that /(x) does
not have a minimum in [0,1], but that its infimum is zero.

17.21 Exercises

1. Explain why

f(t)d\t]= f(t)d\t]

and also why

Integrate by parts

r* CM

Jo Jo

why

f" 3 f""1

Jo Jo

by p

to obtain a formula for the 'sum of the cubes'

n

I'3-
1

(Use the formulas earlier derived for the sum of the squares.)
2. Verify that

_e[y]+l-e
e-l
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and find

Jo

3. Show that for continuous / and for a and ft of bounded variation

Ja Ja Ja

nent on the validity of the foi

\b2*(x)d<x(x)= \d(0L2(x)).
J a J a

4. Comment on the validity of the formula

5. Find
(*n

xd(x2[x3]),f
Jo

f" /w\
JoXC\T>r;o

6. Show that for a function / with continuous derivative

fYd(xM) = n/(n)+ PW-
Jo Jo

7. Verify the following identity when m and n are integers with m < n and / is
a differentiate function.

Jm

17.22 Exercises

1. Sketch two increasing functions a and /? such that a - /? has a graph like that
in Section 17.17 Example 3.
2. Prove that the function X2COS(TC/X) of Section 17.17 is of bounded variation
on [0,1].
3. If/ is of bounded variation on [a, /?] and a^c^b show that / is of bounded
variation on [a, c] and on [c, b~\ and that

Deduce that a(x) = Fr[a, x] is increasing. Show that Vf[x9 y]^\f(y) — f(x)\ and
conclude that / is bounded and that /?(x) = /(x) — a(x) is also increasing.
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4. If a is increasing and / is continuous show that

J2/(*)<fc(x) ^ I \f(x)\d<x(x).

Extend this result appropriately to a of bounded variation. [Hint: use the
increasing function Va.~\
5. If a and f$ are of bounded variation show that so are a + p and a-p. If
moreover \p\ is bounded away from 0, show that P~l is of bounded variation.
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Manipulation of integrals

18,1 Overview

Here is a simple argument which will be justified in this chapter and
which is typical of the trickery that we develop in the sections that follow.

Instead of computing by parts the integral

I,2 xn log x dx,
I

we indulge in the following lateral thinking. Evidently for t # — 1

'2 "V+l 1J x'dx = - -. (1)

Now we differentiate both sides of the equation with respect to the
parameter t and, remembering that xf = eMogx, obtain

d C2 f2 d f2

- xtdx=\ -(xV*= x'logxdx.
dtJi Ji dt Jx

But,
d 2t+1- 1 _(t + l ) 2 f + 1 l o g 2 - l(2r+1 - 1)
It t + 1 (t +1)2

Thus
2 , (H+l)2"+ 1 log2-2w + 1

ogxrfx = ^ ^
f

J 1 ( « + l ) 2

The integral in (1) is of the form
*b

K(x,t)dx.f
J a

We say that the integrand K(x, t) involves a parameter t. We shall see

257
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that iff varies over a finite range, say c^t^d and that if K, as a function
of the two variables x and t, is in an appropriate sense continuous in
the domain [a,b] x [c,d] (cf. Figure 18.1) then the above argument will
be valid.

Fig. 18.1. Finite range

18.2 Joint continuity in two variables

Consider the function H illustrated in Figure 18.2. The function is given
by the formula:

H(x,t)={

2xt

o

for x^C

if x = 0.

If we take t = mx with x # 0 we obtain

2m
H(x, mx) =

1 +m2>

i.e. the value is constant on the straight line lm in the z = 0 plane given
by t = mx. Hence the surface may be represented as a set of line segments:

x, mx,
2m

(0 ^ x < oo)

winding round the z-axis plus the point (0,0,0). Notice that apart from
the origin the z-axis has no points in common with the surface.

Observe that the limiting value of H as we approach (0,0) along the
line lm in the z = 0 plane equals H(0,0) only when m — 0 or m = oo. Thus
different ways of approaching the origin lead to different limiting values
of//.
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(-1,1)

Fig. 18.2. Ruled surface. Surface approaches the z-axis without touching it.

We say that K is jointly continuous at the point (xo,to) if

lim K(xn,tn)

for all sequences xn -* x0 and tn -• t0 (cf. Figure 18.3). Thus no matter how
we approach (xo,ro) the value of the function K approaches K(xo,to).
As may be expected, K is said to be jointly continuous on la, ft] x [c, d]
if it is jointly continuous at every point (xo,to) in [a,fc] x [c,d].

18.3
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Joint continuity should be contrasted with separate continuity. A
function K(x, t) is said to be separately continuous in the variables x and
t at the point (xo,to) if

(i)

(ii)

, t0) = K 0, tn) as tn->t0

,to) as x w ->x 0

for any sequences {tn} and {xw} converging respectively to t0 and x0.
Note that this definition considers only vertical (tn-+t0) and horizontal
(xn -> x0) approaches to (x0, £0), hence is a weaker notion (cf. Figure 18.4).
As an exercise show that H(x, t) is separately continuous in x and t at (0,0).

Fig. 18.4

18.3 Recognition of joint continuity

We usually recognise that a function K(x, t) is jointly continuous on
[a, b~\ x [c, d] by using the following facts. Henceforth we shall omit to
use the word 'jointly' and so 'continuous' will always mean 'jointly
continuous'.
1. The sum and product of two continuous function G(x,£) and K(x,t)
viz. G(x, t) + K(x, t) and G(x, t)K(x, t) are again continuous;
2. The quotient of two continuous functions G(x, t) and K(x, t) viz.
G(x, t)/K(x, t) is again continuous provided X(x, i) # 0 throughout the
domain of interest;
3. A function of a single variable, say #(x), which is continuous under
our (earlier) definition of continuity (applicable, evidently, only to
functions of one variable) may be regarded as a function of two variables
(albeit one of the two is absent); it is then also (jointly) continuous;
4. If 0;(R->1R is continuous and K(x,t) is continuous then so is
g(K(x,t)).
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Examples
(i) 2xt and x2 +12 are continuous at the origin but their quotient

is not.
(ii) Any polynomial in x and t is continuous.
(iii) For x positive, x* is continuous since xf = etlogx and ez and dogx

are continuous.

18.4 Manipulations involving finite ranges

For the moment let K(x, t) be any function defined on [<z, fc] x [c, d]. Let
a(x) be a function of bounded variation on [a, ft]. We consider three
manipulations on the parameter t which arise from considering

1= I
J a

f{t)= \bK(x,t)d«(x).

1. Limits through the integral sign
Provided K(x, t) is jointly continuous on [a, b] x [c, d] the function f(t)
is continuous on [c, d]; that is

or,

lim I K(x,t)doc(x) = K(x,to)da(x).
t~>to J a J a

Example
Take K(x,t) = e~xt and let

- P
J« gU

a(x)

where g is Riemann integrable on [a9b]. Then, even though g need not
be continuous, we have

hm f=
Ja

2. Differentiation under the integral sign
Provided the partial derivative

d
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is continuous on [a,b~\ x [c,d], then for any t with c < r < d, we have:

- K(xj)dz(x)=\ -K(x,t0)doc(x).

Here the range [c, d] is any (proper) interval with t0 in its interior, i.e.
c <to<d. This will be of use to us later (and is to be remembered quite
generally in Chapter 21).

Example

— I xldx= I x'logxdx for any t.

Indeed, if t0 is given, choose any two numbers c and d with c < t0 < d.
Evidently a = 1 and b = 2. We saw that K(x, f) == xt = er log* is continuous
on [1,2] x [c,d]; but this time we require the continuity of

— K(x,t) = x* log x
at

and this is assured by Section 18.3. Note that the restriction t / - 1
applies only to formula (1). We have now justified the example at the
beginning of the chapter.

3. Integration with respect to the parameter
Given a function of bounded variation p(t) defined on [c, d~\ we may
wish to perform the integration

r
JcHere again, provided K(x, t) is continuous on [a, fc] x [c, d~\ we can

integrate with respect to t before integrating with respect to x

j'f(t)dftt) = J" | j*K(x, t)dfi(t) Jrfa(x).

Example
Evaluate

*log(l+ fcosx)
dx for | t |< l .cosx
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We notice that

dxdL plog(l- f tcosx) f*
dt Jo cosx Jo 1 +tcosx

This is true for any \t\ < 1. Indeed if |to| < 1 choose c and d with
— \ <c<to<d<\. Then since 1 +1 cos x ^ 0 in [0, n] x [c, d~\ the
integrand on the right-hand side is continuous and part (2) applies. The
trick involving the choice of c and d so that [c, d] includes t0 is designed
merely to produce a rectangle [0,7i] x [c, d] in which continuity is
assured. Certainly it would have been inappropriate to take the rectangle
[0,7r] x [— 1,1] since 1 + COS(TT) = 0 and part (2) can no longer be
applied. Returning to the calculation we have (cf. 18.16 Postscript)

f
Jo

dx

Jo 1+rcosx y/(l-t2)

Integrating now with respect to t from 0 to s where \s\ < 1 we have

r P f* dx j CS dt
I = at = 7T — — = n arc sin (s).

JOJO1+ tcosx JoVO- ' 2 )

18.5 Limits of integration depending on the parameter

We consider a more complicated dependence on the parameter given by

f(t)= K(x,t)dx,
hit)

for c ^ t < d. For simplicity we have considered only Riemann integration
this time. We assume that p(t) and q(t) are differentiable and attempt to
compute f\t). This can be done quite easily using the chain rule. But
first recall that

and

To make things a little easier to understand we first define

fX2
F(x1,x2,x3)= K{x9x3)dx,

J xi

where we assume that K is defined on a rectangle [a, ft] x [c, d] which
includes the graphs of p(t) and q(t\ compare Figure 18.5. Now by the
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Fig. 18.5

remark made just before the definition of F we have

while

dF dF
-— = K(x2,x3) and — = -
OX2 0Xx

8 Fix x x)-T d- ryxl,x2,x3) — -
dx3 JXl dx3

Now substituting xx = p(t\ x2 — q(t) and x3 = t we have by the chain rule

_ d

dt

dF dxx dF dx-y dF dx3

dxx dt dx2 dt dx3 dt

f\t) = - K(p(t\ t)p\t) + K(q(t)9 t)q'{t) + f * '
Jp(t) dt

(x,t)dx.

Example
We indulge in some make-believe. We pretend that we do not

know that the value of
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is log t and deduce a basic property about the logarithm function straight
from the formula for f(t). Fix some s > 0 and observe that

f(st)~

Differentiating the right-hand side with respect to t (treating s as constant)
gives

d Cstdx 1 1
— = - - + --•5 = 0.

r j f x t st
Thus the value of f(st) — f(t) is independent of t and is thus a constant
(evidently a constant dependent on s). To find the value of the constant
put t = 1 and note that / ( I ) = 0, thus

i.e.

which is the fundamental property of the logarithm function.

18.6 Infinite ranges: improper integrals

Until now we have been manipulating integrals over finite ranges. It is
therefore time to leave this sheltered situation and consider infinite ranges
such as are encountered, say, in the well-known expression

N(0 = ̂ - f cxp(-x2)dx.

We must first reconsider our definition of an integral so as to cover
infinite ranges of integration.

Definition
Suppose oc(x) is defined on [a, GO) and that for each b^a the

integral

f
J a

f(t)da(t)

exists. If also the limit

Urn I bf(t)dz(t)lim I

exists, we say that the improper integral off exists over [a, oo), and
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denote its value either by

*f(t)d*{t)

(when we wish to draw attention to the limit process involved), or just

f
J aTo distinguish this limit process from a closely related one (which we

introduce a little later) the integral is more fully described as improper
of the first kind.

Examples

as

J,

}dx
— = D°g *~\ i = 1°8 b - • oo as fc-*oo,
x

e~xdx = [-e~x]\ =e~1 —e~b-+e~1, as b->oo,

I ^ w = ^ ^ ^ as ft _̂  ̂  (cf Figure j 8 6)̂
J l X l < n ^ [ b ] H

f 6 dx r -.* W

- = [arctanx]^ - • - as/?->oo.
J ! 1 + X L

The integral over the range (— oo, a] is defined analogously (taking limits

Fig. 18.6
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as b tends to — oo). It is very important to note that the integral

f{t)dOL{t)

is defined only when for some a both the integrals

'f(t)d*(t\ I f{t)doi{t)

267

I

exist. In other words the definition for the integral over (— oo, -h oo) is

lim I f(t)d(x(t)+ lim \ f(t)d*(t\

where the two limits are taken independently. The following example
clarifies the point of the definition.

Example
Observe that

I xdx

Nevertheless,

lim
Cb xdx

im ^ = l i

Hence the integral

xdx

\ :

does not exist. A quick glance at the graph (Figure 18.7) will show that
the area under the curve on the positive side of the y-axis is infinite and

Fig. 18.7
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is a symmetric image (reflection through the origin) of the area under
the curve on the negative side of the y-axis. Since these two counterbalance,
the earlier calculation had to come to zero. It is the infinite areas cropping
up in the calculation which give rise to non-existence.

Remark 1
The example gives us a perfectly acceptable probability

distribution function with non-existent 'expectation'. Take

dt
« ( * ) = -

This is an increasing function with lima(x) = 1 (as x-+ oo). Now the
expected value of the random variable X when it has a(x) for its
probability distribution function is (see page 226 and Section 19.16)

I xda(x),

but this does not exist.

Remark 2
We do have some use for the limit

lim
b-oo J -
lim f(t)da(t)
b-oo J -b

and when it exists it is known as the Cauchy principal value. For an
application see Question 6 Exercises 22.11 in the Fourier Series section
of Chapter 6.

Improper integrals of the second kind arise when, for example, the
integrand is continuous in (a, b] but 'blows up' at a, meaning that the
limit of f(t) as t tends to a is infinite (cf. Figure 18.8). Suppose under

Fig. 18.8
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such circumstances the limit

lim I
-o+ J f l

lim I* f(t)d*(t)
S-+0+ Ja + 6

exists (where the plus sign is used to show that in this limit process S
ranges through positive values). Then we say that the improper integral
exists over [a, b] and write it in either of the forms

r /maw, \b

J -*a Ja

Example
The following improper integral of the second kind exists.

f
J6

J =2-27(5-2 as

Our next task is to learn to recognise in more complicated cases
whether an improper integral exists without attempting to compute the
integral in question.

18.7 Tests for convergence - part 1 (positive integrands)

Until further notice we assume that we are investigating only integrals
in which the integrand is positive. This means that the area under its
curve is either a finite (positive) number or just infinity. We will want
to know whether the first case arises.

(i) Simple comparison

The typical argument proceeds as follows. We wish to know whether

dx

\\ x2

exists. We replace the given integrand by a function which is both larger
and easier to compute. The reason for increasing the integrand is that,
since the integrand is positive, we are merely increasing the area under
the curve (see Figure 18.9). If that is finite then the smaller area was a
fortiori also finite. For the case in point we note

x + x2 > x2.
Hence

1 1
X + X2 X2
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L Shaded area = B

Easier integrand

Given integrand
Cross hatched area = A

Fig. 18.9. 0<A<BsoB< oo=>A< 00

Thus
= - = 1 • ! as b-+co.

So the larger integral is finite, and hence so also is the original integral.
Thus the integral in question exists. Simple though the argument is, it
has the drawback that occasionally in choosing an easier and bigger
integrand more ingenuity is called for than is worth the effort. A better
form of test is given in the next subsection. To see its power observe the
reasoning in the next example.

Example
Test if

dx

X - X + l

exists. It will not do here to ignore the terms — x + 1. We need to estimate
them against the leading term. Note that for x ^ 2

Hence for x ^ 2

x2 - x 4- 1 ^ x2 - \x2 + 1 > yx2,

so for x ^ 2

1_ <2L

x2-x+ 1 ""x2



18.7 Tests for convergence - part 1 271

Thus

dx

Perhaps it is already becoming clear from both examples that, in fact,
the crucial observation underlying the two arguments for the convergence
of the integral lies in the behaviour of the leading term'. The next test
concentrates on this idea; interestingly enough the justification for the
second test is in the simple comparison technique mentioned at the
outset.

(ii) Limit comparison
It is best to state the test and then to see it in action.

Theorem
Suppose a(x) is increasing and that g(x) ^ 0 andf(x) ^ 0 for all

large enough x. Suppose also that the following Wo integrals exist for all

r r
/(x)da(x),

Ja Jt

g(x)da{x).
J a

Suppose moreover that

lim — c and 0 < c < o o .

/(x)da(x) exists if and only if g(x)doa(x) exists.f
J a

Proof. We reduce this situation to a direct comparison test. Since c>0
we have c/2 < c < c + 1 (it is important that the inequalities are strict,
implying that we have moved back from c to c/2 whilst staying to the
right of 0, and have also moved forward to c + 1). Hence for all large
enough x, say for all x > X, we have

2 g(x)
so
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and thus

gd*.
x

Now if

gdu.j;Jx

exists and we define

x

then for all b

hence

j;lim J6^(c +1)

Since the bound on the right is finite and the limit of Ib can be only
either infinity or some finite positive quantity, we conclude that it is not
infinity and so

oo

fdOL
X

exists. Conversely, if

gdcn = oo,j;)x
then since

c Cb Cb

gd<x<: fda

it follows that Ib must increase with b unboundedly and so

fda = oo,

that is, the integral above does not exist (since it diverges to infinity).
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Remark
The way to use this test given an integrand / is to decide first

the approximate behaviour of / for large x. We do this by picking a
function g which we can easily integrate and which we suspect
approximates to / for large x. The goodness of the approximation is
tested by the limit

If this is finite and positive (strictly positive, that is) the approximation
is good. The choice of g inevitably comes from the stock of 'everyone's
favourites' - well-known cases which might therefore be regarded in this
connection as a 'tool kit' for convergence testing. The examples which
follow will elucidate this point.

Example 1
Show that

j;
dx

does not exist.
At first one thinks to approximate ^/(x2 + x) by ^/(x2) = x. This

unfortunately makes the denominator of the integrand zero which is not
a valid expression. To get rid of the square root in the denominator we
rationalise as follows.

We now proceed to approximate the numerator crudely as x + x. We
thus consider the integrand to be approximately

2x

x{x}

and we therefore take for our g the function 2/x. We then have

g(x) 2 x2 2

and this tends to unity as x tends to oo. But, evidently,

f-*°°2dx

Ji *
does not exist. Hence the integral in question does not exist.
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Example 2
Test whether

rti v dx

exists.
The first question to ask about the integrand is what power is x being

raised to, or more properly, how does the integrand compare with x"1.
The point is, of course, that integration of x"1 in this range returns a
divergent answer, whereas for (fixed) powers x~(1+a) with a positive the
integral over this same range converges. Now the integrand here is

For large values of x the exponent (1 + 1/x) is extremely close to 1, so
we should half expect divergence. We calculate the ratio of/ to g where
g{x) = x~l to be x1/x and now need to know the limit of this ratio as x
tends to infinity. To calculate this limit we examine the behaviour of the
function

=exp(-logx

First we test whether </> is increasing or decreasing. The derivative is

so this is negative when log x > 1, i.e. for x > e. Since </> is always positive
and is decreasing the limiting value of </> as x tends to infinity must itself
be positive or zero. Let us put

a = lim x1/x.
x-+ oo

To evaluate a we attempt to relate a to the expression on the right of
the limit sign. We have for all x > e, since (j> is decreasing,

so ax < x (for x ^ e). It follows (why?) that a < 1. Suppose that a < 1.
Choose b with a < b < 1. Then since b is greater than a, the function
must eventually be below b. So for large enough x we have that

so x ^ bx. But since b < 1 the limit of bx as x tends to infinity is 0 and
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this contradicts our last inequality. Hence, after all a = 1. By the ratio
test the integral diverges.

Example 3
Show that the following integral converges for any t.

Gxp(-x2/2)dx.
0

It suffices to show that this integral exists for t = - 1. (Evidently it
exists over the finite range [ - 1, t].) By a change of variable this is
equivalent to considering

1exp(-x2 /2)dx.
I

Now for x > 1 we have x2 > x, so

exp( — x/2)dx< oo.

and existence is assured by simple comparison.

18.8 L'Hopital's rule

Example 2 in the last section required careful work to establish the value
of a ratio occurring in the ratio test. Ratio calculations can also arise in
regard to the integrand itself. For example, if we needed to test for
convergence the integral

J: sinx ,
dx,

we would need to know that, as x tends to zero, the integrand tends to
1. This is common knowledge, but in many more awkward cases the
calculation required can be much simplified by reference to a theorem
named after L'Hopital.

Theorem
Suppose that /(x), g(x) have continuous derivatives in the

neighbourhood to the left ofx = a and that their limits from the left are

lim /(x) = lim g(x) and the common value is 0 or oo.
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Suppose also that

*-.- 0'(x)

exists, then

hm exists and is equal to hm .
x->a- g(x) x^a- g\x)

The theorem also holds when 'to the right* replaces 'to the left* provided
a— is replaced by a + . The values ± oo for a are permitted.

Examples
(a)

,. sinx ,. cosx
hm = hm = 1.
x->0 X x-*O •*•

(b)

r logx 1/x
hm = hm -̂ — = — 1.

(c) Find for p > 0 the limit of xplogx as x tends to 0.
We rearrange this expression as a ratio arid calculate that:

logx x"1

hm —̂— = hm r = 0.

18.9 Tests for convergence - part 2 (positive integrands)

We note that the blanket assumption that all the integrands considered
are positive continues to hold until further notice. We start off with the
remark that part of the Ratio Test can be salvaged even when the limiting
ratio is zero or infinity. One should be very careful in applications when
these values are involved. The results are as follows:
(i) if c = 0 where

and the integral of g is finite then so is the integral of / ;
(ii) if c = oo and the integral of g diverges then the integral of/diverges.

The next example illustrates this point.
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Example 1
Test if the following integral converges for s > 0:

I, xse~sxdx.
I

In view of the rapid decay of the exponential factor we expect convergence
and test using g(x) — x~2. The choice of g is merely that of a convenient
function whose integral converges in this range. The ratio comes to

lim ^ - ^ = lim x5+2e~sx = 0.

Since the integral of g converges, so does the integral in question.
Note however that the choice g(x) = x " 1 also leads to a zero limiting

ratio. Nevertheless the integral in question converges despite the
divergence of the test function x" 1 . This is not a contradiction since the
ratio test makes no claim in regard to divergence when the limit ratio
c = 0.

We now continue with some further tests.

(iii) Integral test

For this test we need to assume not only that /(x) is positive but also
that it is continuous and decreasing in the range [a, oo). We take a = 1 for
convenience of notation. Under these assumptions we can relate the
integral

to the

r
sum

oo

°°f(x)dx

/(«)

and vice versa. This is

Hence

fd + !)<

2 1

because (cf. Figure 18.10) for any i

f(x)dx^f(i).

;/ + iKp/(x)dx^nx/(0.
J l 1
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i i + 1

Fig. 18.10

Thus the sum and the integral

i;f(x)dx

either both converge or both diverge.
The above result may also be put to powerful use in conjunction with

the following test.

(iv) Condensation test
If {/(«)} is a decreasing sequence of positive terms, then

00 00

£ f(n) converges o ]T 2nf{2n) converges.
i i

Proof We have for each n and i = 1,2,..., 2n

so

Thus

2"/(2n +1) < f(2n + 1) + f(2n + 2) + • • • + f(2n + 2") ^ 27(2").

00 00

(a)
Example 2

£ - diverges, since X^"'""^= °°-
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(b)

1 2" 2"
y r diverges, since y = y — = oo.

2 * ^(Iog2«)2 ^n2(log2)2

This last series diverges since its nth term tends to infinity,
(c) Test for convergence the integral

j;
dx

(log*)2 ')2

By example (b) this integral diverges.

Remark
The use of the condensation test may be viewed as the analogue

of an exponential change of variable. In the last example put x = ey and
the integral becomes

1log2 y2 '

This diverges because the integrand itself tends to infinity as y -• oo. The
integral formula evidently resembles the series formula of example (b).

18.10 Tests for convergence - part 3 (integrand of
variable sign)

In this section we shall lift the blanket assumption of positivity and turn
our attention to integrands which are of variable sign. Our first test
originates in the study of series. To apply it we must label the areas
under the curve lying successively above and below the x-axis as
0o> an a2> a3> • • •»aw - - -» these being the absolute values of the areas; see
Figure 18.11.

With this in mind we may formulate our next test.

(v) Alternating sign test

If ao>al >a2> ••• > 0 and limn^ooan = 0, then

00

Z ( — l)n«w = ao — al+a2 — a3-\ h (— lfan H—converges.
o

The explanation is quite simple. Consider sn the partial sum up to the
nth term. Notice that in any of these partial sums each time that a
positive term is added on, it is less in magnitude than the preceding term
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Fig. 18.11

which has been subtracted. As a result the partial sums with n odd form
an increasing sequence:

S1<S3<S5<S1 < -".

Similarly, each time a term is subtracted the following term which is
added, being smaller in magnitude, does not entirely manage to offset
its predecessor. As a result the partial sums with n even this time form
a decreasing sequence: so> s2> s4 > s6 > •••. Both sequences are
bounded, so they both have a limit; the two limits are identical since
the discrepancy between an 'odd' term, say s2w+1, and its 'even'
counterpart s2n is a2n+v but that tends to zero.

Example 1

- l)[x]dx
converges.

Let
4"

Cn+2dx
«»= - (n = 0,1,2,3,...)

Jn+1 X

(cf. Figure 18.12) then / = - £ ( - \)nan and, of course,

ao>a1>a2>a3> • 0.

Fig. 18.12
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Example 2

•-r*
i 'sinxdx

Show that / = converges.
x

We give an alternative explanation in the exercises. We define
r("+2)*sinxdxr

J(

(»«0,1,2,3,...)

(cf. Figure 18.13) then, as before, / = - £ ( - \fan and to see that
ao>al>a2>a3> • (), we note that |sin(x + n)\ = |sinx| and

| sin x | |sin(x + 7c)|
X + 7C

Fig. 18.13

(vi) Unconditional convergence

A relatively straightforward technique, much less powerful than the last
test, though certainly easier, consists in replacing the integral in question

j; f(x)dx
J i

by

"|/(x)|dx.

If the latter converges we say that the original integral converges
unconditionally. The procedure amounts to 'flipping over' the negative
areas between the curve and x-axis so that they become positive (see
Figure 18.14). To say that an integral is unconditionally convergent is
to say that, after the flipping-over operation, all the areas (i.e. including
also those previously negative) add up to a finite quantity A. It follows
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fix)

p a r t o f A-

Fig. 18.14

that the areas which were originally positive must add up to a smaller
and therefore also a finite quantity, say A +, whilst those that were initially
negative and were flipped over must likewise total to something less than
A say to A _. Evidently

= A++A_= \f(x)\dx9

so that, restoring the flipped-over areas to their original sign,

f(x)dx,

and / is finite. A convergent integral need not be unconditionally
convergent, and we might therefore say in such a case that the integral,
converges conditionally. In general, it need not be the case that the
negative areas as well as the positive areas both add up to finite quantities.
The alternating sign test allows for situations where piece by piece
summation of alternately positive and negative areas gives
cancellations between terms and this may yield a finite answer for the
limiting sum. The next two examples elucidate this point.

Example 3

sinxdx

- j ; converges unconditionally.

If we take the modulus of the integrand we have

I sin x I 1
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and by the comparison test we obtain convergence.

Example 4 (warning example)

""sinxdxi converges conditionally only.
1 1 •*

We are saying here that

- j ; ax does not converge.
x

The reason for this situation is the non-existence of

"dx
x- j ;

In order to apply the comparison test we note that in [rc/4,37c/4] we
have the inequality

Thus
00

X

2nn + 3«/42

37T
4

where the individual integrals have been estimated by reference to the
least value of the integrand in the relevant interval and to the length of
the interval of integration.
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18.11 Functions defined by infinite integrals

We now consider extending the range of validity for the manipulations
introduced in Section 18.4 to functions of the form

I K(x9t)d(x(x)

The domain of K is illustrated in Figure 18.16. Suppose for example that

d

c

§§§|§§§§§f
a

Fig. 18.16

r
the integral

"g(x)dx

exists and we let

f(t)= f ™e-'xg(x)dx.
Ja

We ask whether it is true that

e-txg(x)dx:
lim I " e~txg{x)dx = f
t-0 Ja Ja

g(x)dx.

The natural approach to answering such a question is to replace the
infinite range in the integral by a finite range which will allow
approximation of the given integral to within a specified accuracy.
Evidently, the manipulations could then be carried out in the finite
range. Suppose, for example, that we desire an accuracy of S. Then for
some b (note that the choice may depend on t) we have

e~txg(x)dx= e~txg(x)dx + error,
Ja Ja

where | error | < S. Then for this value of b we can safely assert
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that

lim I e~txg(x)dx = \ g(x)dx.
r-oja Jfl

However, error may 'blow up' if the b above has to depend on t.

Example

Let

K(x, t) = 2xt(\ - tf + x2t(l - t)xlog(l -t) for 0 < t < 1.

The function is defined so that for fixed t we have the result:

Jo
and this tends to 0 as b tends to infinity. Illustrated in Figure 18.17 are

= 12

Fig. 18.17

the graphs of

for b = 1,2,.... Notice that for fixed b the graph peaks at

1

(which is close to the origin for large b) and the peak value is

\+b\\+b)
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This peak value tends to infinity as b tends to infinity.
Now notice that if for a given t we wish to approximate to

j; K(x,t)dx ( = 0)

by means of

K(x,t)dx
Jo

= b2t(l-t)b)

to an accuracy of, say, 8 then the choice of b may be investigated by
reference to the graphs indicated in Figure 18.18 as follows. Draw the

Fig. 18.18 Graphs for (1) a small value ofb, (2) the 'critical' value ofb, (3) values
of b beyond the critical all of which have intercept below S.

(vertical) ordinate line for the given t. Mark off y = 5 on this vertical.
For some values of b the graph of fb cuts the vertical above 8. But for
all large enough b beyond a critical starting value the peak of fb is to
the left of this vertical and the tail part of the curve is below 6. Now
observe what happens when the value of t is taken closer and closer to
0. The appropriate critical value of b rockets away simply because of
the behaviour of the peak values. In fact the smaller the value of t the
larger the critical value of b must be. Certainly if

f =
1

1+n
(n= 1,2,3,...)

then the critical value of b is greater than n. In other words for the
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approximation to be accurate when t is small we need b quite large,
and there is a definite dependence between the size of t and the
appropriate size of b.

We say that the convergence of the integral

r K(x9t)da(x)

is uniform on [c, d~\ if for a given s > 0 there is a value of b dependent
on e, but not on t, such that whenever c ̂  t ̂  d we have

f " K(x9t)da(x)- (" K(x9t)d*(x)

In practice we look for a non-negative function <t>(x) satisfying

\K(x,t)\^(f){x) for x^a and c^t^d,

such that

J: oo.

If this happens, we say that <j> dominates K and that K has dominated
convergence.

Under the above circumstances, and assuming a is increasing, for given
e > 0 there will be a b such that

Hence,

r
r

0

(f){x)da{x) < £

K(x,t)da{x)

<

°°|K(x,t)|da(x)

%(x)<fe(x)

as required by our definition.
We then have, for a an increasing function, the following.

(i) Assuming dominated convergence and continuity of K(x,t) on
[a, oo) x [c,d] we have for t0 in (c,d) that

lim K(x,t)d<x(x)= K(x,to)dat(x).
t-*to J a J a



288 Manipulation of integrals

(ii) Assuming dominated convergence and continuity of

dK(x,t)

dt

on [a, oo) x [c,d] we have for t in (c,d) that

d f " ° ° f °° d
- K(x,t)dx(x)= -K(x,t)doc(x).
StJa Ja 3t

(iii) Assuming dominated convergence and continuity of K(x, t) on
[a, oo) x [c, d] we have for any function P(t) of bounded variation on
led-]

K(x9t)da(x)dP(t) = K,t)dp(t)d*(x).

Example 1
If

r \g(x)\dx

exists, then X(x, t) = g(x)e tx is dominated by \g(x)\ on [0, oo) x [0,1]
since \K(x,t)\ ^ \g(x)\. Hence,

lim I " g(x)e-txdx= I " g(x)dx.
t-*oJo Jo

Example 2
We amend the last example taking

sinx forx^O,
i.e. X(x, t) =

..sinx

1 forx = 0, 1.

Here the partial derivative of K is (cf. p. 296 Question 12)

d

dt

If c>0 and d>c we shall have for c < t <d that
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Since dK/dt is continuous and dominated we have for t > 0:

d f̂ 00 , s inx J f°° xt .
— e~xi dx = -e~*'si
dt]0 x Jo

0 x Jo 1+* 2

Example 3
Let

f(t)= cos(xt)exp(-x2/2)dx.
Jo

Then

— /(t)= xsin(xr)exp(-x2/2)dx.
dt Jo

This is justified since

| x sin (xt) exp ( - x2/2) | ̂  x exp ( - x2/2)

and, of course,

x exp ( - x2/2)dx = [ - exp ( - x2/2)]0

= l -exp( -b 2 /2) -> l as b-*oo.

18.12 Power series

All the above manipulations on integrals may be very easily taken over
to corresponding manipulations on power series, provided we remember
that a power series may be represented as a Riemann-Stieltjes integral
We can turn

oo

]T ant
n (we have ignored the term a0)

n = l

into the integral

provided we interpret ax as illustrated in Figure 18.19. Thus

K(x,t) = axt
x

is continuous (at any rate for t ̂  0).
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axt

aO

0

ai

1 \y 3 4 *
Fig. 18.19

We recall that if, for some £ > 0^an£n converges then so does I X £
for any t with |r| < £. The reason is as follows. First note that since
\ant;n\^0 the sequence an£n is bounded, say by M. Secondly,

and the series on the extreme right is a geometric progression with
common ratio less than unity. In consequence, there is a largest number
R, known as the radius of convergence, for which it is true that ^anxn

converges whenever x satisfies | x | < JR.
The above argument also provides us with a proof of the dominated

convergence of the Riemann-Stieltjes representation of the series. Let
d < R and let d < s < R, then for x > 1 and O ^ K ^ w e have

where K is a bound for {ansn}. Thus

Hence by dominated convergence
rd p-oo /•-oo rd

axfdlx]dt= axt*dtd[x],
Jo Ji Ji Jo

fd oo oo f̂

! « / * = Z amfdt.
Jo n = 2 n = 2Jo

Thus term by term integration is justified:

rd oo oo rd

Zant»dt= X *fdt.
Jo » = 0 n = 0 Jo
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A similar argument can be given to show that a power series may be
differentiated term by term. Here one needs to notice that

< oo.

18.13 Parameter range infinite

Suppose we know that, as in the last section,

Cd oo oo f d

Zfn(t)dt= X
JO " = 0 " = 0 JO

fn(t)dt

and that this formula is valid for all d < R (we allow the possibility that
R = oo). Suppose furthermore that fn(t) ^ 0 for all n and all t. Then we
may deduce that

r->R oo oo r

Jo « = 0 n = 0 J

fn(t)dt,

provided either side exists. For example, if the right-hand side exists
and R = oo, then, for each d

fd QO oo Cd oo f*

lUt)dt= Z fm(t)dt< I
Jo n = 0 n = 0Jo " = 0 J

fm(t)dt< I fn(t)dt,
Jo

since

Hence

f
Jo

Jo;o o

Now for each m

fn(t)dt.

oo r

o Jo
(1)

f-*<x> oo foo m m C

Jo o Jo o o J

i.e.
f-*oo oo m r oo

Jo o o Jo

Letting m tend to infinity we obtain the reverse inequality to (1).
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Example
Observe that

- l o g ( l - x ) = Y - for | x | < l .
i n

Thus
ri-s ri-s oo xn

-log(l-x)dx = £ -
Jo Jo i n

dx

X A

— dx

= ?
-f

Jo

;\x+l

:+ l )

We shall now take the limit of the last expression as <5 -• 0. We observe
that taking limits as <5-*0 through this Riemann-Stieltjes integral
is permissible provided the integrand is dominated. But for 0 ̂  3 ̂  1:

1

x(x + 1) ' x(x + 1)

and

Now (1 — <5)n—• 1 as 5 tends to zero. Moreover

= 1 - •1 as m->oo.

It now follows by the argument at the beginning of this section I that

I log( l -x)dx=- l .
Jo

The argument at the beginning of the section proves the following
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Theorem
Suppose a and f$ are increasing functions defined on [a, oo) and

[c, oo) respectively. Suppose moreover that K(x, t)^0 for all x and t in

a x
Fig. 18.20

the domain of K (Figure 18.20) and that it is known that

rd poo r°o rd

K(x,t)d<x(x)dP(t)= K(x,t)dP(t)dx(x) ford^c.
J c J a J a J c

and

T I *K(x,t)da(x)dP(t)= r I K(x,t)dP(t)da(x) forb^a.
Ja Jc Jc Ja

Then, provided either side exists:

f" I"" K(x,t)da(x)dP(t)= P I™ K(x,t)dp(t)d*(x).
Jc Ja Ja Jc

18.14 Exercises

1. Using

arctan x =

show that

x ~\~ v
arctan(x) + arctan(>>) = arctan .

1 — xy
2. Evaluate

sin2 xdx

Jo (l + fsin2x)2'J o
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3. Test whether the following improper integrals exist: (p > 1).
f-00

(i) xe~x2dx

(ii) | ™ x2e'x2dx

D log x dx

Jo

.... f^°°logx
m) —p

Jl x

;iv) I
J:

r
f00 , ,

(vi) (*/(x3 +
Jo
f1 sin x ,

(vii) dx
Jo x

Vlll) —
J l >

Ji

• d x

V •' )2 x(logx)"

. , . dx
(v)

f sin x
(viii) dx [Hint: Integration by parts.]

J x
4. For

a)

(it)

m

what

1 x

Jo

f
Jo

1

values of p, q do the following exist.

p ( l -x2)*dx

x*exp( — xp)dx

Vp'
5. (i) Find

oo

r = 1

(ii) Does

converge?
6. How do the results of Section 18.4 specialise when
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7. Let

Show

xdP(x) = k,
- l

x2dP(x) = k(l + X).
- l

8. Show that
c logxdx 1

K xn+l n2

9. For the function K{x,t) illustrated in Figure 18.21, show

lim \ K(x, t)dx * \ °° lim K(x, t)dx.
r-oJo Jo t-0

10. For the example on p. 285, if t = 1/6, how large must b be to ensure

K(x,t)dt< 1/2?

11. Referring to Example 2 of Section 18.11, let

r
Show that /(t) = c — arctan t (for t > 0). Show also that c = rc/2 by considering
the limit of each side as t-> oo. Finally justify the validity of this latter formula
for / when t = 0.
[Hint: Write the integral so that eix replaces sin x and then integrate by parts
and take limits as t -> 0.]

It

Fig. 18.21
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12. If /(O) = 1 and f(x) = sinx/x for x ^ 0, use L'Hopital's rule to show that

18.15 Further exercises

I.1" Check which of the following integrals converge

f1 dx f00 dx f* l -cosx

Jo V- logx J2 (logx)3 Jo x2 *

dx

Jo V ( * 4 + !) J
s i ^ - 1 J

10x log (logx)
1 logxdx

0 V x

o1
rn/2 x

pdx C°°
, sin(xp)d*

Jo yj(l-cosx) Jo

I
I

xpsinx

o 1+*2 Ji xV(x2-l)'

dx r°°logxdx

Jo V(xlog(l+x))' Jt x-f^^'

2. For what values of p and q do the following converge

f
Jo

(a) | x ' ( l - x N x (b)
! x — sin x

[ixp-xq r i x p ~ i i c
X—^dx (d) ? _ J ?

Jo logx Jo 1 - :

Jo 1 - x
+In (1) and (2) simplify the integrand f(x) by judicious use of a substitution or an
approximation (strike out insignificant terms, refer to Taylor series e.g. for cos x,...)
arriving at #(x). Check lim f/g (cf. p. 271 and p. 276).
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3. Show that when the integral in Question 2(c) exists its value is

log(
J+4

4. Using a power series expansion for (1 — x)~' calculate

J->0 1 ~ -

and hence deduce that

-dx=-L'nr?
Justify any limit manipulations performed.

5. Using the fact that

f
Jo

1
xndx = (n> - 1 )

n+\

obtain the value of the infinite series

Y 3 n ~ 2 '

6. Verify the dominated convergence of

f00 -.AT
r x^[^

Ji
for 2 < t < oo. Deduce that the series

%?
may be integrated term by term in [2, K] for any R ^ 2. Hence evaluate the series

7. By expanding exp (— x log x) as a series show that

I oo 1

x~
xdx= y —.i:

[Hint: Consider the maximum of |xlogx|.]
8. By first calculating

i /2 cosxdx

0
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show that for t > 0

cosxdx n t logrr; 0 t c o s x + sinx 2 1 + 1 2 \+t2

Hence evaluate

f"/2 cos2 xdxi0 (2 cos x + sin x)2

Justify any manipulations performed.
9. Show that

fMogfl +cosacosx) Vn ~|
dx = n\ — a

Jo cosx |_2 J
for 0 < a ̂  n/2. Does the result extend to a = 0?
10. For t>0,h>0 let

I(t)= exp{-(x-t/x)2}dx,

Ih(t)= cxp{-(x-t/x)2}dx.
Jh

What is the limiting value of Ih(t) as r->0? Justify your answer. Deduce the
limiting value of I(t) as t -+ 0.

Show that for any t > 0 the integral I(t) may be differentiated under the
integral sign and that l'(t) = 0. (Hint: Substitute z = t/x). Deduce that

11. Prove by differentiating with respect to x that for a continuous function / ,

X [' f(u)dudt= [\x-u)f(u)du.
o Jo Jo

12. Check that for a>0

/(«) =

Jo

and by differentiating this function with respect to a find a formula for

x2nexp(— ax2)dx,f
Jo
Jo

where n is a natural number.
13. Show that I(t) = J* e~axcos rxt/x = a/(a2 + t2) (for a > 0). By integrating
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twice with respect to the parameter t deduce that

-cosrx

Putting t = 1 and letting a -* 0 deduce that

*°° 1 — cosx , n1,o x2 2

You should justify all your manipulations.
(Remark: jtan~ l 6d6 = 0tan"1 0 - ^log(l + 02))

18.16 Postscript

Several of the examples in earlier sections required the evaluation of
an integral by standard trigonometric substitutions. For reference
purposes we recall these substitutions.

Suppose /(u, v) is a function of two variables and we are to evaluate
an integral of the form

f(sinx,cosx)dx.f
J a

The appropriate substitutions are as follows:

(a) If /(M, V) = — /(— u, v), i.e. the integrand is odd with respect to the
sine, put

w = cos x.

(b) If f(u,v) = — /(w, —1>), i.e. the integrand is odd with respect to the
cosine, put

w = sin x.

(c) If /(w, v) = / ( - M, - u), i.e. the integrand is even with respect to
cos-and-sine, put

w = tan x.

(d) In all other cases put

w = tan x/2.
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Multiple integrals

This chapter considers the higher dimensional analogues of the integral
studied in Chapter 17. There we were essentially calculating 'area under
the graph'. Here we will calculate items like 'volume under a surface', but
we now have an added source of variety since the volume need not stand
simply over a rectangle as in illustration (i) of Figure 19.1 but may stand
over a more general region like D in illustration (ii). Case (i) amounts to
performing two integration processes corresponding to the two axes. Case
(ii) is more awkward; it is handled by a reduction to case (i) and the
techniques for this reduction form the main material of this chapter.

Our first task is to define the double integral

IL f(x,y)dxdy

and to see how it reduces to a repeated integral in the case when D is a
rectangle.

19.1 Definition

We begin with the definition in the simpler case when D is the
rectangle [a, fc] x [c, d]9 which we denote by R. Let z = /(x, y) be a
continuous function which is defined and positive on R. The definition
goes much as before. We take two partitions, one of [a, b~\ and one of
[c,d], say Px and P2>

* 1 =

These can be used to divide up R into small rectangles (cf. Figure 19.2)

300
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(i)

Fig. 19.1

surface z = f(x, y)

(ii)

whose area will be aiy A lower estimate for the area beneath the surface is

where
mu = inf {/(x, y):(x9 y)eRij}.

The supremum of all these lower estimates over all relevant partitions
PUP2 is then what we mean by the integral

f(x,y)dxdy.

We note that just as in the single variable case we can formulate an
alternative definition by taking the infimum over all the upper estimates:

where
ij = sup{f(x,y):(x9y)eRij}.
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Although this alternative definition coincides with our earlier one
when the function / is continuous, the two might lead to distinct values
for a general function / . In such cases one talks of the lower and upper
integral (respectively) and these are then denoted by the symbols:

and

f(x,y)dxdy

f(x,y)dxdy.

If for a given function / the two values coincide we say that / is integrable.

J

d

c

c

(

\

i

Y/
///
^^

^ ^
////

Y/A
*///$
V/A

*^
////VA

\ ,

s—
Ty/j
y/A
////

\

N

J

}

n
K

Fig. 193

Finally we consider a more general bounded region D (cf. Figure 19.3).
We can still 'tile' with small rectangles, but we must first fit D into a
rectangle R. If R = [a,fc] x [c,d] and Pi,P2 are as before we can form
a lower estimate by summing

over rectangles R(j contained in D. Clearly, the finer the tiling the more
of D will be included.

Upper estimates may also be obtained by summing

over rectangles Rtj meeting D, it being understood now that

Mtj = sup {f(x,y):(x9y)eRijnD}.
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When / is continuous and D is an open domain (or the closure of an
open domain) the supremum of lower estimates will coincide with the
infimum of upper estimates. Their common value is precisely:

f{x,y)dxdy.

19.2 Repeated integrals

By reorganizing the sums

we can make the lower estimates look' like

\dy.

*0 • * !

Fig. 19.4

Indeed if we fix a value of; and sum over i (cf. Figure 19.4) we obtain
a typical Riemann sum approximating to

f(x,yj)dx.r
J aA more precise calculation justifies this. Notice

mu^f(x,y) for (x,y)eRip

s o for a n y y w i t h y . _ l ^ y ^ yj9

mu ^ min{/(x,y):xi_1 ^ x ^ x(}
= niiiy), (say)
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hence

and summing over i (that is over the shaded row)

ZmtjCTij ^ (yj - yj. O'Z mJiy)(xt - x,_ x)

Let us write

F(y)=\bf(x,y)dx.
J a

Thus for any y in [;y,-i, yj\

X WijOij ^ F{y)(yj ~~ yj-1)»
i

SO

Zm^a^^min{F(y):ye[yj-u y^}'(yj — yj-i)

and the expression on the right summed over ; is less than

\hF(y)dy.
J aThus

< /(x,

A similar calculation shows that

Hence

ff f(x,y)dxdy= [* [*f(x,y)dxdy.

Similarly, by summing over i first, we arrive at

| J /(x, y) dxdy = J* J ' /(x, y) dy dx.

For the more discerning reader we remark that if/(x, y) is not continuous
in the region of integration the equations above may fail. An example
is given in the exercises.
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19.3 General regions: direct method

Our first approach to the evaluation of multiple integrals over a general
region extends the idea of the last section. It is easiest explained in the
case of a double integral

f(x,y)dxdy

when the boundary of D conveniently splits into a pair of continuous
curves as illustrated in Figure 19.5.

*(*)

a x

Fig. 19.5

h curve

g curve

Thus

D = {{x,y):a < x ^ b and g(x)^y^h(x)}.

The argument of the last section can easily be extended to show that

IT f(x9y)dxdy= [dx rX)f(x,
J J D J a J g(x)

The more general result that this anticipates is Fubinis theorem which
asserts that for a general region D, say, lying in the strip a < x < b,

(T f(x,y)dxdy= f(x9y)dyi ( • )
D(X)

where D(x) is the appropriate vertical section of D (compare Figure 19.6).
Unfortunately to make sense of this formula we would need to define
the symbol

i f(t)dt
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when the region of integration is more general than an interval. To avoid
a more advanced treatment of integration we hastily advocate that for
a region like the one illustrated in Figure 19.6, it is best to split D into
several regions as in Figure 19.7 each of which is separately covered by
formula (*).

together
these make up

Fig. 19.7

Here,

JJ-JHJ+JJ-
JJD JJDi JJD2 JJD3The interesting point about the Fubini formula we quoted is that it is

an instance of a general rule for multiple integrals. Thus in three
dimensions we similarly have

(Tf ftx9y,
JJJV

z)dxdydz = [ dx (T f(x9y9
JJV(x)

z)dydz

where V(t) for a ^ t ^ b is the intersection of V with the plane x = t.
All the points raised so far are illustrated in the next example.
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19.4 Example

Calculate

307

-JJ/ dxdydz,

where B is the unit ball in R3 and n is an integer.
Clearly for n odd the answer is zero (negative and positive

contributions balance). So suppose n is even. In order to simplify matters
(see comment at end) we let V be the positive orthant of B. See Figure 19.8.

z t
section of V by x = X

Fig. 19.8. See also Figure 19.9

Then, for reasons of symmetry,

xndxdydz.

Thus,

But,

x"dydz.
V(x)

xndydz
V(x)

dy\
Jo Jo

xndz.

The idea is that as x takes different values in [0,1] so V is first dissected
into slices V(x), and then these in turn are dissected into line segments
D(y) where D = V(x); see Figure 19.9.

But now we have, performing the innermost integration

rr /v(i-*2)
xndydz=\ xn

yj(\-x
2-y2)dy

JjV(x) JO
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D(Y)
2=\-X2

- X2) y

Fig. 19.9. A slice of D= V(X)

(substituting y = yj(\ — x2) sin 9)

x"(l -x2)cos2 0d0•f
Jo
n

*4'
Thus,

/ = : -x2)rfx

-2,f_L__L). *"
\n+l n + 3/ (n + !)(« +3)'

Remark
The argument from symmetry simplifies some tedious

calculations associated with the use of the complete sections B(x); for
these the argument would need to start off as follows.

rr p+vu-*2) r+v'u-*2-y2)
xndydz = dy\ xndz.

JjB(x) J-y/d-x2) J -y/(l-x2-y2)

Note that, for each x, the circle is decomposed into the two curves:

19.5 General regions: change of variable

A second approach to the evaluation of a multiple integral over a general
region is to transform the region into a rectangle or at least into a region
with a more manageable boundary. This approach is often combined
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with an attempt to simplify the integrand by the same change of variable.
A wealth of examples abounds. We start with an easy one.

Example
Calculate

II dxdy

D xy

where D is the region (cf. Figure 19.10) bounded by the lines

y = x, y = 2x,
x + y = 1, x + y = 2.

We can 'straighten out' D into a rectangle by using the change of variables
(defined over D):

u = x + y v = y/x.

The lines u = constant and v = constant for 1 ^ u ^ 2 and 1 ^ v ^ 2 'sweep
out' D in the obvious sense (see Figure 19.11). Thus the region D
transforms into

A = and

which is a rectangle. We now have to invoke a theorem which tells us
how to calculate the given integral in the new variables. We state the
result only for double integrals; but, of course, the result is valid mutatis
mutandis in higher dimensions. For another example see Section 19.15.

\

y - 2x

y = x

\ x + y =2
x + y = 1

Fig. 19.10

v=2

v = 1

u=1 u=2

Fig. 19.11
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Theorem (change of variable)
Suppose the following transformation

x = 0(M, V), y = \jj(u, v)

takes a subset A of the (u, v)-plane to the set D in the (x, y)-plane (cf
Figure 19.12). Suppose further that:

(i) the transformation is one-to-one,
(ii) 4> and \jj have continuous partial derivatives,

(Hi) the Jacobian

8(x,y)_

d(u, v)

d<\> d<fi

du dv

du dv

exists throughout A and is never zero in A.
Then,

rr rr
f(x,y)dxdy= f(<t>(u,v\il/(u,v))

JJD JJA
d(u,v)

.. ^^-dudv.

where the vertical bars denote absolute value.
We comment in detail on this theorem in the next section. For the
moment notice that the theorem speaks of a transformation from (u, v)
to (x, y) whilst usually (see the example above) we arrive at a change
of variables by introducing (u, v) in terms of (x, y), quite the opposite
order to that required in the theorem.

It would therefore seem necessary to obtain a formula for the inverse
transformation for an application of the theorem. In practice this may
often be avoided, particularly since

d(x,y) (d(u,v)
d(u,v) [d(x,y)\

provided this is non-zero and (ii) above holds. Indeed as far as the

D

Fig. 19.12
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theorem is concerned only the existence of the transformation is needed,
not the formula specifying it.

Example (continued)
We have

8(u,v)

d(x,y)'

1

-y/x2

1

1/x

_ 1 y x + y

Thus, since this is positive throughout D, we have, for A as in
Figure 19.13,

r2

I ' '

-I
_ C2duC2dv_

Jl " Jl V

xy x + y

x
c

dudv

(Iog2)2.

We did not need to know x, y in terms of u, v because of the convenient
cancellations, A good exercise here is to calculate

JJ. xy dx dy.

Fig. 19.13

19.6 Change of variables: comments

In this section we comment on some of the details of the theorem of
the last section. Of course the appearance of the Jacobian is perhaps
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the first item to explain. We prefer to postpone to Section 19.11 a
revision of the argument that it represents a local magnification factor.
The reason in brief is this. The matrix (see Part I, Chapter 14)

d(x9y)

d(u9v)

gives a local linear approximation to the given transformation and an
invertible matrix transforms area/volume magnifying it by a factor equal
to its own determinant.

19.6.1 Significance of the modulus bars
It is easier to see what is happening, by reference to the
one-dimensional case. Consider therefore

-f
J

"f(x)dx

and the transformation x = g(u). Suppose g transforms the interval [c, d]
into [a,b] as in Figure 19.14. Our illustrative argument splits according
to whether g is increasing or decreasing.

(Actually, since we assume that g' is continuous and that g is
one-to-one, g can only be strictly increasing or strictly decreasing. The
point about the formulas (*) and (**) which we develop below is that
they both describe the region of integration as [c, d] with c and d
appearing in the natural order; the description altogether ignores the
fact that g may turn an interval back to front. Similar considerations
apply in higher dimensions and are the reason for the modulus bars
round the Jacobian. For example, in two dimensions the corresponding
question is whether the image of a point tracing the boundary of A
describes the boundary of D in the same sense (clockwise or
anti-clockwise) as the point tracing out the boundary of A.)

If g is increasing then g(c) = a and g(b) = d while g'(u) > 0 throughout.
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We thus have

-r/ = I f(g(u)yg'(u)du. (*)

But if g is decreasing then in fact g(c) = b and g(d) = a, while #'(w) < 0.
Hence,

f(g(u))g'(u)du

f(g(u))(-g'(u))du

19.6.2 One-oneness and non-zero Jacobian

The assumption that the transformation should be one-to-one is rather
obvious: the object of transforming is to re-state the problem in a different
coordinate system and in the absence of one-onenness we may run the
risk of loosing the equivalence of the two problems. There is also a more
tangible reason. It could be that the re-stated problem halves or doubles
the required answer (for example if the mapping is one-to-two or
two-to-one).

Fortunately, the Jacobian also provides a safety check because of the
following connections:
(1) If the transformation is one-to-one and the region is 'connected' (i.e.
any two points can be linked by a continuous path/curve lying wholly
in the region), then the Jacobian does not change sign in the region.
(2) If the Jacobian of the transformation is non-zero at some point
(x0, y0), then close to that point (i.e. in some disc round the point (x0, y0))
the transformation is one-to-one. Thus a formula for the inverse
transformation exists in a 'patch' round (x0, y0). We say that a local
inverse is guaranteed. This implies that any bounded (and closed) region
of integration can be split into a finite number of regions of integration
inside each of which the transformation is one-to-one (cf. Figure 19.15).

Warning example
Consider

v = ex sin y J
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Fig. 19.15

Then
d(u, v) ex cos y — ex sin y

ex sin y ex cos y
= e2x > 0.

The transformation is not one-to-one in the whole plane; (x, y) and
(x, y + In) transform to the same point (u, v). Nevertheless an open
horizontal strip of width no more than In gives a region in which the
transformation is one-to-one.

Thus if we were to use the change of variable in an integration problem
involving the region D illustrated in Figure 19.16 we would need to split
D into non-overlapping sections each of width at most 2n (e.g. as shown).
We would then need to calculate separately the integrals over Dl9 D2

and D3 and add the three results.

6?r

4?r

2TT

Fig. 19.16
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19.6.3 Significance of a zero Jacobian

Let (x0, y0) be a point such that the Jacobian

315

d(x,y)

vanishes. Let u0 = w(x0, y0) and v0 = v(x0, y0). Now consider the contours
in the (x, y) plane given by

v(x,y) = v0.

We observe that the normal at (x, y) to the first of these curves is

'du <3uN

K d x i

Hence, if at (x0, y0) we have

du du

dv dv

dx dv

= 0,

then not only do the u0 and i;0-contours cross at (x0, y0), but they are
also tangential, since their normal vectors are parallel (provided they are
non-zero). There is therefore a strong chance (see Figure 19.17) that other
u-contours which are close enough, cut the M0-contour twice; so, unless
one of the two intersections is excluded from the region of integration
in the (x, y) plane, the transformation is not one-to-one. See Example 19.7.
If this does happen it would be appropriate as a first step to split up
the region of integration into two parts - one with the Jacobian

u = u0

Fig. 19.17
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positive, the other with the Jacobian negative. Note that a zero Jacobian
need not necessarily imply absence of one-oneness. Consider for example,
the following transformation (whose u- and i;-contours are sketched in
Figure 19.18).

y,)

J

Conclusions
In order to apply the theorem to a change of variable such as

is given by the formula

u = u(x,y),

it may be necessary to split the region of integration into subregions in
each of which
(1) the Jacobian is of fixed sign, and
(2) the transformation has an inverse (in the subregion).
The calculations are then performed separately for each subregion and
summed.

19.7 Example
Show how to transform the integral

where D is the half-plane

M = X + y)

v = xy J

using the change of variable
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This is a classic example. Note that the transformation is appropriate
to the problem since D is straightforwardly dissected into parallel lines
u = constant. We disregard the problems associated with infinite domains,
returning to them in a later Section (19.13).

We begin by calculating the Jacobian:

J =
(M, V) 1 1

y x
= x-y.

The Jacobian vanishes along y = x ergo we split D (cf. Figure 19.19) into
two subregions D+ and D_ where J > 0 and where J < 0 (respectively).

y = x

Fig. 19.19

We notice that both of the points (x,y), (y,x) are transformed to the
one point (w, v) but that they are fortunately in different subregions.

Now we look for an inverse transformation. Clearly x, y are the roots
of the quadratic

Hence
t2 - (x + y)t + xy = 0.

u ± J(u2 - 4i?)
xy = — ^

so that in D the given transformation is two-to-one. The choice of sign
determining x, y now depends on the subregion (so in particular no
further splitting of the subregions is required). For example, in D + we
have

u + J(u2 -4v) u- J(u2 - 4v)
x = y =
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Our next task is to find A + and A _. One approach is analytical: transform
the inequalities defining D+ (and D_). These are

The fallacious answer would be to say u ̂  1 (since the second inequality
is automatic in D+). In fact we need to verify that x,y are real. This
requires that

u2 - 4v ^ 0.

A second approach is to trace the u, v contours. This will in fact
immediately throw light on the vanishing of the Jacobian and on the
inequality just noted above.

Consider a contour v = v0 i.e. xy — v0. This is a rectangular hyperbola.
The contour u = u0 (i.e. x + y = u0) is in D provided u0 ^ 1, but will in
general cut v = v0 in two points on either side of x = y. Hence D + contains
only one of these intersections (see Figure 19.20). However, it may happen

\
\

\
\

this u = const,
does not hit

u = uft

Fig. 19.20. NB. The critical position has x = = \u so v0 = xy

that u = u0 cuts v = v0 once only, tangentially, (and this is on x = y\ say
at u = u or, alternatively, not at all, when

— u < u < u

(this also takes into account the other branch of the hyperbola). Evidently
the condition here corresponds to the inequality arising in the earlier
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argument, so

Finally,
/i

/ -

Example

+

319

and noting that

(x — y)2 = (x 4- y)2 — 4xy = u2 — 4v

we have

ff ff ''" r(* + J<f'-+>) II-V(«'-4O)'\J

Remark
If for example /(x, y) — x — y9 then clearly the contributions from

D + and D_ cancel each other out, whilst if f(x,y) = |x — y\ they are
equal. This illustrates a point made earlier in the section.

19.8 Ambiguities of the inverse transformation

Example 19.7 contained a search for the local inverse transformations
leading to the ambiguity

u±yj(u2 -4v)

The ambiguity arises because in fact the transformation

u = x + y]

v = xy

is two-to-one (both (x, y) and (y, x) yield the same point in the (w, r)-plane).
Fortunately in D+ the ambiguity is resolved. The next example presents
a different type of ambiguity.

19.9 Example

Evaluate

dxdy

-\[D*3/'
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where D is the shaded region bounded by the curves

y = x2, y = 2x2,
x2y = 1, x2y = 2.

The obvious choice of new variables is

u = y/x2 v = x2y ( 4-).

This is because the contours u = u0 for 1 ^ u0 ^ 2 and v = v0 for 1 ^ v0 ^ 2
trace out intervening curves that fill out D (see Figure 19.21) and
'straighten out' the curvilnear rectangle D into A (as in example 19.5.1).

Fig. 19.21

We now calculate

d(u, v) —2yx~3 x~2

d(x,y) 2xy x2

So the Jacobian is negative in D and we seem set to go straight to the
calculation.

However, upon reflection one might doubt that the transformation
from A to D is one-to-one. Indeed the u and v contours intersect twice:
once in D and once in a mirror image (because of the other branch of
the curve x2y = v). To settle this doubt we calculate that

v2 = uv and x4 = v/u

and there is now the ambiguity

x = ± \l(vlu).
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In other words the formulas for u and v above do not in fact as yet
specify a transformation from the w, i?-plane to the x, y-plane. However,
we can choose to define

Now that we have actually defined a transformation from (w, v) to (x, y)
which satisfies (+) we may proceed to the calculation. The ambiguity
was only apparent and our doubts were founded on the absence of a (u, v)
to (x, y) transformation.

• tt 1 x j 2 ff 1 1
= —r~^'—dudv= —•—

J J A ^ ^ M y Jjtuv4i
4y 8

19.10 Plotting the transform of the region of integration

A frequent source of difficulty in multiple integration is the
indentification of the transform A of the region of integration D once
a change of variables is selected. It is best to think of the new
variables given by

v = v(x,y)

as providing a 'curvilinear' grid (or co-ordinate system) over an area
in the (x, y)-plane which includes at least the region of integration (cf.
Figure 19.22). It is then necessary to calculate for each fixed value of,
say, u the range of values of v for which the v contours meet the fixed
u contour at points within the region of integration. Compare Figure 19.23.
This can be done either by plotting the contours and inspecting them,
or by re-writing the relations defining D in terms of u and v. The
latter usually requires the transformation and manipulation of
inequalities; care must be exercised so that all manipulations return
equivalent statements (in chains of 'if and only if statements). The next

u2

Fig. 19.22
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Fig. 19.23. For each value u0 of u find the starting value v0 and the finishing value
vf for v.

two examples are devoted to just such routines (see also 19.7) and a
third more awkward example follows. See also Question 9 page 346.

Example
Let D be the triangle bounded b y x + y = l , x = 0, y = 0.

What is the image of D under the following transformation?

u = x + y, v = x — y.

(i) Solution by contour plotting. Consider a contour u = u0 (cf.
Figure 19.24). This cuts D only if 0 < u0 ^ 1. Fix such a u0. The
contour v = v0 is a straight line, viz. y = x — v0. The latter will cut
u = u0 in D only if — u0 ^ v0 ^ u0. Hence A is as shown in Figure 19.25.

(ii) Solution by transformation of the defining relations. D is defined by
the inequalities

\

y = x - v

x + y = u0

Fig. 19.24
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Fig. 19.25

Now

* = £(
Thus

(a) x + ys
(b) x ^ 0j<
(c) y^O*

v\ y = \(u- v).

(u + v)
(u -1;)

- M,

O O M

Example
For the transformation

u = y2 — x2

v = x + y

find the image of the positive quadrant.

(i) Solution by contour plotting. The w-contours are rectangular hyperbolas
with asymptotes x — y = 0 and x + y = 0 (Figure 19.26). The i;-contours
are thus all parallel to one of the asymptotes and hence they cut the
u-contours once only. To find the transformation of the positive quadrant
we note that v > 0 and that we are obliged to consider both negative
and positive values of u. Fix a value of v, say v0 > 0. It is clear from the
position of the intercepts of the u and v contours on the x and y axes that
the pair (M, V0) gives a point in the positive quadrant precisely when

(i) Ju <v0 for w>0,
and

(ii) ^J(— u) < v0 for u < 0.

We thus reach the conclusion that the image is given by

v > 0 & - v2 < u < v2.
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Fig. 19.26

The above, of course, required us to have some accurate knowledge of
the intercepts. The advantage of the analytical approach is that the
necessary information comes automatically.

A more complex situation occurs in Question 4 of Section 19.17.

(ii) Solution by transformation of the defining relations. Consider that

u = (y - x)(y + x).

Thus

u/v = y — x

and

v = y + x.

Thus

v2 — u
> 0

<->either (v>0 & v2-u>0)

or (v<0 & v2-u<0).
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Fig. 19.27

This may be identified as in Figure 19.27. Similarly,

y >0<->i; + u/v>0

v2 + w _
< - • >0

<^ either (v>0 & v2 > — u)

or (v<0 & v2<-u).

Combining the two results we obtain (see Figure 19.28)

{(n,i?):i?>0 & -v2<u<v2}.

Vt,

Fig. 19.28

19.11 Presence of the Jacobian
We begin by considering the effect of linear transformations on area and
volume.

Let M be a 2 x 2 non-singular matrix with entries mi} and consider
the linear function L: U2 -> U2 defined by y = L(x) = Mx.
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X2

t = (o, ty

= (s,0)f

Fig. 19.29

Fig. 19.30

What is the relation between the areas A and B in Figure 19.29? We
begin by calculating B using the fact that the area of the triangle in
Figure 19.30 is equal to ^absinO.
Thus

5 2 = | | p | | 2 | | q | | 2 s i n 2 0 = | | p | | 2 | | q | | 2 ( l - c o s 2 ^ )
and so

5 2 = | | p | | 2 | | q | | 2 - < p , q > 2 .

But p = Ms and q = Mt. Therefore

p2 = m21s

It follows that

= (m2
1+rn2

1)52; =(m2
2 + m2

2)f

Thus

B = {(m2^ + m21)(m
2

2 + ^ 2 ) - ( w 1 1 w i 1 2 + m2lm22)
2}s2t2

= (detM)2A2.

(To check this last step, expand (detM)2 =(mllm22 — m12m21)
2.)
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We have shown that B2 = (det M)2A2 and so either B = (det M)A or
else B = — (det M)A. Since B > 0 we require the alternative with a positive
right-hand side. Since A > 0, this means that

This useful geometric interpretation of a determinant extends to the
3 x 3 case provided that A and B are interpreted as volumes. It also
extends to the n x n case with A and B interpreted as 'hypervolumes'.

When applying the result in a calculation below, we shall be using affine
functions rather than linear functions. If M is a 2 x 2 non-singular matrix
and the affine function a:(R2 -• U2 is defined by

then the equation B = \detM\A still holds with A and £ equal to the
areas indicated in Figure 19.31.

Fig. 19.31

To see this, simply take X = x — ^ and Y = y — tj and consider the
equation Y = MX. A similar result holds, of course, in the case when M
is an n x n matrix.

We can now explain the presence of the Jacobian in the transformed
integral. Suppose given a transformation as in the theorem of a subset
A in the u, v plane to the set D in the x, y plane with

x = (t>(u,v) y = ij/(u,v) (1)

and suppose that as in the theorem the inverse transformation exists
and is given by

u=U{x,y) v=V(x,y).

We divide the region A into a large number of small rectangles (see
Section 19.1). The lines u = ut and v = vt in the u9v plane correspond to
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the curves U(x,y) = ut and V(x,y) = vt in the x,y plane. Our subdivision
of A therefore induces a corresponding subdivision of D.

We shall write z = (x, y)r and w = (M, t;)r. The shaded area with a corner
at z, = (x,-, yf)

r will be denoted by Bt and the corresponding shaded area
with a corner at wf = (M;,^)' will be denoted by Av See Figure 19.32.

An approximating sum to the double integral

/(x, y)dxdy£
is

where

(2)

i.e. F(u, v) is obtained by substituting for x and y in/(x, y) using equation

The next step is to express the area Bt in terms of the area A{ = Sut dvt.
We begin by observing that

a(w) = ^ A (w _ w )

is a good approximation to (</>(w), i/̂ (w))r for values of w close to wf. The
reason is that z = a(w) is tangent to z = (</>(w), ^(w))f at the point w, (see
Chapter 14). It follows that C, in Figure 19.33 is a good approximation
to B{ provided that dut and Svt are small.
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Fig. 19.33

But, since a(w) is an affine transformation, it follows that

det
d(ultvt)

det

d(x,y)

d(uhVi)

A,

d(x,y)

Returning now to our approximating sum, we obtain that

,t>;)det(

d(x9y)

But this final sum is an approximating sum for the double integral

F(u,v) det
d(u,v)

dudv.
d{x9 y)

We conclude that (2) is equal to (3).

19.12 Example

For the spherical polar transformation (cf. Figure 19.34)

x — r sin 9 cos <$>

y = r sin 9 sin <\>

z = r cos 9

find the image of the ball V:

x2 + y2-f(z + /c)2^a2

(3)
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Fig. 19.34

and hence evaluate

_ CrC dxdydz

I ~7fx2+ v2 + (z-i\2Y

where B is the sphere

x2 + y2 + z2 ^ a2 and 0 < a < r.

Solution by inspection. This type of problem - based firmly on geometric
considerations (compare Question 6 in 19.20) can really only best be done
by inspection. We consider only the more awkward case k > a. We refer
to Figure 19.35. Clearly the range of 0 is constrained between the values

Fig. 19.35
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n — cc and n + a where a is as on the diagram. To find the r range
corresponding to a given value of 6 note that by the cosine rule

a2 = r2 + k2-2krcos(n-6\
so

a2 = r2 + k2 + 2krcos6,

or

with roots r+ and r_ given by

- /c cos 0 ± J{k2 cos2 0 - (k2 - a2)},

or

- fc cos 0 ± 7 {a2 - /c2 sin2 0}.

Clearly, for a given 0, r runs from r_ to r+ (note also that cos0 < 0).
We have thus found the image set of V.

Evidently from the right-angled triangle with vertex at the tangency
point we have

sin a = a/k.

To evaluate the integral we first find that

sin 0 cos <\> r cos 0 cos 4> — r sin 6 sin (f>

J =
S(x,y,z)

sin 6 sin 0 r cos 8 sin </> r sin 0 cos (/>

cos 0 — r sin 0 0

= r2 cos2 0 sin 0{cos2 (f) + sin2 0} + r2 sin3 0{cos2 4> + sin2

= r2 sin 0.

Next we change co-ordinates to:

X = x Y = y Z = z-t

and obtain

"

where this time V is the ball

X2 + Y2 + (Z + 02 < «2.

We can now apply the previous work taking k = t. Dropping the upper
case letters to lower, we pass to spherical polar co-ordinates. But the
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Jacobian changes sign in [TT — a, n + a] and so we need to compute
separately in [n — a, TT] where J > 0 and in [n, n + a] where J < 0. Let
the corresponding contributions to / be Ix and /2. We have

sin 6 drC2n Cn Cr+ sinfl

1 = # d0 r 2 ~
Jo Jit —* Jr - r

n-<x L ^ J r _

= TT (r+ +r_)(r+ - r _ ) s i
J n-n

= n\ -
Jn-a

= —a3 (since a2 - f2 sin2 a = 0).

Clearly

Note that we would have received a zero answer if we had not tested
the sign of the Jacobian (i.e. It and I2 should not cancel each other).

19.13 Improper integrals: infinite range

Recall the traditional computation of

f0

Jo

f
/ = Qxp(-x2/2)dx.

Jo

The usual argument is

I2 = f°°exp(-x2/2) r
Jo Jo

where D is the positive quadrant. The step from first to second line is
based on a reduction of a repeated integral to a double integral. We
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u IN

\ j V

\ \
R Ry/T x

Fig. 19.36

shall comment on this in a moment when we have completed the
calculation.

We change variables to polar co-ordinates

x = r cos 9

y — r sin 0

so that A is described by0^r<oo, 0^0^n/2.
Thus

d(x,y)
d(r,0)'

Finally,

cos0 - r s i n 0 , . 2
= r{cos20-hsin20} = r.

sin 0 r cos 0

= [I exp(-r2/2)rdrd0= \ dO | °° exp(-r2/2)rdr
JJA JO JO

So / = V(TI/2).

To justify the second line we simply note that with reference to
Figure 19.36

= lim f[
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and we are entitled to write

IT
JJUR

= r
Jo

= I cxp(-x2/2)dx\
Jo Jo

o

\ 2 /cxp(-x2/2)dx\ \xp{-y2/2)dy
Jo

- • / • / as

Now

lim
^oo JJD

lim exp { - (x2 + y2)/2} dx dy
JJ

= lim If exp{-(x2 + y2)/2}dxdy,

because, since the integrand is positive, we have

JJDIDR JJVR

So

I) exp{-(x2 + y2)/2}dxdy= \\ exp(-r2/2)rdrd8
JJDR J JAR

where A^ is described by O^r^R, 0^0^ n/2. Thus

exp(-r2/2)rdrd9= \ dd \
JO J

19.14 Improper integrals: integrand discontinuous

Consider the problem of evaluating

I=iiD
cos\^Ty)dxdy'

where D is the triangle bounded b y x + y = l , x = 0 and y = 0.
Notice that the integrand is discontinuous at the origin, so we are

dealing here with the improper integral

rr
m
oJJ

lim cos \dxdy.
JJ \ + j
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We note that the limit exists because the integrand remains bounded at
the origin (integration over x + y ^ 3 will contribute less than \32, since

We should obviously take u = x + y and v = x — y so that,

x = \{u + i?) y = \(u - v).

To find the transform of D observe that, e.g. when u = 3 only the lines
v =• const, for — 3 ^ const. ^ 3 intersect u = d. Hence the transform A of
D is bounded by v = ± u and u = 1 (cf. p. 322-3). Now

d(u9v)

1/2 1/2

1/2 - 1 / 2

1

Thus

/ = I du I cos I - \\dv

= '\ s i n ( - ) wdu — i'sinl.
2 Jo L \u)]-u

19.15 Further examples

Example 1 (on dissection)
Find the volume of the pyramid D

The volume is just

iff
V= dxdydz.

We follow the argument of 19.4

u = x + y + z.

Thus w = w0 for 0 < w0 ^ h gives a section of D parallel to the shaded
face of Figure 19.37. Now the section D(u0) may similarly be dissected
into line segments parallel to the edge marked in bold in Figure 19.38.
Its equation is

y = 0 & x + z = u0.

Parallel segments will thus satisfy

x + z = const. & y = const.
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V = X + Z = C

x + z = 0 (a point)

x + z = h

Fig. 19.38. The section D(u0) is dissected into parallel lines x + z = constant.

So put

v = x + z

and then

0 ^ v ^ u0.

Finally to describe the points along a line segment v = v0 use x or z as
a parameter, say x. Thus 0 ^ x ^ v0. In conclusion

u = x + y + z9

Thus

W = X.

d(u, v, w)
1
1
1

1
0
0

1
1
0

= 1
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and so
rh ru rv rh ru rh

V=\ du\ dv\ dw = du\ vdv=\ u2/2du = h3/6.
Jo Jo Jo Jo Jo Jo

What we did was to select new variables in such a way as to describe
the points of D using a dissection into planes, then into line segments
and, finally, points, in the manner required by Fubini's formula
(Section 19.3). Note that the domain of integration used in the
(w, v, w)-spaced is also pyramid.

Example 2 (Jacobian with variable sign)

Evaluate

over the region shown (y ^ x). It is assumed that the integrand is zero
whenever x + y = 0. We let

x + y
Hence

/ 1 - M \
u = const. along which y = x I

V u )
describe a straight line (see Figure 19.39). It is easy to see that u = 0

Fig. 19.39
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corresponds to x = 0 while u = 1 corresponds to y = 0. Thus
traced out when

is

On the

Now

so

f^M<00

other hand

— oo< u^

x — uv,

y = v — uv,

d(x9y)

d{u, v)

&

D2

"2

V

is t

&

V

-v

>0 .

raced <

v < 0.

u

l-u

3ut when

—- v .

Thus referring to Figure 19.40 | J\ = v in Ax but | J\ = — v in A2.

/ , .

Fig. 19.40

Consequently,

r 1/2 ro

J — oo J — oo

+ \ du\
J 1/2 Jo

/ » i / 2 i~ / 9\~in

. exp( — v ) \
= exp( —wz)rfw

J-oo L 2 J_

i?)exp(- u2 -v2)dv

vexp(-u2 -v2)dv

l /2
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Remark
The integrand is discontinuous only at the origin (e.g. approach

the origin along x = 0 to obtain a limiting value 1 for the integrand, and
approach along x + y = 0 to obtain a limiting value of 0). However, since

the integrand is bounded near the origin. So just as in the example of
19.14 the existence of the improper integral over any bounded part of D
is assured.

19.16 Problems arising in statistics

Statisticians interest themselves in the probability that a randomly
selected individual from a given population has some numerical property
or other. For example, the throw of a die randomly chooses one face
from a population of six faces and the numerical property of interest
could be the number of dots on the face.

In general we consider a population denoted Q and a numerical
property X. The numerical value of X corresponding to the individual
a) in Q is written X(a>). Thus, mathematically speaking, AT is a function
from Q to U. Statisticians refer to such functions as random variables
(since these are the variable quantities whose value is to be randomly
selected).

Examples
1. Labelling the six faces of a die as 1,2,...,6 (according to the number
of dots) we obtain Q = {1,2,..., 6} and the function which assigns the
number of dots to the face is then quite straightforwardly,

2. In Monopoly the score is determined by throwing two dice and
taking the sum of the dots on the faces turned up. This amounts to a
random selection of two faces one from each of two dice. Here the
population consists of the ordered pairs of faces conveniently labelled
(m, n). The score is given by the function

, n) = m + n.

Note also the other two numerical properties/random variables

X1(m,n) = m X2(m,n) = n,

viz. the number of dots on the first and the second face.



340 Multiple integrals

The function defined by

is known as the probability distribution function of X.
In Example 1, assuming an unbiased die

Fix)- # { " : W < X } - M

#{n:n= 1,2,...,6} 6 "

In Example 2, the distribution function of Xl is

,n = i,. . . , o | o*o o

where [x] denotes the greatest integer less than or equal to x.
If there is a function f(t) such that

F(x) =

then/(t) is called the density function of X. Quite often we are given a
joint distribution function of several random variables Xl9X29.-.9Xm

which is defined to be:

This might well be available in the form
f*. f*a r*n

F(x1,x2,...,xw)= * ! &2 f(tut2,---,tn)dtn
J — oo •/ — oo J — oo

where f(tl9t2,-..,tn) is the joint density function. We are then required
to find the probability density of combinations of the random variables.
Let us illustrate this.

Example
The random variables X, Y have joint density function

/(x,y) ;
Zn

Find the density function of Y/X. By definition we have to consider

y)dx dy=1J>
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where

This last equation is based on the intuition that/(x, y) is the approximate
probability that

x^X*^x + dx & y ^ y ^ ) > + (5;y.

Now y/x < t for x > 0 implies y < tx; while for x < 0 it implies y ^ tx.
Hence D = DluD2 as shown in Figure 19.41.

y = tx

Fig. 19.41

Changing to polar co-ordinates

exp{-r2/2)rdr
2rcJ_n/2

•f
Jo

Qxp(-r2/2)rdr

1 / n\ 1 / n\ tan"11
= — a + - + — <x + - =

2n\ 2 2n\ 2 n

since tan a = t. We see (by differentiation) that Y/X has the probability
density function

1

In anticipation of a later chapter we note tjie following.
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Example (convolutions)

Suppose Xx and X2 are random variables with density functions/^(x)
/2(x). To say that Xx and X2 are independent means that the joint
distribution of Xx and X2 is

f(xux2)=f1(xl)'f2(x2).

We now obtain the density function of Xx + X2 assuming independence.
We have

= \\ fi(x&f2(x2)dxldx2

r<x> rt-xi

dxA /i(x1)-/2(x2)dx2,
J - oo J — oo

where D is the region {(x1,x2):x1 + x2 ^ t). See Figure 19.42. Assuming

Fig. 19.42

/ i , / 2 are continuous (and supposing that for each j

\fiixd\dx,

exists), we may differentiate with respect to t to obtain
j:

This is known as the convolution oif^ and/2. For a finite population
such as O = {l,2,...,n} where we have/(w) = P r o b ^ ! -f X2 = m), we
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see that the appropriate formula would read

n

1

where pt = P r o b ^ ! = i) and qj = Prob(X2 —j)-

19.17 Exercises. Problems on transformations

For each of the transformations given below obtain, where relevant, the transform
of the region indicated.

1. u = \(x2-y2)

v = xy

The positive quadrant.

x2 +y2

Find the inverse transformation and resolve any ambiguities.

3. u = xy

The unit disc.
x(x + y)

4. u = — y —

The positive quadrant.

5. u = x2 + y2

v = xy

The sector 0 < y < x.
26. u — y — x

v = x 2 — y 2

Show that the plane splits into four regions where the Jacobian is of constant
sign. Find the inverse transformation in each region and the image of the half
strip x > 0 & 0 < } > < 1/2.

7. u = x + y

v = y/x (for

The strip O ^ y ^ 1.

8. u = x 2 — yx
v — y 2 — x 2 .

The lines x — constant.
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19.18 Exercises. Evaluation of integrals
1. Find

rr
exp{-(x + y)}dxdy

where D is bounded by x = 0, y — 0 and x — y ̂  k.
2. Find the volume common to the cylinders x2 + y2 ̂  a2 and x2 + z2 ̂  a2.
3. Find the area enclosed between xy = 1, xy = 2, x2 — y2 = 1, x2 — y2 = 2 in the
positive quadrant.
4. Obtain the volume of the sphere x2 + y2 + z2 ^ R2 using the transformation

w = ^(x 2 + y2 -f z2), y = y, w = z.

5. Evaluate

2r oo /•<» 2 , 2

Jo Jo l + ( x 2 -J J l ( 2 y 2 ) 2

Use u = x2 — y2, u = 2xy.
6. Express the following integral as an improper double integral. Show that the
integral exists and evaluate it using the substitution u = x + y,v = x — y

dx\
Jo Jx

7. Show that

19.19 Exercises. Problems from statistics
1. The joint probability density function of the three random variables X, Y,Z
is given below. Find ProbfX < Y< Z).

f(x,y,z) = < .
I 0 otherwise.

2. The joint probability density function of the two random variables X, Y is
given below. A third random variable Z is also defined below. Find its density.

(1 for 0 ̂  x, y ̂  1 \ X(a>) + Y(a)) if less than 1

{o otherwise. \x(a))+Y(a>)—\, otherwise.

3. The random variables Zl,Z2,Z3 are independent and have the identical
probability density function

-exp(-f2 /2).
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By first finding the region where the inequalities below are satisfied,
(i) i(zJ + z*Kfc

(ii) fcz^V^ + z*) (*>1)
(iii) |z,|<fcV(z^ + 2

2
3)

and integrating over these regions show that
(i) ^

(ii) Prob^Z! < V(Z2 -I- Z2)) = -

(iii)

n
k

Discuss the integration problem involved in solving for k

19.20 Exercises. Miscellaneous

1. A transformation is given for x # 0 by:

u = x + y, v = y/x.

Find the image of the strip 0 < y < 1.
2. A transformation of R2 into R2 is given by:

u = x2 — xy
v = y2 — xy

Show that u = const, and v = const, contours are hyperbolas. What are the
asymptotes? Show that in appropriate regions the inverse transformations are:

±u +v
x — " ) y ^ ~ .

V (u + v) V (w + v)
3. A transformation of the positive quadrant is given by

u = \(x + y), v = VC^)-
Find the image of the positive half-lines along x = const, and y = const, for
positive constants. Find the image of the rectangle

y)

:\'

where 0 < a < b < c.
4. Evaluate

"A
Jo J yfor 0 < P < TT/4, 0 < a.

[Recall that J cosec2 9 d$ = - cot 6 + c ]
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5. Evaluate

I (yjx-yjy)xnyndxdy,
JD

where D is the finite region bounded by the x and y axes and the parabola
y/x + Jy=l.
6. Let u and v be the distances of the point (x, y,z) to (0,0,1) and (0,0, — 1)

respectively. Let 6 be the angle between the plane through the three points just
mentioned and the plane x = 0. Define the variables £, rj by

Find the Jacobian d(£,ri, 6)/d(x, y,z) and show that

— exp{ —(u + v)/2}dxdydz =—.
3̂ uv e

7. Show that for 0 < a < n

aIT
Jo Jo

exp {— x2 — 2xy cos a — y2} dx dy =
2 sin a

[Hint: Complete the square, apply a linear transformation and then use polar
co-ordinates.]

v = y — x2

As in Question 2 find the inverse transformations appropriate to different parts
of the plane. Also find the image of the positive quadrant.

9. For the transformation

u — x2 — xy

v = x2 -I- y2

calculate the Jacobian and show that it vanishes on two perpendicular lines.
What is their relationship to the hyperbolas u = constant? Show that the eight
local inverse transformations are given by

x = ± y{(2u + v)± V((2M + v)2 -

and identify the appropriate signs by reference to the sign of the Jacobian.
10. Find the volume of the four-dimensional sphere S4 given by

x2 + y2 + z2 + t2 ^a2.

It may be useful to observe that

16 dxdydzdt,

where Q is the positive orthant. You may assume that the volume of a
three-dimensional sphere of radius a is ina3.



20
Differential and difference
equations (revision)

This is a somewhat brisk chapter intended as background material to
the following topics: Laplace transforms, the upper triangular form, series
solutions of differential equations, calculus of variations. For a slower
paced account see, for example, Calculus by K. G. Binmore.

Recall that a differential equation is said to be partial when the
derivatives of the unknown function occurring in the equation are
themselves partial; otherwise the differential equation is ordinary. The
order of a differential equation is the order of the highest-ordered
derivative appearing in the equation; its degree is the algebraic degree
of the highest ordered derivative (i.e. the power it is raised to). It is
important to note that by a solution of a differential equation we mean
any relation between the variables which is free from derivatives and is
consistent with the given differential equation. We begin by considering
ordinary differential equations.

20.1 Elementary methods for order 1 degree 1

(a) Separation of variables is said to occur when the differential
equation may be written in the form

P(y)~ = Q(x) (l)
dx

where P(y) and Q(x) are respectively functions of y only and x only. The
equation (1) may in principle be solved by integrating the relation

\P(y)dy= [<2{x)dx.

Example
Solve

dy= y3

dx x + 3*
347
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We separate the variables by writing

1 dy _ 1

y3 dx x + 3

Next we integrate the equation

to obtain the solution

- - L = log(x + 3) + c,

where c is a constant of integration. (Note that in the present context
we are not concerned to find y as a function of x.)

(b) Use of an integrating factor facilitates the solution of an equation
that can be written in the form

^ + 6 ( % R(x), (2)
dx

where Q(x) and R(x) are functions of x only. The method is based on
observing that if g(x) is any function of x, then

j(g(x)y) g(x)r + g(x)y. (3)
dx dx

We compare the right-hand side of (3) with the left-hand side of

)

where (4) is obtained from (2) by multiplying by the factor g(x).
We try to arrange matters so that

9'(x), (5)

or,

g(x)

But this gives

(6)
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The function in (6), known as an integrating factor for equation (2),
enables us to integrate up equation (4) using equation (3). We obtain for
g(x) as in (6) that:

- ! •

g(*)y= \g(x)R(x)dx.

Example
Solve

dx

We have

di-2-y = x \ (7)
dx x

So

g(x) = exp -iW
= exp{-21ogx}
= x~2.

Multiplying (7) by x"2 on both sides gives

x2dx x3

\
1,

or

-(~y) =
dx\x2*J

so
1

Thus
y = x3 + ex2,

where c is a constant. (Note that earlier on we had no need for a constant
of integration when computing the integrating factor.)

(c) Change of variables often simplifies a differential equation,
though occasionally some inspired guesswork is needed. We mention
three examples.
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(i) The homogeneous equation of the form

) ^
dx

where both M(x, y) and N(x, y) are homogeneous functions of x and y
both of the same order (cf. page 183). The latter condition means that
for any number X # 0

M(

In this case

v =

Now since

y =

we have

dx

Ax, Xy)

use is

y/x.

• vx

dv

~Xdx

M(x9y)

made of the new variable

+ v. (9)

It is easy to see that the differential equation may then be solved by
separation of variables.

Example
Solve

dy x — xy + y

dx xy

Note that here

N(Ax, ky) = X2xy = X2N(x, y\

M{Xx, Xy) = k\x2 - xy + y2) = X2M(x, y\

so M and N are both homogeneous of degree 2 and thus (8) is satisfied.
We have, by (9),

dv X2 — X2V -f X2V2

x-— + v =
dx xzv

v2 - v 4-1
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so
dv 1 —v

dx v

Separating the variables

v dv 1
1 — vdx x

and integrating

J v - \ J v - l J x

we obtain

v + log(i; — 1) = — log x — log c,

where log c is a constant. Thus

e-
v = cx(v-\)

or

(ii) Sometimes interchanging the variables helps. In the example
below we consider y as the independent variable and x as the dependent
variable. We are of course assuming then that

dy \dxy

which will be true if the derivative of y is non-zero.

Example
Solve

dy = y

dx 2x + y3'

Rewriting this as

dx 2x + y3 2x .
— = = — + >>2,

dy y y

we are now to solve

dx 2x_ 2



352 Differential and difference equations (revision)

This is the same problem as in (7) with x and y interchanged,
(iii) Changes inspired by context are worth investigating.

Example
Solve

? !? +!•
dx x — y

Put
z = x-y,

so that
dl_=x_

dl
dx dx

Equation (10) now simplifies to

'-r-i+1-
dx z

or
dz _ 1
dx z

Hence

or

Thus

and

\zdz=- \dx,

\z2 = - x + c.

= X-yJ{2(c-x)}.

(d) Exactness. This concept is useful in looking for a solution to the
general first-order differential equation of the form

M(x9y) + N(x,y)^ = 09 (11)
dx

where M(x, y) and N(x, y) are functions of x and y only. We are interested
to know whether for some function / (x, y) the solution to (11) may be
written in the form

f(x,y) = 0. (12)
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Assuming (12) holds we differentiate with respect to x and obtain from
the chain rule that

(13)
dx dydx

We now ask if (11) as it stands is in the form (13). If that is the case we
will have

(14)
dy dx

since both would equal

dxdy

If the equation (11) satisfies (14) we say that it is exact, and it is
then true that we may find / by solving the simultaneous partial
differential equations

dy
= N(x,y)

(15)

The reason for the solubility of (15) is indicated in the course of the
example below. Equation (11) might not be exact and it is then an
open problem to find a function </>(x, y) such that

4>(x, y)M(x, y) + </>(x, y)N(x, y)^ = 0
dx

is exact. Such a function </>, if found, is known as an integrating factor.

Example
Solve

We have here that

d

dy X + y*

8

dx

= 1

(16)

dx
(x - y3 + 3) = 1
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Since the differential equation is exact we are assured that a
function /(x, y) may be found such that

(17)

Integrating the first of these equations with respect to x whilst
holding v fixed, we obtain
Integrating the first of the
holding y fixed, we obtain

The constant of the integration with respect to x may depend on y
so we have included here a function C(y). Repeating the procedure
on the other equation in (17) we obtain

j

Here the constant of the integration with respect to y may depend
on x, so a term D(x) is included. Equating the two results we have

V3 1
- — + xy + 3y + D(x) = - x 2 + xy + x + C(y).

Note that the term in xy on both sides is the same; the reason for
it is the exactness condition (14) i.e. (16). Because of this we are able
to rewrite the last equation in such a way that one side depends
only on x and the other only on y, thus:

- — + 3y - C(y) = - x2 + x - D(x).

It follows that both sides must be constant in value (why?). Say this
value is k. Thus we have:

C(y)= + 3y-fe|

Hence, finally

f(x, y) = - x2 + x 4- xy - — + 3y - fe,

where k is a constant.
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20.2 Partial differential equations - (a glance)

The theory of partial differential equations is vast. Classical
methods, concerned with solving those equations that arise in
physics, often make use of series expansions; modern methods avail
themselves of the geometric insights afforded by the tools of
(infinite-dimensional) vector spaces. The present section is more an
appendix to Section 20.1(d) and to chapter 14 of Part I than an
apology for an introduction.

We have already seen the simplest of arguments in the example
of Section 20.1(d). We amplify the scope of that approach with two
further examples.

Example (1)
Solve

df = (ax + by)df. (18)
ox cy

Rewrite this as

dJ—(ax + by)d-f = <i. (19)

ox dy

Suppose z = f(x,y) solves (19) and consider a contour

f(x,y) = c. (20)

If the contour is expressed in the form y = y(x) we have from (20) that

dx dy dx

hence, comparing with (18), we have on the contour that
d-f=-{ax + by).
dx

Assume b ^ 0 and make the obvious change of variable

u = ax + by,

so that

Thus

du

dx~a

dy

Jx
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or
du
— = a — bu.
dx

So separating the variables and integrating

we obtain

- -log{a - bu) = x + cl9
b

where c1 is a constant. Thus

(a-bu)-llb = c2e*

where c2 = ec\ or, finally

k = ex(a - bu)ll\

where k is a constant. Now let ^ be the function which maps the
constant c of equation (20) to the constant k of (21). Thus the

(21)

Fig. 20.1

contour

may be

(see

surface
z = / (* , y)

Figure20.1)

/(*» >/ — «*

re-written as
(a- bu)1/bex:
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The function ^(c) is one-to-one, for if k = ^(cx) = \l/{c2\ then for
any point (x,y) with

(a-bu)l/be* = k

where u = ax + by we have since /c = ^ ( c j and fc = \l/(c2) that

357

So cx = c2. Let (/> be the inverse function of i//, then

Thus the general solution of (18) is for b # 0

where (/>(£) is an arbitrary (differentiable) function.

Example 2 (using characteristic curves)
We attempt to solve the equation

P(x, y, x, y, z) - ? = K(x, y, z), (22)

which generalises the previous example, by looking for a solution
in the form of a surface

4>(x9y,z) = O.

Assuming that we can solve this last equation for z in the form
z = /(x, y), we obtain by differentiating the identity

that

and

dx dz dx

dy dz dy

Suppose now that the function </> satisfies

(23)

^ P(x, y9 z) + ^ g(x, y, z) + ^ R(x, y, z) = 0,
ox cy cz

(24)
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then by (23) we shall have

P(x, y,z)?f + Q(x, y,z)d-f = R(x9 y9 z).
dx dy

So our original equation may be solved by solving the equation
(24) for 4>. But the equation (24) asserts that the vector

is orthogonal to the vector (J\Q,RJ.
We now examine curves along </>(x, y, z) = 0 parametrised in the form

x = x(t)\

y = y(t)\.

z = z(t))

(See Figure 20.2.)

surface

Evidently we may differentiate the identity

<t>(x(t\y(t\z(t)) = O

to obtain

dcj) dx d(f) dy dcj) dz

dx dt dy dt dz dt
(25)
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This equation says that the vector (dx/dt, dy/dt, dzjdtf is tangential to
the surface (f>(x, y, z) = 0. We therefore now seek curves whose
tangent vector is proportional to

(P(x(r), y{t\z{t)\Q{x(t\ y{t\z{t)\R(x{t\ y(t\z(t))Y

since by (25) we will have satisfied (24). We thus have for some
function X{t) (which establishes the desired proportionality) that

y = Kt)QLx,y,z)\ (26)J
where the dotted variables denote derivatives of the respective
undotted variables with respect to the parameter t.

If P, Q, R are non-zero, we can eliminate X and write (26) in the
more memorable form:

P(x,y,z) Q(x,y9z) R(x,y9z)

Curves satisfying this equation are known as 'characteristic curves'
of the differential equation.

Once we have found the characteristic curves we are left with
the problem of fitting them together to form a surface. Let us
choose x as our parameter. We thus have to solve

dy = Q(x,y9z) dz ^R(x,y9z)

dx P(x,y,z) dx P{x,y,z)

In principle we might expect to write the solution curves in the form

y = h1(x9cl)]

where cx and c2 are constants of integration. For later convenience
we suppose this curve to be presented in the form

Now let y(t) be any (differentiable) function, we claim that the
relationship

is the most general form of the solution to our differential equation.
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We check only that this is a solution. We have by (27)

#1 _ ,#2 #1 _ ,#2 #1 _ ,#2

dx dx ov dx dz ^z

then since evidently (by construction)

%•* + %>, A - 0 0=1,2)
dx oy dz

we may add the equation for i = 1 to a multiple of the equation for
i = 2 by y' to see that i/^ — y(\l/2) satisfies the same form of
equation. A worked example follows.

Example 3
Solve

dz t dz 1

^x cy z

The characteristic curves satisfy for some X = X{t)\

*-

Choosing x

dy

dx

Thus

so (since the

Ax y =-Hx• + y) i

as our parameter we

x + y

X

dz

dx

X

s integrating

1

zx

factor is

X

z

obtain

1/x)

— -y = - , or -y =
dx\x ) x x

Also

dx 1 2 ,
— so - zL = log x + c2
x 2

and the general solution is therefore

y / I , \
logx —y -z2 — logx =0.

x V2 /
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Example 4
Find a solution of the last example passing through the

parabola y = x2, z = 0.
We have when y = x2 and z = 0 that for all x

x - log x - y( — log x) = 0.

Putting t = — log x we have thus

20.3 Linear differential equations with constant
coefficients

This section is devoted to a revision of a standard technique for
solving equations of the form

dnv dn~1v dv

^ + ̂ ^ + + « /. • -„ --fix). (1)
ax" ax" " dx

An alternative approach is provided by Laplace Transforms, see
Chapter 21. The coefficients ao,al9... are constant.

If y1 and y2 are two solutions of (1) then y = y1 — y2 satisfies the
homogeneous equation

d^l + a i i ^ _ + ... + a i ^ + ao>) = o (2)
dxn n dx"'1 dx

Two conclusions are drawn from this: any two solutions of (1)
differ by a function which solves (2); the general solution y2 to (1)
may be expressed as the sum y1 + y of two functions where y1 is
any one particular solution of (1) and y is the general solution to
(2). We therefore concentrate our attention first on the
homogeneous equation (2).

20.3.1 The homogeneous case

The substitution y = eXx reduces the equation (2) to

eXx{Xn + an-1X
n-1 + .-. + a1X + ao}=0.

Hence if X is a root of the auxiliary equation

Xn + an_ 1X
n~1 + ••• + ax X + a0 = 0 (3)

then y — ekx solves (2). When the roots of (3) are all distinct, say
they are Al5...,Xn, it turns out that any solution of (2) may be
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written in the form

Axe
k'x + A2e

k2X + ••• + Ane
XnX, (4)

where Alt..., An are constants. Thus the solutions form a vector
subspace of the space UR spanned by the 'vectors'

/ 1 ? / 2 , . . . , / n where fi(x) = ex*

(see Part I Chapter 1 Section 1.4). When the roots are not distinct
complications arise in the formula (4). If, for instance, At has
multiplicity /c, say kx = X2 = • •• = kk9 then it is necessary to use instead

/i = e^

with similar treatment of any other repeated roots. The fact that
(4), or (4) modified as indicated, gives all possible solutions of (2) of
course needs proof. This we do in the next section.

20.3.2 The general solution of the homogeneous case

The simplest equation of the form (2) is

0
dx

the solution of which is known to be y = const. (See, for example,
K. G. Binmore Mathematical Analysis.) Our whole job is to reduce
the more general problem to an application of this simple fact. The
appropriate language for the task is that of linear algebra.

Let C°° be the set of all functions f(x) from R into R which have
derivatives of all orders. This is obviously a vector subspace of Uu

and contains all polynomials. We can define a transformation D:
C^-^C™ by the formula

df{x)
Df(x) =

dx

e.g. if f(x) = x2 then Df is the function g whose value at x is 2x\
thus g(x) = Df(x) = 2x. Of course D is a linear transformation; that is,
for any scalars a, ft and any functions / , g

D((xf + fig) = OLD/ + fiDg.

Given two linear transformations S, T from C00 to C°° we can
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define the transformations <xS 4- /?T (for scalars a, /?) and ST by the rule:

sTf=s(Tf) y
In particular then D2f = D{Df), so

D2f = — anc* generally Dnf(x) — —.

We may also put

S = Dn 4- an_l Dn'l 4- • • • 4- ax D 4- aol9

where / is the identity transformation which satisfies / / = / . We are
thus interested in solving for / :

S / = D"/ + an_1D"-1 + ... + a 1 D / + a o / = 0.

Now we note that the rules (6) allow us to factorise S. By this we
mean that if kl9..., kn are the roots of the auxiliary equation then
just as we may write

s o t o o w e h a v e S = (D - kJ)(D - k2l)-(D - k n l ) .
In this formula the order of the factors does not matter. However it
is not generally true that ST=TS.

Example
The transformation S with 5/(x) = x/(x) is linear (e.g.

S( / 4- g)(x) = x/(x) 4- x#(x)). Observe however that

SDf(x) = x - ^ ^ , but DSf(x) = f(x) 4- x - ^ A
dx dx

What is nevertheless true is that if S and T are transformations
which are polynomial expressions built up from one transformation
W then ST = TS.

Example
When S = 3/ 4- W and T = I + W2 we have:

ST = (31 + W)(l + W2) = 3/(7 4- W2) + W(I 4- W2)

TS = (I 4- W2)(3I +W) = 7(37 4- W) 4- W2(31 4- W)
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The relevant fact here is that WW2 = W2-Wand generally

WlWk = (W- -W)(W -W)= Wk + l= WkWl.

/factors kfactors
Now we write

S = (D - (x)ll(D - 0)h • • • (D - y)'"

where a, /?,... y are the m distinct roots of the auxiliary equation. Note
that for example (D — a) here stands for (D — a/). We stop to consider
the equation

(D-<x)/ = 0.
Write

y = e~*xf.
Then

0 = (D - a / ) / = (D - <xl)e*xy

= <xe*xy + eaxDy - oceaxy
i.e.

0 = Dy.

Hence y = constant = A, so f(x) = Aeax.
What about (D - a ) 2 / = 0? Put z = (D- a ) / then (D - a)z = 0 so by

the last result z = Aeax and so (D - a ) / = Aeax.
Hence

or

so

thus
= Axe**

The technique is now clear. To solve (D — a) 3 / = 0 we put yx=(D — a ) 2 /
then {D - a)yx = 0, so yx = /lea*. Next put y2 = (D - a)/. Then
(D - (x)y2 = yi = ^e", hence

so, as before,
e-*

xy2 = Ax + B,
or

y2 = (Ax + B)eax

and
B)e*x.
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Thus
e'^Df - oce-^f = Ax + B,

so

e-*
xf = ±Ax2 + Bx + Q

and finally

/ = (A'x2 + Bx + C)e*x.

Thus

- a)*)

Let us denote by Vfc(a) the space Lin(eajc,...,x*~ V*).
Now we consider (D - a)k{D - p)lf = 0.

Rather than pursue the argument above using integrating factors, we
prefer an algebraic argument. Consider the action of (D - /?) on Vk(a).
We have

(D - p)xmeax = mxm~ V * + (xxmeax - pxmea

Thus (D - P) transforms Vfc(a) into Vk(a).
Also observe that

a - P) + 7 1 ] ^

If the right-hand side is identically zero it must be that all the
coefficients are zero. Thus yk = 0 since a ^ /?. Working backwards
through the terms on the right we deduce successively that yk_x =0 ,
then that yk_2 = 0 and so on. Thus N(D- p)nVk(<x) = {0} i.e. (D -P)
is invertible on Vk(a). Hence all its powers are invertible on Vk(a). Now we
use a simple theorem in algebra to complete the argument.
For the notion of direct sum used below refer to Part I Chapter 4.

20.3.3 Sum theorem
Let S, T be linear transformations of a vector space V
into V. Suppose that ST = TS, that N(S)nN(T) = {0}
and that T maps the set N(S) onto N(S). Then

N(ST) = N(S)®N(T).
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Proof Let STx = 0 then u = TxeN(S). This does not mean that
xeN(S); however, by the hypothesis of the theorem, for some
yeN(S), u = Ty. (T is invertible on N(S) by hypothesis.) Thus
Ty = u = Tx or T(x - y) = 0 so z = x - yeN(T), that is x = y + z
and yeN(S),zeN(T).

Conversely, if x = y + z and ytN(S\ zeN(T) then
5Tx = S7> + S7z = TSy + STz = 0 as required.

We apply the theorem by taking T = (D- a)* and S = (D- p)1 to obtain

The argument easily extends to three factors and more. For
example if y£{a,/?} then (D — y) is easily seen to be invertible both
onVfc(a) and Vt(P) and hence on their direct sum (because
T~1(x + y)= 7" 1 (x)+T" 1 (y)) . Thus we have:

Corollary
The set of functions / satisfying

(D - (x)k(D -p)l"(D- y)mf = 0,
is

20.3.4 Examples

1. Find all the solutions of (D2 - \)y = 0.
We have z2 - 1 = (z - l)(z + 1), so D2 - 1 = (D - 1)(D + 1).
Any solution takes the form y = Aex + Be~x.
2. Find all the solutions of (D2 + l)y = 0.
We have z2 + 1 = (z + i)(z - i), so D2 + 1 = (D + i)(D - i).
Any solution takes the form y = Aeix + Be~ix.
We write this in an alternative way. Using the identities

eix
 — QOSX + isinx, ^"'x = cosx — fsinx

we have y = {A + B) cos x + (M - iB) sin x = G cos x + H sin x, which
is a more useful form when working with real solutions (complex A
and B can give rise to real G and H).
3. Find all the solutions of

(D5 + 3D4 + 7D3 + 13D2 + 12D + % = 0.

We need to factorise the auxiliary polynomial

P(z) = z5 + 3z4 + 7z3 + 13z2 + 12z + 4.
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Since the product of the roots is 4 we check if + 1 , ±2, ± 4 are
roots. Indeed z = — 1 is a root, i.e. (z + 1) is a factor. We perform a
long division

z4 + 2z3 + 5z2 + 8z + 4

(z + 1) Vz5 + 3z4 + 7z3 + 13z2 + 12z + 4

2z4

2z4

+ 7z3

+ 2z3

5z3 +

5z3 +

13z2

5z2

8z2 +

8z2 +

•12z

•8z

4z +

4z +

4

4

Oddly enough z = - 1 also satisfies z4 + 2z3 + 5z2 -f 8z + 4 = 0.
Continuing the process yields

P(z) = (z + l)3(z2 -h 4) = (z + l)3(z + 2f)(z - 2i).

Any solution therefore takes the form

y = e ~X(A + Bx + Cx2) + (G cos 2x + H sin 2x).

4. Solve (Z)2 + D -hi )y = 0.

The roots of z2 + z + 1 = 0 are

2

The solutions are / 4 e x p [ - | - h iy/3/2]x 4- B e x p [ - ^ - iyj3/2]x

= e-
1/2x[A exp0V3/2)x + B e x p ( - i V3/2)x]

= e-x/2[Gcos(yj3/2)x H- //sin(V3/2)x] in rea/ form.

20.3.5 General solution of the homogeneous difference
equation

The techniques of the last section may be applied to the solution of
the equation

yx+n^-an.1yx + n.l 4- ••• -\-axyx+l +aoyx = 0. (7)
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We must think of the sequences {yx:x = 1,2,...} as vectors with
infinitely many components (yuy29"-) analogously to n-tuples. These
form a vector space (just like the n-tuples) which we shall denote by
S. It is also useful to think of a sequence (yi,y2, • • ) a s being a
function y(x) defined only for positive integers x. We define a linear
transformation E:S-^S by the formula

i.e.

is a shift operator. Let

where / is the operator Iy = y. Again we may write

S = (E-k1)(E-k2)-(E-kn)

where kl9... 9kn are the roots of the auxiliary equation

An + a,,_1A'I-1 + -.-+a1A + ao = 0.

Let us solve the equation (E — <x)yx = 0.
We have yx+ x = (xyx = a2yx_ x = • • • = a*y1? that is yx = Aa* where

A = 0^/a) for a # 0. Of course if a = 0 then yx+ x = 0JC>'1 = 0 for x = 1,
2,3,.. . that is y1 is arbitrary and yx + x = y2 +1 = y3 +1 = • • = 0. Let us
define S^x) by

0 x # l

so that the sequence 5X is (1,0,0,...).
Thus the solution of Eyx = 0 is y = AS i with A arbitrary.
It will now come as no surprise that just as with differential

equations, if the roots ku..., kn of the auxiliary equation are all
distinct the general solution of (7) takes the form

provided of course we remember to replace the function kx by 6x(x\
when k = 0. Thus the solution space is spanned by ft(x) = k* (except
when k{ = 0).

When the roots are not distinct a more complicated formula is
required. If for instance k1 has multiplicity k and say kx = • • • = kk then it
is necessary to use for ft the functions (sequences):

fi{x) = xk,.
fk(x)=xk~lkx
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and again we must make a special case for Ax = 0; here we would need

where

Again a proof is required for these assertions and that is provided by
the next section.

20.3.6 Justification

We begin by noting that the equation (E — cc)2yx = 0 can be dealt with
as follows. Put zx = (E - oi)yx. Then (E - <x)zx = 0, so zx = A<xx.
To solve

(E - cc)yx = Aoccx,
observe

(E — OL)XOLX = (x 4- l)a*+ i — OLXOL* = a a x ,

whence

so for some B

y - ^ x a *
a

- £ a x

thus for some A and B

yx = (Ax +

To solve (E - <x)3yx

so for some Ao and

(E-«)yx =
Now observe that

(E - a)x V

So

B)ax.

= 0, let

\B0

•zx = (A

= (x 2 4

= a(2x

zx = (£ — a)yx then

QX + Do)1" •

• 2x + l)ax + 1 — a.x2c

+ l)ax.

Hence for some Co
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Thus in general for a / 0 and k # 0

N((E - (x)k) = Lin {a*, xa\..., xk~l a*}.

For a # 0 let us denote by Vk(a) the space Lin {ax,..., xk~ lax}. When
a = 0 the analysis is different.

Ekyk = 0 ( x= l , 2 , . . . )
or equivalently

yx + k — 0 for x = 1,2,...,

implies that
yx = 0 for x = k+ l,/c + 2,. . . and

:Vi>:V2.--->J>k are arbitrary.

Recall that 5t = (0,.. . , 0,1,0,0...), with the 1 entry in position i.
Thus for k * 0, N(£k) = Lin {3U 5 2 , . . . , ^k} = Vk(0). We finally note that

if a # )S then £ - jS maps Vk(a) onto Vk(a) because

{E - P)xl(xx = {x+ l)ra-ax - £ x V

= (a - 0)xV + r

£(0,1,0, ...) = ( 1,0,0,...).) It follows that the mapping is onto and by the
Sum theorem (20.3.3) that

Corollary

The solutions of Sf = 0 i.e. of

Ek(E-0L)l-(E-y)my = 0

are precisely the elements of

Vk(O)0V,(a)...0Vm(y).

20.3.7 Examples

1. Solve (E2-\)yx = 0.

So the general solution is

2. Solve (£3 + E)yx = 0.

E3 + E = E(E2 + 1) = E(E + i)(E - i).
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The general solution is

To convert to real form, note that i — ein/2 whence, as ix = einx/2,
yx = AS1+(B + Qcos(nx/2) + i(B- C)sin(TEX/2). Thus
yx = AS i + G cos (7cx/2) + H sin (7cx/2).
3. Solve (£2 -f 4£ + 5)yx = 0.
The roots of z2 -I- 4z + 5 = 0 are x = — 2 ± yj — 1, so the general
solution is

To put this in real form, note \-2 + i\ = s/{4+1} =
Thus

Now we look for an angle 9 with cos 6 = — 2/^/5 and sin 0 = 1/J5.
(Clearly n/2<6< n) Thus - 2 + i = ^ 5 ^ so
( - 2 + 0* = V5X(C0S Ox + i sin Ox). Hence

or in real form
yx = 5X/2(G cos 0x + H sin 0x).

Alternatively we may observe that

( - 2 + i)x = R e ( - 2 + 0x + i l m ( - 2 + i)x,

( - 2 - 0* = R e ( - 2 + if - i l m ( - 2 + i)x.

Hence ^ = G Re [ ( - 2 + *)*] 4- Him [ ( - 2 4- i f ] .
These real and imaginary parts may, for given x, be calculated by using
the Binomial Theorem.

4. Find all the solutions of

E2(E* - 12£3 4- 56E2 - 120E + 1 0 % , = 0.

It turns out (sic!) that the factorised form is

E2(E - 3 - i)2(E - 3 + i)2yx = 0.

So the general solution is

yx = AS, + JW2 + (Cx + D)(3 -f if + (Gx -f H)(3 - i)x

x + DO Re ((3 + if) + (G'x + Hf) Im (3 - if.
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20.3.8 The inhomogeneous (differential/difference) equation
We now consider the equation

and its analogue

(E* + aH-lE*-l + ... + a1E + a0I)yx = fx.

We write either of these equations indiscriminately as

where S = Tn + an_ 1 T
n~x + • • • 4- aol and T stands either for D or E

depending on context. Suppose we can find a polynomial in T, call it
Q(T) such that

Q(T)f = 0.

We term Q an annihilator of/. In other words we seek a homogeneous
equation of which /(x) itself is a solution. For example, if f(x) — e2x sin x,
we recognise e2x sin x as arising from a combination oie2xeix and e2xe~ix

9

which functions give the solution space of the homogeneous equation

or
((D-2)2 + l)y = 0.

Thus Q(D) = D2 - 4D + 5 is an annihilator of e2x sin x. Now if Q(T)
annihilates / we see that any solution y of Sy — f must satisfy

Hence a particular solution of Sy — f lies in the kernel of Q(T)S, which
we can in principle write down using the method of the previous sections
as follows.

We factorise S and Q into their distinct factors

= {T-a)K{T-bf-.(T-c)M.

Two situations may arise.

Case 1 The numbers a, A,..., c are distinct from a, P,..., y
By the Corollary to Theorem 20.3.3

N(Q(T)S) = Vk(a)0 • • • 0 VJy)0 VK(a)0 • • • © VM(c), (8)

This equation tells us where to find a particular solution.
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Example
Solve (D2 - 4)y = elx sin x.
A particular solution takes the form

Ae2x + Be~2x + Ge2x + ix + He2x~ix. We may rewrite this as

Ae2x + Be~2x + G'e2xcosx + / f e2xsinx.

Now substitute in the given equation in order to determine the constants.

(D2 - 4){Ae2x + Be"2x + G'e2xcosx + H'e2xsinx}

= (D2 - 4){G'e2xcosx + H'e2xsinx} (since(D2 - 4)e±2x = 0)

= G'{4^2xcosx + 2-2e2x( - sinx) + e2x( - cosx)}

- 4G'e2x cos x + H'{4e2x sin x + 2-2e2x(cos x)

+ e2x( - sin x)} - 4H'e2x sin x

= e2x cos x{4H' - G'} - e2x sin x{4G' - H'}

If this is to equal e2x sin x we have 4H' — Gr = 0 and 4G' — / / ' = — 1 so
4G' - G'/4 = - l o r G ' = - ^ and H' = - ^ . Thus a particular solution
is -T^£2 Xcosx-y5*?2 xs inx.

Case 2 Q(T) and 5 have common roots
Suppose for example that

S = (T -af{T - P)l>~(T -<TY-(T -TY'-(T -yY"

Q(T) = (T-a)K(T-P)L-(T-G)p(T-t)R-(T-c)M

same for S and Q all distinct

T h e n Q(T)S = (T - (x)k + K - { T ~ a ) p + p ( T - x)r ' - ( T - y ) m ( T - t f ••-
( T - c ) M . H e n c e

(4 (9)
But

This is because for example

(D - ot)xneax = nxn~l eax,

whence
(D - OL)kxneax = n(n - l ) - - ( n - k

whereas
(D — P) transforms Vk + X(a) into

The equation (10) confirms that S[JV(g(T)S)] = N(Q(T)) and so there is
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a vector y in N(Q(T)S) satisfying Sy = f. The equation (9) tells us that
it is not sufficient to look for particular solutions in the same spaces
Vk(a) in whose span / lies, but in higher order ones of typeVfc+x(a).

Example
Solve (D2 - l)y = xex.
We recognise that xexeV2(l) i.e. that (D - \)2xex = 0. Thus to

find a particular solution we solve

(D - 1)2(D2 - l)y = (D- \)2xex = 0,
or

(D-1)2(D-1)(D+ 1)^ = 0,

that is

So a particular solution takes the form

y = Ae~x + (a + bx + cx2)ex.

Substituting in the original equation we have

(D2 - l)y = (D2 - \)Ae~x + (D2 - \){aex + bxex + exV}
= (D2 - \){bx + cx2}e* (because (D2 - \)e±x = 0).
= ex{bx + ex2} + 2{b + 2cx}ex

+ {2c}ex-{bx + cx2}ex

= 2(b -h c)ex + 4cxex

= xex.

So 4c = 1 and b + c = 0. Thus a particular solution is

20.3.9 Remark on the general solution of Sy = /
If yp is a particular solution of Sy = / , and yl is any other solution then
of course

So, if z = y1 — yp9 then Sz = 0 and y1 = z + >'p.
Thus the general solution of Sy = / may be expressed in the form of

a particular solution plus the general solution of Sy = 0.
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20.3.10 Some useful annihilators

(D - afxke*x = 0 provided / > k

This is obviously true if k = 0. Suppose this is true for k =j. We deduce
that it is true for k =j + 1. Now if l>j + 1, then / — 1 >j, thus

(D - oc)lxj+1 =(D-OL)1~1{(D- a)xj+1eax}

= (D- of-l {(; + \)xje*x + ax

The result follows by induction.
Note in particular that xkeyx sin cox falls into this category since

e(y + io)x _ e * ( c o s c o x 4. sin cox) provided we use (D — a)l(D — a)1 as the
annihilator.

2. (E - (x)lxkoix = 0 provided / > k

The proof is similar.
Here we note that xkrx sin Ox 'falls' under this category, since

(rei0)x = rx(cos 6x + i sin to), i.e. the relevant annihilator is
(E-reie)\E-re~ie)1.

20.3.11 An example

Solve(£-l)(£-2)2>> = 2* + x.
The homogeneous equation (E — 1)(£ — 2)2y = 0 has general solution

A + B2X + CxT.
The quantity 2X + x satisfies the equation (E - 2)(E - \)2y = 0 and

hence any particular solution of (E — 1)(£ — 2)2y = 2X + x must satisfy

(E-l)3(E-2)3y = 0

and so takes the form

(A -h B2X + Cx2x) + Dx + Fx2 -f Gx22x.

We forget the ,4 -h 52X + Cx2* part since we already know that this
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satisfies (£ — 1)(£ — 2)2y = 0 and substitute the rest into
(E-l)(E-2)2y = 2x + x.

Now

(E - 1)(£ - 2)2 = £3 - 5E2 + 8£ - 4
and

(£3 - 5E2 + 8£ - 4)x = (x + 3) - 5(x + 2) + 8(x + 1) - 4x = 1

(£3 - 5£2 + 8£ - 4)x2 = (x + 3)2 - 5(x + 2)2 + 8(x + I)2 - 4x2

= x2 + 6x -f 9 - 5x2 - 20x - 20

+ 8x2 + 16x + 8 -4x 2

= 2x - 3.

( £ 3 - 5 £ 2 4 - 8 £ - 4)x22x = (x + 3)22X + 3 - 5(x + 2)22X + 2

+ 8(x-fl)22x + 1 - 4 x 2 2 x

= 2x{8x2 + 48x + 12- 20x2 - 80x

~80+16x2 + 32x-f 16-4x 2 }

= 2^{8}.

Substituting Dx + £x2 + Gx22x into (£ - 1)(£ - 2)2 = 2X -f x therefore
yields

D + £(2x - 3) 4- G(8-2X) - x + 2X.

From this we obtain that

D - 3 £ = 0 8G=1"

2 F = 1

This finally yields D = f, £ = | , G = | .
Hence the general solution is

y = A + £2* + Cx2x + — + - x 2 -f -x22x .
2 2 8

All this is tiresome but quite straightforward (the author does not
guarantee the accuracy of any of these calculations!).

20.4 Exercises

1. Find the general solutions of the following differential equations.

dy 1
y = x— + -

dx y
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dy

dx

dv
4x2 + 2y2-xy — = 0

dx

dy
x 1- 2 •+• 3y = xy

dx

dy

dx
dy

3x V + 2xy + (2x3y + x2)— = 0

2. Show that the substitution v = y/x allows a first-order homogeneous
differential equation to be solved by separation of variables.

3. Solve

(1-x 2 )— -xy = 3xy2.
dx

4. Solve
d2y dy

(a) 3 x - ^ + 2 / = O
dx2 dx

(b) £ + 3^-0
dx1 dx

5. Solve the equation

df(x,y)Jf(x,y)
dx dy

using first the contour method and then the method of characteristic
curves.

6. Solve as in question 5 by both methods the equation

ox dy

7. Solve by the method of characteristic curves the equations:

( b l

(c) xsin yJ- + -J-
ox yoy



378 Differential and difference equations (revision)

{d)(x + y)f + ( x y ) f \ .
ox oy

Remark. Part (a) is Euler's equation. Deduce from your solution that / is
homogeneous of degree r.

8. Using the method of characteristic curves to solve the equation

9. Find the equation of the surface all of whose normals meet the z-axis and
which contains the line x = a, y = z.
10. Find all solutions of the following homogeneous differential equations.

<i> 3 ^ + 5 ^ - 2 f . 0
dx5 dx2 dx

(ii) ^ + 2^-3^ = 0
dx2 dx

d3y d2y dy

dx4 dx3 dx2

(v) ^ - 2 ^ - 3 ^ + 4
dx4 dx3 dx2 dx

d2y dy
(vi) - 4 + / + y = 0

dx1 dx

d3y d2y dy

dx5 dx2 dx

11. Find all solutions of the following homogeneous difference equations.

(i) yx+2 + 2yx+i-3yx = o
(ii) y^ + 3 - 4 ^ + 2 + ^ + 1 + 6 ^ = 0

(iii) yx + 4 - 2yx + 3 - 3yx + 2 + 4yx+l + 4yx = 0

(iV) ^x + 2 + ^ + 1 + ^ = 0
(v) yx + 3-3yx + 2 + 9yx+1 + 13yx = 0

(vi) 3yx + 3 + 5yx + 2 - 2yx+l = 0
(vii) yx + 4 + 2yx + 3 + yx + 2 = 0

12. Find all solutions of the differential equation

in the following cases.
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(i)
(ii) f(x) = sin x
(iii) /(x) = x2

(iv) f{x) = e-2*
13. Find all solutions of the difference equation

in the following cases.
(•) / , = 1

(») / , = *
(iii) fx = (-\Y
(iv) / x = i + x + (_i)



21
Laplace transforms

In this chapter we develop a tool for solving differential equations by
transforming the problem from one in calculus to one in algebra.
The method works particularly well when the differential equations
are linear (i.e. are linear expressions involving the independent
variable and its derivatives, see below) and especially if all the
coefficients are constant. It remains attractive also as a tool in more
general contexts.

21.1 Definition and existence

Let f(t) be a real-valued (or complex-valued) function defined in the
interval (0, oo]. Its Laplace transform, written variously as L{/} or
f(s) is the function defined by the formula

r
Jo

e-*<f(t)dt

provided this exists. The variable s may be real or complex.
The transform often exists only for a specified range of values of s

but usually the range is of the form (fe, oo] when s is real. The class
of functions / for which the transform is available is quite wide as
we soon see.

Let us say that the function f(t) defined on [0, oo] is 'of
exponential growth at most' if for some positive constants M and y
it is the case that

If this happens note the following inequality for s > y:

\e-stf(t)\dt^
Jo J

Me~steytdt
o

380
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/* 00

= M exp {{y - s)t}dt
Jo

M

implies the unconditional convergence of L{/} (see Chapter 18 Section 11).
We know already from Chapter 20 that the solutions of

homogeneous ordinary linear differential equations are of
exponential growth at most, hence the Laplace transform will be
applicable to them.

21.2 Example

Calculate L{eat}.
We have

L{«-}= lim [e-»e«dt= lim
J T-+OO L s — a

j
[s — a s — a J s — a

which is valid only for 5 > a (or Re(s) > a if s is complex).

21.3 Why and wherefore

On the face of it, the formula above seems to replace a given
function by a more complicated expression. Actually, however, the
use of the transform often simplifies matters quite considerably. We
shall illustrate this point by tabulating the transforms of commonly
occurring functions and then using them to solve some differential
equations. The technique is rather like using logarithm tables to
simplify the process of multiplication. Instead of multiplying the raw
numbers, their logarithms are added. Thus a multiplication problem
is transformed into an addition problem.

The essential idea here is contained in the following calculation.

so if l i m ^ ^ f(T)e sT = 0 (which will be the case for large enough s
when / is of exponential growth at most), then
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Similarly

L{/' '}=s2L{/}-{s/(0)

since

Generally,

21.4 Example

Solve d-4-3— + 2f = e3t subject to /(0) = /'(0) = 1.
dt2 dt

We take transforms of both sides of the equation to obtain

5 2 / - { 5 + l } - 3 s / + 3 + 2 / = \ e~ste3tdt
Jo

_rexp{(3-5)r}100

L 3 - 5 J o '
so

(52 - 3s + 2 ) / + 2 - 5 = — * - (s > 3).
5 — 3

(Note that the Laplace transform of e3t does not exist for s ̂  3.) Thus

We now need to ask whether this formula uniquely determines the_
function /. The answer is: yes. If / and g are different then so are / and
g. Sometimes / is called the anti-transform (or inverse transform) of /.
An inversion formula for obtaining /from /does indeed exist but, since
it involves complex contour-integration, we prefer to omit it. For our
purposes it will be sufficient to remember the anti-transforms of a few
standard functions (just as one remembers the indefinite integrals of a
few standard functions). For the problem in hand, we observe that



Hence,

or

Thus

21.5 A historical note

• . j

f~(s-\)(s-

}

(s - l ) ( l -

1

1

2(5-1)

3

2(5-1)

- 2 ) ( 5 -

l

1

3 - 2)(s

1

5 - 2

1

5 - 2

L{e } -

3)

; —

1

s - 1

( 2 - l)i

1I
3 ) ( 5 -

1
1

2(5 - 3) 5

1

2(5-3)

f 2 L{e ).

(s-

1)

1

-

1

-2X2-3)

1
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f(t) = f ex - e2t + \eZt.

The point to take note of is the simplicity of the method. No messing
about with particular solutions is required. Just factorise, use partial
fractions and turn the handle!

21.5 A historical note

An appreciation of the elegance of the technique can be obtained by
looking at its predecessor, the operational technique. The latter still finds
use and is itself worthy of interest although deeper mathematical
arguments are needed (from operator theory) to justify it. A cavalier
exposition runs as follows.

First introduce the differential operator

d fr

D = — s o t h a t D ~ l = -dt.
dt J

Then, since

(D

surely it ought to be correct that

Continuing to treat D as an algebraic variable, we write

( D - 1 ) " 1 = - ( 1 -D)~l = - ( 1 - D + D2 )
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which, if valid, would yield

(1 - D)~ V = (1 - D + D2 )e3t

- ( 1 - 3 + 9 )e3t

which unfortunately diverges. Some legerdemain is therefore required.
Rewriting, we have

V ) 13 9 27 J 1 - 1 / 3 2 '

where we have been very remiss in omitting the constants of integration
(they add up to —1/2). Continuing in the same vein, we obtain

(D-2)~l =D~l{\ -2D~l)~l =D~l{\ -2D~l +<\D~2 )

• - 1 1 3 r _ 3 r r i 1 2 4 1 1 3 , V 3

(D- ie =e { 2 - 3 + 9 - 2 7 } ^ YZTyj'

Thus we appear to obtain the solution (which is actually only a 'particular
solution' of the differential equation)

Of course, if we had included the various constants of integration we
should have received the full solution, but with some effort. The reader
should try for himself!

21.6 Some elementary transformations

~ s

Too r e~stncc fee -st

L{r}= e~sttdt = \t \ — dt = -
JO L - 5 j o Jo ~S 5

ee -st

/o L ~~ ^ Jo J o ~~ ^ a a a

and, by induction,

roc r g -sqoo poo -st ,
L{f"}= e-fdl- I-— - nf-^-dt = ^ .

Jo L ^ J o J o ~ & &

This last formula is in fact valid for n ranging through all real numbers
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greater than — 1, provided we reinterpret the symbol n\. More on this
later.

To find L{cosat}, we observe that

= JL{cos at+ i sin at} = exp(iat — st)dt
0

1 s + ia] _ _
[_ — 5 + ia J o s — ia s2 + a2

So
s o,

Llcos at} = — L{sin at} = — -.
s2 + a2 s + a2

(Note that the implied limit in the formula above exists, since

as T—• oo provided s > 0). We state without proof the result that

= - { - l o g 5 - y }
s

where y % 0.577 22 is Euler's constant and is defined by

y= lim I 1 + - + » . + - - l o g n > .

n-oo I 2 n J
To make the result look plausible we offer the following argument. Begin
by differentiating with respect to a the identity

f °° a\
tae~Stdtz=z~aT\'

Jo s

Recall that ta = exp(alog t), s~a = exp(— a logs). Hence for fixed 5

da\sa +Jo 3a
f °° d 1 (a!) d

taerstlogtdt = — (a\)-— + —-pfe-
Jo da s a + 1 s da

d f 1 (a!)

Now put a = 0, to obtain

e~stlog tdt = - - - ^ 4- - ( - logs),
o 5 5
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We may now tabulate our preliminary results.

fit)

1

tn

eat

cos at

sin at

\ogt

f(s)

1

s

n\

sn+1

1

s — a

s

s2 + a2

a
s2 + a2

- -{ logs + y}
s

21.7 Three basic facts

It is obvious that L{f + g) = L{f} + L{g} and that L{a/} = aL{/}
when a is a constant. Thus, using the language of linear algebra, L is
a linear transformation acting on the space of real functions / for
which L{f) exists. Implicit use of this fact was needed for the calculation in
Section 21.4. Two other facts are not quite so obvious. They are
called the shift property and the scale change property.

The shift property asserts that

L{f(t)eat}=f(s-a).

Clearly,

f(s-a)= [%xp{-(s-f l ) t} / ( t )A= ^ e-st-eatf(t)dt.
Jo Jo

The scale change property asserts that for a > 0

L{f(at)}=(l/a)f(s/a)

which is justified by changing t to at thus

-f(s/a)= \exp{-(s/a)t}f(t)-dt
a J a

= [^ cxp{~(s/a)at}f(at)-d(at)= [* e-stf(at)dt.
Jo a Jo
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21.8 Example (simultaneous differential equations)

Solve the simultaneous system:

- - = z 1 + 2 z 2 ,

^ - z - 2 z
d t ~ 2 '"

Taking transforms gives

5z1-z1(0) = z 1 + 2 z 2 or ( s - l ) z 1 - 2 z 2 = z1(0),

5z2 — z2(0) = z2 — 2z1 or 2zx 4- (5 — l)z2 = z2(0).

Eliminating the second variable gives

{(s - 1)(5 - 1) -f 2-2}zl =(s- 1^(0) + 2z2(0)

2z2(0)

Hence,

21.9

Solve

Taking

zx = z1(0)e'cos2f +

z2 = — z1(0)e'sin2r

Example

dt2 dt

transforms we have

Zl ( 5 - I ) 2 + 4 ( s - l ) 2 + 4

z2(0)ef sin 2t,

+ z2(0)ef cos It.

(s2 + 3s + 2)/ = /(0)s + (/'(0) + 3/(0)) + ^ .

But

so
7 /(0)^ , (/(Q) + 3/(0)) |

/ 1 \ / N̂ \ / \ \ z' %̂ \ s2(s+l)(s
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/(O) , (/'((»+ /«») , 1
• H h -(5+1) (s+l)(s + 2) s2(s+l)(s + 2)

Partial fractions are now required. Since the last term is a little more
complicated than usual, we pause for some revision of the 'cover-up' rule.

There are constants A, B, C, D such that

1 A B C D

S2(s+l)(s + 2) 52 5 (5+1) (5 + 2)'

This can be checked by expressing the right-hand side as a single fraction
with a common denominator and then finding the values of A, B, C and
D which make the coefficients of 52, s and 1 in the numerator equal to
0,0 and 1 respectively.

The 'cover-up' rule says that to find A, or C, or D (but alas not B)
delete in the denominator of the left-hand side the factor corresponding
to the letter (thus for A it would be s2 and for C it would be (5 +1)).
Then evaluate the new expression substituting for 5 the value which
makes the deleted factor vanish. Thus we have:

~ ( 0 + l ) ( 0 + 2) = 2'

This may be justified by multiplying the equation (*) through by s2 and
putting s = 0. All terms vanish on the right except that involving A. But
note that this does not work with s itself; B must be obtained by an
alternative method. To obtain B subtract ^4/52 from both sides of (*), then

Left-hand side =
s2(s+l)(s

- s 2 -

2s2(s + 1)(

B C

+ :
3s

s +

+

I)

2)

D

2s2 2s2(s + l)(s -h 2)

- ( s + 3)

~ l)(s + 2)

5 (5+1) (S + 2)

And now the 'cover-up' rule applied to the last but one expression will
give B. In fact

Hence,

7 /(0) , (/(0) + /(0)) ,
(s +1) (s + l)(s + 2) s2(s + l)(s + 2)
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_ /(O) _,_ ( / ( ) + / ( ) ) ^
(s+l) (s + l)(-l+2) (s + 2)(-2

1 3 1 1
H r • r •2s2 4s ' ( s + l ) 4(s

Consequently,

where now

and B = -

21.10 Initial and final values

In this section we show how to obtain information about /(0) and about
the limit of f(t) as t -• oo from a knowledge of the transform / .

Jo

J = lim
T-»oo T-+0

where the limit may be taken through the integral sign in the presence
of uniform convergence (see Section 18.11). Thus, we obtain the final
value theorem

lim f(t) = lim sf(s).
r->oo s-+O

There is an analogous computation for limr_+0/(t) which is particularly
interesting when / has a discontinuity at t = 0. This is likely to be the
case if, for example, f(t) describes the behaviour of a dynamical system
which suffered a violent shock at t = 0. Then the said limit gives
information about the immediate response of the system. We have as
earlier (by integration by parts):

\ u s \ f ( t ) e - « d t
T-+oo I J

-f
Jo

e-stf'(t)dt.

Assuming that sf(s) has a limit as s tends to infinity and supposing that
/'(£) does not grow too fast one can show that L{f) tends to zero as s
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tends to infinity. That this is plausible can be seen from the behaviour
of the exponential factor. We thus obtain the initial value theorem:

lim f(t) = lim sf(s)
t-*0 s->oo

Let us see why this is true. We assume, as is usual in applications, that
the function/'(0 is at most of exponential growth, thus for some M and
k positive

\f\t)\<Mekt for r>0.

Hence, for s > k and T > 0:

M exp (k — S)T
\ e-stf'(t)dt <M f°° exp{(k-s)t}dt =

s-k

Thus, this part of the integral can be made as small as required by taking
5 large enough. As regards the contribution from the range [0, T], this
can be estimated similarly, if, say, / ' were continuous (and therefore
bounded); however, a stronger result is available from Analysis, namely
that if \g(t)\ is integrable then

lim e'stg(t)dt = O.
s->oo J o

21.11 Transform of an integral

Provided we can justify the formal manipulation below, we have,
changing the order of integration by reference to Figure 21.1

f{u)du\= P
o J Jo

dte~st [ f(u)du
Jo

= \duf(u)\e
Jo Ju
foo -su

= \ f(u)du
Jo s

so under the transformation the integration process becomes division
by s (the expected inverse operation to the transform of differentiation).
An alternative derivation of the formula above is also available (see
Exercise 21.15 Question 14).
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Fig. 21.1

To justify the manipulation, we consider a limiting process both at 0
and at oo. We have, of course,

dte~st I f(u)du= I duf(u) \ e~stdt
JO J<5 Ju

+ /(n)dn e"st

Jo J^

We leave the rest as an exercise.

21.12 The convolution theorem

We now derive the extremely important result that with qualification:

f(u)g(t- u)du\=f(s)g(s).

We shall illustrate the significance of this result in the next section. The
expression

mt

f(u)g(t - u)duf
Jois known as the convolution of/with g. See also Example 3, Section 19.16.

To prove the result we shall need to assume that we are dealing with a
value of s for which both the limits

lim e-*\f{t)\dt lim e~*\g(t)\dt
T->oo Jo T-*ao Jo
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exist and are finite. Consider now

= I
Jo

e's"g{v)dv

exp { — s(u + v)}f(u)g(v)du dv.
o Jo

This integral can be written as a sum of integrals over the four areas
indicated in Figure 21.2. Interest focuses on the area A which is really

Fig. 21.2

the only significant contribution, as we shall soon see. We consider

IT= exp {- s(u + v)}f(u)g(v)dudv.

A

Let us put t = u + i;, then on A, 0 ^ K T and, since 0 ^ v ̂  T, we also
have 0^u = t — v^t. Consequently, since the Jacobian is unity,

ts f f(u)g(t-u
Jo

)dudt.

We now show that \IT - IA\ - •0 as T-> oo. To this end consider an
arbitrary small positive number S. By the assumptions which we made
at the outset, there is T so large that

e-s'\f(t)\dt<3 and e~*\g(t)\dt-
T/2 J T/2
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Thus in area 1

exp { - s{u + v)}f(u)g(v)dudv

< fJ exp { - S(M + i;)} |/(u)| \g(v)\dudv

< T e~su\f(u)\du [T e-sv\g(v)\dv<d\
J r/2 J r/2

whilst in area 2
f
exp { - s(u + v)}f(u)g(v)dudv

393

fT e-su\f{u)\du\ e-°°\
JT/2 JO

\ e-"\
Jo

<d I e~sv\g(v)\dv.

Finally, in area 3

exp { - s(« + v)} f(u)g(v) du dv

e-su\f(u)\du \ e-*°\g(v)\dv
o J r/2

Hence3 since d is arbitrary, all the contributions above can be made as
small as we wish, so indeed |/A — IT\ -*0 as T~> oo and the theorem is
proved since the limit of /A is the required transform.

21.13 Application of the convolution theorem

Example 1
We begin with a simple example. Suppose we wish to find the
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function whose transform is

1

s(s + 2)

Then taking f(t)= 1, g(t) = e~2t we have f(s) = 1/s, g(s) = 1/(5 - ( - 2)).
By the convolution theorem the function we need is

* g(u)f(t -u)du = I
Jo

(notice the crafty transposition of /and g). Clearly this is simpler than
partial fractions.

Example 2
Find the function whose transform is:

1

Sy/{S+\)'

Again we take/(f) = 1 and noting that the transform of t~1/2 is yjns~1/2

(a fact that remains to be proved, see Section 21.14 below) we take
g(t) = t~l/2; we have by the shift property

Thus the required function is

i

oV71 JoV71

where we have used the substitution w = v2 (so that dw = 2u1/2dv). The
function appearing rightmost is the error-function evaluated at ^Jt.

Example 3 Find J
Suppose that / = L{yjt} then f2 = L{foy/uy/(t - u)du). Now we

evaluate, using u = t sin2 6 (so that du = It sin 0 cos 0 d0),

/= I J{ut-u2)du
Jo

2r sin 0 cos 6 • t V( s i n 2 e ~ s i n 4
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rn/2 f2 rn/2
It2 sin2 0cos2 Odd = - sin2 iddO

Jo 2 J o

t2 Cn/2

( 1 -

4 Jo

nt2

COS

)o
Thus

~ 2 _ (nt2) 7i 2!

and so

Example 4 (input-output systems)
A large class of dynamical system can be reduced to the model

which follows. The system receives a time dependent input u(t) which
causes an output y(t) related to the input by the differential equation

Taking transforms we obtain:

sny + an_ is"" ly + - + aoy + 6n- i

= smu + bm. 1sm"1u + ••• + bou + Rm.v

where Qn-1 and Rm_x denote the polynomials in s of orders n—\ and
m — 1 arising from the initial condition of the output and of the input
of the system (i.e. at time t = 0) in accordance with the formulas of
Section 2.3. With the obvious notation we thus have

-PMa+M_

where all the initial conditions have been lumped together in one
polynomial /(s). Now the inverse Laplace transform of the second term
on the right may be found, say by partial fractions. Call it h(t). Similarly
find the inverse transform of

P.(s)

and call it g(i). Then we have by the convolution theorem

i= r«(r-
Jo

y{t)= u(t-t)g(z)dx
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G(s) is known as the system's transfer function. Clearly G(s) — y(s)/u(s)
provided we have zero initial conditions. g(t) is known as the impulse
response, since y(t) — g(t) if u = 1. Note however that 1 is not the transform
of any function; nevertheless it almost is. For iffd is the function illustrated

/a
6

Area=

Fig. 21.3

in Figure 21.3, then

L{fd}=-\ e-dt= [€ l j

<5JO sS

- • 1 as S-+0.

Note that e ~sd = 1 - sd + s2S2/2 . Thus L"* {1} may be regarded as
an instantaneous impulse of zero duration and infinite size.

Example 5 (the renewal equation)
This example comes from statistics and before we present it we

need to motivate the definition. Reference should also be made to the
final section of Chapter 19.

A stochastic process on the set T assigns a random variable X(t) to
each t in the set T. In the current example t represents the time with
T = [0, oo) and X(t) will be a counting process - i.e. X(t) counts the
number of times something has happened between time 0 and time t. A
much quoted example involves the number of V2 rockets which fell on
London during the Second World War but we shall consider instead
the much more mundane example in which X(t) is the number of
customers served at a particular supermarket till between time 0 and
time t. A random variable Xn which records the time it takes for X to
get from the value n — 1 to the value n is called an inter-arrival time. A
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waiting time Sn is the time it takes for X to get from 0 to n i.e.

A counting process X(t) is called a renewal process if the random
variables Xl,X1,... are independent and identically distributed. We
denote their common probability distribution function by F. This is a
reasonable hypothesis because we are asserting that the process behaves
from any point in time in exactly the same way (probabilistically) as it
did originally, i.e. the process renews itself at any point in time. The
expected number of times the event being counted occurs by time t is
known as the renewal function. It is defined by

m(t) = E(X(t)).

Clearly, letting f(x) be the probability density,

m(t)-f
Jo

where ^[XIQ] denotes the expected value of the random variable X
conditionally on X having property Q.

Now,

if t < x.

Hence

m(t) = {1 + m(t - x)}f(x)dx
Jo

= F(t) + Pw(r-x)/(x)dx.
Jo

This result is known as the renewal equation. We solve the equation
by taking Laplace transforms using the fact that the integral above is a
convolution. We have

m(s) = F(s) +

or
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giving

Thus in principle we have found the renewal function.

21.14 The gamma and beta functions

We introduce these special functions in order both to calculate L{ta) for
a > — 1 and to illustrate the power of the convolution theorem.

Definition
The gamma and beta functions are:

Jo
(a>0)

(P,q>0).

Observe that

r(l)
Jo

= \ e~ldt =
Jo

1= t*e~ldt
)o

and that

~le~ldt. (a^O).

Note that the last integral exists for a ^ 0. Thus for a > 0, F(a + 1) = aF(a)
and hence by induction Y(n + 1) = w!. [Exercise: What happens when
a = 0?] Finally, note that the existence of F(a) is assured for a > 0 since

f
Jo

- iJo Jo

f1 r^i1 i
Js LaJ.5 a

- as

A similar calculation will establish that for a ^ 0 the gamma integral
diverges. The same type of argument also establishes convergence for
the beta integral for p,q>0 precisely. Now let v be given with

v> - 1
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and let

a = v + 1 > 0.

Then we have

= L{ta~1}= t«-le~st

Jo
f00 !̂*"1 _ i

= - e x -
Jo L^J s
1 f00

s*Jo

i
- dx (writing st = T)
s

s* sv+1

We infer from an example in the last section that

r(IK
The relationship between the gamma and beta functions can be obtained
by introducing the auxiliary function

Jo

so that B{p,q, 1) = B(p,q). Now by the convolution theorem

Hence,

Thus
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Example 1
Suppose the random variable X has standard normal

probability density function (see Chapter 19 Section 16):

1 exp(-* 2 /2 ) .
2n

Find the expected value of X2k for k = 0,1,2, . . . . (E(Xr) is known as the
rth order moment of the distribution.) We have

1 f00
E(X2k) = x2k exp( - x2/2)dx

/2n J -oo

x2 kexp(-x2/2)<ix

(2z)^-z(2z)-1/2^z

1 f00

= -—2 f c z k ~ 1 / 2 ^- z dx
V ^ Jo

Using r(j) = yjn and F(a 4- 1) = OLT{OL) the last term may be simplified
down to

(2fc — 3)(2fc — 5) - - - 5-3-1.

Example 2
A random variable X with values in (0,1) is said to have beta

distribution if its density function is for some p, q > 0

f(x) = — - — xp~ x(\ - x)q~l 0 < x < 1.
B(p,q)

Calculate its fcth order moment.
We are asked to find

1 f1

— xkxp-l(\-x)q~1dx
W)Jo

B(p,q)
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For example if k — 1 we have

B(p,q)

Remark
A random variable with values in (0, oo) is said to have a gamma

distribution function if for some a > 0, X > 0 its density function is

xe
Ha)

(cf. Question 7, Exercises 18.14).

21.15 Exercises

1. Find the Laplace transforms of the following functions, specifying in each
case the values of s for which the transform exists.

2e4t, 3e~2\ 5f — 3, t2-2e~\ 3cos5r,

2. Determine the functions whose Laplace transforms are:

1 1 1 5s+ 4 6
s-a s2+a2' s"' s3 ' 2 s - 3 '

2s-18 24-30y/s 3s 4-7
s24-9 s4 ' s 2 - 2 s - 3 '

3. Solve the following differential equations using transforms

(i) / " + 2/' + 5/ = r - 2

subject to/(2)=/ '(2)=l
[Hint: Define g(t) = f(t + 2).]

(ii)

subject to/(0) = 0(0) = 0.
4. Use the convolution theorem to find the functions whose transforms are:

1 1
(s + 3)(s-l ) ' (s+ I)(s2 + 1)'
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5. Prove that
fn/2

sin2'" l6cos2q-l6d0 = \B{p,q).f
Jo
v/0

Hence evaluate

[• sin40cos60d0.

6. Evaluate T(5/2) and L{t1/2 + r\'2}.
7. Solve using Laplace transforms

f(t) = t + 2 cos (t - u)f(u)du.
Jo

8. Use the convolution theorem to solve the problem

where g is a given function and/(0) = a,/'(0) = 6.
9. Solve using the convolution theorem the equation

P
Jo

10. Show that

What limitations does this impose on simplifying by transforms a linear ordinary
differential equation with non-constant coefficients?
11. Use Laplace transforms to solve the equation

tf"(t) + (2 - 0 / ' ( 0 + 2/(0 = 0.

12. Show that

Hence find

' sin u
L< du>.

u

Also find
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13. Find

l
u J

[Hint: Differentiate f%e~*(sinat)/tdt with respect to a.~\
14. Obtain the result of Section 21.11 by taking the transform of/' where

= P0M.
Jo

f(t)= g(u)du
Jo

and g is a continuous function.
15. Use the relationship between the gamma and beta functions to find F(3/2)
and hence show that

r; o *•

21.16 Further exercises

1. Use a series expansion of the exponential function to verify the result

2 rv( ] i

Remark. This computes the transform of erf (Jt); compare Example 2 of
Section 21.13.

2. Show that the function defined for t ^ 0 by

satisfies the equation

and hence find/(f) in terms of the error function. (Hint: Refer to the last question.)
3. Following on from Question 5 above (Section 21.15) prove that

rn/2 rn/2
sm2p20dd= sin2* Odd

Jo Jo
and from this deduce that

[Hint: put ip = 20.]
4. A function f(x) is defined for x > 0 by

•-I"
Jo

/ ( * )= cos (xu2)du.
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Show by first putting w = xu2 and then integrating by parts that the integral in
the definition is convergent. Show also that

By reversing the order of integration and making a change of variable obtain
the result

V s Jo
Assuming that the formula

1cxp(-ax2)dx = ^-
o V a

is valid for yjot — exp (in/4) find

exp( — iv2)dv
Jo

and hence deduce from the Question 2 (in this section) that

5. A continuous function/(t) defined for t^ 0 is known to have as its transform

7(5) = e- A

Differentiate this equation twice and show that/satisfies a second order
differential equation with coefficients that are constants or are linear in s. From
this deduce a differential equation for f(t) and hence find/. [Use Question 10
of Section 21.15.]
6. Use the convolution theorem to show that the equation

= \(t-u)-*f(u)du
Jo

git)

has the solution

where C is a constant depending on a.
7. Show that if f(t) = 0 for t < 0 then the transform of f(t - n) is

e-snf(s).

If it is further known that f(t) satisfies the lag equation:

dt
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find/. [Hint: Expand (1 -I- e~s/s)~l as a geometric series in e~5/s. Be careful to
check that in fact your answer is only apparently an infinite series. This problem
is related to z-transforms, a form of Laplace transform appropriate to the solution
of difference equations.]

8. Define

Js
= \ f(t)e'*dt and L0 = L

Js

Find Ls{f'} in terms of L8{f}. A function g(t) is defined for t ̂  0 by

g(t) = exp(u2)du.
Jo

Differentiate g twice and show that g satisfies a homogeneous second order
differential equation involving coefficients that are linear in t. Why is it not
possible to take a Laplace transform of this equation in the usual way? Applying
the transform Ls to the equation obtain a formula for Ld(g) and passing to the
limit as S -* 0 find L{g}. [Use the Final-Value Theorem to determine the constant
of integration.]

9. For x > — 1 define

/ ( M ) = = J 0
Find lim f(n, t) as n -• oo and use this result to prove Gauss' formula

r(x)-lim , "*"", ,

[Hint: show that f(n,t) has dominated convergence. For this refer to e~%7\

10. Use Gauss' formula to prove that, for 0 < x < 1:

r(x)T(l - x) = 7r/sin nx

[Hint: You will need to know the result

sinx = x f] (l-x2/(n2n2))
«= i

which is proved in Chapter 22.]
11. Show that

(i) l

sie5-!)

where [r] is the staircase function,

l(ii) L{ \
U ) s

[Hint: Change the order of integration and use the series expansion for e~su.]
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Series solution of linear ordinary
differential equations

22.1 General considerations

Consider the problem of solving a homogeneous differential equation
with non-constant coefficients of the form

aiix)—y — aiix) ^ <*o(x)y ~ 0-
dx dx

Guided by Taylor's theorem we are tempted to express the solution
function y(x) in the neighbourhood of some point x0 of interest as an
infinite power series (see Section 18.12)

y(x) = c0 + cx(x - x0) + c2(x - x0)2 + • • • .

Assuming ao(x), a^x), a2(x) can also be expressed as power series we
could substitute the above expression for y(x) into the differential
equation, perform all the relevant differentiations and obtain a
relationship governing the constants ct. This turns out to be a feasible
programme provided a2(x0) # 0. If however a2(x0) = 0, the series for y
needs to be replaced by the generalised power series

y{x) = (x - xo)*{co + c1(x- x0) + c2(x - x0)2 + •••},

where a might need to be fractional. Even then we are not guaranteed
success; the method works provided the 'order' of the zero of ao(x) at
x0 is appropriately related to its order for ax(x) and for a2(x). More
precisely, if we can write

a^x) = (x - Xoflal + a\(x - x 0 ) + a\{x - x 0 ) 2 + • • • } ,

where r, s, t are positive integers with r > 1 and s > 2, we require

s ^ r - 1 and t ^ r - 2.

406
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See Exercise 22.11 Question 8 for an example where these conditions
are not met.

The drawback of this method is that, although it gives us one solution
at least, there is nevertheless no guarantee of obtaining a second solution
which is linearly independent of the first, whereas of course we would
expect to have two linearly independent solutions in the case of a second
order equation (see Section 22.3). Fortunately there is an alternative
method for finding the second solution. See Exercise 22.10 Question 10.

Henceforth we shall assume, for convenience, that x0 = 0.

22.2 An example

Solve

Suppose

is a solution converging for | x | < R9 where R is the radius of convergence
for this series expansion. We may differentiate (twice) term by term within
the radius of convergence, thus

Thus, on substitution into the equation, we have

We collect like terms, and, starting with the lowest power (here xa~2),
we set the coefficients all equal to zero. (Why?) Thus:

X<T~2:COG(G — 1) = 0 (this is known as the indicial equation),

x°"l:c1{a + l)a = 0,

xa+n:cn + 2(n + 2 + o)(n + 2 + o - 1) - cn(n + a) + 2cn = 0 (n ̂  0).

The ^coefficient of the general term gives us the recurrence relation:

cn + 2(
n + 2 + *)(" + 1 + *) = cn(n - 2 + a).
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The indicial equation gives us two choices for a\ 0 or 1. Taking a = 1
leads to ci = 0 and hence 0 = cx — c3 = c5 = ••• = c2k+v i.e. all the odd
coefficients are zero. The even coefficients are governed by the equation

so that

(2k-3)
C

and

(2/c - 3)(2/c - 5)

(2/c+l)2(/c)(2/c-

(2/c - 3)(2k - 5)(2fc - 7)

" (2/c + l)2(/c)(2/c - l)2(/c - l)(2/c - 3)2(fc - 2) C 2 *~ 6

(2/c - 3 ) ( 2 / c - 5 ) ( 2 / c - 7 ) - ( ! ) ( - ! )

" (2/c + l)2(/cX2/c - l)2(fc - 1)(2A; - 3)2(/c - 2)-..3-2*

Thus

y = - Z co

This is seen to converge for all x. We have thus found a solution.
The case a = 0 warrants attention. We now have cx arbitrary. Also

(n-2)

so that putting n = 2we have c2 = 0, whence 0 = c4 = c6 = c8 = • • • = c2k.
Taking cx = 0, we also have 0 = cx = c3 = c5 = • ••. Thus we obtain a
second solution

22.3 A second example

In the following example we obtain just one solution by the series method:

x2D2y + xDy + (x2 - k2)y = 0.

This is known as BesseVs equation of order k.
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Again we assume that there is a solution y of the form

where the convergence is assumed within some radius R. On substitution
we obtain

The lowest power is xa and the indicial equation reads

co((T((7-l) + <r-/c2) = 0 or co(a
2 - k2) = 0.

Hence a = ± k. We take <r = k ^ 0. The coefficient at xk+1 is then

Thus

C l (2k+l) = 0 so that ci=0.

The next highest power has a coefficient taking contributions from each
of the terms of the equation and is thus already an instance of the general
case. We have

cn(k + n)(k + n - 1) + cn(k + n) - k2cn + cn_2 = 0.

Thus

or

cn =
n(2k + K)

B u t cx = 0 , s o 0 = c x = c 3 = c 5 = ••• a n d

Co/-.— i \i-i) _

2m(2k + 2m) 4w(k 4- m)

giving
oo M

The intended interpretation of the factorial signs when k is not an integer
is for example {(k + m)(k + m — l)(k + w — 2)*.. .-k}"x. The solution above
is known as BesseVs function of the first kind, denoted Jk(x).

When one repeats the calculation for a = — k (k ^ 0) all is well provided
k is not an integer, and a second solution J_k(x) is obtained. However,
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if k is an integer the equation

tells us first that c2k_2 = 0 and then by backward application of the
formula that c0 = 0. This is a contradiction.

A second (i.e. linearly independent) solution is known to be

rj^k Sin/771

and goes by the name of Bessel's function of the second kind. See also
Exercises 22.10 Question 10.

22.4 Trigonometric series expansion

Consider the differential equation

D2y + co2y=f(x).

The solution of the homogeneous version of the equation is of course

y — A cos cox + B sin cox.

Observe that

cos o)(x + 2n/a>) = cos cox

and

sin co(x + 2n/co) = sin cox.
Let

CO

Thus y(x + /) = y(x) and the function is said to be periodic with period
/. Now suppose that the function f(x) is itself periodic. In this case one
hopes to write y a s a sum of sines and cosines rather than as a Taylor
series, since the former are periodic functions. Thus the aim is to write
y in the form of the Fourier series

f(x) = \a0 + X [fl» cos nx + bn sin nx]
1

(the \ appears for convenience only). Before considering for what
functions / such an expansion might be vaild, we examine some
elementary examples. The idea behind them is that of summing a
geometric progression with common ratio eld = cos 6 + i sin 9.
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Example 1
We compute

1 °°
- + £Vcosnx for \r\ < 1.
2 i

[2 \-reix

I
Re

2(rcosx —r2) 1 — 2rcosx

2(1 - 2rcosx + r2) 2(1 - 2rcosx + r2)

1-r2

~2(l-2rcosx-hr2) '

Example 2

1 ^ sin (n + T
^ H- cos x + cos 2x + cos 3x + • • • + cos nx =sin^x

Proof

eHn+l)x __ i
l+e** e2ix + ••• + einx = :

elx-l

= exp {i(n + ^)x} - exp ( - \ix)
exp(^x)-exp(- | ix)

{cos (n + |)x — cos ̂ x} + i{sin (n -f ^)x + sin ̂ x}
2i sin ̂ x

and taking real parts of each side we obtain the stated result.

Example 3

Show that i(;t - x) = £ (for 0 < x
n
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Proof. Integrating the result in Example 2 between the limits n and x:

sin±

"sisinnx

J , 2 sin210

Observe that for fixed x with 0 < x < 2n, we have 0 < ^x < n and hence
in [7c, x] or [x, ;r] the function sin2 \0 is bounded from below by sin2 \x.
Thus the integrand is bounded and so letting N -> oo we obtain the
required result.

Since the sum below is periodic with period 2TC the graph of the
function defined by

n = i n

is as shown in Figure 22.1.

fix),
If

2

\ N N V °

iflf. 22.1

Notice that / is discontinuous at the points x = 0, ±2n, ± An,
± 6n,... where its value is obviously zero and equals the average of the
limiting value on the left of x and of the limiting value to the right of

x, i.e.

We shall soon see that this is 'typical' behaviour for discontinuities.
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22.5 Calculation of Fourier expansions

The key to all calculations is the following theorem.

Theorem
Suppose that f(x) is integrable in [ — 7c, 7c] and that

00

f(x) = \ a0 + £ an cos nx + ftn sin rcx
I

f/ze convergence being assumed uniform. Then

if* 1 f*
an — — f(x) cos nx dx bn = — \ f(x) sin nx dx.

nJ-n TO-* *

Warning The theorem does not say that an integrable function can be
expanded into a Fourier series. It claims only: assuming that it can be
expanded, the coefficients are as stated. We shall have more on this
question when we come to state Dirichlet's theorem.

Definition
Observe that the formulas above are meaningful whenever f is

integrable. We therefore define the Fourier series off to be the formal
expression

\aQ-\-2^ancosnx
i

where the coefficients are given by the formulas in the theorem. This leaves
open the two question which we delay answering:
1. Does the Fourier series converge!
2. What does the Fourier series converge to!

Proof. We first note that

fO ifI cosrxcosnxdx = ,
if r = n.

Indeed

cos rx cos nx = \ {cos(r + n)x + cos(r — n)x},

so that for r # n we have

f* i f 1 1 . T
cos rx cos nx dx = - sin(r + n)xH sin(r — n)x = 0

J-n 2|_r + n r-n J_ff
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whereas for r = «we have

f* 1 f* if 1 ~|n

cos2nxdx = - (1 + cos2nx)dx = - xH sin2nx
J-n 2 j _ n 2L 2n _]_„

= 7i (for n ^ 1).

Similarly it may be shown that

TO if r^n

and

f" • • I(

sin rx sin nx = <
J-rr (7

sin rx cos nx = 0.

if r =

The results we have just derived may be referred to as the orthogonality
relations for the trigonometric functions. They correspond to the
inner product on the vector space of functions (see Part I, Chapter 2)
given by the formula

< / , £ > = /(x)^(x)^x.

Now if n ̂  1 is given, by the definition of uniform convergence we
have for any e > 0 that for all m large enough (say for m ̂  NE) and for
any x in [ — 7r,7c]:

/(x) — ^ o ~ Z ar COS r * + ^r S i n rx

1

Hence, also

f(x) cos nx — \a0 cos nx — £ ar cos rx cos nx + fer sin rx cos nx

or, on integrating between — n and n, and using the orthogonality
relations

< £ ,

/(x) cos nx dx — ann <2ne.

Since e was arbitrary the required result follows. A similar argument
proves the formula for bn. Finally note that for n = 0 we may deduce

f(x)dx-aon <2ne,
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so

f{x)dx

and the latter formula agrees with the general case when n = 0. This last
calculation explains the convention of writing the constant as \a0. Note
also that \a0 is in fact the average value of/ over [ — n,n\.

22.6 Example

Calculate the Fourier series of / when

/(x) = |x| for -n^x^n

and / is defined periodically elsewhere (see Figure 22.2).

1 fn 2 Cn

= - \ \x\dx = - \ xdx = n

and since | — x| = |x| and cos(— nx) = cosnx, we also have

1 f* 2 fn

an — ~ \ Ix I c o s nxdx = - \ x cos nx dx

2f sinnxl* 2 f^sinnx
= - x - - dx

XL » Jo ^ J o n

_2 rcosnx l 7 t _ fO if n is even,
n L "2 Jo I -~ 4/(7cn2) if n is odd.

On the other hand, since | — x| = |x| and sin( — nx)=— sin nx, we have
I f 7 1 1 f* I f 0

bn = - |x|sinnxdx = - xsinnxdx xsinnxdx = 0.
^ J - n TlJo 71J-K
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Thus the Fourier series for the given function is

7C 4 °° 1
y —-cos(2/c + l)x

2 7rV(2fc+l)2

22.7 Dirichlet's theorem

This is the assertion that if / is integrable in [ — n, n~\ and is of
bounded variation (see Section 17.17) then the Fourier series of/
converges at each point x to the value

where f(x + ) denotes the limit of f(x + <5) as S tends to zero through
positive values (this limit is known to exist for functions of bounded
variation). The definition of f(x —) is analogous. We recall that the
variation of the function / on an interval [a, ft] is the number

where the supremum is taken over all partitions P= {xo,xl9...,xn} of
[a, ft]. The function / is of bounded variation on [a, ft] if the variation
defined above is finite.

For a proof of the theorem see A. Zygmund, Trigonometrical
Series.

22.8 Periodic solutions of differential equations

We may now solve the equation

D2y + w2y = f(x)

for functions / satisfying Dirichlet's theorem. First expand f(x) as a
Fourier series:

00

f(x) = \A0 + X [An cos nx + Bn sin nx].
i

Next expand y(x) as a Fourier series

00

y(x) = \a0 + X [an cos nx + an sin nx].
i

In order to proceed we have to assume that the series for y
converges uniformly in [ -7C,TI] . This justifies term by term
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differentiation and we have

Dy(x) = ]T nan( — sin nx) + nb n(cos nx),

D2y(x) = Y, ~ n2(lncos nx — "2

provided both series converge uniformly. Finally we substitute into
the differential equation and compare coefficients at like
trigonometric functions. We thus obtain

— JT

co2a0

2

co2an

co2bn

Ao

2

A
An

D
Dn

i.e.

i.e.

i.e.

a.-

K

Ao

CO2'

An

co2-

Bn

(O2-

n2

n2

Thus

Ao ™ An cos nx 4- Bn sin nx
y(x) = r~7"+" L2 2 2 2(JO2 — n 2

As regards the convergence assumptions, it can be shown that the
series for y, Dy and D2y converge uniformly provided the series for /
converges uniformly (see Exercise 22.10 Question 6).

Note that the above analysis breaks down if co2 = n2 for some
integer n. However, in this case we can write

g(x) = f{x) - Aw cos cox + £„ sin ox

and then we can solve separately

D2y + (D2y = g(x)
and

D2y + (o2y = Am cos cox 4- B^ sin cox.

The latter equation gives rise to the 'non-periodic' solutions
(Ax + B) cos cox and (A'x 4- B') sin cox. The sum of the solutions of
the two equations gives a solution to the original equation. Also note that

D2y 4- co2y = f(x)

has the solution (obtained by the use of an integrating factor):

y(x) = exp ( - /cox) exp (licot) ( ei(OSf(s)ds ) dt.
Jo VJo /
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22.9 The small parameter method

It is possible to extend the analysis of the previous sections to
non-linear differential equations involving a small non-linear term.
For example, consider

D2y + 2y = sin x 4- fiy2,

where \i is 'small'. We regard \i for a moment as a further variable in
the problem and seek a solution of the form

y(x, fi) = yo(x) + fiy^x) + n2y2(x) 4- •••,

so that we are using a power series in \i. We then consider an
approximation to the original problem in which we elect to ignore
terms of order \i2 or higher. The non-linear term y2 in the
differential equation is approximated for each x about yo(x) by
applying Taylor's Theorem to F(y) = y2. Thus

F(y) = yl + 2yo(y - yo) + Remainder.

The differential equation then reads

D2y0 + ^iD2
yi + [i2D2y2 + ... + 2y0 + 2 W l + 2fi2y2 + ... *

= sinx + \xy\ + { ^ Q ^ I + M2y2 + - ) } .

To solve this we consider the system of equations

D2
yi + 2y, = y2

0

etc.

Solving this for y0 gives y0 = sinx. The equation for yx then reads

7 _ . ~ 1 — cos 2x
Dzyx -f 2yx = sinz x = .

Solving for yx we obtain

Thus if we ignore terms of order \i2 and higher we obtain the
approximate solution

y = sin x 4- - (1 + cos 2x) (correct to order \i\
4

We do not take the matter further, wishing only to illustrate the
usefulness of the series technique.
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22.10 Exercises

1. Solve D2y — xy = 0 by series substitution and evaluate the radius of
convergence of the series.
2. Solve x2D2y + xDy + (m2x2 - n2)y = 0. [Hint: Make the change of

variable t = mx.]
3. Solve by series technique the following equation near x = 0

(1 - x2)D2y - 2xDy + k(k + l)y = 0.

What is the radius of convergence of your series? What happens if k is an integer?
4. Find the Fourier series for the function / defined to be f(x) = x in

[ — n, 7i] and defined elsewhere by periodicity.
5. Show that if / is periodic with period 2n then for any /:

1 C 1 f
an = - \ f(x) cos nxdx bn = - f(x) sin nxdx

6. Let {un} and {vn} be two sequences. Define

Show that

[ T O - 1

Ur(vr-vr+l)}-Un.lVn+Umvm.

Deduce the following.
(i) If the convergence of

is uniform and u,-(x) are all bounded, then £ iW-M converges uniformly provided

Xl y i - y i - i l< °°-

[Hint: Assume f, converges to y.]

(ii) If the convergence of
00

J] ^M cos nx + Bn sin nx
I

is uniform, then so is that of the following series:

» An cos nx + Bn sin nx

™n( — An sin nx 4- Bn cos nx)

« n2(/4ncosnx + Bnsin«x)
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7. If / is continuous in [ — n, TT] show that if an, bn are the Fourier
coefficients of / then

[Hint: Consider J(/ — g)2dx over [ — 7r,7r] with g = sum to n terms of the
Fourier series for / . ]
8. Solve D2y + 3y = cos x + py1 by the small parameter method.
9. Find periodic solutions of the equation

sin nt

10. If y(x) — u(x) is one solution of the general equation:

a2(x)D2y + ax(x)Dy 4- ao(x)y = 0,

use the substitution below to reduce the equation to first order.

Ax)- -u(x)(z(x)dx.

Hence,

(i) solve the following, noting that u{x) = x is a solution

*3Z)2y - xDy 4- y = 0,

(ii) find a second solution to Bessel's equation.

22.11 Further exercises

1. Form the Fourier series for the periodic function f(x) with period In
defined by

f(x) = x sin x —n^x^n.

2. Prove by forming a Fourier series expansion that

3. Prove that for all x

, 4 « 1 - cos2nx
sinx = - ) .

H t - ^ 2 l

4. Show that

„, v cos5x cos7x cos l lx
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0 < x < n/3

-< 0 */3<x<f

n In
— < x < n

2V3 3

What other values does this series take?
[Hint: Find the Fourier series expansion of /(x) by reference to the values
on the right hand side of the brace.]
5. Let /(x) be the function defined for all xeIR with f(x + 2n) = /(x) and
/(x) = cos Ax for —n^x^n. Find the Fourier series of / (assuming that X
is not an integer) and deduce that

7dcot7d=l+2 / l 2 £
«2—n

Show further, by integration from e to 0 that for 0 < 6 < n

1 - '

where the infinite product denotes

Comment briefly on the justifiability of the manipulations involving integrals.
6. Let

f sin nx
/„= - dx.

J sinx
Show that

/ 2 = / + 2 COS(H -I- \)xdx.J
Use this to obtain the Fourier coefficients an,bn (for n ̂  1) of the function,
with period 2TT, defined by

/ (x ) = logf COt- 1 0 < X < 7C,

/(X) = /("X), -7T<X<0.

Explain why the Cauchy principal value of the integral for a0 is zero. Using
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this value for a0, find a periodic solution of the differential equation

dx2 dx

valid in 0 < x < n.
Justify the assumption of a0 = 0 for this solution procedure, by

considering the function f(x) modified so that its value is zero in [0, e) and
equal to its original value in (s, it].
7. Let

-r- — cos x) sin nx
dx.

sinx

Show that

•J cos wx - cos(n-f l)x}dx.

Use this recurrence formula to obtain the Fourier coefficients of the even
function f(x) defined by

x
j\x) = log I cos - I , — n < x < n9

and defined elsewhere by periodicity. Hence find a periodic solution of the
differential equation

8. Find by power series expansion the general solution to the equation

d2y dy
x-4 + (x + 2 ) / + y = O

dx dx

and express your answer in its simplest form using the exponential function.
Explain why the same approach will not solve the equation

*d2y dy

dx2 dx

Use the substitution z = 1/x to solve the equation.
[Hint: dy/dx= -z2dy/dz.]



23
Calculus of variations

23.1 Path-finding problems

Here are three classic problems whose solution requires us to extend
differential calculus beyond ordinary variables:

(a) Brachistochrone problem

Given two points A, B in space, A higher than B, but not vertically
above B, what shape of wire connecting A to B will have the
property that a bead sliding smoothly along it under gravity gets
from A to B in shortest time. (See Figure 23.1.)

Fig. 23.1

(b) Geodesic problem

Given a surface in space, with equation </>(*, y, z) = 0, and two points
on it, A and B, find a path along the surface from A to B of shortest
length (Figure 23.2).

(c) Isoperimetric problem

Among all plane curves of fixed length / find the one which encloses
maximum area (Figure 23.3).

423



424 Calculus of variations

Fig. 23.2

length = /

Fig. 23.3

The essential feature common to all three problems is that of finding
some special curve F. In each case, too, a property F(T) of curves is
given: time of descent, length of curve, area enclosed by the curve;
and we have to minimize/maximize F(F) over all F. The variable of
interest here is F and we need to know how F varies when F is
varied.

It will be convenient to represent a curve F by an equation

with

x = x(t)

0 ^ t ^ T,

subject to x(0) = A

and

or perhaps by a vector equation, e.g.

x = x(t) = (x^r), x2(r), x3(r)) (0 ̂  t ̂  T)

depending on context.
The property F of the 'curve x' will, more often than not, take the form

F(x)= \Tf(x(t\x(tlt)dt,
Jo
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8s2 = 8x2 + bt1

Fig. 23.4

where x = dx/dt. For example, curve length, in the case illustrated in
Figure 23.4, is given by

f
Joand area below the curve is

f
Jo

x(t)dt.

We have purposefully used the letter x to denote a function rather
than a real number, since we shall be interested in varying x. Since F
assigns to each function x a real number, it is itself a function.
We call a real-valued function acting on functions, a. functional.

23.2 Variation of a functional

Suppose F is a functional and the function £(t) (O^t^T) maximizes
F. This means that for any other curve x(t)

Just as in calculus, we can try to compare F(x) with F({) when x is
'close to <!;'. We can think of a function

where h(t) is also a function, as arising from an 'increment' h added
to £ See Figure 23.5. We call h a variation of £ If also we want

then we require that h(0) = h(T) = 0. Thus not all variations will do.
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Fig. 23.5

Whenever we restrict our variations to fit in with the side
conditions of a problem we will refer to them as admissible variations.

But now observe that in our problem sh is admissible for any real
number s.

Thus the function

has a maximum when s = 0. Hence, if \j/ is differentiate in some
interval round s = 0 we must have

i.e.

d

Is
Since this formula looks like a derivative in direction h we define

This is sometimes referred to as the weak derivative of F in direction
h and sometimes as the variation of F relative to h.

Examples

(i) F(x)= \T x{t)dt.
Jo

Note for future purposes that

F(x + h) - F(x) = h(t)dt.
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Also

(ii)

Thus

F(x + sh)

d

ds

so, setting s — 0

= [T -Mt)
Jo ds

- r
Jo

Jo
- [T i 2

Jo
CT d CT

h)=\ — (x + sh)2 dt = (2hx + 2sh2)dt
Jo <k Jo

r
DhF(x) =

Jo
2*xA.

Jo

Note that

Jo

(iii) F(x)= r ^ / l + x 2 * .
Jo

fT fr ,_
F(x + s/i) = ^yl -h(x4-sh)'2dt= ^/l + (x + s/i)2i/t.

Jo Jo

^ Jo 2

Thus

Notice that in all our examples DhF(x\ as a function of h (with x
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fixed), is linear. Particularly interesting is example (iii) which we follow up:

Ut
Jo

_ r xafct r xffii2
Jo x / l + x2 Jo Jl+i

It is often, though by no means always, also the case that DhF(x) is the
linear part of F(x + h)- F(x) in the sense that

h)-F(x)-DhF(x)

is of higher order in h (compare Taylor's theorem).

233 The Euler-Lagrange equation

We now obtain a very useful equation that is necessarily satisfied by
the function £(t) which maximises/minimizes

f
Jo

s f(x(t),x(t\t)dt
Jo

subject to x(0) = a, x(T) = b.

We already know that the variation DhF{£) vanishes for all
admissible h. We derive from this fact a differential equation to be
satisfied by f. For this purpose we need to assume that /(x, y, z) as a
function of the real variables x, y, z has continuous partial derivatives
fx(x,y,z) and fy(x9y9z). We have:

as
- r
~Jo

4- fy(x + s^, x + s/i, 0 — ( / i

(applying the chain rule!) and the latter equals

fr
= {/*(* -f 5/1, x -f sfc, t)/i + fy(x + sh,x + sh, t)h} dt.

Jo
Thus writing this out in full

DhF(x) = [T {fx(x(t\ x(t\ t)h(t) 4- fy{x{t\ x(0, t)h(t)}dt.
Jo
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Hence if £(r) maximizes/minimizes F we have

or

for all admissible h (i.e. for all /i subject to h(0) = /i(7) = 0).
Now we may integrate the last equation by parts to obtain

Thus for all h:

We claim that the curly brackets are constant over [0, T].

Lemma
Suppose g is continuous on [0, T] and that

g(t)h(t)dt = OI
for all (continous) functions h with h(0) = h(T) = 0 such that h(t) is
continuous; then g is constant.

Remark
This result is motivated by the observation that if g had been

known to have a continuous derivative g, then integrating by parts:

so

f
Jo

ghdt = 0 for all admissable h, hence g = 0.

(Observe that g(t) > 0 for some t, implies g > 0 in a small interval
round t\ now take h zero outside this interval and positive
inside the interval; for such an h the integral is positive.) In the
present context however, all we know is that g is continuous.
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n -

unit
area

Fig. 23.6

Proof of the lemma. Let 0 < tx < t2 < T. We wish to prove
g(t1) = g(t2). For each n define the function pn(t) as illustrated
in Figure 23.6. Take

h(t) = pn(u)du.
Jo

Thus h(0) = 0 and h(T) = 0 (counterbalancing areas). By continuity of
g at fj and t2,g is approximately equal to git^) in the interval round
tx, and is equal approximately to g(t2) in the small interval round t2. Hence

0 = \g(t)h(t)dt= { g(t)Pn(t)dt
o Jo

= \Tg(t)h(
Jo

rti +

Jti-l

rt2+l/n

h)\ IPn(t)dt

The error committed in the second line may be made as small as we
please provided n is large enough. Hence, in the limit as n tends to infinity,

as required. Thus g is constant in value throughout (0, T)
and hence also throughout [0, 7 ] (by continuity).

We conclude that in our present context

+ const.
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But the right-hand side is differentiable, consequently:

This is known as the Euler-Lagrange equation. It is sometimes
written in the easily memorized forms

-TVX) = JX>
 OF -J T7 1 = 7--

dt dt\dxj dx
Before we attempt to solve some problems let us observe a special
form of the Euler-Lagrange equation. Suppose we are
maximizing/minimizing

F{x)= [T f(x(t\x(t))dt
Jo

with
x(0) = xo,

Here the integrand / does not explicitly depend on t, that is / is a
function of only two real variables /(x, y) and there is no third
variable. On the assumption that the optimal curve £(t) possesses a
second derivative £"(t) the Euler-Lagrange equation is equivalent to

/ « , £ ' ) - Z'fy(Z,Z') = const.

Indeed by the chain rule

dt y

~Cfy~^'lt~
d

dt y

Integrating this equation leads to the desired result.

23.4 Example. The brachistochrone problem
Choose axes through A as origin, measuring x downwards vertically and
s horizontally, so that B = (1, 1) (cf. Figure 23.7). The equation of motion
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m

x
Fig. 23.7

(in the absence of friction) of a bead of mass m along the smooth wire is:

kinetic energy gained = potential energy lost
i.e.

2

or

Hence

im(x2 + s2) = mgx,

(where k = l/yj(2g)). But x/s = dx/ds, hence we have to find the curve
x = x(s) which minimizes

with

x(0) = 0 and x ( l ) = l ,

where

Hence the Euler-Lagrange equation in integrated form reads (with s for t)

dx \ \ dx

^dsj ] dx ds
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since

Thus

hence

( '
1=C>XU+[JS) K

or
'rfx^2

, ds J c2x c2x
so

,1/2

Mr- C2X
dx.

Integrating we obtain:

s — i j = —

= ^ I(1-cos20)^0 = ,4(0-±sin20),

where A = (l/c2) and B is a constant.
But we have the implications

So B = 0.
Writing 20 = 0 and a = 4/2 we obtain the parametric representation:

s = a(</> — sin (

X = 0(1 — COS0)j

of a curve known as a cycloid. Note the geometric interpretation: x is
traced by a fixed point P on the rim of a wheel rolling along the s-axis.
See Figure 23.8.
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X i

Y
0 5 S

Fig. 23.8

23.5 Extension to vector-valued functions

We have considered so far only problems involving a curve

x = x(t) O^t^T.

Problems involving curves in space will involve looking at functions

or more generally

Typically, we then deal with

-r
Jo

subject to

If £(t) = (^(0,>>>,̂ n(O) solves the problem, then clearly the function
solves the problem of maximising/minimising:

f
Jo

, t)dt

subject to

Hence a necessary condition for £ to be optimal, is that for each
i = 1,2,... n the Euler-Lagrange equation

must be satisfied.
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23.6 Conditional maximum or minimum

Suppose, as in the geodesic problem, that we require to find
x(t) = (Xi(0> •. • x,.M) which maximises or minimises a functional

r
Jo

r
= f(xl9...xn,xl,...xn9t)dt

Jo
subject to a number of constraints of the form

where m < n.
To apply our previous technique we do the same as in ordinary

calculus. We introduce Lagrange multipliers. The only difference is that
here Lagrange multipliers, not surprisingly, become functions
Ai(t),...,A.m(t) and we then find a stationary point of

f
Jo

JO

Thus writing

we seek x, X to satisfy

d

dt Xi

together with

subject as usual to

Generally speaking the m -f n equations for xx , . . . xM, ku..., km are
sufficient to determine these functions and the boundary conditions will
(if non-contradictory) determine the In arbitrary constants arising from
the differential equations. More precisely, it is necessary to assume that
the constraints <j>l = 0,. . . , <j>m = 0 are independent, that is that the
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Jacobian:

should have rank n. We brush such niceties aside (leaving them to courses
on functional analysis).

23.7 Examples

1 Geodesic problem

If A = (x°,y°,z0) and B = (x\y\zl) lie on the surface <£(x,y,z) = 0, find
the shortest path from A to B lying on the surface (cf. Figure 23.9). Thus
we seek to minimise

f
Josubject to

with
= ^ and = B.

Fig. 23.9. (Ss)2 = (Sx)2 + (<5>;)2 + (<5z)2
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We form /(x,x,A) = Jx2 + y2 + z2 + Mt)<K*(t), y(t\z(t)). The Euler
Lagrange equations give

y(t)

Sometimes, however, the problem simplifies down.

2 Geodesies on a cylinder
The two points A and B lie on O(x,)\z) = x2 4- y2 - R2 = 0. Introducing
cylindrical polar co-ordinates (cf. Figure 23.10)

(x, y, z) — (r cos (/>, r sin 0, z)

we have on the surface that r = R9 hence

x(t)= — Rsincf) -<j>, y= +R cos (\>'4>.

Thus we are to minimize

|V{jR2si = |V{

Fig. 23.10
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The change of variables decreases the number of variables (the problem
is now essentially two-dimensional); moreover </> and z are unconstrained.
We are thus left with an unconstrained problem for which the
Euler-Lagrange equations read

= 0) - * = 0
dt 1^{R (t> + x }J

hence for some constants A and B

so

— = — = const = a, say. Thus x = acj) + b a spiral.

3 Isoperimetric problem

We take the problem in the form (cf. Figure 23.11): find x(t) for — 1 ^ t •
with x(— 1) = x(l) = 0 so as to maximise

x(t)dt

+ x2} dt (fixed arc-length).

subject to

To turn this problem into the kind considered above define

y(t)= f J{i+x2}dt.
•/ — 1

Thus
y(t) = V{l+i2}, y(-l) = 0 and

Fig. 23.11
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We take (j)(x,y,x9y) = y — yj{l + x2} = 0 and introduce a Lagrange
multiplier X(t).

Now we seek to maximise

f1

(x
J - l

The Euler-Lagrange equations are thus

d\ -Ax

Hence X(t) is in fact a constant. So we solve the first equation:

-Ax
V(l+x2)~ f + C'

whence
x2 _ (t + c)2

l + x 2 ~ A2

and so

x2 = -
A 2 - (

Thus

L r «
I a x = I

and since k is a constant

so

that is the curve is part of a circle.

23.8 Exercises

1. Write down and solve the Euler-Lagrange equation corresponding to the
problem of maximising/minimising

I
Jo

f(x{t\x{t\t)dt
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subject to boundary conditions when f(x, y, z) is
(i) 4xz-y\
(ii) xy-2y\

(iii) ^

(iv) x2 — 6xz,

(v) -y2z-\

2. Find the curve x(t) with endpoints A, B so that the area of the surface of
revolution (generated by rotating the curve round the r-axis) is minimised.
See Figure 23.12.
3. At time t — 0 a man possesses £s. His total satisfaction over the time
interval [0, 7 ] is assumed to be

f
Jo

e-*U(r(t))dt

where r(t) is his rate of expenditure and U(r) = log(l -h r). Let x(t) be his capital
at time t thus

x(t) = <xx(t) - r(f),

where the constant a is the interest rate. Find his optimal x(t) if he seeks to
maximise total satisfaction subject to

(no inheritors!).
4. A cable of fixed length / hangs between two supports in the shape of a curve
x(t) parametrised by t with 0 ̂  t ̂  T. If the cable hangs so as to minimise the
potential energy

= mg I
Jo

show that x(t) = A cosh ((t + B)/A) + C.

Fig. 23.12
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5. Show by checking the equations in Section 23.1 that the line

)> = 1 + f,

is a geodesic joining the points (1,1,0) and (0,2,1) on the surface (x + z){y — z) = 1.





I l l SOLUTIONS TO
SELECTED EXERCISES

Solutions to selected exercises on vector spaces

Exercises 1.9
6. We give two proofs.

Hard slog proof. The first step is to reduce the size of the (n + 1) x (n + 1)
determinant by subtracting (x0 x ith row) from the i + 1st, thus:

1

xl

x"o~

xo

=

1

xi

1 xr>

X"

1

x0 —

*o"

1

x2

x2

X2

n-\
X2

X2

XQ

Xl

xj"1

X0

1

Xn

x2

K
l l

^1 ~ ̂ 0 X2~ X0

x"-xox""
1 x\ - xox"2

1 1 1 ... 1

0 (Xi-Xo) (x2-x0) (xn-x0)

0 (x1-x0)x1 (x2-x0)x2 (xn-x0)xB

(x2-x0)x
n

2
 2

(x2 — x o )x 2

1 1

n - 2 v.n - 2

X",
- 1 v n - 1

X 2

1

n-2

n-1

(x1-xo)(x2-Xo)---(xn-xo).
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At the end of this step we have arrived at a van Der Monde determinant of size
n x n. Repeating the argument several times we wind up with more factors and
a van Der Monde determinant of size 2 x 2 :

1
Xn-\

1

The rest of the argument should now be clear.
Trick proof Let us call the van Der Monde determinant with x o ,x j , . . . ,x n

as variables D(xo ,x l 5 . . . ,xn). For each variable x, this is a polynomial in x, of
degree n. For the moment think of x0 as a variable and xl9...,xn as fixed
numbers. Substituting x0 = xt gives the determinant a value of 0 (since two rows
become identical). The same is true for x0 = x2, etc. D must therefore factorise
as, say, K(xl9...9xH)-(xl - x o ) - - ( x n - x o ) where K(xl9...9xn) is a constant
dependent on x! , . . . ,x n . Similar arguments are available with x0 and xx

interchanged. We conclude that

D(x 0 ,x l f . . . ,x j = const, x J\ (*i ~ *,)•

Comparing the coefficient of the term x\x\'-'Xn
n on each side we see that the

constant above is 1.
7. The Wronskian is

) .. exp(anx)

x) ••• anexp(anx)

By the last question we know that the determinant will not vanish if the
coefficients OLX , . . . , an are distinct.

Solutions to selected exercises on geometry in Un

Exercises 2.9
4. ||x + y | | 2 + | | x - y | | 2 = {<x + y,x + y> + < x - y , x - y > }

= {<x,x> + <x,y> + <y,x> + <y,y>
+ <x,x>-<x,y>-<y,x> + <y,y>}

= 2||x||2-f2||y||2.

This argument is valid in W and equally so in C . The result says that the sum
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of the squares on the four sides of a parallelogram equals the sum of the squares
on its two diagonals.
5. X ^ 0 = > 0 T * ||X|| = < X , X > SO it is not true that <x,y> = 0 for all y.
6. (i) As in Question 4, but working entirely in R"

: - | | x - y | | 2 }

= 4<x,y>.

(ii) We repeat some of the calculation from the last question, working in C

II v l %/ II ^ II v v II

ii * • J ii — i i * ~~ y II

= 2{<x,y> + <y,x>}=4Re«x,y».

Similarly,

i{||x + iy | | 2 - | |x - iy | | 2 }=4iRc«x, iy» = 4iRe(-i<x,y»

= 4ilm<x,y>.

Adding these equations gives on the right-hand side

4Re<x,y> + 4iIm<x,y>

which is the same as 4<x,y>, thus proving the required result.
8. The equation of the plane is <x - (1,2,1)', (2,1,2)r > = 0 or 2xx + x2 + 2x3 = 6.

Normalising (2,1,2)' to

* 3 ' 3' 3 '

we have the equation in the standard form

Hence the distance of this plane from the origin is 2. From the diagram we see
that the distance of the point x from the plane is || x || cos 9 — 2 or < v, x > — 2.
The distance is therefore ( |)<(2, l ,2)r,(l ,2,3)'> - 2 = | .

9. If v is normal to the required plane then v is orthogonal to (1,0, — I)1 and
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to (1,2,3)'. Thus

Vl— t?3 = 0 and -h 3i;3 = 0.

So 2v2 = —4vt and v = A(l, — 2,1)' for some scalar k. The equation of the plane
is thus <x- (3 ,1 ,2 ) ' , (1 , - 2 , 1 ) > = 0 o r x 1 - 2 x 2 + x 3 = 3.
10. If your suspicions have been aroused, try the plane of the last question: yes,
it works. Otherwise it is slog: assume the plane has equation <(a, b, c)\ (x, y, z)ts> = p
and solve the system

Solutions to selected exercises on matrices

Exercises 3.12
6. We have

x =

"l

2

3

3-

1

2

2"

3

1

X i.e. x = PX,

where x is the vector of co-ordinates relative to the natural basis and X the
vector of co-ordinates for the same point but relative to the new basis vectors.
(The new basis vectors of course make up the columns of P.) So to find X = P~1x
we compute the adjoint of P which is:

- 5 1

7 - 5

Since det P = - 5 - 3-(-7) + 2 = 18 we have X = ^(adj P)x.
7. If x = PX with the columns of P being the new basis vectors, we have

X = p- X x =

We compute that det Q = 1 + ( - 3) = - 2. Thus P = - \ adj Q which is

"l

2

_1

2

1

1

f
0

1.

4

1
2

1

- 2

1

- 1

0

1

- l "

2

- 3 _

and so the three columns of this matrix constitute the new basis.
12. We tabulate the results
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R(A) A' N(A')

447

Illustration

L{(1,-1)'} f 1 - 1 ] {y:j'i->'2=0}
orL{(l,l)'}

{y:5y,+3^2=(
orL{(3,-5)}

I" 1 -21 L{(l,-3)'} T 1 -3 ] {y.yi-ly2 =
L-3 6j L-2 6j orL{(3,l)'}

{0}

14. We are to prove the complex form of the duality result of Section 3.8, viz.

First we prove R(A)1 c N(A*). Let zeR(A)1 and yeR(A). Write y = Ax.
Then for all x

So A*z is orthogonal to all vectors x. Hence /l*z = 0, i.e. zeN(A*).
Now we prove that N(A*) c R(A)1. Let zeN(A*) and yeK(/l). Write y = Ax.

Then for all x we have:

A*z = 0=>0 = x*A*z = (Ax)*z = <z, /4x > = <z, y >.

So z is orthogonal to all yeR(A). Hence zeR(A)1.
15. We note that Ax = b=>F/lx = Pb; similarly, P/lx = Pb=>P" lPAx =
P~lPb = b. Thus the two systems are equivalent. Now suppose

A =

and assume a n #0. [Otherwise exchange the /Irsr equation with one below
where there is a non-zero coefficient at JCJ.] To eliminate xt from all the other
equations subtract from the y'th equation (for j = 2,3,..., m) a multiple of the
first equation (by a factor of aijall\ giving a newy'th equation:

0*!+ a , 2 -

Let us write this as

"~jl l i J1 L

It is easily seen that the row reduction from to
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0

i« b\

b'

corresponds precisely (is equivalent) to the manipulation of the system of
equations. Now we observe that these row operations are equivalent to
pre-multiplication by elementary matrices. Continuing the elimination process
described we arrive at the existence of a sequence of elementary matrices
Eu E2,...,ES (corresponding to the row manipulations) such that

where D is in echelon form. Let P = £s---£2£1. Then

By the first part the equations Ax = b and PAx = Pb [i.e. Dx = d] have precisely
the same solutions. Thus the first part justifies the fact that to solve Ax — b we
may first reduce [^|b] to the echelon form [D|d] by row operations and then
solve Dx = d.
16. The equations a(x + bty — c, have a common solution if and only if

ax bx

a2 b2

has a solution. Writing u for (x, yf and a, b and c for the obvious column vectors,
the system is soluble if and only if c = xa -I- yb for some x and y. This is so if c
is linearly dependent on a and b; that in turn may be restated as
rank [a, b, c] = rank [a, b].
19. Say A is m x k and B is k x k with the rank of B being k. Then

rank A — rank A 4- rank B — k^ rank AB ^ rank A.

Alternatively, one may prove R(AB) = R(A) thus: Ax = AB(B~lx) so
R(A) s R(AB); but obviously, R(AB) £ R(A).

Solutions to selected exercises on projections

Exercises 4.8
6. Assume the relationship is y = mx + c. Let rtj be the residual for the jth
measurement of y corresponding to x = xh then we have

y.. + f.. = mx. + c.

Let br be the partitioned vector (yn,...,yifc|>'2i»-">>'2ikl*") an<^ ^et ^
corresponding partitioned matrix of readings taken on the variable x:

t n e



Selected solutions for Chapter 5

:, 1

449

x2

The least squares fit is (m,cf = Lb where L = (A*A) lA\ But

etc

where A (as opposed to A) denotes the usual matrix used in least squares fit
using each x, once only. Thus

x2

1

= (A<A) •['• ? : ? ( ? ]
where b is the usual column using averaged data and L is the usual matrix
derived from A and b. Thus the result for repeated readings is identical to that
for the averaged data.

Solutions to selected exercises on spectral theory

Exercises 5.9
1. (i) p(X) = X1 + 1. For X = i we solve the equation (A - il)x = 0, i.e.

— ixx — x2 = 0

Xj — ix2 = 0
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5 3 -

4

1

X 4

38-/1

- 4

1

— 4

53-/1

=

5 4 -

4

1

/I 0

38-/1

- 4

54

53

-X

-4

- / I

We note that the second equation is a multiple of the first (by a factor of -i).
The solution space consists of vectors (xlf -ixj = Xj(l, -i)\ so is spanned by
(1, -if. Clearly, the solution space for X= -Us spanned by (I,*).' [Replace
i throughout by — i.] Since the matrix is 2 x 2 and there are two distinct
eigenvalues the matrix is non-defective. Indeed, we see that the two
eigenvectors just mentioned are linearly independent, they therefore give a
basis for C2 relative to which the original matrix is represented by the
digonal matrix with entries ± i.

(iii) We make use of the hint in calculating the characteristic polynomial:

(1)

= (54 - A){(38 - /i)(53 - X) - 16 - 16 - 38 + X)

= (54 -X){X2- 90/1 +1944}

= (54 - X)(X - 36)(A - 54).

We find the eigenvectors for X = 54 by solving the equation

— xx + 4x2 + *3 = 0
(we see from the second array in (1) that the matrix system reduces to pnly one
equation). The solutions take the form (4x2 + x3,x2,x3)r and are spanned by
(1,0, l)r and (4,1,0)'. Let us take ut = (1,0,1)' as one of the basis elements. We
pick another orthogonal to this. So we select x2 and x3 so that 0 = <(4x2 -I- x3,
x2,x3)r, (1,0, l)r> = 4x2 + 2x3. Thus the eigenvector has to have x3 = — 2x2 and
so takes the form (4x2 - 2x2,x2, - 2 x 2 ) ' = x2(2,1, -2) ' . We take u2 = (2,1, -2) f

and leave normalisation till later.
Now we find eigenvectors for X = 36. The equations reduce to:

x3 =

Xj - 4 x 2 + 17x3 =

Adding the equations gives 18xx + 18x3 = 0 so that x3 = - xx and hence from
the first equation 16xt + 4x2 = 0. Eigenvectors thus take the form x{(-1,4, l)f.
We take u3 to be a rescaled version of (-1,4,1) ' and so the orthogonal matrix
P which reduces the givea matrix to diagonal form is [uj/^/2, u2/3,u3/yJ\S'].
Thus

54

54

36

2. (iii) Rewriting - x 2 - 2^/3xz - Ayz + 3z2 = 25 as x'Ax = 25 we have

- 1 0 - V 3 '

0 0 - 2

V^ " 2 3
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After some calculation we have p{X) = - A3 + 2X2 + 10A + 4 = - (X + 2){X2 -
4A — 2} so that the eigenvalues are — 2 and 2 + ^/6. We find the eigenvectors to
value k = — 2 by solving

2 x 2 - 2 x 3 =

which has solution set spanned by (73,1,1). Next we solve for k = 2 ±

and this has solutions spanned by the vector:

(-73+72,+ 2+76,1)*.
In new co-ordinates the quadratic form is
- 2X2 + (2 - y/6)Y2 + (2 + V 6 ) z 2 w h i c n i s neither positive, nor
negative, nor non-positive, nor non-negative definite. The implied
change of variable is given by

-V3

75 7{1 6~6V6}
J_ +2-76

1

75 7(16-676}

7(16-676}
1

-V3-V2

+ 2-

V{16-
1

7{16 +

1-676}

676}

To find the principal axes either remember that the matrix here is
orthogonal so that we may read from its transpose the equations of
the principal axes or just use the eigenvectors selected earlier. In
either case we have:

X = 0o 7 3 x + y + z = 0,
Y = 0o( - 73 + 72)x + (+ 2 - 7 % + z = 0,
Z = 0o( - 73 - 72)x + ( + 2 + yj6)y + z = 0.

3. (i) We calculate the principal subdeterminants: 0, — 1/4,
( - 1/4 + 1/4}, { - 2-[(l/2)-(- 1)] + 1 [0]}. The last determinant was
expanded by its bottom row. The sequence 0, —1/4, 0,1 does not
obey either test for positive or negative definiteness. The last
determinant is non-zero so there are no zero eigenvalues, this rules
out non-negative definiteness and non-positive definiteness.

(ii) Evidently, the determinant of the given matrix is zero. The
tests are not available to us and we need to calculate the
characteristic polynomial. This turns out to be
— x3 + 3 / 2 = — A2(/ — 3) and the quadratic form is non-negative definite.

(iii) The principal determinants are 2, — 2,6. As in (i) the matrix
is indefinite.
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4. By Question 1 (ii) we have the decomposition

i/V2

o (l/V2,0,l/V2) + 4 (0,1,0).

5. If P is the matrix consisting of the normalised eigenvectors obtained in
l(i) PlB2P is equal to

0
0
0

0
2
0

0
0
4_

Consider the matrix A defined by

0
P 0

.0

"i/V2

0

1A/2

0

V2

0

0
2
0

0
0
2_

1/

Pr =

V2"
0

1/2

i/V2

0

- W2

i/V2

0

i/V2

0
I

0_
A

i/V2

i/V2

0

0
0
I

- i / V 2

i/V2

0

where A is the diagonal matrix in the definition of A. Now we have
A2 = PAP1 PAP* = PA2F = B2. hence A solves the problem.
10. It is not true in general that if \i is an eigenvalue of A2 then ^J\i is an
eigenvalue of A. All we know is that at least one of ± yjfi is,
since if X is an eigenvalue of A then X2 is an eigenvalue of A2. For instance,
if A2 = / and A is 2 x 2 it might be that A = / or that /I = — / or A may be
the diagonal matrix with entries 1 and — 1.
11. Let Ax = Xx. Then 0_= || (A - X\)x \\2 = x*(A - Xl)*(A - /I)x =
x*{A*A - Li* -XA + m}x =
x*{AA* -XA - XA* + XX\}x = x*{A* - Xl)%4* - X\)x
= || (A* - X)x ||2. Thus A*x = ^x.
12. Suppose Ax = Ax then, since x*A* = Ax*, we have x M M x = Alx*x.
Thus if A*A = I we have || x ||2 = JU || x ||2. But x ^ 0 so XX = 1 as required.
13. Since A is normal there is an orthogonal P so that P*AP =
diag(Aj,...,An) = A where Xt,...,Xn are the eigenvalues, assumed real,
of A. Hence A* = (PAP*)* = PA*P* = PAP* = A and A is Hermitian.
14. We partition the familiar 'eigenvalue equation' to read:

-3 [:]={:]
and this is equivalent to An + Cv = Au and J3v = X\. Thus if (u, v)r ^ 0 we
have that either v ̂  0 and X is an eigenvalue of B, or v = 0 and then Au = Xu
so that, since u ̂  0, X is an eigenvalue of A.

Conversely, let X be an eigenvalue of B which is not eigenvalue of A.
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Then we may find v # 0 so that Bv = X\. Further for this v we can choose u
so that (A - X\)VL = - Cv. This is possible since det(A - /I) ^ 0 and so
(A — X\)~i exists. If on the other hand X is an eigenvalue of A then we may
choose v ~ 0 and select u ̂  0 so that An = Xu.

In either case (u, v)f ^ 0 and the 'eigenvalue equation' has been solved.
15. Since A, B are Hermitian and A is positive definite A~l/2 exists and we have

A - 1I2BA ~1/2 = A* - l/2B*A* ~1/2 = (A~l/2BA '1/2)*,

so this matrix is Hermitian too. Choose an orthogonal matrix Q so that for
some diagonal matrix D we have

Q*A-l/2BA1/2Q = D.

LGtP = A~l/2Q then P* = Q*A*~1/2 = Q*A~1/2. Thus

p*AP = Q*A~ll2AA~l/2Q = Q*Q = /
and

P*BP = D.

Solutions to selected exercises on inverses

Exercises 8.6
3. By analogy with the (numerical) identity

1 1 b a a+b
a b ab ab ab

we argue:

so
~l = A(A-

Now substituting A for B and B for A will yield the other result.
5. The equation Ax — b then A is non-singular has solution x = A~lb. By

Cramer's rule we have x = A ~l b = (det A)~l adj(y4)b. Now write B = adj(/4). Then

Bj2b2 Bjnbn)/detA

where we have substituted for the co-factors. But the contents of the curly
{ } brackets are precisely the expansion of the following determinant by its
yth column:

all,...,bl,alj+u...,al

6. Second part. We may reduce B to A by some obvious column
operations. Hence we see that
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0
1

0

0
0

0
0
1

0

o

0
0

0

0

1

0
0

0

1

0

1
0

0

0
0

= BP, say.

Thus, since A A9 A = A, we have BP(A9)BP = BP or, since P~l exists,
B(PA9)B = B. We may therefore obtain a weak generalised inverse for B by
applying the row operations implied by P. Thus

0 0 0 0 0

18

- 5 1 0 0 0

1 - 5 7 0 0 0

0 0 0 0 0 0

7 1 - 5 0 0 0

8. Observe that rank A = 2. We therefore take, say, the first and third
column of A for B. Hence we have

1

0

1

0

1

0

n i o - n
|_0 1 1 l j

The strong inverse will be *. Now

cc =
1 1 0 -']

1

1

0
_ 1

0

1

1

1
3

BlB

'l

0
1

o"
1

0

n o l l f2 ol

Thus the generalised inverse of A is

1 o"

1 1

0 1
I/1

3 2

ri o p o n
[0 2j[0 1 Oj

1

6

1

6

1
1

0
- 1

1

1

0
_ i

0
1

1

1

0

2

2

2

[i
1

1

0

- 1

i]
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The required projection matrix is AA9, viz.

455

1 1 0 - 1
O i l 1
1 1 0 - 1

1

1
0
1

0

2
2
2

f
1
0

- 1

1
3
0

3

0
6

0

3
0

3

9. Multiplying out the right-hand side of the asserted equation we get

— C

D D DB~1C

and, as in Section 8.5, DB 1C = E. This justifies the assertion. Clearly the
rank of [I\B~lC] is k. The same is true of the leftmost matrix above. We
may thus use method II to obtain a generalised inverse. We content
ourselves with the computation:

and

[l]- B'B + D'D.

10. We have A = BC and G = C(CC)- l(BfByx Bf. Now let us introduce the
matrices b = C(CC)~l and c = (B'B)' 1 Bl. Then certainly G = be and
moreover both b and c have rank k (why?). Next notice that
brb = (COYUC-C(CCYl =(CCyl and that therefore
(b'b)" xb' = (CC)(CCy * C" = C. Similarly, we have c'(c•<:')"l = B. The
formula for a strong generalised inverse for G starting from G = b c now
yields BC i.e. A itself. So these are 'mutual inverses'. We leave the
verification that GAG = G aside.

(i) We know that AG projects onto R(A), we have to show
N(AG) = N(G). But Gx = 0 implies AGx = 0 so N(G) is a subset of N(AG).
Now if AGz = 0, then G l̂Gz = 0 or Gz = 0, hence N(AG) is a subset of N(G).

(ii) We know that GA projects parallel to N(A) into R(G) and since
Gx = G>l(Gx) we see that this is onto.

By definition AG is an orthogonal projection onto R(A\ so from
N(AG) = N(G) we deduce N(G)1 = R{A); but RiA)1 = N(A').

It may be verified that GA is an orthogonal projection (it is symmetric
and GAGA — GA) and since this is parallel to N(A) we have
R(G) = N(A)1 = R(Af) as required.
11. The affine subspace defined by Ax = b is given as non-empty. It is
parallel to the space N(A), hence is also orthogonal to R(G), by the last
question. Now if Aw = b then GAYI = Gb lies in R(G). But w - GAYI is in
N(A\ hence is orthogonal to Gb and so by Pythagoras' theorem

= ||Gb||2 + | |w-Gb||2 .
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The expression in w on the right is clearly at a minimum if w satisfies w = Gb.
12. Recall that the least squares solution for the system Ax = b gives a
vector x for which || Ax — b || is a minimum. The point Ax is obtained as the
orthogonal projection of b onto R(A), so that Ax is AGb. Possible values of
x are therefore solutions of the equation Ax = AGb. A particular solution is
clearly x = Gb, so the general solution is

x = G(AGb) + ( I - G A ) z = Gb + (I- GA)z.

14. The special case A = I gives the game away. For any matrix C the
diagonal elements of CC may be rewritten as c ^ , . . . , 0 ^ where c2 , . . . etc,
are the columns of C. Each term is non-negative (CiCj = \\cx ||

2) so if CC — 0,
all terms must be zero. Hence each of cu...etc are zero and hence C is zero.

Now if ABfB = 0 then AB'BA1 = 0 i.e. {BAJBA1 = 0. Hence BAX = 0.
15. Let B be a weak generalised inverse of A1 A. Then A1 ABA1 A = A*A so
0 = (AlAB - \)AlA. We deduce, by way of the last question, that

A1ABA1 = A\ (1)

Similarly, by taking transposes of the initial equation, we may deduce that

A'AB'A1 = A\ (2)

But this says that A = ABA1 A.
Now observe that (ABA^ABA1) = ABA'ABA1 = ABA1. So ABA1 is a

projection. Since Ax = (ABAfA)x we see that the projection is onto R(A). To
prove orthogonality we need to show symmetry of ABA1. We have, using (1)
and (2), (ABA1) = AB'A1 = (ABAtA)BtAt = ABiA'AB'A') = ABA1.

Solutions to selected exercises on convexity
Exercises 9.9

1. These may be decided by reference to diagrams,
(i) the halfplane is convex;
(ii) the line is convex;

(iii) the interior of the ellipse is convex;
(iv) the ellipse together with its interior is convex;
(v) the exterior of the ellipse is not convex;

(vi) the ellipse and its exterior is not convex;
(vii) the epigraph of the parabola is convex;

(viii) the region above the sine curve is not convex.
Remark. All these assertions may be proved 'analytically' either by ad hoc
means or, better, by using the 'test for a convex function' developed in Chapter 15.
3. Let x = (x1,x2,...,xn) r and y = (yl9 y2,.--^n)' be in 0 . Consider a with
0 ^ a ^ 1 and let z = ax -I- (1 - a)y. Then since 0 ^ 1 - a w e have for each i,
z, = ax, + (1 — a)y, ^ 0. Hence z is in 0 .
5. For S convex consider T = {y:y = Ax for some x in S}. Let u = Ax and
v = Az with x and z in S. Consider a with 0 ^ a ^ 1 and let w = au -I- (1 - a)v.
Then w = ocAx + (1 — a)^z = A {ax + (1 — a)z}. But since S is convex
ax + (1 — a)z is in S and so w is in T.
6. (i) The convex set consists of two tetrahedra with a common base. Its
afline hull is 1R3 so the dimension is 3.
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(ii) (0,1, l)r lies in the interior of the triangle defined by the other three
points. [It is in fact its centre of gravity.] Note that all four points satisfy
x t = 0 and that x{ — 0 is in the affine hull of the points, so the dimension is 2.
7. Let K{alta2i...,an,b) = {x:alxl +a2x2-\ \-anxn^b}. We check that
this is convex. Consider a with 0 ̂  a ̂  1 and let x = (xl9x2, • . . , x j and
y = iyl,y2,..;yJ\KmK(aua2,...,an9b)- Write 0 = (1-a) . Then

al(axl + pyi) + a2((xx2 + Py2) + - + an(oixn

4- a 2 x 2 -f ••• + anxn) + Ra^y + a2y2 + ••• -f anyn)

So ax + (1 — a)y is in K(al, a2y..., an, b).
The set of points x satisfying the simultaneous system of equations is

equal to the intersection

m

f| K{ajl>aj2>-~>ajn>bj),
7 = 1

but any intersection of convex sets is convex.
8. (i) A is the open disc centered at the origin with radius 1. (3,3)' + A is

the set of all translates of points a of A by the vector (3, 3)'. This is therefore a
disc of unit radius centered at (3,3)'.

(ii) Evidently A + B = B + A. Now

B + A= [jb + A
beB

and is thus the union of discs of radius 1 centered at the points of B. The
boundary of this set may be sketched out by following round the discs
whose centres are placed on the boundary of the square B. Observe, though,
that the set A + B does not include its boundary. The shape is roughly like a
television screen.

(iii) The trick is to notice that A = - A and so A-B=-A-B =
— (A + B), so the set is a central reflection of the set obtained in part (ii).

Exercises 9.10
1. Let xeA + conv £, thus for some aeA and for some scalars

with /?! + • + / ? , = 1 and for some b!,...,br in B we have

Thus xeconv(/i + B). It follows that

conv(/l + conv B) £ conv(^ + B).

But, since

(A + B)cA + conv B c conv(4 + conv B\

and the right-most term is convex we also have

conv(/l + B) s conv(/l + conv £).
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This gives us the desired equation

conv(/4 4- B) = conv(A + conv B).

Applying this last result with A and B interchanged we have:

con\(A -1- B) = conv(conv A + B).

But by the result (*) with conv A for A we have

conv(conv A + B) = conv(conv A + conv B).

But this last term is already equal to conv A + conv B, since that is convex.
We thus obtain the final result that

conv(A + B) = conv A + conv B.

3. We rewrite the expression for x:

x = oca + pb + yc

So we take for z the point

a
+ -

4. Since the n + 1 vectors (xx — x0), (x2 — x 0 ) , . . . ( x n + 1 — x0) lie in U" they
cannot be linearly independent, so there are constants oil,...,an+l not all
zero satisfying

a^Xi - x o ) + ••• + a n + 1 (x M + 1 - x o ) = 0.

Let us define the scalar a0 by

a o = - ( « ! + ••• + «„+!).

Then

a ^ ! 4- ••• + a n + 1 x n + 1 = 0 ao + aj + •••+ aB + 1 = 0

as required. Suppose without loss of generality that a 0 , . . . , a t are positive
and afc + ! , . . . , an + 1 are non-positive, then

a o x o + ajX! + ••• + afcxk = ( - a k + 1)xfc + 1 + ••• 4 - ( - a n + 1 ) x n + 1 .

Observe that on both sides of the equation we have non-negative scalars.
Note also that

y = a0 + a i + •••+«k = ( - a k + ! ) + • • • + ( - « „ + ! ) >0 .

Dividing by y we obtain from our earlier observation

-2X o + -^x I + - + - 5 x t = ^ x , + 1 + -- + ^ x , + 1.
y y y ? y
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The common value, call it z, is seen to be on the left-hand side a member of
conv{x,:/e/} and on the right-hand side a member of conv {xj:j$I}. This solves
the problem.

Solutions to selected exercises on the separating hyperplane

Exercises 10.7
4. Let C be a convex cone. Let H be a supporting hyperplane for C. Say

H = {x:<v,x> = p} and C c {x:<v,x> ^ p } . Suppose H supports C at
x0. Thus we have <v,xo> = p.

Now notice that, for any natural number n, nx0 is in C. Hence

SO

< v , x o > ^ .
n

Now taking limits as n -> oo we obtain

<v ,x o >^0 .

Hence

p = <v,xo >^0.

But 0 is in C, so

Thus p = 0 and the hyperplane H passes through 0.
5. Suppose a is a point not belonging to the closed convex set K. The

distance from a to the nearest point of K is say d (the nearest point exists
since K contains its boundary). Thus no point of the ball
B = {x: || x — a || < \d] belongs to K. There is therefore a hyperplane
H = {x:<v,x> = p} which separates B from K. Say, K c {x:<v,x> ^ p } = H"
and B g {x:<v,x>^p}, then a necessarily belongs to {x:<v,x>>p}.
Consequently the half-space H~ excludes a. Now the intersection of all the
half-spaces which (like H~) contain K will exclude all points not belonging
to K. Hence the intersection is identical with K.
6. With the obvious notation, let K = {x:Ax ^ b,x ^ 0}. K is a convex set

(see Exercises 9.9, Question 7). It is closed (because each of the half-spaces such
as {x:fluxi + a 12x2 + ••• + ^ bt} is closed). Further, K is contained in the
non-negative orthant© = {x:x ^ 0}. If K has no extreme points then either
K = 0 or K is a cylinder. In the latter case K contains the whole of a line,
say /, but the line / lies wholly in @ which is absurd. Thus K does have an
extreme point.

Intuitively, the extreme points are to be found among the points of
intersection of n hyperplanes taken from among those given by the
equations x, = 0 or â .x = 0 (where the â . are the rows of A).
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Solutions to selected exercises on linear inequalities
Exercises 11.5
9. We start with the system

A'y = O^

y ^ 0 > or equivalently

b'y<Oj

By Farkas' lemma this is dual to:

A'y:

-A'y:

b'y<0

or

b'y<0.

Let us write X in the partitioned form (ur, v', wr)r. Then the dual may be rewritten as

Au - Ay + w = b and u ^ 0, v ^ 0, w ^ 0,

or

w = - An + As + b ^ 0 and u ^ 0, v ^ 0,

or

A(u - v) ^ b and u ^ 0, v ^ 0.

Now notice that any vector x can be expressed as a difference (u — v) with
u ̂  0 and v ̂  0; use the positive co-ordinates of x to form u and its negative
co-ordinates to form - v. For example (3, - 2,1)' = (3,0, l)r -(0,2,0)' . We see
that the last system is equivalent to saying only that

as required.
10. We rewrite the equation Ax = b as the inequality

By the last question this is dual to

[A'\ - A'W = 0, Y ^ 0, (b', - b')Y < 0.

We write Y in the partitioned form (u\ y')' and the system reduces to:

A'u - A'y = 0, b'u - b'v < 0 and u ^ 0, v ^ 0,

or
A\u - y) = 0, b'(u - v) < 0 and u ^ 0, v ^ 0.

The last system is equivalent to A'y = 0 with b'y # 0 for the following
reason. If u and v are as satisfying the last system then b'(u — v) < 0 so that
with y = (u - v) we have brt # 0 and A'y = 0. Conversely, if bry # 0 and
A'y = 0 then we may assume that b'y < 0. [Otherwise replace y in the
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following by — y, and note that A\ — y) = 0.] Now use the same trick as in
the last question to rewrite y as (u — v) with u ̂  0 and v ̂  0.

An alternative proof based on R(A) = N(A')1 proceeds as follows. Ax = b
is solubleobeR(^) = N(i4 r) io[b ly = 0 for every y with A'y = 0].

The last assertion says that

/i'y = 0l
b'y^OJ

is insoluble.

Solutions to selected exercises on linear programming and game theory

Exercise 12.8
4. To manufacture (x, y) the entrepreneur requires (w, v) where

m ft] or Ax, say.

With selling prices at c = (1, l)r and a stock of b = (3,4)' the shadow prices
p = (p l5p2)' are given by the optimal solution to the problem: minimise
b'p = 3^! + 4p2 subject to A'p ^ c and p ̂  0. The constraints in full are:

A sketch determines the extreme points to be at (0,1)', (1,0)' and at the point
where the first two inequalities are equations. The latter point satisfies (by
standard elimination) Apx — px = 2 — 1, i.e. pl = | and similarly p2 = | . The
objective function values are respectively 4,3, | and the minimum thus occurs
at (|, | ) . These values give the prices below which it pays the entrepreneur to
buy a little extra stock.

5. We recast the constraint into the standard form.

The dual to this is to minimise (b'| — b')Y subject to

[A'l-A'JY^c and Y^0.

We partition Y as (u', v')'. We thus have to minimise b'u — b'v subject to

A'u -A'\^c and u ̂  0, v ̂  0.

Since any vector may be written as a difference (u - v) with u ̂  0 and v ̂  0, we
conclude that an equivalent problem is to minimise b'z subject to A'z ^ c.

7. Player I maximises k subject to there being p = (pl,p2)
t ^ 0 with e'p = 1 and

/4'p ̂  Ae. The set of A'p with e'p = 1 and p ̂  0 is just the convex hull of the



462 Selected solutions for Chapter 12

columns of A1 (i.e. of the rows of A). From the diagrams we see that the cone
{y: y ^ Ae} intersects that convex hull with A as large as possible when A = 1 and
the intersection point is given by p = (0,1)'.

y>\e
convex hull
of columns

of ,4

x < ixe

- 1

= I

V

M = l

Player II minimises /i subject to there being q = (quq2)
% > 0 with e'q = 1 and

v4q ̂  |ie. The set of /lq with e'q = 1 and q ^ 0 is just the convex hull of the
columns of A. From the diagrams we see that the smallest value of \i for which
the cone {x: x ^ fie} intersects that convex hull, occurs when q = (0,1)' and \i = 1.

8. Observe that the entries in the first row of A are greater than the
corresponding entries in the second row. Hence Player I is better off playing his
first pure strategy, i.e. (1,0)', no matter what Player II does. Given this
information Player II will minimise his losses by playing his second pure
strategy (0,1,0)'.

The result can be obtained graphically by inspecting 21 the convex hull of
the columns of A. The least \i for which the cone {x:x ^ /z(l, 1)'} intersects 21 is
seen to be \i — 0, for which value of fi the intersection point is (0, — l)r. So II
chooses q = (0,1,0)'.

9. The points awarded for a win are 1 to the winner or \ each in case of a tie.
The pay-off is thus constant-sum. By a shift of origin the constant sum is zero.
10. In general the Lagrangian is c'x + y'(b — Ax). In our case

e'q e'p

and noting that for our application e'p = e'q = 1 we have

A \i X\i

The assertion that L has a saddle point at (x, y) amounts to

To see what this signifies in our case observe that

X = fi — pMq.

Using this in the leftmost inequality gives

1 1 p'Aq 1 1 I

X p. X'\i
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which reduces to

463

Assuming / o O w e obtain

or

This says that if Player I plays the strategy selected for him by the linear program,
Player II is best off playing the strategy selected for him by his linear program.
The other half of the saddle-point inequality will say analogously

p'Aq ^ p'Aq.

Solutions

Exercises 13.6
2. We use the

M

1

full

X

6
2

<S
- 3

T
0

0
1

0

0
0
1

0

to selected exercises

tableau

y

3
1

) - 6

- 2

®
3

- 1

- 5

T
l
0
0

0

layout

z

2
2
1

- 1

1

5
3
1
6

1
2

1
9
4
3
5

18

1
18

U

1
0
0

0

1

0
0

0

9
_I

31
9

5
9

on

V

0
1
0

0

0

1
0

0

0
1
0

0

simplex i

w

0
0
1

0

- 1

~ 3
1
6

1
2

~9
0

\S)

~ 18

method

const.

10
6
6

0

4

4
1

3

4

3~
13
9

47
9

Ratios

~2
6
6

4
9
4
3

26

18 0

+ 0 + +

Thus the maximum value is ^ .

0 0

26

60
9
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3. There is a choice of pivot here. We begin by selecting a pivot in the first
column.

M

1

X

3
4
3

-1

T

0
0

1

0

0

0
1

0

y

3
6
-6

-1

9
14
-2

-3

t

0

1
0

0

z

4
3
1

_ j

3
5
3

1
3

2
3

27
14

5

fi
21
13
42

U

1
0
0

0

1
0

0

0

1

0
0

0

V

0
1
0

0

0
1

0

0

9
14

1
14
1
7
3
14

w

0
0
1

0

-0
4
3

1
3

1
3

1
7
4
42
1
7

2
42

const.

12
12
3

0

9
8

1

1

27
7

4
7
15
7

19
7

Ratios

~3" ~~

1

1=1
8 _ 4
14 7

—

^ = 2
24

A
4

1

0

1

0

1

0 + + +

2
i
3
1

10
3

Thus the maximum is ^ and is attained at (1,3,2)'.

Solutions to selected exercises on convex functions

Exercises 15.5
1. If X is not convex, the set {(x,y):xeX & f{x)^y} cannot be convex. It is
possible, however, to alter the clause which defines a function to be convex to
read: / is convex on X if for every xx and x2 in X the inequality

- a)x - a)/(x2)

holds whenever ctxl + (1 — a)x2 is in X.
3. If f{x, y) = exp { - x2 - y2}, then Df = f(x, y)( - 2x, - 2y). Thus

4x2-2 Axy"J
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Hence

det D2f = {/(x, y)}2{(4x2 - 2)(4y2 - 2) - 16x2j;2}

Thus the determinant is non-negative when x2 + y2 ^ \. Consequently / is
concave in the disc centered at the origin and of radius \y/2\ indeed, fxx ^ 0
when 4x2 - 2 ^ 0 i.e. for |x| ^ \^J2. Similarly for fyy. Thus / is concave in X.

Since the point (1/3, 1/2, exp{ — 13/36}) lies on the surface z =/(x,y) and
(1/3,1/2) lies in the interior of X the required supporting hyperplane is the tangent
plane at the given point. Its equation is

z-exp(-i|)=-fexp{-i|}(x-i)-exp{-l|}(y-i).

4. Put /(x) = Ax + b. Let a, $ ^ 0 be such that a + p = 1, then

= A(oc\ + py) 4- (a 4- 0)b

- (x(A\ + b) + p{Ay + b)

Hence / is both convex and concave.
5. If f(\) = xri4x and A is symmetric observe that Df = 2Ax. This is because

SO

— = 1 . (8x<

j i

The last equation holds by symmetry of A(aik = aki). Thus D 2 / = 2A. So / is
convex if A is non-negative definite; it is concave if A is non-positive definite.
6. By assumption we have, for all x that

but V/(£) = 0 so the inequality reduces to

as required.
7. There are two techniques for this problem.

Epigraph approach. Since / is convex, the set C = {(x,r):/(x) ^ t} is convex.
If x 1 ? . . . , x n lie in X and a , , . . . , a l l ^ 0 satisfy at + ••• + a n = 1 then, since the
points (x , , / (x , ) ) are in C, we have that
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i.e.

(OL1X1 + ••• + (xnxn,alf(xl)+ ••• + an/(xfl))eC,

but this says that

/ ( a l X l + ... + aMxn) ^ (xJiXi) + - + <xJ{xH),

as required.
Chordal inequality approach. We take our starting point at the inequality

which is what Jensen's inequality reduces to when n = 2. This of course is the
defining formula for convexity of / . We consider the case n = 3. Assume given
a!,a2 ,a3 ^ 0 such that a t + a2 T^O (otherwise interchange the as). Then the trick
is to note that

,
OL{ 4- a 2 OL{ -h a 2

hence

ai

Now we turn to the desired convex combination:

/(o^x, + a2x2 4- a3x3) = /((^ + a

fa a 1
+ <*2)\ — /(xi) + — /(x2) ^ + a3/(x3)

ta!+a2 aj+a2 J
= aJiXi) + a2/(x2) + a3/(x3).

This trick and calculation can be repeated for all cases n.

Solutions to selected exercises on non-linear programming

Exercises 16.7
1. We have

gi = \-x-y, V^=(-l,-l),

g2 = 5-x2-y\ Vg2 = (-2x,-2y),

^3=^, V^3 = (l,0).

If % = (2, — 1)' is a maximum over the constraint region indicated, then there will
be constants /1? k2, A3 ^ 0 such that
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and

Vflffi) + WgM + k2Vg3($) + A3V^3(9 = 0.

Since g3(Q = 2 # 0 we have that A3 = 0 so the latter condition becomes

or

which together with kx ̂  0 and k2 ̂  0 says that V#(£) points into the normal
cone at (-2,1) ' .

Remark
The vector (— 2, l)r is orthogonal to the circle g2 = 0 at (— 2, l)r, since

that vector lies along the radius; (1, l)r is orthogonal to the straight line
1 - x - y = 0.
2. Assume, of course that A,B^0. If a, b, c are not all positive the constraint
region will contain a point (x0, y0) with x0 being the maximum value of x in the
constraint region and y0 being likewise the maximum value of y in the region.
In all three cases arising from different sign choices it follows that the objective
function is also maximised at the point (xo,yo).

The more interesting case occurs when a, 6, c are all positive and this we now
consider in detail.

Observe that to minimise {x~p + y~q) we need the smallest k such that the
curve x~p + y~q = k has points in common with the feasible set. The shape of
this curve merits attention. It is convex for x, y ^ 0 since

D2f = \
L 0 q(q+l)y-q~2]

which is positive definite. The set {(x,y):x~p + y~q^ k} is thus convex. Further
it has two asymptotes x = k~l/p and y = k~l/q.

y i

L_
It is again clear that the minimum occurs somewhere along PQ but the exact

point will depend on the relative sizes of a,b,c,A,B. One possibility is as drawn
above. Since we are dealing with a convex programme the condition for the
maximum is given by the Kuhn-Tucker theorem in necessary and sufficient
form. The case illustrated above occurs if

V/ + kV(c -ax-by) = 0
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for some X ^ 0 viz.

or

or

Now x and y are subject to ax 4- by = c so this requires

and this will surely be satisfied for some value of X. We need still to check if

x^A, y^B. (2)

To check (2) we consider the situation when, instead, the optimum occurs at P.
The Kuhn-Tucker condition then becomes

V / 4- AV(c - ax - by) 4- ^V(B - y) = 0.

Similarly at Q this is replaced by

V / + AV(c - ax - by) + fjff{A - x) = 0.

In the first case we have

px~p~l =Xa, qy~q~l

Since y = Bv/e have

We thus need to satisfy

/ p y/(P+n

vw
Since we also need

x = l —

we obtain the following condition (by substitution from the last equation):

c^aA + bB,

which is certainly satisfied (by the hypothesis for this subcase). It remains to
check // ^ 0. To do this we note that X is px~p~ l/a and, remembering that
ax 4- bB = c, we compute that

a\c —

and this would have to be non-negative for an optimum at P.

(3)
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A similar calculation at Q produces the requirement that the following

(4)l i p A a H
b\c-aA

should be non-negative for an optimum at Q.
If neither (3) nor (4) yields a non-negative result the Kuhn-Tucker theorem

tells us that (1) and (2) are soluble.
3. We have

9i=4-x2-2y2, V^1=(-2x,-4y),
g2 = 6x-x2-2y2-5, Vg2 = (6-2x, -Ay\

The Kuhn-Tucker condition requires that at a maximum £ = (x, yf

Vlog(xy) + Wg^Q + A2V</2($) + A3V^3(5) = 0.

and

for some Aj, A 2 , A3 ̂  0. Thus we require

lt( — 2x, — Ay) + A2(6 — 2x, — Ay) + A3(^, — 1) = 0
y

i.e.

or

X21 - 2/liX2 + A2x(6 - 2x) + ^ 3 x = 0

Adding the two equations we obtain

2 - 2/Mx2 4- 2y2) - 2/l2(x
2 + 2y2) + 6A2x + A3(f x - y) = 0

and the last term disappears since A3^3 = 0. Thus

2 - 2/l^x2 + 2y2) - 2A2(x
2 + 2y2) -f 6/l2x = 0.

Suppose kx =0 , then this reduces still further to

2 = 2/l2(x
2 + 2y2)-6/ l 2x

= 2>l2(x
2 + 2y2) - X2(x

2 + 2y2 + 5)

Here we have used the fact that k2g2 = 0. The expression above on the right-hand
side of the equation is negative since x2 + 2y2 ^ 4 and X2 ̂  0. This is a
contradiction. So after all kx > 0. Hence gl = 0, i.e. x2 + 2y2 = 4 and the minimum
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lies on the first of the two ellipses. This implies that it does not lie on the other
ellipse. So at the minimum g2

z£0 and k2 = 0. We now have

= 2^(4).

Thus kt = | . Suppose k3 = 0, then

- + kl(-2x) = 0,
x

so 2x2 = 4 or x = ± J2. Similarly y = + 1. But neither point ( + yj29 ± 1) lies in
the feasible set. So g3 = 0 and we have localised the minimum to the intersection
of 03 = 0 with gx = 0. Since y = fxwe have 3/2x2 = 4; so x = yJ(S/3) = 2^/(2/3) and

4. The constraint region consists of the one point (0,0). No path can properly
enter the constraint set and the constraint qualification is not satisfied.

Exercises 16.8

2. We form the Lagrangian

L = x2 4- y2 4- z2 + >l(x2 + y2 + 4z2 - 1) + JI(X + 3y + 2z).

We thus obtain

dL
— = 2x + 2Ax + ii = 0,
dx
— = 2y + 2Xy + 3/z = 0,

— = 2z + Uz + 2/i = 0.

dz

Multiplying the equations respectively by x,y and z and adding we obtain:

2(x2 + y2 + z2) + 2A(x2 + y2 + 4z2) H- /i(x + 3y + 2z) = 2M + 2k = 0.
Thus M = — X where M is the maximum. Evidently we can also solve the equations
for x,y and z in terms of k and \i. Thus, assuming k # - 1 and A # - £, we have

x =
2(1 4-A)

2(14/1)

Z~(1+4A)J

Substitution into the linear constraint equation gives

2(l4/l) + 2(l+/l) + (l+4/l)~
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One solution to this equation is fi = 0. That, however, would give x — y = z = 0
which cannot be optimal. Thus, since fi # 0, we obtain

(1+/1) (1+4/1)

Thus 22A + 7 = 0, or X = — 7/22. Consequently, our assumptions on X lead to
M = 7/22. The other possibilities are: X = - 1 (so that n = 0 and M = 1) which
fixes z at 0 and x and y are respectively + 3 /^10, + 1/^10; and, X = — £ (so
that n = 0 and M = | ) which implies x = y = 0 and then the two constraints
cannot be simultaneously satisfied.

The above discussion shows that the maximum is 1 and the minimum is 7/22.
3. We form the Lagrangian

L = xyz + X(x + y + z - 5) + n(xy + yz + zx- 8).

We thus obtain

OL

~dx~

dL
— = zx + X + [i{z + x) = 0,

— = xy 4. X + //(x -f )>) = 0.
dz

In problems like this it is always worth investigating relationships which follow
from symmetry properties of the Lagrange equations and the constraint
equations. Two such relations are immediately available.

First we add all three equations and using the constraints obtain

xy + yz 4- zx + 3/1 + \i(2x + 2y + 2z) = 8 + 3X + 10/i = 0.

We arrive at:

Vi= - 8 .

Next multiplying the three equations respectively by x, y and z and adding
we also obtain:

3xyz 4 A(x + y + z) 4- ^(xy + zx -I- zy + xy + xz 4 xy) = 0.

Thus letting the maximum be M we deduce that

A further symmetry can be called into play by subtracting the equations
pairwise. We then have for instance:

yz — xz + n(y — x) = 0
or

Thus either x = y or fi = — z. This is not the only alternative. By symmetry the
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full set of alternatives is

x = y or z = - //,
and

y — z or x — — ft,
and

z = x or y = — //.

We deduce that the possible solutions are: (i) x — y = z = — ^, (ii) x = y = — \i
with z unspecified; etc.

On substitution into the constraint equations the first of these leads to the
equations 3fi2 = 8 and 3/i = — 5 which contradict each other. So the first solution
is excluded.

The second solution leads to y = 5 + 2\i and — 2\iy + \i2 = 8. Eliminating y
gives

In2 4-10/1 + 8 = 0,

We note that, by symmetry all of the other solutions leads to the same equation
in ft.

Now fi = - 2 gives 2>k + 10( - 2) = — 8, so that X = 4 and hence
M = - ( 5 - 4 + 1 6 ( - 2 ) ) / 3 = 4.

On the other hand \i = - 4/3 leads to 3A + 10( - 4/3) = - 8 so that k = 16/9
with the result that M = - (516/9 + 16( - 4/3))/3 = 16.7/27 = 112/27.

Of the two possible choices for M the smaller is 4. Hence the minimum value
here is 4. Note that this value is achieved when x = z = 2 and y = 1. Evidently
any permutation of 2,2,1 will give a minimum point.

Solutions to selected exercises on the integration process

Exercises 17.19
1. Let P = {xo,xl9...,xH} be a partition of [0,1]. The R-S sums will be

Now [xr] = 0for r = 0 , l , . . . , n - l since 0 ^ x r < l while [ x j = [1] = 1. Thus
the sum reduces to

and this will be close to 1 if tn is close to unity.
The precise argument looks like this. To control how close t* is to 1, we

consider what happens when tn satisfies

We suppose, of course, that d is selected less than 1. Then

(1 - <5)3 = 1 - 3<5 + 3<52 - <53 ^ 1 - 3<5 - (53 ̂  1 - 3£ - S = 1 - 4<5.

This is because <53 = S2 S ^ 1 <5. Evidently, 1 - 43 < f3 ^ 1. So we can arrange to
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have f3 to within e of 1 if we take S = 6/4, for then

Thus, if P is finer than the partition {0,1 - 6/4,1}, we shall have 1 - e/4 < xn

(and so 1 - e/4 < *„) and the R-S sum will be to within e of 1.

4.

since

I 2 x</([2*]) = I log2 td[t] = t log2 n = log2 2-3-4 = 3 + log2 3,
Jo J l 2

f 3 x ^ [ x 2 ] ) = [x 2 [x 2 ] ]^ - f3[x2]x^x = 8 1 - ^ f3[x2]^(x2)
Jo Jo zJo

81 1 f9
 Jr_, 81 1 ^ 81 1 126

+ rfMy + r l n - y + ^ l O - — = 63.
2 2n = 1 2 4 2

1 f
2J

f5[5-xMlog[x])= X (5-n){logw-log(n-l)}
J2 « = 3

324
= log3.

5. Let

L=

«(2M +1)]; - f 1 W(W
JoO

1)- | [x]{2[x]2 + 3[x] + l}
Jo

l ) - 2 ( L - n 3 ) - | {3[x]2 + [
JoJo

8L = n2(n + l)(2n + 1) - |n(n - l)(2n - 1) -

= «2(n + 1)(2« 4-1) - \n(n - l)(2n) + 2n3

= n2{(n + l)(2n + 1) - (n - 1) + 2n}

= w2{2n2-f4n-f 2},

so
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6.

2xd(x[x]) = [2x 2 [x]] 0 - I [x]2xrfxf"2xd{xlx]) = [2x2[x]]0 - f"
Jo Jo

= 2n3- I [xMx2) = 2n 3 - [x 2 [x]] 0 + I
Jo Jo

Exercises 17.20
1. (c) Two methods come to mind.

Integrating by parts:

where JV is the smallest integer with 2 ~ N < x ( ^ 2 ~ N + 1). The formula is based
on the observation that for each n ^ JV, / is constant in the interval (2 "n, 2 ""+ x]
and the jump in / at 2~n is 2~n + l - 2~n = 2"".

This explains the contribution

r tdf(t) = 2~" xjump in / at 2~n.

Now the geometric series sums to

V (2 ) {/(x)}.

Alternatively, we can compute the area under the curve directly as a sum of
contributions like

\2~n( = base) x2""( = height),

arising from full sized rectangles (this is so for n^ N) plus the incomplete rectangle
whose base has length (x — 2~N) and height 2~N+1. Thus the area comes to

2N

1 4~N
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2.

3. (a)

Thus

" 1 1

[ f(x)d{2x(\ + [x]) = 0
o

+ 2x(l + [x])exp(-x:Vx
Jo

= 2n(l+»)/(«)- |(exp(-x2)X-2x)dx
Jo

- f [x](exp(-x2))(-2x)(ix
Jo

= 2n(l + n)f(n) _[exp(-x2)]0

- f
Jo

[x]J(exp(-x2))

l-[[x]exp(-x2)]0+ I
Jo

n)/(«) - exp( - n2) +1 - nexp( - n2)

e x p ( - r2)t/f - (1 + w)exp(- n2)n)
J n

£exp(-r2)
0

[x]sx-s-'dx= [x]<f(-x-s) = [-[x]x-s]^- j -
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(b) Let

/= (2[x/2]-[x])sx-s-^x

= [ - x-*(2[x/2] - [x])]f + I"'"x-M(2[x/2] - [x]).

At this stage it is important to plot the graph of the function [2[x/2] - [x])
to examine the size and location of jump discontinuities. This done we see that

2n 1 In \
i = o - 1 + y - ( - i)r = y ( - i ) r - .

4. We assume that / is continuous (in fact left-sided continuity at the integer
points is all we require). Note that A(x) = 0 for x < 1.

1 Jo

Jo

0 Jn

o

= j ; A(n){f(n)-f(n + 1)} + ̂ ([fl])/([a] + 1).

We justify step ( + ) by noting that A(x) is constant most of the time; more
precisely, note that for any small S

rn+l rn+l-d fn+1
A(x)df(x)= A(x)df(x)+ A(x)df(x)

Jn Jn Jn+l-6

and the first of the summands is

A(n){f(n + \-S)-f(n)}

whilst the second is nearly zero for small S. (To see this refer to the R-S sums.)
5. We have

j
Ja

Ja J .
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Rearrangement of the terms gives the desired result.

Exercises 17.21
2.

e-l
fV</[x] = fe» =

J o n=l

£y [y]-l

Jo n = O

xe*rf[x]= x -
Jo L e - l Jo Jo e - \

nen+l —ne ne e [en — 1

e—l e—l e — I [e—1

(e-l)2

(n + l)en+l +e

Exercises 17.22
2. For each H, we consider the particular partition

1 , , ,

In each of the subintervals Ir = [l/(2r), l/(2r - 2)] the function is either increasing
or decreasing. Thus for r ̂  2

, r _ L -Ll = _ l L-<_L
/L(2r-2)'(2r)J (2r-2)2 (2r)2^2r2'

Now, given any partition P = {xo,xlt...txm}, choose k so large that l/(2/c)<x1

Let Q be the common refinement of P and Pk. Then v(P) < u(Q) and since on
each interval Ir the function / is monotonic we have

1 1 / 1 1

1 ^ 1 1
- Y — + - < o o .
2 r2 4
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3. Let P be a partition of [a,c]. Then Pc = Pu{fr} is a partition of [a,b]. Thus
for all P

Similar considerations apply to [c,b].
To prove the equation we will find it convenient to prove inequalities both

ways round. Let P = {xo,xl 5 . . . ,xn] be a partition of [a,b]. Choose r so that
xr^c < x r + 1 . Then Px = {xo,x1, . . . ,xr ,c} is a partition of [tf,c] and
P2 = {c, xr + ! , . . . , xn} is a partition of [c, /?]. Thus

It now follows (taking suprema over all P) that

Next we prove the reverse inequality. Since Vf[a,c] is the supremum of all
c](P) ^et u s t a ^ e a s m a ^ number S. Then there will be a partition P5 such that

Similarly there is Qd, a partition of [c, b], such that

Hence, adding we obtain

Vffo c] + F.Cc, 6] - 2 ^ v[aJPs) + i;ICfbl(

This is because P5\JQ8 is a partition of [a,b].
Thus for every S we have

Vffac] + Vf[c, b]-2S^ Vf[a, b],

and taking the limit as S tends to zero we obtain

and the two inequalities taken together imply the required equation.
we have, by the same reasoning as for the last equation,

but Vf[x,y]^0 so

i.e. a(x) is increasing.
Since {x,y} is a partition of [x,y] we have

hence

-f(a) ^ V,la,x]
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so
- Vfla,b] +/(fl) </(x) ^ Vfla,b] +f(a\

i.e. /(x) is bounded in [0, b]. We consider p(x) = f(x) — a(x). We have for

~ f(x) - {a(y) -

so j5 is decreasing.
4. For a of bounded variation the inequality

enables one to prove

f(x)da(x)

5. We consider the case of a/J. Let P = {x0, x t , . . . , xn} be a partition of [a, b~\, then

<|a(xr + 1)-a(xr) | | /J(xr + 1) |

+ | a (x r ) | | «x r + 1 ) -«x f ) |

where A and £ are bounds for a and /? (see Question 3). It follows, on summation,
etc., that

If p is bounded away from zero, suppose K ^ | /5(JC)| in [a, 6], where JC > 0.
We have

1 1 .|/?(xr+1)-jg(x,)|

Thus we see that the variation of fi~' is in this case bounded by

Solutions to selected exercises on manipulation of integrals

Exercises 18.14
1. We differentiate with respect to x the expression

4>{x) = arctan ( I — arctan (x)
\\-xyJ
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using the defining integral. Thus we obtain

but the first term is

1 — xy + xy + y2 1 + y2

1 - 2xy + x2y2 + x2 4- 2xy + >'2 (1 + J>2)(1 + x2)'

Thus the derivative of the expression </>(x) is zero. Hence <j)(x) is independent of
x. To obtain its value put x = 0. The expression reduces to arctan (y). Hence:

/ % -f y \
arctan — I — arctan (x) = arctan (y).

\l-xyj
2. Let us denote the value of the integral by I(t). We notice that the integral is

minus the derivative of the following integral, which we denote by (j)(t)\
/•n/2

+ fsin2x)

We obtain the value of </>(f). Since the integrand is even with respect to sin x we
use the standard substitution

so that
tanx =

sinx =

dx

du

1

l+u2'

sinx

x + cos2 x}

Thus

du

• r °° du r i "1 °°
= — = — arctan uJ(\ -f t)

Jo { l + ( l + f)ti2} L V ( 1 + r ) Jo

Now we differentiate with respect to t and obtain

Jo ?sin2x)2 V

The manipulation is justified provided t ^ — 1.
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3. (iii) The integrand decays a little slower than x ~ p. We therefore compare the
integrand against something manageable which is less than x~p; we try x~q

where 1 < q < p, the idea being that the difference between p and q
counterbalances logx. We keep q > 1 for convergence [the integral of x~q is
convergent in the range [1, oo)]. Applying the ratio test (and l'Hdpital's Rule
en route), we have, taking limits as x tends to infinity:

r logx 1 logx 1/x
hm :— = hm = hm -xp xq xp'q (p-q)x{p-q)~1

= lim — - = 0, since (p — q) > 0.
(p-dx*-*>

In this case the ratio is zero but the integrand of x~q converges hence so does
the integral in question. [Reassure yourself, by noting that for large values of x
the test ratio is less than 1, so for such x, we have

and the comparison method clinches the convergence. See also Question 8.]
(iv) It is instructive (though we omit this) to test by comparing with powers

of x, as in the last question. The results are usually inconclusive. It is best
therefore to make the substitution y = logx in order to bring into focus the
effects of the factor (log x)p. The integral transforms very nicely to

£ dy

• y"

and this converges, since p > 1.
(v) We begin by rationalizing the denominator. The integrand becomes

y/(X+

so this is approximately 2x "1/2. The integral of the latter converges in the range
[l,oo).

(vi) Here again it is best to use the identity a3 — b3 = (a — b)(a2 + ab + b2),
with b = x and a = (x3 + 4)1/3. The integrand is then

a2 + ab + b2

which for large x is approximately

4

3?'
Now the integral of this converges in the interval [1, oo). It remains to check
that the ratio of the given integrand to this approximation is in limit 1.
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(vii) The integrand only apparently has a blow-up at x — 0. Actually of course,

sinx
hm = 1,

so the integrand may be regarded as continuous at 0 provided we read the value
of the integrand at 0 to be 1.

(viii) We follow the hint, integrating by parts from 1 to X:

1 JJ.
cos 1 f^cosxcos 1 f

1 Ji1

This last integral exists by comparison with

x2

4. (i) Close to 0 the integrand is approximately xp. But

and this exists in the limit as S tends to zero if p + 1 > 0. Thus we require p > — 1.
Similarly close to x = 1 the integrand is approximately 2q(\ — x)q. The integral

of the latter function is convergent in [0, 1] provided q + 1 > 0. [Put y = 1 — x and
apply the previous argument.] Thus we also require q > — 1.

(ii) We examine the factor xx first. This is the same as exXo%x. But xlogx
tends to 0 as x tends to 0. So the integral converges in the range (0,1] provided
that the other factor does not blow up. Now consider that

- x p + xlogx = - x p ( l -x 1~ p logx) .

As x tends to infinity the expression x1 ~plogx tends to zero if 1 — p < 0 and
to infinity if 1 — p ^ 0. Hence we require 1 < p (otherwise our integrand tends
to infinity). In this case, as x tends to infinity

l - x 1 ~ p l o g x

is approximately 1 and so the integrand is approximately exp{ — xp}. The latter
function has convergent integral in the range (1, oo) provided p > 0. Thus we
require just p > 1 to secure convergence. To finish off the argument one should
use the limit ratio test. If we compute the limiting ratio of exp { — xp} to
exp {x log x — xp}, this, however, turns out to be oo which would be inconclusive.
The trick is therefore to take any q with 1 < q < p and consider for comparison
the function exp { — xq}. This time the ratio as x tends to infinity turns out to be

exp {x log x - xp}/exp {- xq} = exp {x*(l + x1 ~q log x) - xp}

= exp{-x p [ l - xq~p(\ + x1 ~qlogx)]}

- > e x p { - o o [ l - 0 1 ] } = 0



Selected solutions for Chapter IS 483

and so since the function exp {— xq} has a convergent integral so does the given
function.

(iii) In the range [0,1] we require p < 1; in [1, oo) we need p > 1. No
convergence.
5. (i), Let us write out in full the sum to n terms, call it 5, and use a similar trick

to that for deriving the sum of a geometric progression.

s = x + 2x2 + 3x3 + 4x4 + ••• + nx"

xs = x2 + 2x3 + 3x4H + ( H - l)
Thus

1-x
consequently

_x-xn+i nxn+l(l-x)_x-(n+ \)xn+l + nxn + 2

SS (1-x)2 (1-x)2 (1-x)2

The infinite sum exists provided |x| < 1 and equals

(1-x) 2 "

(ii) Denote the nth term by an then

and since the nth term does not converge to zero (it converges to | ) the sum is
divergent.

7. We first note that the discontinuities in P(x) occur at the integer points and
that P(x) is piece-wise constant (just like the staircase function). We thus have

xdP(x) = f n^—^e-'X f — = e~xX f —

Similarly we have

r, n!

To calculate the above sum we are naturally led to consider differentiating the
identity:

je* = y—

since we expect a similar series. In fact we obtain

( A + l ) * I ( l A I
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This, fortunately, is precisely the series occurring in our eariler calculation, so
we may now deduce

x2dP(x) = e~kX(k +l)eA = X(k + 1).

8. We expect the logarithm to arise after differentiation of an exponentiated
parameter, so we start from

f0

Ji

1

where we assume, of course, t + 1 < 0. Now a straight differentiation with respect
to t on both sides, assuming the manipulation is justified, yields

i 1

Putting t = — (n + 1) < 0 gives the result

f
We note that by Question 3(iii) the integral

Mogxi; -dx

converges for p > 1. Now if n > 0 choose any p with 1 < p < n + 1 (e.g. p = | ) ,
then we have the domination

logx .logx
for 1 ^ x < oo and p ^ t ^ n + 2

and since this includes the case t = w + 1 we are done. Note that the result breaks
down for n = 0 and indeed the integral in question diverges. This is easiest seen
by the integral test in alliance with the condensation test, since

9. Clearly the integral of K(x,t) is 1. (Area of the triangle.) On the other hand
the limit of K{x, t) as t tends to zero is 0 for every x.
11. Assuming the manipulation is justified we have

-f
Jo

— e xtsinxdx= —-—

Clearly the manipulation is justified for any t > 0. Given such a t choose a with
0 < a < t and let b = t + 1. We then have the domination for a ^ s ^ b:
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Hence for t > 0 we conclude

f(t) = C - arctan t.

Let us divide the range into three parts [0,(5], [(5, 1], [1, oo) and estimate in each
case the behaviour of the integrals when t is large. In [1, oo) the integral is no
bigger than

i;e~xtdx = -.
t

In [(5,1] we have seen by the mean value theorem (cf. Section 17.18) that the
integral is no bigger than

2 ' - .
5

In [0, <5] we shall have

provided S is small enough. [Actually sin x ̂  x for all x ̂  0.] So in this range
the integral is no bigger than

f
J

\dx = d.
o

Altogether, we obtain the total estimate for the integral amounting to

S + — + -.
d t

This can be made as small as we wish by taking first S small enough and then
t large enough to make the second and third terms small. Thus

lim f(t) = 0.
f-»oo

Hence C = n/2.
We follow the hint regarding integration by parts; for t > 0 we have:

^ rexp{(it)x}> | C"aip{(i-t)x}
L (i-t)x J, J, (i-t)x2

exp{ l(<-t)} f " exp{(i

(i-t) J , (i-• t)x2

Now the integral appearing in the second line is dominatedly convergent since

"dxr
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Taking limits as t tends to zero we have

exp {l(i-t)}

(i-t)

pexp{(i-t)

1 J , IX2

But, (by integration by parts again) this is equal to

— dx.

In the finite range [0,1] we may take limits as t tends to zero to obtain

Solutions to selected exercises on multiple integrals exercises 1

Exercises 19.17
1. We have:

v = xy.

So it is easiest to invert the transformation by noting that v = xy implies
— v2 = x2. (— y2) so that x2 and — y2 are roots of

t2 - 2ut -v2 = 0.

Hence x2 and — y2 are in some order

u±J{u2 + v2}.

To determine the order notice that only one of the above roots is negative and
only one is positive. We thus have, depending on the quadrant, that

The transform of the positive quadrant is therefore the set of all u,v with v>0
(since x, y > 0 imply v > 0). Notice that the parenthetical remark is needed since
we threw some information away when squaring v.

We note the Jacobian is equal to x2 + y2.
2. The formulas given define a transformation from R2\{(0,0)'}. We note that
u = constant (^ 0) describes a circle centred at (l/(2w),0)r of radius l/(2u) since

x2 + y2 - x/u = 0.
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The circle passes through (0,0)f. Similarly we note that v = constant ( ^ 0)
describes a circle centred at (0, l/(2v)Y of radius l/(2i>) since

x2 + y2 — y/v = 0

and this circle also passes through the origin. It follows that in the domain of
definition of the transformation, viz. the punctured plane IR2\{(0,0)r}, any circle
v = constant will cut any circle u = constant at most once. This explains away
the apparent ambiguity in the specification of the transformation.

To obtain the inverse transformation observe that

X -4- v 1

+ y2)2 x2 + y2'

Consequently,

u = x(u2 + v2).

Hence

Similarly

u2 + v2'

Finally we note that the Jacobian of the transformation is — (x2 + y2)'*.
3. Recall from Section 19.7 that as v = x + y and u = xy the roots of
t2 — vt + u = 0 are x and y. To have an inverse transformation we divide the
region of interest (here the disc is centered at the origin of radius yjl) into two
regions Dx where y ^ x and D2 where y ^ x. In D2 we have

-4u}
y =

•-Au)
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We determine the transformed region analytically. We have to deal with two
conditions: (i) x and y are real so v2 — 4w ^ 0, and (ii) x2 + y2 ^ 2. To translate
the latter we observe that

x
2 + y2 = (x + y)2 - 2xy = v2 - 2u

so the transformed region A is bounded by the two parabolas v2 — 4u and
v2 — 2u + 2. From the illustration we see that — 2 < v ̂  2 throughout the
region A.
4. If x, y > 0 we certainly have u, v > 0. Moreover

so

y = x + y — x

u
= v-y-

v

and so

U + V

It follows that the transformed region is likewise the positive quadrant. We note
that the Jacobian is

2xy + y2 x2

_ _ 2 (u + v)2 _ (u + v)2

y2 ~V ~^~~~~~v2~'

5. We observe that u ̂  0. To find x and y in terms of u and i; we note that
v2 — x2y2 so x2, y2 are in some order the zeros of

t2-ut + v2 = 0.

So in some order they are

u±y/{u2-4v2}
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We are concerned with the region where 0 < y < x so in fact we see that

x =

u-J{u2-4v2}

Evidently these formulas require u2 — 4v2 ^ 0 and, since in the sector stated
x, y > 0 (so that v > 0), we have the requirements: u ̂  2v. Thus the transformed
region is given by u > 0, v > 0, u ^ 2v.

We note the the Jacobian is 2x2 — 2y2.
6. We begin by computing the Jacobian.

d(u, v)

d(x,y)'

-2x 1

2x -2y

The Jacobian is thus of constant sign in the four quadrants defined by the vertical
and horizontal passing through the point x = 0, y = \.

To obtain inverse tranformations we first note that

u + v = y — y2,

so we obtain

Thus in the quadrant y < \ we have

(1)

the other sign being appropriate to the other half-plane. Also we have

x2 = - u + y

Thus depending on quadrant we have

To find the image of the half-strip x > 0 , 0 < y < | w e argue from the
appropriate formulas as follows. Note that to use the formula as at (1) is to
imply already that y <\.

=>(1-2t<)

In particular 1 — 2u ̂  0, i.e. u ̂  \. Moreover, squaring we obtain

1 - 4M + 4w2 ^ 1 - 4(w + v\

whence u2 ^ - v and u ̂  | .
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Now y real implies

[ 1 - 4 ( M + I ; ) ] ^ 0

so that u -I- v < \. Moreover y > 0 implies

or

or
0 > - 4(n + i?),

so that also u + v > 0. These steps are reversable. We are thus led to the region
as illustrated.

At u = ± the parabola has slope v' = — 2w = — 1

7. Observe that the formula is undefined for x = 0.
It is instructive to go through both the analytic argument as well as the

geometric. First, we deal with the analytic argument.

u = x 4- vx,

\+v

y =
uv

r+v
We now see how y ^ 0 translates. If u ^ 0, we must have v(l +v)^0, which
requires that v ̂  - 1 or i; ^ 0. On the other hand, if u ^ 0 then v{\ + y) ̂  0 so
that we then require - 1 ^ v ^ 0. We illustrate these three regions below.



Selected solutions for Chapter 19 491

- 1

Next we consider the condition y ^ 1, that is

l + i;

Thus if v > - 1 (so that v is in one of two intervals mentioned earlier viz. ( - 1 ,0 )
or (0, oo)), we have

The transformed points lie therefore under the hyperbola v(u - 1) = 1 the axes
of which are v = 0, u = 1.

On the other hand, if v ^ — 1, so that v lies in the third interval, we have the
reverse inequality

and the transformed points are bounded by u = 0 and the same hyperbola as
before.

v(u - 0 = 1

Now for the geometric argument. The lines v = constant intersect the lines
u = constant in one point only unless v = — 1. For a fixed v the line y = vx meets
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a line x + y = u in the region 0 ^ y ^ 1 only in a specified range. To determine
the range note that when y=i,x = u— 1 and so

M - 1

i.e. the hyperbola v(u — 1) = 1 gives one end of the range, the other end of the
range is inevitably on u = 0. The range is degenerate when v = 0, in that there
are no endpoints (since they are at u = ± oo). A second degeneracy occurs when
the two endpoints coincide. This happens when u = 0 and v = — 1.

For each v the horizontal line segments for that value of v and with one
endpoint on u = 0 and the other on the hyperbola may be sketched as above.
Evidently, we obtain the same result as by the analytic method. The three regions
arise from the 'degeneracy' positions.

Exercises 19.18

d(u, v)

v = x — y. Then

1

- 1
= - 2 .

It is convenient to divide the region of integration into two regions Dx and D2

as indicated. We observe that, for given w, Dx is scanned by v

\ *
\

\
k

y
*

/V/

U

\

running from - u to u, whereas D2 is scanned by v running from - u to k. Thus
in the obvious notation

/ = /1(A1) + /2(A2).

/1(A1)= j du P e~u±dv = - \ e~"2udu
Jo J-H 2J 0
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f
Jo

e~udu

= \-ke-k-e~

/2(A2) = )S

493

3. The natural choice of new variables is u = xy and v = x2 — y2. Thus

x, y) 2x -2y
- 2(x2 + y2).

We also note the identity

(X2 _ y2)2 = X4 _ 2x2y2 + y 4 = (X2 + y 2 ) 2 _ 4 x 2 y 2

The integration proceeds as follows. (See below for more details.)

dv1 f2 f2

2J, 2tt

2J, o g K } "
1 C2

-
2 Ji

{log(l + V(«2 + 1)) - log( l + V(4u2 + 1))} du + i l o g l

Before we go on to use integration by parts, we stop to explain the first step
above. What we have made use of are the two formulas:

J; dv
" ' a

and

sh~xu = log |t

Now consider that

I
) - f

J
(i + V(t<2 +
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> 2 + D
= u log(l 4- V(M2 4- 1) - u 4- log (ii 4- v V + *))

log(l 4- V(4w2 4- \))du = II log(1 4- V(4w2 4- 1))

Similarly

Thus the required answer is

[II log (1 + V V + 1)) + log (II 4- V(n2 + 1))

- tilog(l -f V(4u2 + 1)) - \ log (II -h V(4«2 + I))]2 + 1 log 2

= 2log(l + V5) 4- log(2 4- V5) - 2log(l 4- V1 7) ~ ilog(4 4-

and we refrain from simplifying this.

z1 + y1 = u2

4. Working in one octant only (see figure) we see that u runs from 0 to R.
For any u the variable v ( = y) runs from 0 to u and once v is fixed the segment
is described by the variable w ( = z) running from 0 to y/(u2 — v2). We calculate
the Jacobian

^(w, y, w)

d(x, y, z)

J(x2 + y2 +

0

0

X

Z2) y/(X
2 + y2 + z2) v

l

0

- v 2 - w2)

(x2+y24-z2)

0

1
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/ = 8 du\ dv\ - dw
Jo Jo Jo V(w2 - 1 ; 2 - H'2)

[R fu rmi
= 8 \ du \ udv\ d0

Jo Jo Jo
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Note that we have substituted w = ^/(u2 — i;2)sin 0.
5. Referring to Question 3 we see that

So

d(u, v)

3(x,y)'

/ = -

n

~4"

6. In the region of interest we have x ^ y and, also since x, y ^ 0, we have, unless
x = y = 0, that

x + y

The integrand is thus bounded in the region and undefined at the origin (different
approaches towards the origin will yield various limiting values for the integrand
ranging from 0 to 1). We must therefore interpret the integral

dxdy,

where D is the region shown in the figure, as an improper integral and need to
justify its existence.

y = x
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So denote by D~ that part of the original region including (0,0) which is
bounded by x + y = S and let the remaining region the denoted by D*. We
consider the limit

lim
d-*0

dxdy.

Since the integrand is positive the limiting integral must exist either as + oo
or a finite number. But the integrand is bounded and the region of integration
has finite area. So the limit here is not oo. Thus the improper integral does converge.

We go on to compute this limit. Reference to Question 1 shows that the
Jacobian for the required transformation is 2. Thus

f1 Cuv2 1 f1 w3 1

)s J o " 2 2 2 j a lu
2 12L

1
- .
12

7. The right-hand side is the negative of the left (transpose x and y). The two
answers are different ( + j). This comes as no surprise since the integrand is
unbounded (consider its value when y = 2x).

Exercise 19.19
1. The region of integration is {(x,yyz):x < y < z). Thus for a fixed z with
0 ^ z ^ 1 the variable y runs from 0 to z. Finally, given values for z and y the
variable x runs from 0 to y. Thus the required probability is

dz\ dy\ %xyzdx= dz\ 4y3zdy=
Jo Jo Jo Jo Jo Jo

5dz = -.

2. We require to know the value for any k of Prob {Z ^ k}. So we need to

x + y < k

integrate over the region (shown in the figure).

D(k) = {(x,y):(x + y)<kif(x + y)< \,or(x - l </cif(x + y)> 1}.
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The alternative calls for (x, y) such that x + y^ 1 and x + y ^ H 1. Such
points exist if and only if 1 ^ k + 1, i.e. 0 < k. Thus the second alternative is
vacuous if k < 0. Thus for k < 0 we have

Prob {Z ̂  k) = I) f(x, y) dx dy = 0.
J J x + y^k

For k = 0 the same result holds. Now for 0 < k < 1 we have

f(x,y)dxdy +
JJx + y

y) dx dy.

Evidently if k ^ 1 the probability that Z is less than k is 1. So consider 0 < k < 1.
We have

Prob {Z ^ *} = i /

Here we have used the formula for the area of a trapezoid \h(k 4- /) where /c, /
are the lengths of the parallel edges and h is their distance apart.
3. (i) The region we are concerned with is clearly the disc of radius yj(2k) (k ̂  0).
Thus the required probability is

i rr ,
— exp {
2n)J

y2)/2}dxdy
i rin /V(2*)

= — dQ\ i
2TCJO JO

exp(-r2/2)rdr

(ii)The relation kzx ^ ^/(z2 + z2), for k> 0, is equivalent to: either zx ^ 0 or
k2z\ ^ (z2 + z2). The later inequality reads (k2 - \)z\ ^ z2. Thus the relation is
equivalent to: either zx ^ 0 or [z{ ^ 0 anJ either y/(k2 — l)Zi ^ z2 or
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z2 ^ — j(k2 — l j z j . The region is illustrated in the figure. To find the required
probability we prefer to consider the complementary probability. It is

1 ([ ,
— exp {

2*JJ

1 f+a f*
2nJ.a Jo

= _ = - arctan
2TT n

exp(-r2/2)rdr

- 1}.

The tangent of a is seen to be the slope of one of the bounding lines.
(hi) The relation \zl \ ^ kyj{z\ + z\) is equivalent to z\ < k2(z\ + z\) and this

region is complementary to the conical body illustrated below. Passing

to cylindrical polar co-ordinates we have

Zj = rcos(/>

z2 = rsin</>cos#

z3 =

and

—*' = r2 sin (j).

This is positive for 0 ̂  </> ^ a. We calculate the integral over the cone. It is

—^-— I I I exp { - (x2 + y2 + z2)/2} dx dy dz
(2n) J J J

1 C2n fa f00
= ^ T ^ i d0 s i n * ^ exP ( " r2/2)r2^r

(^) Jo Jo Jo

2TT

5_\3/2 v(1-cosa) exp(-r/2)fir = (l -cosa),
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since

f
JoNote that if cot a = k then cos-a = k/y/(l + k2), hence the required answer.

We are required to integrate over the region D(k) illustrated below in the
expression

exp{-(z2 + z2)/2}
In

Clearly a change of variable to

u = Zi+ kz2

is called for. Thus

2_fu-zl\
2 _u2-2uZl+z2

Z2~{ k ) - k2 '
Unfortunately a mixed term arises. To avoid this we take a new variable v so
that lines t; = constant are orthogonal to the lines u = constant. So take

= kzl-z2,

and then

(kzl-z2)
2 + (z1+kz2)

2

l + k2

Noting that

d(u, v)

d(zuz2)' k - 1
= - ( / c 2
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the required integral now reads

v * ' 2" )dz2dz1
D(k) In

• exp ( )dv exp I ]du.

We now put

u
s —— •

V

t = —

* = - ^

and the integral reduces to

1

2n
exp( - t2/2)dt I exp( - s2/2)<Zs = _ 1 _ ^ | Cxp( - s2/2)ds.

J-oo J-oo \/\2n)J-ac

It is well known to statisticians that if X and Fare random variables which
are independent and have identical normal distribution with zero mean and unit
variance then

aX + bY

has a normal distribution with zero mean and unit variance. This is proved by
exactly the argument above.

Solutions to selected exercises on differential equations.

Exercises 20.4
6. There is a problem here in that our characteristic equation reads

dx dy dz

x + y x — y 0

Recall that (x, y, z) is to be proportional to (P, Q,R) = (x + y,x — y, 0). Thus in
fact we have

dx dy t
= —— and dz = 0.

x + y x — y
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Thus z = c1. Also

(x-y)-(x + y)J = 0. (*)
dx

This equation is exact, since if we seek a solution of (*) of form g(x, y) = 0 we want

~ = x-y and d^-=-(
dx dy

But exactness requires

d d2q d

dy dxdy dx

which is satisfied. Solving (-I-) we get

g(x,y) = \x2 -xy + A(y\

So
^x2 — xy + A(y) = — xy — \y2 + JB(x),

or
\x2 - B(x) = - \y2 - A(y) = const. = k.

So
0 = g(x, y) = \x2 — xy — \y2 — k,

or
y2 -f 2xy — x2 = c2,

giving
z = F(y2 + 2xy-x2\

where F is an arbitrary function.
7. (a) We suppose that r ̂  0 and then we are to solve for some X

x = Xx y — Xy z = Arz.
Thus

dy y dz rz
— = - and — = —
dx x dx x

or

- dy — \-dx and - dz = - dx.
}y j * Jz Jx

Hence
c and

or, renaming constants

y/x = ct and z/xr = c2.

This yields the solution z/xr = F(y/x) for some function F. Thus

z = x'F(y/x\
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and this is homogeneous of degree r.
(b) We have

dx dy dz

1/x \/y x2 — y2

Hence

\xdx= \ydy or \x
2 = \y2 + c0.

(1)
Thus

Also

So

Our

The

x2

dz

dy

7

second

z -

general

-y2 = ct

= Cly.

= \cly
1-

solution

•\(x2-y

solution

y2)

\-c2.

is thus
2)y2=c2.

is thus of the form

(2)

(3)

Remark. Since F is an arbitrary function equation (3) can be recast in various
forms. An example follows.

Since

2y2=(x2 + y2)-(x2-y2)

z = i{(x2 + y2)-(x2-y2)}(x2-y2) + F(x2-y2)

= i(x2 + y2)(x2 -y2) + {F(x2 -y2)-\(x2 -y2)2}

and the curly bracket is a function of (x2 — y2).
7. (d) This is nasty in detail. We have:

dx dy dz

x + y x — y 1

as before (see Question 6)

dy
(x-y)-(x + y)~ = 0

dx

gives

y2 — x2
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The equations with z as parameter, viz.,

dx
— = x + y
dz

T=x-y n

dz

are awkward. We need to eliminate variables:

d2x • dx dy
-— = — + — = (x + >>) + (x - y) = 2x.
dz1 dz dz

We could solve d2x/dz2 = 2x outright. But that turns out to be a long way
round. Note that

dxd2x_ dx
Jzlz2' *Tz

So m--
But if x = 0 and y = 0 then by (*) dx/dz = 0; so here c0 = 0. Thus

dx _
dz

and so

giving

logx = yj2z-c2.
Hence

y/2z - log x = F(y2 - x2 + 2xy).

8. Again 'R = 0' so we have

dx dy
1 - (ax -h by)

Thus

Moreover

dx=~{°

+ by=— ax.

and dz = 0.

or
dy
dx
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Now the integrating factor is ebx, so

—(ebxy) = - axebx.
dx

F ebxl Cebx

-[-oxyj- y(-
Thus

b b

i.e.
ebx(abx -a + b2y) = b2c0.

Renaming the constant to c2, we get

ebx(abx - a + b2y) = c2.

Hence

z = F(ebx(abx -a + b2y)\

where F is an arbitrary function.
9. Let the surface be z = /(x, y). Say (X, y, Z) is on the surface. The normal
vector to this surface is thus

_dx dy

Hence the line through (X, Y, Z) in this direction has the parametric
equations

x = X + t^ y=Y + t^- z = Z + t
dy' dx

If this line meets the z — axis at x = 0, y = 0, z = b we have

Eliminating t gives

y—(x, y) = x—(x, Y).
dx dy

This holds at all X, Y. We solve

dx dy

by the method of characteristic curves by setting, for some

x = Ay y = - Xx z = 0.
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Thus z = cl. Also

dy x

dx y

with solution y2 + x2 = c2. Thus we have

for some function F. But, if this surface is to pass through the line x = a, y = z,
we have that

Taking t = a2 + y2 we obtain F(i) = yj{t — a2} so that in general

z = F(x2 + y2)

= VI*2+ / - a b -

solutions to selected exercises on Laplace transforms

Exercises 21.15

. . 5 3
, L { 3 } . { } 2

s - 4 s + 2 s2 s

L{(t2 + I)2} = L{t* + 2t2 + 1} = ?J + 1 + i ,

s-a

2s-3

2 s - 1 8 2 4 - ^ 1 [ 2s 6-3 24 30

? V 2 2 l2 ' -"2
18 2 4 - ^ 1 [ 2s 6-3
9 ? j V + 32 s2 +

, 30t5/2

: 2cos 3t - 6sin 3t 4- 4t3 ,
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s2-2s-3j l(s-3)(s+l)

- 4{s + 1) 4(s-3)

3. (i) We shift the origin so that the side conditions are at the origin instead
of at t = 2. We do this by introducing a function g(t) with

Thus g(0) = /(2); we also have g'(t) = f'(t 4- 2) (so that #'(0) = f'(2)) and

9"(t) = /"(* 4- 2). Next we substitute f + 2 for r in the given differential equation:

f"(t + 2) + 2/'(f 4- 2) + 5/(r 4- 2) = (t 4- 2) - 2,

so we now wish to solve

g"(t) + 20'(f) 4- 50(f) = r,

with g(0) = g'(0) = 1. We take transforms

2~ , *, „ c
 l

s g — s — 1 4- 2(sg — 1) 4- 5g = —
c-2

Thus
S4-3 1

s2{(s+l)2H-4}

s + 1 2

(s+ l ) 2 + 22 (5 -h I)2 -h 22

Now

s2{(s+l)2-h4} 5s2 ^ l J

„ 5 - { ( s + l ) 2 + 4}

+ l)2 + 4} 5s2{(s+l)2

s + 2 2

M)2 + 4} 5s(5)

- 5s - 10 4- (2s2 + 4s 4- 10) 2s2 - s
25s{(s + I)2 + 4} 25s{(s + I)2 + 4}

2 s - 1
:25{(s+ l ) 2 + 4}'
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Thus
s+1 2 s+1 3

{(s+1)2+ 4} 25 {(s+1)2+ 4} 25{(s+l)2 + 4}

2 1

We now see that

So, since fit) = g(t-2) we have

« 2 . ( f " 2 )

(ii) Since /(0) = 0 = gr(O), we have on taking transforms:

_ _ .-* 1

s-2

2 s ^ - ^ + s/ = 0

Solving, we obtain

(s2 + s-2[2s-l])^ = -
s-2

But
(s2-3s + 2) = (s-

so

s-2(s-l) s-2 -1
(s-l)(s-2)2 (s-l)(s-2)2 (s-l)(s-2)

-1 -1

Hence

g = 2te2f + el - e2t

and we now deduce that

= \{e11 - l2-2te2t + 2e2t + ̂  - 2e2'] - [2te2t + <?-

= \{2e2t-6te2t-2e1}
= ^2r - 3te2t - e\
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f l i p p
l(s + 3)(s-l)j Jo Jo

l l P P
}=\ s'mue~(t~u)du = e-t\ eusin'

+1)J Jo J0The most direct way of solving this integral is to see sin u as the imaginary part
of e'". [Alternatively, one can use integration by parts.]

eV" du = r ^P i i i±Ml ' = rexp{(i+l)t}(l-i) _ \-f\
o*6 " L i+1 Jo L 2 2 J

The imaginary part here is

\e*{ —cost + sinf} + | .

Hence the required function is

\{ - cosr +sinf} + \e~l.

5. We use the substitution t = sin2 6.

f */2 1 f*/2
s i n 2 p - 1 ^ c o s 2 < ? " 1 ^ ^ = - si

Jo 2j0

In particular

[n/2 [n/2
sin* 6 cos6 0d0= sin

Jo Jo

10. - | e-stf(t)dt= j — {e~stf(t)}di
dsjo Jo ds

and the result follows by repeated application of the above formula. (Evidently
the manipulation is justified for s large enough, provided / is of exponential
growth at most.)

If a linear ordinary differential equation of order n with independent variable
t has coefficients that are polynomials in t of degree at most m, its transform
will be a differential equation of order m with polynomial coefficients of degree
at most n. The transformed equation may therefore represent a lower order
equation if m < n. Otherwise the transform does not reduce the problem; at best
in some cases the algebra may prove to be easier.
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12. By Section 21.11 we observe

F(u)du \ = -F.
J s

Hence, if we put

u

we have uF(u) = f(u) and using the last question

d
f = L{uF(u)} = L{F(u)},

ds
so that, integrating from s to infinity,

f ° °~ - FJ , V

Here we have used the fact that the transform vanishes at infinity. Finally, using
the observation made at the beginning of the question we have

L<\ du} = -F = -\ f(v)dv.
Uo " i s sjs

Applying this result when f(u) = sin u, we have

f ( f r s i n M J ] 1 f00 1 1 , \[n , 1
L< \ — - d u > = -\ — rft; = -[tan y]!° = - — t a n ! s .

Uo « J *JS ^ + 1 5 5L2 J
i particular, by the final value theorem,

f^sinu ITTT , 1 7i
aw = h m s - — t a n *s = - .

Jo « ,^o ^L2 J 2
We recognise that

d 1 1
— {log(5 4- a) - log(s 4- b)} = -

But =L{^-

L{r/(r)}=-y7

13. We follow the hint

d f* __.sinat . i - 5

cos atdt = -
sinar f« sr

dt= e 5t

t Jo
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so, integrating with respect to a between 0 and a, we obtain

<D(a)= e - s ' S 1 I ^ r = tan-1(a/s).
Jo t

[Note that JO' da = O(a) — <I>(0) = Ofa)-] Finally putting a = 1, we obtain the
desired result

Exercises 21.16
3. Following the hint we put i// = 26 and obtain

r*/2 f«
sin2p20d0 = ±si

Jo Jo
r*/2

= 2 | s i
Jo

The latter equation holds by symmetry (reflection in the vertical ^ = n/2).
Thus we have using the result of Question 5 in the last set of exercises:

[n/2 rn/2
B(p +1,1) = 2 sin2p 20d6 = 2\ 22p sin2p 9 cos2p 6 d6

Jo Jo

We make use of the gamma function and obtain:

r ( 2 P + i )

Hence, using F(a + 1) = aT(a), we conclude that

or, finally,

5. We have

Hence
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Now recall from an earlier question (Section 21.15 Question 10) that

ds

We are almost ready to take the inverse transform of the differential equation.
We need, though, to compute the effect of the multiplication by s. Using
L{g'} = sL{g} — g(0\ we have here

(dt

We therefore conclude that the inverse transform of the equation is

dt
or

Stf(t) + 4t2f'(t) - 2tf(t) - f(t) = 0,

or
f'(t)= ( 6 f - l ) = 1 3

f(t) At1 At1 It

Thus
log/(r)=---§logf

and so

which is continuous at t = 0. We can determine the constant C by some cavalier
approximation. We note that

as

On the other hand, for large t,

and

so we deduce, by way of the final values theorem, that
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6. We take Laplace transforms

L{r*}L{f} =

s

so

sl~*L{g}.

We consider the transform of <j>'(t) where

1 " J o l

Now L{(/>'} equals sL{(/>} — </>(0). But 0(0) = 0, so, using the convolution theorem,

Thus

and this verifies the assertion of the exercise. Note that, of course, L{t*~1} exists
provided a > 0 and L{t~a} exists provided — a > — 1, i.e. a < 1; this explains the
assumption 0 < a < 1. Observe that by Question 10.

sin;ra

7. We use the substitution u = t — n in the following formula

L{f(t-n)}= \e-*f(t-n)dt
Jo

- j :
so, since f(u) — 0 for u ̂  0, we obtain

L{f(t-n)}=e-*nL{f}.

We take transforms of the lag equation and obtain

7 -7
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whence, for large enough 5,

7 - , 1 _,- , '_,

= \{l - e~'/s + e~2sls2 - e~isls3 •

Now it would be WRONG to conclude:

Recall that the formula (*) was derived on the assumption that the function to be
transformed is zero to the left of the origin. To rectify the formula we would
need to interpret each of the functions t2, t3, tA,... as being zero to the left of the
origin. Hence for any t the summation stops as soon as n is such that t — n + 2 ̂  0.
i.e. when n ̂  t + 2. Thus when n = [f] + 3 (and beyond), the appropriate term is
interpreted as zero. The summation thus terminates at n = [f] + 2.

8. We follow the usual argument:

Jd
e-«f\t)dt

[" e-«f(t)dt- [
Js

= sLd{f}-e-sSf(S).

We perform the required differentiation:

0(0 =

0"(O=-|e-'-r1/2-|

Thus

g"(t)= -g\t)--g'(t\

It is not possible to take a Laplace transform in the usual way, since g(0) is
undefined and we cannot use the formula L{g'} = sL{g} — g{0). Nor can we
consider working with h(t) = g\t) and taking ordinary transforms of the equation
(*) since h(0) is undefined. Instead we therefore use the Ld transform. We observe
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first that

Ld{r} = sLd{f'}-e-sdr(5)

= s{sLd{f}-e-sdf(S)}-e-sdf'(d)

= s2Ld{f}-se-s*f(5)-e-sdf'(d)

and that

d

ds

If we use ° to denote this new transform, our equation transforms to

- 2 - {s2g - se~sdg(3) -e~sdg\3)}-2-{sg-e~sSg{3)} + Sg-e~sdg(S) = 0.
ds ds

Thus

- 2{2sg + s2g' -e~sdg(5) + sSe~sdg(S) + 3e~sdg\3)}

- 2{g + sg' + 3e~5dg{3)} + sg- e~5dg(3) = 0,

where g' denotes the s derivative of g. We have

g'l - 2s(s + 1)] + gl - 3s - 2] = e~s\ - g(3) + 23g\3) +

i.e.

., 3s+ 2 „_•
9 + 2s(s+\)9~

where K and L tend to zero with 3. We rewrite

3s + 2 _ 1 - 1

2s(s+l) s ( -2 ) ( s+ l ) '

The integral of this last expression is log s + 1 log (s -1-1), the integrating factor is
thus the exponential of this, i.e. s^(s + 1). Thus

— {gsj(s + 1)} = j ^ .

Integrating up from 1 to s, and letting the constant on the left-hand side be
— C(3), we obtain

gsyjis + 1) = C(3) + K(3)I{(s) + L((5)/2(s),

where I{ and I2 are the appropriate integrals. Now since e~sd^e~d on [l,s],
note that, for example

dsi + 1)'

which for a fixed s remains bounded as <5 tends to zero. Letting S tend to zero
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we obtain:

C
3 = Sy/(S+1)

Here C is the limiting value of C(S) as 6 tends to zero. We can now invoke the
final value theorem. The limit of g(t) as t tends to infinity is the well known
infinite integral with value jn/2. On the other hand

lim sg(s) — lim —

Thus finally,

9. Recall that

l iml 1 +*Y=

C r
\s+l)

ex.

Hence, for fixed t we have

lim f(n9t) = e~ttx~1.
n-*cc

Hence for x > 0

Jo

f00

lim/(n,
Jo

f00
= lim /(n, t

Jo

= lim l 1 - : ) ^ " 1 ^
Jo V n/

t)dt

t)dt

where it remains to justify the limit manipulations. Before we do this we put
v — t/n and obtain:

i:(-:0"-
= (l-^v1

Jo

Jo

ux~1ndv

(\-v)nvx~ldv
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(T w*T f1 X 1
= n*<H (l - i ; )"- + n(l-t;)n-1-Ji;>

I L * Jo Jo x J

* Jo
« n - l n - 2 1 f1 . < ,

•-• • ••••• v" x 1 dv
x x + 1 x + 2 n-\-x — lJo

x-(x + 1)

We have assumed implicitly that x is not an integer. As regards the manipulation
we note that

so
t

n\og[ 1 -

hence

1 - -

Consequently,

Bu* $9(t)dt = T(x) exists for x > 0, so g provides the required domination.
10. As x and 1 — x are positive and are not integers we may use the Gauss
formula.

r ( x ) r ( i - x ) = H nn'

= lim

= lim-

= lim - -
x(l - x 2 ) ( l -x2 /4) . . - ( l - x2/"2)

x(x+ 1

x ( l + *

1

x ( l - ;

1

•)-(* +

n\

:)(l-x)

n\

c2)(4-;

•n)

n

x2)

1

n\

(n + x

f

~>(n2

Z)\ 1 — X

)(/i-x)

+

• ( M

l + (

•••(1-x + n)

n

- l - x )

1

I-*)/"}

sin nx



Selected solutions for Chapter 22 517

Solutions to selected exercises on series solutions of differential equations

Exercises 22.10
1. Substituting into the equation we have

The first few lowest powers are contributed by the first series; these are xy~2,
xy~l, xy. Thereafter (i.e. from xy+l onwards) contributions arise from both series.
We thus have

aoy(y + 1) = 0, and so y = 0 or y = — 1,

3) = 0 so a2 = 0.

The general recurrence relation is

Taking y = 0 we obtain al=a2 = 0 and hence a4 = a5 = 0, etc. The nonzero
coefficients are of the form a3k and we have

a3(k + 1) (3k + 3)(3/c + 2)

Thus the series may be regarded as being in the variable x3. To obtain the radius
of convergence we calculate the ratio of consecutive coefficients:

a3k

and so the radius of convergence is oo.

Now we consider the case y — — 1. This time ax is arbitrary. It may be checked,
however, that the part of the series with coefficients auaAian,... is the same as
the series obtained for y — 0, apart, of course, from a constant multiplier. We
therefore lose nothing by putting ax = 0 (so that aA = an = • • = 0). The recurrence
relation for the coefficients a0, a3, a6,... is

Here again the radius of convergence is oo.
2. We make the change of variable suggested: t = mx. Let D denote differentiation
with respect to f, then Dx = m~lD. The equation thus transforms to

m2t2rn~2D2y + mtm~ lDy + (t2 - n2)y = 0,
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or
t2D2y + tDy + (t2 - n2)y = 0.

But this is the same example as in Section 22.3. Thus y = Jn(mx) is one of the
solutions.
3. This is known as Legendre's Equation. Carrying out the usual substitution we
have on the left-hand side:

0

so the equation reads

£an(n + y)(n + y - l)x"+""2 + £an{k(k + 1) - (n + y)(n + y - 1)
0 0

or

We first inspect those lowest powers of x which occur in only one summand (viz.
xy~2,xy~1) and obtain the equations

aoy(y — 1) = 0, so y = 0 or y = 1,

The general recurrence relation is

fln+2(« + 2 + y)(w + 1 + y) = - an{k(k + 1) - (n + y)(n + y + 1)}.

First consider y = 0. The recurrence relation now reads

Thus we have

= {/C(/C+1)-K(K+1)}^ = ( f c - # + n+l) f l

fl/l+2 (n + 2)(n+l) fln (HH-2)(n+i) fl"'
so

(2m)!
and

Let us put 6m = a2jao and cm = a2« + i/ai- Then we obtain the solution
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and there are already before us two linearly independent solutions corresponding
to the two summation signs (so we need not consider y = 1). Observe that

an (FI + 2)(H + 1 ) '

as n tends to infinity. Thus the radius of convergence is 1.
If k is an integer, we see from (1) that ah + 2 = 0, so there is a polynomial solution

to the equation.
4. Since / ( — x) = — / ( x ) the cosine coefficients are zero. Thus

-bn= \ x sin x dx = [ — x cos x] J -I- cos x dx
2 Jo Jo

= 7t + [Sinx]j = 7T,

i.e. />„ = 2. Thus /(x) ~ 12 sin nx.
6. One way to deal with this is to use Riemann-Stieltjes integration. We let v(x)
be any continuous function with v(n) = vn (e.g. the function whose graph consists
of straight edges passing through the points («, vn)). Let u(x) be defined similarly
and let U(x) be defined by

J - l
U(k)= f u(x)dlx]= X un

J 0<n<k

Then we have

X \+lU(x)dv(x).= ^mC/m-yn_1l7n_1 - X \
"-Or

But in [r, r + 1) l/(x) is constantly equal to Ur. The right-hand side is thus equal to

n

= vmUm-vKUm-l-
m£ur{v, + l-v,}. (1)

n

Let S(x) denote the sum to infinity wo(x) + wx(x) -f M2(X) + • • •. We assume that the
functions w,(x) are bounded (in view of the application). Let a small number S be
given. By uniform convergence there is N so that whenever n and m are beyond N
we have
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independently of the choice of x. It follows that S(x) is bounded as a function of
x. (The function is no bigger than uo(x) + ux(x) + —h uN(x) + S and that is
bounded.) Evidently, if

1

then for any small number 3 there is K so that, for n and m ̂  K,

i.e. the tail end of the series has to be small and most of the sum resides in the first
K terms.

Thus, if M is a bound on S(x) and m and n are large enough, we have by (1):

So assuming vH -* 0 as n -> oo we see that the tail-end sum may be made small
independently of x. Actually of course, we can make the tail-end sum small without
vn -+ 0. The point is that

Vm = Vm-Vm-l+Vm-l-Vm-2+'~+VH+l-VH + Vn

so

n+ 1

In particular the sequence vm is bounded, say by V. [Actually, this calculation
tells us that vm converges.] Thus the term

| Um(x)vm - Un^(x)vn\ = \(vn - vm)Un-x(x) + vJLU.-Ax) - UJLx))\ (2)

may be estimated as follows. Suppose S(x) > 0 (so that for large m and n the same
is true of Un(x) and Um(x)). Say vm > vn, then the term in (2) is no greater than

6Um. x(x) + 1^1 | C/n_ M - UJx)\^ SM + V\ Un. ,(x) - UJLx)\

which can be made small for n, and m large, provided also S was selected small
enough.

The three applications are now obvious.
7. We follow the hint

= \
J -n

- 2f(x)g(x) + g(x)2} dx
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= j f2 dx - 2 £ i I arf(x) cos rx dx + 6r/(x) sin rx dx i
J - K r=l U-7T J - * J

- 2 [ " f(x)\aQdx+ f* ^2t/x

= f" / 2 dx-2 ia o ; : a o -2 f {nar> + nbr
2}

J - J C r = l

r r« »
+ \ \ YJ {a,at cos rx cos tx + 2ar6f cos rx sin rx + brfct sin rx sin fx}

-f J] a0arcosrx+ ^ ao6f s
r = l f = l J

f2 dx - aonao -
J —n

Hence

as required.
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1. Mass of constant density 2 is distributed uniformly along [1,3].
Additionally unit point masses are placed at x = 1,2,3. Compute a(x) = the
total mass lying in [ l ,x] and sketch its graph. Find the following 'moment
of inertia':

x2d(x(x).

2. Compute

Ill, dx dy dz

where V is the tetrahedron x + y + z ^ 1, x, y, z ^ 0.
3. Prove that

It may be helpful to consider

/(x)

where R is the rectangle
4. Find the volume common to the sphere x2 + y2 = a2 and the cylinder

x2 + y2 = ax (which is centred at (a/2,0)).
5. Show that (4T)G = (AG)T, where AG is the strong generalized inverse of A.
6. Show that the vector x nearest the origin which satisfies Ax = b

(assumed consistent) is x = AGb. [Hint: Consider x = AGb + (/ — AGA)z and
use Pythagoras' theorem.]

7. Find the minimum and maximum of x2 + y2 + z2 subject to

x2 + 2y2 + z2 + 2yz = 1,

y + z = 0.

522
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8. Show that

f
Jo

= n(\ + log n)- log (n\).

9. Show that

[Hint: fl(p,p) = 2 ^ ( l - ty~ldt = 4 sin2""1 flcos2*-1 Odd.']
J J

rn/4.
= 4 sin2""1

Jo
10. Find the volume of the wedge of the cylinder x2 + y2 < 2ax contained
between the planes z = mx and z = nx where m> n.
11. Evaluate JJ^x^x^y where R is the interior of the curve r = 2a(l + cos#).
12. Evaluate JJx'"1^logx+ \)dx.
13. Solve the equation

Jo

with /(0) = 0.
14. Show that for any point (x, y) # (0,0) there are two real values for k2 satisfying

with one value, call it s2, lying in (0, c) and the other, call it t2, lying in
(c, oo). [Hint: If /(A) = A2(/l2 - c2) - y2k2 - x\X2 - c2), consider /(0) and
/(c).] Show that

Describe the contours s = constant and t = constant. What contours are
obtained in the limiting cases when (i) s -> 0, (ii) s-*c, (iii) £ -• c. What is the
transform of (a) x = 1, and (b) y = 1.

Compute the Jacobian <3(x, y)/d(st t).
15. Evaluate

f
Jo

Jo (*2 + I)2

[Hint: For a ^ 1 evaluate

dxr
Jo
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and differentiate your result with respect to a.] How does your result
generalize for powers higher than 2 outside the bracket?
16. A transformation of the positive quadrant is given by

u = V* + >/y>
v = xy

Show that the w-contours are parabolas tangential to the x- and y-axes.
[Hint: Square u and consider X = x + y and Y = x — y) Determine the
vanishing points of the Jacobian of the transformation and interpret their
geometric significance in terms of the u- and u-contours. By considering an
appropriate local inverse transformation, find the («, y)-image of the set
{(x, y): 1 ^ x&y ̂  x] and sketch it on a diagram.
17. Repeat the problem when

and the region to be transformed is {(x, y): 0 ^ x ^ 1 and y^x2}
18. A function fd(t) is defined for S > 0 by the integral

/*) =

Find fd(t) for t > — 1. (You should justify your manipulations.) By
integrating back your answer with respect to t from 0 to a show that for a > — 1:

as <5->0.

Deduce that

dx — log 2.
o log*

19. The incomplete Laplace transform L6 for S ̂  0 is defined by

f= f(t)e-stdt.
s

Verify that

Ld(f') = sLs(f)-e-sdf(5\ (1)

and

Ld(tf(t))=-~Ld(f). (2)
as

A function g(t) is defined for t > 0 by the integral

g(t)= -e~udu.
Jt u
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By splitting the range into [r, 1] and [1, oo) show that

Deduce that l im^0 Sg(S) = 0. (3)

Show by changing the order of integration that lim^^ sLd(g) = 0. (4)

Starting from tg\i) = -e~l derive the result for S > 0 that:

~vLd(g) =
Jv+l

[Hint: Apply (1) and (2) then using (4) integrate with respect to s from v to
infinity. You will need to make the change of variable u = (v+ \)S and split
the range: [£, oo) into [S,S(v + 1)] and [S(v + 1), oo).]
Use (3) to deduce that sL0(g) = log(l -h s).
Why could we not apply the Laplace transform Lo directly to tg'(t)t

20. (i) Assuming that the series £>„ converges show by considering
an = sn - sn_ i (where sn is the sum to n terms) that an -*• 0 as n - • oo.

(ii) Give an example of a series where an - • 0, but £ a n diverges.

(iii) Use the graph of x sin x, to explain why

1x sin x dx
o

does not exist. (Put an = ^n
+1)nx sin x dx.)

(iv) Show also that

f
Jo

1 + x 2 -dx

does not exist. Note that 1/̂ /2 ^ |sinx| for
nrc -I- 7t/4 < x ^ W7c + 3TT/4 and that for x ^ 1, ^x ^ x3/(l + x2).

(v) Does j j [x2 sin x/(l -f x2)]dx diverge? Justify your answer.
(vi) Show that J* [x sin x/(l -f x2)]iix converges (conditionally).

(vii) Show that xp/(l + x2) is eventually decreasing when p < 2. Deduce
that for p < 2,

r xpsinx
^

1 + x 2

converges.

21. By dissecting the four-dimensional simplex S

x +

into tetrahedra (obtained by holding t constant) show that
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JJJJdxdydzdt = —a4.
4!

[Hint: The volume of the corresponding three dimensional simplex is £tf3.]
22. Show that AB and BA for square matrices A, B of size nxn have the
same eigenvalues. Deduce that AB — BA = I is impossible.
23. Show that the non-zero eigenvalues of a real antisymmetric matrix are
all purely imaginary.
24. Show that for the matrix

c = }
where A and B are square, Spectrum (C) = Spectrum (/I -I- £ ) u Spectrum
(4 - B). (Spectrum (M) denotes the set of eigenvalues of the matrix M.)
25. If /I is a real symmetric matrix and X is an eigenvalue of multiplicity m,
show that m = dim N(A — kl).
[Hint: Diagonalize A.]
26. Using row reductions find the rank of the following (m+ I) x m matrix.

1
— m

1

1 •-.
1 •••

— m •••

1
1
1

1 1 ... -n

27. Find the eigenvalue of the matrix

' a b b

b a b

b b a

_b b b ... aJ

corresponding to the eigenvector e = ( 1 , 1 , . . . , 1)'? What is its multiplicity?
[Hint: Use Questions 25 and 26.]
28. By writing A = al + bU find A 2 as a combination of / and U and hence
determine constants c and d such that A 2 - cA + dl = 0. Hence find Spectrum (A).
29. If A is positive definite prove that

(i) au > 0 for each i;
(ii) aiiajj>\aij\

2 for i^j.

30. Suppose X is an eigenvalue of A = {aiy} and /lx = Ax. By considering r
such that |xr| = max{|x1j , . . . , |xj} , show that \an-k\<Ji^\aTi\. Deduce
that the tridiagonal matrix
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' a - 1
- 1 a - 1

- 1 a

- 1

- 1 fl.

is positive definite for a > 2. Solve the standard recurrence relation for the
Sturm sequence to show that for a = 2 the matrix is likewise positive definite.
31. Show, given any e > 0 that if A = {atj} is any square n x n matrix there is an
n x n matrix B — {bu} with all its eigenvalues distinct such that \bi} — atj\ < e
for 1 ^ i,j ^ n\ i.e. B approximately equals A. [Hint: Reduce A to upper triangular
form.]
32. If / :R->R is an increasing convex function and T=f\_W] is convex,
show that / " l: T -> R is a concave function.
Remark. If / is continuous then T will necessarily be convex.
33. A point x is a convex combination of n + 2 points of S £ [Rn, say of
xo ,x! , . . . ,xn + 1 . Show by considering the n -I-1 linearly dependent vectors
xx — x0 , . . . , xn+! — x0 that there are constants a0, a l s . . . , an +1 not all zero such that:

a^! 4- ••• +an + 1xn + 1 =0 ,
a i H K*n + i = 0 -

If x = y ox o -+• ••• -h yfl + 1xII + 1 show by selecting an appropriate k that

x = (y0 - XCLQ)XQ + . . . + ( y H + l - kctn + l ) \ n + 1

is in fact a convex combination of fewer than n + 2 vectors.
[Hint: X = y./a, for an appropriate positive a,.]

Deduce Caratheodory's Theorem that if S c [R", then every vector of
conv (5) is a convex combination of n + 1 (or fewer) vectors in S.
34. If C is a convex set and zeC define the 'face determined by z' to be the
largest convex subset F of C such that z is in the relative interior of F. The
dimension of F is then the 'facial dimension of z\ denoted /-dim (z). If C is
the triangle conv {x1,x2,x3} what is the face determined by z when (i) z does
not lie on any edge of the triangle; (ii) z lies on an edge but is not a vertex;
(iii) z is a vertex? In each case what is the facial dimension of z?
35. If C = conv(S) where S is a. finite subset of IR2 and zeC show that there
is always a point of S in the face F determined by z. [Hint: By
Caratheodory's theorem zeFnconv {s1,s2,s3} for some three points of 5.]
Let z(t) = z + t(s- z), so that z(0) = z and z(l) = s. Show that there is a
largest value t0 of t such that z(t)eF. Deduce that z(t0) has lower facial
dimension than dim (F). [Hint: z(t0) is not in the relative interior of F.]
36. Let Sl,S2,S3 be three finite subsets of IR2 and suppose zteconv(S,) for
i = 1,2,3. Pick 5, in St to lie in the face determined by z, (as in the last
question). Show that for some scalars a1?a2, a3 not all zero.
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Define z((t) = z{ + ta.-fo - z,). Show that

(i) zx + z2 -f z3 = z^f) + z2(t) + z3(r), and
(ii) for some value of t one of the vectors z,(f) has lower facial

dimension than z,.
37. Conclude from the last question that if xeconv(S 1 + S2 + S3) then for
some yu y2, y3 we have x = yx + y2 + y3, where each ylGConv(Sl) and for at
most two exceptions y.eS,. [Hint: Suppose that / -d imtzjH-
/ - d i m ( z 2 ) + / - d i m ( z 3 ) is at a minimum.]
Remark. The Shapley-Folkman theorem asserts that if S 1 , S 2 , . . . , 5 m are
compact (e.g. finite) subsets of W and m>n then any xeconv(S 1 + ••• + Sm)
may be expressed in the form

where, for each i, 3/,GConv(5,) and with at most n exceptions y.eS,. (The
proof is a simple generalization of the argument leading up to the last question.)
38. (Homogeneous programming) For the problem: maximize/(x,y,z)
subject to gx(x, y,z)^c and g2(x, y,z) ^ d, where f,gug2 are homogeneous
with respective degrees /, m, n, and c, d are constants, show that the
Kuhn-Tucker conditions imply the following equation.

'/max + ^lmC + ^2"d = 0-

Show that the equation is also valid for maximization with equational
constraints. [Hint: Euler's equation].



Appendix A
Existence of the Riemann integral
and of the Riemann-Stieltjes integral

In Section 17.3 it was asserted that both the over-estimate and the
under-estimate approach to the definition of the Riemann integral
agreed when the integrand is continuous. We give a proof of this
fact; the same argument easily extends to a proof that the
Riemann-Stieltjes integral of a continuous function with respect to
an increasing function exists (Section 17.6).

Let /(x) be continuous on [a, h]. Our objective is to show that for
appropriate partitions P the lower estimate L(P) and the upper
estimate U(P) are approximately equal. We begin by setting
ourselves a target discrepancy of at most e > 0 between the lower
and upper estimates. Since / is continuous (Section 17.4) at x = a,
there is a (5X > 0 such that \f(a) — f(x)\ ^ s whenever a ̂  x ^ a + (5̂
Hence if a ^ x, x' ^ a + 3X we have

\f(x) -/(x')l *S I/W -f(a)\ + \f(a) - / (x ' ) | ^ 2e.

So if P is a partition with xl=a-\- Sl we have 0^M1—m1^ 2s.
Now we can repeat the continuity argument at ax = a + <5t and
obtain (52 so that |/(at) - / ( x ) | ^ e whenever ax ^ x ^ ax + <52- Thus
|/(x) —/(x')| ^ 2c whenever ar ^ x, x' < ax + S2. So if P is a partition
with xx = ax and x2 = ax -f ^2

 w^ have

O ^ M i - m i ^ e and 0 ^ M 2 - m 2 ^ 2 e .

It would seem natural to define a2 = al+d2 and to continue the
same argument until for some n we reach an = b. Some care,
however, is needed: the choice of dx,62 etc must not be arbitrary.
Suppose we always choose the 5n to be as large as possible, applying
the rule that if an < b, then

Sn + l= max {d>0:an + S ^b and (Vx, x' in

529
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y
etc.

(See the remark at the end.) Suppose that the defined points
ai<a2<a3< -satisfy an<b for all n = 1,2,3,.... Let
a' = sup {an: n = 1,2,3,...} so that an<a! < b for all natural numbers
n. We appeal to continuity at a'. We have for some 5' > 0 that
l/(<0 —/(*)l < e whenever a' - 5' < x ^ a'. But for some n,
a! — 5' <an<a'. Consequently, if x,x' satisfy: an^x,x' <a', we have

Thus

I/W -/(x'

+ x = an + <5n

- / ( x ) ^ 2e.

ar and we have a contradiction.
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So there is, for some n9 a partition P* = {a, a1,..., an) of [a, b] such
that for each r, 0 ^ Mr - mr ^ 2e. It now follows that

U(P*) - UP*) =

- a).

Thus the discrepancy was out by the factor 2(b - a), never mind!
Evidently if P is any partition finer than P* we shall still have

Our conclusion is that with fine enough partitions we can control
the discrepancy between upper and lower estimate to be as small as
we wish.

y i

Underestimating
U(P*) - UP*)
= Dotted area
<2e(b -a)

Remark In the above proof we have tacitly used the fact .that for any
c < b the supremum of the set

{S > 0: c + 6 , x' in [c, c + <5]XI/M - 2e)}

is in the set, i.e. that its maximum exists. This is easily checked and
relies on the continuity of/.

How does this proof extend to the Riemann-Stieltjes case?
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Consider the partition P* above. Suppose a is increasing. Given any
choice of tr with ar_ x ^ tr ^ ar we have that rnr^f(tr) < Mr Hence
since a is increasing

mr(oc(ar) - a(ar _ x)) < /(rr)(a(ar) - a(ar. x)) ̂  Mr(a(ar) - a(ar_ x)).

With the obvious notation for lower and upper estimates we therefore have:

La(P*) = X mM<>r) ~ a(ar_,)) ^ X /WC^r) - *<h-1))

(1)

UJLP*) - La(P*) = X (K ~ mr){z{ar) - z(ar.,))

r-i))

(2)

Thus the general Riemann-Stieltjes sum lies between La(P*) and
C/a(P*). Again we have

The results (1) and (2) remain true for any P finer than P*. Thus the
lower and upper estimates are close provided the partition is fine
enough. Hence

(3)

It follows that the limit of the Riemann-Stieltjes sum also
exists - being caught between the upper and lower estimates - and
that the Riemann-Stieltjes integral equals the common value in (3).
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Lagrange multipliers

The argument presented in Chapter 16 justifying the Kuhn-Tucker
theorem does not apply to the non-linear programming problem
with equality constraints. This section is devoted to a sketchy
justification in the special case of two variables and the more general
case of several variables (where the argument is similar in spirit).

The simple case of two variables

Consider the problem

maximize /(x, y)

subject to g{x, y) = 0.

Let us suppose that the maximum occurs at (x, $) and that, in
principle, we can 'solve' the equation g(x, y) = 0, i.e. express y
explicitly as a function of x (at least near x = x), say as y = h(x). We
use the existence of h(x) to turn the constrained problem into the
unconstrained problem of finding the (local) maximum of/(x,/i(x))
which occurs at x = x. The Lagrange multiplier then allows us to
eliminate all reference to h(x).

We begin by examining the stationarity condition for

Applying the chain rule we have:

dz _df $fdh_
dx dx dy dx

so

dh dfldf ( df \
— - = - - - / - - . a s s u m i n g - - # 0 . (1)
dx dxj dy \ dy )

533
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But we have the identity

which we may also differentiate. Thus

hence

dx dy dx

dh dg Idg ( . dg
— = - — / — assuming—
dx dxl dy \ dy

(2)

We may now eliminate h'(x) between and (1) and (2) to obtain

dxl dy dxl dy

or

Sfldi = dfldg_

dxl dx dyj dy

Calling the common value in (3) k we have

(3)

or

df_
dx

df
dy

ox

d~yif

dx

,dg

dy\

-Xg) = O

(4)

(5)

The conditions (5) assert that the expression in x, y9 k

L(x, y, k) = f{x, y) - kg(x, y)

known as the Lagrangian of the problem has a stationary point. We
have thus converted a constrained optimization problem to an
unconstrained one. The term 'A' is called a Lagrange multiplier.
Notice, that the problem of identifying the optimum reduces now to
solving the three equations
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dx

Ty =

dL_

d~x~

dx

Ty~'

9(x> y

dx

for the three unknowns. This may, in principle at least, be carried
out and might not require the calculation of h(x). The beauty of this
method lies in the fact that it easily generalizes to problems
involving more variables and more constraints. For instance, to solve
the problem

maximize f(x, y9 z)

subject to g^x, y, z) = 0

and

we introduce two Lagrange multipliers, one for each constraint, say
kx and k2, and look for stationary points of the Lagrangian

L(x, y, z, kl9 k2) = f(x9 y, z) - ktffa y, z) - k2g2(x, y9 z).

Geometric interpretation

The stationarity of the Lagrangian may also be written in the form

It is instructive to interpret this condition geometrically.

Vf
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In general the contour /(x, y) = /z, when fi is near the optimal value,
intersects the contour g(x9 y) = 0 in two points, say P and Q. As k
approaches the optimal value the chord PQ approaches the position
of the tangent to the ^-contour at M. Thus the normal to PQ
becomes parallel, in the limit, to V#(x, y). But PQ is also a chord to
the contour /(x, y) = \i and, surely, therefore tends to the tangent at
M of the contour /(x, y) = max. Hence the normal to PQ also
becomes parallel, in the limit, to V/(x, y). Consequently, as both
gradient vectors are parallel, we have

The general case

We wish to maximise f(xl9...9xn) subject to the m constraints

(6)

gm(xu...,xn) =

We shall suppose that the optimal point is x = (x1?..., xn). Following
the special case, we attempt to solve the m simultaneous equations
explicity in such a way that some of the variables are expressed as
functions perhaps of the first few, say of xu..., xk. What should k
be? Leaving this question aside, let us formulate our objective
properly. Apart from /c, we also seek functions
h^Xi,...,xj,....,hm(xl9...,xk) so that

(7)

Let us think about the constraint set Q which is given by the
simultaneous equations

02(x1, . . . ,xJ = O,

We have m non-linear equations in n variables, so it is natural to
regard ft as the intersection of m many n-dimensional 'hypersurfaces'
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(non-linear, or, distorted versions of hyperplanes), since their linear
approximations near x = x will be of the form:

etc. When n = 3 and m = 2 this is clear to visualize. Q is the intersection
of two surfaces and so is, presumably, a (one-dimensional) curve in

[R3. In the general case, where m < n, one expects Q to be an n - m
dimensional 'hypersurface' passing through the optimal point St. This
is indeed true locally at x provided the gradient vectors

(8)

are linearly independent, but a proof of this fact belongs to more
advanced courses in calculus. More is true. The 'implicit function
theorem', which gives conditions for the solubility of an implicitly
given relationship #(u, v) = 0 between v and u, tells us that near St we
can indeed solve (6) and, in fact, also 'parametrize' a piece of Q. By
'parametrize' we mean here that there exists a differentiable function
$ defined on some open ball in Un~m with values taken on ft which
include the point x. We make this a little more precise. The
assumption of linear independence made on the gradient vectors (8)
implies that the Jacobian matrix of the vector-valued function

y = g(\) = ,gm(xl9... ,

etc. namely
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dx
Sgn

has rank m. Re-labelling xl9...,xn, if necessary, we may suppose that
the last m columns of this Jacobian are linearly independent. The
implicit function theorem then says that taking u = (x!,...,xn_m) and
v = (xn_m +!,. . . ,xn) there is a function v = h(u) = h{xx,...,xn_J
defined on some small open ball centred at u = (x1,...,xn_m) with
values in Um so that

and

gx(xu x2,...,xn-m9h(xi,..., xn-J) = 0

g2(xl9 x2 , . . . , xn_m, fc(xl5..., xn_m)) = 0

gm(xu x2 , . . . , xn_m, ft(Xi,..., xn_ J ) = 0

i.e. 0(x1,...,xn_m,fi(x1,...,xll_m)) = O. Compare this with the two
variable cases above.

We have thus solved the m equations in terms of the variables
xl9...9xH.m. Defined) by

i.e.

(9)

(10)

(D(x1,...,xn_J

Then 0 transforms a small ball of Un~m into a piece of Q. We thus
know that (xls . . . ,xn_m) is where/(O(x1, . . . ,xn_J) is maximized, but
now fQ> is maximized while u = (x!,.. . ,xn_m) is unconstrained near
u = (x!,...,xn_m). Let us make some calculations. First of all, since
the maximum is unconstrained and is at (j?l5...,^n_m) we have that,
at (x 1 , . . . ,x n _J :

= 0 i.e. -
du
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or, by the chain rule,

539

0.

dx dxx

Taking transposes, we have

A-Vf = 0,

where A is the matrix satisfying

d(xl9...9xn-J

Thus S/feJr(A). Note that AT is n x (n — m), so A is (n — m) x n.
Secondly, for i = 1,2,..., m, we have by (6) near (x1? . . . , xn_m) the

identity:

Again, by the chain rule, we may differentiate this identity near
(*!, . . . ,xn_J to obtain

dx du

Once again taking transposes tells us that, in particular, at (xu..., xn_m):

A-Vgi = 0. ( i=l ,2 , . . . ,w.)
Thus V^1(x)1,...,Vgffc(x)GtyT(/l). We wish to show that at x

This will follow if we can show that the m linearly independent
gradients (8) span Jf(A\ i.e. we wish to know if the nullity of A is m. But,

rank (A) + nullity (A) = n.

Also, differentiating (10), we have

1,0,...,0,

d(xu...,xn-m)

dh^ dh2

dx, dx.

0,l,..,0,^i,...
dx2

0,0,...,1,
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So the rank of this matrix and, hence also of A, is n — m (on account
of the identity sub-matrix). But now we have

(n — m) + nullity (A) = n,

i.e.

nullity (A) = m,

as required.

Fig. 1. Beginning the construction.

Fig. 2. The construction must terminate else a contradiction arises from a' = lim an.

Fig. 3

Fig. 1

Fig. 2. Q is the curve of intersection of the two surfaces gx=0 and g2 = 0. On a
piece of Q we can solve the two equations simultaneously g1(x1,h(x1)) = 0 =
g2(xl,h(xl)). Then (xltx2,x3) = O(x1>) = (xl,hl(xl),h2(x2)) parametrizes a
piece ofQ.
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qualification 197

continuity
definition 212
criteria 217
joint 259
recognition 260
separate 260

contour plotting 323
convergence

absolute 281
conditional 282
dominated 287
uniform 287

convex
combination 115
function 184
hull 115
set 113

convolution integral 342
convolution theorem 391
cover-up rule 386
Cramer rule 102
curve length 243
cycling in the simplex tableau 172
cycloid 433
cylinder 131

decomposition
singular value 76
spectral 67
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defective matrix 62
density function 340
derivative 180
differential equation

common roots 373
general 374
homogeneous 362
simultaneous 89

dimension 6, 14, 116
direct sum 48
directional derivative 178, 187
Dirichlet's theorem 413, 416
dissection 305, 307, 335
distribution function 400
dual program 143
dual system - inequality 138
duality 137

result 41
theorem 145

economics 147
eigenvalue 59, 96
eigenvector 59
elementary matrix 37
entrepreneur 147
epigraph 184
equation - indicial 407
equilibrium point 152
error function 209
Euler's constant 385
Euler's equation 183
Euler-Lagrange equation 428, 431
even function 415, 299
exactness 352
expected reward 153
exponential growth 380
extremal ray 133
extreme point 130

Farkas lemma 138, 140
feasible point 198
feasible set 143
final value theorem 389
finer partition 227
Form

positive definite 71
quadratic 69
upper triangular 80

Fourier series 410
Fubini's theorem 305
function

affine 327
beta 398
concave 184
continuous 212, 260, 259
convex 184

distribution 400
error 209
exponential growth 380
gamma 398
homogeneous 183
jump 225, 230
linear 30
objective 144
one-to-one 313, xii
probability density 340
staircase 236
transfer 396
weighting 225
of bounded variation 241, 245, 246

functional 425

game theory 151 ff
gamma function 398
Gauss' formula 405
Gauss-Jordan elimination 169
generalised inverse

strong 106
weak 104

geodesic problem 423, 436
Gram-Schmidt process 27
grid 321

half-space 122
Hermitian matrix 62, 63
Holder's inequality 193
homogeneous equation 361
homogeneous differential equation 350
homogeneous function 183
Householder's method 92
hull

affine hull 116
convex hull 115

hyperplane 18, 22, 122

idempotent 50
improper integral

multiple integral 333, 334
single variable 266

impulse response 396
indicial equation 407
inequalities 135
inequality

Cauchy-Schwarz 24
chordal 185
Holder 193
Jensen 192, 193
Minkowski 193
primal system 138
solution set 136

infimum 127, 211
initial value theorem 389
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inner product 21
input-output systems 395
integrable xiii, 302
integral

multiple vs repeated 300
test 277

integrating factor 348, 353
integrating by parts 239
integrator 227
inverse

generalised strong 106
generalised weak 104
left 103
local 319
right 103

isoperimetric problem 423, 438

Jacobian 310
Jensen's inequality 192, 193
Joint continuity 258
Jordan canonical form 62

kernel 8, 30
Kuhn-Tucker conditions 199

l'Hopital's rule 275
Lagrange multipliers 201, Appendix B
Lagrangian 150
Laplace transform 380

table 386
least squares 53
line 18, 113
line segment 113
linear combination 4, 115
linear dependence 4
linear equations - inconsistent 105
linear part 428
linear transformation 30
local inverse 319

manipulations - finite range 261
matrix

bordered 82
defective 62
elementary 37
hermitian 62, 63
non-square 75
normal 63
orthogonal 62
reflection 92
skew-symmetric 63
symmetric 63, 92 ff
tridiagonal 71 ff
unitary 63

matrix game 152

mean value theorem
differential calculus 247
first 249
second 250

method
characteristic curves 357, 359
small parameter 418

minimax theorem 152
Minkowski functional 193
Minkowski inequality 193
mixed strategy 152
moment 400
moment (of fc'th order) 234
Mr Tomkins in Wonderland 224
multiple integral 300

non-basic variable 167
non-linear programming 195
non-negative definite 71
non-square matrix 75
norm 20
normal

cone 130, 196
matrix 63

null space 30
nullity 9
numerical integration 217

objective function 144
one-to-one 313
open set xii
optimal point 198
optimal solution 144
optimum point 195
orthant 136
orthogonal complement 39
orthogonal matrix 62
orthogonal projection 51, 68
orthogonality 25
orthogonality relations 414
orthonormal set 63
orthonormality 26

parameter 263
parameter range infinite 291
partial differential equations 355
partial fractions 387
particular solution 10, 361
partition 211,223,245

refinement 227
payoff function 151
periodic solutions 416
pivot 169
planes 18
point evaluation 230
polytope 117
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positive definite 71
power series 289
primal program 143
primal system - inequality 138
principal axes 71
principal minors 73
probability distribution 340
process

renewal 397
stochastic 396

production vector 147
program

dual 143
primal 143

programming linear 162
non-linear 195

projection 48 ff, 105 ff
pseudo-convex 194

quadratic form 69, 71
quantum jump 225
quasi-convex 193

radius of convergence 290
random variables 339
range 8
rank of AB 42
ray 118
reflection matrix 92
renewal process 397
repeated integral 303
resource vector 147
revenue 147
Riemann integral 212
Riemann-Stieltjes integral 223, 229
rule

cover-up 388
Cramer's 102
L'Hopital's 275
Simpson's 219
Trapezoidal 217

saddle point 150, 152
sample

distribution function 233
mean 233
standard deviation 234

scalars 2
separation 122
separation of variables 347
series

Fourier 410
power 289

set
affine 17
closed xii

connected 313
convex 113
open xii
solution-set 136
Spanning set 5
strategy set 151

shadow price 148, 201
shift operator 368
shift property 386
similarity 61
simplex 117
simplex tableau 168
Simpson's rule 219
simultaneous differential equations 89
simultaneous equations 387
singular values decomposition 76
skew-symmetric matrix 63
slack variables 167

generalised 167
small parameter method 418
smooth 235
solubility of equations 45
solution set 10

inequalities 136
span 5
spectral decomposition 67, 75
spectrum 60
spherical polar co-ordinates 329
staircase function 236
statistics 339, 400
stochastic process 396 - Miscellany

Question 30
strategy 152
strategy set 151
Sturm sequence 96
subdeterminants 43
sum of squares 250
sum theorem 365
supporting hyperplane 129, 187
supremum 127, 211
symmetric matrix 63, 92 ff

tangential hyperplane 129
tearing 103
test

alternating sign 279
comparison 269, 271, 276
condensation 278
integral 277

theorem
Carathedory - Miscellany, see Question

33
Fubini 305
Helly 121
Kuhn-Tucker 199
mean value 247
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mean value - first 249
mean value - second 250
Radon 121
separating hyperplane 122
Shapley-Folkman-Miscellany

Question
sum 365
Von-Neumann 152

trace 60
transfer function 396
trapezoidal rule 217
triangle inequality 25, 193
tridiagonal matrix 92 ff
triple integral 307

545

uniform convergence 287
unitary matrix 63
upper triangular form 80

value of a game 152
Van Dantzig 162
Van der Monde determinant 14
variation 425
vector space 2
Von-Neumann's theorem 152

Weighting function 225
Winnie the Pooh 223
Wronskian 11

Unconditional convergence 281 zero-sum game 151
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