
ptg

 From the Library of Wow! eBook

ptg

Advanced Qt Programming

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

Advanced Qt Programming

Creating Great Software with C++ and Qt 4

Mark Summerfield

Upper Saddle River, NJ ·Boston · Indianapolis · San Francisco

p New York · Toronto ·Montreal · London ·Munich ·Paris ·Madrid p

Capetown ·Sydney · Tokyo · Singapore ·Mexico City

 From the Library of Wow! eBook

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.
 Advanced Qt programming : creating great software with C++ and Qt 4 / Mark Summerfield.
 p.mcm.
 Includes bibliographical references and index.
 ISBN 978-0-321-63590-7 (hardcover : alk. paper)
1. Qt (Electronic resource) 2. Graphical user interfaces (Computer systems) 3. C++ (Computer
program language) I. Title.

 QA76.9.U83S88 2010
 005.1’13—dc22

2010019289

Copyright © 2011 Qtrac Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-63590-7
ISBN-10: 0-321-63590-6

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, July 2010

 From the Library of Wow! eBook

ptg

This book is dedicated to

Anna Rebecca Paterson

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

Contents at a Glance

List of Tables xiii

Foreword . .. xv

Introduction 1

Chapter 1. Hybrid Desktop/Internet Applications 5

Chapter 2. Audio and Video . .. 53

Chapter 3. Model/View Table Models . .. 87

Chapter 4. Model/View Tree Models 129

Chapter 5. Model/View Delegates . .. 185

Chapter 6. Model/View Views 207

Chapter 7. Threading with QtConcurrent . .. 245

Chapter 8. Threading with QThread . .. 287

Chapter 9. Creating Rich Text Editors 317

Chapter 10. Creating Rich Text Documents 359

Chapter 11. Creating Graphics/View Windows 389

Chapter 12. Creating Graphics/View Scenes 409

Chapter 13. The Animation and State Machine Frameworks 469

Epilogue . .. 491

Selected Bibliography 495

Index . .. 499

www.qtrac.eu/aqpbook.html

vii

 From the Library of Wow! eBook

www.qtrac.eu/aqpbook.html

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

Contents

List of Tables xiii

Foreword . .. xv

Introduction

1

Acknowledgements . 3

Chapter 1. Hybrid Desktop/Internet Applications .

5

Internet-AwareWidgets .
6

UsingWebKit 21

A Generic Web Browser Window Component 22

CreatingWeb Site-Specific Applications 30

EmbeddingQt Widgets in Web Pages 44

Chapter 2. Audio and Video . .. 53

UsingQSound andQMovie 54

The PhononMultimedia Framework . .. 60

PlayingMusic 64

Playing Videos . .. 80

Chapter 3. Model/View Table Models 87

Qt’s Model/View Architecture . .. 88

UsingQStandardItemModels for Tables 90

Changing a Table Model through the User Interface 91

A QStandardItemModel Subclass for Tables 102

A QSortFilterProxyModel to Filter Out Duplicate Rows 107

A QSortFilterProxyModel to Filter In Wanted Rows 109

CreatingCustom Table Models . 113

Changing a Table Model through the User Interface . 113

A CustomQAbstractTableModel Subclass for Tables . 116

The QAbstractItemModel APIMethods for Tables . 117

Methods to Support Saving and Loading Table Items . . . 126

ix

 From the Library of Wow! eBook

ptg

Chapter 4. Model/View Tree Models 129

UsingQStandardItemModels for Trees 130

Changing a Tree Model through the User Interface 131

A QStandardItem Subclass for Tree Items 141

A QStandardItemModel Subclass for Trees 143

CreatingCustom Tree Models . .. 151

Changing a Tree Model through the User Interface . 152

A Custom ItemClass for Tree Items . 155

A CustomQAbstractItemModel Subclass for Trees . 158

The QAbstractItemModel API for Trees .

160

The QAbstractItemModel API for Drag and Drop .

168

Methods for Saving and Loading Tree Items .

180

Chapter 5. Model/View Delegates .
185

Datatype-Specific Editors .

186

Datatype-Specific Delegates .

188

A Read–Only Column or Row Delegate . 188

An Editable Column or Row Delegate . 193

Model-Specific Delegates . .. 201

Chapter 6. Model/View Views . .. 207

QAbstractItemView Subclasses . .. 208

Model-Specific Visualizing Views 224

The Visualizer Widget . .. 225

The Visualizer’s Aggregated Header Widget 232

The Visualizer’s AggregatedView Widget 235

Chapter 7. Threading with QtConcurrent . .. 245

Executing Functions in Threads . 248

UsingQtConcurrent::run() .

252

UsingQRunnable . 257

Filtering andMapping in Threads 261

UsingQtConcurrent to Filter . .. 270

UsingQtConcurrent to Filter and Reduce 277

UsingQtConcurrent to Map 281

Chapter 8. Threading with QThread 287

Processing Independent Items . .. 287

Processing Shared Items . .. 302

x

 From the Library of Wow! eBook

ptg

Chapter 9. Creating Rich Text Editors 317

IntroducingQTextDocument 318

CreatingCustom Text Editors 320

Completion for Line Edits andComboboxes . 320

Completion and Syntax Highlighting for Text Editors . 322

Completion for Multi-line Editors . 323

Syntax Highlighting . 336

A Rich Text Single Line Editor . 342

Multi-line Rich Text Editing . 353

Chapter 10. Creating Rich Text Documents . 359

ExportedQTextDocument File Quality 361

CreatingQTextDocuments 364

CreatingQTextDocuments with HTML 364

CreatingQTextDocuments with QTextCursor 367

Exporting and Printing Documents . .. 371

ExportingQTextDocuments 372

Exporting in PDF and PostScript Format 372

Exporting in Open Document Format 373

Exporting in HTML Format 374

Exporting in SVG Format 375

Exporting in Pixmap Formats 375

Printing and PreviewingQTextDocuments 376

Painting Pages . .. 379

Painting PDF or PostScript . .. 387

Painting SVG 387

Painting Pixmaps . .. 388

Chapter 11. Creating Graphics/View Windows . 389

The Graphics/View Architecture . 390

Graphics/View Widgets and Layouts . 392

IntroducingGraphics Items . 399

Chapter 12. Creating Graphics/View Scenes . 409

Scenes, Items, and Actions 411

Creating the MainWindow . .. 412

Saving, Loading, Printing, and Exporting Scenes 415

Saving Scenes 415

Loading Scenes . .. 417

xi

 From the Library of Wow! eBook

ptg

Printing and Exporting Scenes 420

ManipulatingGraphics Items 423

Adding Items 425

Copying, Cutting, and Pasting Items 427

Manipulating Selected Items 430

Showing and Hiding the Guideline Grid 435

Keeping the User Interface Up to Date 436

EnhancingQGraphicsView 439

Creating a Dock Widget Toolbox 440

CreatingCustomGraphics Items 447

EnhancingQGraphicsTextItem . .. 447

Graphics Item Transformations 453

Enhancing an ExistingGraphics Item 455

Creating aCustomGraphics Item from Scratch 459

Chapter 13. The Animation and State Machine Frameworks 469

Introducing the Animation Framework 469

Introducing the State Machine Framework 474

Combining Animations and State Machines 481

Epilogue . .. 491

Selected Bibliography 495

Index . .. 499

xii

 From the Library of Wow! eBook

ptg

List of Tables

1.1. The MainWebKit Classes . .. 21

1.2. Qt’s Global Utility Functions 46

2.1. The Main PhononClasses 63

3.1. The QAbstractItemModel API . 118

3.2. The Qt::ItemDataRole enum . 119

3.3. The Qt::ItemFlag enum . 119

4.1. The QAbstractItemModel’s Drag and Drop API 159

5.1. The QStyledItemDelegate API . .. 194

6.1. The QAbstractItemView API 210

9.1. The QTextCursor API #1 . 328

9.2. The QTextCursor API #2 .
329

9.3. The QTextCursor API #3 .
330

9.4. The QTextCursor::MoveOperationenum .
334

11.1. The QGraphicsItemAPI (SelectedMethods) #1. 403

11.2. The QGraphicsItemAPI (SelectedMethods) #2 .
404

11.3. The QGraphicsItemAPI (SelectedMethods) #3 .
405

11.4. The QGraphicsItemAPI (SelectedMethods) #4 .
406

11.5. The Qt::ItemSelectionMode enum .
406

11.6. The QGraphicsItem::GraphicsItemFlagenum #1 .
406

11.7. The QGraphicsItem::GraphicsItemFlagenum #2 407

xiii

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

Foreword

Way back in 1991, I sat on a park bench in Trondheim, Norway, together with
HaavardNord. Weweredoing our non-military service together at the regional
hospital there, and needed to develop software for the storage and analysis of
ultrasound images. The hospital used all sorts of computers and wanted the
system towork onUnix,Mac, andWindows. Thiswas a huge challenge andwe
scanned the market for available class libraries that could help us. We were
appalled by the quality of what we found. On that park bench we decided to
come up with our own solution to the challenge.

We were young, ambitious, and naïve. Sick and tired of wasting our time find-
ing out how to use non-intuitive tools and libraries,we set our sights on improv-
ing the situation. Wewanted to change theworld of softwaredevelopment ever
so slightly. Our goal was to make life easier for software developers. To make
it possible to focus on what we all know is the fun side of developing software:
being creative and turning out well-written code. So,we created the first crude
versions of Qt, and incorporated Trolltech a few years later.

I think we achieved at least part of our goal. Qt has had tremendous success
since it was first released in 1995.

In 2008 Trolltech was acquired by Nokia and in April 2009 it was time for
me to move on. After 15 years and 27 days in the company I was no longer on
the inside.

The product is in good hands, and the passion and hard work of the team are
the same as ever. The Trolls at Nokia are making sure that Qt continues to be
the rock solid framework you expect. Lars Knoll (of kHTML—WebKit—fame)
today leads almost 150 dedicated Qt engineers. Nokia has also added the
LGPL as a licensing option, making Qt accessible to even more developers.

This fall I was invited by Nokia as a guest of honor at the Qt Developer Days
in Munich, Germany. This user conference—which also takes place in the
U.S.—is a fantastic venue for Qt enthusiasts and has been increasing in size
year by year. It was great feeling the buzz and talking to Qt users from all
over Europe. I spoke to many developers who told me that Qt makes a real
difference in their software work. That makes an old hacker feel good.

Qt as a good tool and class library is only half the story behind its success. You
also need good documentation, tutorials, and books. After all, the goal was to
make life easier for developers.

xv

 From the Library of Wow! eBook

ptg

That is why I was never in doubt, back in 2003. I was President of Trolltech
and Mark Summerfield, the head of documentation, came into my office. He
wanted to write a book about Qt together with Jasmin Blanchette. A really
good book, written by someone with intimate knowledge of the product and
with a passion for explaining things clearly and intuitively. Who was better fit
for the task than the head of Qt documentation, together with one of the best
Qt developers?

The end result was a great book about Qt, which has since been updated
and expanded.

Mark has now completed another important project.

A good book on advanced Qt programming has been missing in the arsenal of
Qt programmers. I’m very happy that Mark has written one. He is a fantastic
technical writer with all the necessary background to write authoritatively
about Qt programming. His focus on detail and ability to express himself
clearly and intuitively have always impressed me. In other words: You are in
for a treat!

You are holding in your hands (or reading on-screen) an excellent opportunity
to expand on your knowledge of all the cool stuff you can do with Qt.

Happy programming!

Eirik Chambe-Eng
The southern Alps, France

December 24, 2009

xvi

 From the Library of Wow! eBook

ptg

Introduction

For some time I have wanted to write a Qt book that covered topics that were
too advanced for C++ GUI Programming with Qt 4,★ even though that book
itself has proved quite challenging for some readers. There is also some
specialized material—not all of it difficult—that I wanted to cover that simply
does not belong in a first book on Qt programming. Furthermore, in view of
the sheer size of Qt, no one book can possibly do justice to all that it offers, so
there was clearly room for the presentation of new material.

What I’ve done in this book is to take a selection of modules and classes from
a variety of areas and shown how to make good use of them. The topics
chosen reflect both my own interests and also those that seem to result in the
most discussion on the qt-interest mailing list. Some of the topics are not
covered in any other book, while other topics cover more familiar ground—for
example, model/view programming. In all cases, I have tried to provide more
comprehensive coverage than is available elsewhere.

So the purposes of this book are to help Qt programmers deepen and broaden
their Qt knowledge and to increase the repertoire of what they can achieve
using Qt. The “advanced” aspect often refers more to what you will be able
to achieve than to the means of achieving it. This is because—as always—Qt
insulatesusas far aspossible from irrelevant detail and underlying complexity
to provide easy-to-use APIs that we can use simply and directly to great effect.
For example, we will see how to create a music player without having to know
anything about how thingswork under the hood;wewill need to know only the
high-level API that Qt provides. On the other hand, even using the high-level
QtConcurrentmodule, the coverage of threading is necessarily challenging.

This book assumes that readers have a basic competence in C++programming,
and at least know how to create basic Qt applications—for example, having
read a good Qt 4 book, and having had some practical experience. Readers are
also assumed to be familiar with Qt’s reference documentation, at least as far
as being able to navigate it to look up the APIs of classes of interest. In addi-
tion, some chapters assume some basic topic-specific knowledge—for example,
Chapter 1 assumes some knowledge of JavaScript and web programming, and
the threading chapters assume a basic understanding of threading and Qt’s
threading classes. All these assumptions mean that this book can avoid ex-

★ C++ GUI Programming with Qt 4, Second Edition, by Jasmin Blanchette and this author,
ISBN 0132354160.

1

 From the Library of Wow! eBook

ptg

2 Introduction

plainingmany detailsand classes that are already familiar toQt programmers,
such as using layouts, creating actions, connecting signals and slots, and so on,
leaving the book free to focus on the less familiar material.

Of course, no single volume book can realistically do justice to Qt’s more than
700 public classes—almost 800 in Qt 4.6—and its much more than one million
words of documentation, so no attempt is made to do so here. Instead this
book provides explanations and examples of how to use some of Qt’s most
powerful features, complementing the reference documentation rather than
duplicating it.

The book’s chapters have been designed to be as self-contained as possible, so
it is not necessary to read the book from beginning to end in chapter order. To
support this, where particular techniques are used in more than one chapter,
the explanation is given in just one place and cross-references are given else-
where. Nonetheless, if you plan to read odd chapters out of order, I recommend
that you at least do an initial skim read of the entire book, since chapters and
sectionsdevoted to one particular topicmay of necessity havematerial relating
to other topics. Also, I have tried to include lots of small details from Qt’s API
throughout, to make the book’s content richer, and to show asmany features as
possible in context, so useful information appears throughout.

As with all my previous books, the quoted code snippets are of “live code”,
that is, the code was automatically extracted from the examples’ source files
and directly embedded in the PDF that went to the publisher—so there are
no cut and paste errors, and the code works. The examples are available from
www.qtrac.eu/aqpbook.html and are licensed under the GPL (GNU General
Public License version 3). The book presents more than twenty-five examples
spread over more than 150 .hpp and .cpp files, and amounting to well over
20000 lines of code. Although all of themost important pieces of code are quot-
ed and explained in the book, there are numerous small details that there isn’t
space to cover in the book itself, so I recommend downloading the examples
and at least reading the source code of those examples that are in your areas
of particular interest. In addition to the examples, some modules containing
commonly used functionality are also provided. These all use the AQP names-
pace to make them easy to reuse, and they are all introduced in the first couple
of chapters, and then used throughout the book.

All the examples—except for those in the last chapter which useQt 4.6-specific
features—have been tested with Qt 4.5 and Qt 4.6 on Linux, Mac OS X, and
Windows. Applications built using Qt 4.5 will run unchanged with Qt 4.6, and
later Qt 4.x versions, because Qt maintains backward compatibility between
minor releases. However, where there are differences between the two Qt
versions, the book shows and explains the Qt 4.6-specific approach, while the
source code uses #if QT_VERSION so that the code compiles with either version
with the best practices used for each. A few examples may work with earlier
Qt 4.x versions, particularly Qt 4.4, and some examples could be backported to

 From the Library of Wow! eBook

www.qtrac.eu/aqpbook.html

ptg

Introduction 3

an earlier Qt version—however, the focus of this book is purely on Qt 4.5 and
Qt 4.6, so there is no explicit coverage of backporting.

The book shows best Qt 4.6 practices, and despite Qt 4.6’s numerous new fea-
tures compared with Qt 4.5, thismakes few differences to the code. One trivial
difference is that Qt 4.6 has a shortcut for the “quit” action and Qt 4.5 hasn’t;
the source code uses the shortcut for Qt 4.6 and has equivalent code for Qt 4.5
by using #if QT_VERSION. A much more important difference is that Qt 4.6 in-
troduced the QGraphicsObject class and also changed the behavior of graphics
items when it comes to communicating geometry changes. We explain the dif-
ferences in a sidebar and show the Qt 4.6 approach in the book’s code snippets,
but in the source code, #if QT_VERSION is used to show how to do the same things
using Qt 4.6 and Qt 4.5 or earlier, and using the best approach for both. In the
book’s last chapter,Qt 4.6-specific features are shown,with two out of the three
examples covered being conversions of examples presented earlier, and that
make use of the Qt 4.6 animation and state machine frameworks. Modifying
earlier examples makes it easier to see how to go from the traditional Qt ap-
proach to using the new frameworks.

The next version of Qt—Qt 4.7—will focus on stability, speed, and apart from
the newQt Quick technology (which provides a means of creating GUIs declar-
atively using a JavaScript-like language), will introduce fewer new features
than in previous releases. Nonetheless, despite the huge ongoing development
effort that is being put into Qt, and its ever increasing scope, this book should
serve as a useful resource for learning about and using important Qt technolo-
gies in theQt 4.x series, especially forQt 4.5,Qt 4.6,and later versions, for some
years to come.

Acknowledgements

My first acknowledgement is of my friend Trenton Schulz, an ex-senior soft-
ware engineer at Nokia’s Qt Development Frameworks (formerly Trolltech)
who is now a research scientist at the Norwegian Computing Center. Trenton
has proved to be a reliable, insightful, and challenging reviewer, whose careful
reading, high standards, and numerous suggestions have considerably helped
to improve this book.

My next acknowledgement is of another friend, Jasmin Blanchette, also an
ex-senior software engineer at Qt Development Frameworks, coauthor with
me of the C++ GUI Programming with Qt 4 book, and now researching for a
PhD at the Technische Universität München. We both came up with the idea
for this book some time ago, and it is only due to pressure of work that he has
been an excellent—and demanding—reviewer, rather than coauthor.

Iwould also like to thankmany peoplewhowork for (orworked for)QtDevelop-
ment Frameworkswho read portions of the book and provided useful feedback,

 From the Library of Wow! eBook

ptg

4 Introduction

or who answered technical questions, or both. These include Andreas Aardal
Hanssen (who gave particularly excellent feedback and suggestions regarding
the graphics/view chapters, and who drafted the off-screen rendering sidebar
for me), Andy Shaw,Bjørn Erik Nilsen, David Boddie,Henrik Hartz,Kavindra
Devi Palaraja, Rainer Schmid (now at froglogic), Simon Hausmann, Thierry
Bastian, and Volker Hilsheimer.

The Italian software company www.develer.com was kind enough to provide me
with free repository hosting to aid my peace of mind over the long process of
writing the book. And several of their developers gave me useful feedback,
particularly on some of the examples in the early chapters. I’m especially
thankful to Gianni Valdambrini, Giovanni Bajo, Lorenzo Mancini (who set up
the repository for me), and Tommaso Massimi.

A special thank you to rough-cut reader Alexey Smirnov who spotted some
errors and encouraged me to add support for network proxies to some of the
networking examples.

I also want to thank froglogic’s founders, Reginald Stadlbauer and Harri
Porten—the part-time consultancywork I do for themhashelped fund the time
towrite this book,aswell as introducingme to someprogramming technologies
and ideas that were new to me. They’ve also turned me into a big fan of their
GUI application testing tool, Squish.

My friend Ben Thompson also deserves thanks—for reminding me of certain
mathematical concepts that I’d forgotten, and especially for his patience in
explaining them to me until I understood them again.

This book (and some of my others) would not have been possible without Qt.
So I’m very grateful to Eirik Chambe-Eng and Haavard Nord for creating
Qt—and especially to Eirik for allowing me towritemy first book as part of my
daily work at Trolltech, and for taking the time and care to write the foreword
to this book.

Special thanks to my editor, Debra Williams Cauley, both for quite indepen-
dently suggesting that I write this book in the first place, and for her support
and practical help as the work progressed. Also thanks to Jennifer Lindner
who gave useful input on the book’s structure as well as other feedback that I
incorporated. Thanks also to Anna Popick, who managed the production pro-
cess so well, and to the proofreader, Barbara Wood, who did such fine work.

I also want to thank my wife, Andrea, who experiences all the ups and downs
of writing along with me, for her enduring love and support.

 From the Library of Wow! eBook

www.develer.com

ptg

Hybrid Desktop/Internet
Applications

|||||

1
● Internet-AwareWidgets

● UsingWebKit

The apparent ubiquity of the “computing cloud”, the ready availability of web-
enabled mobile phones and small form-factor netbook and smartbook comput-
ers—not to mention the Google Doc’s file store—and the zero-deployment costs
of web-based applications might lead us to believe that desktop applications
are dinosaurs that don’t yet know they’re extinct.

But before we abandon C++ and Qt and switch to web programming and the
subtle pleasures of JavaScript and HTML, it is worth reflecting on just some
of the advantages that desktop applications can provide.

• Availability—outside of specialist mission-critical areas we can be sure
that on rare (and always inconvenient) occasions the Internet will be un-
available—due to network failures, ISP errors, etc.—andweb applications
will be useless.★

• Resource Access—a desktop application has full access to the user’s
computer with none of the necessary security restrictions that limit the
capabilities of web-based applications.

• Look and Feel—a desktop application doesn’t have a redundant (and con-
fusing) browser menu bar and toolbar in addition to its ownmenu bar and
toolbars; it has its own keyboard shortcuts with no risk of conflict with
those used by a browser; and it has exactly the look and feel it was pro-
grammed to have rather than one that varies from browser to browser.

• CustomWidgets—a desktop application can present the user with custom
widgets specifically dedicated to the task at hand, and can provide a level
of usability that web applications cannot match.

★See, for example, opencloudcomputing.info/trends/cloud-computing-downtime or the Cloud Comput-
ing Incidents Database.

5

 From the Library of Wow! eBook

ptg

6 Chapter 1. Hybrid Desktop/Internet Applications

Ideally we would like to have all the benefits of desktop applications, and at
the same time enjoy all the advantages of Internet access when it is available.
Thanks to Qt’sQtWebKitmodule, introduced with Qt 4.4, this can be achieved,
since QtWebKit allows us to create hybrid desktop/Internet applications that
can work both offline and online.

The main disadvantage compared with web-based applications is in the area
of deployment—the Qt application must be available on the user’s computer.
In cases where the deployment effort or bandwidth utilization must be min-
imized there are several approaches that can be taken. For example, we can
put a lot of application functionality into relatively small plugins that can be
updated independently. Or we could use application scripting to providemuch
of the application’s functionality using the QtScript module for JavaScript
(ECMAScript)—or a third-party module if we want to use a different scripting
language—and just update or add individual scripts as necessary. Or we could
put asmuch functionality as possible into the server and into web page scripts,
thereby greatly reducing the number of times we need to update the client.

In this chapter we will focus on key aspects of Qt’s support for hybrid appli-
cations. In the first section we will use the convenient QNetworkAccessManager
class introduced in Qt 4.4, to create Internet-aware widgets. In the second
section we will make use of the QtWebKit module, starting by developing a
generic web browser component—a surprisingly easy task thanks to the func-
tionality provided by the QtWebKit module. We will then make use of the
generic web browser component—for example, to create a web site-specific
application—and use the QtWebKit module to access the DOM (Document
Object Model) of web pages downloaded behind the scenes so that we can ex-
tract information from them for further processing. And then we will see how
to embed Qt widgets—including our own custom widgets—into web pages, to
provide functionality that is not available using the standard HTML widgets.

Internet-Aware Widgets ||||

Our definition of an Internet-aware widget is a widget that automatically re-
trieves data from the Internet, either as a one-off event when it is constructed,
or at regular intervals.

The easiest way to create an Internet-aware widget is to create a widget sub-
class that makes use of a QNetworkAccessManager object. These objects are ca-
pable of performing HTTP (and HTTPS) HEAD, POST, GET, and PUT requests, and
also of handling cookies (using QNetworkCookieJar) and authentication (using
QAuthenticator).

In this section we will look at an example that uses one QNetworkAccessManager

to read data from the Internet at timed intervals, and another QNetworkAccess-
Manager that is used to download images on demand. This should be sufficient

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 7

QNetworkAccessManager

QNetworkRequest

QNetworkReply
Web Server

Figure 1.1 A QNetworkAccessManager in communicationwith a web site

to give a flavor of how QNetworkAccessManagers are used. Figure 1.1 illustrates
the relationship between a QNetworkAccessManager and an external web site.
Note that since QNetworkAccessManager is part of Qt’s QtNetwork module, any
application that uses it must include the line QT += network in its .pro file.

This section’s example is a taskbar tray icon application. Such applications
are typically used for frequently used controls such as volume controls, or
to provide status information such as memory usage or the current date
and time. In this section we will develop the Weather Tray Icon application
(weathertrayicon). This application shows an icon corresponding to the current
weather conditions at a specified U.S. airport with both the icon and the data
retrieved from the U.S. National Weather Service (www.weather.gov).

Figure 1.2 TheWeather Tray Icon application and its context menu

Figure 1.2’s left-hand screenshot shows theWeather Tray Icon application and
a tooltip—the icon is under the bottom-right corner of the tooltip. The figure’s
right-hand screenshot shows the application’s context menu. Once an hour

 From the Library of Wow! eBook

www.weather.gov

ptg

8 Chapter 1. Hybrid Desktop/Internet Applications

the application downloads the weather data and the corresponding icon for the
chosen airport’s weather conditions and updates itself accordingly.

Taskbar tray icon applications like this work on all of Qt’s supported desktop
platforms. For example, the screenshots in Figure 1.2 were taken on Linux
running Fedora with the GNOME desktop. On Windows and Mac OS X the
tooltip would be plain text since Qt tooltips on those platforms don’t support
Qt rich text (HTML); and of course on Mac OS X the icon appears in the menu
bar as we would expect.

When reviewing most of the book’s exampleswe won’t usually show the main()
functions because they are almost all simple and standard. But in this case
there are a couple of important deviations from the norm, so we will show the
Weather Tray Icon application’s main() function.

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

app.setApplicationName(app.translate("main",

"Weather Tray Icon"));

app.setOrganizationName("Qtrac Ltd.");

app.setOrganizationDomain("qtrac.eu");

app.setQuitOnLastWindowClosed(false);

if (int error = enableNetworkProxying())

return error;

WeatherTrayIcon weatherTrayIcon;

weatherTrayIcon.show();

return app.exec();

}

The function starts in the standard Qt way with the creation of a QApplication

object. We set the application’s name, which we can later use—for example,
for dialog titles—accessing it with QApplication::applicationName(), and we
also set the organization’s name and domain which means that we can create
QSettings objects whenever we want without having to bother giving them
any arguments.

There are two unusual aspects to this function. The first is that we have told
Qt not to close the application when the last window is closed. This is because
normally a tray icon application has no window (it just has a tray icon), and
any windows it does use are normally transient (e.g., a tooltip or a context
menu), and their closure should not implicitly cause application termination.

The second unusual aspect is the call to a custom enableNetworkProxying() func-
tion. This function is discussed in the “Supporting Network Proxying” sidebar
(➤ 9). If the function returns a nonzero error code it signifies that an error oc-
curred in which case we return the error code and terminate the application.

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 9

Supporting Network Proxying

For machines that have direct connections to the Internet (e.g., using a
broadband modem or router), the networking examples presented in this
chapter should work as is. However, for machines that are on firewalled
networks—typically corporate networks—the examples may fail to reach
the Internet. Most firewalled networks provide some kind of proxy server
through which Internet connections can be made. Qt provides support for
such proxies, so we have added support for proxying to the browserwindow,
nyrbviewer, rsspanel, and weathertrayicon examples, by having them call a
custom enableNetworkProxying() function inside their main() function.

The enableNetworkProxying() function uses the AQP::OptionParser (supplied
with the book’s examples in directory option_parser and using the AQP name-
space) to parse the command line arguments used to set up proxying. The
command line options supported by the proxying-enabled applications are:

-h --help show this information and terminate

-H --host=STRING hostname, e.g., www.example.com

-P --password=STRING password

-p --port=INTEGER port number, e.g., 1080

-t --type=STRING (http, socks5; default socks5) proxy type

-u --username=STRING username

The proxying is set up in the enableNetworkProxying() function only if a host-
name is specified. Here is the code; the parser is of type AQP::OptionParser.

if (parser.hasValue("host")) {

QNetworkProxy proxy;

proxy.setType(parser.string("type") == "socks5"

? QNetworkProxy::Socks5Proxy

: QNetworkProxy::HttpProxy);

proxy.setHostName(parser.string("host"));

if (parser.hasValue("port"))

proxy.setPort(parser.integer("port"));

if (parser.hasValue("username"))

proxy.setUser(parser.string("username"));

if (parser.hasValue("password"))

proxy.setPassword(parser.string("password"));

QNetworkProxy::setApplicationProxy(proxy);

}

If a host is specified, proxying is set up using the given host, the default
or given proxy type, and any other options the user has given. This sets
up global proxying for the whole application. It is also possible to set up
per-socket proxying using QAbstractSocket::setProxy().

 From the Library of Wow! eBook

www.example.com

ptg

10 Chapter 1. Hybrid Desktop/Internet Applications

The weather data is provided in various formats, but we have chosen to access
it in XML format. The format itself is very simple, consisting essentially of
a list of key–value pairs where the key is a tag name and the value is the text
between the opening and closing tags. For example:

<weather>Fair</weather>

<temperature_string>49 F (9 C)</temperature_string>

<temp_f>49</temp_f>

<temp_c>9</temp_c>

<wind_string>From the Northeast at 5 MPH</wind_string>

<visibility_mi>9.00</visibility_mi>

<icon_url_base>http://weather.gov/weather/images/fcicons/</icon_url_base>

<icon_url_name>nskc.jpg</icon_url_name>

When the applicationfirst starts it sets its airport to the one thatwas last set by
the user, or to a default airport the first time it is run. It then uses a QNetwork-

AccessManager to retrieve the weather data. Two elements of the data are a
URL and a filename for an icon that corresponds to the prevailing weather
conditions at the airport. The application uses a second QNetworkAccessManager

to retrieve the icon and sets this as the icon shown in the taskbar tray. In fact,
the application caches icons to economize on bandwidth, as we will see shortly.

class WeatherTrayIcon : public QSystemTrayIcon

{

Q_OBJECT

public:

explicit WeatherTrayIcon();

private slots:

void requestXml();

void readXml(QNetworkReply *reply);

void readIcon(QNetworkReply *reply);

void setAirport(QAction *action);

private:
···
QMenu menu;

QNetworkAccessManager *networkXmlAccess;

QNetworkAccessManager *networkIconAccess;

QString airport;

QCache<QUrl, QIcon> iconCache;

int retryDelaySec;
};

We will show and explain all the methods in a moment—including the private
ones not shown—but now we’ll comment on some of the private member data.

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 11

The airport string holds the current airport, for example, “Chicago/Ohare
(KORD)”. The iconCache has QUrl keys and pointers to QIcon values. We will
cover the others when we discuss the methods they are used in.

The QCache class caches itemsusing a “cost” scheme. The cache’smaximumcost
defaults to 100—the sum of item costs is always less than or equal to the max-
imum. By default each item has a cost of 1, so unless we change themaximum
or set our own item costs the cache will hold up to 100 items. When a new item
is added, if the item’s cost makes the sum of costs exceed the maximum cost,
one or more of the least recently accessed items are removed until the sum of
costs is less than or equal to the maximum.

Behind the scenes QCache uses a QHash to provide very fast lookup by key.
However, out of the box, QHash cannot store QUrls as keys because Qt does not
provide a qHash(QUrl) function.★ This is easy to remedy with a one-liner:

inline uint qHash(const QUrl &url) { return qHash(url.toString()); }

Here we’ve simply passed the work on to the built-in qHash(QString) function.

We are now ready to review the methods, starting with the constructor.

WeatherTrayIcon::WeatherTrayIcon()

: QSystemTrayIcon(), retryDelaySec(1)

{

setIcon(QIcon(":/rss.png"));

createContextMenu();

networkXmlAccess = new QNetworkAccessManager(this);

networkIconAccess = new QNetworkAccessManager(this);

connect(networkXmlAccess, SIGNAL(finished(QNetworkReply*)),

this, SLOT(readXml(QNetworkReply*)));

connect(networkIconAccess, SIGNAL(finished(QNetworkReply*)),

this, SLOT(readIcon(QNetworkReply*)));

QTimer::singleShot(0, this, SLOT(requestXml()));

}

We give the application an initial icon to use while waiting for the first
weather icon to be downloaded. Then we create a context menu with actions
for changing the airport and for terminating the application.

Most of the constructor is devoted to setting up the Internet access by creating
two QNetworkAccessManagers. One is used to fetch the weather data and the
other to fetch the icon associated with the current weather conditions. We use
separate network access managers so that they can work independently of

★Qt 4.7 is scheduled to provide a qHash(QUrl) function.

 From the Library of Wow! eBook

ptg

12 Chapter 1. Hybrid Desktop/Internet Applications

each other, and in both caseswe create a single signal–slot connection since all
we are interested in is when each download is finished.

Finally, we call the requestXml() slot using a single shot timer. This method
makes use of the networkXmlAccess network access manager to fetch the
weather data for the current airport.

We could have simply called requestXml() directly, but as a matter of style we
prefer to restrict ourselves to calling “create” methods that contribute to the
construction of an object in constructors, and to call any post-construction
initializing method using a single shot timer. This ensures that by the time
the initializing method is called, the object is fully constructed. This means
that the initializing method can access any member variable or method—
something that is not guaranteed to be safe during construction.

Before we look at the requestXml() slot, we’ll briefly look at how the context
menu is created, to see how the airport whose details must be downloaded can
be set by the user.

void WeatherTrayIcon::createContextMenu()

{

QStringList airports;

airports << "Austin-Bergstrom International Airport (KAUS)"
···
<< "San Jose International Airport (KSJC)";

QSettings settings;

airport = settings.value("airport", QVariant(airports.at(0)))

.toString();

QActionGroup *group = new QActionGroup(this);

foreach (const QString &anAirport, airports) {

QAction *action = menu.addAction(anAirport);

group->addAction(action);

action->setCheckable(true);

action->setChecked(anAirport == airport);

action->setData(anAirport);

}

connect(group, SIGNAL(triggered(QAction*)),

this, SLOT(setAirport(QAction*)));

menu.addSeparator();

menu.addAction(QIcon(":/exit.png"), tr("E&xit"), qApp,

SLOT(quit()));
AQP::accelerateMenu(&menu);

setContextMenu(&menu);
}

Here we have used a hard-coded list of airport names, but we could just as
easily have read them from a file or resource. (If we wanted to list all the

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 13

U.S. airports we could easily group them—for example, by having states as
top-level menu items, and airports as submenu items.) We use QSettings to
set the current airport, defaulting to the first one in the list the first time the
application is run.

For each airport we create a QAction and check the one that matches the
current airport. Each airport action is added to a QActionGroup. By default a
QActionGroup has its exclusive property set to true; this ensures that its actions
have radio button rather than checkbox check marks and that only one airport
is ever checked at any one time.

We also add an exit action and give it a specific keyboard accelerator. Then we
call AQP::accelerateMenu() to provide keyboard accelerators for as many air-
ports as possible, and then set the menu we have created as the application’s
contextmenu. If the application is being built onMac OSX the call to AQP::ac-
celerateMenu() normally has no effect, since Mac OS X doesn’t support acceler-
ators. See the “Keyboard Accelerators” sidebar for more about automatically
setting keyboard accelerators (➤ 15).

We need to connect each action with the setAirport() slot and to parameterize
each slot invocation in someway so that the slot knowswhich airport has been
chosen. An easy way to do this is to call QObject::sender() inside the slot to
see which action called it, and then to extract the action’s text to determine the
chosen airport. An alternative is to use a QSignalMapper.But in this case there is
an even easier solution—instead of connecting each of the airport QActions we
connect the QActionGroup instead. The QActionGroup::triggered() signal carries
the relevant QAction as its parameter.

void WeatherTrayIcon::requestXml()

{

QString airportId = airport.right(6);

if (airportId.startsWith("(") && airportId.endsWith(")")) {

QString url = QString("http://www.weather.gov/xml/"

"current_obs/%1.xml").arg(airportId.mid(1, 4));

networkXmlAccess->get(QNetworkRequest(QUrl(url)));

}

}

The XML weather data for a given airport is in a file whose name matches the
airport’s four letter code. We have included this code in parentheses at the end
of each airport’s name, and use basic QString methods to extract it. Once we
have the URL we need we use the XML network access manager to do a GET

request on it. When a request is made a pointer to the QNetworkReply object
that will receive the results is returned. These objects emit signals indicating
progress, for example, downloadProgress() and uploadProgress(), and when the
request finishes, the reply object issues a finished() signal.

 From the Library of Wow! eBook

ptg

14 Chapter 1. Hybrid Desktop/Internet Applications

The networkmanager that initiated the request also emits a finished() signal,
and since we are not concernedwithmonitoring progress this is the only signal
we connected to—and the reason why we ignored the QNetworkAccessManager::

get() method’s return value. Once the download is finished (successfully or
not), the signal–slot connection shown earlier ensures that the readXml()

method is called with a pointer to the reply object as its sole argument.

void WeatherTrayIcon::readXml(QNetworkReply *reply)

{

if (reply->error() != QNetworkReply::NoError) {

setToolTip(tr("Failed to retrieve weather data:\n%1")

.arg(reply->errorString()));

QTimer::singleShot(retryDelaySec * 1000,

this, SLOT(requestXml()));

retryDelaySec <<= 1;

if (retryDelaySec > 60 * 60)

retryDelaySec = 1;

return;

}

retryDelaySec = 1;

QDomDocument document;

if (document.setContent(reply))

populateToolTip(&document);

QTimer::singleShot(60 * 60 * 1000, this, SLOT(requestXml()));

}

If the request failed we put the error message in the tray icon’s tooltip and try
again later after a delay. The delay is held in the private retryDelaySec variable
and is initialized to 1. (Wemustmultiply by 1000 because QTimer::singleShot()
takes a timeout in milliseconds.) On each successive failure we double the
delay interval—left shifting an integer by one bit doubles its value. So after a
second failure we try again after two seconds, then after four seconds, and so
on. At this rate, if we have a dozen failures the interval will be over an hour,
in which case we reset it to start again at one second.

We vary the retry interval each time to avoid being mistaken for a denial of
service attack and to avoid getting into an “unlucky” request/failure cycle.

As soon as the request succeeds and we have reset retryDelaySec back to 1, we
parse the XML data. The QNetworkReply is a QIODevice subclass, so in addition
to being able to emit network progress signals, it can also emit, for example,
the readyRead() signal. And like any other QIODevice such as a file, we can read
data from it, which by default is returned in a QByteArray. The QDomDocument::

setContent() method can read XML from a QByteArray, a QString, or from a
QIODevice, so we are able to directly pass it the QNetworkReply for parsing.

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 15

Keyboard Accelerators (for non-Mac OS X platforms)

Keyboard accelerators are important to users who are fast typists and to
those who cannot—or don’t want to—use the mouse. They are Alt+x key
sequences (where x is usually a letter or digit) that the user can press to pull
down a menu from the menu bar (e.g., Alt+F for the File menu). Once a menu
appears, one of its menu options can be chosen by pressing its underlined
letter or digit alone, so to create a new file the user would press Alt+F, N.

In dialogs accelerators are used to switch the keyboard focus to particular
widgets—for example, a label that appears as Total:has a keyboard accelera-
tor of Alt+T, and pressing this would be expected to move the keyboard focus
to the label’s buddy widget. Similarly, checkboxes and radio buttons often
have accelerators and when pressed the accelerator toggles the checkbox’s
or radio button’s state.
It is common to write accelerators using uppercase letters (e.g., Alt+E) both
for display and in code. (Keyboard accelerators are distinct from keyboard
shortcuts which are arbitrary key sequences associated with particular
actions, for example, Ctrl+N to create a new file.)

For short menus and for dialogs that only contain a few widgets, setting
accelerators manually (by including an & in the texts) is quite easy. But
once we get to more than about fifteen menu items or widgets it becomes
increasingly difficult to work out what the optimal accelerators should be.
The ideal solution would be to get the computer to work out the accelerators
for us, and that is the approach taken in this book.

In the aqp directory the alt_key.{hpp,cpp} module provides an API, and
the kuhn_munkres.{hpp,cpp} module provides an algorithm that instantly
computes optimal results, easily outperforming all the naïve algorithms.
For example, to provide accelerators for a main window’s menus we can
write this line near the end of the main window’s constructor:

AQP::accelerateMenu(menuBar());

That’s all that is required. The Kuhn-Munkres algorithm is used to cal-
culate optimal accelerators and respects any items that already have
accelerators—for example, if wewant certainmenu options or labels to have
particular accelerators no matter what. For dialogs we can use an equally
simple approach, writing this line at the end of a dialog’s constructor:

AQP::accelerateWidget(this);

The accelerator functions don’t account for hidden widgets such as those on
a tab page that isn’t being shown. We can still handle such cases by using
one ormore calls to the AQP::accelerateWidgets() function,giving it a specific
list of widgets to work on each time.

 From the Library of Wow! eBook

ptg

16 Chapter 1. Hybrid Desktop/Internet Applications

If the QDomDocument::setContent() method returns true, the parse succeeded,
so we populate the tooltip with the new data—a process that might involve
downloading a new icon too. If the parse failed, we leave the existing tooltip
as is. And at the end we set a single shot timer to repeat the process one
hour later.

The QDomDocument class is part of Qt’s QtXml module, so to be able to use it we
must add the line QT += xml to the application’s .pro file.

The application’s flow of control, from the initial GET request on the XML net-
work access manager, to downloading the XML and icons, and then repeating
the download every hour, is illustrated by Figure 1.3.

Start requestXml()

networkXmlAccess

readXml() Wait one hour

www.weather.gov

Icon in
cache? Use cached icon

networkIconAccess

readIcon()

networkXmlAccess::get()

networkXmlAccess::finished()

QTimer::singleShot()

No networkIconAccess::get()

Y

Yes

networkIconAccess::finished()

Figure 1.3 TheWeather Tray Icon application’s flow of control

For completeness, we will show the private populateToolTip() method, which
we will review in three parts, followed by its two private helper methods.

void WeatherTrayIcon::populateToolTip(QDomDocument *document)

{

QString toolTipText = tr("%1
")

.arg(airport);

QString weather = textForTag("weather", document);

if (!weather.isEmpty())

toolTipText += toolTipField("Weather", "green", weather);
···

 From the Library of Wow! eBook

www.weather.gov

ptg

Internet-AwareWidgets 17

Here we extract the text elements that we want to include in the tooltip,
althoughwe have omittedmost of the code since each element follows the same
(or very similar) pattern as the code shown for the “weather” element.

The private textForTag() helper method is used to retrieve the text for any
given tag. This works because we know that for the weather data every tag is
unique and does not contain any nested tags.

QString iconUrl = textForTag("icon_url_base", document);

if (!iconUrl.isEmpty()) {

QString name = textForTag("icon_url_name", document);

if (!name.isEmpty()) {

iconUrl += name;

QUrl url(iconUrl);

QIcon *icon = iconCache.object(url);

if (icon && !icon->isNull())

setIcon(*icon);

else

networkIconAccess->get(QNetworkRequest(url));

}

}

The icon that corresponds to the prevailing weather conditions is identified by
two XML elements, the “icon_url_base” and the “icon_url_name”.We attempt
to extract both these elements’ texts and to create a URL out of them. We
then try to retrieve the icon from the cache using the URL as the key. The
QCache::object() method returns 0 if there is no item in the cache with the
corresponding key.

If we retrieved a QIcon pointer from the cache we use it—in fact we get a copy
(which is cheap because Qt uses copy-on-write, and useful since QCache can
delete items at any time). Otherwise we use the icon network access manager
to download the icon. And if we initiate downloading an icon, the signal–slot
connection set up earlier will ensure that the readIcon() slot (covered shortly)
is called when the download has finished.

#ifndef Q_WS_X11

toolTipText = QTextDocumentFragment::fromHtml(toolTipText)

.toPlainText();

#endif

setToolTip(toolTipText);

}

Unfortunately, Qt rich text (HTML) tray icon tooltips are only supported on
X11, so for Windows and Mac OS X systems we convert the HTML tooltip text
to plain text. We do this by using the static QTextDocumentFragment::fromHtml()
method to get a QTextDocumentFragment, and then using QTextDocumentFragment::

 From the Library of Wow! eBook

ptg

18 Chapter 1. Hybrid Desktop/Internet Applications

toPlainText(), to produce plain text. Using a QTextDocumentFragment is more
convenient than doing the conversion by hand since not only does it convert
HTML entities to the appropriate Unicode characters and strip out HTML
tags, but it is also smart enough to convert
s into newlines.

QString WeatherTrayIcon::textForTag(const QString &tag,

QDomDocument *document)

{

QDomNodeList nodes = document->elementsByTagName(tag);

if (!nodes.isEmpty()) {

const QDomNode &node = nodes.item(0);

if (!node.isNull() && node.hasChildNodes())

return node.firstChild().nodeValue();

}

return QString();

}

Using QDomDocument is ideal for small XML files since it parses the entire file,
holds all the data in memory, and provides a variety of convenient access
methods.

Here,we begin by getting a list of all the QDomNodes that use the specified tag. If
the list is nonempty, we retrieve the first node. In the weather data, every tag
is unique, so there should only ever be one node for a given tag. In the DOM
API, the text between tags is held in a child node, so it can be retrieved from a
node by retrieving the node’s first child, converting the child to a text node, and
then retrieving its text data—for example, node.firstChild().toText().data().
Fortunately, Qt offers a shortcut—the QDomNode::nodeValue() method—which
returns a node type-specific string, which in the case of text nodes is the
text itself.

QString WeatherTrayIcon::toolTipField(const QString &name,

const QString &htmlColor, const QString &value, bool appendBr)

{

return QString("<i>%1:</i> %3%4")

.arg(name).arg(htmlColor).arg(value)

.arg(appendBr ? "
" : "");

}

Theprivate toolTipField() helpermethod allowsus to factor out the formatting
of each line of tooltip text. This slightly shortens and simplifies populateTool-
Tip()’s code and also makes it easier to modify the formatting later on.

If an icon must be downloaded, once the QNetworkReply is ready, the signal–slot
connection set up earlier ensures that the readIcon() slot is called. Wewill look
at this slot in two parts.

 From the Library of Wow! eBook

ptg

Internet-AwareWidgets 19

void WeatherTrayIcon::readIcon(QNetworkReply *reply)

{

QUrl redirect = reply->attribute(

QNetworkRequest::RedirectionTargetAttribute).toUrl();

if (redirect.isValid())

networkIconAccess->get(QNetworkRequest(redirect));

This method is called when a request to download an icon has finished. We
begin by checking to see if instead of the reply we are expecting we have re-
ceived a redirect of some kind. If this is the case we initiate a new GET request
to retrieve the icon data using the redirect’s target URL. The QNetworkAccess-

Manager doesn’t perform redirects automatically for security reasons, but here
we have chosen to trust the site. If security is a concern,we should really check
the redirected URL—for example, that it is from the same domain and that it
doesn’t include somemalicious JavaScript. In the common case, when there is
no redirect in force,wewill get an invalid redirect QUrl, and can proceed to read
the reply’s data.

else {

QByteArray ba(reply->readAll());

QPixmap pixmap;

if (pixmap.loadFromData(ba)) {

QIcon *icon = new QIcon(pixmap);

setIcon(*icon);

iconCache.insert(reply->request().url(), icon);

}

}
}

If the reply is not a redirect then either we have the icon data or an error oc-
curred. We read all the data that is available into a QByteArray and then feed
the data to a QPixmap. If the QPixmap::loadFromData() method returns false then
either the icon data was incomplete, corrupt, or in an unrecognized format,
or there was a network error and no data was retrieved. In any of these cas-
es we abandon the attempt to retrieve the icon, and the current icon remains
unchanged.

If the download was successful, we convert the QPixmap into a QIcon and set the
icon as the tray icon. Then we add the icon keyed by its URL to the icon cache
safe in the knowledge that we will never cache more than 100 icons and that
we will never needlessly download an icon that is already in the cache.

void WeatherTrayIcon::setAirport(QAction *action)

{

airport = action->data().toString();

QSettings settings;

settings.setValue("airport", airport);

 From the Library of Wow! eBook

ptg

20 Chapter 1. Hybrid Desktop/Internet Applications

requestXml();

}

This slot is called whenever the user chooses a new airport from the context
menu. We retrieve the name of the airport, set this airport as the new default,
and then call requestXml() to force the application to retrieve fresh weather
data for the newly chosen airport.

Notice that we don’t save any settings when the application terminates;
instead we save the settings (in this case there is only one) whenever they are
changed. This approach has the advantage that the settings are always up
to date, even when the application is running or in the face of an unexpected
crash, but the disadvantage that the code for saving settings could be spread
all over the place, making maintenance more error-prone.

We have now finished reviewing a small application that uses the high-level
and easy-to-use QNetworkAccessManager class to do basic Internet downloading.
In addition to the Weather Tray Icon application, the book’s examples also
include the RssPanel application (rsspanel) shown in Figure 1.4.

Figure 1.4 The RssPanel application

The RssPanel application features an Internet-aware RssComboBox that popu-
lates itself automatically from an RSS (Really Simple Syndication) feed—an
XML file—given a suitable URL, and updates itself periodically. We won’t
review the code for this example because it is structurally very similar to the
Weather Tray Icon example. However, itmight providean easier starting point
for creating your own Internet-aware widgets. It also uses a QXmlStreamReader

subclass to parse the RSS data it downloads, rather than the QDomDocument used
by the weathertrayicon example.★

The rest of the chapter will continue the theme of retrieving data from the
Internet, but using WebKit to display data (i.e., HTML pages), and to perform
operations on downloaded data.

★Eventually, the QtXmlmodule which provides Qt’s DOM and SAX parsers may be phased out in
favor of the much faster QXmlStreamReader and QXmlStreamWriter classes built into QtCore.

 From the Library of Wow! eBook

ptg

UsingWebKit 21

Using WebKit ||||

WebKit is an open source web content rendering and editing engine that was
originally created by KDE (‘K’ Desktop Environment) developers. WebKit is
now used as the basis for many web browsers, including Google’s Chrome,
KDE’sKonqueror,andMacOSX’sSafari, and is also used bymost web-enabled
mobile devices. WebKit aims to be standards compliant, and supports all the
standardweb technologies, includingHTML5,SVG (ScalableVectorGraphics),
CSS (Cascading Style Sheets—including CSS 3 Web Fonts), and JavaScript.
Qt’sQtWebKitmodule providesaQt-style interface forWebKit andmakesWeb-
Kit’s functionality available toQt programmers,and also providesconsiderable
additional functionality of its own. To be able to use the module, it is essential
to add the line QT += webkit to the application’s .pro file.

Table 1.1 TheMainWebKit Classes

Class Description

QWebElement A class for accessing and editing a QWebFrame’s DOM
elements with a jQuery-like API (Qt 4.6)

QWebFrame A data object that represents a frame in a web page

QWebHistory The history of visited links associated with a given
QWebPage

QWebHistoryItem An object that represents one visited link in a
QWebHistory

QWebPage A data object that represents a web page

QWebSettings A data object that holds the settings used by a given
QWebFrame or QWebPage

QWebView A widget that visualizes a QWebPage

Themost importantQtWebKit classes are shown in Table 1.1, and the relation-
ships between some of them are shown in Figure 1.5.

QWebView

QWebPage

QWebFrame

QWebFrame QWebFrame ... QWebFrame

QWebPage::
mainFrame()QWebFrame::

childFrames()

Figure 1.5 Some QtWebKit classes in context

 From the Library of Wow! eBook

ptg

22 Chapter 1. Hybrid Desktop/Internet Applications

Note that the only widget in QtWebKit is QWebView. For example, both QWebPage

and the (one or more) QWebFrames it contains are data classes. Using QWebPage

it is possible to download web content behind the scenes, process that content,
and then reflect the results into the user interface in whatever way we choose
—something we will see in this section’s second subsection.

Now thatwe have an initial impression of what theQtWebKitmodule provides,
wewill look at some examples of its use. In the first subsectionwewill create a
web browser window component. In the second subsectionwewill create a web
site-specific application that makes use of the browser component and that
reads and processes web pages behind the scenes. And in the third subsection
we will show how to embed Qt widgets and custom widgets into a web page.

A Generic Web Browser Window Component |||

In the two following subsectionswe are going to useWebKit to help us develop
two example hybrid desktop/Internet applications. In this subsection we will
create the browser window component (browserwindow) shown in Figure 1.6 that
the following examples make use of.

Figure 1.6 The browser window component

The browser window supports the standard browser features: forward, back,
reload, cancel loading, zooming, open a given page, and the ability to return to
a specific page in the browser’shistory. It also hasa contextmenu and a toolbar
(which can be hidden).

In addition, when a custom DEBUG symbol is defined (for example, by adding
DEFINES += DEBUG in the .pro file), the browser window’s context menu shows
an additional option, Inspect, that when invoked launches the WebKit Web
Inspector shown in Figure 1.7. This is a useful debugging tool that can provide
a wide variety of information about a web page, including the page’s DOM

 From the Library of Wow! eBook

ptg

UsingWebKit 23

Figure 1.7 TheWeb Inspector

(Document Object Model), and the resources it uses (for example, style sheets,
images, and JavaScript scripts), including their sizes and load times, and a lot
more besides.

From Qt 4.6, the Web Inspector can be invoked in a more conventional way
by creating a QWebInspector object, giving it a QWebPage, and then calling its
show() method.

For the Web Inspector to be available (and for the Qt 4.6 QWebInspector class to
work)wemust switch on the QWebSettings::DeveloperExtrasEnabled web setting.
We do this, and set various other settings, in the application’s main() function,
applying the changes to the global QWebSettings object, as this extract from
main() shows.

QWebSettings *webSettings = QWebSettings::globalSettings();

webSettings->setAttribute(QWebSettings::AutoLoadImages, true);

webSettings->setAttribute(QWebSettings::JavascriptEnabled, true);

webSettings->setAttribute(QWebSettings::PluginsEnabled, true);

webSettings->setAttribute(QWebSettings::ZoomTextOnly, true);
#ifdef DEBUG

webSettings->setAttribute(QWebSettings::DeveloperExtrasEnabled,

true);

#endif

The global QWebSettings object’s settingsare inherited by all of the application’s
QWebPage and QWebView objects, although we can override them individually for
every QWebPage and QWebView if we want to. The QWebSettings::ZoomTextOnly

attribute was introduced in Qt 4.5, and affects the zoom factor. By setting
the attribute to true we ensure that images are not zoomed (and therefore not
distorted if they are pixmaps), so only the text is shrunk or enlarged when the
user zooms.

 From the Library of Wow! eBook

ptg

24 Chapter 1. Hybrid Desktop/Internet Applications

At the time of this writing, the Qt documentation does not specify the web set-
tings’ defaults, so they may vary across platforms or minor Qt 4.x versions. We
can always check what a particular setting’s value is using QWebSettings::test-

Attribute() which takes an attribute enum value and returns a bool.

To get an overview of the browser window’s API we will look at the public and
protected parts of the class definition in the header file.

class BrowserWindow : public QFrame

{

Q_OBJECT

public:

explicit BrowserWindow(const QString &url=QString(),

QWebPage *webPage=0, QWidget *parent=0,

Qt::WindowFlags flags=0);

QString toHtml() const

{ return webView->page()->mainFrame()->toHtml(); }

QString toPlainText() const

{ return webView->page()->mainFrame()->toPlainText(); }

signals:

void loadFinished(bool ok);

void urlChanged(const QUrl &url);

public slots:

void load(const QString &url);

void setHtml(const QString &html) { webView->setHtml(html); }

void showToolBar(bool on) { toolBar->setVisible(on); }

void enableActions(bool enable);

protected:

void focusInEvent(QFocusEvent*) { webView->setFocus(); }

Most of the functionality, particularly the toolbar and context menu actions,
is provided by private slots (not shown) which we will discuss as we encounter
them in the following code snippets. The reimplementation of the QWidget::

focusInEvent() is used to ensure that if the browser window is given the focus
programmatically (by calling QWidget::setFocus() on it), the focus is passed
on to the web view. The class also has some private variables (not shown) that
provide access to its widgets.

Thanks to the considerable out of the box functionality provided by QWebView,
the BrowserWindow class is quite small, with most of the code in the constructor
and the create methods it calls. Here’s the constructor.

BrowserWindow::BrowserWindow(const QString &url, QWebPage *webPage,

QWidget *parent, Qt::WindowFlags flags)

 From the Library of Wow! eBook

ptg

UsingWebKit 25

: QFrame(parent, flags)

{

setFrameStyle(QFrame::Box|QFrame::Raised);

webView = new QWebView;

if (webPage)

webView->setPage(webPage);

load(url);

createActions();

createToolBar();

createLayout();

createConnections();

}

Wemade the browser window a QFrame subclass so that we can give it a frame.
This is helpful to users since web pages often contain widgets of their own
(buttons, line editors, and so on), so by framing the browser window we make
clear the boundary between the web page and the application in which it
is embedded.

We allow the class’s clients to pass in their own QWebPage if they prefer; other-
wise QWebView creates a QWebPage for itself. This is useful if we want to use a
QWebPage subclass—something we will see in the “Embedding Qt Widgets in
Web Pages” subsection (➤ 44).

The createActions() method is slightly unusual because we only have to create
a few of the actions ourselves. Here is an extract from themethod which omits
the creation of the zoomInAction, setUrlAction, and historyAction, since they are
all created in the same way as the zoomOutAction that is shown.

void BrowserWindow::createActions()

{

zoomOutAction = new QAction(QIcon(":/zoomout.png"),

tr("Zoom Out"), this);

zoomOutAction->setShortcuts(QKeySequence::ZoomOut);
···
QList<QAction*> actions;

actions << webView->pageAction(QWebPage::Back)

<< webView->pageAction(QWebPage::Forward)

<< webView->pageAction(QWebPage::Reload)

<< webView->pageAction(QWebPage::Stop)

<< zoomOutAction << zoomInAction << setUrlAction

<< historyAction;
#ifdef DEBUG

actions << webView->pageAction(QWebPage::InspectElement);

#endif

AQP::accelerateActions(actions);

 From the Library of Wow! eBook

ptg

26 Chapter 1. Hybrid Desktop/Internet Applications

webView->addActions(actions);

webView->setContextMenuPolicy(Qt::ActionsContextMenu);

}

We create a list of the actions we want the browser window to have, including
the inspect action if DEBUG is set, and using QWebView’s predefined actions
where possible. We then use AQP::accelerateActions() to provide keyboard
accelerators (i.e., underlined letters, not keyboard shortcuts such as Ctrl+X), on
non-Mac OSX platforms (15 ➤). Then we simply add the actions to the QWebView
and tell it to provide a context menu using these actions.

Note that we do not need to create signal–slot connections or provide slots for
the actions provided by QWebView, since these are all built in.

Figure 1.8 The browser window component on Mac OS X

We have not shown the createToolBar() method since it is mostly standard for
C++/Qt applications. However,asFigure 1.8 shows—comparedwith Figure 1.6
(22 ➤)—the toolbar is laid out differently onMac OSX than on other platforms.
This is done because on Mac OS X it is common to have tool buttons display an
iconwith text beneath. And tomake the entire toolbar layout consistentweput
the labels for the zoom spinbox and for the progress bar beneath them rather
than to their left as we did on other platforms. To achieve these differenceswe
used #ifdefs in the code in browserwindow/browserwindow.cpp, making use of the
fact that Q_WS_MAC is only defined on Mac OS X.★

The createLayout() method is small and standard, so we will skip it and move
on to createConnections().

★As noted in the Introduction, all the source code is available from www.qtrac.eu/aqpbook.html.

 From the Library of Wow! eBook

www.qtrac.eu/aqpbook.html

ptg

UsingWebKit 27

void BrowserWindow::createConnections()

{

connect(webView, SIGNAL(loadProgress(int)),

progressBar, SLOT(setValue(int)));

connect(webView, SIGNAL(urlChanged(const QUrl&)),

this, SLOT(urlChange(const QUrl&)));

connect(webView, SIGNAL(loadFinished(bool)),

this, SLOT(loadFinish(bool)));

connect(setUrlAction, SIGNAL(triggered()), this, SLOT(setUrl()));

connect(historyAction, SIGNAL(triggered()),

this, SLOT(popUpHistoryMenu()));

connect(zoomOutAction, SIGNAL(triggered()),

this, SLOT(zoomOut()));

connect(zoomInAction, SIGNAL(triggered()), this, SLOT(zoomIn()));

connect(zoomSpinBox, SIGNAL(valueChanged(int)),

this, SLOT(setZoomFactor(int)));

}

We set up the first three signal–slot connections to allow us to keep track of
loading progress and page changes so that we can keep the progress bar and
progress label up to date. The remaining connections are for handling the
actions we created ourselves, and to respond to the user interacting with the
zoom spinbox.

Now that we have seen enough to have an overview of the browser window,we
can review the methods used to provide its behavior.

void BrowserWindow::load(const QString &url)

{

if (url.isEmpty())

return;

QString theUrl = url;

if (!theUrl.contains("://"))

theUrl.prepend("http://");

webView->load(theUrl);

}

If the given URL string is empty we do nothing; otherwise we prepend “http://”
as a courtesy if no scheme is specified, and tell the web view to perform the
load. (We use QString rather than QUrl since it is easier to correctly add the
scheme to a string than to a QUrl.)

void BrowserWindow::setUrl()

{

load(QInputDialog::getText(this, tr("Set URL"), tr("&URL:")));

}

 From the Library of Wow! eBook

ptg

28 Chapter 1. Hybrid Desktop/Internet Applications

If the user invokes the set URL action, this method is called. If they cancel,
an empty URL will be passed to the load() method which will then harmlessly
do nothing.

void BrowserWindow::urlChange(const QUrl &url)

{

emit urlChanged(url);

progressLabel->setText(tr("Loading"));

}

Whenever the web page’s URL changes (whether the user clicked a link, or
used the set URL action, or used the history), this slot is called. We emit our
own urlChanged() signal as a convenience to BrowserWindow users, and update
the progress label to indicate that loading has commenced.

void BrowserWindow::loadFinish(bool ok)

{

emit loadFinished(ok);

progressLabel->setText(ok ? tr("Loaded") : tr("Canceled"));

}

When loading finishes, this slot is called with the bool ok signifying whether
the load was successful. Again we emit a signal for the convenience of Browser-
Window users, and again we update the progress label to reflect the current sit-
uation.

We don’t have to worry about keeping the progress bar up to date since we
connected the web view’s loadProgress() signal to the progress bar’s setValue()
slot at the end of the constructor.

void BrowserWindow::setZoomFactor(int zoom)

{

webView->setZoomFactor(zoom / 100.0);

}

If the user manipulates the zoom spinbox this slot is called and the web
view’s text is scaled accordingly. (If we want images to scale we must set the
QWebSettings::ZoomTextOnly attribute to false.)

const int ZoomStepSize = 5;

void BrowserWindow::zoomOut()

{

zoomSpinBox->setValue(zoomSpinBox->value() - ZoomStepSize);

}

The zoomOutAction is connected to this slot. A similar zoom-in action and
slot are also present, although not shown. When these slots are invoked the

 From the Library of Wow! eBook

ptg

UsingWebKit 29

setValue() calls result in the spinbox emitting a valueChanged() signal and
that leads to the setZoomFactor() slot being invoked because of the signal–slot
connection we saw earlier.

void BrowserWindow::enableActions(bool enable)

{

foreach (QAction *action, webView->actions())

action->setEnabled(enable);

toolBar->setEnabled(enable);

webView->setContextMenuPolicy(enable ? Qt::ActionsContextMenu

: Qt::NoContextMenu);

}

In some use cases the application embedding the browser window does not
want the user to be able to make use of the browser functionality beyond
simply viewing and interacting with the page that is presented. This method
makes it possible to disable or enable the browser window’s actions.

const int MaxHistoryMenuItems = 20;

const int MaxMenuWidth = 300;

void BrowserWindow::popUpHistoryMenu()

{

QFontMetrics fontMetrics(font());

QMenu menu;

QSet<QUrl> uniqueUrls;

QListIterator<QWebHistoryItem> i(webView->history()->items());

i.toBack();

while (i.hasPrevious() &&

uniqueUrls.count() < MaxHistoryMenuItems) {

const QWebHistoryItem &item = i.previous();

if (uniqueUrls.contains(item.url()))

continue;

uniqueUrls << item.url();

QString title = fontMetrics.elidedText(item.title(),

Qt::ElideRight, MaxMenuWidth);

QAction *action = new QAction(item.icon(), title, &menu);

action->setData(item.url());

menu.addAction(action);

}

AQP::accelerateMenu(&menu);

if (QAction *action = menu.exec(QCursor::pos()))

webView->load(action->data().toUrl());

}

When this method is invoked it pops up a menu whose items correspond to the
web pages the user has visited. The link data is retrieved from the QWebView’s

 From the Library of Wow! eBook

ptg

30 Chapter 1. Hybrid Desktop/Internet Applications

QWebHistory. This holds a list of QWebHistoryItems, each of which has the web
page’s title, the page’s URL, the page’s icon—Qt provides a default icon if one
isn’t available from the web page’s server—and a few other pieces of infor-
mation.

Themenu presents the links in reverse order, that is, frommost recently visited
at the top to least recently visited at the bottom. It also imposes a limit on the
number of items shown, and eliminates duplicates—which means that the or-
der of visiting is not strictly preserved. Some pages have very long titles, and
in such cases we elide the title at the right-hand end (i.e., chop off the excess
text and replace it with an ellipsis, “…”), using QFontMetrics::elidedText(). It
is also possible to elide on the left or in the middle by passing Qt::ElideLeft or
Qt::ElideMiddle as the second argument.

Aswementioned earlier, prior to Qt 4.7,Qt does not provide a qHash(QUrl) func-
tion, sowe cannot store QUrls in a QSet out of the box. Since QSet is implemented
in terms of a QHash, the solution is to add exactly the same qHash(QUrl) one-liner
that we used for the Weather Tray Icon application we saw earlier (11 ➤).

If the user cancels the menu (e.g., by pressing Esc or by clicking elsewhere),
QMenu::exec() will return 0; otherwise it will return the QAction corresponding
to themenu option the user chose. If a QAction is returned we extract the URL
that is held in its data. And oncewe have theURL,we ask theweb view to load
the corresponding page.

We have now completed our review of the browser window component. There
are other standard browser features that we could add, some of which are
easily done sinceWebKit already provides the necessary functionality. For ex-
ample, we could add a search text function based on the QWebView::findText()

method, and a print page function based on the QWebFrame::print() or QWeb-

Frame::render() method.

In the following two subsections we will use the browser window as a funda-
mental part of two hybrid desktop/Internet applications. We will also learn
how to download web content invisibly behind the scenes and how to inject
JavaScript into web pages so that we can extract information from them. And
wewill learn how to enhance the browser window so that it can seamlessly dis-
play standard and custom Qt widgets that users can interact with.

Creating Web Site-Specific Applications |||

If people are using one particular web site a lot of the time then it should be
possible to provide them with more convenience and functionality by creating
a web site-specific application geared to their needs. The danger of such ap-
plications is that they can be vulnerable to changes in the web site, but this
may be outweighed by the time savings achieved by the greater convenience
of use—particularly if the site has a large number of users. Also, we might

 From the Library of Wow! eBook

ptg

UsingWebKit 31

Figure 1.9 The NewYork Review of Books Viewer

be able to contain the effects of such changes so that they only affect the
JavaScript we use behind the scenes without requiring source code changes
at all.

Creating a custom site-specific application can also ensure that users can only
access the site using a custom client application. Perhaps the best known
example of this is Apple’s iTunes Music Store, which (at the time of this
writing) cannot be used with a standard web browser.

In this subsection we will look at the New York Review of Books Viewer appli-
cation (nyrbviewer) shown in Figure 1.9. This application shows pages from the
NYRB (NewYork Review of Books) using the browser window component from
the previous subsection. Whatmakes this application stand out asmore conve-
nient to use than viewing the site in a web browser is that it offers comboboxes
listing the issues and the articles within a selected issue. This gives the user
an easy way of seeing what issues and articles are available and a fast way of
choosing an article to read.

Most of the functionality is already present in the browser window component,
so we only need to concentrate on howwe are going to populate the comboboxes
with the correct data and how we are going to make them work. We will start
by looking at the constructor.

const QString NYRBUrl("http://www.nybooks.com");

 From the Library of Wow! eBook

http://www.nybooks.com

ptg

32 Chapter 1. Hybrid Desktop/Internet Applications

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent)

{

createWidgets();

createLayout();

issueLinkFetcher = new LinkFetcher(NYRBUrl,

scriptPathAndName("fetch_issue_links.js"), this);

articleLinkFetcher = new LinkFetcher(NYRBUrl,

scriptPathAndName("fetch_article_links.js"), this);

createConnections();

AQP::accelerateWidget(this);

issueComboBox->setFocus();

issueLinkFetcher->load(NYRBUrl);

setWindowTitle(QApplication::applicationName());

QTimer::singleShot(1000 * 60, this, SLOT(networkTimeout()));

}

We create the widgets and layouts in the usual way. The AQP::accelerate-

Widget() function uses QObject::findChildren() to find all the QLabels and
QAbstractButtons (and their subclasses, apart from QToolButtons) that are chil-
dren of the window and sets keyboard accelerators for them (15 ➤).

One novel aspect of the constructor is the creation of the two LinkFetcher

objects. These objects create QWebPage objects behind the scenes—recall that
QWebPages are data objects—andhave their QWebPages download a specified page.
They then inject the JavaScript they are given when they are constructed into
the page, and this is used to extract relevant links. The web site URL they are
given is used to convert any relative links such as articles/22273 into absolute
links such as http://www.nybooks.com/articles/22273.

Once the link fetchers are created and connected,we start things off by telling
the issueLinkFetcher to download the NYRB web site’s main page and to use
the fetch_issue_links.js script to extract the links to all the issues; these
can then be used to populate the issues combobox. And whenever an issue
is chosen, the articleLinkFetcher is told to download the current issue’s page
and uses the fetch_article_links.js script to extract the links to all the issue’s
articles; these can be used to populate the articles combobox. We will look at
the LinkFetcher class toward the end of this subsection.

We created the scriptPathAndName() method because we want to have some
flexibility regarding the scripts, as we will discuss in a moment.

One final aspect is that we have set up a single shot timer. This will time out
after a minute and call the networkTimeout() slot, so that we can provide an
error message if it transpires that the Internet is unreachable.

QString MainWindow::scriptPathAndName(const QString &filename)

{

 From the Library of Wow! eBook

http://www.nybooks.com/articles/22273

ptg

UsingWebKit 33

QString name = filename;

QString path = AQP::applicationPathOf() + "/";

if (QFile::exists(path + name))

return path + name;

return QString(":/%1").arg(name);

}

This method looks for the script in the directory containing the application’s
executable and if it is found returns the full path and name for reading by the
link checker. But if the script isn’t in the filesystem then we fall back to using
a script that has been embedded in the executable as a resource. This means
that by default the application uses its own embedded scripts, but if we need
to change the scripts—for example, if the web site undergoes changes—we
can simply put updated scripts in the excecutable’s directory and they will
automatically be found and used in preference to the application’s embedded
scripts. (Of course those concerned with security might prefer to use a binary
file format with a checksum or other measure to ensure that a locally installed
script is legitimate, but such issues are beyond the scope of this book.)

The aqp.{hpp,cpp} module’s AQP::applicationPathOf() function returns the path
of the application (as a QString), or the path of the subdirectory inside the ex-
ecutable’s directory, if a subdirectory is given as an argument. We cannot use
QApplication::applicationDirPath() directly, since that does not account for the
fact that the executable may be in a different directory depending on whether
it is in its released form or is under development. (For example, during devel-
opment on Windows the executable is normally in the debug or release subdi-
rectory.)

const QString InitialMessage(

QObject::tr("Attempting to connect to the network..."));

const QString FailMessage(

QObject::tr("No issues or articles available"));

void MainWindow::networkTimeout()

{

const QString text = browser->toPlainText().trimmed();

if (text == InitialMessage || text == FailMessage)

browser->setHtml("<h3>Failed to connect "

"to the network</h3>Perhaps the proxy "

"settings are wrong, or maybe a proxy is needed. "

"Try:
<tt>nyrbviewer --help</tt>");

}

One minute after the application starts up this slot is called. If no Internet
connection has been established, the browser’s text will be the same as the
InitialMessage or the FailMessage, so we try to provide some help to the user.
(See the “Supporting Network Proxying” sidebar; 9 ➤.)

 From the Library of Wow! eBook

ptg

34 Chapter 1. Hybrid Desktop/Internet Applications

In the header file we have a private variable, namesForUrlsForIssueCache:

QHash<int, QMap<QString, QString> > namesForUrlsForIssueCache;

This cache’s keys are the index positions of items in the issue combobox, and its
values aremapswhose keys areURLs and whose values are article names. We
will see how it is used when we look at the main window’s methods, but note
for now that link fetchers can return a URL–namemap for the links they have
retrieved from the page they have downloaded. (We don’t use a QCache because
we don’t ever want to get rid of the cached data.)

We won’t show the createWidgets() and createLayout() methods since they are
standard C++/Qt, but we will look at createConnections().

void MainWindow::createConnections()

{

connect(issueLinkFetcher, SIGNAL(finished(bool)),

this, SLOT(populateIssueComboBox(bool)));

connect(articleLinkFetcher, SIGNAL(finished(bool)),

this, SLOT(populateCache(bool)));

connect(issueComboBox, SIGNAL(currentIndexChanged(int)),

this, SLOT(currentIssueIndexChanged(int)));

connect(articleComboBox, SIGNAL(currentIndexChanged(int)),

this, SLOT(currentArticleIndexChanged(int)));

connect(quitButton, SIGNAL(clicked()), this, SLOT(close()));

}

Whenever a link fetcher finishes downloading a page and extracting the rele-
vant links, it emits a finished(bool) signal with the Boolean indicating success
or failure. For the issue link fetcher we connect directly to the populateIssue-

ComboBox() slot, but for the article link fetcher we connect to the populateCache()
slot,which in turn calls populateArticleComboBox() once the cache has been pop-
ulated.

If the user chooses a different issue we must repopulate the article combobox,
and if the user chooses an article we must load it into the browser window.
These behaviors are set up by the third and fourth signal–slot connections.
The application’s overall flow of control is illustrated in Figure 1.10.

Now we will review the main window’s methods, starting with those concern-
ing the issue combobox and then looking at those that concern the article
combobox.

void MainWindow::populateIssueComboBox(bool ok)

{

if (ok)

populateAComboBox(tr("- no issue selected -"),

issueLinkFetcher->namesForUrls(), issueComboBox);

 From the Library of Wow! eBook

ptg

UsingWebKit 35

else {

issueComboBox->clear();

issueComboBox->addItem(tr("- no issues available -"));

}

}

This slot is called only once, when the LinkFetcher::load() call made on the
issueLinkFetcher in themainwindow’s constructor eventually results in a Link-

Fetcher::finished() signal being emitted. The issue link fetcher retrieves the
names and URLs of all the issues (since 2000). Once the retrieval is finished,
the results are made available as a QMap<QString, QString> where the URLs
are keys and the issue names are values. We send this map to the populate-

AComboBox() method and ask it to populate the issues combobox using the
map’s data.

void MainWindow::populateAComboBox(const QString &statusText,

const QMap<QString, QString> &namesForUrls,

QComboBox *comboBox)

{

comboBox->clear();

comboBox->addItem(statusText);

QMapIterator<QString, QString> i(namesForUrls);

i.toBack();

while (i.hasPrevious()) {

i.previous();

comboBox->addItem(i.value(), i.key());

}

if (comboBox->count() > 1)

comboBox->setCurrentIndex(1);

}

This method is called from both the populateIssueComboBox() slot and from the
populateArticleComboBox() method.

We start by clearing the combobox’s original contents and adding the status
text as the first item. Then we iterate in reverse order over the URL–issue
name map (or the URL–article name map, if it is being used to populate the
articles combobox) that is passed in, and that was returned by a link fetcher.
For the NYRB web site’s issues and articles, the URLs encode the date, for
example, /contents/20090115, so we are iterating in date order from most to
least recent. For issues, the names are simply dates in U.S. format (e.g., “Jan
15, 2009”), and these are added as combobox item texts, with the URLs added
as item data. For articles, the names are the actual article titles.

If there is more than one item, that is, there is at least one issue or article, we
make the first (most recent) issue or article the current one, and this in turn

 From the Library of Wow! eBook

ptg

36 Chapter 1. Hybrid Desktop/Internet Applications

Start issueLinkFetcher::load()

populateIssueComboBox() www.nybook.com

User chooses
an issue

Issue’s articles
in the cache?

articleLinkFetcher::load()

populateArticleComboBox() populateCache()

No

Y

Yes

Figure 1.10 The NewYork Review of Books Viewer’s flow of control

will cause the currentIssueIndexChanged() slot or the currentArticleIndex-

Changed() slot to be called.

void MainWindow::currentIssueIndexChanged(int index)

{

articleComboBox->clear();

if (index == 0) {

articleComboBox->addItem(tr("- no issue selected -"));

return;

}

if (namesForUrlsForIssueCache.contains(index))

populateArticleComboBox();

else {

articleComboBox->addItem(

tr("+ fetching the list of articles +"));

browser->setHtml(tr("<h3>"

"Fetching the list of articles...</h3>"));

QString url = issueComboBox->itemData(index).toString();

articleLinkFetcher->load(url);

}

}

If a new issue is chosen we start by clearing the article combobox. If an issue is
selected we check to see if we have already downloaded its URL–article name
map; if we have, we can simply call populateArticleComboBox() which always
retrieves its data from the cache.

If there is no cache entry for the newly chosen issue, we add status-indicating
text to the article combobox and to the browser window. Then we retrieve
the issue’s URL (which is held in the issue combobox item’s data), and tell the
article link fetcher to download the issue’s page and extract the article links

 From the Library of Wow! eBook

www.nybook.com

ptg

UsingWebKit 37

from it. Once the download finishes the populateCache() slot is called thanks to
the signal–slot connection we created earlier.

void MainWindow::populateCache(bool ok)

{

if (!ok || issueComboBox->count() == 1) {

articleComboBox->setItemText(0,

tr("- no articles available -"));

browser->setHtml(tr("<h3>%1</h3>")

.arg(FailMessage));

return;

}

QTextDocument document;

QMap<QString, QString> namesForUrls =

articleLinkFetcher->namesForUrls();

QMutableMapIterator<QString, QString> i(namesForUrls);

while (i.hasNext()) {

i.next();

document.setHtml(i.value());

i.setValue(document.toPlainText());

}

namesForUrlsForIssueCache[issueComboBox->currentIndex()] =

namesForUrls;

populateArticleComboBox();

}

If the download of URL–article names failed we inform the user via both the
article combobox and by putting some text in the browser window. In the case
of success we retrieve the URL–article namemap from the article link fetcher.
Then we add the nowmodifiedmap to the cache and call populateArticleCombo-
Box().

We need the article names as plain text since they are going into a QCombo-

Box (which cannot display rich text). Rather than creating and destroying a
QTextDocumentFragment each time (i.e., i.setValue(QTextDocumentFragment::from-
Html(i.value()).toPlainText());), we create a single QTextDocument and at each
iteration set its HTML text and then call its toPlainText() method.

void MainWindow::populateArticleComboBox()

{

int index = issueComboBox->currentIndex();

if (index > 0)

populateAComboBox(tr("- no article selected -"),

namesForUrlsForIssueCache[index], articleComboBox);

}

 From the Library of Wow! eBook

ptg

38 Chapter 1. Hybrid Desktop/Internet Applications

This method is only ever called if the cache has the required data, so we know
that if an issue hasbeen chosen then its linksare in the cache. We populate the
combobox using the populateAComboBox() method shown earlier (35 ➤), passing
it a status text to add as the first item, the current issue’s URL–article name
map from the cache, and the combobox we want populated. If the user has
chosen the first item in the issue combobox (the “no issue selected” item), we
do nothing.

void MainWindow::currentArticleIndexChanged(int index)

{

if (index == 0)

return;

QString url = articleComboBox->itemData(index).toString();

browser->load(url);

browser->setFocus();

}

When the user chooses a new item in the article combobox (apart from the first
“no article selected” item), we retrieve the URL that is associated with the ar-
ticle title from the combobox item’s data, and tell the browser window to load
the corresponding page. Wealso give thebrowserwindow focus (whichactually
goes to the browser window’s QWebView), so that the user can immediately begin
scrolling with the keyboard up and down arrow keys.

We have now seen the complete implementation of the New York Review of
Books Viewer application (except for the header, and the createWidgets() and
createLayout() methods). We will now review the LinkFetcher class to see how
that works behind the scenes to download pages and extract links. Here is
its header:

class LinkFetcher : public QObject

{

Q_OBJECT

public:

explicit LinkFetcher(const QString &site_,

const QString &scriptOrScriptName_, QObject *parent=0);

void load(const QString &url);

QMap<QString, QString> namesForUrls() const

{ return m_namesForUrls; }

void clear() { m_namesForUrls.clear(); }

signals:

void finished(bool);

public slots:

void addUrlAndName(const QString &url, const QString &name);

 From the Library of Wow! eBook

ptg

UsingWebKit 39

private slots:

void injectJavaScriptIntoWindowObject();

void fetchLinks(bool ok);

private:

QWebPage page;

QMap<QString, QString> m_namesForUrls;

const QString site;

const QString scriptOrScriptName;

};

This class uses the QWebPage data class to load the URL it is given. It then uses
the JavaScript script it was given to extract the relevant links from the page
and populate the m_namesForUrls map with each link’s URL and name.

We can make any QObject accessible to JavaScript. This means that the
JavaScript that is injected into the pages that are downloaded can not only
access the pages’ elements (using the HTMLDocument Object Model), but can
also access any QObjects we have made available. In particular, the JavaScript
can domethod calls on a QObject’s public slots and can access a QObject’s proper-
ties if it has any. In this case we will be passing a reference to the link fetcher
instance, so the injected JavaScript script can communicate with our C++ code
by calling the link fetcher’s public slots.

LinkFetcher::LinkFetcher(const QString &site_,

const QString &scriptOrScriptName_, QObject *parent)

: QObject(parent), site(site_),

scriptOrScriptName(scriptOrScriptName_)

{

QWebSettings *webSettings = page.settings();

webSettings->setAttribute(QWebSettings::AutoLoadImages, false);

webSettings->setAttribute(QWebSettings::PluginsEnabled, false);

webSettings->setAttribute(QWebSettings::JavaEnabled, false);

webSettings->setAttribute(QWebSettings::JavascriptEnabled, true);

webSettings->setAttribute(QWebSettings::PrivateBrowsingEnabled,

true);

connect(page.mainFrame(), SIGNAL(javaScriptWindowObjectCleared()),

this, SLOT(injectJavaScriptIntoWindowObject()));

connect(&page, SIGNAL(loadFinished(bool)),

this, SLOT(fetchLinks(bool)));

}

Since we are downloading the page behind the scenes and are only interest-
ed in its links, we change the QWebPage’s page settings. We switch off image
downloading, plugins, and Java, and switch on JavaScript, and also QWeb-

Settings::PrivateBrowsingEnabled, which prevents the QWebPage from recording

 From the Library of Wow! eBook

ptg

40 Chapter 1. Hybrid Desktop/Internet Applications

any history or storing any web page icons since neither is of any use to us and
would otherwise consume some memory and CPU time.

Whenever a page load is initiated, the JavaScript window objects for its
QWebFrames are cleared, ready for any new JavaScript that the new page’s frame
or frames may contain. Since we need to inject our own JavaScript into the
main frame’s window object for each page that is downloaded, we must ensure
that our JavaScript is re-injected whenever the JavaScript window object is
cleared. This is achieved by the first signal–slot connection shown here.

The second signal–slot connection ensures that as soon as the page has been
downloaded we try to extract its links.

void LinkFetcher::injectJavaScriptIntoWindowObject()

{

page.mainFrame()->addToJavaScriptWindowObject("linkFetcher",

this);

}

The QWebFrame::addToJavaScriptWindowObject() method can add any QObject to a
QWebFrame’s JavaScript window objects. The string first argument is the name
that the object will be accessible as in JavaScript (in this example,linkFetcher),
and the QObject second argument is a reference to the actual object—in this
case an instance of the LinkFetcher class itself.

void LinkFetcher::load(const QString &url)

{

clear();

page.mainFrame()->load(QUrl(url));

}

When the link fetcher is given a URL to load it starts by clearing the m_names-

ForUrls map and then tells the QWebPage’s main frame to load the page. Once
loading is finished the fetchLinks() slot is called because of the signal–slot con-
nection set up earlier.

void LinkFetcher::fetchLinks(bool ok)

{

if (!ok) {

emit finished(false);

return;

}

QString javaScript = scriptOrScriptName;

if (scriptOrScriptName.endsWith(".js")) {

QFile file(scriptOrScriptName);

if (!file.open(QIODevice::ReadOnly)) {

emit finished(false);

return;

 From the Library of Wow! eBook

ptg

UsingWebKit 41

}

javaScript = QString::fromUtf8(file.readAll());

}

QWebFrame *frame = page.mainFrame();

frame->evaluateJavaScript(javaScript);

emit finished(true);

}

If the load failed we notify any connected objects. Otherwise we check to see
if the QString scriptOrScriptName private member variable holds an actual
script or only the name of a script; and in the latter case we attempt to read in
the script’s text. Instead of creating a QTextStream, we open the file in binary
mode and convert the QByteArray returned by the QFile::readAll() method
into Unicode using the static QString::fromUtf8() method. Once the script is
ready we tell the QWebPage’s main frame to evaluate it, and then we notify any
connected objects that we have successfully finished.

QWebPage

QObject

QWebFrame JavaScript
t

addToJavaScriptWindowObject()

a
evaluateJavaScript()

Access
the
object’s
properties
and call its methods

r

mainFrame()

Figure 1.11 Injecting JavaScript to access HTML elements and an application’s QObjects

The QWebFrame::evaluateJavaScript() method returns a QVariant that holds the
value of the last JavaScript expression executed; we have ignored it because
wehave chosen amore versatile approach to JavaScript⇔C++communication.
Sincewe have set a reference to the link checker itself as an object accessible to
the JavaScript script, that script can call any of the link checker’s public slots
and access its properties. In this casewehave provided the addUrlAndName() slot
expressly for the use of JavaScript scripts.

void LinkFetcher::addUrlAndName(const QString &url,

const QString &name)

{

if (url.startsWith("http://"))

m_namesForUrls[url] = name;

else

m_namesForUrls[site + url] = name;

}

 From the Library of Wow! eBook

ptg

42 Chapter 1. Hybrid Desktop/Internet Applications

Whenever the JavaScript script obtains the details of a link it calls this slot
with the link’s URL and name, and as a result the m_namesForUrls map is
populated. Since theURLsmight be relative or absolute,we prefix the relative
ones with the site that was given to the link fetcher when it was constructed.

Figure 1.11 illustrates how by adding an application QObject to a web page,
JavaScript executed in the context of the web page can access both the page’s
HTML elements (via the Document Object Model), and any application
QObjects we give the page access to.

We have now completed our review of the LinkFetcher class, but to make sure
we understand how thingswork wewill show the fetch_article_links.js script
(since it is by far the shorter of the two), just to see how it works and how it
interacts with the link fetcher.

Java-
Script

var links = document.getElementsByTagName("a");

for (var i = 0; i < links.length; ++i) {

if (links[i].href.search("/articles/") != -1) {

linkFetcher.addUrlAndName(links[i].href, links[i].innerHTML);

}

}

The JavaScript getElementsByTagName() method is used to retrieve all the “a”
(anchor) tags—these are the ones that hold links, with the link itself held in
the href property and the text between the <a> and tags as the innerHTML

property.

The key point to notice is the last statement, where we call LinkFetcher::add-
UrlAndName() using the linkFetcher reference to the C++ link fetcher object.

The original fetch_issue_links.js script is very similar to the fetch_article_

links.js script, but a bit longer (around 20 lines), since we read the issue links
out of a combobox that appeared on the web site’s home page.

About nine months into the writing of this book, the NYRBweb site made con-
siderable changes to its home page, and the issues combobox that the original
fetch_issue_links.js script read the list of issues from has now gone. Nor do
any other pages appear to provide such a combobox, or the list of issues in any
other form. However, their web master pointed out that they have one page
for each year that lists that year’s issues. Armed with this information, we
were easily able to write a new fetch_issue_links.js script—around 40 lines
long—and simply put the new script in the same directory as the executable.
And since we designed the application to use scripts it finds in the same direc-
tory as the executable in preference to the scripts embedded in its resources,
without even needing to be recompiled, the program automatically uses the
new fetch_issue_links.js script.

Since the new fetch_issue_links.js script must read one page per year of
issues—we have set it to read the past five years—it runs slower than the

 From the Library of Wow! eBook

ptg

UsingWebKit 43

original because it does a synchronousGET request for each page.★ Nonetheless,
the solution was easy to implement and workswell. However, in the long term,
wewouldwant to avoid doing synchronousdownloads in JavaScript, since they
block the GUI application’s event loop. So in this case the ideal solution would
be to redesign the program so that it uses Qt’s networking classes to do the GET

requests to produce the list of issues,while keeping the fetch_article_links.js
script for the articles. We leave this as an exercise, since it should be quite
straightforward to do.

Before finishing this subsection’s coverage of using JavaScript, it is worth dis-
cussing how to debug applications that use injected JavaScript like this—since
it isn’t easy! One simple way of dealing with the problem is to make sure that
every script returns a valuewhen evaluated, and to retrieve and test the value.
In this example, we have taken a more versatile approach, and added a new
public slot to the link fetcher’s header file:

void debug(const QString &value)

{ qDebug("%s", qPrintable(value)); }

During development we called this slot from inside the JavaScript scripts
(the debug() calls are still there in the source code, but commented out). For
example, we have the following line inside the fetch_article_links.js script’s
for loop (although we didn’t show it when we quoted the script earlier):

Java-
Script

linkFetcher.debug(links[i].href + " * " + links[i].innerHTML);

Adding debug() statements like this can be very useful. (Windows users must
of course add CONFIG += console to their .pro file so that the debugging output
will be visible.)

Unfortunately,using debug() statementsdoesn’t work if the script has a syntax
error, since the script won’t run at all. One way to check a script for syntax
errors is to pass its filename as the command line argument to Qt’s qscript

program (in Qt’s examples directory). If the syntax is okay, qscript will attempt
to run the script; otherwise it will provide an error message with the line
number where the first error was found.

The New York Review of Books Viewer application covered in this subsection
makes use of fairly basic JavaScript scripts (although the new fetch_issue_

links.js script is more complex).Much more sophisticated scripts can be writ-
ten, especially since scripts can access a downloaded page’s DOM (Document
Object Model). We can also use Qt 4.6’s QWebElement class to access (and even
modify) web pages via their DOM, which is very convenient for web sites that
we know will remain stable or that we have control over. So, in each case, we
must make the trade-off between the ease and convenience with which we can

★ The new script uses the XMLHttpRequest object and is based on ideas from JavaScript: The
Definitive Guide by David Flanagan, ISBN 9780596101992.

 From the Library of Wow! eBook

ptg

44 Chapter 1. Hybrid Desktop/Internet Applications

change our JavaScript scripts to keep up with web site changes, versus the
power and asynchronicity of Qt’s networking and web classes which make it
easy to present a responsive user interface and allow us to do all our web pro-
gramming in pure C++.

Embedding Qt Widgets in Web Pages |||

The range of widgets available in HTML is rather limited. Various solutions
are possible, such as using proprietary content formats like Flash or using
proprietary browser extensions such as those available for Internet Explorer,
or by embedding a Java application. All these approaches require that the
user’s browser support them and this may not be possible in all cross-platform
contexts. Another disadvantage of using proprietary formats or extensions is
that we are limited to whatever functionality they provide.

Another solution is to embed Qt widgets. This has the advantages that we get
complete control over the behavior and appearance of the widgets we embed,
and it allows us complete freedom to build in whatever functionality we need.
The disadvantage of this approach is that the browser must be able to support
embedded Qt widgets.

Figure 1.12 TheMatrix Quiz web page

In this subsection we will review the Matrix Quiz web page shown in Fig-
ure 1.12.Thisweb page is embedded in a browser window component and used
in the Matrix Quiz application (matrixquiz).

The web page shows two randomly generated 3 × 3 matrices and invites the
user to add them up by entering the appropriate values in the third matrix
whose initial values are all zeros. If the user presses theNew button a new pair
of matrices is generated. If the user presses the Submit button the third ma-
trix’s values are compared to what they ought to be, and any incorrect values
are highlighted in red—for example, cells containing the values 181 and 187 in

 From the Library of Wow! eBook

ptg

UsingWebKit 45

Figure 1.12.The cursor cell is shown in reverse video (e.g., white on black), and
with a focus rectangle—here, for example, the cell containing value 116.

The web page is made up of a mixture of HTML elements and standard and
custom Qt widgets. The title text, the “Name:” label, and the large “+” and
“=” signs are all standard HTML elements. The name line edit, the buttons,
and the result label could also have been HTML elements, but for the sake
of the example we have used standard Qt widgets. The matrix widgets are
custom widgets (a simple QTableWidget subclass)—something not possible in
pure HTML.

As implemented, the browser window component we created earlier does not
support embedded Qt widgets. We have added support simply by creating a
custom QWebPage subclass that has the necessary support, and passing that in
to the browser window rather than letting the browser window create its own
standard QWebPage.

We will start reviewing the code by looking at a group of three tiny extracts
from the Matrix Quiz application’s main() function.

qsrand(static_cast<uint>(time(0)));

QWebSettings *webSettings = QWebSettings::globalSettings();

webSettings->setAttribute(QWebSettings::AutoLoadImages, true);

webSettings->setAttribute(QWebSettings::JavascriptEnabled, true);

webSettings->setAttribute(QWebSettings::PluginsEnabled, true);

QString url = QUrl::fromLocalFile(AQP::applicationPathOf() +

"/matrixquiz.html").toString();

BrowserWindow *browser = new BrowserWindow(url, new WebPage);

browser->showToolBar(false);

browser->enableActions(false);

Qt’s global qsrand() function is used to seed Qt’s random number generator.
Without this call, calls to qrand() would always return the same sequence of
random numbers (since the seed defaults to 1 unless we explicitly set it). We
prefer to useQt’s random functionssincenot all platforms(e.g., some embedded
systems) support them, and although not relevant here, they are also thread-
safe. (Qt’s global functions, including qsrand(), are shown in Table 1.2.)

To make use of JavaScript we must enable it, and similarly to make use of
embedded widgets we must enable plugins.

The QUrl class is normally used to create URLs for web pages on the Internet,
but here we have used it to create a URL for a web page in the local filesystem
using the file:// scheme.

When we create the BrowserWindow instance we not only pass it the URL of the
web page we want it to use (as a string), but an instance of our custom WebPage

class. Wealso hide the browserwindow’s toolbar and switch off all its actions—

 From the Library of Wow! eBook

ptg

46 Chapter 1. Hybrid Desktop/Internet Applications

Table 1.2 Qt’s Global Utility Functions

Function/Example Description

u = qAbs(n); Returns the absolute (positive) value of n

x = qBound(min, n, max); Returns n if min <= n <= max; otherwise returns min
if n < min; otherwise returns max

qDebug("%d: %s",

integer,

qPrintable(string));

Prints C++ POD types to the console using
printf() syntax; doesn’t understand Qt types
(Windows .pro files need CONFIG += console)

qDebug() << number

<< string << hash

<< stringlist << map

<< variant << object;

PrintsC++PODtypesand any Qt QObjects to the
console, including collections such as QHash and
QMap; requires #include <QtDebug>
(Windows .pro files need CONFIG += console)

b = qFuzzyCompare(f, g); Returns true if floating-point numbers (or
QTransforms in Qt 4.6) f and g can be considered
to be equal

x = qMax(n, m); Returns the larger of n and m

x = qMin(n, m); Returns the smaller of n and m

const char *s =

qPrintable(qstring);

Returns a char* (using the local 8-bit encoding)
from a QString suitable for printf() or qDebug()

x = qRound(f); Returns f rounded to the nearest integer, as
an int

x = qRound64(f); Returns f rounded to the nearest integer, as
a qint64

x = qrand(); Returns a pseudo-random number between
0 and RAND_MAX (as defined in <cstdlib>). This
thread-safe function uses a default seed of 1; call
qsrand() to set a different seed

qsrand(u); Seeds the pseudo-random number generator
with uint u

s = qVersion(); Returns a const char* that specifies the version
of Qt the application is using (e.g., "4.6.2")

now it cannot be used as a general browser but only to view and interact with
the page we have specified.

For the rest of the code we will begin by reviewing the small WebPage class that
provides support for embedded Qt widgets. Then we will look at the custom
MatrixWidget class, and finally we will look at the matrixquiz.html page to see
how thewidgets are embedded and to see the JavaScript that is used to provide
some of the page’s functionality.

 From the Library of Wow! eBook

ptg

UsingWebKit 47

<html>
<title>HTML document</title>
<object …>

…
<script>

// JavaScript

</script>
</html>

QWebPage

createPlugin()

Called for
each <object>
of type
x-qt-plugin

Returns a
QObject

Access
the
object’s
properties
and call
its methods

Figure 1.13 Accessing QObjects embedded in an HTML document using JavaScript

The WebPage class is a QWebPage subclass. The constructor (not shown) simply
passes its optional parent argument to the base class; its body is empty. The
only method that the subclass reimplements is the protected createPlugin()

method, but before looking at that, let’s look at an extract from matrixquiz.html

showing how one of the buttons is created.

<object type="application/x-qt-plugin" classid="QPushButton"

id="newButton" height="40" width="100">

Can't load QPushButton plugin!</object>

Whenever an HTML <object> tag with a type attribute of application/x-qt-

plugin is encountered in a page held by a QWebPage, the createPlugin() method
is called. This is illustrated in Figure 1.13.

QObject* WebPage::createPlugin(const QString &classId,

const QUrl&, const QStringList ¶meterNames,

const QStringList ¶meterValues)

{

QWidget *widget = 0;

if (classId == "MatrixWidget") {

widget = new MatrixWidget(view());

int index = parameterNames.indexOf("readonly");

if (index > -1)

static_cast<MatrixWidget*>(widget)->setReadOnly(

static_cast<bool>(parameterValues[index].toInt()));

}

else {

QUiLoader loader;

widget = loader.createWidget(classId, view());

}

if (widget) {

int index = parameterNames.indexOf("width");

if (index > -1)

 From the Library of Wow! eBook

ptg

48 Chapter 1. Hybrid Desktop/Internet Applications

widget->setMinimumWidth(parameterValues[index].toInt());

index = parameterNames.indexOf("height");

if (index > -1)

widget->setMinimumHeight(parameterValues[index].toInt());

}

return widget;

}

The default implementation returns 0, and in such cases the <object> tag’s text
(if any) is rendered rather than the intended object.

The classId argument is given the name of the object’s class specified in the
<object> tag as the classid attribute. Any other <object> tag attributes are
passed in two parallel string lists, the first holding the attribute names and
the second the corresponding attribute values. So, for the button <object>

we saw earlier, the parameterNames list is ["id", "height", "width"], and the
parameterValues list is ["newButton", "40", "100"].

The method starts by creating the requested widget as a child of the WebPage’s
QWebView.Any not-null widget returned by createPlugin() is rendered inside the
HTML page by the QWebPage’s associated QWebView.

If the requested widget class is MatrixWidget, we create a suitable instance and
call MatrixWidget::readOnly() with a Boolean value if the parameterNames list
has a "readonly" item. (In the HTML, we have made the first two matrices
read-only, and the third one read-write.)

For any other kind of widget that is requested, that is, for any standard Qt
widget,we could use the same technique aswe use to create MatrixWidgets. But
this would lead to a very long sequence of if … else statements checking for
classIds and would be tedious to maintain.

Fortunately, Qt already has a class that can create instances of standard Qt
widgetsbased on their classname:QUiLoader.This classwasoriginally designed
to support the dynamic loading and rendering of QtDesigner .ui files, but here
we have used its QUiLoader::createWidget() method to instantiate and return a
pointer to the requested <object> widget. (Note that to use the QUiLoader class
we must include the line CONFIG += uitools in the application’s .pro file.)

Once the widget is created, we set its minimum width and height if these are
given as <object> attributes. We don’t use the id attribute in our C++ code, but
we do use it in the JavaScript that provides the web page’s behavior beyond
that provided by the MatrixWidget and the other Qt classes.

We want the custom MatrixWidget class to be programmable using JavaScript
in a web page. Just as with QtScript, a class’s Q_PROPERTYs are available in
JavaScript as JavaScript properties and a class’s public slots are available as
JavaScript methods. Here’s the MatrixWidget’s definition from its header file:

 From the Library of Wow! eBook

ptg

UsingWebKit 49

class MatrixWidget : public QTableWidget

{

Q_OBJECT

public:

explicit MatrixWidget(QWidget *parent=0);

public slots:

void clearMatrix();

void repopulateMatrix();

QString valueAt(int row, int column) const

{ return item(row, column)->text(); }

void setValueAt(int row, int column, const QString &value)

{ item(row, column)->setText(value); }

void setHighlighted(int row, int column, bool highlight=true)

{ item(row, column)->setBackground(highlight ? Qt::red

: Qt::white); }

void setReadOnly(bool read_only);

};

We defined some public slots—these will be accessible from JavaScript; but we
did not need to create any custom properties since the base class’s rowCount and
columnCount properties are accessible to JavaScript and those are the only ones
needed. The setHighlighted() method sets a table item’s background—this is
used to highlight cells that have incorrect values.

const int ColumnWidth = 40;

MatrixWidget::MatrixWidget(QWidget *parent)

: QTableWidget(3, 3, parent)

{

verticalHeader()->hide();

horizontalHeader()->hide();

for (int row = 0; row < rowCount(); ++row) {

for (int column = 0; column < columnCount(); ++column) {

QTableWidgetItem *item = new QTableWidgetItem("0");

item->setTextAlignment(Qt::AlignCenter);

setItem(row, column, item);

if (row == 0)

setColumnWidth(column, ColumnWidth);

}

}

}

We use the constructor to create a QTableWidget with a fixed number of rows
and columns and with a fixed column width. Every item is initialized to
contain the text “0” and to have centered alignment. Both the vertical and

 From the Library of Wow! eBook

ptg

50 Chapter 1. Hybrid Desktop/Internet Applications

horizontal headers are hidden, which is why the widget looks rather different
from a standard QTableWidget.

void MatrixWidget::setReadOnly(bool read_only)

{

setEditTriggers(read_only ? QAbstractItemView::NoEditTriggers

: QAbstractItemView::AllEditTriggers);

setFocusPolicy(read_only ? Qt::NoFocus : Qt::WheelFocus);

}

If thewidget is set to read-only we turn off all the edit triggers. We also change
its focus policy so that it cannot accept keyboard focus; this means that when
a keyboard user presses Tab in a widget preceding a read-only matrix widget
the focus will bypass the read-only widget and go to the next focus-accepting
widget.

In this example the focus starts in the “name” line edit; if the user presses Tab
the focus will then go to the read-write matrix widget they must enter their
answer in, skipping the two read-only matrix widgets in between.

void MatrixWidget::repopulateMatrix()

{

for (int row = 0; row < rowCount(); ++row) {

for (int column = 0; column < columnCount(); ++column)

item(row, column)->setText(

QString::number(qrand() % 100));

}

}

This method is used to populate the widget with random integers (as strings)
between 0 and 99. The clearMatrix() method (not shown) is structurally very
similar, only it sets every cell item’s text to “0” and its background to white.

We have now seen all the relevant C++ code. The matrixquiz.html file contains
the HTML for specifying the HTML elements and also an <object> tag for each
of the Qt widgets and for each of the MatrixWidgets. These all follow the same
pattern as we saw earlier, but just to demonstrate that there is no difference
between using a standard Qt widget and a custom one, here is the <object> tag
for the first of the MatrixWidgets:

<object type="application/x-qt-plugin" classid="MatrixWidget"

id="leftMatrix" width="124" height="94" readonly="1">

Can't load MatrixWidget plugin!</object>

The matrixquiz.html file provides the web page’s behavior using JavaScript.
The <script> tag is at the end of the file since the JavaScript needs to access
objects that are created earlier (i.e., the <object>s). Two functions are defined

 From the Library of Wow! eBook

ptg

UsingWebKit 51

(which we will discuss in a moment), and these are followed by this final block
of code:

Java-
Script

newButton.text = "&New";

submitButton.text = "&Submit";

resultLabel.text = "Enter the answer and click Submit";

repopulateMatrices();

newButton.clicked.connect(repopulateMatrices);

submitButton.clicked.connect(checkAnswer);

nameEdit.setFocus();

One interesting difference from C++/Qt is that in JavaScript and QtScript,
signal–slot connections are set up using one of these syntaxes:

Java-
Script

object.signalName.connect(functionName)

object.signalName.connect(otherObject.methodName)

We won’t show the repopulateMatrices() function since all it does is call
repopulateMatrix() on each of the MatrixWidgets, but for completeness we will
show the checkAnswer() function.

Java-
Script

function checkAnswer()

{

var allCorrect = true;

for (var row = 0; row < leftMatrix.rowCount; ++row) {

for (var column = 0; column < leftMatrix.columnCount;

++column) {

var highlight = false;

if (Number(leftMatrix.valueAt(row, column)) +

Number(rightMatrix.valueAt(row, column)) !=

Number(answerMatrix.valueAt(row, column))) {

highlight = true;

allCorrect = false;

}

answerMatrix.setHighlighted(row, column, highlight);

}

}

name = nameEdit.text == "" ? "mystery person" : nameEdit.text;

if (allCorrect)

resultLabel.text = "Yes, " + name + ", that's right!";

else

resultLabel.text = "No, " + name + ", that's not right.";

}

This function iterates over every cell in the three matrices. If the answer
matrix cell’s value is correct we clear its highlighting (i.e., set its background to

 From the Library of Wow! eBook

ptg

52 Chapter 1. Hybrid Desktop/Internet Applications

white), otherwise we set its highlighting (i.e., set its background to red). If one
or more values are incorrect we set allCorrect to false.

At the end we retrieve the user’s name from the nameEdit QLineEdit and set the
resultLabel QLabel with suitable text based on whether the user got the answer
right or not.

We have now completed our review of the Matrix Quiz web page and the
C++/Qt and JavaScript used to provide it with its appearance and behavior.

Embedding Qtwidgets into a web page offers a powerful and sophisticatedway
of enhancing a web page’s functionality, but it does rely on the user having a
Qt-enabledwebbrowser or using anapplication that providesaQt-enabledweb
browser component such as the browserwindow developed in this chapter. There
aremany differentways of creating hybrid desktop/Internet applications,with
a variety of trade-offs between them. These choices were enhanced by Qt 4.4,
which introduced the QtXmlPatternsmodule that supports XQueries and the
XPath language. And the choices have been further improved by Qt 4.6,which
has introduced the QGraphicsWebView class (a QGraphicsItem version of the QWeb-

View widget that is optimized for being shown in a QGraphicsView), and the QWeb-
Element class that provides a nice jQuery-like API for accessing and editing a
QWebFrame’s DOM elements. Qt allows us to choose whichever approach is right
in our particular circumstanceswhichmeans that we don’t have to sacrifice us-
ability, functionality, or native look and feel for the sake of providing Internet
functionality in our applications.

 From the Library of Wow! eBook

ptg

Audio and Video |||||

2
● UsingQSound andQMovie

● The PhononMultimedia Framework

Qt 4 has always had the ability to play sounds from .wav files, and to show
moving images from .gif and .mng files. Qt 4.4 introduced integration with the
Phononmultimedia library. Phonon can play soundfiles (i.e.,music),and video
files (i.e., movies), so the integration considerably extends Qt’s multimedia ca-
pabilities.

Short sounds can provide useful aural cues to users, although they cannot be
relied upon exclusively since some users have hearing impairments and others
have their sound systemsmuted or turned off or don’t have sound output set up
on their systems at all. Similarly, moving images can be used to provide reas-
surance that a process is still running and that the application has not frozen.
Another use of moving images is to visually demonstrate what choosing a par-
ticular action or option will achieve. Moving images can be distracting—or
even distressing—for some users, so they should be used with care, and users
should be able to stop the motion if they want to.

In this chapter’s first section we will see how to use the QSound and QMovie

classes to add sounds and moving images to an application.

For multimedia applications, that is, applications whose purpose is to play
music or videos, the Phonon multimedia framework offers far more power and
flexibility than the basic QSound and QMovie classes. In this chapter’s second
section we will see how to create a music player and a video player, both using
the Phonon framework.

Qt’s multimedia support works on all Qt platforms with the same consistent
APIs. However, the ability to play multimedia often relies on codecs and
third-party libraries, and these may not always be installed—often as a result
of the anti-competitive and strangulating effects of software patents.★ There is

★For more on software patents, see the Patent Absurdity video, patentabsurdity.com, the League for
Programming Freedom’s patent page, progfree.org/Patents/patents.html, and Richard Stallman’s
“The Dangers of Software Patents” talk, www.ifso.ie/documents/rms-2004-05-24.html.

53

 From the Library of Wow! eBook

www.ifso.ie/documents/rms-2004-05-24.html

ptg

54 Chapter 2. Audio and Video

no nice answer to this problemat present, so audio and video files that will play
on one platformmight not play on another. The best way forward is to use open
media formats such as the Ogg media container format (www.xiph.org/ogg),
although,at the time of thiswriting, support for these isweaker on proprietary
platforms like Windows than on open platforms like Linux and BSD.

Using QSound and QMovie ||||

For playing short sounds and animated images (such as .gif and .mng files),
the easiest approach is to use Qt’s QSound and QMovie classes. Both classes
offer simple play() (start() for QMovie) and stop() methods among others. In
addition, QMovie emits a variety of signals including the stateChanged() signal
(with an argument of QMovie::NotRunning, QMovie::Paused, or QMovie::Running),
as well as frameChanged() and finished() signals.

To show how to use these classes in context, we will review the Movie Jingle
application (moviejingle) shown in Figure 2.1. This application can load and
display animated images,and can take snapshotswhich can be savedusing any
of the pixel-based image formats that Qt supports. In addition, the application
plays a short sound (a “jingle”) whenever an action is invoked, as well as pro-
viding the ability to switch the playing of jingles on or off.

Figure 2.1 TheMovie Jingle application

We associate jingles with actions by creating a QAction subclass called Jingle-

Action that extends the QAction API to provide for a jingle file and for a static
bool to control whether jingles are played. Themain advantage of subclassing
QAction for this purpose is that it ensures that the jingle is played (if mute is
off), no matter how the action is invoked (e.g., via keyboard shortcut,menu op-
tion, or toolbar button).

 From the Library of Wow! eBook

www.xiph.org/ogg

ptg

UsingQSound andQMovie 55

The JingleAction class provides the same constructors as QAction, and in addi-
tion a couple of constructors that take the name of a jingle file. Two methods
are implemented in the jingleaction.hpp header:

QString jingleFile() const { return m_jingleFile; }

static void setMute(bool mute) { s_mute = mute; }

The private m_jingleFile variable is of type QString. The private s_mute static
variable is of type bool, and is initialized to false in jingleaction.cpp.

The constructors that don’t take a jingle file simply pass on their arguments
to the base class and have empty bodies. On the other hand, the constructors
that take a jingle file pass on their other arguments and have one method call
in their body. Here is one example from jingleaction.cpp:

JingleAction::JingleAction(const QString &jingleFile,

const QString &text, QObject *parent)

: QAction(text, parent)

{

setJingleFile(jingleFile);

}

Two other custom methods are implemented: setJingleFile(), and a private
slot, play().

void JingleAction::setJingleFile(const QString &jingleFile)

{

if (!m_jingleFile.isEmpty())

disconnect(this, SIGNAL(triggered(bool)), this, SLOT(play()));

m_jingleFile = jingleFile;

if (!m_jingleFile.isEmpty())

connect(this, SIGNAL(triggered(bool)), this, SLOT(play()));

}

Disconnecting and reconnecting the jingle action’s triggered() signal are not
strictly necessary, but we prefer to avoid emitting signals when there is no
need to do so. No clearJingle() method is provided, since the call, setJingle-
File(QString()), is sufficient.

void JingleAction::play()

{

if (!s_mute && !m_jingleFile.isEmpty())

QSound::play(m_jingleFile);

}

Here we play the sound if mute is off and if there is a jingle file to play. It is
best to keep the duration of the sound very short—one second at most—to

 From the Library of Wow! eBook

ptg

56 Chapter 2. Audio and Video

avoid the sound taking longer to play than the time it takes to perform the
requested action.

Now that we have seen the key parts of the JingleAction implementation, we
will look at some extracts from the Movie Jingle application’s main window
class to see how the jingle actions are used, and also to see how QMovies are
used. We will start with a couple of enums defined in the main window class’s
header:

enum ReloadMode {DontReload, Reload};

enum MovieState {NoMovie, Stopped, Playing};

We will see how the enums are used in the following discussion of the main
window’s methods. Here is the main window’s constructor:

const int StatusTimeout = AQP::MSecPerSecond * 5;

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), movieState(NoMovie)

{

movie = new QMovie(this);

createActions();

createMenusAndToolBar();

createWidgets();

createLayout();

createConnections();

AQP::accelerateMenu(menuBar());

updateUi();

statusBar()->showMessage(tr("Open a Movie file to start..."),

StatusTimeout);

setWindowTitle(QApplication::applicationName());

}

The constructor begins by creating a single private QMovie object called movie

that will be used to load and play animated images. Wewon’t show the create-
MenusAndToolBar(), createWidgets(), createLayouts(), and createConnections()

methods since they are all standard C++/Qt. The actions that are created and
the slots they are connected to will become apparent whenwe look at the appli-
cation’smethods—for example, the file open action is connected to a fileOpen()

slot, and so on.

We will, however, review an extract from createActions() to discuss how it
differs from similar methods used in other applications.

Once the widgets and connections have been created and set up, we automat-
ically add keyboard accelerators to all the menus and menu items (15 ➤), and
initialize the user interface ready for the user to interact with the application.

 From the Library of Wow! eBook

ptg

UsingQSound andQMovie 57

Althoughwe don’t show the layout code,we note that themainwindowhas two
labels side by side, the one on the left used to show movies, and the one on the
right used to show snapshots of movies.

void MainWindow::createActions()

{

jinglePath = AQP::applicationPathOf("jingles");

imagePath = AQP::applicationPathOf("images");

fileOpenAction = new JingleAction(

jinglePath + "/fileopen.wav",

QIcon(imagePath + "/fileopen.png"), tr("Open..."), this);

fileOpenAction->setShortcuts(QKeySequence::Open);
···

}

We have only shown the creation of the first action since almost all of them
follow the samepattern. The exception is themute jinglesactionwhich ismade
checkable and initialized to be unchecked.

We begin by determining the directories where the jingles and images are to
be found. And when we use the paths—which are kept as private instance
variables for use in other methods—we use Unix-style path separators since
these work on all platforms.

The jingle files must be in the filesystem—they cannot be Qt resources since
at the time of this writing, the QSound class doesn’t support resources. For this
reason we have stored the application’s jingles, and for consistency, its images
too, in the filesystem rather than compiled them into a resource. (We discussed
AQP::applicationPathOf() earlier; 33 ➤.) In view of this wemust make sure that
when the application is run it can find the jingles and images.

We will now look at the implementations of the methods the application
provides to support its actions for opening, playing, and stopping a movie file,
taking and saving a snapshot, and toggling the jingles’ mute state.

void MainWindow::fileOpen()

{

QString fileFormats = AQP::filenameFilter(tr("Movies"),

QMovie::supportedFormats());

QString path(movie && !movie->fileName().isEmpty()

? QFileInfo(movie->fileName()).absolutePath() : ".");

QString filename = QFileDialog::getOpenFileName(this,

tr("%1 - Choose a Movie File")

.arg(QApplication::applicationName()), path, fileFormats);

if (filename.isEmpty())

return;

movie->setFileName(filename);

 From the Library of Wow! eBook

ptg

58 Chapter 2. Audio and Video

statusBar()->showMessage(tr("Loaded %1").arg(filename),

StatusTimeout);

movieState = Stopped;

startOrStop(DontReload);

}

The QMovie::supportedFormats() static method returns a QList<QByteArray> of
file suffixes—for example, ["gif", "mng"]. The aqp.{hpp,cpp} module’s AQP::

filenameFilter() function returns a QString based on such a list—for example,
"Movies (*.gif *.mng)"—that is suitable for passing to the QFileDialog::get-

OpenFileName() function as a file filter.

If the user choosesa filewe set themovie’s filename to the given file and update
the status bar. Then we set the movie state, and call the startOrStop() slot to
immediately begin playing the movie. The startOrStop() method’s parameter
has a default value of Reload, but here we have explicitly passed DontReload

since we have already loaded the movie.

void MainWindow::startOrStop(ReloadMode reloadMode)

{

if (movieState == Stopped) {

if (reloadMode == Reload)

movie->setFileName(movie->fileName());

movie->start();

movieState = Playing;

}

else {

movie->stop();

movieState = Stopped;

}

updateUi();

}

We must call QMovie::setFileName() if we want to replay a movie that has al-
ready been loaded and played, so we don’t need to call it for a freshly loaded
movie. The movie is started or stopped depending on the value of the movie-

State, and the user interface is updated to reflect the current situation in the
updateUi() method.

void MainWindow::updateUi()

{

if (movieState == Playing) {

startOrStopAction->setText(tr("&Stop"));

startOrStopAction->setIcon(QIcon(imagePath +

"/editstop.png"));

startOrStopAction->setJingleFile(jinglePath +

"/editstop.wav");

 From the Library of Wow! eBook

ptg

UsingQSound andQMovie 59

}

else {

startOrStopAction->setText(tr("&Start"));

startOrStopAction->setIcon(QIcon(imagePath +

"/editstart.png"));

startOrStopAction->setJingleFile(jinglePath +

"/editstart.wav");

}

startOrStopAction->setEnabled(movieState != NoMovie);

takeSnapshotAction->setEnabled(movieState != NoMovie);

}

In this method we update the startOrStopAction jingle action’s text, icon, and
jingle file to make it into a start action or into a stop action. If there is no
movie—for example, when the application starts up—then both the start or
stop action, and the take snapshot action, are disabled.

void MainWindow::takeSnapshot()

{

snapshot = movie->currentPixmap();

fileSaveAction->setEnabled(!snapshot.isNull());

snapshotLabel->setPixmap(snapshot);

}

When a movie has been loaded (whether playing or stopped), the user can take
a snapshot of the current frame using the QMovie::currentPixmap() method. If
this results in a not-null pixmap (as it should), we enable the save action, and
in any case we set the snapshot label to show the pixmap.

void MainWindow::fileSave()

{

if (snapshot.isNull())

return;

QString fileFormats = AQP::filenameFilter(tr("Images"),

QImageWriter::supportedImageFormats());

QString filename = QFileDialog::getSaveFileName(this,

tr("%1 - Save Snapshot")

.arg(QApplication::applicationName()),

QFileInfo(movie->fileName()).absolutePath(), fileFormats);

if (filename.isEmpty())

return;

if (!snapshot.save(filename))

AQP::warning(this, tr("Error"),

tr("Failed to save snapshot image"));

else

statusBar()->showMessage(tr("Saved %1").arg(filename),

 From the Library of Wow! eBook

ptg

60 Chapter 2. Audio and Video

StatusTimeout);

}

If there is a snapshot to save we pop up a suitable QFileDialog with a filter
that shows the pixmap image formats that Qt can write to. If the user chooses
a filename we attempt to save the snapshot under the given name, leaving
QPixmap::save() to work out the file format to use based on the filename’s suffix.
If the save failswe pop up amessage box; otherwisewe note the successful save
in the status bar. (See the “Avoiding Qt’s Static Convenience QMessageBox
Functions” sidebar, for why we use AQP::warning() and similar functions rather
than Qt’s standard static QMessageBox functions when presenting messages to
the user; ➤ 61.) Another benefit of using the AQP convenience functions is that
they put the application’s name (using QApplication::applicationName()) in
their title bars, so we only need to pass the rest of the title. (Compare the call
to QFileDialog::getSaveFileName() and AQP::warning() to see the difference.)

void MainWindow::muteJingles(bool mute)

{

JingleAction::setMute(mute);

}

One of the actions created in the main window’s constructor is the fileMute-

JinglesAction, a toggle action whose initial state is unchecked. The action is
added to the menu and to the toolbar and is connected to this slot to give the
user control over whether jingles are played.

While QSound and QMovie are very useful for providing aural and visual cues,
neither provides sophisticated multimedia capabilities. Fortunately, the
Phonon multimedia library covered in the next section provides considerable
multimedia functionality that we can step up to when we need it.

The PhononMultimedia Framework ||||

The Phonon multimedia library was created by KDE (‘K’ Desktop Environ-
ment) developers to make it easier to write multimedia applications for KDE.
Phonon has two components—the front end which provides the generic multi-
media API, and the backend which provides the actual multimedia services to
the API.Qt’sPhononmodule provides a thin Qt-style wrapper aroundmuch of
the Phonon APIs. To make the module available it is essential to add the line
QT += phonon to the .pro file for any project that wants to use it.

One of the most important features of Phonon is that it can be used cross-
platform thanks to its support for a variety of backends. On Linux it nor-
mally uses the GStreamer libraries, on Mac OS X it uses QuickTime, and on
Windows it uses the DirectX and DirectShow libraries. Using other back-
end libraries is also possible—for example, the VLC and MPlayer backends

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 61

Avoiding Qt’s Static Convenience QMessageBox Functions

The QMessageBox class provides several static convenience functions for pop-
ping up modal dialogs with the messages and buttons we want. However,
Mac OS X users expect them to appear as sheets, not dialogs. A sheet is a
modal dialog, but it comes into view by sliding down from its parent win-
dow’s title bar and is shown centered at the top of the window (as if part of
the window, and unmovable), rather than popping up as an independent di-
alog centered on top of the window and being movable and resizable.

To make our applications properly cross-platform, we have created our own
message box convenience functions, AQP::information(), AQP::warning(), and
AQP::question(). We have also created AQP::okToDelete(), a function that
pops up a dialog with Delete and Do Not Delete buttons (➤ 101), and AQP::ok-

ToClearData(), a function that pops up a dialog with Save, Discard, and Can-
cel buttons (➤ 136). Both AQP::okToDelete() and AQP::okToClearData() return
a bool, and in the case of AQP::okToClearData(), the function also calls the
“save”method it is passed if the user asks to save. Here’s the AQP::warning()
function—all the others are similar.

void warning(QWidget *parent, const QString &title,

const QString &text, const QString &detailedText)

{

QScopedPointer<QMessageBox> messageBox(new QMessageBox(parent));

if (parent)

messageBox->setWindowModality(Qt::WindowModal);

messageBox->setWindowTitle(QString("%1 - %2")

.arg(QApplication::applicationName()).arg(title));

messageBox->setText(text);

if (!detailedText.isEmpty())

messageBox->setInformativeText(detailedText);

messageBox->setIcon(QMessageBox::Warning);

messageBox->addButton(QMessageBox::Ok);

messageBox->exec();

}

The message box only needs to exist for the duration of the function, since
after the blocking exec() call finishes, it is closed. We hold themessage box’s
pointer in a QScopedPointer (or in a QSharedPointer for Qt 4.5); this ensures
that the pointer is deleted once it goes out of scope, which avoids the risk
of a memory leak and saves us from having to explicitly delete it ourselves.
(See the “Qt’s Smart Pointers” sidebar; ➤ 62.)

Setting the window modality to Qt::WindowModal is essential to ensure that
the window appears as a sheet on Mac OS X, although it will be a standard
modal dialog on other platforms.

 From the Library of Wow! eBook

ptg

62 Chapter 2. Audio and Video

Qt’s Smart Pointers

Qt 4.0 introduced the QPointer guarded pointer, Qt 4.5 introduced the
QSharedPointer and QWeakPointer smart pointers, and Qt 4.6 introduced the
QScopedPointer smart pointer. These pointer types wrap plain pointers, and
they usually consumemorememory andmay be slower to access than plain
pointers. Nonetheless, smart pointers are so useful and convenient—and
can help avoid memory leaks—that they are well worth using.

In the context of Qt programming—thanks to Qt’s parent–child ownership
hierarchy—we rarely need smart pointers because we rarely need to call
delete. However, any time that we do need to call delete, or have a pointer
that may be set to 0 elsewhere, we should consider using a smart pointer.

The most commonly used and versatile smart pointer is QSharedPointer; this
behavesmuch like the std::shared_ptr class that is available fromBoost and
that will be in the next C++ standard. Unfortunately,QSharedPointer’s API is
not quite the same as std::shared_ptr; in particular, to get the plain pointer
held inside the smart pointer, the methods are QSharedPointer::data() and
std::shared_ptr::get(). What makes QSharedPointer so smart is that it can
be treated exactly like a normal pointer, it can be copied (so we can have
two or more QSharedPointers pointing to the same object), but once the last
(or only) QSharedPointer goes out of scope, it automatically deletes the plain
pointer that it wraps.

If we don’t use a smart pointer for an object allocated on the heap and that
isn’t part of a Qt parent–child hierarchy, then we are responsible for delet-
ing the pointer once it is no longer needed. Putting a delete statement at
the end of the code that uses the pointer is not sufficient, since an exception
might occur that causes the function to be prematurely returned from,before
the delete statement has been reached,and therefore causes amemory leak.
One solution to this is to use a try … catch construct, and to put the delete

statement inside the catch block. This requires care to ensure that we catch
all the exceptions that could occur; and we cannot use a catch-all exception
handler since we don’t want to accidentally—and silently—catch unexpect-
ed exceptions, thereby hiding bugs.

The best approach is to use RAII (Resource Acquisition Is Initializa-
tion)—which in practical terms means that we create our pointers inside
scoped (or shared) pointer constructor calls. Now we don’t have to worry
about deleting the pointer ourselves, nor do we have to worry about ex-
ceptions causing the function to return early—because as soon as a scoped
pointer (or the last shared pointer pointing to an object) goes out of scope for
whatever reason, it will delete the object it points to.

Using Qt’s parent–child object hierarchy, and also smart pointers, means
that for some applications, calls to delete can be completely eliminated.

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 63

Table 2.1 TheMain Phonon Classes

Class Description

Phonon::AudioOutput An audio sinkmedia node that drives the sound card
or headset

Phonon::Effect A processormedia node that can transform an audio
stream

Phonon::EffectWidget A widget for controlling an effect processor’s
parameters

Phonon::MediaNode The base class for all media node types

Phonon::MediaObject A media node that controls the playback of
multimedia objects

Phonon::MediaSource An object that providesmedia data to a media object
source node

Phonon::Path A data path from a media object source node to a
media object sink node

Phonon::SeekSlider A widget for showing andmodifying a media object’s
playback position in time

Phonon::VideoPlayer A widget that can load and play video media, and
that automatically handles the creation of the
media nodes and paths behind the scenes

Phonon::VideoWidget A widget for playing video media

Phonon::VolumeSlider A widget for showing andmodifying a media object’s
volume

(code.google.com/p/phonon-vlc-mplayer). The platform-specific backend must
be installed when building Qt—instructions are provided at qt.nokia.com/doc/
phonon-overview.html.★

The Phonon framework in essence has three kinds of objects: media data
sources, media nodes, and media devices. The classes representing these
objects are listed in Table 2.1.

Media data sources are represented by Phonon::MediaSource objects, and these
are given a file,URL, or QIODevice fromwhich themedia data is to be retrieved.
These are not media nodes in their own right and can only be used if given to
a media object source node.

Media nodes come in three varieties: source nodes (not to be confused with me-
dia data sources),processor nodes,and sink nodes. Sourcenodesare represent-
ed by Phonon::MediaObject objects and provide the media playback interface.

★At the time of this writing, building the Windows DirectShow backend is only supported when
using a commercial compiler.

 From the Library of Wow! eBook

ptg

64 Chapter 2. Audio and Video

Phonon::MediaObjects have a current Phonon::MediaSource object, and can also
have a queue of other media source objects ready to play one after the other as
each one finishes.

The output from a Phonon::MediaObject must go to a sink via one or more paths.
A path is represented by a Phonon::Path object, and must have a source node (a
Phonon::MediaObject) and a sink node such as a Phonon::AudioOutput or Phonon::
VideoWidget. The path may be direct, or can contain intermediate processor
nodes to provide special effects.

The Phonon module does not support the direct manipulation of the data in
media streams. It does, however, provide an indirect means of manipulating
audio streams:effectsprocessors. Theseprocessors,of classPhonon::Effect, can
be added to the path between the source and sink where they transform the
data flowing from one to the other. The available effects depend on the Phonon
backend and are available from the Phonon::BackendCapabilities::available-

AudioEffects() function. The effects might include amplification, positioning
streams in the stereo panorama, equalizing, or resampling.

To apply an effect we create a new Phonon::Effect instance for the effect we
want. Then, assuming that we kept the Phonon::Path pointer returned by the
Phonon::createPath() function, we call Phonon::Path::insertEffect(), passing it
the Phonon::Effect we have created.

Audio Sink Audio Device
MediajSource Media Object

Video Sink Video Device

Path

Path

Figure 2.2 The Phonon architecture

The sink node is where the data is finally sent to the physical output de-
vice, such as the sound card, headset, or a video widget, represented by the
Phonon::AudioOutput media node, or by the Phonon::VideoPlayer or Phonon::

VideoWidget widgets which also serve as media nodes. The relationships are
illustrated in Figure 2.2.

Now that we’ve got a feel for how the Phonon framework works in theory, we
will see how to use it in practice. In the two subsections that follow we will
review two examples, one that playsmusic and one that plays videos (including
their sound track if they have one).

Playing Music |||

The Play Music example (playmusic) reviewed in this subsection and shown in
Figure 2.3 shows how to create a music playing application. Such applications

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 65

Figure 2.3 The Play Music application at startup and with a music directory

usually use playlists, a database, or the filesystem to organize tracks; in this
example we have chosen to use the filesystem. When the program is started
it has a blank central area and invites the user to choose a music directory.
Once the directory is chosen, the program iterates over all themusic files in the
directory, recursing into any subdirectories, and populates a QTreeWidget with
the artist, album, and track names, and with the duration of each track.

The user can navigate to a particular track using the mouse or keyboard, and
play or pause the track using the Play/Pause toolbar button or by pressing the
Spacebar thanks to the Space keyboard shortcut. Once the track has finished,
the application automatically starts playing the next track,unless the user has
clicked Stop.

The application’s data is held in a QTreeWidget. For artists and albums just their
names are held, but for tracks both the name and the corresponding filename
are held—all in TreeWidgetItems, a simple QTreeWidgetItem subclass that we will
discuss later. (The QTreeWidget is one of Qt’smodel/viewconvenience classes—a
view that provides its own model. The model/view architecture, including the
creation and use of custommodels, is covered in Chapters 3 through 6.)

We will start by looking at the main window’s constructor to get an overview
of how the application is set up.

const int FilenameRole = Qt::UserRole;
const int OneSecond = AQP::MSecPerSecond;

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), nextItem(0)

{

playIcon = QIcon(":/play.png");

 From the Library of Wow! eBook

ptg

66 Chapter 2. Audio and Video

pauseIcon = QIcon(":/pause.png");

mediaObject = new Phonon::MediaObject(this);

mediaObject->setTickInterval(OneSecond);

audioOutput = new Phonon::AudioOutput(Phonon::MusicCategory,

this);

Phonon::createPath(mediaObject, audioOutput);

createActions();

createToolBar();

createWidgets();

createLayout();

createConnections();

setWindowTitle(QApplication::applicationName());

}

The nextItem is a TreeWidgetItem that represents the next track to be played. It
is set when the user chooses a track, and also automatically, when the current
track comes to an end. Tree widget items can have multiple columns of data,
and each column can hold a list of QVariants asuser data. Aswewill see further
on, we use this feature for tree widget items that represent tracks to store the
track’s filename in the first column’s user data (i.e., in column 0), using the
FilenameRole constant as an index into the item’s user data.

The private mediaObject is used to play whichever track the user chooses, and
the sound data is sent to the private audio output sink. For the audio output
we must specify the category of sound that the audio is being used for. The
category is used to identify where the audio output should go. For example,
for a telephony application using VoIP (Voice over Internet Protocol) the sound
will be sent to the user’s headset, while a music player’s sound will be sent to
the sound card.

Once the media object and the output sink exist we can create a path to join
them, and since we are not going to add any processors to the path for special
effects, we don’t keep a reference to the path we have created. In addition, we
tell the media object to emit a tick() signal every second (1000 milliseconds)
—we will use this to update the LCD number widget that shows the current
position in time.

We won’t look at the createActions(), createToolBar(), or createLayout() meth-
ods since they contain no surprises. But we will see how the Phonon widgets
are created by looking at an extract from the createWidgets() method, and we
will also look at createConnections().

void MainWindow::createWidgets()

{

seekSlider = new Phonon::SeekSlider(this);

seekSlider->setToolTip(tr("Playback Position"));

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 67

seekSlider->setMediaObject(mediaObject);

volumeSlider = new Phonon::VolumeSlider(this);

volumeSlider->setToolTip(tr("Volume Control"));

volumeSlider->setAudioOutput(audioOutput);

volumeSlider->setSizePolicy(QSizePolicy::Maximum,

QSizePolicy::Maximum);
···

}

The seek slider is the top-most slider shown in Figure 2.3 (65 ➤). This slider
is used to show visually what proportion of the current track has been played,
and it is also possible for the user tomanipulate it to skip forward or backward.
This slider is attached to the media object so that it can reflect or modify the
playing position. The volume slider (which also includesamute button) is used
to set the volume. This slider is attached to the audio output sink.

We will look at the createConnections() method in two parts.

void MainWindow::createConnections()

{

connect(mediaObject, SIGNAL(tick(qint64)),

this, SLOT(tick(qint64)));

connect(mediaObject,

SIGNAL(stateChanged(Phonon::State, Phonon::State)),

this, SLOT(stateChanged(Phonon::State)));

connect(mediaObject, SIGNAL(aboutToFinish()),

this, SLOT(aboutToFinish()));

connect(mediaObject,

SIGNAL(currentSourceChanged(const Phonon::MediaSource&)),

this, SLOT(currentSourceChanged()));

The first four connections are from the media object to main window slots.
The tick() connection is used to update the LCD number widget that shows
the current track’s position in time. The stateChanged() connection is used
to respond to state changes—for example, this allows us to enable/disable the
controls appropriately. The signal actually emits both the new (current) state
and the old (previous) state; but in this application we only care about the new
state. The aboutToFinish() connection is used to add the next track to be played
to the media object’s queue to ensure a smooth transition from one track to
the next. When the media object’s source changes, that is, when a new track
is loaded, the currentSourceChanged() signal is emitted, and we use it to update
the state of the user interface.

connect(setMusicDirectoryAction, SIGNAL(triggered()),

this, SLOT(setMusicDirectory()));

connect(playOrPauseAction, SIGNAL(triggered()),

this, SLOT(playOrPause()));

 From the Library of Wow! eBook

ptg

68 Chapter 2. Audio and Video

connect(stopAction, SIGNAL(triggered()), this, SLOT(stop()));

connect(treeWidget,

SIGNAL(currentItemChanged(QTreeWidgetItem*,QTreeWidgetItem*)),

this, SLOT(currentItemChanged(QTreeWidgetItem*)));

connect(treeWidget,

SIGNAL(itemDoubleClicked(QTreeWidgetItem*, int)),

this, SLOT(playTrack(QTreeWidgetItem*)));

connect(quitAction, SIGNAL(triggered()), this, SLOT(close()));
}

The remaining connections are used to provide the general behavior of the
user interface, to set themusic directory to be scanned in the first place, to play,
pause, or stop playing a track, and to choose a new track, or to quit the appli-
cation.

Wewill now review all the slots, since they are all relevant to using the Phonon
framework. We will start with by far the most involved, setMusicDirectory(),
since this showshow the tree is populated and also howwe can use a temporary
media object to retrieve information about a track. We will review the method
in three parts, and then look at the private helper methods it makes use of.

void MainWindow::setMusicDirectory()

{

QString path = QFileDialog::getExistingDirectory(this,

tr("Choose a Music Directory"),

QDesktopServices::storageLocation(

QDesktopServices::MusicLocation));

if (path.isEmpty())

return;

We begin by asking the user to choose a music directory, defaulting to the di-
rectory provided by the static QDesktopServices::storageLocation() method.
For example, on Windows, the directory returned might be %HOMEPATH%\My

Documents\My Music or %USERPROFILE%\My Documents\My Music (with the environ-
ment variable replaced with the actual path).

QApplication::setOverrideCursor(QCursor(Qt::WaitCursor));

QSet<QString> validSuffixes = getSuffixes();

treeWidget->clear();

treeWidget->headerItem()->setIcon(0, QIcon());

treeWidget->setHeaderLabels(QStringList()

<< tr("Artist/Album/Track") << tr("Time"));

QHash<QString, TreeWidgetItem*> itemForArtist;

QHash<QString, TreeWidgetItem*> itemForArtistAlbum;

QDirIterator i(path, QDirIterator::Subdirectories);

while (i.hasNext()) {

const QString filename = i.next();

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 69

if (!QFileInfo(filename).isFile() ||

!validSuffixes.contains(QFileInfo(filename).suffix()))

continue;

addTrack(filename, &itemForArtist, &itemForArtistAlbum);

}

We begin by obtaining a set of file suffixes that indicate those music files that
the Phonon backend can play. We create two hashes, one to give the appropri-
ate artist tree item for a given artist’s name, and the other to give the appro-
priate album tree item for a given artist and album’s name. (Wemust combine
artist and album names for albums to avoid collisions in the rare case that two
different artists have the same album name.)

To traverseall themusic fileswebegin by creating a QDirIterator—such objects
provide a very convenient way of iterating over all the files in a directory, au-
tomatically recursing into subdirectories,and providing the name of every file,
directory, or other filesystem object that is encountered. For each name that
refers to a file (rather than a directory, a link, or some other filesystem object),
and has a suitable suffix, we call addTrack() to add the file’s details to the tree
widget.

The QFileInfo class has methods such as isFile() and isDir() to identify the
kind of filesystem object a name refers to, as well as methods for returning
components of the name, such as absolutePath(), fileName(), and suffix().
Other methods provide information on the permissions, such as isReadable()

and isWritable(), and on aspects of state, such as the size(), and the created()

date/time and lastModified() date/time.

foreach (QTreeWidgetItem *item, itemForArtistAlbum)

if (!item->childCount())

delete item;

foreach (QTreeWidgetItem *item, itemForArtist)

if (!item->childCount())

delete item;

treeWidget->sortItems(0, Qt::AscendingOrder);

treeWidget->resizeColumnToContents(0);

stop();

QApplication::restoreOverrideCursor();
}

Toward the end we do some cleaning up. For example, if we have an album
with no tracks we delete the album, and similarly if we have an artist with
no albums we delete the artist. We then sort the items and resize the first
column. We also stop any previous track from playing since the tree has been
completely cleared and repopulated, which means that any track that was
shown before may no longer be accessible through the user interface.

 From the Library of Wow! eBook

ptg

70 Chapter 2. Audio and Video

By default if we sort a tree widget’s first column, the sorting is applied at
each level of indentation, and uses a case-sensitive string comparison. We
want to have the items sort differently, and for this reason we have populated
the tree with custom TreeWidgetItems rather than with the QTreeWidgetItems
they inherit. The TreeWidgetItem constructor (not shown) simply passes on its
arguments to the base class and has an empty body. The only code we have
added is a reimplementation of the inline operator<() member function:

bool operator<(const QTreeWidgetItem &other) const

{

QString left = data(0, FilenameRole).toString();

QString right;

if (!left.isEmpty())

right = other.data(0, FilenameRole).toString();

else {

left = text(0);

right = other.text(0);

}

return QString::compare(left, right, Qt::CaseInsensitive) < 0;

}

The operator<() methodmust define a total ordering for the treewidget towork
correctly. Yet at first glance, the code shown does not appear to provide such an
ordering—but it does. The tree widget sorts each level of indentation indepen-
dently under its parent item (and for top-level items under a notional invisible
root item). So in this case artists are sorted together, and albums are sorted
under their artist, and tracks are sorted under their album. When we have an
artist or album there is no user data so the comparison is made between their
texts, and when we have a track the comparison is made between their user
data (filenames). This works nicely if the file naming scheme has names that
start with track numbers, for example, 01-Space Oddity.ogg, 02-Changes.ogg,
03-Starman.ogg, and ensures that at each level of the hierarchy we do have a
total ordering.

Two other points to note on the subject of efficiency. We only check that
one item’s user data is empty, since if it is we are comparing either artists
or albums so the other item’s user data must be empty. And instead of doing
the comparison like this: return left.toLower() < right.toLower(), we use the
much faster QString::compare() function (which returns an int), and convert its
result to a suitable bool.

We will now look at the two helper methods called by setMusicDirectory().

QSet<QString> MainWindow::getSuffixes()

{

QStringList mimeTypes;

foreach (const QString &mimeType,

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 71

Phonon::BackendCapabilities::availableMimeTypes())

if (mimeType.startsWith("audio/"))

mimeTypes << mimeType;

return AQP::suffixesForMimeTypes(mimeTypes);

}

The Phonon framework identifies data using MIME types. The aqp.{hpp,cpp}

module’s AQP::suffixesForMimeTypes() function accepts a list of MIME types
and returns a set of corresponding file suffixes. Although this looks clean and
simple, it isn’t quite so straightforward under the hood, as the “MIME Types,
File Suffixes, and Magic Numbers” sidebar explains (➤ 72).

We will look at the addTrack() method in two parts.

void MainWindow::addTrack(const QString &filename,

QHash<QString, TreeWidgetItem*> *itemForArtist,

QHash<QString, TreeWidgetItem*> *itemForArtistAlbum)

{

Phonon::MediaObject localMediaObject;

Phonon::MediaSource source(filename);

localMediaObject.setCurrentSource(source);

if (!waitForMediaObjectToLoad(&localMediaObject, OneSecond))

return;

QString artist = localMediaObject.metaData(

Phonon::ArtistMetaData).join("/").trimmed();

QString album = localMediaObject.metaData(

Phonon::AlbumMetaData).join("/").trimmed();

QString artistAlbum = artist + "\t" + album;

QString track = localMediaObject.metaData(

Phonon::TitleMetaData).join("/").trimmed();

qint64 msec = localMediaObject.totalTime();

The local media object, localMediaObject, is used purely to gather information
(meta-data) about each track. We begin by setting the media object’s source
to the given filename. The media object will then begin loading the music file.
It can take a small but nonetheless nonzero time to load a music file to access
its meta-data, and in some cases the meta-data cannot be retrieved at all—for
example, if the file is corrupt. We have chosen to use a local event loop with a
timeout to handle this, as we will see when we cover the waitForMediaObjectTo-

Load() method further on.

We retrieve the music file’s meta-data, joining the QStringList that each
QMediaObject::metaData() call returns into a single "/"-separated QString. The
QMediaObject::totalTime() method returns the duration of the track in mil-
liseconds. One item of meta-data we did not retrieve is Phonon::Tracknumber-

MetaData; this is sometimes empty, so we have preferred to order the tracks by
filename as we mentioned earlier.

 From the Library of Wow! eBook

ptg

72 Chapter 2. Audio and Video

MIME Types, File Suffixes, and Magic Numbers

There are three widely used methods for identifying the type of a file or of
a “lump” of data received in an email or downloaded from the Internet. One
method is to use a file suffix; for example, .png identifies Portable Network
Graphics (PNG) files. Another method is to use magic numbers—these are
typically a sequence of at least one byte usually at the start of a file—for
example, PNG files begin with the eight bytes 0x89 0x50 0x4E 0x47 0x0D 0x0A

0x1A 0x0A.
Unfortunately, both file suffixes and magic numbers suffer from the same
problem: there are no official standards, so it is possible for two or more file
suffixes or magic numbers to refer to completely different types of files or
data. Such duplication does occur in practice, particularly for file suffixes.

A third method of identifying files or data is to use a MIME type, for
example, image/png for PNG data. MIME types have the advantage of being
standardized by the IANA (Internet Assigned Numbers Authority), so each
MIME type uniquely identifies the type of data it is associated with.

The Phononmodule (and incidentally,Qt’s clipboard and drag and drop sys-
tem) uses MIME types to identify the kinds of files or data it can handle.
This works well for data received by email or from the Internet. Unfortu-
nately, using MIME types is not so convenient for handling files because we
must somehowmapMIMEtypes to file suffixes or tomagic numbers, and al-
though MIME types are standardized, there is no official mapping between
MIME types and file suffixes or magic numbers. On Linux systems a suit-
able—though often incomplete—mapping is usually supplied in the plain
text file /etc/mime.types.

The aqp.{hpp,cpp} module provided with this book’s examples contains a
function with signature QSet<QString> suffixesForMimeTypes(const QString-

List &mimeTypes) that uses the mime.types file if it is available (as well as its
own data) to provide a suitable mapping from MIME types to file suffixes.
The function works on all platforms, and it is easy to extend to include addi-
tional MIME types by adding to the mime.types resource file or by adapting
the code.
Note:Apple Inc.has developed a fourthmethod of identifying item types (in-
cluding files and lumps of data):Uniform Type Identifiers (UTIs). These are
intended to avoid the problems that afflict the other identification methods,
but at the time of this writing UTIs have not been widely adopted.

The code here has a slight fragility, in the case that themeta-data is incomplete
or absent. One possible solution would be to set a missing artist and missing
album to the filename, and to set the track to be a count number that is
incremented for every track read.

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 73

TreeWidgetItem *artistItem = itemForArtist->value(artist);

if (!artistItem) {

artistItem = new TreeWidgetItem(

treeWidget->invisibleRootItem(),

QStringList() << artist);

itemForArtist->insert(artist, artistItem);

}

TreeWidgetItem *albumItem = itemForArtistAlbum->value(

artistAlbum);

if (!albumItem) {

albumItem = new TreeWidgetItem(artistItem,

QStringList() << album);

itemForArtistAlbum->insert(artistAlbum, albumItem);

}

TreeWidgetItem *trackItem = new TreeWidgetItem(albumItem,

QStringList() << track

<< minutesSecondsAsStringForMSec(msec));

trackItem->setData(0, FilenameRole, filename);

trackItem->setTextAlignment(1, Qt::AlignVCenter|Qt::AlignRight);
}

Each track must be placed in the tree as a child of an album, and each album
in its turn must be the child of an artist. So we begin by looking in the item-

ForArtist hash for the artist tree widget item that corresponds to the current
track’s artist. If this is the first track on the first album by the artist, there
will be no such item,and QHash::value() will return a default-constructed Tree-

WidgetItem value, that is, a null pointer. And in this casewe create the item as a
child of the tree’s invisible root, that is, as a top-level item. Whether we create
or retrieve the item, we end up with a tree widget item for the track’s artist.
And if we created the item, we add it to the itemForArtist hash so that it can
be retrieved next time it is needed.

We apply a similar process to get the album item, only if we must create it
(because this is the first track of the first album by the track’s artist), we
make the album item a child of the artist item. And so we end up with a tree
widget item for the track’s album. And if we created the item, we add it to the
itemForArtistAlbum hash.

Finally, we create the track item, making it a child of the album item that
itself is a child of the artist item. And we set the track item’s first column to
the track’s name and its second column to the track’s duration in minutes and
seconds. We also set the track’s first column’s user data to its filename.

For completeness,and sincewe use it again later on,here is the minutesSeconds-
AsStringForMSec() method:

 From the Library of Wow! eBook

ptg

74 Chapter 2. Audio and Video

QString MainWindow::minutesSecondsAsStringForMSec(qint64 msec)

{

int minutes;

int seconds;

AQP::hoursMinutesSecondsForMSec(msec, 0, &minutes, &seconds);

return QString("%1:%2").arg(minutes, 2, 10, QChar(' '))

.arg(seconds, 2, 10, QChar('0'));

}

The AQP::hoursMinutesSecondsForMSec() function takes a number of millisec-
onds and populates up to three integers passed by pointer with the hours,
minutes, and seconds that the milliseconds represent. When QString::arg() is
given an integer as first argument the other optional arguments are the field
width, the base, and the padding character.

The addTrack() method uses the waitForMediaObjectToLoad() method to popu-
late eachmusic file’smeta-data. One simple approach to doing thiswould be to
have a while loop inside which we would keep checking to see if the meta-data
is ready and to have a timerwhose timeoutwe could use to break out of the loop
if we have waited too long. Unfortunately such busy-waiting loops needlessly
consume a lot of CPU cycles so we have taken a more efficient approach and
have used a local event loop instead.

bool MainWindow::waitForMediaObjectToLoad(

Phonon::MediaObject *mediaObject, int timeoutMSec)

{

QEventLoop eventLoop;

QTimer timer;

timer.setSingleShot(true);

timer.setInterval(timeoutMSec);

connect(&timer, SIGNAL(timeout()), &eventLoop, SLOT(quit()));

connect(mediaObject,

SIGNAL(stateChanged(Phonon::State, Phonon::State)),

&eventLoop, SLOT(quit()));

timer.start();

eventLoop.exec();

return mediaObject->state() == Phonon::StoppedState;

}

We begin by creating an event loop and a single shot timer with the given
timeout. The two signal–slot connections both stop the event loop, the first as
the result of a timeout and the second as the result of a change of state. Once
these are set up, we start off the timer and the event loop, and wait for the
event loop to finish.

While the media object is loading it has the state Phonon::LoadingState. Once
the media object’s state changes we break out of the event loop. If the loading

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 75

was successful themedia object’s state will be Phonon::StoppedState and we can
confidently retrieve themedia object’smeta-data,so in this casewe return true.
If the event loop is stopped by the timeout signal we assume that the file is
corrupt or for some other reason unreadable, and return false—in such cases
the caller will skip the file and not add it to the tree.

We have now reached the point where we have scanned the music directory
and have populated the tree with the details of every readable track we have
found. The user can now navigate the tree, and whenever the current item
changes, the currentItemChanged() slot is called.

void MainWindow::currentItemChanged(QTreeWidgetItem *item)

{

if (!playOrPauseAction->isEnabled()) {

QString filename = item->data(0, FilenameRole).toString();

if (!filename.isEmpty())

playOrPauseAction->setEnabled(true);

}

}

If the playOrPauseAction QAction is disabled but the current item is now a track,
we enable it so that the user can press the Play/Pause button. When this button
is pressed the playOrPause() slot is called.

void MainWindow::playOrPause()

{

switch (mediaObject->state()) {

case Phonon::PlayingState:

mediaObject->pause();

playOrPauseAction->setIcon(playIcon);

break;

case Phonon::PausedState:

mediaObject->play();

playOrPauseAction->setIcon(pauseIcon);

break;

default:

playTrack(treeWidget->currentItem());

break;

}

}

If a track is already playing, the Play/Pause button is being used as a Pause
button, so we pause the media object and change the button’s icon to indicate
that it is now a Play button. If a track is paused, we do things the other way
round, playing the media object and turning the button into a Pause button.

 From the Library of Wow! eBook

ptg

76 Chapter 2. Audio and Video

If the track is not being played and is not paused then the user must have
pressed Play on a newly chosen item. In this case we call the playTrack()

slot with the current item. This slot is also called if the user double-clicks
an item.

void MainWindow::playTrack(QTreeWidgetItem *item)

{

Q_ASSERT(item);

QString filename = item->data(0, FilenameRole).toString();

if (filename.isEmpty())

return;

if (!QFile::exists(filename)) {

AQP::warning(this, tr("Error"),

tr("File %1 appears to have been moved or deleted")

.arg(filename));

return;

}

nextItem = item;

mediaObject->clearQueue();

mediaObject->setCurrentSource(filename);

mediaObject->play();

}

We begin by trying to retrieve the track’s filename, and do nothing if the cur-
rent item is an artist or album (and therefore has no filename), or if the file
has been moved or deleted since the music directory was read—although in
such cases we also pop up an error message. (See the sidebar for why we use
AQP::warning() rather than QMessageBox::warning(); 61 ➤.) We set the nextItem

to the current item, clear themedia object’s queue of media sources, set its cur-
rent source to the track’s filename, and start playing. As a result the current-

SourceChanged() slot will be called.

const QString ZeroTime(" 0:00");

void MainWindow::currentSourceChanged()

{

if (nextItem) {

playOrPauseAction->setIcon(pauseIcon);

timeLcd->display(ZeroTime);

setWindowTitle(tr("%1 - %2")

.arg(QApplication::applicationName())

.arg(nextItem->text(0)));

treeWidget->setCurrentItem(nextItem);

nextItem = 0;

}

}

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 77

If there is a next item (as there will be if this slot has been called as a result
of the user pressing Play on a newly chosen track or double-clicking a track),
we update the user interface, setting the LCD to 0:00 and showing the track’s
name in the title bar. We then set the next item to 0.

At any timewhile the track is playing the user can click Pause to pause playing,
Play to resume playing, or Stop to stop playing. Every time the media object’s
state changes the stateChanged() slot is called, and at every time tick (each
second in this case), the tick() slot is called. And if the user allows the track to
play to the end, just before it finishes playing, the aboutToFinish() slot is called.
We will now review these slots to see how they’re implemented.

void MainWindow::stop()

{

nextItem = 0;

mediaObject->stop();

mediaObject->clearQueue();

playOrPauseAction->setIcon(playIcon);

timeLcd->display(ZeroTime);

setWindowTitle(QApplication::applicationName());

}

If the user clicks Stop we clear the next item to prevent the next track being
played automatically if the current track is almost finished, and stop play-
ing. We also clear the media object’s queue, in case the next track has already
been queued—we will see how tracks are queued when we look at the aboutTo-

Finish() slot further on. Then we update the user interface to reflect the cur-
rent situation.

void MainWindow::tick(qint64 msec)

{

timeLcd->display(minutesSecondsAsStringForMSec(msec));

}

Every tick (in this example, every second), this slot is called and the LCD
number widget’s display is updated to reflect the track’s position in time.

void MainWindow::stateChanged(Phonon::State newState)

{

switch (newState) {

case Phonon::ErrorState:

AQP::warning(this, tr("Error"),

mediaObject->errorString());

playOrPauseAction->setEnabled(false);

stopAction->setEnabled(false);

break;

case Phonon::PlayingState:

 From the Library of Wow! eBook

ptg

78 Chapter 2. Audio and Video

playOrPauseAction->setEnabled(true);

playOrPauseAction->setIcon(pauseIcon);

stopAction->setEnabled(true);

break;

case Phonon::PausedState:

playOrPauseAction->setEnabled(true);

playOrPauseAction->setIcon(playIcon);

stopAction->setEnabled(true);

break;

case Phonon::StoppedState:

playOrPauseAction->setEnabled(true);

playOrPauseAction->setIcon(playIcon);

stopAction->setEnabled(false);

timeLcd->display(ZeroTime);

break;

default:

playOrPauseAction->setEnabled(false);

break;

}

}

Whenever the media object’s state changes we update the user interface to
ensure that the appropriate actions are enabled or disabled, and in the case of
an error we pop up a message box to explain the problem.

void MainWindow::aboutToFinish()

{

QTreeWidgetItem *item = nextItem ? nextItem :

treeWidget->currentItem();

if (!item)

return;

item = treeWidget->itemBelow(item);

if (!item) // Current track is the last track in the tree

return;

QString filename = item->data(0, FilenameRole).toString();

if (filename.isEmpty()) { // item is an Artist or an Album

item = item->child(0);

if (!item)

return;

else {

filename = item->data(0, FilenameRole).toString();

if (filename.isEmpty()) // item is an Album

item = item->child(0);

if (!item)

return;

filename = item->data(0, FilenameRole).toString();

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 79

if (filename.isEmpty())

return;

}

}

nextItem = item;

Phonon::MediaSource source(filename);

mediaObject->enqueue(source);

}

The purpose of the aboutToFinish() slot is to make the application play the
track following the currently playing track if the current track finisheswithout
having been stopped by the user. The code has to account for four cases. The
easiest case is where there is no item in the tree below the current track; this
means that the last track has been played and we do nothing and return. The
other cases all involve there being an item after the current one. If the follow-
ing item is an artist,wemust find thefirst track of the artist’sfirst album. Sim-
ilarly, if the following item is an album,wemust find its first track. Otherwise
the following item must be a track. Once we have found the track to play we
set the next item to be the track’s tree item, and add a media source based on
the item’s filename to the media object’s queue.

Providing the user does not click Stop, once the current track finishes, the me-
dia object will set its media source to the next queued track and will emit the
currentSourceChanged() signal. This signal is connected to the main window’s
currentSourceChanged() slot we reviewed earlier (77 ➤), which updates the user
interface to reflect the fact that a new track has begun playing.

void MainWindow::closeEvent(QCloseEvent *event)

{

nextItem = 0;

mediaObject->stop();

mediaObject->clearQueue();

event->accept();

}

When the user terminates the application, it is important to stop the music
from playing—otherwise it will simply continue, even though the application’s
window will no longer be visible.

We have now completed our review of the Play Music application. There are
two obvious improvements that could be made. The first is to have the appli-
cation remember the music directory (e.g., using QSettings), and use it as the
default at startup. The second is to only read directorieswhen first populating
the tree—thiswill make startup considerably faster if there are large numbers
(hundreds or thousands) of tracks—and only populate the details of each al-
bum when the user actually expands a branch. Both these enhancements are
left as exercises.

 From the Library of Wow! eBook

ptg

80 Chapter 2. Audio and Video

Although the application is fully functional, we did not make use of all the
Phonon APIs available for playing music; nonetheless, we have covered all the
most important aspects. Most of the rest concerns fine details. To take just
one such detail as an example, it is possible to control how long to wait between
finishing playing one track and starting to play the next one in the queue. This
is governed by the transitionTime property. The default is 0, which means no
gap. A negative gap can be used to crossfade the transition, and a positive gap
creates a silent transition of the given number of milliseconds. In addition, it
is also possible to programmatically seek to a particular position in time (if the
media object’s underlying media source supports this), and to connect to some
of the other signals that media objects provide such as finished(), a connection
we will see in the next subsection.

Playing Videos |||

Playing videos is very similar to playing music—at least in principle.The chief
difference is that instead of just creating a path from the media object to an
audio output,we also create a path from themedia object to a video output. We
will review the Play Video example (playvideo) shown in Figure 2.4 to see how
this works in practice.

Figure 2.4 The Play Video application playing a video (simulated)

The Play Video example loads and plays a single video at a time, so instead
of the user opening a directory as the preceding subsection’s Play Music
application required, they must open a video file instead. One consequence of
this is that we do not create a queue of videos since there is only ever one in use
at a time. Nonetheless, the Play Video application is very similar in structure
to the Play Music example, so we will only focus on the Phonon-related aspects

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 81

and especially the differences from the Play Music example. We will begin by
looking at the main window’s constructor.

const int OneSecond = AQP::MSecPerSecond;

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent)

{

playIcon = QIcon(":/play.png");

pauseIcon = QIcon(":/pause.png");

mediaObject = new Phonon::MediaObject(this);

mediaObject->setTickInterval(OneSecond);

videoWidget = new Phonon::VideoWidget(this);

Phonon::createPath(mediaObject, videoWidget);

audioOutput = new Phonon::AudioOutput(Phonon::VideoCategory,

this);

Phonon::createPath(mediaObject, audioOutput);

createActions();

createToolBar();

createWidgets();

createLayout();

createConnections();

setWindowTitle(QApplication::applicationName());

}

Here we create a media object to manage the video, and create a path from it
to a video widget (which is also a video output), and also to an audio output.
Creating a path to an audio output is only useful for videos that have sound
tracks, but since this application can play arbitrary videos we want to be able
to play the sound track if there is one. One other point to notice is that wemust
specify that the audio’s category is Phonon::VideoCategory, whereas for music
we must use Phonon::MusicCategory.

We will skip createActions() and all the other create methods (apart from
createConnections()), since they are all similar to what we have seen before.
For example, the createWidgets() method is almost the same as the Play Music
application’s method of the same name, and is where the Phonon::SeekSlider

and Phonon::VolumeSlider are created. Note, however, that we are not obliged
to use the widgets provided by the Phonon framework, and could just as well
create our own seek and volume controls, either by composing existing widgets
or by creating our own custom widgets.

void MainWindow::createConnections()

{

connect(mediaObject, SIGNAL(tick(qint64)),

 From the Library of Wow! eBook

ptg

82 Chapter 2. Audio and Video

this, SLOT(tick(qint64)));

connect(mediaObject,

SIGNAL(stateChanged(Phonon::State, Phonon::State)),

this, SLOT(stateChanged(Phonon::State)));

connect(mediaObject, SIGNAL(finished()), this, SLOT(stop()));

connect(fullScreenAction, SIGNAL(triggered()),

videoWidget, SLOT(enterFullScreen()));

connect(stopAction, SIGNAL(triggered()), this, SLOT(stop()));

connect(playOrPauseAction, SIGNAL(triggered()),

this, SLOT(playOrPause()));

connect(chooseVideoAction, SIGNAL(triggered()),

this, SLOT(chooseVideo()));

connect(quitAction, SIGNAL(triggered()), this, SLOT(close()));

}

The first three connections are from the media object to main window slots.
The tick() connection is used to update the LCD number widget that shows
the current video’s position in time. The stateChanged() connection is used to
respond to state changes, and the finished() signal is used to detect when the
video has finished playing.

The other connections are used to provide general application behavior: start
or resume playing, pause, stop, choose a video to play, or quit the application.

One of the connections is from a toolbar button that when clicked switches
the video widget to full screen mode. When this happens, only the video is
visible, and the user no longer has access to the widgets for controlling the
application. In view of thiswemust provide somemeansby which the user can
return to non-full screenmode. We have achieved this by providing a keyboard
shortcut (Esc) and by setting an event filter so that the user can simply click
the video widget to return to non-full screen mode. Here are the lines from the
createActions() method where the event filter and shortcut are set up:

videoWidget->installEventFilter(this);

(void) new QShortcut(QKeySequence("Escape"),

videoWidget, SLOT(exitFullScreen()));

And here is the code for the event filter:

bool MainWindow::eventFilter(QObject *target, QEvent *event)

{

if (target == videoWidget &&

event->type() == QEvent::MouseButtonPress &&

videoWidget->isFullScreen())

videoWidget->exitFullScreen();

return QMainWindow::eventFilter(target, event);

}

 From the Library of Wow! eBook

ptg

The PhononMultimedia Framework 83

This event filter ensures that simply by clicking, the user can return to non-full
screen mode.

We could have achieved the same effect by subclassing Phonon::VideoWidget and
reimplementing its mousePressEvent() method. To provide small extensions
to a widget’s behavior using an event filter as we have done here can be a
sensible choice. However, if more than one instance of the widget is required,
or if more extensive behavior modification is required, then using a subclass
is the best approach—especially since using large numbers of event filters can
degrade performance.

We will now review those slots that differ from the ones with the same names
in the Play Music application, starting with the longest, chooseVideo(), which
we will review in three parts.

void MainWindow::chooseVideo()

{

QString filename = QFileDialog::getOpenFileName(this,

tr("Choose Video"), QDesktopServices::storageLocation(

QDesktopServices::MoviesLocation), getFileFormats());

if (filename.isEmpty())

return;

The slot begins by prompting the user to choose a video, with the initial direc-
tory set to the user’s “movies” directory (or to their home directory if they don’t
have a movies directory set). If the user cancels we do nothing and return.

stop();

playOrPauseAction->setEnabled(false);

stopAction->setEnabled(false);

mediaObject->setCurrentSource(filename);

if (!mediaObject->hasVideo()) {

QEventLoop eventLoop;

QTimer timer;

timer.setSingleShot(true);

timer.setInterval(3 * OneSecond);

connect(&timer, SIGNAL(timeout()), &eventLoop, SLOT(quit()));

connect(mediaObject, SIGNAL(hasVideoChanged(bool)),

&eventLoop, SLOT(quit()));

timer.start();

eventLoop.exec();

}

Once a video has been chosen, any currently playing video is stopped and the
relevant actions are disabled. As with music, there can be a noticeable time
lag between loading a video with Phonon::MediaObject::setCurrentSource()

and the video being available to play. If the media object’s video data is not

 From the Library of Wow! eBook

ptg

84 Chapter 2. Audio and Video

immediately available we use a local event loop with a time out, almost exactly
as we did for the Play Music application. What is different here is that we
stop the event loop once the video stream’s status has changed, that is, video
data has become available, or if we time out—using a longer timeout of three
seconds in this case.

if (mediaObject->hasVideo()) {

QString title(mediaObject->metaData(Phonon::TitleMetaData)

.join("/").trimmed());

if (title.isEmpty())

title = QFileInfo(filename).baseName();

setWindowTitle(tr("%1 - %2")

.arg(QApplication::applicationName()).arg(title));

mediaObject->play();

}

else {

setWindowTitle(QApplication::applicationName());

AQP::warning(this, tr("Error"),

tr("Cannot play video from %1").arg(filename));

}
}

Once the local event loop finishes, either video data is available, in which case
we retrieve some meta-data and start playing the video, or we timed out, in
which case we inform the user that we hit a problem. We do not explicitly
enable the relevant actions—this is done in the stateChanged() slot, and the
state will change as soon as playing begins.

QString MainWindow::getFileFormats()

{

QStringList mimeTypes;

foreach (const QString &mimeType,

Phonon::BackendCapabilities::availableMimeTypes())

if (mimeType.startsWith("video/"))

mimeTypes << mimeType;

return AQP::filenameFilter(tr("Video"), mimeTypes);

}

We only show thismethod for completeness. It creates a list of the videoMIME
types supported by the Phonon backend and then uses these to produce a list
of file suffixesusing the aqp.{hpp,cpp}module’s AQP::filenameFilter() function.
See the “MIME Types, File Suffixes, and Magic Numbers” sidebar (72 ➤) for
more about mapping MIME types to file suffixes.

Apart from one small workaround, the stateChanged() slot is identical to the
one used for the Play Music application, so we will only show the difference:

ptg

The PhononMultimedia Framework 85

case Phonon::PlayingState:

videoWidget->setAspectRatio(

Phonon::VideoWidget::AspectRatioWidget);

videoWidget->setAspectRatio(

Phonon::VideoWidget::AspectRatioAuto);

playOrPauseAction->setEnabled(true);

playOrPauseAction->setIcon(pauseIcon);

stopAction->setEnabled(true);

break;

When a video is first played it should be shown scaled to fit the video widget’s
area and respecting the video’s aspect ratio. At the time of this writing, when
playing certain videos on certain systems this does not always happen, so
we manually make two different Phonon::VideoWidget::setAspectRatio() calls,
to ensure that the video is scaled to fit and has the correct aspect ratio in
all cases.

void MainWindow::playOrPause()

{

switch (mediaObject->state()) {

case Phonon::PlayingState:

mediaObject->pause();

playOrPauseAction->setIcon(playIcon);

break;

case Phonon::PausedState: // Fallthrough

case Phonon::StoppedState:

mediaObject->play();

playOrPauseAction->setIcon(pauseIcon);

break;

default:

break;

}

}

The playOrPause() slot is much simpler than the one used in the Play Music
application. We won’t show the stop() and tick() slots, or the closeEvent(),
because they are almost identical to the Play Music ones.

We have now completed our review of the Play Video application. An easier
alternative to using a Phonon::VideoWidget is to use a Phonon::VideoPlayer. The
video player widget provides convenience—no source, media object, path, or
sink need be created—but at the price of lacking the finer control achievable
using the video widget used in the example.

The Phonon module also includes the Phonon::MediaController class which is
designed to provide control over the additional features that somemultimedia

ptg

86 Chapter 2. Audio and Video

provide, such as CD titles,DVD chapters, and DVDangles of viewpoint. At the
time of this writing, no Qt Phonon backend supports these features.

This brings us to the end of our coverage of the Phonon module. At the time
of this writing, the module does not support capturing multimedia—such as
sound or video clips—or storing multimedia for later playback. Nor is there
support formanipulatingmedia streams, for example, for editing, or formixing
multiple input sources. All these gaps in functionality are likely to be filled in
the future as Qt’s Phononmodule matures.

Qt 4.6 introduced a new low-level multimedia module: QtMultimedia. This
module can read and play audio and video data much like the Phononmodule,
but has a lower-level interface that makes it more cumbersome to use than
the Phonon module. For example, to play an audio file using QtMultimedia,
we must create a QAudioFormat object with various technical details of the file’s
audio format—for example, its frequency,number of channels, sample size,and
codec’s MIME type—and then give the audio format object to a QAudioOutput

object to play, along with a QFile object opened on the audio file in binary mode.
In contrast,all these low-level details are handled automatically by thePhonon
module which only requires that we give it a filename. It is best to start out
using thePhononmodule,and only use theQtMultimediamodule if lower-level
control than the Phonon module offers is required and is available using the
QtMultimediamodule.

ptg

Model/View Table Models |||||

3
● Qt’s Model/View Architecture

● UsingQStandardItemModels for Tables

● CreatingCustom Table Models

One of the big advancesmadewhenQt 4.0was releasedwas the introduction of
a model/view architecture for data items. Using this framework programmers
were easily able to separate their data from its presentation—something only
achievedwith inconvenience in prior versions. As theQt 4.x serieshas evolved,
more functionality and features have been added to the architecture, making
it more powerful, useful, and reliable than when it first appeared.★

This chapter is the first of four that explore different aspectsof Qt’smodel/view
architecture. In this chapter we will look at table models, and in the following
chapters we will look at tree models, delegates, and views.

Every view provides a default delegate—which we can replace with a custom
delegate—that is used to display each item, and for editable items, to provide
a suitable editor. With regard to the built-in views, we will concern ourselves
only with QComboBox and with the view widgets that require models to be
supplied to them and that take full advantage of the power and flexibility of
Qt’s model/view architecture, such as QTableView and QTreeView. And we will, of
course, cover custom views in the model/view views chapter.

Qt also supports list models, but we won’t explicitly cover them here because
they are in effect the same as table models that have a single column. (How-
ever, we will use a list model in Chapter 6, when we create a custom list model
viewer.) We will cover tree models in the next chapter.

This chapter’s first section presents a very brief introduction to themodel/view
architecture. Then, in the second section, we create a QStandardItemModel sub-
class that adds the ability to load and save its QStandardItems from and to a file.
And in the chapter’s third sectionwewill create a custom tablemodel as a drop-
in replacement for the second section’s custom standard item model subclass.

★In fact, a “new generation” model/view architecture is being developed for Qt—althoughwhen or
even if it will mature and become part of Qt is a matter of conjecture. See labs.qt.nokia.com/page/
Projects/Itemview/ItemviewsNG to see how it is getting on.

87

ptg

88 Chapter 3. Model/View Table Models

In both the second and third sections we will see how to add rows (with in-
place editing using a delegate),delete rows,and edit rows (again,using in-place
editing).We will also create two QSortFilterProxyModel subclasses, one to filter
in only those rows the user is interested in, and another to filter out duplicate
rows. We will begin our coverage with a broad look at Qt’s model/view archi-
tecture to provide some context.

Qt’s Model/View Architecture ||||

As we will see throughout this chapter and the next, models are used to store
data items. Qt provides severalwidgets for viewing the data itemsheld inmod-
els. There are pure view widgets: QListView, QTableView, QColumnView—a view
that shows a tree hierarchy as a horizontal series of lists, an idiom used on
Mac OS X—and QTreeView. All of these must be provided with a model—either
our own custommodel,or one of thepredefinedmodelsprovidedwithQt. There
are also convenience widgets—so named because they provide their own built-
inmodel and can therefore be used directly; these are QListWidget, QTableWidget,
and QTreeWidget. And there is QComboBox which can be used either as a conve-
nience widget, that is, we can use it directly since it provides its own model, or
as a model’s view widget, in which case we provide it with the model we want
it to use. View widgets are covered in Chapter 6.

All the standard views are provided with a default QStyledItemDelegate—this
class presents items in a view, and for editable items also provides a suitable
editor. Naturally, we can create our own delegates to achieve complete control
over the presentation and editing of items in our views. Delegates are covered
in Chapter 5.

The relationship between models, views, delegates, and the underlying data is
illustrated by Figure 3.1.

QAbstractItemDelegate

dataset QAbstractItemModel QAbstractItemView
data

edited data data
data

rendering
edited data

Figure 3.1 Qt’s model/view architecture

In some contexts, using the convenience widgets makes sense—particularly
for small datasets (hundreds or low thousands of items), providing the data
they present will only ever be shown in a single widget at any one time. We
have already used a couple of convenience views in earlier chapters—for
example, QTableWidgets in the Matrix Quiz example from Chapter 1 (44 ➤), and
a QTreeWidget in the Play Music example from Chapter 2 (64 ➤).

ptg

Qt’s Model/View Architecture 89

Probably the most important fact to understand about Qt’s models is that
although there is a single uniform API, there are two completely different
kinds of model: table models that work in terms of rows and columns, and tree
models that work in termsof parents and children. (Listmodels are effectively
the same as table models with a single column.) In this chapter we will cover
table models and in Chapter 4 we will cover tree models.

In addition to considering the two kinds of model, there are three types of mod-
el we can use. One type is any of the predefined models that Qt provides, for
example, the QStringListModel, the QDirModel, and its successor the QFileSystem-
Model—these can be used directly and require the least amount of work to use.
Another type is the QStandardItemModel; this is a generic model that can be used
as a list, table, or tree model, and that provides an item-based API rather like
the APIs offered by the convenience widgets (such as QTableWidget). Using a
QStandardItemModel is ideal for those cases where we have data that fits neatly
into the idiom of a list, table, or tree of items, and can be used as is or usually
with very little adaptation. And the last type is our own custom models de-
rived from QAbstractItemModel (or from QAbstractListModel or QAbstractTable-

Model). These are ideal when we want to achieve the best possible performance,
or where our model doesn’t fit neatly into an item-based idiom. Some of Qt’s
model hierarchy is shown in Figure 3.2.

QAbstractListModel QStringListModel

QAbstractProxyModel QSortFilterProxyModel

QAbstractItemModel QAbstractTableModel QSqlQueryModel

QFileSystemModel

QStandardItemModel
QSqlTableModel

Figure 3.2 Selected classes from Qt’s model hierarchy

Using a QStandardItemModel means that it is unnecessary to create a custom
model, but at the time of this writing using QStandardItemModels has two po-
tential disadvantages. First, it can be noticeably slower to load large datasets
than from a custom model, and second, the API offered does not seem to al-
low as much functionality for tree models as can be achieved in custom mod-
els. Nonetheless, in most cases we can start out by using a QStandardItemModel,
and later on, if the need arises, implement a custom model to replace it. A
brief comparison of the QStandardItemModel and custom models is given in the
“QStandardItemModels vs. CustomModels” sidebar (➤ 112).

ptg

90 Chapter 3. Model/View Table Models

Using QStandardItemModels for Tables ||||

Table models work in terms of rows and columns, with every item having an
invalid QModelIndex as its parent. There is no intrinsic difference between list
and table models—list models are simply tables with a single column.

In this section we will see how to create a custom QStandardItemModel subclass
that can load and save our custom data, and that holds each item of data in
a QStandardItem. In the following section we will replace the QStandardItem-

Model with a custom QAbstractTableModel subclass and use our own lightweight
items to hold the data. The applications in both sections have exactly the same
functionality, although on the machines we tested them on, the custommodel-
based one always loaded its data significantly faster than the QStandardItem-

Model-based one.

Figure 3.3 Editing a zipcode’s state in the Zipcodes application

Both examples use the custom ItemDelegate delegate for rendering and editing.
This is covered in Chapter 5.

The Zipcodes applications—zipcodes1 and zipcodes2—load and save binary
files that hold zipcode data—specifically, zipcode, post office, county, and state.
There is no visual difference between the applications and they provide the
same functionality. One of them is shown in Figure 3.3. The applications pro-
vide the standard behaviors we would expect—loading and saving, removing
rows, and in-place adding and editing of rows, all of which we will cover. In
addition,they also support the ability to select or filter thedata in variousways,

ptg

UsingQStandardItemModels for Tables 91

so as we review the applications, as well as learning about the models, we will
learn how to create QSortFilterProxyModel subclasses, and how tomanipulate a
view’s selection model.

The zipcodes1 application uses a simple QStandardItemModel subclass to load,
edit, and save its data. The QTableView that displays the data accesses the data
via a QSortFilterProxyModel subclass that filters according to the user’s criteria.
The comboboxes used to filter (or select) rows are populated using another
QSortFilterProxyModel, one that filters out duplicates. The main window
itself is dialog-style (using buttons rather than menus), but is otherwise quite
conventional. As always, we will focus on the relevant details (in this case the
model/view aspects), omitting much of the widget creation and layouts, and
many of the methods.

Changing a Table Model through the User Interface |||

Wewill start out by looking at the main window—this will give us a high-level
overview—and then we will look at the model subclasses the application relies
on. But first we will look at the program’s global constants.

const int MinZipcode = 0;

const int MaxZipcode = 99999;

const int InvalidZipcode = MinZipcode - 1;

enum Column {Zipcode, PostOffice, County, State};

The constants should be self-explanatory. Now let’s look at the MainWindow

class’s definition in the header file, but omitting all the private methods, and
omitting almost all the private data (i.e., most of the widgets).

class MainWindow : public QMainWindow

{

Q_OBJECT

public:

explicit MainWindow(QWidget *parent=0);

protected:

void closeEvent(QCloseEvent *event);

private slots:

void load();

void load(const QString &filename);

bool save();

void addZipcode();

void deleteZipcode();

void setDirty() { setWindowModified(true); }

void updateUi();

ptg

92 Chapter 3. Model/View Table Models

void radioButtonClicked();

void selectionChanged();

private:
···
QTableView *tableView;

StandardTableModel *model;

ProxyModel *proxyModel;

bool loading;
};

The load() and save() slots are used to load and save the application’s data;we
won’t show them here, although we will show the custom StandardTableModel::

load() and StandardTableModel::save() methods they call when we cover the
StandardTableModel subclass later on.

The addZipcode() and deleteZipcode() slots are used to add or delete a row of
data; we will review both of these methods.

Most of the other private slots are invoked when the user interacts with the
widgets used for filtering or selecting—for example, if they select a particular
county in the county combobox. The private: block has several private meth-
ods andmost of thewidgets (most of which aren’t shown because they aremore
concerned with the GUI than with model/view programming).When the user
chooses to filter or select or interacts with the criteria widgets (e.g., by setting
a minimum zipcode or choosing a particular state), this leads to the updateUi()

slot being called, which in turn either calls restoreFilters() to apply filter-
ing or performSelection() to select. All the other methods just show standard
C++/Qt GUI programming.

The tableView is used as the application’s view and the model is the application’s
model. However, the view does not communicate directly with the model,
but via the proxyModel which filters in only those rows that match the user’s
filter criteria.

const int StatusTimeout = AQP::MSecPerSecond * 10;

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), loading(false)

{

model = new StandardTableModel(this);

proxyModel = new ProxyModel(this);

proxyModel->setSourceModel(model);

createWidgets();

createComboBoxModels();

createLayout();

createConnections();

AQP::accelerateWidget(this);

ptg

UsingQStandardItemModels for Tables 93

setWindowTitle(tr("%1 (QStandardItemModel)[*]")

.arg(QApplication::applicationName()));

statusBar()->showMessage(tr("Ready"), StatusTimeout);

}

The constructor begins by creating the model and the proxy model that the
view will use. (Both these models are subclasses that we will review later
on.) The rest of the constructor follows a familiar pattern. We will only look
at a snippet from the end of the createWidgets() method, and we will skip
the createLayout() method entirely. (We covered the AQP::accelerateWidget()

function in an earlier chapter; 15 ➤.)

void MainWindow::createWidgets()

{
···
tableView = new QTableView;

tableView->setModel(proxyModel);

tableView->setItemDelegate(new ItemDelegate(this));

tableView->verticalHeader()->setDefaultAlignment(

Qt::AlignVCenter|Qt::AlignRight);
}

Notice that the table view’s model is the proxyModel, not the actual model

that holds the data. The custom delegate is covered later (➤ 201). We set the
alignment for the vertical header (the row numbers), so that they line up in the
conventional way for numbers.

void MainWindow::createComboBoxModels()

{

createComboBoxModel(countyComboBox, County);

createComboBoxModel(stateComboBox, State);

}

void MainWindow::createComboBoxModel(QComboBox *comboBox, int column)

{

delete comboBox->model();

UniqueProxyModel *uniqueProxyModel = new UniqueProxyModel(column,

this);

uniqueProxyModel->setSourceModel(model);

uniqueProxyModel->sort(column, Qt::AscendingOrder);

comboBox->setModel(uniqueProxyModel);

comboBox->setModelColumn(column);

}

The two comboboxes that are used for filtering or selecting rows need to get
their data from the underlying model. However, the same counties and the
same states appear again and again for different zipcodes as the screenshot in

ptg

94 Chapter 3. Model/View Table Models

Figure 3.3 shows (90 ➤). So instead of having the comboboxes use the model, we
have them use a custom proxy model that eliminates duplicates.

When we set out to create a combobox model we begin by deleting the old
model. This is done because we call createComboBoxModels() whenever we load
in a new file since we only want the user to be able to filter and select based on
the values that are in the model that has been loaded. For example, we might
load a file that only has Connecticut and Delaware zipcodes, in which case we
don’t want the user to be able to filter on Montana since that would have no
matching rows.

The custom UniqueProxyModel uses the same columns as the underlying model,
and when we create the proxy we must specify which column we want to filter
for unique values. The proxy’s source model is set to the underlying model

and the combobox’s model is set to the proxy—with the column the combobox
should display specified using the QComboBox::setModelColumn() method. (We
will review the unique proxy model later on; ➤ 107.)

The application uses about twenty signal–slot connections which are set up in
the createConnections() method. We’ll review them in four groups.

connect(model, SIGNAL(itemChanged(QStandardItem*)),

this, SLOT(setDirty()));

connect(model, SIGNAL(rowsRemoved(const QModelIndex&,int,int)),

this, SLOT(setDirty()));

connect(model, SIGNAL(modelReset()), this, SLOT(setDirty()));

These connections are all to the setDirty() method (which in turn calls set-

WindowModified()). They are used to ensure that we know if there are unsaved
changes, and to reflect this fact in the window title—with an “*” (asterisk) in
the title bar or with a dot inside the close button on Mac OS X.

connect(countyGroupBox, SIGNAL(toggled(bool)),

this, SLOT(updateUi()));

connect(countyComboBox,

SIGNAL(currentIndexChanged(const QString&)),

this, SLOT(updateUi()));
···
foreach (QRadioButton *radioButton, QList<QRadioButton*>()

<< dontFilterOrSelectRadioButton << filterRadioButton

<< selectByCriteriaRadioButton)

connect(radioButton, SIGNAL(clicked()),

this, SLOT(radioButtonClicked()));

If the user checks (or unchecks) the county group box’s checkbox we need to
know so that we can filter or select (or stop filtering or selecting) by county. If
the group box is checked and the user changes the county we must re-filter or
re-select accordingly. (There are also connections for the state group box and

ptg

UsingQStandardItemModels for Tables 95

state combobox—these aren’t shown because they are the same as the county
ones.) There are also connections from the zipcode spinboxes’ valueChanged()
signals, again to the updateUi() slot, and again not shown.

The user can choose to filter or select—or to do neither, depending on which
radio button they check. The radio button connections are used to ensure that
we filter or select (or neither) appropriately.

connect(tableView, SIGNAL(clicked(const QModelIndex&)),

this, SLOT(selectionChanged()));

connect(tableView->selectionModel(),

SIGNAL(currentChanged(const QModelIndex&,

const QModelIndex&)),

this, SLOT(selectionChanged()));

connect(tableView->horizontalHeader(),

SIGNAL(sectionClicked(int)),

tableView, SLOT(sortByColumn(int)));

The first two connections in this group are used to keep the user interface up
to date if the user clicks or navigates to a particular item, and the third is used
to provide sorting. (We will explain how the sorting works later on; ➤ 111.)

Note that views are actually associated with twomodels—the model that pro-
vides the data, and an internal model that is used to keep track of selections.
The selection model is available from QAbstractItemView::selectionModel()

and is of type QItemSelectionModel—this is a direct QObject subclass; it is not a
QAbstractItemModel subclass.

connect(loadButton, SIGNAL(clicked()), this, SLOT(load()));

connect(saveButton, SIGNAL(clicked()), this, SLOT(save()));

connect(addButton, SIGNAL(clicked()), this, SLOT(addZipcode()));

connect(deleteButton, SIGNAL(clicked()),

this, SLOT(deleteZipcode()));

connect(quitButton, SIGNAL(clicked()), this, SLOT(close()));

This last group of connections should be the most familiar. They provide the
behaviors for when the user asks to load or save their data, or to add or delete
rows, or to quit the application.

We have now seen the overall structure of the application and the connections
used to provide its behavior. Most of the private slots and private methods are
concerned with the user interface, so they are not relevant to model/view pro-
gramming as such. Because of this, we will skip most of the user interaction-
related slots andmethods,but showall of those that are relevant tomodel/view
programming.

ptg

96 Chapter 3. Model/View Table Models

void MainWindow::radioButtonClicked()

{

if (dontFilterOrSelectRadioButton->isChecked()) {

proxyModel->clearFilters();

QItemSelectionModel *selectionModel =

tableView->selectionModel();

selectionModel->clearSelection();

}

else

updateUi();

}

If the user clicks the Don’t Filter or Select radio button, the filters and the
selection are cleared—so all the rows are shown. Otherwise the updateUi()

method is called to select or filter according to the user’s criterion.

void MainWindow::updateUi()

{

if (loading || dontFilterOrSelectRadioButton->isChecked())

return;

if (filterRadioButton->isChecked())

restoreFilters();

else

performSelection();

}

Whenever the user changes the state of one of the checkboxes, comboboxes, or
spinboxes, this method is called. If the data is being loaded or if the user has
switched off filtering and selecting, we do nothing and return. Otherwise we
either filter or select according to the user’s choice.

The performSelection() method is quite long so we will review it in two parts.

void MainWindow::performSelection()

{

proxyModel->clearFilters();

int minimumZipcode = minimumZipSpinBox->value();

int maximumZipcode = maximumZipSpinBox->value();

QString county = countyGroupBox->isChecked()

? countyComboBox->currentText() : QString();

QString state = stateGroupBox->isChecked()

? stateComboBox->currentText() : QString();

We begin by clearing the filters so that no row is filtered away. Then we get
theminimumandmaximumzipcode values and the user’s choice of county and
state (or empty strings if they haven’t set a preference).

ptg

UsingQStandardItemModels for Tables 97

QItemSelection selection;

int firstSelectedRow = -1;

for (int row = 0; row < proxyModel->rowCount(); ++row) {

QModelIndex index = proxyModel->index(row, Zipcode);

int zipcode = proxyModel->data(index).toInt();

if (zipcode < minimumZipcode || zipcode > maximumZipcode)

continue;

if (!matchingColumn(county, row, County))

continue;

if (!matchingColumn(state, row, State))

continue;

if (firstSelectedRow == -1)

firstSelectedRow = row;

QItemSelection rowSelection(index, index);

selection.merge(rowSelection, QItemSelectionModel::Select);

}

QItemSelectionModel *selectionModel = tableView->selectionModel();

selectionModel->clearSelection();

selectionModel->select(selection, QItemSelectionModel::Rows|

QItemSelectionModel::Select);

if (firstSelectedRow != -1)

tableView->scrollTo(proxyModel->index(firstSelectedRow, 0));
}

The selection must be built up row by row. We start with an empty QItem-

Selection and then iterate over every row in the proxy model. (And thismeans
that we consider every row in the underlying model since we cleared the proxy
model’s filters.) If a row matches the criteria we create a new QItemSelection

that just contains that row, and then wemerge this into the selection of all the
selected rows that we are building up.

Once all the rows have been considered we clear any existing selection and
select all those rows (and there may be none of course) that match the user’s
criteria. And finally, we scroll to the first selected row if there was one.

bool MainWindow::matchingColumn(const QString &value, int row,

int column)

{

if (value.isEmpty())

return true;

QModelIndex index = proxyModel->index(row, column);

return value == proxyModel->data(index).toString();

}

ptg

98 Chapter 3. Model/View Table Models

This helper method returns true if the given value matches the text at the
given row and column—or if the value is empty. So if the user hasn’t specified,
say, a county, then this method will return true for any county.

void MainWindow::restoreFilters()

{

proxyModel->setMinimumZipcode(minimumZipSpinBox->value());

proxyModel->setMaximumZipcode(maximumZipSpinBox->value());

proxyModel->setCounty(countyGroupBox->isChecked()

? countyComboBox->currentText() : QString());

proxyModel->setState(stateGroupBox->isChecked()

? stateComboBox->currentText() : QString());

reportFilterEffect();

}

If the user checks the Filter radio button, or changes one of the comboboxes or
spinboxeswhen theFilter radio button is checked, thismethodwill be called. It
simply uses the custom proxy model’s custommethods to set the filter criteria
to match the user’s choices in the user interface, and this in turn will cause the
view to update itself.

void MainWindow::reportFilterEffect()

{

if (loading)

return;

statusBar()->showMessage(tr("Filtered %L1 out of %Ln zipcode(s)",

"", model->rowCount()).arg(proxyModel->rowCount()),

StatusTimeout);

}

After the user has clicked the Filter radio button or changed a filter criterion,
this method is called to show the results, that is, how many rows have been
filtered out of the total number of rows in the dataset.

We use %L1, %L2, and so on, rather than plain %1, %2, and so on, to provide inter-
nationalized number grouping separators—for example, commas every three
digits in aU.S. locale—tomake the numbersmore readablewhen there are a lot
of rows. And in this case we want the translator to be able to translate an ap-
propriate plural form (e.g., “…out of one zipcode” or “…out of %Ln zipcodes”),
with a sensible fallback of “… out of %Ln zipcode(s)”; we discuss this in the
“Using the Three-Argument Form of tr()” sidebar (➤ 276).

void MainWindow::addZipcode()

{

dontFilterOrSelectRadioButton->click();

QList<QStandardItem*> items;

QStandardItem *zipItem = new QStandardItem;

ptg

UsingQStandardItemModels for Tables 99

zipItem->setData(MinZipcode, Qt::EditRole);

items << zipItem;

for (int i = 0; i < model->columnCount() - 1; ++i)

items << new QStandardItem(tr("(Unknown)"));

model->appendRow(items);

tableView->scrollToBottom();

tableView->setFocus();

QModelIndex index = proxyModel->index(proxyModel->rowCount() - 1,

Zipcode);

tableView->setCurrentIndex(index);

tableView->edit(index);

}

If the user chooses to add a new zipcodewe begin by switching off filtering and
selecting. It is very important to switch off filtering, since if the new zipcode
doesn’t match the filter criteria it will immediately be filtered away, and the
user won’t get the chance to edit—or even see—the data they are adding.

Since we are using a simple QStandardItemModel subclass and holding the data
in QStandardItems, adding a new zipcode in place is just a matter of appending
a new row of suitably initialized QStandardItems. The new data is added to the
underlyingmodel—theproxymodel used by the viewwill detect this and adapt
itself accordingly. One subtle point to note is that for non-string data such as
a zipcode, it is wise to explicitly specify the role under which the data is stored
as Qt::EditRole, and leave Qt to produce a string representation when data for
the Qt::DisplayRole is requested. (All the roles are listed in Table 3.2; ➤ 119.)

Once the data is added we scroll to the bottom of the table view (since we ap-
pended the new zipcode at the end), and initiate editing of the new zipcode’s
first column, so the user will immediately find themselves in a QSpinBox (actu-
ally a slightly customized QSpinBox subclass).

We do not call setDirty() and we have no connection from the QStandardItem-

Model::rowsInserted() signal. Thismeans that after adding to a freshly loaded
or freshly saved dataset, the application does not consider itself to have any
unsaved changes. However, if the user edits any of the newly added zipcode’s
cells—or any other cells—the itemChanged() signal will be emitted, and that is
connected to setDirty().

The deleteZipcode() method is fairly long so we will review it in two parts.

void MainWindow::deleteZipcode()

{

QItemSelectionModel *selectionModel = tableView->selectionModel();

if (!selectionModel->hasSelection())

return;

QModelIndex index = proxyModel->mapToSource(

selectionModel->currentIndex());

ptg

100 Chapter 3. Model/View Table Models

if (!index.isValid())

return;

int zipcode = model->data(model->index(index.row(),

Zipcode)).toInt();

if (!AQP::okToDelete(this, tr("Delete Zipcode"),

tr("Delete Zipcode %1?").arg(zipcode, 5, 10, QChar('0'))))

return;

If the user chooses to delete a row we begin by seeing if there is a selected cell,
and if there is we convert the selection model’s model index to the correspond-
ing index in the underlying model using the QSortFilterProxyModel::mapTo-

Source() method.

Once we know the row the user wants to delete (i.e., the selected cell’s model
index’s row), we ask them for confirmation, and do nothing if they change
their mind.

bool filtered = filterRadioButton->isChecked();

bool selected = selectByCriteriaRadioButton->isChecked();

QString county = countyGroupBox->isChecked()

? countyComboBox->currentText() : QString();

QString state = stateGroupBox->isChecked()

? stateComboBox->currentText() : QString();

dontFilterOrSelectRadioButton->click();

model->removeRow(index.row(), index.parent());

createComboBoxModels();

if (!county.isEmpty())

countyComboBox->setCurrentIndex(

countyComboBox->findText(county));

if (!state.isEmpty())

stateComboBox->setCurrentIndex(

stateComboBox->findText(state));

if (filtered)

filterRadioButton->click();

else if (selected)

selectByCriteriaRadioButton->click();
}

Before deleting the row we remember the state of the Filter and Select by Cri-
teria radio buttonsand of the criteria comboboxes,and then switch off filtering
and selecting by clicking the Don’t Filter or Select radio button. We then re-
move the row,and thenwe restoreany filtering or selecting thatwas in force be-
fore. Strictly speaking we don’t need to save and restore the filtering/selecting
state, but we do need to re-create the combobox models since they might con-
tain one less row now—for example, if the user deleted a row that contained
the only occurrence of a particular county or state.

ptg

UsingQStandardItemModels for Tables 101

Since it is common for applications to allow users to delete things, for conve-
nience, we have created a custom AQP::okToDelete() function, which we show
here for completeness.

bool okToDelete(QWidget *parent, const QString &title,

const QString &text, const QString &detailedText)

{

QScopedPointer<QMessageBox> messageBox(new QMessageBox(parent));

if (parent)

messageBox->setWindowModality(Qt::WindowModal);

messageBox->setIcon(QMessageBox::Question);

messageBox->setWindowTitle(QString("%1 - %2")

.arg(QApplication::applicationName()).arg(title));

messageBox->setText(text);

if (!detailedText.isEmpty())

messageBox->setInformativeText(detailedText);

QAbstractButton *deleteButton = messageBox->addButton(

QObject::tr("&Delete"), QMessageBox::AcceptRole);

messageBox->addButton(QObject::tr("Do &Not Delete"),

QMessageBox::RejectRole);

messageBox->setDefaultButton(

qobject_cast<QPushButton*>(deleteButton));

messageBox->exec();

return messageBox->clickedButton() == deleteButton;

}

Apart from the return value, the signature is the same as for the AQP::infor-

mation() and AQP::warning() functions, and the creation and setting up of the
message box is very similar towhatwe did in those functions. The detailedText
parameter has a default value of an empty string so can be omitted by callers.
(See the “Avoiding Qt’s Static Convenience QMessageBox Functions” sidebar,
for why we use custom functions formessage boxes;61 ➤.) The qobject_ cast<>()
is necessary because the QMessageBox::setDefaultButton() method expects a
QPushButton pointer, but we have used a QAbstractButton pointer for the delete-

Button to make the comparison with QMessageBox::clickedButton() simpler,
since this method returns a QAbstractButton pointer. (We introduced Qt 4.6’s
QScopedPointer class in the “Qt’s Smart Pointers” sidebar; 62 ➤.★)

In theory we could have handled the dialog’s deletion by calling QWidget::set-

Attribute(Qt::WA_DeleteOnClose), but in practice we prefer to leave deletion to
be handled by the smart pointer. This means that the message box is merely
closed rather than deleted when a button is pressed, so after the QMessage-

★ In the source code we have an #if QT_VERSION so that the code will compile with Qt 4.5 using
QSharedPointer.

ptg

102 Chapter 3. Model/View Table Models

Box::exec() call finishes the message box still exists—which is essential if we
want to check which button was pressed, as we do here.

Keep in mind that the QDialog::exec() method is going out of fashion, at least
for larger projects. The problem is that although it is a blocking call from the
user’s point of view (i.e., it prevents interacting with the application’s other
windows), it does not block event processing. This means that it is possible for
the application’s state to change considerably between the call to exec() and
the user accepting or rejecting the dialog. It is even possible that the dialog
itself gets accidentally deleted. In view of this, it is safer to use QDialog::open()
(or QDialog::show() for modeless dialogs), and use a signal–slot connection to
respond if the user accepts the dialog. Nonetheless,while we accept that there
are problems and risks with using exec(), none of the book’s examples suffer
from them, so we continue to use it, especially since it is convenient and needs
less code than using open() and a connection.★

We have now seen all the relevant methods that are used to provide the behav-
iors in the user interface through which the user can manipulate the models
used by the application. In the next subsection we will review the QStandard-

ItemModel subclass that is used to load, edit, and save the application’s data.
And in the two following subsections we will review the QSortFilterProxyModel

subclasses that are used for filtering the data and for ensuring that the com-
boboxes used for filtering and selecting always contain unique values.

A QStandardItemModel Subclass for Tables |||

The QStandardItemModel class provides all the functionality we need for manip-
ulating tabular data and for interacting with views. The only additions that
need to bemade for handling real data are the ability to load and save the data
from or to a file, and the ability to clear the data—to allow the user to create a
new dataset.

We will start by looking at the constructor and the clear() method, and then
we will see how the data is loaded and saved.

StandardTableModel::StandardTableModel(QObject *parent)

: QStandardItemModel(parent)

{

initialize();

}

void StandardTableModel::initialize()

{

setHorizontalHeaderLabels(QStringList() << tr("Zipcode")

★See Qt Quarterly issue 30’s “NewWays of Using Dialogs”, qt.nokia.com/doc/qq/ for more details.

ptg

UsingQStandardItemModels for Tables 103

<< tr("Post Office") << tr("County") << tr("State"));

}

Wehave factored out the initialize()method sincewe need the same function-
ality in the clear() method.

void StandardTableModel::clear()

{

QStandardItemModel::clear();

initialize();

}

Notice that this method—and indeed the StandardTableModel class itself—
neither knows nor cares if themodel’s data is dirty, so the handling of unsaved
changes is a responsibility left to the class’s clients—in this example, the main
window class.

int32 int16 Zipcode #1 Zipcode #2 … Zipcode #n

uint16 QString QString QString

Figure 3.4 The Zipcodes file format

There are only two more methods in the subclass, load() and save(). The file
format used to hold the zipcode data on disk is a binary formatwhose structure
is illustrated in Figure 3.4. The file begins with a magic number and a file
format version number, and then zero or more zipcode records each holding a
zipcode, post office, county, and state.

const qint32 MagicNumber = 0x5A697043;

const qint16 FormatNumber = 100;

void StandardTableModel::save(const QString &filename)

{

if (!filename.isEmpty())

m_filename = filename;

if (m_filename.isEmpty())

throw AQP::Error(tr("no filename specified"));

QFile file(m_filename);

if (!file.open(QIODevice::WriteOnly))

throw AQP::Error(file.errorString());

QDataStream out(&file);

out << MagicNumber << FormatNumber;

out.setVersion(QDataStream::Qt_4_5);

ptg

104 Chapter 3. Model/View Table Models

for (int row = 0; row < rowCount(); ++row) {

out << static_cast<quint16>(

item(row, Zipcode)->data(Qt::EditRole).toUInt())

<< item(row, PostOffice)->text()

<< item(row, County)->text() << item(row, State)->text();

}

}

Saving the data is quite straightforward. We begin by opening the file using
the filename that was used last time or the new filename if a new one is given;
the filename parameter defaults to an empty string. If there is no filename or
if we fail to open the file we throw an exception. If an exception is thrown the
MainWindow::save()method,which calls this method, catches the exception and
pops up a message box showing the error message.

Once the file is open we write our magic number and our file format number.
We use a (hopefully) unique magic number to identify our zipcodes file format,
and we use the file format number to identify the version of the file format we
are using. (Magic numbers are briefly described in the “MIMETypes, File Suf-
fixes, and Magic Numbers” sidebar; 72 ➤.) Having a file format number makes
it much easier to change the format later on since we can check the format
version when we load and adapt accordingly. After writing these numbers we
set the QDataStream version to Qt_4_5 (which is readable by Qt 4.5 or any later
Qt version), and then we write the data. Since our data is composed of just
numbers and stringswe could just as easily have used an older Qt version (say,
Qt_4_0). The only advantage of using the most up-to-date data stream version
is that newer versions might support more Qt types than older ones or might
be faster to load or save or might store the data more compactly. Our policy is
to use the data stream version that matches the oldest version of Qt we want
our application to be buildable with.

Fundamental datatypes like integers always have the same format no matter
what version of QDataStream we use, so it is always safe to write such types be-
fore setting the version. However, Qt’s own types and floating-point typesmay
differ in format between QDataStream versions, so we must always ensure that
for Qt and floating-point types we write and read using the same QDataStream

version.★ Note also that for floating-point numbers we should never write or
read qreals since their size varies depending on the platform—wemust always
explicitly use float or double.

For string data we can use each QStandardItem’s text, but for non-string data
(such as a zipcode), we must use the data for the role it is stored under, usually
Qt::EditRole, as it is in this case. And when writing integers it is essential that

★Qt’s representation of floats changed between Qt 4.5 and Qt 4.6. Providing we use QDataStream::

setVersion(), changes like this are no problem and will have no impact on our code or data.

ptg

UsingQStandardItemModels for Tables 105

we use exactly the right type—Qt provides them all, from qint8 and quint8

through to qint64 and quint64.

Another way that we can save and load QStandardItems is to stream them since
they support Qt’s global operator<<() and operator>>() functions that take a
QDataStream as first argument. And we can achieve finer control over what is
written and read by creating a QStandardItem subclass and reimplementing the
QStandardItem::read() and QStandardItem::write() methods that the stream-
ing operators call. However, in this case we chose to use QStandardItems out
of the box and to handle their reading and writing in our QStandardItemModel

subclass.

The Error class that we use for throwing exceptions is from the aqp.{hpp,cpp}

module; we will show it just for completeness.

class Error : public std::exception

{

public:

explicit Error(const QString &message) throw()

: message(message.toUtf8()) {}

~Error() throw() {}

const char *what() const throw() { return message; }

private:

const char *message;

};

There is nothing special about this class, but we prefer the convenience of
passing a QString rather than a char* for the errormessage. To access the error
message we must use QString::fromUtf8(error.what()).

The load()method is a bit longer than that needed for saving, so wewill review
it in four (short) parts.

void StandardTableModel::load(const QString &filename)

{
···
QDataStream in(&file);

qint32 magicNumber;

in >> magicNumber;

if (magicNumber != MagicNumber)

throw AQP::Error(tr("unrecognized file type"));

qint16 formatVersionNumber;

in >> formatVersionNumber;

if (formatVersionNumber > FormatNumber)

throw AQP::Error(tr("file format version is too new"));

in.setVersion(QDataStream::Qt_4_5);

clear();

ptg

106 Chapter 3. Model/View Table Models

The method starts with almost the same code as the save() method for using
the existing filename or a new filename, so we have omitted those lines. Once
we have a filename and have opened the file—this time using a mode of
QIODevice::ReadOnly—we read in the magic number to check that we really
have got a zipcodes file, and then the file format version number. In this case
we only check the format version, but this is where we would handle different
formats appropriately if we needed to. Then we set the correct data stream
version and clear the model so that all its data is deleted.

quint16 zipcode;

QString postOffice;

QString county;

QString state;

QMap<quint16, QList<QStandardItem*> > itemsForZipcode;

Normally we would populate the model with each record as we read them
in. But we want to enforce an initial ordering on the data, so we have used a
local QMap ordered by zipcode to hold each record (as a QList of QStandardItem

pointers), and then at the end we will put the items into the model.

while (!in.atEnd()) {

in >> zipcode >> postOffice >> county >> state;

QList<QStandardItem*> items;

QStandardItem *item = new QStandardItem;

item->setData(zipcode, Qt::EditRole);

items << item;

foreach (const QString &text, QStringList() << postOffice

<< county << state)

items << new QStandardItem(text);

itemsForZipcode[zipcode] = items;

}

For each record we read in we create a corresponding QList<QStandardItem*>.
String data can simply be given to the QStandardItem constructor,but it is essen-
tial to set non-string data under a specific role, normally Qt::EditRole, and this
is what we do for the zipcodes. Once we have a list of items representing one
row of data we insert it into the QMap, using the zipcode as its key, so that we get
zipcode (smallest to largest) ordering.

QMapIterator<quint16, QList<QStandardItem*> > i(itemsForZipcode);

while (i.hasNext())

appendRow(i.next().value());
}

Once all the records have been read we iterate over the QMap and append each
list of QStandardItems as a new row. We don’t need to notify any associated

ptg

UsingQStandardItemModels for Tables 107

views that themodel’s data has changed, since the base class appendRow() takes
care of this for us.

We noted earlier that loading into a QStandardItemModel was always slower
than loading into a custom model on the machines we tested. This was also
true when we loaded in the data directly (i.e., without using a QMap to provide
ordering), so for our machines it appears that the time-consuming aspect of
loading is the creation of each individual QStandardItem.

We have now completed our review of the StandardTableModel subclass. Since
the only functionality it added to QStandardItemModel was loading, saving, and
clearing the data, and since responsibility for errors and for handling unsaved
changes was left to the class’s clients, it was quite straightforward to imple-
ment. In the next section we will create a QAbstractTableModel subclass as a
drop-in replacement so that we can compare the two approaches. But first we
will look at the QSortFilterProxyModel subclasses that are used by the applica-
tion’s QTableView and by its QComboBoxes.

A QSortFilterProxyModel to Filter Out Duplicate Rows |||

The Zipcodes applications use two comboboxes to display counties and states
that users can set to filter or select corresponding rows of data. Both these
comboboxes need to get their data from the underlying model that holds all of
the zipcodes data—butmany different zipcodesmay be in the same county and
state, and we don’t want any duplicates to appear in these comboboxes, so we
cannot set them to use the underlying model directly.

The solution we have used is to create a custom QSortFilterProxyModel subclass
that filters out all of a model’s rows that have duplicates in a specified column.
For filtering we must implement the protected filterAcceptsRow() method to
filter rows, or the filterAcceptsColumn() method to filter columns. (For sorting
we can implement the protected QSortFilterProxyModel::lessThan() method,
although simply using a QSortFilterProxyModel provides sorting—and is what
we rely on for the Zipcodes applications—as we will explain later.) In this
particular casewe also need to reimplement the setSourceModel()method aswe
will explain in a moment. But first let’s see the definition in the header file.

class UniqueProxyModel : public QSortFilterProxyModel

{

Q_OBJECT

public:

explicit UniqueProxyModel(int column, QObject *parent=0)

: QSortFilterProxyModel(parent), Column(column) {}

void setSourceModel(QAbstractItemModel *sourceModel);

protected:

ptg

108 Chapter 3. Model/View Table Models

bool filterAcceptsRow(int sourceRow,

const QModelIndex &sourceParent) const;

private slots:

void clearCache() { cache.clear(); }

private:

const int Column;

mutable QSet<QString> cache;

};

We keep a mutable cache holding all the unique strings that the UniqueProxy-

Model has seen in the specified column.

void UniqueProxyModel::setSourceModel(

QAbstractItemModel *sourceModel)

{

connect(sourceModel, SIGNAL(modelReset()),

this, SLOT(clearCache()));

QSortFilterProxyModel::setSourceModel(sourceModel);

}

If the source model resets we clear the cache since the data has radically
altered. Should we also have created connections to clear the cache if rows
are inserted or removed? For insertions, there is no need since new strings are
automatically handled correctly because of the way we have implemented the
filterAcceptsRow() method. For removed strings, whether we should delete
them from the cache depends on whether we want the user to be able to access
strings that might not be in the underlying data anymore, but in this case we
have chosen to allow it.

bool UniqueProxyModel::filterAcceptsRow(int sourceRow,

const QModelIndex &sourceParent) const

{

QModelIndex index = sourceModel()->index(sourceRow, Column,

sourceParent);

const QString &text = sourceModel()->data(index).toString();

if (cache.contains(text))

return false;

cache << text;

return true;

}

Each of the comboboxes has its model set to its own UniqueProxyModel instance,
with the column set to the relevant row (County or State); this was done in the
createComboBoxModel() method (93 ➤). Whenever the combobox needs to access

ptg

UsingQStandardItemModels for Tables 109

rows—for example, when the user drops down the combobox’s list view—this
method is used by the proxy model to filter out unwanted rows.

The algorithm is very simple: We get the underlying model’s model index for
the corresponding proxy row and retrieve the model’s text for the column that
was set when the proxy model was created. If the text is in the cache we have
seen it before so we return false, which means that the row is filtered out.
Otherwise we add the text to the cache (so any following rows that have the
same text in the chosen column will be filtered out), and return true to allow
the row to be used for the first and only time.

A QSortFilterProxyModel to Filter In Wanted Rows |||

The UniqueProxyModel shown in the preceding subsection is very useful, but spe-
cialized for one particular use case. For the Zipcodes applicationswe needed a
much more sophisticated proxy model that would allow the user to filter based
on a combination of criteria—a minimum and maximum zipcode, and option-
ally by county and state. The class we created to provide this functionality is
ProxyModel, and as in the UniqueProxyModel the filtering is implemented in the
filterAcceptsRow() method.

The ProxyModel subclass provides getters and setters for the filter criteria,
an implementation of the filterAcceptsRow() method, and a clearFilters()

method, in addition to the constructor. We will review all these except for the
getters and setters; we will only look at one of each of them, because they are
all structurally the same.

ProxyModel::ProxyModel(QObject *parent)

: QSortFilterProxyModel(parent)

{

m_minimumZipcode = m_maximumZipcode = InvalidZipcode;

}

We set the private minimum and maximum zipcode variables to an invalid
zipcode value. The invalid value is used in filterAcceptsRow() to detect if it can
skip comparing the zipcode.

QString state() const { return m_state; }

This getter is in the header file; there are similar methods for getting the
county and the minimum and maximum zipcodes.

void ProxyModel::setState(const QString &state)

{

if (m_state != state) {

m_state = state;

invalidateFilter();

ptg

110 Chapter 3. Model/View Table Models

}

}

All the setters follow the same pattern as this one: if the value has actually
changed, first we set the given value, then we call invalidateFilter() to make
the proxy model announce to any associated views that they need to refresh
their visible data.

If an empty string is passed the effect is to switch off filtering by state. And
the equivalent is true of the county setter.

void ProxyModel::clearFilters()

{

m_minimumZipcode = m_maximumZipcode = InvalidZipcode;

m_county.clear();

m_state.clear();

invalidateFilter();

}

No rows are filtered out if the minimum and maximum zipcodes are invalid
and if the county and state strings are empty, so calling thismethod effectively
switches off filtering.

bool ProxyModel::filterAcceptsRow(int sourceRow,

const QModelIndex &sourceParent) const

{

if (m_minimumZipcode != InvalidZipcode ||

m_maximumZipcode != InvalidZipcode) {

QModelIndex index = sourceModel()->index(sourceRow, Zipcode,

sourceParent);

if (m_minimumZipcode != InvalidZipcode &&

sourceModel()->data(index).toInt() < m_minimumZipcode)

return false;

if (m_maximumZipcode != InvalidZipcode &&

sourceModel()->data(index).toInt() > m_maximumZipcode)

return false;

}

if (!m_county.isEmpty()) {

QModelIndex index = sourceModel()->index(sourceRow, County,

sourceParent);

if (m_county != sourceModel()->data(index).toString())

return false;

}

if (!m_state.isEmpty()) {

QModelIndex index = sourceModel()->index(sourceRow, State,

sourceParent);

if (m_state != sourceModel()->data(index).toString())

ptg

UsingQStandardItemModels for Tables 111

return false;

}

return true;

}

The proxy filter returns true (keep the row) for every row when the minimum
and maximum zipcodes are invalid and where the county and state are empty.

A zipcode is valid if it is greater than or equal to MinZipcode. If the minimum
zipcode is valid and the row being considered has a smaller zipcode, we return
false to filter out this row. Similarly, if the maximum zipcode is valid, and
the row being considered has a zipcode that is greater than the maximum, we
return false to filter it out. If the county is nonempty, we filter out rows that
have a different county; and the same applies to states. And if control reaches
the end of the method we return true (keep the row).

As this proxy filter and the one from the preceding subsection show, creating
custom QSortFilterProxyModel subclasses to provide filtering is not difficult.
And of course it is possible to chain filters—at some cost in performance.

Subclassing is not the only way we can use QSortFilterProxyModels. We can
also instantiate them directly and use the setFilterKeyColumn() method to
choose a column to filter by and the setFilterRegExp() method to set a regular
expression such that those rowswhose specified column’s contents don’t match
the regular expression are filtered out. (We can also use fixed strings and
wildcard patterns.)

For sorting, there are various approaches that can be taken. When a view is
asked to sort it calls QAbstractItemModel::sort() behind the scenes, so one way
to provide sorting is to reimplement thismethod since the base class implemen-
tation does nothing. For the Zipcodes applications the view calls QSortFilter-
ProxyModel::sort()—since the view’s model is the proxy model—and this has
a default implementation that can sort integers and some basic Qt types such
as QString and QDateTime. This is why all we needed to do to provide sorting for
the Zipcodesmodel was to use a QSortFilterProxyModel and create a signal–slot
connection between the view’s horizontal header’s sectionClicked() signal and
the view’s sortByColumn() slot.

We can also exercise finer control over proxy model sorting by calling setSort-

CaseSensitivity() and setSortLocaleAware(); or we could subclass QSortFilter-
ProxyModel and reimplement the lessThan() method.

Another way to provide sorting—for QStandardItemModel subclasses—is to use
QStandardItemModel::setSortRole()—for example, to make the Qt::UserRole’s
data the data used for sorting. For this towork wemust tell the view to support
sorting by calling setSortingEnabled(true); and we must ensure that for every
item, in addition to its usual data for the display or edit role, it also has data
for the user role (or for whichever role we had set to be the sort role). Suppose,

ptg

112 Chapter 3. Model/View Table Models

QStandardItemModels vs. CustomModels

When we use a QStandardItemModel (or a QStandardItemModel subclass) to
represent our data—whether as a list, table, or tree—all of the data items
are held as QStandardItems (or as items of a custom QStandardItem subclass).

Conceptually, the QStandardItemModel stands in between the view widget
plus model approach and the convenience widget with built-in model ap-
proach. Using a QStandardItemModel is easier than creating a custom model
and more flexible than using a convenience widget since we can often use
the QStandardItemModel directly,and even if we need to subclass it,we typical-
ly only do so to add a few methods such as methods for loading and saving.
Another aspect of using a QStandardItemModel that some developers prefer
is that it uses a more familiar item-based API rather than the model index-
based API used by custommodels.

The QStandardItem class offers a rich API that makes QStandardItems very
easy and convenient to use out of the box. The most commonly used meth-
ods provide getters and setters for an item’s background color, checkability,
checked status, editability, font, foreground color, icon, status tip, text, text
alignment, and tooltip. Additional data can be stored using roles not used
by QStandardItem, for example, Qt::UserRole, Qt::UserRole + 1, and so on. And
we can stream items to and from QDataStreams.

The price to be paid for all the convenience and power that QStandardItems
offer—at least in theory—is memory, and perhaps speed of operation. A
custom model might not need to store individual items at all, or might only
need lightweight items such as strings or numbers.

In all cases it is usually easiest and quickest to use a QStandardItemModel

and QStandardItems (or subclasses of them), at least at first. Using these
classes allows us to quickly get a working prototype. If later on we find that
memory consumption or speed of operation is unsatisfactory, we can then
consider creating a custommodel as a drop-in replacement.

The situations most likely to benefit from a custom model are where the
items are flyweight, where we don’t need most of the features offered by
QStandardItems, and where the number of items is large (thousands or more).
Also, in the case of tree models, the QStandardItemModel API does not appear
to offer as much functionality as we can achieve using a custommodel.

Creating custom list and table models is straightforward, so they are poten-
tially an easy performance win where large datasets are involved. Custom
tree models require rather more work and can be quite tricky to get right,
but it may be necessary to create them simply to get the additional function-
ality they make possible—for example, the ability to move items (and their
children, recursively) arbitrarily in the tree—assuming of course that this
makes sense for the particular dataset we have created the model for.

ptg

UsingQStandardItemModels for Tables 113

for instance, that we had text items in English. We might store the actual
texts in the Qt::DisplayRole, but for the Qt::UserRole we might store the same
texts—but lowercased, and with any leading articles (“The”, “An”, and “A”)
removed, to provide a more natural ordering.

Creating Custom Table Models ||||

Using a QStandardItemModel is usually the easiest and most convenient way to
start outwhen it comes to representing our data inQt. However, the QStandard-
Items used by QStandardItemModel might be more heavyweight (e.g., consume
more memory) than is necessary for our particular data since they must cater
for the general case rather than for our specific case.

In this section we will replace the simple QStandardItemModel subclass used
by the zipcodes1 application with a custom model, and in the process create
the zipcodes2 application. Both applications have the same appearance and
behavior, although zipcodes2 has always been faster at loading data on the
machines we have used for testing.

The new application has just three new files: zipcodeitem.hpp, tablemodel.hpp,
and tablemodel.cpp. All the other files are the same as those used by zipcodes1

(except for the standardtablemodel.{hpp,cpp} files which aren’t needed of
course). The zipcodes2.pro file also includes the line DEFINES += CUSTOM_MODEL,
and the zipcodes1 files use #ifdefs where necessary to do things differently for
zipcodes2.

Since most of the main window’s methods are the same for both zipcodes1 and
for zipcodes2, we will only cover those methods that differ—the constructor,
createConnections(), and addZipcode(). We don’t show the #ifdefs; instead
we show the code as seen by the compiler for zipcodes2 when CUSTOM_MODEL is
defined. (And in the previous section we did the same thing, showing the code
as seen by the compiler when CUSTOM_MODEL was not defined.)

Changing a Table Model through the User Interface |||

The constructor is almost identical to the zipcodes1 constructor, but worth
looking at again because we show an aspect that we did not show before.

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), loading(false)

{

model = new TableModel(this);

#ifdef MODEL_TEST

(void) new ModelTest(model, this);

#endif

ptg

114 Chapter 3. Model/View Table Models

proxyModel = new ProxyModel(this);

proxyModel->setSourceModel(model);

createWidgets();

createComboBoxModels();

createLayout();

createConnections();

AQP::accelerateWidget(this);

setWindowTitle(tr("%1 (Custom Model)[*]")

.arg(QApplication::applicationName()));

statusBar()->showMessage(tr("Ready"), StatusTimeout);

}

The only differences from zipcodes1 are that we use a TableModel (a QAbstract-

TableModel subclass) rather than a QStandardItemModel subclass, and we set a
different initial window title.

For both applications we also create a ModelTest object (although we did not
show this before). This object is used to test models and is available from Qt
DevelopmentFrameworksat labs.qt.nokia.com/page/Projects/Itemview/Model-
test. It is very easy to use. Having downloaded it and, for example, put it in a
parallel directory,wemust add it to our project’s.pro file. Here are the relevant
lines from zipcodes2.pro (they are the same in zipcodes1.pro):

.pro
File

exists(../modeltest-0.2/modeltest.pri) {

DEFINES += MODEL_TEST

include(../modeltest-0.2/modeltest.pri)

}

We use qmake’s exists() function and only define MODEL_TEST and include the
.pri file if the file is actually available. Also in the .pro file we must add the
line CONFIG += debug, otherwise the Q_ASSERTs that the model test uses will be
removed by the C++ preprocessor.

We must also include the header file in the source file where we want to create
the ModelTest, in our case in mainwindow.cpp:

#ifdef MODEL_TEST

#include <modeltest.h>

#endif

We wrap all the model test-related lines in #ifdefs so that the application will
build even if the model test code isn’t present.

The last step is to create a ModelTest instance and give it the model to be
tested—we did this in themain window’s constructor. We don’t need to do any-
thing more, but if we use a custommodel and make a mistake—of a kind that
the ModelTest can recognize—the ModelTestwill assert to let us know that there

ptg

CreatingCustom Table Models 115

is a problem. For custom tablemodels like the onewewill create here, thework
is fairly straightforward so the ModelTest might not really be needed—but for
custom treemodels such as the onewewill create in the next chapter,using the
ModelTest is really worthwhile.

There is only one difference between createConnections() in the two Zipcodes
applications. Whereas in zipcodes1we connected from the QStandardItemModel’s
itemChanged() signal to setDirty(), in zipcodes2 we replace this with a connec-
tion from the custom TableModel’s dataChanged() signal to setDirty().

The only method that is significantly different between the two applications
is addZipcode() which is somewhat simpler in zipcodes2. (The implementation
used in zipcodes1 was shown earlier; 99 ➤.)

void MainWindow::addZipcode()

{

dontFilterOrSelectRadioButton->click();

if (!model->insertRow(model->rowCount()))

return;

tableView->scrollToBottom();

tableView->setFocus();

QModelIndex index = proxyModel->index(proxyModel->rowCount() - 1,

Zipcode);

tableView->setCurrentIndex(index);

tableView->edit(index);

}

Unlike in the zipcodes1 version we don’t have to create all the items in the new
rowhere. Insteadwe simply call the QAbstractTableModel::insertRow()method,
which in turn calls insertRows()with a count of 1.For custommodels that allow
insertions we must reimplement the insertRows() method anyway, so there is
no extra work involved.

All the other classes and methods common to both applications are exactly
the same, so there are no changes to the custom delegate or to the two custom
proxy models (UniqueProxyModel and ProxyModel), and all the applications’
behaviors are the same with no discernable difference between the use of the
QStandardItemModel subclass and the QAbstractTableModel subclass. Of course,
behind the sceneswemust do rathermorework to create a QAbstractTableModel

subclass (since QStandardItemModel provides so much functionality out of the
box), but we gain much finer control, and potentially more efficiency.

This ability to exchange one model for another—providing they handle the
same data—without requiring any changes to the views or delegates, really
highlights one of the key benefits of using Qt’s model/view architecture.

ptg

116 Chapter 3. Model/View Table Models

A CustomQAbstractTableModel Subclass for Tables |||

In this subsection we will show how to create a QAbstractTableModel subclass.
As for all QAbstractItemModel subclasses in Qt’s model/view architecture, we
must reimplement a particular set of functions so that our model subclass’s
API is compatible with the architecture and can be used in any context where
such a model is required.

Table 3.1 (➤ 118) lists themethods thatmust be reimplemented in variouscases.
For example, all modelsmust reimplement themethods that provide read-only
support (flags(), data(), etc.), and editable models must reimplement both the
read-only supporting methodsand the editable supporting methods, and so on.
(The methods that must be reimplemented to support drag and drop are not
listed here—we will cover this topic in the next chapter;➤ 159.)

For some resizablemodels it maymake sense for them to be resized only in cer-
tain ways. For example, a table model might allow the insertion and removal
of rows but not of columns. In such caseswemust implement the insertRows()
and removeRows()methods, but do not have to implement the insertColumns() or
removeColumns() methods.

The TableModel discussed in this subsection is a QAbstractTableModel subclass
that holds its data in a QList<ZipcodeItem>. We chose to use QList rather than
QVector because in the general case it providesbetter performance than QVector,
and this is particularly so for insertions and deletions in themiddle. (Note that
for really big lists, QLinkedList is a better choice if we need to do insertions and
deletions in the middle.)

Items stored in a QList must be of an assignable datatype, that is, a type that
provides a default constructor, a copy constructor, and an assignment operator.
In addition, to use certain methods, it may be necessary to provide additional
operators—for example, to use QList::contains(), QList::count() (for a speci-
fied value), QList::indexOf(), QList::lastIndexOf(), QList::removeAll(), QList::
removeOne(), or QList::operator!=(), the item class must provide operator==().
And to support sorting with the qSort() function the item class must provide
operator<(). Here is the ZipcodeItem class which is completely defined in its
header file:

struct ZipcodeItem

{

explicit ZipcodeItem(int zipcode_=InvalidZipcode,

const QString &postOffice_=QString(),

const QString &county_=QString(),

const QString &state_=QString())

: zipcode(zipcode_), postOffice(postOffice_), county(county_),

state(state_) {}

ptg

CreatingCustom Table Models 117

bool operator<(const ZipcodeItem &other) const

{ return zipcode != other.zipcode ? zipcode < other.zipcode

: postOffice < other.postOffice; }

int zipcode;

QString postOffice;

QString county;

QString state;

};

The class has a default constructor—all the arguments can be omitted because
defaults are provided for all of them. We have left C++ to supply the copy
constructor and the assignment operator since the data members are values
rather than pointers. There is no operator==() implementation so we cannot
search for ZipcodeItems in the QList or do any of the other operations that
depend on this operator. But operator<() is implemented—comparing zipcodes
and using the post office as a tie-breaker—since we want to be able to sort the
data by zipcode.

Amore elaborate classwould haveused gettersand settersandmight havepro-
vided an isValid() method and operator==(), but none of these are necessary
for the use made of the class by the TableModel so we haven’t done them.

The TableModel class implements all the methods for supporting read-only ac-
cess (flags(), data(), headerData(), rowCount(), columnCount()), both the methods
for supporting editable access (setData() and setHeaderData()), but only two of
the resizing methods (insertRows() and removeRows()); so the TableModel always
has a fixed number of columns. In addition, the class has load() and save()

methods and a filename() getter to provide support for loading and saving data
from and to a file.

The TableModel has just two items of private data: zipcodes of type QList<Zip-

codeItem>, and m_filename of type QString. The constructor simply calls the base
class QAbstractTableModel constructor with the parent argument; its body is
empty.

We will now review the TableModel’s methods. Although the data they access is
specific to theZipcodesapplications,the structureof their implementationscan
be generalized to any QAbstractTableModel or QAbstractItemModel, so although
the code couldn’t be cut and pasted as it is, it can serve as a general template
for the implementation of these model/view methods for custom table models.

The QAbstractItemModel API Methods for Tables ||

We will begin by looking at the QAbstractItemModel methods that must be
reimplemented to provide a custom table model whose items can be edited and
that is resizable (in terms of rows, but not of columns).

ptg

118 Chapter 3. Model/View Table Models

Table 3.1 The QAbstractItemModel API

Method Description

All Models

data(index, role) Returns the QVariant value for the given model index
and role (of type Qt::ItemDataRole; ➤ 119)

flags(index) Returns the bitwise OR of one or more Qt::ItemFlag

values (➤ 119) to indicate if the itemat the given index is
enabled and if it can be checked, edited, selected, etc.

headerData(sect,

orient, role)

Returns the QVariant header value for the section sect,
orientation orient, and role

rowCount(index) Returns the number of rows under the given parent
index, i.e., the parent index’s child count

Table and Tree Models

columnCount(

index)

Returns the number of columns under the given parent
index—often a constant for the whole model

All Editable Models

setData(index,

value, role)

Sets the role’s value for the given index to value, and if
successful returns true and emits dataChanged()

setHeaderData(

sect, orient,

value, role)

Sets the header role’s value for the section sect and
orientation orient to value, and if successful returns
true and emits headerDataChanged()

All ResizableModels

insertRows(row,

count, index)

Inserts count rows at row under the parent index and
returns true on success; reimplementationsmust call
beginInsertRows() and endInsertRows()

removeRows(row,

count, index)

Removes count rows from row under the parent index
and returns true on success; reimplementationsmust
call beginRemoveRows() and endRemoveRows()

Resizable Table and Tree Models

insertColumns(

column, count,

index)

Inserts count columns at column under the parent index
and returns true on success; reimplementationsmust
call beginInsertColumns() and endInsertColumns()

removeColumns(

column, count,

index)

Removes count columns from column under the parent
index and returns true on success; reimplementations
must call beginRemoveColumns() and endRemoveColumns()

Tree Models

index(row,

column, index)

Returns the QModelIndex for the item with the given row,
column, and parent index

parent(index) Returns the QModelIndex of the given index’s parent

ptg

CreatingCustom Table Models 119

Table 3.2 The Qt::ItemDataRole enum

Flag Description

Qt::Accessible-

DescriptionRole

A description of the item to support accessibility

Qt::Accessible-

TextRole

The text to be used by accessibility tools such as a
screen reader

Qt::BackgroundRole The background brush to use when rendering the data

Qt::CheckStateRole The data item’s checked state

Qt::DecorationRole An icon for the data

Qt::DisplayRole The text to display to represent the data

Qt::EditRole The data in a form suitable for editing

Qt::FontRole The font for rendering the data as text

Qt::ForegroundRole The foreground brush to use when rendering the data

Qt::SizeHintRole A size hint for the data

Qt::StatusTipRole A status tip text for the data

Qt::TextAlignment-

Role

The text alignment to use when rendering the data
as text

Qt::ToolTipRole A tooltip text for the data

Qt::UserRole A role that can be used to hold custom data; additional
data can be stored in Qt::UserRole + 1, etc.

Qt::WhatsThisRole A What’s This? text for the data

Table 3.3 The Qt::ItemFlag enum

Flag Description

Qt::ItemIsDragEnabled The item can be dragged

Qt::ItemIsDropEnabled The item can be dropped onto

Qt::ItemIsEditable The item can be edited

Qt::ItemIsEnabled The user can interact with the item

Qt::ItemIsSelectable The item can be selected

Qt::ItemIsTristate The item has three check states (checked,
unchecked, unchanged) rather than two

Qt::ItemIsUserCheckable The item has a user-manipulatable checkbox

Qt::NoItemFlags If this is the only flag, the item cannot be checked,
selected, edited, etc.

ptg

120 Chapter 3. Model/View Table Models

Qt::ItemFlags TableModel::flags(const QModelIndex &index) const

{

Qt::ItemFlags theFlags = QAbstractTableModel::flags(index);

if (index.isValid())

theFlags |= Qt::ItemIsSelectable|Qt::ItemIsEditable|

Qt::ItemIsEnabled;

return theFlags;

}

If the model index we’re given is valid we set the corresponding item’s flags
to allow it to be selected and edited—and to enable it of course. In fact, the
base class implementation gives us Qt::ItemIsSelectable|Qt::ItemIsEnabled, so
we only need to add Qt::ItemIsEditable; but we prefer to be explicit about our
intentions. (The flags are listed in Table 3.3; 119 ➤.)

The data() method is the means by which all the data and meta-data concern-
ing an item are accessed. Although the method isn’t long we will look at it in
four short parts for ease of explanation.

const int MaxColumns = 4;

QVariant TableModel::data(const QModelIndex &index, int role) const

{

if (!index.isValid() ||

index.row() < 0 || index.row() >= zipcodes.count() ||

index.column() < 0 || index.column() >= MaxColumns)

return QVariant();

const ZipcodeItem &item = zipcodes.at(index.row());

The most unusual aspect of this method (and of the headerData() method) is
that we do not call the base class method to handle our unhandled cases—
instead we must return an invalid QVariant for those cases we don’t handle
ourselves. Returning anything other than an invalid QVariant for unhandled
cases will not work!

Qt’s model/view architecture expects the QAbstractItemModel::data() and QAb-

stractItemModel::headerData()methods to either return a valid QVariant which
it then uses, or an invalid QVariant in which case Qt computes the value it
needs as best it can. If we return a valid QVariant that isn’t really the value we
want—for example, if we return an empty string or 0 for an unhandled case in-
stead of an invalid QVariant—Qt will use the value returned (since it is a valid
QVariant) and confusion will reign.

We start by checking that themodel index is valid and that its row and column
are in range. If the checks pass we get a read-only reference to the relevant
item in the zipcodes list ready for use further on.

ptg

CreatingCustom Table Models 121

We have chosen to handle two cases, requests for size hints (indicated by a role
of Qt::SizeHintRole), and requests for item data (indicated by a role of Qt::Dis-
playRole or of Qt::EditRole—which in this example we treat as synonymous).

if (role == Qt::SizeHintRole) {

QStyleOptionComboBox option;

switch (index.column()) {

case Zipcode: {

option.currentText = QString::number(MaxZipcode);

const QString header = headerData(Zipcode,

Qt::Horizontal, Qt::DisplayRole).toString();

if (header.length() > option.currentText.length())

option.currentText = header;

break;

}

case PostOffice: option.currentText = item.postOffice;

break;

case County: option.currentText = item.county; break;

case State: option.currentText = item.state; break;

default: Q_ASSERT(false);

}

QFontMetrics fontMetrics(data(index, Qt::FontRole)

.value<QFont>());

option.fontMetrics = fontMetrics;

QSize size(fontMetrics.width(option.currentText),

fontMetrics.height());

return qApp->style()->sizeFromContents(QStyle::CT_ComboBox,

&option, size);

}

For each column we get the relevant text—except for the zipcode where we
always use the largest allowed or the column’sheader text,whichever is longer.
We then create a font metrics object and use it to calculate the size needed
for the text. Notice that we use a recursive call to the data() method to obtain
the font. We don’t handle the Qt::FontRole ourselves so Qt will handle it for us
because we return an invalid QVariant for our unhandled cases.

We need to allow extra room to account for the fact that when the user in-place
edits a zipcode they will get a spinbox—which needs extra space for its spin
buttons. Similarly, when the user changes the state they will get an in-place
combobox which will need extra space for its drop down button. If we didn’t
provide the extra space,when the user started editing an item that had a spin-
box or combobox editor,someof the item’s textwould probably be obscured. For
the post office and county almost no extra space is needed since they are edited
using a QLineEditwhich just takes up a tiny bit of extra space for its frame, but

ptg

122 Chapter 3. Model/View Table Models

giving them the extra space is harmless andmakes our code a bit shorter since
we can do the same computation for all the columns.

To obtain the actual size we need we use a QStyleOptionComboBox object, with
its fontMetrics member set to the item’s font’s font metrics and its current-

Text member set to the item’s text. Then we pass this object, along with the
size needed by the text (the contents size), to the QStyle::sizeFromContents()

method (having obtained a pointer to the application’s QStyle from the global
QApplication object, qApp). We tell the method we want it to calculate the size
needed to show the contents in a combobox (indicated by the CT_ComboBox first
argument), and return the size it gives us. (There is no equivalent style that
can be passed for a spinbox, and in any case a combobox needsmore room than
a spinbox and so can serve for both.)

if (role == Qt::DisplayRole || role == Qt::EditRole) {

switch (index.column()) {

case Zipcode: return item.zipcode;

case PostOffice: return item.postOffice;

case County: return item.county;

case State: return item.state;

default: Q_ASSERT(false);

}

}

We treat display and edit data as the same (a fairly common but by no means
mandatory practice). Although the ZipcodeItem member’s datatypes vary (e.g.,
int and QString), a QVariant is always returned.

return QVariant();
}

For all the unhandled cases (in this case, all the roles we chose not to handle),
we return an invalid QVariant and leave Qt to handle those cases for us.

QVariant TableModel::headerData(int section,

Qt::Orientation orientation, int role) const

{

if (role != Qt::DisplayRole)

return QVariant();

if (orientation == Qt::Horizontal) {

switch (section) {

case Zipcode: return tr("Zipcode");

case PostOffice: return tr("Post Office");

case County: return tr("County");

case State: return tr("State");

default: Q_ASSERT(false);

}

ptg

CreatingCustom Table Models 123

}

return section + 1;

}

Table views normally have both horizontal and vertical headers so tabular
models should provide header texts for both. We only handle the display role—
we leave all requests for data for other roles to Qt by returning an invalid
QVariant.

The section is the row if orientation is Qt::Vertical, or the column if orien-

tation is Qt::Horizontal. For column headers we return suitable texts and for
rows we return section + 1 to give the user 1-based row numbers.

int TableModel::rowCount(const QModelIndex &index) const

{

return index.isValid() ? 0 : zipcodes.count();

}

Thismethod returns the number of rows (actually the child count) for the given
model index. Table (and list) model items have an invalid model index as their
parent, so if the index is invalid we return the total number of rows in the
table (or list). If the number of rows was fixed (because we didn’t implement
insertRows() and removeRows()), we would be able to use a constant for the
row count.

If the index is valid then we are being asked the row count (i.e., the child
count) for an item—something that only makes sense for treemodels—sowhen
asked, for list and table models we must return 0.

int TableModel::columnCount(const QModelIndex &index) const

{

return index.isValid() ? 0 : MaxColumns;

}

This method returns the number of columns for the given model index. If the
index is invalid we return the total number of columns in the table. (For list
models we would inherit QAbstractListModel and not implement this method
since the base class implementation is sufficient.) In this example, the number
of columns is fixed (because we have not implemented insertColumns() and
removeColumns()); but if we had implemented the appropriate resizing methods
the number could vary.

If the index is valid then we are being asked the column count for an item
(something that rarely makes sense), so in such cases we must return 0.

bool TableModel::setData(const QModelIndex &index,

const QVariant &value, int role)

{

ptg

124 Chapter 3. Model/View Table Models

if (!index.isValid() || role != Qt::EditRole ||

index.row() < 0 || index.row() >= zipcodes.count() ||

index.column() < 0 || index.column() >= MaxColumns)

return false;

ZipcodeItem &item = zipcodes[index.row()];

switch (index.column()) {

case Zipcode: {

bool ok;

int zipcode = value.toInt(&ok);

if (!ok || zipcode < MinZipcode || zipcode > MaxZipcode)

return false;

item.zipcode = zipcode;

break;

}

case PostOffice: item.postOffice = value.toString(); break;

case County: item.county = value.toString(); break;

case State: item.state = value.toString(); break;

default: Q_ASSERT(false);

}

emit dataChanged(index, index);

return true;

}

This method starts with similar code to data() except that it returns a bool

indicating whether the edit was successful or not. If the model index passes
the tests we take a non-const (i.e., editable) reference to the corresponding
ZipcodeItem, and set the relevant column’s data to the data passed in.

We haven’t implemented any validation for the string columns, although
it would be easy to reject empty strings by adding an extra disjunct to
the initial if statement—for example, || (index.column() != Zipcode &&

value.toString.isEmpty()). For the zipcode we only allow valid values.

If no change is made we must return false. Correspondingly, if the edit was
successfully applied we must emit dataChanged() for the model indexes that
were changed and return true.

It is possible that we might want one edit to have a cascading effect, and the
model/view architecture supports this to some extent by allowing us to emit
dataChanged() with a top-left and bottom-right model index to indicate a rect-
angular block of affected indexes. In the common case of only one index being
affected we pass that same index for both arguments as we have done here.

bool setHeaderData(int, Qt::Orientation, const QVariant&,

int=Qt::EditRole) { return false; }

ptg

CreatingCustom Table Models 125

We have implemented this method in the header file. We have chosen to
prevent the user from being able to edit the row and column headers. This is
achieved by returning false regardless of the arguments.

If we allow header editing wemust emit headerDataChanged() with the orienta-
tion and the first and last affected sections (rows or columns) and return true.

bool TableModel::insertRows(int row, int count, const QModelIndex&)

{

beginInsertRows(QModelIndex(), row, row + count - 1);

for (int i = 0; i < count; ++i)

zipcodes.insert(row, ZipcodeItem());

endInsertRows();

return true;

}

For a model to be resizable it must implement insertRows() and removeRows()

(or insertColumns() and removeColumns()—or all four methods). If the row is 0,
the new rows will be inserted before any existing rows and if row == rowCount()

the new rows will be appended.

Structurally, all reimplementations of insertRows() follow the same pattern: a
call to beginInsertRows() before any changes are made to the model, then the
code to perform the insertion, and finally a call to endInsertRows() after any
changes have been applied to the model. The method must return true if any
changes were made.

The calls to beginInsertRows() and endInsertRows() shown here can be used as is
for any list or tablemodel subclass. Treemodels are slightly more complicated
but we will see how to handle them in the next chapter.

In the Zipcodes case we insert one empty ZipcodeItem for each row that is to be
inserted. In fact the zipcodes2 application never calls thismethod directly; but
it does call insertRow() in addZipcode(), and that method (implemented in the
base class) polymorphically calls insertRows() with the row and a count of 1.

bool TableModel::removeRows(int row, int count, const QModelIndex&)

{

beginRemoveRows(QModelIndex(), row, row + count - 1);

for (int i = 0; i < count; ++i)

zipcodes.removeAt(row);

endRemoveRows();

return true;

}

This method is the analog of insertRows(), and has the same structure, only it
calls beginRemoveRows() and endRemoveRows(). These calls, as shown here, can be
used as is for any list or table model.

ptg

126 Chapter 3. Model/View Table Models

In this case we have used QList::removeAt() which removes and discards the
value at the given row—this method requires that the row be in range. One
subtle point to notice is that we always remove the “same” row—after deleting
a row all the following rows are moved down one position so each subsequent
removeAt() call removes what was the next row.

In a similar way to insertRows(), removeRows() is not directly called by the
zipcodes2 application; instead the deleteZipcode() method calls removeRow() for
which the base class implementation calls removeRows()with the given row and
a count of 1.

We have now finished reviewing the reimplementations of all the methods
necessary to provide an editable table (or list) model that can also be resized
(in terms of adding or removing rows).

Methods to Support Saving and Loading Table Items ||

In this subsubsection we will look at the save() and load() methods that pro-
vide the functionality for saving and loading table items to and fromfiles. Both
use exactly the same zipcodes file format that we discussed in the previous
subsection,with the samemagic number and file format version, and using the
same QDataStream version (103 ➤).

void TableModel::save(const QString &filename)

{

if (!filename.isEmpty())

m_filename = filename;

if (m_filename.isEmpty())

throw AQP::Error(tr("no filename specified"));

QFile file(m_filename);

if (!file.open(QIODevice::WriteOnly))

throw AQP::Error(file.errorString());

QDataStream out(&file);

out << MagicNumber << FormatNumber;

out.setVersion(QDataStream::Qt_4_5);

QListIterator<ZipcodeItem> i(zipcodes);

while (i.hasNext())

out << i.next();

}

This method starts out in a very similar way to the StandardTableModel::save()

method we reviewed earlier, using the specified filename or falling back to the
private m_filename if no new filename is specified. Just as before, the magic
number and file format version arewritten out, then the data streamversion is
set. We then write all the items using a QDataStream::operator<<() overload.

ptg

CreatingCustom Table Models 127

QDataStream &operator<<(QDataStream &out, const ZipcodeItem &item)

{

out << static_cast<quint16>(item.zipcode) << item.postOffice

<< item.county << item.state;

return out;

}

As alwayswhen writing an integer to a QDataStream it is essential to specify the
signedness and number of bits we want to write.

void TableModel::load(const QString &filename)

{
···
QDataStream in(&file);

qint32 magicNumber;

in >> magicNumber;

if (magicNumber != MagicNumber)

throw AQP::Error(tr("unrecognized file type"));

qint16 formatVersionNumber;

in >> formatVersionNumber;

if (formatVersionNumber > FormatNumber)

throw AQP::Error(tr("file format version is too new"));

in.setVersion(QDataStream::Qt_4_5);

zipcodes.clear();

ZipcodeItem item;

while (!in.atEnd()) {

in >> item;

zipcodes << item;

}

qSort(zipcodes);

reset();
}

This method is similar to the corresponding StandardTableModel::load()

method. We have omitted the filename handling since it is similar to that used
in the save() method. The code used to read and check the magic number and
file format version, and to set the data stream version, is the same as that used
in StandardTableModel::load().

Once the data stream is set up ready to read, we clear the old data and stream
in every ZipcodeItem that is available—using a QDataStream::operator>>()

overload—adding each one to the zipcodes list. At the end we sort the list by
zipcode, and then call reset() to notify any associated views that the model’s
data has radically changed.

QDataStream &operator>>(QDataStream &in, ZipcodeItem &item)

{

ptg

128 Chapter 3. Model/View Table Models

quint16 zipcode;

in >> zipcode >> item.postOffice >> item.county >> item.state;

item.zipcode = static_cast<int>(zipcode);

return in;

}

Streaming in the ZipcodeItems using this operator, rather than reading the
individual values and passing them to a ZipcodeItem constructor,createsa clear
separation of responsibilities. We are able to streammost of the data directly
into the ZipcodeItem&, but for the integer wemust first read it into a variable of
the correct signedness and size.

We have now completed our review of table models and seen how to create a
custom QStandardItemModel to hold tabular data and how to create a custom
QAbstractTableModel that provides the same QAbstractItemModel API as any
other model. In the next chapter we will turn our attention to treemodels, and
in the two chapters after that we will look at delegates and views.

ptg

Model/View Tree Models |||||

4
● UsingQStandardItemModels for Trees

● CreatingCustom Tree Models

This chapter covers model/view tree models, and assumes a basic familiarity
with Qt’s model/view architecture, as described at the beginning of the
previous chapter (88 ➤).

In this chapter we will look at tree models. In the first section we will cover
using a QStandardItemModel subclass with its items held in a QStandardItem sub-
class. (In the previous chapter we used QStandardItems as is.) And in the sec-
ond section we will replace the QStandardItemModel with a custom model. Just
as with the table model examples in the previous chapter, we will see how to
add and edit items in place, as well as how to delete items. And for the custom
tree model we will implement drag and drop, cutting and pasting of items,
moving items up and down among their siblings, and promoting and demoting
items—in all cases with the moved items taking their child items along with
them, recursively.

Tree models work in terms of parents and children, where an item’s row is
its position in its parent’s list of children. (In theory, a tree model can be a
recursive tree of tables, but none of Qt’s views supports this.)

Many trees have a fixed structure or have items of different kinds—in such
cases, moving items within the tree rarely makes sense. But for trees whose
items (and child items) are all of the same kind, and where it makes sense for
any item (and its children) in any position in the tree to be able to be moved
anywhere else in the tree, we would want our users to be able to move their
items freely. This can be done without too much difficulty using a custom QAb-

stractItemModel, as we will see. But we have not implemented moving items
using a QStandardItemModel because, even though it is possible to insert rows
anywhere in a tree’s hierarchy using QStandardItemModel::insertRow(), the
QStandardItemModel::takeRow() method only works with top-level rows since it
does not accept a QModelIndex parent parameter. Thismeans that if we wanted
to move rows in a tree represented by a QStandardItemModel, we would end up
having to do a lot of tedious copying.

129

ptg

130 Chapter 4. Model/View Tree Models

In this chapter’s first section we will see how to create a custom QStandard-

ItemModel subclass that can load and save our custom data. Each item is held
in a custom QStandardItem subclass. In the second section we will replace the
QStandardItemModel with a custom QAbstractItemModel subclass, and hold the
items in our own item class. The example in the second section also provides
significant additional functionality:theability tomove itemsand their children
to different positions within the tree, including support for drag and drop.

The Timelog applications—timelog1 and timelog2—load and save XML files
that hold “task” data. Each task has a name, a “done” state, and one or more
pairs of start–end date/times. Task names can have simple font style at-
tributes applied to any of their characters—such as bold, italic, and coloring.
Tasks can be arbitrarily nested and the total time for a given task is the sum
of its own times and that of its children and their children and so on. Only one
task can be active (i.e., timed) at a time.

One important point to note about the Timelog applications’ data is that the
individual start–end date/time pairs are not individually represented in the
user interface. Instead, each task is represented by its name, its done state,
and by two aggregates of the date/times—one of the task’s total time for today,
and the other for the task’s total time altogether. Thismeans that each task is
represented by a single row in the tree.

In an analogous way to our earlier coverage of table models, we will show
similar things for trees:how to load and save all of a tree’s items,how to remove
items (and their children, recursively), and how to add and edit items in place.
In addition, for the timelog2 application which uses a custom model, we will
also learn how to move tasks (with their children), and provide the user with
the means of using this functionality via the keyboard, menu options, toolbar
buttons, and using drag and drop. In additionwewill see how to hide and show
tasks—for the Timelog examples this will be based on each item’s done state.
But we will try to avoid covering application functionality that is not model/
view related—in particular we won’t cover most of the code related to starting
and stopping timing and animating the timing icons.

Both examples use a custom “rich text” column delegate for rendering and
editing their task names. This is covered in Chapter 5 (➤ 193).

Using QStandardItemModels for Trees ||||

The timelog1 application uses a QStandardItemModel subclass to load, edit, and
save its data, and uses a QTreeView with a custom delegate to display and edit
the data. The user interface is very conventional with a menu bar,menus, and
toolbar. As usual, we will focus on themodel/view details, omitting most of the
widget creation and layouts, and many of the methods.

ptg

UsingQStandardItemModels for Trees 131

Figure 4.1 The timelog1application

The application is shown in Figure 4.1, and it should be possible to discern
from the screenshot that some task names use more than one font style and
more than one color. In timelog1 the position of a task in the tree is fixed when
it is added—in the next section’s timelog2 example we will see how to support
moving tasks to arbitrary positions (taking their child tasks with them).

The timelog1 application’s user interface supports the conventional document-
centric functionality—creating a new file, opening an existing file, and saving
a file (where in this case the file holds a tree of tasks in a custom XML format),
as well as adding new items and deleting existing items. In addition the user
can start or stop timing a task (with the newamount of time added to the task’s
list of start–end date/times), and to hide or show “done” (checked) tasks.

Changing a Tree Model through the User Interface |||

In this subsection we will cover the bare bones of the application and its user
interface so that we have enough context to understand the model-related
discussion and code snippets presented in subsequent subsections. We will
start by looking at an extract from themain window’s class definition and then
we will look at the main window’s constructor, including the code for creating
the treemodel and treewidget and themost important signal–slot connections.
The only other methodswe will look at are those for adding and deleting tasks
and for hiding (or showing) “done” (checked) tasks. (The methods used for
manipulating the tree’s structure, that is, for moving tasks, are only provided
by the custommodel version—these are covered in the next section.)

ptg

132 Chapter 4. Model/View Tree Models

class MainWindow : public QMainWindow

{

Q_OBJECT

public:

explicit MainWindow(QWidget *parent=0);

public slots:

void stopTiming();

protected:

void closeEvent(QCloseEvent*);

private slots:

void fileNew();

void fileOpen();

bool fileSave();

bool fileSaveAs();

void editAdd();

void editDelete();

void editHideOrShowDoneTasks(bool hide);

void setDirty(bool dirty=true) { setWindowModified(dirty); }

void load(const QString &filename,

const QStringList &taskPath=QStringList());

private:
···
QTreeView *treeView;

StandardTreeModel *model;
};

The main window class should hold no surprises. There are several private
methods and some private data that we have omitted, but that will be covered
wherenecessarywhen describing themethods thatwe do cover. Wewon’t show
the file handling methods—but we will discuss the load() method when we
discuss the following three extracts from the constructor.

const QString FilenameSetting("Filename");

const QString GeometrySetting("Geometry");

const QString CurrentTaskPathSetting("CurrentTaskPath");

const int FirstFrame = 0;

const int LastFrame = 4;

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent)

{

createModelAndView();

createActions();

createMenusAndToolBar();

createConnections();

ptg

UsingQStandardItemModels for Trees 133

AQP::accelerateMenu(menuBar());

setWindowTitle(tr("%1 (QStandardItemModel)[*]")

.arg(QApplication::applicationName()));

The constructor starts out quite conventionally, creating the model and
view, then creating the actions, menus, and toolbar, and then the signal–slot
connections. We will skip the creation of the actions, menu, and toolbar, since
it is all familiar and isn’t relevant to the model/view programming that is our
chief concern here.

timer.setInterval(333);

iconTimeLine.setDuration(5000);

iconTimeLine.setFrameRange(FirstFrame, LastFrame + 1);

iconTimeLine.setLoopCount(0);

iconTimeLine.setCurveShape(QTimeLine::LinearCurve);

This part of the constructor is shown for context. The application uses two
timers, timer of type QTimer that is used to keep the display of item times up to
date, and iconTimeLine of type QTimeLine that is used to produce an animated
icon for the task being timed. The timer does an update every one-third of a
second, and the iconTimeLine repeatedly loops (specified by a loop count of 0)
over five frames (0–4) every 5 seconds. The curve shape determines the inter-
val between frames: QTimeLine::LinearCurve ensures an equal gap. (Qt 4.6 has
introduced a new animation framework that is higher-level andmore sophisti-
cated than using timers or QTimeLine; we cover this in Chapter 13.)

QSettings settings;

restoreGeometry(settings.value(GeometrySetting).toByteArray());

QString filename = settings.value(FilenameSetting).toString();

if (filename.isEmpty())

QTimer::singleShot(0, this, SLOT(fileNew()));

else

QMetaObject::invokeMethod(this, "load", Qt::QueuedConnection,

Q_ARG(QString, filename),

Q_ARG(QStringList, settings.value(

CurrentTaskPathSetting).toStringList()));
}

At the end of the constructor we attempt to either load in the task file that was
loaded the last time the application was run, or we create a new task file ready
for the user to add tasks to. Our policy is to always do startup file loading after
the main window has been constructed so that the main window appears as
quickly as possible, even if the file or files being loaded are very large. (This
also has the side benefit that files are only loaded when the main window is
fully constructed.) We cannot use a single shot timer for loading because we
need to parameterize the slot invocation.

ptg

134 Chapter 4. Model/View Tree Models

The QMetaObject::invokeMethod()method is used when we want to invoke a slot
via the event queue, that is, add the call to the queue so that the invocation
takes place when the queue is empty, in this case, when the constructor has
completed. The first argument is the receiving object, the second argument is
the name of the slot to call, the third argument is the connection type to use,
and the remaining arguments are the parameters. (In fact this method can
be used to immediately invoke a slot by using a connection type of Qt::Direct-
Connection—something that might be useful for calls that were the result of
the user directly or indirectly selecting a method and its arguments via, say, a
dialog. We will see a Qt::DirectConnection example in Chapter 12; ➤ 423.)

The two arguments passed to the load() slot are the task filename and the
task path. The task path is a string list of task texts that identifies a particu-
lar task. For example, in Figure 4.1 (131 ➤), the task path of the highlighted
item is ["Contract Work", "<i>froglogic</i> GmbH", "Editing & Examples",

"<i>New</i> Qt Examples"]. The task texts use a
simple HTML subset for font effects, something we will cover when we review
the rich text delegate in Chapter 5 (➤ 193). Here’s an extract from the load()

method that shows the task path in use:

model->load(filename);

if (!taskPath.isEmpty()) {

if (QStandardItem *item = model->itemForPath(taskPath))

setCurrentIndex(item->index());

}

This block of code is inside a try … catch block in case the loading fails. The
load() method is used both by the constructor to restore the last used file, and
also by the fileOpen() method—in which case the task path is an empty string
list. The QStandardItem::index() method returns a standard item’s model
index. We will review the custom StandardTreeModel::itemForPath() method
(and the corresponding StandardTreeModel::pathForIndex() method) later on
(➤ 143).

void MainWindow::setCurrentIndex(const QModelIndex &index)

{

if (index.isValid()) {

treeView->scrollTo(index);

treeView->setCurrentIndex(index);

}

}

We created this tiny helper method as a convenience since its functionality is
needed inmore than one place. Itmakes sure that the itemwith the givenmod-
el index is visible in the view and selected, scrolling the view and expanding
items if necessary.

ptg

UsingQStandardItemModels for Trees 135

void MainWindow::createModelAndView()

{

model = new StandardTreeModel(this);

treeView->setAllColumnsShowFocus(true);

treeView->setItemDelegateForColumn(0, new RichTextDelegate);

treeView->setModel(model);

setCentralWidget(treeView);

}

Here we create an instance of the StandardTreeModel (a QStandardItemModel

subclass), and use a standard QTreeView to present the data.

The tree view shows three columns—task names, today’s time, and total time.
We leave the time columns to be displayed by the QTreeView’s built-in delegate,
but for the task column we must use a custom delegate so that the HTML is
rendered properly rather than being displayed as plain text. One great benefit
of using column delegates is that in most cases the same datatype is used for
all the items in a particular column, so we can create datatype-specific column
delegates which are much more likely to be reusable than model-specific
delegates. (Delegates are covered in the next chapter.)

Although not shown, in the source code we have used an #ifdef to create a
ModelTest object if the model test module is available, exactly the same as
we did for the Zipcodes examples shown earlier (113 ➤). Although the model
is a QStandardItemModel subclass that only adds functionality—loading and
saving—and doesn’t modify the behavior of the built-in functionality, it still
causes the model test (version 0.2) to assert. There are actually two problems
that the model test highlights. The first (line 106 of modeltest.cpp) looks like a
harmless error in QStandardItemModel (the flags for an invalid model index are
not 0).★ The second appears to be due to over-zealousness rather than a real
problem (and has a comment in the source above line 341 suggesting that the
failing assert can be safely commented out). In both cases we commented out
the problematic lines since both seemed to be false alarms.

void MainWindow::createConnections()

{

connect(treeView->selectionModel(),

SIGNAL(currentChanged(const QModelIndex&,

const QModelIndex&)),

this, SLOT(updateUi()));

connect(model, SIGNAL(itemChanged(QStandardItem*)),

this, SLOT(setDirty()));

connect(model, SIGNAL(rowsRemoved(const QModelIndex&,int,int)),

this, SLOT(setDirty()));

★The line numbers are correct at the time of this writing—for the subversion version which is
different from the packaged version—but may be different for the model test you download.

ptg

136 Chapter 4. Model/View Tree Models

connect(model, SIGNAL(modelReset()), this, SLOT(setDirty()));

We have shown only the first few connections. The updateUi() slot (not shown)
is used to keep the user interface up to date by enabling/disabling actions
depending on the application’s state. The connections from the model all
(indirectly) set the windowModified property so that the user is given the chance
to save unsaved changes.

Most of the other connections simply connect an action’s triggered signal to the
corresponding slot—for example, connecting the fileNewAction to the fileNew()
slot and the editAddAction() to the editAdd() slot. There are also a couple of
connections related to timers used for the timed item and to animate the timed
item’s icon.

void MainWindow::closeEvent(QCloseEvent *event)

{

stopTiming();

if (okToClearData()) {

QSettings settings;

settings.setValue(GeometrySetting, saveGeometry());

settings.setValue(FilenameSetting, model->filename());

settings.setValue(CurrentTaskPathSetting,

model->pathForIndex(treeView->currentIndex()));

event->accept();

}

else

event->ignore();

}

If the user quits the application this event handler is called. The stopTim-

ing() method (not shown) does what its name suggests. The setDirty() slot
is used to ensure that the window modified status reflects whether there are
unsaved changes, and this status is checked by the okToClearData() method.
If the okToClearData() method returns true, we save the user’s settings—the
main window’s geometry, the task file, the task path to the currently select-
ed task—and then we accept the close event to allow the application to ter-
minate. For completeness we will look at the okToClearData() method and the
AQP::okToClearData() function it relies on.

bool MainWindow::okToClearData()

{

if (isWindowModified())

return AQP::okToClearData(&MainWindow::fileSave, this,

tr("Unsaved changes"), tr("Save unsaved changes?"));

return true;

}

ptg

UsingQStandardItemModels for Trees 137

Since presenting the user with a “save unsaved changes” dialog is a common
requirement, we have created a convenience function, AQP::okToClearData(),
that provides the functionality we need. This function takes a pointer to the
method it should call to perform the save if the user requests a save, a pointer
to the window it should appear over (in this case the main window) and which
is the instance on which the save method is called, the title it should have, the
text it should display, and some optional extra text (which we don’t pass in this
case). The method pointer must be to a method of the window that is passed
as the second argument, and that returns a bool indicating success or failure.
The syntax for passing a method pointer is &ClassName::MethodName.

template<typename T>

bool okToClearData(bool (T::*saveData)(), T *parent,

const QString &title, const QString &text,

const QString &detailedText=QString())

{

QScopedPointer<QMessageBox> messageBox(new QMessageBox(parent));

messageBox->setWindowModality(Qt::WindowModal);

messageBox->setIcon(QMessageBox::Question);

messageBox->setWindowTitle(QString("%1 - %2")

.arg(QApplication::applicationName()).arg(title));

messageBox->setText(text);

if (!detailedText.isEmpty())

messageBox->setInformativeText(detailedText);

messageBox->addButton(QMessageBox::Save);

messageBox->addButton(QMessageBox::Discard);

messageBox->addButton(QMessageBox::Cancel);

messageBox->setDefaultButton(QMessageBox::Save);

messageBox->exec();

if (messageBox->clickedButton() ==

messageBox->button(QMessageBox::Cancel))

return false;

if (messageBox->clickedButton() ==

messageBox->button(QMessageBox::Save))

return (parent->*saveData)();

return true;

}

The syntax for specifying a member function parameter that takes no argu-
ments is returnType (Type::method)(), where returnType is the type the method
returns (which could be void), the Type is the class the method belongs to (for
example, MainWindow), and method is the name we give to the method inside the
function—this can be anything, and in particular it does not have to be the
real name of the method. (However, when calling okToClearData(), the specific
class and method must be passed—such as &MainWindow::fileSave, as we saw
earlier.)

ptg

138 Chapter 4. Model/View Tree Models

We have chosen to make okToClearData() a template function so that we don’t
have to hard-code the class name. This means that we can use any class that
has a method that returns a bool, such as MyWindow::save(). Inside the function
the method is called saveData(), no matter what its real name is.

We discussed the setting up of a QMessageBox and the use of Qt 4.6’s QScoped-

Pointer in the “Avoiding Qt’s Static Convenience QMessageBox Functions”
sidebar (61 ➤) and the “Qt’s Smart Pointers” sidebar (62 ➤).★

If the user chooses to save we return the result of calling the method that
was passed in. The syntax for calling a method passed as a pointer, and that
takes no arguments, is (object->*method)(). So in this example, what is actual-
ly called is MainWindow::fileSave(). If the file is unnamed and the user cancels
the save as dialog, the fileSaveAs()method (called from fileSave()) will return
falsewhich in turnwill be returned—inwhich case okToClearData()will return
false—so although no changes will have been saved, none will have been lost
either. The only way the user can avoid saving changes if they have an un-
named (i.e., new) file is if they explicitly choose to discard their changes.

For timelog1 the position of each task in the tree is fixed when the task is
created (a constraint that doesn’t apply in timelog2, as we will see in the next
section). So when adding a new task we must give the user the opportunity
to specify where in the tree the new task should go. This is handled by the
editAdd() method which we will review in three parts.

void MainWindow::editAdd()

{

QModelIndex index = treeView->currentIndex();

StandardTreeModel::Insert insert = StandardTreeModel::AtTopLevel;

We retrieve the index of the current item (which may be invalid if there is no
current item—for example, if the user has just done File→New). We also make
an initial assumption that the new item must be inserted as a top-level item
using an enum from the StandardTreeModel—which is the only choice if there are
no existing items.

if (index.isValid()) {

QStandardItem *item = model->itemFromIndex(index);

QScopedPointer<QMessageBox> messageBox(new QMessageBox(this));

messageBox->setWindowModality(Qt::WindowModal);

messageBox->setIcon(QMessageBox::Question);

messageBox->setWindowTitle(tr("%1 - Add Task")

.arg(QApplication::applicationName()));

messageBox->setText(tr("<p>Add at the top level or as a "

★ In the source code we have an #if QT_VERSION so that the code will compile with Qt 4.5 using
QSharedPointer.

ptg

UsingQStandardItemModels for Trees 139

"sibling or child of\n'%1'?").arg(item->text()));

messageBox->addButton(tr("&Top Level"),

QMessageBox::AcceptRole);

QAbstractButton *siblingButton = messageBox->addButton(

tr("&Sibling"), QMessageBox::AcceptRole);

QAbstractButton *childButton = messageBox->addButton(

tr("C&hild"), QMessageBox::AcceptRole);

messageBox->setDefaultButton(

qobject_cast<QPushButton*>(childButton));

messageBox->addButton(QMessageBox::Cancel);

messageBox->exec();

if (messageBox->clickedButton() ==

messageBox->button(QMessageBox::Cancel))

return;

if (messageBox->clickedButton() == childButton)

insert = StandardTreeModel::AsChild;

else if (messageBox->clickedButton() == siblingButton)

insert = StandardTreeModel::AsSibling;

}

If there is a current item the user is given the choice of adding the new item as
a top-level item, or as a sibling or child of the current item. If the user didn’t
cancel and didn’t choose top-level we change the insert variable appropriately.

Notice that we begin themessage box’smessage text with <p> (the HTML start
of the paragraph tag). This ensures that the message text will be interpreted
as HTML and displayed correctly. This matters because the message includes
the name of the current task and the name might contain HTML markup.

if (QStandardItem *item = model->insertNewTask(insert,

tr("New Task"), index)) {

QModelIndex index = item->index();

setCurrentIndex(index);

treeView->edit(index);

setDirty();

updateUi();

}
}

We ask the model to insert a new task at the specified insertion position, with
a default text, and with the given parent (which is ignored when inserting
a top-level item). If the insertion succeeds (as it should), we retrieve the new
item’s model index, make the index current, and initiate editing so that the
user can replace the default “New Task” name with the name of their choice.

void MainWindow::editDelete()

{

ptg

140 Chapter 4. Model/View Tree Models

QModelIndex index = treeView->currentIndex();

if (!index.isValid())

return;

QStandardItem *item = model->itemFromIndex(index);

if (item == timedItem)

stopTiming();

QString name = item->text();

int rows = item->rowCount();

QString message;

if (rows == 0)

message = tr("<p>Delete '%1'").arg(name);

else if (rows == 1)

message = tr("<p>Delete '%1' and its child (and "

"grandchildren etc.)").arg(name);

else if (rows > 1)

message = tr("<p>Delete '%1' and its %2 children (and "

"grandchildren etc.)").arg(name).arg(rows);

if (!AQP::okToDelete(this, tr("Delete"), message))

return;

model->removeRow(index.row(), index.parent());

setDirty();

updateUi();

}

If there is no selected item thismethod does nothing and returns.Otherwise it
asks the model for the item that corresponds to the selected model index and
retrieves its text and how many children it has. We use separate strings for
the three cases (no children, one child, many children), to make things easier
for translators.

The user is then asked to confirm the deletion, and if they click Delete, we
tell the model to perform the removal. (We reviewed the AQP::okToDelete()

function earlier; 101 ➤.) The removeRow() method in the ultimate base class,
QAbstractItemModel, does nothing and returns false, but the reimplementation
in our StandardTreeModel’s immediate base class, QStandardItemModel, correctly
removes the given row—and all its children recursively—and returns true.

void MainWindow::editHideOrShowDoneTasks(bool hide)

{

hideOrShowDoneTask(hide, model->invisibleRootItem());

}

void MainWindow::hideOrShowDoneTask(bool hide, QStandardItem *item)

{

QModelIndex index = item->parent() ? item->parent()->index()

: QModelIndex();

bool hideThisOne = hide && (item->checkState() == Qt::Checked);

ptg

UsingQStandardItemModels for Trees 141

treeView->setRowHidden(item->row(), index, hideThisOne);

if (!hideThisOne) {

for (int row = 0; row < item->rowCount(); ++row)

hideOrShowDoneTask(hide, item->child(row, 0));

}

}

The editHideOrShowDoneTasksAction is a toggle action connected to the editHide-
OrShowDoneTasks() slot. The slot is used to make the initial call to the recursive
hideOrShowDoneTask() method.

In hideOrShowDoneTask() we begin by determining if the current item should
be hidden, and then we call QTreeView::setRowHidden() to hide or show the
current item’s row accordingly. If the row is hidden we don’t have to worry
about any children since they are hidden automatically; but if the item’s row
is not hidden we must check each of the item’s children recursively, hiding (or
showing) them as appropriate.

We have now covered the essentials of the Timelog application’s user interface
as it relates to using the tree model. This should give us sufficient context to
understand the custom QStandardItem subclass covered in the next subsection,
and the QStandardItemModel subclass covered in the subsection after that.

A QStandardItem Subclass for Tree Items |||

For timelog1 we have chosen to use a custom QStandardItem subclass since we
want to add some custom data andmethods relating to a task’s start–end date/
times. Here is the entire class definition:

class StandardItem : public QStandardItem

{

public:

explicit StandardItem(const QString &text, bool done);

QStandardItem *todayItem() const { return m_today; }

QStandardItem *totalItem() const { return m_total; }

void addDateTime(const QDateTime &start, const QDateTime &end)

{ m_dateTimes << qMakePair(start, end); }

QList<QPair<QDateTime, QDateTime> > dateTimes() const

{ return m_dateTimes; }

void incrementLastEndTime(int msec);

QString todaysTime() const;

QString totalTime() const;

private:

int minutesForTask(bool onlyForToday) const;

ptg

142 Chapter 4. Model/View Tree Models

QStandardItem *m_today;

QStandardItem *m_total;

QList<QPair<QDateTime, QDateTime> > m_dateTimes;

};

One unusual aspect is that we keep pointers to the two QStandardItems that are
used to display the task’s today’s time and total time. This sacrifices a bit of
memory for the sake of convenience. The QList is used to hold all the start–end
date/times for the task, a list that is added to when the user starts timing
the task.

The only method we will cover is the constructor; the other non-inlinemethods
are used to increment the time if the task is being timed and to calculate the
times and return them in string or date/time form, so they are not relevant to
model/view programming—although they are in the book’s source code.

StandardItem::StandardItem(const QString &text, bool done)

: QStandardItem(text)

{

setCheckable(true);

setCheckState(done ? Qt::Checked : Qt::Unchecked);

setFlags(Qt::ItemIsSelectable|Qt::ItemIsEnabled|

Qt::ItemIsEditable|Qt::ItemIsUserCheckable);

m_today = new QStandardItem;

m_today->setFlags(Qt::ItemIsSelectable|Qt::ItemIsEnabled);

m_today->setTextAlignment(Qt::AlignVCenter|Qt::AlignRight);

m_total = new QStandardItem;

m_total->setFlags(Qt::ItemIsSelectable|Qt::ItemIsEnabled);

m_total->setTextAlignment(Qt::AlignVCenter|Qt::AlignRight);

}

We make the task item checkable (to reflect the “done” flag), and make it
enabled, selectable, editable,and user-checkable so that the user can check and
uncheck the task—typically by clicking it or by pressing the spacebarwhen the
task is selected.

In the StandardTreeModel subclass we only ever create StandardItems, one for
each task. Each of these in turn creates the QStandardItems used for the task’s
times. For the time items we only allow them to be selectable and enabled
since we don’t want the user to be able to edit them and we don’t want them to
have checkboxes.

Now that we knowwhat data a StandardItem holds and themethods it provides,
we are ready to look at the StandardTreeModel that holds all of the tasks.

ptg

UsingQStandardItemModels for Trees 143

A QStandardItemModel Subclass for Trees |||

The StandardTreeModel is a QStandardItemModel subclass used to represent a
tree of tasks. In addition to providing file handling—load() and save()—the
class provides the insertNewTask() method for adding a new task as we saw
in the MainWindow::editAdd() method (139 ➤). It also has the pathForIndex()

and itemForPath() methods for handling task paths that we discussed earlier
(134 ➤; 136 ➤), which we will cover in this subsection. The class’s only custom
private data is a filename of type QString.

The application’s data is held in an XML file format on disk. An extract from
such a file is shown in Figure 4.2.

<TASK NAME="Editing &amp; Examples" DONE="0">

 <WHEN START="2009-03-18T13:23:59" END="2009-03-18T13:25:15"/>

 <TASK NAME="Editing Squish Interviews" DONE="0">

 <WHEN START="2009-02-03T16:19:35" END="2009-02-03T16:34:02"/>

 </TASK>

 <TASK NAME="Editing Squish API docs" DONE="0">

 <WHEN START="2008-11-14T07:46:31" END="2008-11-14T08:25:55"/>

 <WHEN START="2008-11-14T09:55:26" END="2008-11-14T10:21:11"/>

 <WHEN START="2009-02-25T10:50:20" END="2009-02-25T10:51:29"/>

 <WHEN START="2009-02-25T10:52:02" END="2009-02-25T11:09:33"/>

 </TASK>

</TASK>

...

Figure 4.2 An extract from a Timelog data file

Each task’s name and done status is stored in a TASK tag’s attributes. Task
names can contain HTMLmarkup, and thismarkupmust be properly escaped
so that it doesn’t conflict with the XML markup used to store the data. The
done flag is stored using “0” for false and “1” for true. The start–end date/time
pairs are stored as ISO 8601 date/time strings in attributes of WHEN tags inside
the corresponding TASK tag. Hierarchies of tasks within tasks are achieved
quite naturally by nesting TASK tags within each other to any level of depth.

In this subsection we will review all the StandardTreeModel methods since they
are all relevant to model/view programming.

StandardTreeModel::StandardTreeModel(QObject *parent)

: QStandardItemModel(parent)

{

initialize();

}

ptg

144 Chapter 4. Model/View Tree Models

void StandardTreeModel::initialize()

{

setHorizontalHeaderLabels(QStringList() << tr("Task/Subtask/...")

<< tr("Time (Today)") << tr("Time (Total)"));

for (int column = 1; column < columnCount(); ++column)

horizontalHeaderItem(column)->setTextAlignment(

Qt::AlignVCenter|Qt::AlignRight);

}

We separated the initialization into its ownmethod sincewe need to call it from
two different places.

void StandardTreeModel::clear()

{

QStandardItemModel::clear();

initialize();

}

The base class clear()method not only gets rid of all themodel’s items,but also
its headers. So after clearing we recreate the headers by calling initialize().

void StandardTreeModel::save(const QString &filename)

{

if (!filename.isEmpty())

m_filename = filename;

if (m_filename.isEmpty())

throw AQP::Error(tr("no filename specified"));

QFile file(m_filename);

if (!file.open(QIODevice::WriteOnly|QIODevice::Text))

throw AQP::Error(file.errorString());

QXmlStreamWriter writer(&file);

writer.setAutoFormatting(true);

writer.writeStartDocument();

writer.writeStartElement("TIMELOG");

writer.writeAttribute("VERSION", "2.0");

writeTaskAndChildren(&writer, invisibleRootItem());

writer.writeEndElement(); // TIMELOG

writer.writeEndDocument();

}

The method starts with code like that used in the Zipcodes examples, using a
newfilename if given or the existing filename otherwise. The caller is expected
to catch and handle any exceptions. The AQP::Error class is the same one we
saw before (105 ➤).

ptg

UsingQStandardItemModels for Trees 145

The QXmlStreamWriter class is capable of writing what we need without being
subclassed. If the autoFormatting property is true, the XML is written out in a
human-friendly format with indentation and newlines; otherwise it is written
in as compact a format as possible without any unnecessary whitespace. The
writeStartDocument() call writes the line <?xml version="1.0" encoding="UTF-8"?>
at the beginning of the file—of course, the encoding attribute (and the encoding
used)—will be different if we call QXmlStreamWriter::setCodec() to impose our
own choice of encoding.

We have enclosed the hierarchy of TASK tags inside a TIMELOG tag (not shown)
and given this tag a VERSION attribute to make it easier to change the file for-
mat in the future. The QXmlStreamWriter::writeAttribute() method takes an
attribute name and a value—there is no need for us to do any XML escaping
since the QXmlStreamWriter handles that automatically. We then call the write-

TaskAndChildren() method to write all the tasks.

const QString TaskTag("TASK");

const QString NameAttribute("NAME");

const QString DoneAttribute("DONE");

const QString WhenTag("WHEN");

const QString StartAttribute("START");

const QString EndAttribute("END");

void StandardTreeModel::writeTaskAndChildren(QXmlStreamWriter *writer,

QStandardItem *root)

{

if (root != invisibleRootItem()) {

StandardItem *item = static_cast<StandardItem*>(root);

writer->writeStartElement(TaskTag);

writer->writeAttribute(NameAttribute, item->text());

writer->writeAttribute(DoneAttribute,

item->checkState() == Qt::Checked ? "1" : "0");

QListIterator<

QPair<QDateTime, QDateTime> > i(item->dateTimes());

while (i.hasNext()) {

const QPair<QDateTime, QDateTime> &dateTime = i.next();

writer->writeStartElement(WhenTag);

writer->writeAttribute(StartAttribute,

dateTime.first.toString(Qt::ISODate));

writer->writeAttribute(EndAttribute,

dateTime.second.toString(Qt::ISODate));

writer->writeEndElement(); // WHEN

}

}

for (int row = 0; row < root->rowCount(); ++row)

writeTaskAndChildren(writer, root->child(row, 0));

ptg

146 Chapter 4. Model/View Tree Models

if (root != invisibleRootItem())

writer->writeEndElement(); // TASK

}

Notice that we do not use tr() for the tag and attribute names since they are
part of the file format and not strictly speaking for human readers.

This method writes out a single task and all its child tasks recursively, but
skipping the invisible root item. It begins by writing a TASK tag with the name
and done attributes. It then iterates over all the task’s pairs of start–end date/
times, writing a WHEN tag for each pair. And then it writes all of the task’s child
tasks (which in turn write their child tasks, and so on). The recursive structure
is correctly preserved because each task’s closing TASK tag is only written after
its children (and their children, and so on) have been written.

Now thatwe have seen how the tasksare savedwe can look at how they’re load-
ed. We will review the load() method in two parts for ease of explanation.

void StandardTreeModel::load(const QString &filename)

{
···
clear();

QStack<QStandardItem*> stack;

stack.push(invisibleRootItem());

QXmlStreamReader reader(&file);

while (!reader.atEnd()) {

reader.readNext();

if (reader.isStartElement()) {

if (reader.name() == TaskTag) {

const QString name = reader.attributes()

.value(NameAttribute).toString();

bool done = reader.attributes().value(DoneAttribute)

== "1";

StandardItem *nameItem = createNewTask(stack.top(),

name, done);

stack.push(nameItem);

}

else if (reader.name() == WhenTag) {

const QDateTime start = QDateTime::fromString(

reader.attributes().value(StartAttribute)

.toString(), Qt::ISODate);

const QDateTime end = QDateTime::fromString(

reader.attributes().value(EndAttribute)

.toString(), Qt::ISODate);

StandardItem *nameItem = static_cast<StandardItem*>(

stack.top());

ptg

UsingQStandardItemModels for Trees 147

nameItem->addDateTime(start, end);

}

}

else if (reader.isEndElement()) {

if (reader.name() == TaskTag)

stack.pop();

}

}

The load() method starts off with almost the same code as the save() method
for handling the filename, so we have omitted it. The only difference is that
we specified a mode of QIODevice::ReadOnly which causes the file to be opened
in binary read-only mode. The QXmlStreamReaderwill read the <?xml?> tag to de-
termine the correct encoding to use, defaulting to UTF-8 if none is specified.

Once the file is successfully opened we clear the existing items ready to
populate the model with data read from the XML file.

We did not need to subclass QXmlStreamReader, since the functionality the class
provides is sufficient for it to be used directly.

Whenever a new task is created it must be given a parent—either the task’s
immediate parent or the invisible root item provided by the base class to be
used as the parent of top-level items. We use a QStack<QStandardItem*> to hold
the parents, pushing tasks onto the stack and popping them off as necessary.

When we encounter a TASK start tag we create a new StandardItem to represent
the task, giving it the parent from the top of the stack and the name and done
flag retrieved from the tag’s attributes. Once the new task is created we push
it onto the top of the stack.

The QXmlStreamReader::attributes() method returns the current element’s
attributes as a QXmlStreamAttributes object. The QXmlStreamAttributes::value()
method takes an attribute name and returns the corresponding value as a
QStringRef, and with any XML escaping unescaped. For example, the task
name “Editing & Examples” is stored in the XML file as “Editing &amp;
Examples” but it is returned by value() in its original form.

Althoughwe can sensibly compare QStrings and QStringRefsusing the standard
comparison operators, if we actually need the text of a QStringRef wemust call
its toString() method. For example, we extract the task’s name into a QString

using QStringRef::toString(), but for the “done” flag we simply compare the
attribute’s value to “1” to determine if the task is done.

Whenever we encounter a WHEN start tag we extract the start and end date/
times and append them to the task at the top of the stack’s list of date/times.
And each time we meet a TASK end tag we pop the top of the stack.

ptg

148 Chapter 4. Model/View Tree Models

if (reader.hasError())

throw AQP::Error(reader.errorString());

if (stack.count() != 1 || stack.top() != invisibleRootItem())

throw AQP::Error(tr("loading error: possibly corrupt file"));

calculateTotalsFor(invisibleRootItem());
}

If an XML parse error occurs the QXmlStreamReader::atEnd() function will re-
turn true (causing the while loop to terminate), and QXmlStreamReader::has-

Error() will return true to inform us that an error occurred. If the stack does
not have exactly one item left at the end (the invisible root item), then some-
thing has gonewrong. If either kind of error occurswe throw an exception and
leave the caller to handle it.

If the load is successful, we call calculateTotalsFor() to make sure that every
task’s time items show the correct times.

StandardItem *StandardTreeModel::createNewTask(QStandardItem *root,

const QString &name, bool done)

{

StandardItem *nameItem = new StandardItem(name, done);

root->appendRow(QList<QStandardItem*>() << nameItem

<< nameItem->todayItem() << nameItem->totalItem());

return nameItem;

}

We saw earlier that when we create a StandardItem, inside the constructor two
QStandardItems are also created to show the today’s and total times (142 ➤).Once
we have created the new task we append the StandardItem that represents it,
along with its associated QStandardItems for the times, as a new row under the
given root item (which will be the invisible root item if this is a new top-level
task).At thispoint themodel takes ownership of all three items,so as isusually
the case with Qt, we don’t have to worry about deleting them ourselves.

void StandardTreeModel::calculateTotalsFor(QStandardItem *root)

{

if (root != invisibleRootItem()) {

StandardItem *item = static_cast<StandardItem*>(root);

item->todayItem()->setText(item->todaysTime());

item->totalItem()->setText(item->totalTime());

}

for (int row = 0; row < root->rowCount(); ++row)

calculateTotalsFor(root->child(row, 0));

}

ptg

UsingQStandardItemModels for Trees 149

This recursive method is used to set the text for all the time items. We don’t
show the todaysTime() or the totalTime() methods since they are not relevant
to model/view programming and in any case they are in the source code.

enum Insert {AtTopLevel, AsSibling, AsChild};

QStandardItem *StandardTreeModel::insertNewTask(Insert insert,

const QString &name, const QModelIndex &index)

{

QStandardItem *parent;

if (insert == AtTopLevel)

parent = invisibleRootItem();

else {

if (index.isValid()) {

parent = itemFromIndex(index);

if (!parent)

return 0;

if (insert == AsSibling)

parent = parent->parent() ? parent->parent()

: invisibleRootItem();

}

else

return 0;

}

return createNewTask(parent, name, false);

}

This method is called by MainWindow::editAdd() to add a new task. It begins by
using the Insert enum to determine what the new task’s parent should be and
then uses the same createNewTask()methodused by the load()method to create
a new task with the given task name (“New Task” is used in the editAdd()

method), and with its done flag set to false (unchecked).

QStringList StandardTreeModel::pathForIndex(const QModelIndex &index)

const

{

QStringList path;

if (index.isValid()) {

QStandardItem *item = itemFromIndex(index);

while (item) {

path.prepend(item->text());

item = item->parent();

}

}

return path;

}

ptg

150 Chapter 4. Model/View Tree Models

This method is used to return a task path, as shown earlier (134 ➤; 136 ➤). The
method starts by adding the given item’s text to the path QStringList and then
prepends the item’s parent’s text to the list, and the parent’s parent’s text, and
so on up to the top. Keep in mind that calling QStandardItem::parent() on a
top-level itemwill return 0 (even though the QStandardItemModel has ownership
of the item).

QStandardItem *StandardTreeModel::itemForPath(const QStringList &path)

const

{

return itemForPath(invisibleRootItem(), path);

}

QStandardItem *StandardTreeModel::itemForPath(QStandardItem *root,

const QStringList &path) const

{

Q_ASSERT(root);

if (path.isEmpty())

return 0;

for (int row = 0; row < root->rowCount(); ++row) {

QStandardItem *item = root->child(row, 0);

if (item->text() == path.at(0)) {

if (path.count() == 1)

return item;

if ((item = itemForPath(item, path.mid(1))))

return item;

}

}

return 0;

}

These methods do the opposite of pathForIndex()—they take a task path and
return the corresponding item. The publicmethod takes a task path argument
and calls the private method with the invisible root item and the task path.
The privatemethod iterates over the children of the item it is given looking for
one whose text is the same as the first text in the task path. If a match is found
the method calls itself recursively with the found item as the new root item
and with a task path that doesn’t include the first (already matched) string.
Eventually either all the strings in the task path will be matched and the
corresponding item returned, or the matching will fail and 0 will be returned.

We have now completed our review of the timelog1 application and the
QStandardItem and QStandardItemModel subclasses it uses. In the next section we
will create a custom tree model as a drop-in replacement—one that has addi-
tional functionality.

ptg

CreatingCustom Tree Models 151

Creating Custom Tree Models ||||

Aswe noted when discussing QStandardItemModel in the context of tables, using
this model is usually the easiest and quickest way to get an implementation
up and running.

However, at the time of this writing, in the case of tree models, using a
QStandardItemModel provides less functionality than it is possible to achieve
using a custom tree model. Nonetheless, starting out using a QStandardItem-

Model is almost always a good idea—we may not need the extra functionality
a custommodel can provide, and tree models are more complicated than list or
table models, so using QStandardItemModel can save us a lot of work. But if we
need to allow users to move items around arbitrarily in the tree—something
that normally only makes sense for trees whose items are all of the same kind
and can be nested arbitrarily (like our task items)—then there is currently no
alternative but to use a custom tree model.

Figure 4.3 The timelog2 application

In this sectionwewill create the timelog2 application shown in Figure 4.3.With
this applicationwehave followed a similar pattern towhatwe didwith the pre-
vious chapter’s Zipcodes applications, dropping some files and adding in some
files and using #ifdefs to ensure that asmuch of the code is shared as possible.
In this case we will replace the standarditem.{hpp,cpp} and standardtreemod-

el.{hpp,cpp} fileswith taskitem.{hpp,cpp} and treemodel.{hpp,cpp}, and add the
line DEFINES += CUSTOM_MODEL to the timelog2.pro file.

Just as we did with the Zipcodes applications, we won’t show the #ifdefs; in-
stead we show the code as seen by the compiler for timelog2 when CUSTOM_MODEL

ptg

152 Chapter 4. Model/View Tree Models

is defined. (And in the previoussectionwedid the same thing,showing the code
as seen by the compiler when CUSTOM_MODEL was not defined.)

In the first subsection that follows we will review the model/view-relevant
differences between timelog1 and timelog2—most of which are concerned with
providing support in the user interface for moving items (and their children)
about in the tree by cutting and pasting or dragging and dropping or by using
one of the movement actions. In the second subsection we will cover the
TaskItem class used to represent tasks and in the third subsection we will cover
the TreeModel class which is a QAbstractItemModel subclass that holds all of the
application’s task data.

Changing a Tree Model through the User Interface |||

The only difference in member data between timelog1’s and timelog2’s main
window is that timelog2 uses a custom TreeModel rather than a StandardTree-

Model. In terms of methods, timelog2 uses a different hideOrShowDoneTask()

method, and provides six additional methods to support moving items: edit-
Cut(), editPaste(), editMoveUp(), editMoveDown(), editPromote(), and editDe-

mote(). There are also corresponding actions in the user interface through
which these methods are invoked.

The timelog2 constructor only differs by having a different title, but the
createModelAndView() method has a couple of differences so we will quote it.

void MainWindow::createModelAndView()

{

model = new TreeModel(this);

treeView->setDragDropMode(QAbstractItemView::InternalMove);

treeView->setAllColumnsShowFocus(true);

treeView->setItemDelegateForColumn(0, new RichTextDelegate);

treeView->setModel(model);

setCentralWidget(treeView);

}

The most important difference is that we are using a TreeModel. Notice also
that we have told the QTreeView to support drag and drop—but only for moving
items within the tree. (Just as with timelog1, we haven’t shown the #ifdef for
using a ModelTest if that module is available, although it is in the source code.)
The delegate is covered in Chapter 5.

The createActions() and createMenusAndToolBar()methods that are called from
the constructor are only different from timelog1 in that they create and use the
extra actions that timelog2 supports.

As for the signal–slot connections, the connection from the QStandardItemMod-

el::itemChanged() signal to the setDirty() slot is replaced by one from QAb-

ptg

CreatingCustom Tree Models 153

stractItemModel::dataChanged(). Also the new actions are connected to their
corresponding slots—for example, the editCutAction’s triggered() signal is con-
nected to the editCut() slot.

The code snippet taken from the MainWindow::load() method shown earlier
(134 ➤) is slightly simpler for timelog2:

model->load(filename);

if (!taskPath.isEmpty()) {

setCurrentIndex(model->indexForPath(taskPath));

}

In timelog1 we had to retrieve an item using StandardTreeModel::itemForPath(),
and then get the item’s model index for the setCurrentIndex() call, but here we
have a TreeModel::indexForPath() method that can be used directly.

Other methods that we reviewed earlier are also different: editAdd() is much
shorter and simpler and hideOrShowDoneTask() is a bit different—we will show
both of these. We won’t show the editDelete()method since it is only different
in that it can work with model indexes directly to get the name and child count
of the item to be deleted rather than having to get those pieces of information
from an item—the actual deleting using removeRow() is the same as before. We
will also show a few of the new methods, although we will omit those that are
almost identical to the ones that are shown.

void MainWindow::editAdd()

{

QModelIndex index = treeView->currentIndex();

if (model->insertRow(0, index)) {

index = model->index(0, 0, index);

setCurrentIndex(index);

treeView->edit(index);

setDirty();

updateUi();

}

}

For timelog1 we had to ask the user whether they wanted to add the new task
at the top level or as a sibling or child of the selected task. But since timelog2

makes it easy to move a task around in the tree we can simply always add a
new task as a child of the selected task and leave it up to the user to move it
elsewhere if required.

Once the new task is created (by inserting a new row as the first child of the
current task—or as a top-level item if the tree is empty), we get the model
index of the new task’s task name itemand scroll to it. Thenwe initiate editing
(to save the user having to press F2—Enter onMac OSX—or to double-click), so

ptg

154 Chapter 4. Model/View Tree Models

that the user can immediately replace the default “New Task” text with their
own text.

Another more subtle benefit of adding the item as a child of the current item
is that it is created invisibly (unless it is a top-level task), so the view doesn’t
make any data() calls on it until we navigate to it. This doesn’t really matter
in this case, but in general it is usually best when applying changes to a tree
to do so to invisible items (i.e., to child items of a collapsed parent), since this
can avoid the view making data() calls on items that may have been moved
or deleted.

void MainWindow::editHideOrShowDoneTasks(bool hide)

{

hideOrShowDoneTask(hide, QModelIndex());

}

void MainWindow::hideOrShowDoneTask(bool hide,

const QModelIndex &index)

{

bool hideThisOne = hide && model->isChecked(index);

if (index.isValid())

treeView->setRowHidden(index.row(), index.parent(),

hideThisOne);

if (!hideThisOne) {

for (int row = 0; row < model->rowCount(index); ++row)

hideOrShowDoneTask(hide, model->index(row, 0, index));

}

}

These methods are very similar to the ones used for timelog1 and use the same
logic. The key difference is that we work in terms of model indexes rather
than items since we are using the QAbstractItemModel API (plus our own logical
extensions such as the isChecked() method;➤ 168), rather than the item-based
QStandardItemModel API.

void MainWindow::editCut()

{

QModelIndex index = treeView->currentIndex();

if (model->isTimedItem(index))

stopTiming();

setCurrentIndex(model->cut(index));

editPasteAction->setEnabled(model->hasCutItem());

}

This slot, like all the movement-related slots, devolves the bulk of the work to
themodel. This is necessary sincewhen tasks are removed or moved the struc-
ture of the tree is changed and this must be reflected in all associated views.

ptg

CreatingCustom Tree Models 155

If the cut task is being timedwe stop timing since it doesn’tmake sense to time
a task thatwon’t be visible and thatmay be deleted (simply by not being pasted
back).We then tell the model to cut the task with the given model index—and
this includes all its children, and their children, recursively—and make the
task whosemodel index is returned the selected task. We also update the paste
action’s enabled state so that the user will know that pasting is now possible.

void MainWindow::editPaste()

{

setCurrentIndex(model->paste(treeView->currentIndex()));

editHideOrShowDoneTasks(

editHideOrShowDoneTasksAction->isChecked());

}

This slot is typical of almost all the movement slots provided by the timelog2

application: it tells the model to perform the work, then it scrolls to and selects
the task with the model index that the model returns, and finally it hides or
shows the done tasks to ensure that those shown (or hidden) are consistent
with the editHideOrShowDoneTasksAction’s state.

The task that is pasted back is insertedwith all its children,and their children,
recursively, but with the children (if any) collapsed and hence invisible until
the user expands them.

The editMoveUp() slot is almost identical—the only difference is that we call
TreeModel::moveUp() instead of TreeModel::paste(). The same applies to edit-

MoveDown() where we call TreeModel::moveDown(). The editPromote() and editDe-

mote() slots (which call TreeModel::promote() and TreeModel::demote()) are also
very similar except that they begin by stopping timing if the selected item is
the one being timed (just as we did in the editCut() slot). And in all cases, the
method is applied to the selected task and its children, and their children, re-
cursively.

We have now covered enough of the user interface-relatedmethodsand slots to
give us the context we need to understand the TreeModel that is used to hold the
task data. But before reviewing the TreeModel’s implementation,we must first
look at the TaskItems that the TreeModel uses internally to represent the tasks.

A Custom Item Class for Tree Items |||

We need an “item” class to represent each item in the tree. When we used
QStandardItems we needed separate items for the task name and for the today’s
and total times. But since we will be using a custommodel we can store all the
data we need in a single TaskItem and have the model return the appropriate
data for each column as required.

ptg

156 Chapter 4. Model/View Tree Models

The TaskItem class has functionality of two kinds: methods for handling the
item data—the task’s name and done state and its start–end date/times—and
methods for managing the item’s children. As we will see in the next subsec-
tion, the entire tree is held by a single pointer to a root item (an unnamed Task-

Item that is the TreeModel’s equivalent to the QStandardItemModel’s invisible root
item), with every other task one of the root item’s children, or one of their chil-
dren, and so on.

Most of the TaskItem’s methods are in the header which we will look at in three
parts—two groups of methods, and the private member data—starting out of
order with the data, to provide context for the methods.

private:

int minutesForTask(bool onlyForToday) const;

QString m_name;

bool m_done;

QList<QPair<QDateTime, QDateTime> > m_dateTimes;

TaskItem *m_parent;

QList<TaskItem*> m_children;

};

We won’t cover the method for calculating the task’s minutes since it is irrel-
evant to model/view programming. Each task has data members that reflect
what is stored in the XML file: a name, a done flag, and a list of start–end
date/times. And in addition, to support the tree’s hierarchy, each task itemalso
has a parent pointer and a list of children. The unnamed root item (which is
never saved or loaded and exists purely as a programmatic convenience) is the
only item with a parent of 0.

Contrast the data held in a TaskItem to the StandardItem and two QStandard-

Items needed for timelog1’s QStandardItemModel version. While the custom data
held is the same in both cases (the task’s name, done flag, and list of start–end
date/times), in terms of overhead, a TaskItem adds a pointer and a QList of
pointers, whereas the three QStandardItems needed by the QStandardItemModel

add a total overhead of nine pointers, nine ints, three QVectors of pointers, and
three QVectors of values (with each value holding an int and a QVariant)—this is
for Qt 4.5.0.Of coursewhether the extramemorymatters is very dependent on
the application, and it remains the case that it is almost always better to start
with a QStandardItemModel and only implement a custom QAbstractItemModel if
performance or functionality requirements make it necessary to do so.

class TaskItem

{

public:

explicit TaskItem(const QString &name=QString(), bool done=false,

TaskItem *parent=0);

ptg

CreatingCustom Tree Models 157

~TaskItem() { qDeleteAll(m_children); }

QString name() const { return m_name; }

void setName(const QString &name) { m_name = name; }

bool isDone() const { return m_done; }

void setDone(bool done) { m_done = done; }

QList<QPair<QDateTime, QDateTime> > dateTimes() const

{ return m_dateTimes; }

void addDateTime(const QDateTime &start, const QDateTime &end)

{ m_dateTimes << qMakePair(start, end); }

QString todaysTime() const;

QString totalTime() const;

void incrementLastEndTime(int msec);

We will look at the constructor shortly; but we won’t show the methods for
calculating an item’s today’s and total times or for incrementing the last
end time.

We must implement a destructor since TaskItem is not a QObject subclass and
so we need to take ownership of the task items ourselves. When an item is
deleted we delete all its children, and they in turn delete their children, and so
on, recursively, so only the tree’s root item needs to be deleted to delete all of
the task items.

TaskItem *parent() const { return m_parent; }

TaskItem *childAt(int row) const { return m_children.value(row); }

int rowOfChild(TaskItem *child) const

{ return m_children.indexOf(child); }

int childCount() const { return m_children.count(); }

bool hasChildren() const { return !m_children.isEmpty(); }

QList<TaskItem*> children() const { return m_children; }

void insertChild(int row, TaskItem *item)

{ item->m_parent = this; m_children.insert(row, item); }

void addChild(TaskItem *item)

{ item->m_parent = this; m_children << item; }

void swapChildren(int oldRow, int newRow)

{ m_children.swap(oldRow, newRow); }

TaskItem* takeChild(int row);

The childAt() method is careful to use QList::value() rather than QList::

operator[](); this ensures that if an out-of-range row is given, a default-con-
structed value (i.e., 0) is returned instead of the program crashing.

When a child is inserted at a particular row or added at the end it is essential
that we reparent it. This is because the TaskItem being passed may have been
cut or moved from somewhere else in the tree and therefore already have a
parent, which if not this item (and it normally isn’t) is the wrong one.

ptg

158 Chapter 4. Model/View Tree Models

There are only two methods that are in the taskitem.cpp file that are relevant
to model/view programming: the constructor and the takeChild()method, both
of which we will review.

TaskItem::TaskItem(const QString &name, bool done, TaskItem *parent)

: m_name(name), m_done(done), m_parent(parent)

{

if (m_parent)

m_parent->addChild(this);

}

If a new task item is created with a not-null parent we make sure we add it to
the end of the parent’s list of children.

TaskItem* TaskItem::takeChild(int row)

{

TaskItem *item = m_children.takeAt(row);

Q_ASSERT(item);

item->m_parent = 0;

return item;

}

If a task item is taken out of the tree, that is, removed from its parent’s list of
children,wemust set its parent to 0 to reflect the fact that no item owns it. This
means that the returned pointer is our responsibility, so we should delete it or
insert it back into the tree as soon as possible, to avoid the risk of it turning
into a memory leak.

A CustomQAbstractItemModel Subclass for Trees |||

To implement a QAbstractItemModel subclass for trees that are both editable and
resizable,wemust normally reimplement all or almost all of themethods listed
in Table 3.1 (118 ➤).However, for theTimelog application’s task data—andquite
often with trees generally—we don’t need to reimplement insertColumns() or
removeColumns() because the number of columns used is fixed.

To support moving items (with their children) using drag and drop we must
also implement the drag and drop-related methods shown in Table 4.1. The
drag and drop API requires us to serialize and deserialize model items, and as
we will see, we can use the methodswe use for loading and saving to help with
this. We also want to provide the user with other means of moving items, and
in support of this we have extended the QAbstractItemModel API with our own
custommethods:

QModelIndex moveUp(const QModelIndex &index);

QModelIndex moveDown(const QModelIndex &index);

QModelIndex cut(const QModelIndex &index);

ptg

CreatingCustom Tree Models 159

Table 4.1 The QAbstractItemModel’sDrag and Drop API

Method Description

dropMimeData(mimeData,

dropAction, row,

column, parent)

This method is called when a drop occurs; it must
deserialize the mimeData and use it to perform the
given dropAction on the item with the given row,
column, and parent

mimeData(indexes) Returns a QMimeData object that contains the
serialized data corresponding to the given list of
model indexes; this is used internally by themodel
to produce the data for a drop

mimeTypes() Returns a QStringList of the MIME types that
describe a list of the model’s model indexes

supportedDragActions() Returns the bitwise OR of one or more Qt::Drop-

Actions (there is no drag actions enum)
supportedDropActions() Returns the bitwise OR of one or more Qt::Drop-

Actions (Qt::CopyAction, Qt::MoveAction, etc.)

QModelIndex paste(const QModelIndex &index);

QModelIndex promote(const QModelIndex &index);

QModelIndex demote(const QModelIndex &index);

Qt 4.6 introduced four new protected methods designed to simplify moving
items in a model: beginMoveColumns(), endMoveColumns(), beginMoveRows(), and
endMoveRows(). We don’t use them so as to keep our code compatible with both
Qt 4.5 and Qt 4.6. For projects whose minimum Qt version is Qt 4.6, the new
protected methods are likely to be useful, but read their documentation care-
fully since they have some constraints.

In addition to the extra custom methods, the TreeModel class has methods and
data related to timing items (which we won’t cover), and the samemethods (or
equivalents) that we added to the QStandardItemModel: clear(), load(), save(),
pathForIndex(), and indexForPath().

The TreeModel has various private methods that we will cover when the need
arises as we discuss the public methods, and also some items of private data.

private:

QString m_filename;

QIcon m_icon;

TaskItem *timedItem;

TaskItem *rootItem;

TaskItem *cutItem;

ptg

160 Chapter 4. Model/View Tree Models

Of the TaskItems, the timedItem is a pointer to an item that has a parent—sowe
don’t have to worry about deleting it. The rootItem is the root of the tree and
must be deleted by us when appropriate. The cutItem is the item that has been
cut but not pasted; if such an item exists it must be deleted at the appropriate
time—for example, if a new file is opened or if the application is terminated.

All this means that the TreeModel can be used as a drop-in replacement for
StandardTreeModel, but with additional functionality, in particular support for
cutting and pasting items, dragging and dropping items, and moving items.

We will now review all of the TreeModel’s model/view-related methods. We will
start with the constructor and destructor, then look at themethods implement-
ing the QAbstractItemModel API, then the isChecked()method (for completeness
since we saw it used earlier), then the methods implementing the QAbstract-

ItemModel’s drag and dropAPI, then themovementmethods, and finally, the file
and task path handling methods.

explicit TreeModel(QObject *parent=0)

: QAbstractItemModel(parent), timedItem(0), rootItem(0),

cutItem(0) {}

~TreeModel() { delete rootItem; delete cutItem; }

The constructor only needs to initialize themember data pointers to 0 and pass
its parent to the base class. The destructor must delete the root item and the
cut item (which may be 0). We rely on the TaskItem destructor to delete each
task item’s children, and their children, recursively.

The QAbstractItemModel API for Trees ||

In this subsubsection we will review the QAbstractItemModel API methods that
the TreeModel implements to provide an editable and resizable (in terms of
rows, but not columns) tree. These methods are listed in Table 3.1 (118 ➤).

enum Column {Name, Today, Total};

Qt::ItemFlags TreeModel::flags(const QModelIndex &index) const

{

Qt::ItemFlags theFlags = QAbstractItemModel::flags(index);

if (index.isValid()) {

theFlags |= Qt::ItemIsSelectable|Qt::ItemIsEnabled;

if (index.column() == Name)

theFlags |= Qt::ItemIsUserCheckable|Qt::ItemIsEditable|

Qt::ItemIsDragEnabled|Qt::ItemIsDropEnabled;

}

return theFlags;

}

ptg

CreatingCustom Tree Models 161

Thismethod’s implementation is similar for all kinds of models. In this partic-
ular case we make all items selectable and enabled, but only allow task names
to be checkable, editable,and to be dragged and dropped. Aswewill see shortly,
we have implemented drag and drop such that if a task name is dragged the
whole task including its times is dragged, as well as its children, but we prefer
users to drag a name rather than a time since thismakes it much clearer what
is happening.

const int ColumnCount = 3;

QVariant TreeModel::data(const QModelIndex &index, int role) const

{

if (!rootItem || !index.isValid() || index.column() < 0 ||

index.column() >= ColumnCount)

return QVariant();

if (TaskItem *item = itemForIndex(index)) {

if (role == Qt::DisplayRole || role == Qt::EditRole) {

switch (index.column()) {

case Name: return item->name();

case Today: return item->todaysTime();

case Total: return item->totalTime();

default: Q_ASSERT(false);

}

}

if (role == Qt::CheckStateRole && index.column() == Name)

return static_cast<int>(item->isDone() ? Qt::Checked

: Qt::Unchecked);

if (role == Qt::TextAlignmentRole) {

if (index.column() == Name)

return static_cast<int>(Qt::AlignVCenter|

Qt::AlignLeft);

return static_cast<int>(Qt::AlignVCenter|Qt::AlignRight);

}

if (role == Qt::DecorationRole && index.column() == Today &&

timedItem && item == timedItem && !m_icon.isNull())

return m_icon;

}

return QVariant();

}

The data() method is key to Qt’s model/view architecture, since it is through
thismethod that all data and most meta-data are accessed. As we noted when
discussing the TableModel (120 ➤) this method does not rely on us calling the
base class implementation; instead wemust always return an invalid QVariant

for any cases that we don’t handle ourselves.

ptg

162 Chapter 4. Model/View Tree Models

The itemForIndex() method returns a TaskItem pointer from the tree, given a
model index; we’ll review this method in a moment.

We have chosen to treat Qt::DisplayRole and Qt::EditRole as synonymous, so if
data for either role is requested we return it. Our data doesn’t have columns
as such, we just have a tree of task items, but we map columns to particular
fields in our data, or in the case of the time columns to the appropriate calcu-
lated values. We also handle the Qt::CheckStateRole, returning the enum that
corresponds to the task’s done state.

For text alignment we have chosen to left-align the task name and right-align
the times. We also supply an icon if data for the Qt::DecorationRole is request-
ed—but only if the request is for the Today column and if the item is being
timed. For all other cases, and for all other roles,we return an invalid QVariant

and leave Qt to handle them for us.

TaskItem *TreeModel::itemForIndex(const QModelIndex &index) const

{

if (index.isValid()) {

if (TaskItem *item = static_cast<TaskItem*>(

index.internalPointer()))

return item;

}

return rootItem;

}

Whenever a QModelIndex is created (using the QAbstractItemModel::create-

Index()method), in addition to supplying a rowand columnwe can also provide
a pointer (or a numeric ID). In the case of treemodels it is very common to sup-
ply a pointer to the corresponding item in the tree—and as we will see, that is
what we do in the TreeModel when we createmodel indexes. Thismakes it easy
to get back a pointer to the item for a given model index—we can simply ask
for the model index’s internal pointer. If there is no pointer, or if the index is
invalid, we return a pointer to the root item (which will be 0 if no items have
been added to the tree).

QVariant TreeModel::headerData(int section,

Qt::Orientation orientation, int role) const

{

if (orientation == Qt::Horizontal && role == Qt::DisplayRole) {

if (section == Name)

return tr("Task/Subtask/...");

else if (section == Today)

return tr("Time (Today)");

else if (section == Total)

return tr("Time (Total)");

}

ptg

CreatingCustom Tree Models 163

return QVariant();

}

Qt’s QTreeView only supports horizontal headers, so we provide the appropriate
name when one of these is asked for. And since headerData() uses the same
logic as data(), that is, relying on the return value rather than a base class call,
we return an invalid QVariant for any case that we don’t handle ourselves.

int TreeModel::rowCount(const QModelIndex &parent) const

{

if (parent.isValid() && parent.column() != 0)

return 0;

TaskItem *parentItem = itemForIndex(parent);

return parentItem ? parentItem->childCount() : 0;

}

The row count for an item in a tree is the number of children it has (but not
including their children, so the count does not work recursively). If the parent
is valid but the column isn’t 0 we must return 0 since we only allow items in
the first column to have child rows. Otherwise we retrieve the parent index’s
corresponding task item. If the parent index is invalid, itemForIndex() will
correctly return the root item (which could be 0 if the tree has no items).

int TreeModel::columnCount(const QModelIndex &parent) const

{

return parent.isValid() && parent.column() != 0 ? 0 : ColumnCount;

}

The custom TreeModel, in common with many other tree models, has a fixed
number of columns making this method simple to implement, and is similar
to the one we used for the custom Zipcodes table model (123 ➤). If the index is
valid and the column isn’t the first (name) column, then we are being asked for
the column count of a time column; this doesn’t make sense for this model, so
in such cases we return 0.

QModelIndex TreeModel::index(int row, int column,

const QModelIndex &parent) const

{

if (!rootItem || row < 0 || column < 0 || column >= ColumnCount

|| (parent.isValid() && parent.column() != 0))

return QModelIndex();

TaskItem *parentItem = itemForIndex(parent);

Q_ASSERT(parentItem);

if (TaskItem *item = parentItem->childAt(row))

return createIndex(row, column, item);

return QModelIndex();

}

ptg

164 Chapter 4. Model/View Tree Models

This method is used to provide model indexes to the model’s users, and is also
used by the model internally.

In addition to the obvious tests for validity, we also check the parent’s column.
We do not provide model indexes for items whose parent column is not 0 since
we only allow items in column 0 to have child items.

A model index ismade up of a row, a column,and a pointer (or numeric ID).For
list and tablemodels the pointer is normally 0, but for a treemodel it is usually
a pointer to (or the ID of) the corresponding item in the tree. Here we begin by
retrieving the parent task item using itemForIndex() (162 ➤), and then retrieve
the parent item’s row-th child item. We then call QAbstractItemModel::create-
Index() with the given row and column, and with a pointer to the task item,
since this is the item that themodel index being created actually refers to. It is
this pointer to the task item that becomes the model index’s internal pointer.

If we cannot create the index wemust return an invalid QModelIndex.Note that
there are only two public constructors for QModelIndex—a copy constructor and
a constructor that takes no arguments and can therefore be used only to create
invalid model indexes. So the only way to create a valid model index is to call
createIndex(), or to use the copy constructor to copy an existing model index.

The structure of this method—and the structures of most of the other tree
model methods shown here that implement the QAbstractItemModel API—can
be used for any tree model that uses a tree of pointers to items that have the
child manipulation methods provided by the item type (e.g., TaskItem and its
methods or equivalent), and that has an itemForIndex() (or equivalent)method.
So, the code shown here should be straightforward to adapt as needed.

QModelIndex TreeModel::parent(const QModelIndex &index) const

{

if (!index.isValid())

return QModelIndex();

if (TaskItem *childItem = itemForIndex(index)) {

if (TaskItem *parentItem = childItem->parent()) {

if (parentItem == rootItem)

return QModelIndex();

if (TaskItem *grandParentItem = parentItem->parent()) {

int row = grandParentItem->rowOfChild(parentItem);

return createIndex(row, 0, parentItem);

}

}

}

return QModelIndex();

}

ptg

CreatingCustom Tree Models 165

Returning themodel index of an item’sparent isn’t quite as simple as it sounds,
even though TaskItems have a pointer to their parent. This is because we can-
not directly map from a TaskItem pointer to a model index. So what wemust do
is find the item’s parent item, and then find what row that item occupies in its
parent’s list of children (i.e., the row of the item’s parent in its grandparent’s
list of children). Once we know the row and have the parent pointer we use
createIndex() to create the item’s parent’s model index.

Notice that if the parent item is the root item we return an invalid model
index—Qt’s model/view architecture uses the convention that the parent of a
top-level item is an invalid model index (rather than the root item if themodel
has such an item), and so we ensure that our code respects this.

X GP’s row 0

GP’s row 1P

A P’s row 0

GP

Y GP’s row 2

Figure 4.4 An item’s parent is its grandparent’s row-th item

Figure 4.4 illustrates the relationships between items, parents, and rows. In
the figure, item A’s parent is item P, that is, A is P’s first (i.e., row 0) child, and
item P’s parent is item GP, that is, P is GP’s second (i.e., row 1) child.

bool setHeaderData(int, Qt::Orientation, const QVariant&,

int=Qt::EditRole) { return false; }

Wehave chosen tomake the headers read-only, for which this trivial implemen-
tation in the header file is sufficient.

bool TreeModel::setData(const QModelIndex &index,

const QVariant &value, int role)

{

if (!index.isValid() || index.column() != Name)

return false;

if (TaskItem *item = itemForIndex(index)) {

if (role == Qt::EditRole)

item->setName(value.toString());

ptg

166 Chapter 4. Model/View Tree Models

else if (role == Qt::CheckStateRole)

item->setDone(value.toBool());

else

return false;

emit dataChanged(index, index);

return true;

}

return false;

}

Weuse thismethod to support the editing of task items—in particular the task
name and the done flag. We don’t have to concern ourselveswith the details of
editing—the custom rich text delegate handles the editing of task names, and
also the toggling of the done state using a checkbox (➤ 193).

If an edit is made wemust emit the dataChanged() signal with the model index-
es thatwere changed and return true; otherwisewemust return false.The first
model index is the top left and the second the bottom right of a rectangular re-
gion of model indexes. In this case we only ever edit one model index at a time
so we use the same index for both.

bool TreeModel::insertRows(int row, int count,

const QModelIndex &parent)

{

if (!rootItem)

rootItem = new TaskItem;

TaskItem *item = parent.isValid() ? itemForIndex(parent)

: rootItem;

beginInsertRows(parent, row, row + count - 1);

for (int i = 0; i < count; ++i)

(void) new TaskItem(tr("New Task"), false, item);

endInsertRows();

return true;

}

Qt’s model/view API requires us to call QAbstractItemModel::beginInsertRows()
before inserting any rows into a model, and QAbstractItemModel::endInsert-

Rows() once the insertions are finished. The call to beginInsertRows() can be
copied verbatim into other implementations—its arguments are the parent
model index, the row where the new rows are to be inserted, and the row of the
last of the new rows.

We begin by ensuring that there is a root item—there won’t be one if the user
has just done File→New, for example. Then we get the item that will be the
parent item for all the inserted rows—this is either the given parent index’s
item (if the index is valid), or the root item (which means that the rows will all
be top-level items). We then create count new task items, each with a default

ptg

CreatingCustom Tree Models 167

text and done state, and each the child of the parent item. (Recall that in the
TaskItem constructor, if a not-null parent is given, the child adds itself to the
parent’s list of children; 158 ➤.)

This method is called behind the scenes when a task (and its children) is
dragged and dropped to insert the dropped rows. Note also that there is an
insertRow() method (which we used in MainWindow::editAdd(); 153 ➤), but we
should not need to reimplement it since the base class implementation already
correctly calls insertRows() with a row count of 1.

bool TreeModel::removeRows(int row, int count,

const QModelIndex &parent)

{

if (!rootItem)

return false;

TaskItem *item = parent.isValid() ? itemForIndex(parent)

: rootItem;

beginRemoveRows(parent, row, row + count - 1);

for (int i = 0; i < count; ++i)

delete item->takeChild(row);

endRemoveRows();

return true;

}

Qt’s model/view API requires us to call QAbstractItemModel::beginRemoveRows()
before removing any rows from a model, and QAbstractItemModel::endRemove-

Rows() once the removals are finished. The call to beginRemoveRows() can be
copied verbatim into other implementations.

If there is no root item the tree is empty so there is nothing to delete—in this
case we do nothing and return false. Otherwise, to delete count rows starting
at the given row, we simply delete the item at the given row count times. The
first deletion deletes the row-th item, the second deletion deletes the row + 1-th
item (since that is now the row-th item due to the previous deletion), and so
on. Naturally, the children, their children, and so on, of any deleted item are
also deleted. Note that the TaskItem::takeChild() method (158 ➤) removes the
given item from its parent, sets the item’s parent to 0, and returns the (now
parentless and ownerless) item—which we immediately delete.

This method is called behind the scenes when a task (and its children) is
dragged and dropped to delete the original dragged rows once they have been
dropped—the dropped rows are freshly inserted using insertRows().

We have now finished reviewing the reimplementations of all the methods
necessary to provide an editable tree model and that can also be resized (in
terms of adding or removing rows).

ptg

168 Chapter 4. Model/View Tree Models

Wewill now look at one tiny methodwe added to extend the QAbstractItemModel
API since it is a method whose use we saw earlier, and then we will look at
groups of additional methods supporting drag and drop, moving items, and
loading and saving items from and to disk.

bool TreeModel::isChecked(const QModelIndex &index) const

{

if (!index.isValid())

return false;

return data(index, Qt::CheckStateRole).toInt() == Qt::Checked;

}

This is just a convenience method that we added to make the implementation
of the MainWindow::hideOrShowDoneTask() method easier to read (154 ➤). Al-
though we must implement the relevant parts of the QAbstractItemModel API,
we are of course free to provide additional conveniencemethods such as this if
we wish.

The QAbstractItemModel API for Drag and Drop ||

In this subsubsection we will review the QAbstractItemModel API methods
that the TreeModel implements to provide drag and drop. These methods are
listed in Table 4.1 (159 ➤). The way that Qt’s drag and drop works is that we
must serialize the dragged items, and then deserialize them when they are
dropped.★

Qt::DropActions supportedDragActions() const

{ return Qt::MoveAction; }

Qt::DropActions supportedDropActions() const

{ return Qt::MoveAction; }

These two methods are trivially implemented in the header. Here we have
specified that the only drag and drop action we support is moving. Thismakes
perfect sense for the task data, but for other kinds of data it might make more
sense to support copying, or both moving and copying (which can be achieved
by returning Qt::MoveAction|Qt::CopyAction).

const QString MimeType = "application/vnd.qtrac.xml.task.z";

QStringList TreeModel::mimeTypes() const

{

return QStringList() << MimeType;

}

★Note that this code works for Qt 4.5 and later, but does not seem to work reliably for Qt 4.4
or earlier.

ptg

CreatingCustom Tree Models 169

Qt’s drag and drop system (and also its clipboard handling) uses MIME types
to identify data. (We briefly discussedMIMEtypes in an earlier chapter; 72 ➤.)
We must reimplement the mimeTypes() method to return the MIME types our
custom model supports. We have created a custom MIME type which we use
to identify task data. As we will see in a moment, we have chosen to use the
same XML format for dragging and dropping task data as we use for saving
and loading it. This isn’t asmemory efficient as using a compact binary format
but it does have the advantage that we can reuse the same code for serializing
and deserializing task items as we do for saving and loading them.

const int MaxCompression = 9;

QMimeData *TreeModel::mimeData(const QModelIndexList &indexes) const

{

Q_ASSERT(indexes.count());

if (indexes.count() != 1)

return 0;

if (TaskItem *item = itemForIndex(indexes.at(0))) {

QMimeData *mimeData = new QMimeData;

QByteArray xmlData;

QXmlStreamWriter writer(&xmlData);

writeTaskAndChildren(&writer, item);

mimeData->setData(MimeType, qCompress(xmlData,

MaxCompression));

return mimeData;

}

return 0;

}

This method is called automatically when a drag is initiated, and is passed
the model indexes the user has started dragging. In the case of a tree model,
if an item is dragged, that item’s index will be in the list of indexes—but its
children’s indexes will not be in the list, although we are still responsible for
dragging them (and their children, recursively) along with their parent.

The mimeData() method can be used to support the dragging of multiple items
(since it can accept a list of model indexes). However, we have chosen to han-
dle just one item being dragged (although this includes its children, and their
children recursively of course). We retrieve a pointer to the item and create a
QByteArray into which we write all the task data in the same XML format we
use for storing the tasks on disk. We then use a QXmlStreamWriter to write the
task and its children asXML data. (Figure 4.2 showswhat the XML data looks
like; 143 ➤.) Once the data iswritten,we compress it using maximum (i.e., slow-
est andmost compact) compression—to reduce thememory needed becausewe
have used a verbose XML format—and set the resultant data as the QMimeData’s
data. The QMimeData returned by thismethod becomesQt’s responsibility so we
don’t have to worry about deleting it.

ptg

170 Chapter 4. Model/View Tree Models

void TreeModel::writeTaskAndChildren(QXmlStreamWriter *writer,

TaskItem *task) const

{

if (task != rootItem) {

writer->writeStartElement(TaskTag);

writer->writeAttribute(NameAttribute, task->name());

writer->writeAttribute(DoneAttribute, task->isDone() ? "1"

: "0");

QListIterator<

QPair<QDateTime, QDateTime> > i(task->dateTimes());

while (i.hasNext()) {

const QPair<QDateTime, QDateTime> &dateTime = i.next();

writer->writeStartElement(WhenTag);

writer->writeAttribute(StartAttribute,

dateTime.first.toString(Qt::ISODate));

writer->writeAttribute(EndAttribute,

dateTime.second.toString(Qt::ISODate));

writer->writeEndElement(); // WHEN

}

}

foreach (TaskItem *child, task->children())

writeTaskAndChildren(writer, child);

if (task != rootItem)

writer->writeEndElement(); // TASK

}

This method is used to write an item as XML data into the given QXmlStream-

Writer. It is almost identical to the method of the same name that we created
for the StandardTreeModel (146 ➤).

We never write the unnamed root item since it exists purely as a programming
convenience and is not part of the data. Once the item’s data has been written,
we write all the item’s children, and their children, recursively, so this method
can be used to write the entire tree if called with the root item—although here
it is always used to write a dragged item (and its children).

bool TreeModel::dropMimeData(const QMimeData *mimeData,

Qt::DropAction action, int row, int column,

const QModelIndex &parent)

{

if (action == Qt::IgnoreAction)

return true;

if (action != Qt::MoveAction || column > 0 ||

!mimeData || !mimeData->hasFormat(MimeType))

return false;

if (TaskItem *item = itemForIndex(parent)) {

ptg

CreatingCustom Tree Models 171

emit stopTiming();

QByteArray xmlData = qUncompress(mimeData->data(MimeType));

QXmlStreamReader reader(xmlData);

if (row == -1)

row = parent.isValid() ? parent.row()

: rootItem->childCount();

beginInsertRows(parent, row, row);

readTasks(&reader, item);

endInsertRows();

return true;

}

return false;

}

This method is automatically called when a drop occurs. If the action is ac-
ceptable—in this example, if it is a move—we begin by retrieving the item
on which the data has been dropped. Drag and drop works by deleting the
dragged items and creating a new set of dropped items that match those
dragged. Thismeans that any pointers to the dragged itemsare no longer valid
after a drag and drop. To handle this we emit a custom stopTiming() signal
which tells any connected QObjects (in this case the MainWindow) to stop updating
the time of the timed itemwhen a drop occurs. (It would, of course, be possible
to check to see if the timed item was among those dragged and only emit the
stopTiming() signal if it were, but our approach is faster and provides consis-
tent behavior.)

Once we have the parent item under which the dropped items will go, we
uncompress the QMimeData’s data into our task XML format. Then we call the
readTasks() method to recreate the dropped task (and its children, recursively)
as a child of the parent item it was dropped on.

If the drop takes place wemust return true; otherwisewemust return false. In
the case of moves, behind the scenesQt uses removeRows() to delete the original
dragged items.

We don’t actually know how many rows we will be inserting since we don’t
know if the XML data describes an item with children. This doesn’t matter
since from the view’s perspective, a drop either invisibly or visibly adds one
child item (depending on whether the drop is onto a collapsed or expanded
item), no matter how many children the item has, because any children are
collapsed. If the given row is valid,we use it as the insertion row, otherwisewe
insert at the parent’s row, or failing that as the last top-level item. The calls
to beginInsertRows() and endInsertRows() are essential to prevent the view from
becoming confused.

ptg

172 Chapter 4. Model/View Tree Models

Note that the model test appears to be over-zealous when it comes to checking
rows that are inserted as a result of a drop. We needed to comment out two
lines (468 and 477) to prevent assertions that appear to be false alarms.

Unfortunately, drag and drop within tree views can be a bit fragile on some
platforms. For example, when using Qt 4.5 on Linux it doesn’t take too much
effort to get a crash when doing drag and drop in a tree. And on Mac OS X
(with both Qt 4.5 and Qt 4.6), although dragging and dropping works fine in
most cases, it is sometimes not possible to drop onto any of the first few items.
Fortunately, these problems do not appear to affect Qt on Windows, and in
any case, moving items and promoting and demoting items using the toolbar
buttons or using key presses give the user just asmuch freedom to move items
as drag and drop provides.

void TreeModel::readTasks(QXmlStreamReader *reader, TaskItem *task)

{

while (!reader->atEnd()) {

reader->readNext();

if (reader->isStartElement()) {

if (reader->name() == TaskTag) {

const QString name = reader->attributes()

.value(NameAttribute).toString();

bool done = reader->attributes().value(DoneAttribute)

== "1";

task = new TaskItem(name, done, task);

}

else if (reader->name() == WhenTag) {

const QDateTime start = QDateTime::fromString(

reader->attributes().value(StartAttribute)

.toString(), Qt::ISODate);

const QDateTime end = QDateTime::fromString(

reader->attributes().value(EndAttribute)

.toString(), Qt::ISODate);

Q_ASSERT(task);

task->addDateTime(start, end);

}

}

else if (reader->isEndElement()) {

if (reader->name() == TaskTag) {

Q_ASSERT(task);

task = task->parent();

Q_ASSERT(task);

}

}

}

}

ptg

CreatingCustom Tree Models 173

This method is used to read in a task from XML data, as a child of the given
item. The method works recursively to account for the task’s children, and
their children, and so on. Structurally, the code is the same as that used in the
StandardTreeModel::load() method we saw earlier (148 ➤).

This method can be used to load in an entire file of XML task data by calling
it with the root item, but here it is used to recreate a dragged item (and its
children) as a child of the given item.

We have now completed our review of the implementations of the QAbstract-

ItemModel methods that support drag and drop. In fact, the implementations
also work the same way for list and table models, since Qt uses the same ap-
proach to drag and drop in all three cases, so adapting the code to work for cus-
tom list and table models should be straightforward.

Methods for Moving Items in a Tree |

For editable tree models that have items all of the same kind and that can be
arbitrarily nested, it makes sense to provide more ways of moving the items
than just drag and drop. Being able to move items using the keyboard is
particularly welcome to those who cannot or don’t wish to use the mouse, and
of course because all the movement methods discussed here are invoked via
QActions, they can also be used by mouse users by clicking the corresponding
menu items or toolbar buttons.

We have provided three groups of methods: methods for moving an item up
and down among its siblings, methods for cutting an item and pasting it back
somewhere else in the tree, and methods for promoting and demoting items,
that is, for making an item a sibling of its parent or a child of one of its sib-
lings. Naturally, like the drag and drop implementations, thesemethods apply
not just to the selected item,but also to that item’s children, and their children,
recursively.

QModelIndex TreeModel::moveUp(const QModelIndex &index)

{

if (!index.isValid() || index.row() <= 0)

return index;

TaskItem *item = itemForIndex(index);

Q_ASSERT(item);

TaskItem *parent = item->parent();

Q_ASSERT(parent);

return moveItem(parent, index.row(), index.row() - 1);

}

An item can be moved up providing it has at least one sibling above it, that is,
its row must be greater than 0. If this is the case we call the moveItem() helper

ptg

174 Chapter 4. Model/View Tree Models

method, passing it the item’s parent, the item’s current (old) row, and the new
row—which for moving up is always one less than the old row.

The moveDown() method (not shown) is very similar except that there must be
at least one sibling below the item to bemoved and the new row is set to be one
more than the item’s current row.

QModelIndex TreeModel::moveItem(TaskItem *parent, int oldRow,

int newRow)

{

Q_ASSERT(0 <= oldRow && oldRow < parent->childCount() &&

0 <= newRow && newRow < parent->childCount());

parent->swapChildren(oldRow, newRow);

QModelIndex oldIndex = createIndex(oldRow, 0,

parent->childAt(oldRow));

QModelIndex newIndex = createIndex(newRow, 0,

parent->childAt(newRow));

emit dataChanged(oldIndex, oldIndex);

emit dataChanged(newIndex, newIndex);

return newIndex;

}

This method is called by moveUp() and by moveDown() to perform the move. The
TaskItem::swapChildren() method uses QList::swap() to swap the two items
in the task item’s list of children. After performing the move the moveItem()

method calls dataChanged() to notify any views that two items in the model
have changed, and we return the model index of the moved item in its new po-
sition.

As alwayswhen calling createIndex(), we pass the item’s row and column—the
latter always 0 for this particular model—and a pointer to the TaskItem that
represents the item.

Figure 4.5 illustrates moving an item—in fact the figure can be taken as an
illustration of moving item A down or of moving item B up, since the effects of
either move are the same. The items shown shaded on the right-hand side are
those that have been affected by the move: items A and B because they have
moved, and their parent, item P, because its list of child items has changed.

This method, like most of the movement-related methods, returns a model
index to its caller. In most cases, including here, the model index is for the
moved item. Themodel index is returned in the expectation that the caller will
scroll to and select the item. This is especially convenient for users in the case
of moving items up or down since they can select an item and then repeatedly
invoke the Up action (or press Ctrl+Up or +Up on Mac OS X) to move the item
above each of the siblings above it in turn until it becomes its parent’s first
child. And correspondingly the user could invoke the Down action (or press

ptg

CreatingCustom Tree Models 175

P

A

B

C

➟

P

B

A

C

Figure 4.5 Moving an item up or down by swapping it with its sibling

Ctrl+Down or +Down) to move the item below each of the siblings below it until
it becomes its parent’s last child.

QModelIndex TreeModel::cut(const QModelIndex &index)

{

if (!index.isValid())

return index;

delete cutItem;

cutItem = itemForIndex(index);

Q_ASSERT(cutItem);

TaskItem *parent = cutItem->parent();

Q_ASSERT(parent);

int row = parent->rowOfChild(cutItem);

Q_ASSERT(row == index.row());

beginRemoveRows(index.parent(), row, row);

TaskItem *child = parent->takeChild(row);

endRemoveRows();

Q_ASSERT(child == cutItem);

if (row > 0) {

--row;

return createIndex(row, 0, parent->childAt(row));

}

TaskItem *grandParent = parent->parent();

Q_ASSERT(grandParent);

return createIndex(grandParent->rowOfChild(parent), 0, parent);

}

Thismethod followsa pattern that is common tomost of themovement-related
methods: first we perform the action, then we create a model index to return to
the caller so that the view has an item to scroll to and select.

ptg

176 Chapter 4. Model/View Tree Models

We begin by deleting the cutItem; this is harmless if the item is 0, and if it isn’t
then the item (and its children, recursively) is deleted since it cannot now be
pasted anywhere. Next we get a pointer to the task item that is to be cut and
store it in cutItem; we also get the item’s parent and its row within its parent.
Next we call beginRemoveRows() to notify the model/view architecture that an
item is to be deleted, and then we remove the cut item from its parent’s list of
children. The cutItem is now parentless and it is our responsibility to delete
it when appropriate. (In fact it is deleted in three methods: this one, clear(),
and the TreeModel’s destructor.) Once it is removed, we call endRemoveRows() to
notify themodel/view architecture that the removal is finished. (The Q_ASSERTs
that compare the rows, and the child item with the cut item, are just sani-
ty checks.)

When an item is cut from the tree, any associated views will automatically
make the “nearest” item the current item. The views will choose the previous
sibling if there is one, or failing that the next sibling if there is one, or failing
that the parent. We prefer to always choose the previous sibling if there is one
or failing that the parent, so we have made this method return the model in-
dex of the item we want to make current, expecting the caller to pass it to our
custom setCurrentIndex()method. If we were happy with the default behavior
we could make the method return void and simply finish it at the endRemove-

Rows() call. We don’t have this choice for the other movement-related methods
though—they must always tell their associated views which item to select.

QModelIndex TreeModel::paste(const QModelIndex &index)

{

if (!index.isValid() || !cutItem)

return index;

TaskItem *sibling = itemForIndex(index);

Q_ASSERT(sibling);

TaskItem *parent = sibling->parent();

Q_ASSERT(parent);

int row = parent->rowOfChild(sibling) + 1;

beginInsertRows(index.parent(), row, row);

parent->insertChild(row, cutItem);

TaskItem *child = cutItem;

cutItem = 0;

endInsertRows();

return createIndex(row, 0, child);

}

This method is used to paste an item (and its children) back into the tree. We
have chosen to always insert the pasted item as a new sibling of the select-
ed item, and to occupy the row after its new sibling in their parent’s list of
children.

ptg

CreatingCustom Tree Models 177

One consequence of this approach is that the user can never paste an item as a
first child—to achieve that theymust paste onto a first child (so that the pasted
item becomes the second child) and then move the pasted item up. On the
other hand we can paste an item as a last child simply by pasting onto a last
child. Alternatively, if we had chosen to always insert the pasted item above
the selected item then the user could paste an item as the first child (by pasting
onto the first child), but not as a last child since pasting onto a last child would
put the pasted item above the last child. Another alternative would be to pop
up a menu—for example, with Paste Before Current Item and Paste After Current
Item options.

We get the item—which will be the pasted item’s sibling—that corresponds to
the selected model index. We then retrieve the sibling’s parent item and find
out which row the sibling occupies in its parent’s list of children. Then we call
beginInsertRows() to notify the model/view architecture that a row is about to
be inserted, and insert the cut item at the following row.

Once the paste is done we set cutItem to 0 since wemust not paste an item that
is already in the tree—we can only paste an item that has been cut out of the
tree. Then we call endInsertRows() to notify the model/view architecture that
the insertion is finished, and finally we return the model index of the newly
pasted item so that the view can scroll to it and select it.

QModelIndex TreeModel::promote(const QModelIndex &index)

{

if (!index.isValid())

return index;

TaskItem *item = itemForIndex(index);

Q_ASSERT(item);

TaskItem *parent = item->parent();

Q_ASSERT(parent);

if (parent == rootItem)

return index; // Already a top-level item

int row = parent->rowOfChild(item);

TaskItem *child = parent->takeChild(row);

Q_ASSERT(child == item);

TaskItem *grandParent = parent->parent();

Q_ASSERT(grandParent);

row = grandParent->rowOfChild(parent) + 1;

grandParent->insertChild(row, child);

QModelIndex newIndex = createIndex(row, 0, child);

emit dataChanged(newIndex, newIndex);

return newIndex;

}

ptg

178 Chapter 4. Model/View Tree Models

Promoting an item means making it a child of its grandparent, occupying the
row following its ex-parent. And, of course, all the promoted item’s children
and their children, recursively, come with it. Figure 4.6 illustrates the promo-
tion of item B. The items shown shaded are the ones affected by the move: B’s
grandparent, GP, becomes its parent, and B’s original parent’s list of children
no longer contains item B.

We begin by retrieving the task items for the model index of the item to be
promoted and for its parent. If the item’s parent is the root item it is already
a top-level item and cannot be promoted further so we do nothing and simply
return the item’smodel index. Otherwise,we find the item’s row in its parent’s
list of children and remove it from its parent—at this point it is parentless and
ownerless since the TaskItem::takeChild() method (158 ➤) removes the taken
child from its parent’s list of children and sets the item’s parent to 0.

We do a sanity check Q_ASSERT to ensure that the child we have taken from its
parent really is the itemweare about to promote. Thenweget the grandparent
and find the row theparent occupies in the grandparent’s list of children. Next,
we insert the child in the row after its ex-parent; the TaskItem::insertChild()

method (157 ➤) reparents the item it inserts, so afterwards, the item is safely
back in the tree and has the correct parent.

At the end, we create a model index for the promoted item and emit data-

Changed() to notify any associated views that the model has changed. Finally,
we return the promoted item’s model index to the caller.

QModelIndex TreeModel::demote(const QModelIndex &index)

{

if (!index.isValid())

return index;

TaskItem *item = itemForIndex(index);

Q_ASSERT(item);

TaskItem *parent = item->parent();

Q_ASSERT(parent);

int row = parent->rowOfChild(item);

if (row == 0)

return index; // No preceding sibling to move this under

TaskItem *child = parent->takeChild(row);

Q_ASSERT(child == item);

TaskItem *sibling = parent->childAt(row - 1);

Q_ASSERT(sibling);

sibling->addChild(child);

QModelIndex newIndex = createIndex(sibling->childCount() - 1, 0,

child);

emit dataChanged(newIndex, newIndex);

return newIndex;

}

ptg

CreatingCustom Tree Models 179

A

B

GP

P

C

➟ A

P

C

GP

B

Figure 4.6 Promoting an item by making it a child of its grandparent

Demoting an item means moving the item such that it becomes a child of the
sibling above it. And, of course, all the demoted item’s children and their chil-
dren, recursively, come with it. We could put the demoted item anywhere in
its ex-sibling’s (now its parent’s) list of children, but we have chosen to always
make the demoted item the last child of the sibling above it. Figure 4.7 illus-
trates the demotion of item B. The items shown shaded are the ones affected
by themove:B’s sibling above it,A, become’sB’s parent with B becoming A’s last
child and being removed from its original parent, P’s, list of children.

A

X

Y

B

P

C

➟

A

X

Y

B

P

C

Figure 4.7 Demoting an item by making it the last child of the sibling above it

ptg

180 Chapter 4. Model/View Tree Models

We begin the demotion by retrieving the task items for the model index of
the item to be demoted and for its parent. If the item is its parent’s first child
then there is no sibling above it that we can move it to, so we do nothing and
simply return the item’s model index. Otherwise, we remove the item from its
parent—at this point it is parentless and ownerless since the TaskItem::take-

Child()method (158 ➤) removes the taken child from its parent’s list of children
and sets the item’s parent to 0.

In a similar way to what we did when promoting an item,we do a sanity check
Q_ASSERT to ensure that the child we have taken from its parent is indeed the
item we are about to demote. Then we retrieve the item’s sibling that pre-
ceded it in their parent’s list of children and add the item as its sibling’s last
child. The TaskItem::addChild() method (157 ➤) reparents the item it adds, so
after calling thismethod, the item is safely back in the tree and has the correct
parent.

And at the end, just as we did for the promote() method, we create a model
index for the demoted item and emit dataChanged() to notify any associated
views that themodel has changed. Finally,we return the demoted item’smodel
index to the caller.

We have now covered all the methods that we added to extend the QAbstract-

ItemModel’s API to support moving items in the tree. Providing the item class
uses a list of child items and has the methods used here (addChild(), insert-
Child(), takeChild(), and so on—or equivalents), the implementations shown
should be very easy to adapt for reuse in other custom tree models. This
reusability is fortunate since as the clue of the littering of Q_ASSERTs might in-
dicate, althoughmost of themethods look deceptively simple, they can be quite
tricky to get right.

Methods for Saving and Loading Tree Items ||

In this subsubsectionwe will look at themethods needed to support the saving
and loading of tree items to and from files, including the methods for handling
task paths. Although the timelog2 application has more functionality than
timelog1 (in particular support for drag and drop, copy and paste, and moving
items),we have used the sameXML file format for both (143 ➤) so their files are
completely interchangeable.

void TreeModel::clear()

{

delete rootItem;

rootItem = 0;

delete cutItem;

cutItem = 0;

timedItem = 0;

ptg

CreatingCustom Tree Models 181

reset();

}

This method is needed to support the fileNewAction. We must delete the root
item and the cut item since we own these; but the timed item is an item in
the tree so the root already owns it. (We won’t say more about the timed item
since its only importance is to do with timing a task—it has no significance in
the context of the model/view programming we are considering here.) At the
end we call QAbstractItemModel::reset() to notify any associated views that
the model’s data has changed radically so they must re-request any items that
they want to show.

void TreeModel::save(const QString &filename)

{
···
QXmlStreamWriter writer(&file);

writer.setAutoFormatting(true);

writer.writeStartDocument();

writer.writeStartElement("TIMELOG");

writer.writeAttribute("VERSION", "2.0");

writeTaskAndChildren(&writer, rootItem);

writer.writeEndElement(); // TIMELOG

writer.writeEndDocument();
}

Thismethod starts out in the sameway as the StandardTreeModel::save()meth-
od—so we have omitted that part of the code—using the existing filename or
the one passed in as appropriate,and raising an exception if the file couldn’t be
opened (144 ➤). All the work is done by the writeTaskAndChildren()method that
we saw earlier when we looked at implementing drag and drop and needed to
serialize an item and its children in XML format (170 ➤).

void TreeModel::load(const QString &filename)

{
···
clear();

rootItem = new TaskItem;

QXmlStreamReader reader(&file);

readTasks(&reader, rootItem);

if (reader.hasError())

throw AQP::Error(reader.errorString());

reset();
}

This method starts in a similar way to the save() method regarding filename
handling and raising an exception if the file couldn’t be opened, so once again
we have omitted the code. After clearing the existing tasks a new root item

ptg

182 Chapter 4. Model/View Tree Models

is created and the readTasks() method is used to populate the tree with the
given root item and read its data from the given QXmlStreamReader. This is the
same readTasks() method we used earlier to recreate dropped data under a
particular parent item in the tree (173 ➤).

QStringList TreeModel::pathForIndex(const QModelIndex &index) const

{

QStringList path;

QModelIndex thisIndex = index;

while (thisIndex.isValid()) {

path.prepend(data(thisIndex).toString());

thisIndex = thisIndex.parent();

}

return path;

}

This method provides a QStringList to represent a particular item in the tree
and uses the same logic as the version we created for the StandardTreeModel.

It starts by adding the given item’s text to the path QStringList and then
prepends the item’s parent’s text to the list, and the parent’s parent’s text, and
so on up to the top. Keep in mind that the parent model index of a top-level
item’s model index is not the root item (that’s the parent of a top-level item),
but rather an invalid model index.

The method is used by the main window’s close event handler to save the
currently selected item using QSettings when the application terminates.

QModelIndex TreeModel::indexForPath(const QStringList &path) const

{

return indexForPath(QModelIndex(), path);

}

QModelIndex TreeModel::indexForPath(const QModelIndex &parent,

const QStringList &path) const

{

if (path.isEmpty())

return QModelIndex();

for (int row = 0; row < rowCount(parent); ++row) {

QModelIndex thisIndex = index(row, 0, parent);

if (data(thisIndex).toString() == path.at(0)) {

if (path.count() == 1)

return thisIndex;

thisIndex = indexForPath(thisIndex, path.mid(1));

if (thisIndex.isValid())

return thisIndex;

}

ptg

CreatingCustom Tree Models 183

}

return QModelIndex();

}

Thesemethods do the opposite of pathForIndex()—they take a model index and
a task path and return the corresponding model index. The public method
takes a task path argument and calls the privatemethodwith an invalidmodel
index (which in Qt’s model/view architecture is used to signify the root) as the
parent model index, and the task path it was given.

The private method iterates over the parent model index’s children’s model
indexes looking for a child whose text is the same as the first text in the task
path. If a match is found the method calls itself recursively with the child
model index as the new parent and with a task path that doesn’t include the
first (already matched) string. Eventually either all the strings in the task
path will be matched and the corresponding model index returned, or the
matching will fail and an invalid model index will be returned.

When the Timelog application is started it uses QSettings to retrieve the path
of the last file that was loaded and the task path of that file’s selected item.
If there was such a file this method is used to find the task path item’s model
index after the file has been loaded, so that the item can be scrolled to and se-
lected to restore the tree to the same state as when the application was termi-
nated.

In fact the state may not be completely restored since we only expand the tree
enough to show the selected item, whereas the user may have had other parts
of the tree expanded when they last terminated the application. It would
be possible to restore all of the tree’s state, but doing so might use a lot of
storage in QSettings (e.g., in the Windows registry) if the user had lots of fully
expanded top-level itemswith lots of children—so if thiswas required it would
probably be better to record the state in the data itself (e.g., as an “expanded”
or “visible” attribute), or use a separate file since, for example, the Windows
registry has size limits.

We have now completed our review of treemodels and seen how to create a cus-
tom QStandardItemModel to hold a tree of items. In addition we have seen how to
create a custom QAbstractItemModel that provides the same QAbstractItemModel

API as any other model, plus extensions to the API to support moving items
in the tree and for saving and loading the tree to and from disk. In the next
chapter we will turn our attention to custom delegates, and in the last of the
four model/ view-related chapters we will look at custom views.

ptg

This page intentionally left blank

ptg

Model/View Delegates |||||

5
● Datatype-Specific Editors

● Datatype-Specific Delegates

● Model-Specific Delegates

This chapter covers model/view delegates, and assumes a basic familiarity
with Qt’s model/view architecture, as described at the beginning of Chapter 3
(88 ➤).

All of Qt’s standard view classes—QListView, QTableView, QColumnView, QTreeView,
and QComboBox—provide a QStyledItemDelegate for the display and editing (in
the case of editable models) of the data they access.★

In this chapterwewill see how to set and use customdelegates that can be used
to give us complete control over the appearance of items displayed in the view,
or to allow us to provide our own editors for editable items, or both. Broadly
speaking there are three approaches we can take, and this chapter covers all
of them.

Qt’s built-in delegates use particular widgets to edit particular datatypes. In
this chapter’s first section we will see how to change the widgets that Qt uses
by default to our own choices of built-in or custom widgets. This is a very
powerful approach—it affects all editable items of the relevant datatypes in all
views—but for this reason it is also the least flexible approach, especially when
compared to using custom delegates.

In the second section we will see how to create custom datatype-specific dele-
gates that can be set for particular rows or columns. These delegates are very
versatile and can be reused in model after model. Also, unlike simply chang-
ing the editor widget, creating a custom delegate allows us to control both the
appearance and the editing of items. Wewill review two examples of this kind,
the first being a simple read-only delegate that renders date/times in a custom
way. The second is a more complex delegate for viewing and editing rich text
items such as those that were used by the Timelog examples presented in the
previous chapter.

★Qt also has a QItemDelegate class but this was superceded from Qt 4.4 by QStyledItemDelegate .

185

ptg

186 Chapter 5. Model/View Delegates

In some situations it ismore convenient to create amodel-specific delegate that
handles all of the model’s items than to use datatype-specific delegates for the
model’s rows or columns. In this chapter’s last section we will look at how to
implement model-specific delegates, taking as our example the delegate used
by Chapter 3’s Zipcodes examples.

Datatype-Specific Editors ||||

If we want to provide a global editor based purely on an item’s type, we can
create a QItemEditorFactory and register a particular widget to use as the editor
for a specified type (or for specified types). For example:

QItemEditorFactory *editorFactory = new QItemEditorFactory;

QItemEditorCreatorBase *numberEditorCreator = new

QStandardItemEditorCreator<SpinBox>();

editorFactory->registerEditor(QVariant::Double,

numberEditorCreator);

editorFactory->registerEditor(QVariant::Int,

numberEditorCreator);

QItemEditorFactory::setDefaultFactory(editorFactory);

Here we have said that every editable item in every view that the application
uses whose value is a double or an int will use the custom SpinBox as its editor.

explicit SpinBox(QWidget *parent=0)

: QDoubleSpinBox(parent)

{

setRange(-std::numeric_limits<double>::max(),

std::numeric_limits<double>::max());

setDecimals(3);

setAlignment(Qt::AlignVCenter|Qt::AlignRight);

}

The only method we have reimplemented is the constructor. We have set the
spinbox’s range to go from the lowest negative to the highest positive double

that the system supports, and to show three decimal digits and to align right.★

The editor is shown in action in Figure 5.1. Having registered this spinbox we
have ensured that all doubles and ints are presented and edited consistently
for all the items in all the views used by the application.

Unfortunately,using a factory like this doesnot play nicely with QStandardItems
for non-string data—at least not out of the box. This is because QStandard-

★We cannot use std::numeric_limits<T>::min(), since for floating-point types it returns the smallest
value above 0 (some tiny fraction), rather than the most negative number (which is what is
returned for integer types).

ptg

Datatype-Specific Editors 187

Figure 5.1 The factory registered SpinBox in action

Items hold their data as QStrings, so when editing is initiated, a QString is pre-
sented for editing. But this does not cause our registered editor—SpinBox—to
be used, since it is only registered for doubles and ints. The solution is quite
easy though: we just ensure that we always store and retrieve our data from
the QStandardItemModel using the Qt::EditRole, and we use a QStandardItem sub-
class to hold the data. Here’s an example of such a subclass that holds double
values:

class StandardItem : public QStandardItem

{

public:

explicit StandardItem(const double value) : QStandardItem()

{ setData(value, Qt::EditRole); }

QStandardItem *clone() const

{ return new StandardItem(data(Qt::EditRole).toDouble()); }

QVariant data(int role=Qt::UserRole+1) const

{

if (role == Qt::DisplayRole)

return QString("%1").arg(QStandardItem::data(Qt::EditRole)

.toDouble(), 0, 'f', 3);

if (role == Qt::TextAlignmentRole)

return static_cast<int>(Qt::AlignVCenter|Qt::AlignRight);

return QStandardItem::data(role);

}

};

In the constructor we store the double using the Qt::EditRole. We also provide
a clone() method to ensure that if the model duplicates an item it correctly
creates a StandardItem instance rather than a plain QStandardItem.

The QStandardItem::data() method is not the same as QAbstractItemModel::

data(); in particular it is a conventional C++ method that can make use of the
base class version, so for unhandled cases it should always return the result
of calling the base class—not an invalid QVariant. Here we only have to handle

ptg

188 Chapter 5. Model/View Delegates

the display and text alignment roles to get the formatting wewant—the double
will be correctly returned (inside a QVariant) by the base class call for the Qt::

EditRole.

The snippets that we have just seen showing the use of an item editor factory
are taken from Chapter 7’s Number Grid example (numbergrid).

Registering an editor widget for items of a particular datatype is very power-
ful since it applies globally throughout an application. In practice, though, we
rarely want to do this, and would rather customize the appearance and behav-
ior of items on a model-by-model basis—something that is easily achieved us-
ing custom delegates as we will see in the next two sections.

Datatype-Specific Delegates ||||

If we create a lot of custom models and usually create a custom delegate for
each one, we may find that we end up duplicating a lot of code. For example,
wemay have severalmodels,eachwith an associated customdelegate. Thedel-
egates will be different because the models have different datatypes in differ-
ent columns, even though the code for handling each particular datatype—for
example, using a customized date editor for date columns—is the same.

One way of avoiding the duplication and improving the reusability of our code
—not just within an application,but acrossapplications—is to create datatype-
specific delegates that we set for particular rows or columns. For example, if
we created a date-specific delegate, we could set it as the column delegate for
every one of our models that has one or more date columns. This would elim-
inate a lot of duplicate code and make it trivial to use the delegate with new
models that have one or more columns of dates. Andwe could also create other
datatype-specific delegates, for example, for angles, colors, money, times, and
so on, all of which would avoid code duplication and ensure consistency across
our applications.

In this section we will look at two such delegates, both of which we will use for
particular columns, although they could just as easily be used for particular
rows. The first is a simple read-only delegate for showing date/times in a
customized way, and the second is a delegate for presenting and editing “rich
text”—text that uses a small subset of HTMLmarkup for bold, italic, color, and
so on—this was the delegate used by the Timelog applications we saw in the
previous chapter.

A Read–Only Column or Row Delegate |||

Figure 5.2 shows the Folder View application (folderview) with its two QTree-

Views. The right-hand QTreeView uses a custom DateTimeDelegate that shows

ptg

Datatype-Specific Delegates 189

Figure 5.2 The read-only DateTimeDelegate in action (right-hand view)

the time data as a clock, and the date data as text using the ISO 8601 format.
The model from which the data is taken is a QFileSystemModel, and to make the
screenshots fit nicely on the page we have hidden a couple of columns.

The DateTimeDelegate shows the last modified time using an analog clock face,
with a light background for AM times and a dark background for PM times—and
with the background faded when the date is earlier than today.

Beforewe look at the delegate’s codewewill briefly review the code for creating
the model, view, and delegate, to give us some context.

QFileSystemModel *model = new QFileSystemModel;

model->setRootPath(QDir::homePath());

QModelIndex index = model->index(QDir::homePath());

QTreeView *view = new QTreeView;

view->setItemDelegateForColumn(3, new DateTimeDelegate);

view->setModel(model);

view->setColumnHidden(1, true);

view->setColumnHidden(2, true);

view->scrollTo(index);

view->expand(index);

view->setCurrentIndex(index);

The static QDir::homePath()method returns the user’s home directory. The QDir
class has other similar methods, including QDir::currentPath(), QDir::root-
Path(), and QDir::tempPath(), all of which return strings. It also has corre-
sponding methods that return QDir objects (QDir::home(), and so on).

The QFileSystemModel is editable, so it is possible to use it as the basis for a file
manager. Here we have simply used it to provide data to a QTreeView to which
wehave set a DateTimeDelegate for its fourth column—all the other columnswill
use the tree view’s built-in QStyledItemDelegate. The call to QFileSystemModel::

ptg

190 Chapter 5. Model/View Delegates

setRootPath() does not set the currently selected item—the setCurrentIndex()

method does that—but instead sets the directory to be watched by a QFileSys-

temWatcher. If any changes occur to the watched directory’s files or subdirecto-
ries, then these changes—such as a file being deleted or updated—are reflected
back into the model, and consequently show up in any associated views.

For the DateTimeDelegate we just need to reimplement the constructor and the
paint() method since we only want to change the appearance of the items it
handles, not their behavior.

class DateTimeDelegate : public QStyledItemDelegate

{

Q_OBJECT

public:

explicit DateTimeDelegate(QObject *parent=0)

: QStyledItemDelegate(parent) {}

void paint(QPainter *painter, const QStyleOptionViewItem &option,

const QModelIndex &index) const;

private:
···

};

The constructor simply passes on the work to the base class. We will review
the paint() method and the private helper methods it uses to see how the item
is rendered.

void DateTimeDelegate::paint(QPainter *painter,

const QStyleOptionViewItem &option,

const QModelIndex &index) const

{

const QFileSystemModel *model =

qobject_cast<const QFileSystemModel*>(index.model());

Q_ASSERT(model);

const QDateTime &lastModified = model->lastModified(index);

painter->save();

painter->setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

if (option.state & QStyle::State_Selected)

painter->fillRect(option.rect, option.palette.highlight());

const qreal diameter = qMin(option.rect.width(),

option.rect.height());

const QRectF rect = clockRect(option.rect, diameter);

drawClockFace(painter, rect, lastModified);

drawClockHand(painter, rect.center(), diameter / 3.5,

((lastModified.time().hour() +

ptg

Datatype-Specific Delegates 191

(lastModified.time().minute() / 60.0))) * 30);

drawClockHand(painter, rect.center(), diameter / 2.5,

lastModified.time().minute() * 6);

drawDate(painter, option, diameter, lastModified);

painter->restore();

}

We begin by obtaining the last modified date/time for the item—that is, of the
file, directory, or other filesystem object—whose details are to be painted. We
then save the painter’s state and switch on antialiasing.★

If the item is selected we paint the background using the appropriate back-
ground highlighting color taken from the palette. Then we compute the clock
face’s diameter which we need for various calculations further on, and also the
rectangle to use for the clock’s face.

With everything set upwe draw the clock face, theminute hand, the hour hand,
and then the date (as text), and finally we restore the painter to the state it had
before we started painting, ready for it to be reused to paint the next item.

QRectF DateTimeDelegate::clockRect(const QRectF &rect,

const qreal &diameter) const

{

QRectF rectangle(rect);

rectangle.setWidth(diameter);

rectangle.setHeight(diameter);

return rectangle.adjusted(1.5, 1.5, -1.5, -1.5);

}

This method returns a rectangle based on the given item’s rectangle, with
the same x- and y-coordinates, but reduced in size to be a square of the given
diameter, and then slightly reduced again to allow some margin.

The QRect::adjusted()method (and the QRectF version) returnsa new rectangle
with the coordinates of its top-left corner and bottom-right corner adjusted by
the given amounts. So in this case, the top-left has beenmoved right and down
(since y-coordinates increase downward) by 1.5 pixels, and the bottom-right
corner has been moved left and up by 1.5 pixels.

void DateTimeDelegate::drawClockFace(QPainter *painter,

const QRectF &rect, const QDateTime &lastModified) const

{

const int Light = 120;

const int Dark = 220;

★ At the time of this writing, Qt’s QPainter documentation doesn’t say which render hints—if
any—are on by default, so we take a cautious approach and always specify the ones that we want.

ptg

192 Chapter 5. Model/View Delegates

int shade = lastModified.date() == QDate::currentDate()

? Light : Dark;

QColor background(shade, shade,

lastModified.time().hour() < 12 ? 255 : 175);

painter->setPen(background);

painter->setBrush(background);

painter->drawEllipse(rect);

shade = shade == Light ? Dark : Light;

painter->setPen(QColor(shade, shade,

lastModified.time().hour() < 12 ? 175 : 255));

}

This method is used to draw the clock face—drawing an ellipse produces a cir-
cle if the rectangle is square as it is in this case. Most of the code is concerned
with coloring using RGB (Red,Green, Blue) values which must be in the range
0–255, and which in this example depend on whether the time is AM or PM and
whether the date is today or earlier. At the end we set the pen color to use for
drawing the clock’s hands since this depends on the colors used for the clock’s
face (to ensure a good contrast).

void DateTimeDelegate::drawClockHand(QPainter *painter,

const QPointF ¢er, const qreal &length,

const qreal °rees) const

{

const qreal angle = AQP::radiansFromDegrees(

(qRound(degrees) % 360) - 90);

const qreal x = length * std::cos(angle);

const qreal y = length * std::sin(angle);

painter->drawLine(center, center + QPointF(x, y));

}

This method is called twice, once for the minute hand and once for the hour
hand. The center point is the middle of the clock face, the length is a fraction
of the diameter—shorter for the hour hand than for the minute hand—and
the degrees is the angle proportional to the time the hand represents. We
make sure that the angle is in range and subtract 90° from it to move the 0°
position from the East used in geometry to the North used by analog clocks.
We then compute the end point of the hand and draw a line from the center to
the end point. (The qRound() function is described in Table 1.2; 46 ➤. The AQP::

radiansFromDegrees() function is in the book’s aqp.{hpp,cpp} module.)

void DateTimeDelegate::drawDate(QPainter *painter,

const QStyleOptionViewItem &option, const qreal &diameter,

const QDateTime &lastModified) const

{

painter->setPen(option.state & QStyle::State_Selected

ptg

Datatype-Specific Delegates 193

? option.palette.highlightedText().color()

: option.palette.windowText().color());

QString text = lastModified.date().toString(Qt::ISODate);

painter->drawText(option.rect.adjusted(

qRound(diameter * 1.2), 0, 0, 0), text,

QTextOption(Qt::AlignVCenter|Qt::AlignLeft));

}

We draw the date using the window text color—or the highlighted text color if
the item is selected. Andweuse an itemrectanglewhose x-coordinate is shifted
right to allow space for the clock face as well as some margin.

The QTextOption class is used to store the alignment,wrapmode, tab stops, and
various formatting flags for an arbitrary piece of rich text. Its most common
use when painting text is to provide the desired alignment, and for multi-line
texts, the wrap mode.

Rendering date/times or other kinds of model data in a custom way can easily
be done by creating a custom delegate and reimplementing its paint() method
aswe have done here. And, aswithmost painting in Qt, thework wemust do is
primarily concerned with using appropriate colors and with the mathematics
of sizing and positioning. But when we have editable items, we may prefer to
provide our own editing widgets, something that requires us to reimplement
more methods, as we will see in the next subsection.

An Editable Column or Row Delegate |||

A custom delegate can be used for rendering items or for editing items, or
for both. In the case of rendering we need to reimplement only the paint()

method, but if we want to support editing we must implement some of the
QStyledItemDelegate API shown in Table 5.1—at the least, the createEditor(),
setEditorData(), and setModelData() methods.

The base class implementations of sizeHint() and updateEditorGeometry() are
almost always sufficient, so we rarely need to reimplement them. Similarly,
there is often no need to reimplement the paint() method, particularly if the
data is simple plain text, dates, times, or numbers.

In the Timelog applications that we looked at in Chapter 4, we used “rich
text”—a simple HTML subset that supports basic font effects such as bold,
italic, and color. In addition, the rich text items (the tasks) were checkable.
To provide support for this we created the RichTextDelegate which is shown
displaying its context menu in Figure 5.3.

The RichTextDelegate provides both rendering and editing. The class imple-
ments most of the QStyledItemDelegate API—specifically, paint(), sizeHint(),
createEditor(), setEditorData(), and setModelData(). In addition it has a private

ptg

194 Chapter 5. Model/View Delegates

Table 5.1 The QStyledItemDelegateAPI

Method Description

createEditor(parent,

styleOption, index)

Returns a widget suitable for editing the item at
the given model index

paint(painter,

styleOption, index)

Paints the item at the given model index—rarely
needs to be reimplemented for plain text, dates,
or numbers

setEditorData(editor,

index)

Populates the editor with the data for the model’s
item at the given model index

setModelData(editor,

model, index)

Sets the model’s item at the given model index to
have the data from the editor

sizeHint(styleOption,

index)

Returns the size that the delegate needs to display
or edit the item at the given model index

updateEditorGeometry(

editor, styleOption,

index)

Sets the editor’s size and position for in-place
editing—rarely needs to be reimplemented

slot, closeAndCommitEditor(), and two items of private data—a QCheckBox point-
er and a QLabel pointer. We will review all the methods, starting with the con-
structor.

RichTextDelegate::RichTextDelegate(QObject *parent)

: QStyledItemDelegate(parent)

{

checkbox = new QCheckBox;

checkbox->setFixedSize(

qRound(1.3 * checkbox->sizeHint().height()),

checkbox->sizeHint().height());

label = new QLabel;

label->setTextFormat(Qt::RichText);

label->setWordWrap(false);

}

There are three approaches we can use when it comes to rendering items in
custom delegates. One is to paint everything ourselves—we did this in the
DateTime delegate (188 ➤)—this has the disadvantage that we must account for
platform differences ourselves. Another is to use Qt’s QStyle class, for example,
using QStyle::drawControl(), QStyle::drawComplexControl(), and so on—a pow-
erful but rather low-level approach that requires a lot of care and quite a bit of
code. Here we have taken the simpler and most high-level route:we will paint
widgets, in this case the checkbox and label, leaving Qt to handle the platform
differences and keeping our code as clean and simple as possible.

ptg

Datatype-Specific Delegates 195

Figure 5.3 The RichTextDelegate in action

If we wanted to render only plain text we would only need a checkbox widget,
since that shows a checkbox and an associated text. But since wewant to show
rich text we use the checkbox purely to show the checkbox (and give it no text
to show), and use a label to show the rich text.

We make the checkbox occupy slightly more width than it actually needs,
to provide some margin so that it doesn’t abut the label. And we tell the la-
bel to treat any text it receives as rich text (HTML) and not to do any word
wrapping.

~RichTextDelegate() { delete checkbox; delete label; }

When the delegate is destroyed we must delete the checkbox and the label—
this is trivially achieved in the header file’s inline destructor.

For ease of explanation we will review the paint() method in four short parts.

void RichTextDelegate::paint(QPainter *painter,

const QStyleOptionViewItem &option,

const QModelIndex &index) const

{

bool selected = option.state & QStyle::State_Selected;

QPalette palette(option.palette);

palette.setColor(QPalette::Active, QPalette::Window,

selected ? option.palette.highlight().color()

ptg

196 Chapter 5. Model/View Delegates

: option.palette.base().color());

palette.setColor(QPalette::Active, QPalette::WindowText,

selected

? option.palette.highlightedText().color()

: option.palette.text().color());

We begin by creating a new palette based on the palette from the option pa-
rameter (of type QStyleOptionViewItem), and we set the new palette’s QPalette::
Window (background) color and QPalette::WindowText (foreground, i.e., text) col-
or to colors taken from the option parameter, and accounting for whether the
item is selected or not. (We chose to use the QPalette::base() color rather than
the QPalette::window() color for the background because this gave better cross-
platform results on the machines we tested on.)

int yOffset = checkbox->height() < option.rect.height()

? (option.rect.height() - checkbox->height()) / 2 : 0;

QRect checkboxRect(option.rect.x(), option.rect.y() + yOffset,

checkbox->width(), checkbox->height());

checkbox->setPalette(palette);

bool checked = index.model()->data(index, Qt::CheckStateRole)

.toInt() == Qt::Checked;

checkbox->setChecked(checked);

First,we set thingsup relating to the checkbox. We start by creating the check-
boxRect rectangle which we will need later on when painting the checkbox.
When we create the rectangle, we vertically center it in the available space if
the option rectangle is taller than the checkbox. Then we set the checkbox’s
palette to the palette we created, and finally, we set the checkbox’s check state
to match that of the item.

QRect labelRect(option.rect.x() + checkbox->width(),

option.rect.y(), option.rect.width() - checkbox->width(),

option.rect.height());

label->setPalette(palette);

label->setFixedSize(qMax(0, labelRect.width()),

labelRect.height());

QString html = index.model()->data(index, Qt::DisplayRole)

.toString();

label->setText(html);

Although we set the checkbox to be a fixed size in the constructor and we never
change this, for the label—even though we also set it to be a fixed size—we
must set the size on a per-item basis. The labelRect rectangle that we create
for the label is based on the rectangle given by the option parameter, but offset
to the right (and reduced in width by the amount of the offset), to allow space
for the checkbox. The reduction can lead to negative widths—for example, if
the user has reduced the width of the containing window sufficiently—so we

ptg

Datatype-Specific Delegates 197

correct this using qMax(). Once the label has had its palette and size set, we
retrieve the item’s text (which is in HTML format) and set the label’s text.

At this point, both the checkbox and label have the correct palette, size, and
contents, and we have rectangles in which they can be drawn.

QString checkboxKey = QString("CHECKBOX:%1.%2").arg(selected)

.arg(checked);

paintWidget(painter, checkboxRect, checkboxKey, checkbox);

QString labelKey = QString("LABEL:%1.%2.%3x%4").arg(selected)

.arg(html).arg(labelRect.width()).arg(labelRect.height());

paintWidget(painter, labelRect, labelKey, label);
}

We have factored out the painting of the widgets into the private paintWidget()
helper method. Also, we have used Qt’s global QPixmapCache to save repainting
identical pixmaps over and over again. The cache takes a string to identify
each pixmap—we use both the selected state and the contents (the checkbox’s
checked state and the label’s text) for this purpose. So, in the case of checkbox-
es, at most four pixmaps will be in the cache: (selected, unchecked), (selected,
checked), (unselected, unchecked), and (unselected, checked). Once we have a
key string for the cache we call paintWidget().

void RichTextDelegate::paintWidget(QPainter *painter,

const QRect &rect, const QString &cacheKey,

QWidget *widget) const

{

QPixmap pixmap(widget->size());

if (!QPixmapCache::find(cacheKey, &pixmap)) {

widget->render(&pixmap);

QPixmapCache::insert(cacheKey, pixmap);

}

painter->drawPixmap(rect, pixmap);

}

We start by creating an empty pixmap of the correct size. The QPixmapCache::

find() method is used to retrieve a pixmap from the cache with the given key.
The method returns true and populates the QPixmap it is passed by pointer—or
by non-const reference (i.e., no &) for Qt 4.5 and earlier—if the key is found;
otherwise it returns false. So, the first time we request a particular pixmap its
key is not found and we render the given widget onto the empty pixmap and
insert it into the cache. At the end we draw the pixmap in the given rectangle.
(Another way to get a pixmap of a widget is to use QPixmap::grabWidget(),
passing the widget as parameter.)

ptg

198 Chapter 5. Model/View Delegates

The main benefit of this approach is that it passes almost all the painting
and styling work on to Qt, and makes our code much simpler than it would
otherwise be—as well as more efficient thanks to the use of the pixmap cache.

QSize RichTextDelegate::sizeHint(const QStyleOptionViewItem &option,

const QModelIndex &index) const

{

QString html = index.model()->data(index, Qt::DisplayRole)

.toString();

document.setDefaultFont(option.font);

document.setHtml(html);

return QSize(document.idealWidth(), option.fontMetrics.height());

}

In most cases there is no need to reimplement the QStyledItemDelegate::size-

Hint() method, but here we have an unusual situation. Suppose, for example,
that we had the HTML text The bold blue

bear. This text contains 54 characters, but only 18 of them will be displayed.
The standard sizeHint() implementationwould quite reasonably calculate the
necessary width based on the full 54 characters, so we must reimplement it to
produce a more accurate result.

The most obvious way of determining the width is to convert the text to plain
text and call QFontMetrics::width() on it. Unfortunately, such an approach
doesnot account for fine details such as characters that are super- or subscripts
(which almost always have a smaller font size), or for bold or italic characters
which are usually wider than normal characters, or for the use of a mixture of
different fonts. Fortunately, the precise calculations that are needed—and that
account for all the details we have mentioned and more—can already be done
by the QTextDocument::idealWidth() method that we use here.

On some platforms, creating and destroying a QTextDocument for every size hint
call is rather expensive, so in the class’s private data we have a declaration of
mutable QTextDocument document; this means that we reuse the same QTextDocu-

ment each time.

QWidget *RichTextDelegate::createEditor(QWidget *parent,

const QStyleOptionViewItem &option, const QModelIndex&) const

{

RichTextLineEdit *editor = new RichTextLineEdit(parent);

editor->viewport()->setFixedHeight(option.rect.height());

connect(editor, SIGNAL(returnPressed()),

this, SLOT(closeAndCommitEditor()));

return editor;

}

ptg

Datatype-Specific Delegates 199

This method is used to create a suitable editor for the item at the given model
index. Since this delegate is being used as a column delegate for a column
that holds rich text we don’t need to know which particular item the editor is
needed for. (Later on wewill see a reimplementation of thismethod where the
type of editor returned depends on an aspect of the item—for example, what
its column is; ➤ 201.)

We have created a RichTextLineEdit widget (which is covered in Chapter 9;
➤ 342) to edit the HTML data the delegate is expecting to deal with. In
this case it is essential that we set the editor’s viewport’s height to a fixed
size—specifically to the option parameter’s rectangle’s height—to prevent the
RichTextLineEdit from bobbing up and down as text is entered. (This arises
because although the RichTextLineEdit is designed for editing a single line
of text, it is actually a subclass of QTextEdit—which is designed to edit multi-
ple lines.)

If the user presses Return (or Enter), we take this to be a confirmation of their
edit, so we connect the RichTextLineEdit’s returnPressed() signal (modeled on
the QLineEdit’s signal of the same name) to a private custom closeAndCommit-

Editor() slot that we’ll look at in a moment.

void RichTextDelegate::setEditorData(QWidget *editor,

const QModelIndex &index) const

{

QString html = index.model()->data(index, Qt::DisplayRole)

.toString();

RichTextLineEdit *lineEdit = qobject_cast<RichTextLineEdit*>(

editor);

Q_ASSERT(lineEdit);

lineEdit->setHtml(html);

}

Once the editor has been created the delegate calls setEditorData() to initialize
it with data from the model. Here, we retrieve the text (which is in HTML for-
mat), get a pointer to the RichTextLineEdit that was created by createEditor(),
and set the editor’s text to the item’s text.

void RichTextDelegate::closeAndCommitEditor()

{

RichTextLineEdit *lineEdit = qobject_cast<RichTextLineEdit*>(

sender());

Q_ASSERT(lineEdit);

emit commitData(lineEdit);

emit closeEditor(lineEdit);

}

ptg

200 Chapter 5. Model/View Delegates

Implementing a slot like this is often useful for editors that have a signal that
indicates that editing has been successfully completed—such as QLineEdit’s
returnPressed() signal.

We use qobject_cast<>() in conjunction with the QObject::sender() method
to get a pointer to the RichTextLineEdit and then we emit two signals, one to
tell the delegate to commit the editor’s data—that is, to copy the editor’s data
to the model—and another to tell the delegate to close the editor since it is no
longer needed.

void RichTextDelegate::setModelData(QWidget *editor,

QAbstractItemModel *model, const QModelIndex &index) const

{

RichTextLineEdit *lineEdit = qobject_cast<RichTextLineEdit*>(

editor);

Q_ASSERT(lineEdit);

model->setData(index, lineEdit->toSimpleHtml());

}

If the user confirms their edit—by clicking outside the editor, by tabbing to an-
other item, or by pressing Return or Enter—thismethod is called. (The user can
cancel an edit by pressing Esc.) Here,we retrieve a pointer to the RichTextLine-
Edit and set the model’s text to the editor’s HTML.As we will see in Chapter 9
(➤ 342), the toSimpleHtml()method produces simpler andmore compact HTML
than, say, QTextEdit::toHtml(), with the limitation of being able to handle only
a very limited HTML subset.

In the setEditorData(), closeAndCommitEditor(), and setModelData()methodswe
used a Q_ASSERT() to check that the qobject_cast<>()s succeeded. We tend to use
assertions when the application’s logic dictates that something must be true
at a certain point (i.e., that if it isn’t true we have a bug), and use conditionals
(i.e., if statements) otherwise. (Wewill seemany examples of both approaches
throughout the book.)

This completes the implementation of the RichTextDelegate. Apart from the
paint() method, all of the method implementations are straightforward. This
is a direct consequence of the fact that this delegate is to be used as a datatype-
specific—in this case rich text—column (or row) delegate, which means that
it never needs to check the row or column of the item it is given to determine
the datatype it is to handle, and always handles every item it is given in the
same way.

ptg

Model-Specific Delegates 201

Model-Specific Delegates ||||

If we don’t create lots of models it may be more convenient to create custom
model-specific delegates as the need arises, rather than create a set of more
generic column or row datatype-specific delegates. In this section we will look
at a typical example of a model-specific delegate—it is the one used by the
Zipcodes applications that we saw in Chapter 3 (90 ➤), and it is shown in action
editing a state in Figure 3.3 (90 ➤).

We have called the custom delegate ItemDelegate, and made it a QStyledItem-

Delegate subclass. The constructor—not shown—passes its parent argument
to the base class and has an empty body. Out of the QStyledItemDelegate

API (194 ➤) we have reimplemented the paint() method (purely to paint
zipcodes—for the others we use the base class version), and the three methods
for editing data,createEditor(), setEditorData(), and setModelData().Therewas
no need to reimplement any of the other methods,which is quite commonly the
case. As usual, we will review each of the methods in turn.

void ItemDelegate::paint(QPainter *painter,

const QStyleOptionViewItem &option,

const QModelIndex &index) const

{

if (index.column() == Zipcode) {

QStyleOptionViewItemV4 opt(option);

initStyleOption(&opt, index);

QString text = QString("%1").arg(opt.text.toInt(),

5, 10, QChar('0'));

painter->save();

painter->setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

if (opt.state & QStyle::State_Selected) {

painter->fillRect(opt.rect, opt.palette.highlight());

painter->setPen(opt.palette.highlightedText().color());

}

else

painter->setPen(opt.palette.windowText().color());

painter->drawText(opt.rect.adjusted(0, 0, -3, 0), text,

QTextOption(Qt::AlignVCenter|Qt::AlignRight));

painter->restore();

}

else

QStyledItemDelegate::paint(painter, option, index);

}

ptg

202 Chapter 5. Model/View Delegates

We have chosen to paint zipcodes ourselves, but left the base class to paint all
the other data. Notice that in this method, and the others that follow, we use
index.column() to determine the column (and therefore the datatype) of the
data we are handling—something that wasn’t necessary for the column and
row delegates we saw in the previous section, since they are set to apply to
specific columns or rows in the models they are associated with.

The QStyleOptionViewItem class introduced in Qt 4.0 has been supplemented in
subsequent Qt 4.x versions by QStyleOptionViewItemV2, QStyleOptionViewItemV3,
and QStyleOptionViewItemV4, each of which has added new public members. In
general, it is fine to use the QStyleOptionViewItem that is passed in as is, but in
some situations we prefer to use a later version so that we can take advantage
of the convenience of the extra members.

The correct way to get a later QStyleOptionViewItem version is to use the pattern
shown here: create a QStyleOptionViewItemV4 (or whatever version we need)
with the one passed in as its argument, and then call QStyledItemDelegate::
initStyleOption(), passing it the new style option and the model index of the
item we are dealing with.

By getting a QStyleOptionViewItemV4 we are able to access its text member
(which contains the text of the item with the given model index), rather than
having to use index.model()->data(index).toString() (although in this example
we would have used toInt()).

Having obtained the zipcode, we convert it to an integer and then create a
string to represent it that has the format we want—in this case, exactly five
digits, padded with leading zeros if necessary.

For the painting, we begin by saving the painter’s state. This is always neces-
sary in delegates if we change the painter’s state, since for the sake of efficien-
cy, the same painter is reused for all of the view’s items. We have switched on
antialiasing, since as noted in a footnote earlier, we cannot be sure what the
defaults are, so take the cautious approach of always specifying the render
hints we want. We paint the background in the palette’s highlight color if the
item is selected,and set thepen (foreground) color appropriately. We thendraw
the text in the given rectangle, right-aligned and with a 3 pixel right margin
(achieved by shrinking the rectangle slightly), so that the text doesnot abut the
table cell’s edge and so doesn’t collide with the cell’s outline. And at the end we
restore the painter’s previous state so that it is ready to paint the next item.

QWidget *ItemDelegate::createEditor(QWidget *parent,

const QStyleOptionViewItem &option,

const QModelIndex &index) const

{

static QStringList usStates;

if (usStates.isEmpty())

usStates << "(Unknown)" << "Alabama" << "Alaska"

ptg

Model-Specific Delegates 203

···
<< "West Virginia" << "Wisconsin" << "Wyoming";

if (index.column() == Zipcode)

return new ZipcodeSpinBox(parent);

if (index.column() == State) {

QComboBox *editor = new QComboBox(parent);

editor->addItems(usStates);

return editor;

}

return QStyledItemDelegate::createEditor(parent, option, index);
}

We use standard Qt widgets for editing most of the data, but use a tiny custom
spinbox class for editing zipcodes. The createEditor()methodmust determine
which editor is required (in this model, it depends on the column), and then
create, set up, and return the editor, ready for it to be populated with the item
being edited’s data, and shown to the user. Note that it is essential that if
we create an editor ourselves we give it the parent that was passed in—this
ensures that Qt takes ownership of the editor, and deletes it at the right time.

For the state columnwe use a combobox and populate it with “(Unknown)” and
with all the U.S. states. We store the states in a static QStringList so that the
data is created only once.

In the case of the post office and county columns (which use plain text),we pass
the work on to the base classwhich will return a QLineEdit—unlesswe have set
a different editor using a QItemEditorFactory as we discussed earlier (186 ➤).

void ItemDelegate::setEditorData(QWidget *editor,

const QModelIndex &index) const

{

if (index.column() == Zipcode) {

int value = index.model()->data(index).toInt();

ZipcodeSpinBox *spinBox =

qobject_cast<ZipcodeSpinBox*>(editor);

Q_ASSERT(spinBox);

spinBox->setValue(value);

}

else if (index.column() == State) {

QString state = index.model()->data(index).toString();

QComboBox *comboBox = qobject_cast<QComboBox*>(editor);

Q_ASSERT(comboBox);

comboBox->setCurrentIndex(comboBox->findText(state));

}

else

QStyledItemDelegate::setEditorData(editor, index);

}

ptg

204 Chapter 5. Model/View Delegates

Once the editor has been created,Qt’smodel/view architecture calls setEditor-
Data() to give us the opportunity to populate the editor before it is shown to
the user. We must always handle the widgets we have created ourselves—and
pass on the work to the base class for those widgets the base class is responsi-
ble for.

The logic used here is almost always the same: retrieve the item for the given
model index, cast the QWidget pointer to be an editor widget of the correct type,
and populate the editor. In the case of the combobox, we take a slightly dif-
ferent approach since it already contains all the valid data, so we just have to
make its current text match the text for the corresponding item in the model.

void ItemDelegate::setModelData(QWidget *editor,

QAbstractItemModel *model, const QModelIndex &index) const

{

if (index.column() == Zipcode) {

ZipcodeSpinBox *spinBox =

qobject_cast<ZipcodeSpinBox*>(editor);

Q_ASSERT(spinBox);

spinBox->interpretText();

model->setData(index, spinBox->value());

}

else if (index.column() == State) {

QComboBox *comboBox = qobject_cast<QComboBox*>(editor);

Q_ASSERT(comboBox);

model->setData(index, comboBox->currentText());

}

else

QStyledItemDelegate::setModelData(editor, model, index);

}

If the user confirms their edit, for the editor widgets we are responsible for, we
must retrieve the editor’s value and set it to be the value for the item with the
given model index. For other widgets, we pass on the work to the base class.

For the spinbox, we take an ultra-cautious approach and call interpretText()
to make sure that if the user changed the value by entering or deleting digits
rather than by using the spin buttons, the value held by the spinbox accurately
reflects this. For the combobox,we take amore conventional approach and just
retrieve the current value.

For the sake of completeness, here is the complete ZipcodeSpinBox class:

class ZipcodeSpinBox : public QSpinBox

{

Q_OBJECT

public:

ptg

Model-Specific Delegates 205

explicit ZipcodeSpinBox(QWidget *parent)

: QSpinBox(parent)

{

setRange(MinZipcode, MaxZipcode);

setAlignment(Qt::AlignVCenter|Qt::AlignRight);

}

protected:

QString textFromValue(int value) const

{ return QString("%1").arg(value, 5, 10, QChar('0')); }

};

If we only needed to set the spinbox’s range and alignment,we could have used
a standard QSpinBox and set them in the createEditor() method. We chose to
set them in the constructor since we had to subclass QSpinBox anyway, so that
we could override the textFromValue()method. We did this so that the spinbox’s
textual representation of the zipcode value is a five-digit number, padded with
leading zeros if necessary—the same format used when painting zipcodes.

We have now completed our review of a typicalmodel-specific customdelegate.
Such delegates are not as versatile as generic datatype-specific row or column
delegates which can be used for any arbitrary model, but they do keep all of
the delegate code in one place and give us complete and direct control over the
appearance and editing of items in our model. Also, as we saw here, we can
often pass some of the work on to the base class.

Using custom delegates is the most common and convenient way to control the
presentation and editing of a model’s items. However, if we want to present
items in a way that is very different from any of Qt’s built-in views, or if we
want to customize the appearance of multiple items in relation to each other
(e.g., by presenting two ormore items combined together in someway), thenwe
will need to create a custom view. Creating custom views is the subject of the
next chapter.

ptg

This page intentionally left blank

ptg

Model/View Views |||||

6
● QAbstractItemView Subclasses

● Model-Specific Visualizing Views

This chapter covers model/view views, and is the last chapter covering Qt’s
model/view architecture. Just like the previous two chapters, this chapter
assumes a basic familiarity with the model/view architecture, as described at
the beginning of Chapter 3 (88 ➤).

Qt’s standard model views, QListView, QTableView, QColumnView, and QTreeView,
are sufficient for most purposes, most of the time. And like other Qt classes,
they can be subclassed—or we can use custom delegates—to affect how they
display the model’s items. However, there are two situationswhere we need to
create a custom view. One is where we want to present the data in a radically
different way from how Qt’s standard views present data, and the other is
where we want to visualize two or more data items combined in some way.

Broadly speaking there are two approaches we can take to the creation of
custom views. One approach is used when we want to create a view compo-
nent—that is, a view that is potentially reusable with a number of different
models and that must fit in with Qt’s model/view architecture. In such cases
we would normally subclass QAbstractItemView, and provide the standard view
API so that any model could make use of our view. The other approach is use-
ful when we want to visualize the data in a particular model in such a unique
way that the visualization has little or no potential for reuse. In these caseswe
can simply create a custommodel viewer that hasexactly—andonly—the func-
tionality required. Thisusually involvessubclassing QWidget andproviding our
own API, but including a setModel() method.

In this chapter we will look at two examples of custom views. The first is a
generic QAbstractItemView subclass that provides the same API as Qt’s built-in
views, and that can be used with any model, although it is designed in partic-
ular for the presentation and editing of list models. The second is a visualizer
view that is specific to a particular model and that provides its own API.

207

ptg

208 Chapter 6. Model/View Views

QAbstractItemView Subclasses ||||

In this section we will show how to create a QAbstractItemView subclass that
can be used as a drop-in replacement for Qt’s standard views. In practice, of
course, just as there are list, table, and tree models, there are corresponding
views, and so here we will develop a custom list view, although the principles
are the same for all QAbstractItemView subclasses.

Figure 6.1 A QListView and a TiledListView

Figure 6.1 shows the central area of the Tiled List View application (tiled-
listview). The area has two views that are using the same model: on the left
a standard QListView, and on the right a TiledListView. Notice that although
the widgets are the same size and use the same font, the TiledListView shows
much more data. Also, as the figure illustrates, the TiledListView does not use
multiple columns; rather, it shows as many items as it can fit in each row—for
example, if it were resized to be a bit wider, it would fit four or more items on
some rows.

One usability difference that makes keyboard navigation faster and easier—
and more logical—in the TiledListView is that using the arrow keys does not
simply go forward or backward in the list of items. When the user navigates
through the items using the up (or down) arrow keys, the selected item is
changed to the itemvisually above (or below) the current item. Similarly,when
the user navigates using the left (or right) arrow keys, the selected item is
changed to the item to the left (or right) as expected, unless the current item
is at the left (or right) edge. For the edge cases, the selected item is changed to
the item that is logically before (or after) the current item.

The QAbstractItemView API is large, and at the time of this writing, the Qt doc-
umentation does not explicitly specify which parts of the API must be reim-
plemented by subclasses and which base class implementations are sufficient.
However, some of themethods are pure virtual and somust be reimplemented.
Also, Qt comes with the examples/itemviews/chart example which serves as a
useful guide for custom view implementations.

The API we have implemented for the TiledListView, and the one that we con-
sider to be the minimum necessary for a custom QAbstractItemView subclass,

ptg

QAbstractItemView Subclasses 209

is shown in Table 6.1. Qt’s chart example reimplements all the methods list-
ed in the table, and also the mouseReleaseEvent() and mouseMoveEvent() event
handlers (to provide rubber band support—something not needed for the
TiledListView). The chart example also implements the edit() method to initi-
ate editing—again, something we don’t need to do for the TiledListView even
though it is editable, because the inherited base class’s behavior is sufficient.

Before we look at the TiledListView class, here is how an instance is created
and initialized.

TiledListView *tiledListView = new TiledListView;

tiledListView->setModel(model);

As these two linesmake clear, the TiledListView is used in exactly the sameway
as any other view class.

Since the API that must be implemented is shown in Table 6.1, we won’t show
the class’s definition in the header file, apart from the private data, all of which
is specific to the TiledListView.

private:

mutable int idealWidth;

mutable int idealHeight;

mutable QHash<int, QRectF> rectForRow;

mutable bool hashIsDirty;

The idealWidth and idealHeight are the width and height needed to show
all the items without the need for scrollbars. The rectForRow hash returns a
QRectF of the correct position and size for the given row. (Note that since the
TiledListView is designed for showing lists, a row corresponds to an item.) All
these variables are concerned with behind-the-scenes bookkeeping, and since
they are used in const methods we have been forced to make them mutable.

Rather than updating the rectForRow hash whenever a change takes place, we
do lazy updates—that is,we simply set hashIsDirty to truewhen changes occur.
Then, whenever we actually need to access the rectForRow hash,we recalculate
it only if it is dirty.

We are now almost ready to review the TiledListView implementation, and
will do so, starting with the constructor, and including the private supporting
methods as necessary. But first we must mention an important conceptual
point about QAbstractItemView subclasses.

The QAbstractItemView base class provides a scroll area for the data it displays.
The only part of thewidget that is a QAbstractItemView subclass that is visible is
its viewport, that is, the part that is shown by the scroll area. This visible area
isaccessibleusing the viewport()method. It doesn’t reallymatterwhat size the
widget actually is; all that matters is what size the widget would need to be to
show all of the model’s data (even if that is far larger than the screen).We will

ptg

210 Chapter 6. Model/View Views

Table 6.1 The QAbstractItemViewAPI

Method Description

dataChanged(topLeft,

bottomRight)

This slot is called when the items with model
indexes in the rectangle from topLeft to
bottomRight change

horizontalOffset()✪ Returns the view’s horizontal offset

indexAt(point)✪ Returns the model index of the item at
position point in the view’s viewport

isIndexHidden(index)✪ Returns true if the item at index is a hidden
item (and therefore should not be shown)

mousePressEvent(event) Typically used to set the current model index
to the index of the clicked item

moveCursor(how,

modifiers)✪

Returns the model index of the item after
navigating how (e.g., up, down, left, or right),
and accounting for the keyboard modifiers

paintEvent(event) Paints the view’s contents on the viewport

resizeEvent(event) Typically used to update the scrollbars

rowsAboutToBeRemoved(

parent, start, end)

This slot is called when rows from start to end

under parent are about to be removed
rowsInserted(parent,

start, end)

This slot is called when rows from start to end

are inserted under the parent model index
scrollContentsBy(dx, dy) Scrolls the view’s viewport by dx and dy pixels

scrollTo(index, hint)✪ Scrolls the view to ensure that the item at the
given model index is visible, and respecting
the scroll hint as it scrolls

setModel(model) Makes the view use the given model

setSelection(rect, flags)✪ Applies the selection flags to all of the items
in or touching the rectangle rect

updateGeometries() Typically used to update the geometries of the
view’s child widgets, e.g., the scrollbars

verticalOffset() Returns the view’s vertical offset

visualRect(index)✪ Returns the rectangle occupied by the item at
the given model index

visualRegionForSelection(

selection)✪

Returns the viewport region for the items in
the selection

✪This method is pure virtual, so it must be reimplemented in subclasses.

ptg

QAbstractItemView Subclasses 211

see how this affects our code when we look at the calculateRectsIfNecessary()

and updateGeometries() methods.

TiledListView::TiledListView(QWidget *parent)

: QAbstractItemView(parent), idealWidth(0), idealHeight(0),

hashIsDirty(false)

{

setFocusPolicy(Qt::WheelFocus);

setFont(QApplication::font("QListView"));

horizontalScrollBar()->setRange(0, 0);

verticalScrollBar()->setRange(0, 0);

}

The constructor calls the base class and initializes the private data. Initially
the view’s “ideal” size is 0 × 0 since it has no data to display.

Unusually, we call setFont() to set the widget’s font rather than do what we
normally do in custom widgets and just use the inherited font. The font
returned by the QApplication::font() method, when given a class name, is the
platform-specific font that is used for that class. This makes the TiledListView

use the correct font even on those platforms (such as Mac OS X) that use a
slightly different-sized font from the default QWidget font for QListViews.★

Since there is no data we set the scrollbars’ ranges to (0, 0); this ensures that
the scrollbarsarehiddenuntil they areneeded,while leaving the responsibility
for hiding and showing them to the base class.

void TiledListView::setModel(QAbstractItemModel *model)

{

QAbstractItemView::setModel(model);

hashIsDirty = true;

}

When a model is set we first call the base class implementation, and then set
the private hashIsDirty flag to true to ensure that when the calculateRectsIf-

Necessary() method is called, it will update the rectForRow hash.

The indexAt(), setSelection(), and viewportRectForRow() methods all need to
know the size and position of the items in themodel. This is also true indirectly
of the mousePressEvent(), moveCursor(), paintEvent(), and visualRect()methods,
since all of them call the methods that need the sizes and positions. Rather
than compute the rectangles dynamically every time they are needed,we have
chosen to trade somememory for the sake of speed by caching them in the rect-
ForRow hash. And rather than keeping the hash up to date by calling calculate-

RectsIfNecessary()whenever a change occurs,we simply keep track of whether

★For more about how Qt’s font and palette propagation works, see labs.qt.nokia.com/blogs/2008/

11/16 .

ptg

212 Chapter 6. Model/View Views

the hash is dirty, and only recalculate the rectangles when we actually need to
access the hash.

const int ExtraHeight = 3;

void TiledListView::calculateRectsIfNecessary() const

{

if (!hashIsDirty)

return;

const int ExtraWidth = 10;

QFontMetrics fm(font());

const int RowHeight = fm.height() + ExtraHeight;

const int MaxWidth = viewport()->width();

int minimumWidth = 0;

int x = 0;

int y = 0;

for (int row = 0; row < model()->rowCount(rootIndex()); ++row) {

QModelIndex index = model()->index(row, 0, rootIndex());

QString text = model()->data(index).toString();

int textWidth = fm.width(text);

if (!(x == 0 || x + textWidth + ExtraWidth < MaxWidth)) {

y += RowHeight;

x = 0;

}

else if (x != 0)

x += ExtraWidth;

rectForRow[row] = QRectF(x, y, textWidth + ExtraWidth,

RowHeight);

if (textWidth > minimumWidth)

minimumWidth = textWidth;

x += textWidth;

}

idealWidth = minimumWidth + ExtraWidth;

idealHeight = y + RowHeight;

hashIsDirty = false;

viewport()->update();

}

This method is the heart of the TiledListView, at least as far as its appearance
is concerned, since—as we will see shortly—all the painting is done using the
rectangles created in this method.

We begin by seeing if the rectangles need to be recalculated at all. If they do
we begin by calculating the height needed to display a row, and the maximum
width that is available to the viewport, that is, the available visiblewidth.

ptg

QAbstractItemView Subclasses 213

In the method’s main loop we iterate over every row (i.e., every item) in the
model, and retrieve the item’s text. We then compute the width needed by the
item, and compute the x- and y-coordinateswhere the item should be displayed
—these depend on whether the item can fit on the same line (i.e., the same
visual row) as the previous item, or if it must start a new line. Once we know
the item’s size and position, we create a rectangle based on that information
and add it to the rectForRow hash, with the item’s row as the key.

Notice that during the calculations in the loop, we use the actual visible width,
but assume that the available height is whatever is needed to show all the
items given this width. Also, to retrieve the model index we want, we pass a
parent index of QAbstractItemView::rootIndex() rather than an invalid model
index (QModelIndex()). Both work equally well for list models, but it is better
style to use the more generic rootIndex() in QAbstractItemView subclasses.

At the end we recompute the ideal width (the width of the widest item plus
some margin), and the ideal height (the height necessary to show all the items
at the viewport’s current width,nomatter what the viewport’s actual height is)
—at this point the y variable holds the total height of all the rows. The ideal
width may be greater than the available width, for example, if the viewport
is narrower than the width needed to display the longest item—in which case
the horizontal scrollbar will automatically be shown. Once the computations
are complete,we call update() on the viewport (since all painting is done on the
viewport, not on the QAbstractItemView custom widget itself), so that the data
will be repainted.

At no point do we refer to or care about the actual size of the QAbstractItemView
custom widget itself—all the calculations are done in terms of the viewport
and of the ideal width and height.

QRect TiledListView::visualRect(const QModelIndex &index) const

{

QRect rect;

if (index.isValid())

rect = viewportRectForRow(index.row()).toRect();

return rect;

}

This pure virtual method must return the rectangle occupied by the item with
the given model index. Fortunately, its implementation is very easy because
we pass the work on to our private viewportRectForRow() method that makes
use of the rectForRow hash.

QRectF TiledListView::viewportRectForRow(int row) const

{

calculateRectsIfNecessary();

QRectF rect = rectForRow.value(row).toRect();

ptg

214 Chapter 6. Model/View Views

if (!rect.isValid())

return rect;

return QRectF(rect.x() - horizontalScrollBar()->value(),

rect.y() - verticalScrollBar()->value(),

rect.width(), rect.height());

}

This method is used by the visualRect() method and by the moveCursor() and
paintEvent() methods. It returns a QRectF for maximum accuracy (e.g., for
the paintEvent() method); other callers convert the returned value to a plain
integer-based QRect using the QRectF::toRect() method.

The calculateRectsIfNecessary()methodmust be called bymethods that access
the rectForRow hash, before the access takes place. If the rectForRow hash is up
to date, the calculateRectsIfNecessary() method will do nothing; otherwise it
will recompute the rectangles in the hash ready for use.

QAbstractItemView

QAbstractItemView::
viewport()

(0, 0)

(0, 0)

(width(), height())

(viewport()->width(), viewport()->height())

B

verticalScrollBar()->value()

horizontalScrollBar()->value()

Figure 6.2 Widget vs. viewport coordinates

The rectangles in the rectForRow hash have the x- and y-coordinates of their
rows (items) based on the ideal width (usually the visible width) and the ideal
height (the height needed to display all the items at the current width). This
means that the rectangles are effectively using widget coordinates based on
the ideal size of the widget (the actual size of the widget is irrelevant). The
viewportRectForRow() method must return a rectangle that is in viewport co-
ordinates, so we adjust the coordinates to account for any scrolling. Figure 6.2
illustrates the difference between widget and viewport coordinates.

bool isIndexHidden(const QModelIndex&) const { return false; }

Wemust reimplement this pure virtualmethod,and have done so in the header
since it is so trivial. This method is designed for data that can have hidden
items—for example, a table with hidden rows or columns. For this view, no

ptg

QAbstractItemView Subclasses 215

items are hidden because we don’t offer support for hiding them, so we always
return false.

void TiledListView::scrollTo(const QModelIndex &index,

QAbstractItemView::ScrollHint)

{

QRect viewRect = viewport()->rect();

QRect itemRect = visualRect(index);

if (itemRect.left() < viewRect.left())

horizontalScrollBar()->setValue(horizontalScrollBar()->value()

+ itemRect.left() - viewRect.left());

else if (itemRect.right() > viewRect.right())

horizontalScrollBar()->setValue(horizontalScrollBar()->value()

+ qMin(itemRect.right() - viewRect.right(),

itemRect.left() - viewRect.left()));

if (itemRect.top() < viewRect.top())

verticalScrollBar()->setValue(verticalScrollBar()->value() +

itemRect.top() - viewRect.top());

else if (itemRect.bottom() > viewRect.bottom())

verticalScrollBar()->setValue(verticalScrollBar()->value() +

qMin(itemRect.bottom() - viewRect.bottom(),

itemRect.top() - viewRect.top()));

viewport()->update();

}

This is another pure virtual method that we are obliged to implement. Fortu-
nately, the implementation is straightforward (and is almost the same as that
used in Qt’s chart example).

If the item to be scrolled to has a rectangle that is left of the viewport’s left
edge, then the viewport must be scrolled. The scrolling is done by changing
the horizontal scrollbar’s value, adding to it the difference between the item
rectangle’s left edge and the viewport’s left edge. All the other cases work in
an analogous way.

Note that this method calls visualRect() which in turn calls viewportRectFor-

Row() which in turn calls calculateRectsIfNecessary()—as already noted, this
last method recalculates the rectangles in the rectForRow hash if the hash
is dirty.

QModelIndex TiledListView::indexAt(const QPoint &point_) const

{

QPoint point(point_);

point.rx() += horizontalScrollBar()->value();

point.ry() += verticalScrollBar()->value();

calculateRectsIfNecessary();

ptg

216 Chapter 6. Model/View Views

QHashIterator<int, QRectF> i(rectForRow);

while (i.hasNext()) {

i.next();

if (i.value().contains(point))

return model()->index(i.key(), 0, rootIndex());

}

return QModelIndex();

}

This pure virtual methodmust return themodel index of the item at the given
point. The point is in viewport coordinates, but the rectangles in rectForRow

are in widget coordinates. Rather than convert each rectangle that we check
to see if it contains the point, we do a one-off conversion of the point into
widget coordinates.

The QPoint::rx() and QPoint::ry() methods return non-const references to
the point’s x- and y-coordinates, making it easy to change them. Without
these methods we would have to do, for example, point.setX(horizontalScroll-
Bar()->value() + point.x()).

We make sure that the rectForRow hash is up to date, and then we iterate
over every row (item) in the hash—in an arbitrary order since hashes are
unordered. If we find a value, that is, a rectangle, that contains the point, we
immediately return the corresponding model index.

For models with large numbers of items (beyond the low thousands), this
methodmight run slowly since in theworst case every item’s rectanglemust be
checked, and even in the average case, half of the items must be checked. For
the TiledListView this is unlikely to be a problem, since putting thousands of
items in a list model of any kind is probably unhelpful to users—a tree model
that grouped the items andmade the top-level list of items a moremanageable
size would almost certainly be better.

void TiledListView::dataChanged(const QModelIndex &topLeft,

const QModelIndex &bottomRight)

{

hashIsDirty = true;

QAbstractItemView::dataChanged(topLeft, bottomRight);

}

Thismethod is calledwhenevermodel data changes. We set hashIsDirty to true
to make sure that when calculateRectsIfNecessary() is called it will update the
rectForRow hash when the hash is next needed, and then we call the base class
implementation. Notice that we do not call viewport->update() to schedule a
repaint. The changed data might not be visible so a repaint might be unnec-
essary, and if it were necessary, the dataChanged() base class implementation
would schedule the repaint for us.

ptg

QAbstractItemView Subclasses 217

void TiledListView::rowsInserted(const QModelIndex &parent, int start,

int end)

{

hashIsDirty = true;

QAbstractItemView::rowsInserted(parent, start, end);

}

void TiledListView::rowsAboutToBeRemoved(const QModelIndex &parent,

int start, int end)

{

hashIsDirty = true;

QAbstractItemView::rowsAboutToBeRemoved(parent, start, end);

}

If new rows are inserted into the model, or if rows are going to be removed,we
must make sure that the view responds appropriately. These cases are easily
handled by passing the work on to the base class; all that wemust do is ensure
that the rectForRow hash is marked as dirty so that it will be recalculated if
necessary—for example, if the base class methods schedule a repaint.

QModelIndex TiledListView::moveCursor(

QAbstractItemView::CursorAction cursorAction,

Qt::KeyboardModifiers)

{

QModelIndex index = currentIndex();

if (index.isValid()) {

if ((cursorAction == MoveLeft && index.row() > 0) ||

(cursorAction == MoveRight &&

index.row() + 1 < model()->rowCount())) {

const int offset = (cursorAction == MoveLeft ? -1 : 1);

index = model()->index(index.row() + offset,

index.column(), index.parent());

}

else if ((cursorAction == MoveUp && index.row() > 0) ||

(cursorAction == MoveDown &&

index.row() + 1 < model()->rowCount())) {

QFontMetrics fm(font());

const int RowHeight = (fm.height() + ExtraHeight) *
(cursorAction == MoveUp ? -1 : 1);

QRect rect = viewportRectForRow(index.row()).toRect();

QPoint point(rect.center().x(),

rect.center().y() + RowHeight);

while (point.x() >= 0) {

index = indexAt(point);

if (index.isValid())

break;

ptg

218 Chapter 6. Model/View Views

point.rx() -= fm.width("n");

}

}

}

return index;

}

Just as the calculateRectsIfNecessary() method is at the heart of the Tiled-

ListView’s appearance, this method is at the heart of its behavior. The method
must return themodel index of the item that the requestedmove action should
navigate to—or an invalid model index if no move should occur.

If the user presses the left (or right) arrow key wemust return themodel index
of the previous (or next) item in the list—or of the current item if the previous
(or next) item is the list model’s first (or last) item. This is easily achieved by
creating a new model index based on the current model index but using the
previous (or next) row.

Handling the up and down arrow keys is slightly more subtle than handling
the left and right arrow keys. In both cases we must compute a point above or
below the current item. It doesn’t matter if the computed point is outside the
viewport, so long as it is within an item’s rectangle.

If the user presses the up (or down) arrow key wemust return themodel index
of the item that appearsabove (or below) the current item. We begin by getting
the current item’s rectangle in the viewport. We then create a point that is
exactly one row above (or below) the current item vertically, and at the item’s
center horizontally. We then use the indexAt() method to retrieve the model
index for the item at the given point. If we get a valid model index, there is an
item above (or below) the current one, and we have its model index, so we are
finished and can return that index.

But themodel index might be invalid: this is possible because theremay not be
an item above (or below). Recall from the screenshot (208 ➤) that the items at
the right-hand edge are ragged, because lines are of different lengths. If this is
the case,wemove the point left by thewidth of one “n” character and try again,
repeatedly moving left until either we find an item (i.e., until we get a valid
model index), or until we move beyond the left edge which means that there is
no item above (or below). There will be no item above (or below) when the user
presses the up (or down) arrow on an item that is in the first (or last) line.

If the moveCursor() method returns an invalid QModelIndex, the QAbstractItem-

View base class harmlessly does nothing.

We have not written any code for handling selections—and we don’t need to
since we are using the QAbstractItemView API. If the user moves with the Shift
key held down, the selectionwill be extended to create a selection of contiguous
items. Similarly, while the user holds down the Ctrl key (key on Mac OS X),

ptg

QAbstractItemView Subclasses 219

they can click arbitrary itemsand each onewill be selected to create a selection
that may include non-contiguous items.

We have left the implementation of support for the Home, End, PageUp, and
PageDown keys as an exercise—they just require that the moveCursor() method
be extended to handlemore CursorActions (such as QAbstractItemView::MoveHome
and QAbstractItemView::MovePageUp).

int TiledListView::horizontalOffset() const

{

return horizontalScrollBar()->value();

}

int TiledListView::verticalOffset() const

{

return verticalScrollBar()->value();

}

These pure virtual methodsmust be reimplemented. They must return the x-
and y-offsets of the viewport within the (ideal-sized) widget. They are trivial
to implement since the scrollbars’ values are the offsets we need.

void TiledListView::scrollContentsBy(int dx, int dy)

{

scrollDirtyRegion(dx, dy);

viewport()->scroll(dx, dy);

}

This method is called when the scrollbars are moved; its responsibility is to
ensure that the viewport is scrolled by the amounts given, and to schedule an
appropriate repaint. Here we set up the repaint by calling the QAbstractItem-

View::scrollDirtyRegion() method, before performing the scroll. Alternatively,
instead of calling scrollDirtyRegion(), we could call viewport->update(), after
performing the scroll.

The base class implementation simply calls viewport->update() and doesn’t
actually scroll. Note that if we want to scroll programmatically we should
do so by calling QScrollBar::setValue() on the scrollbars, not by calling
this method.

void TiledListView::setSelection(const QRect &rect,

QFlags<QItemSelectionModel::SelectionFlag> flags)

{

QRect rectangle = rect.translated(horizontalScrollBar()->value(),

verticalScrollBar()->value()).normalized();

calculateRectsIfNecessary();

QHashIterator<int, QRectF> i(rectForRow);

int firstRow = model()->rowCount();

ptg

220 Chapter 6. Model/View Views

int lastRow = -1;

while (i.hasNext()) {

i.next();

if (i.value().intersects(rectangle)) {

firstRow = firstRow < i.key() ? firstRow : i.key();

lastRow = lastRow > i.key() ? lastRow : i.key();

}

}

if (firstRow != model()->rowCount() && lastRow != -1) {

QItemSelection selection(

model()->index(firstRow, 0, rootIndex()),

model()->index(lastRow, 0, rootIndex()));

selectionModel()->select(selection, flags);

}

else {

QModelIndex invalid;

QItemSelection selection(invalid, invalid);

selectionModel()->select(selection, flags);

}

}

This pure virtual method is used to apply the given selection flags to all the
items that are in or touching the specified rectangle. The actual selectionmust
be made by calling QAbstractItemView::selectionModel()->select(). The imple-
mentation shown here is very similar to the one used by Qt’s chart example.

The rectangle is passed using viewport coordinates, so we begin by creating
a rectangle that uses widget coordinates since those are the ones used by the
rectForRow hash. We then iterate over all the rows (items) in the hash—in
arbitrary order—and if an item’s rectangle intersects the given rectangle, we
expand the first and last rows that the selection spans to include the item if it
isn’t already included.

If we have valid first and last selection rows, we create a QItemSelection that
spans these rows (inclusively) and update the view’s selection model. But if
one or both rows are invalid, we create an invalid QModelIndex and update the
selection model using it.

QRegion TiledListView::visualRegionForSelection(

const QItemSelection &selection) const

{

QRegion region;

foreach (const QItemSelectionRange &range, selection) {

for (int row = range.top(); row <= range.bottom(); ++row) {

for (int column = range.left(); column < range.right();

++column) {

ptg

QAbstractItemView Subclasses 221

QModelIndex index = model()->index(row, column,

rootIndex());

region += visualRect(index);

}

}

}

return region;

}

This pure virtual method must be reimplemented to return the QRegion that
encompasses all the view’s selected items as shown in the viewport and using
viewport coordinates. The implementationwehave used is very similar to that
used by Qt’s chart example.

We start by creating an empty region. Thenwe iterate over all the selections—
if there are any. For each selection we retrieve a model index for every item in
the selection, and add each item’s visual rectangle to the region.

Our visualRect() implementation calls viewportRectForRow() which in turn re-
trieves the rectangle from the rectForRow hash and returns it transformed into
viewport coordinates (since rectForRow’s rectangles use widget coordinates). In
this particular case we could have bypassed the visualRect() call and made
direct use of the rectForRow hash, but we preferred to do a more generic imple-
mentation that is easy to adapt for other custom views.

void TiledListView::paintEvent(QPaintEvent*)

{

QPainter painter(viewport());

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

for (int row = 0; row < model()->rowCount(rootIndex()); ++row) {

QModelIndex index = model()->index(row, 0, rootIndex());

QRectF rect = viewportRectForRow(row);

if (!rect.isValid() || rect.bottom() < 0 ||

rect.y() > viewport()->height())

continue;

QStyleOptionViewItem option = viewOptions();

option.rect = rect.toRect();

if (selectionModel()->isSelected(index))

option.state |= QStyle::State_Selected;

if (currentIndex() == index)

option.state |= QStyle::State_HasFocus;

itemDelegate()->paint(&painter, option, index);

paintOutline(&painter, rect);

}

}

ptg

222 Chapter 6. Model/View Views

Painting the view is surprisingly straightforward since every item’s rectangle
has already been computed and is available in the rectForRow hash. But notice
that we paint on the widget’s viewport, not on the widget itself. And as usual,
we explicitly switch on antialiasing since we cannot assume what the default
render hints are.

We iterate over every item and get each one’s model index and its rectangle in
viewport coordinates. If the rectangle is invalid (it shouldn’t be), or if it is not
visible in the viewport—that is, its bottom edge is above the viewport, or its
y-coordinate is below the viewport—we don’t bother to paint it.

For those items we do paint, we begin by retrieving the QStyleOptionViewItem

supplied by the base class. We then set the option’s rectangle to the item’s
rectangle—converting from QRectF to QRect using QRectF::toRect()—and
update the option’s state appropriately if the item is selected or is the cur-
rent item.

Most importantly, we do not paint the item ourselves! Instead we ask the
view’s delegate—which could be the base class’s built-in QStyledItemDelegate,
or a custom delegate set by the class’s client—to paint the item for us. This
ensures that the view supports custom delegates.

The items are painted in lines, packing them in to make as much use of the
available space as possible. But because each item’s text could contain more
than one word we need to help the user to be able to visually distinguish
between different items. We do this by painting an outline around each item.

void TiledListView::paintOutline(QPainter *painter,

const QRectF &rectangle)

{

const QRectF rect = rectangle.adjusted(0, 0, -1, -1);

painter->save();

painter->setPen(QPen(palette().dark().color(), 0.5));

painter->drawRect(rect);

painter->setPen(QPen(Qt::black, 0.5));

painter->drawLine(rect.bottomLeft(), rect.bottomRight());

painter->drawLine(rect.bottomRight(), rect.topRight());

painter->restore();

}

The outline is drawn by painting a rectangle, and then painting a couple of
lines—one just below the bottom of the rectangle, and one just to the right of
the rectangle—to provide a very subtle shadow effect.

void TiledListView::resizeEvent(QResizeEvent*)

{

hashIsDirty = true;

calculateRectsIfNecessary();

ptg

QAbstractItemView Subclasses 223

updateGeometries();

}

If the view is resized we must recalculate all the items’ rectangles and update
the scrollbars. We have already seen the calculateRectsIfNecessary() method
(212 ➤), so we just need to review updateGeometries().

void TiledListView::updateGeometries()

{

QFontMetrics fm(font());

const int RowHeight = fm.height() + ExtraHeight;

horizontalScrollBar()->setSingleStep(fm.width("n"));

horizontalScrollBar()->setPageStep(viewport()->width());

horizontalScrollBar()->setRange(0,

qMax(0, idealWidth - viewport()->width()));

verticalScrollBar()->setSingleStep(RowHeight);

verticalScrollBar()->setPageStep(viewport()->height());

verticalScrollBar()->setRange(0,

qMax(0, idealHeight - viewport()->height()));

}

This protected slot was introduced with Qt 4.4 and is used to update the view’s
child widgets—for example, the scrollbars.

The widget’s ideal width and height are calculated in calculateRectsIf-

Necessary(). The height is always sufficient to show all the model’s data, and so
is the width, if the viewport is wide enough to show the widest item. As men-
tioned earlier, it does not really matter what the view widget’s actual size is,
since the user only ever sees the viewport.

We make the horizontal scrollbar’s single step size (i.e., how far it moves when
the user clicks one of its arrows) the width of an “n”, that is, one character.
And we make its page step size (i.e., how far it moves when the user clicks
left or right of the scrollbar’s slider) the width of the viewport. We also set
the horizontal scrollbar’s range to span from 0 to the widget’s ideal width, not
counting the viewport’s width (because that much can already be seen). The
vertical scrollbar is set up in an analogous way.

void TiledListView::mousePressEvent(QMouseEvent *event)

{

QAbstractItemView::mousePressEvent(event);

setCurrentIndex(indexAt(event->pos()));

}

This is the last event handler that we need to implement. We use it to make
the item the user clicked the selected and current item. Because our view is a
QAbstractItemView subclass, which itself is a QAbstractScrollArea subclass, the

ptg

224 Chapter 6. Model/View Views

mouse event’sposition is in viewport coordinates. This isn’t a problemsince the
indexAt() method expects the QPoint it is passed to be in viewport coordinates.

One final point to note about the TiledListView class is that it assumes that
the user is using a left to right language, such as English. Arabic and Hebrew
users will find the class confusing because they use right to left languages.
We leave modifying the class to work both left to right and right to left as an
exercise for the reader. (The widget’s left to right or right to left status is avail-
able from QWidget::layoutDirection(); this is normally the same as QApplica-

tion::layoutDirection() but it is best to use the QWidget variant to be strictly
correct.)

Like all of Qt’s standard view classes, TiledListView has a one to one correspon-
dence between data items and display items. But in some situations wemight
want to visualize two or more items combined together in some way—but this
isn’t supported by the QAbstractItemView API, nor can it be achieved by using
custom delegates. Nonetheless, we can still produce a view that visualizes our
data exactly aswe want—aswewill see in the next section—but in doing so we
must eschew the QAbstractItemView API and provide our own API instead.

Model-Specific Visualizing Views ||||

In this section we will create a view class from scratch as a QWidget subclass,
and will provide our own API that is different from the QAbstractItemView API.
It would have been possible to create a QAbstractItemView subclass, but since
the view we want to create is specific to one particular model and shows some
of its items combined, there seemed little point in making it comply with an
API that wasn’t needed or relevant.

Figure 6.3 A QTableViewand a CensusVisualizer view

The visualizer we will create is designed to present a table of census data. The
model that holds the data is a tablemodel,where each row holds a year, a count
of the males, a count of the females, and the total of males and females. Fig-

ptg

Model-Specific Visualizing Views 225

ure6.3showsthe central area of theCensusVisualizer application (censusvisu-
alizer). The area has two views of the data. On the left a standard QTableView

presents thedata in the conventionalway. On the right a CensusVisualizer view
is used to represent the data, and it does so by showing the males and females
as colored bars proportional to their numbers and using gradient fills.

We could not use Qt’s QHeaderView to present the visualizer’s headers because
we have combined two columns. Because of this we have created the Census-

Visualizer view as a QWidget that aggregates three other widgets inside itself: a
custom CensusVisualizerHeader to provide the horizontal header, a custom
CensusVisualizerView to visualize the data, and a QScrollArea to contain the
CensusVisualizerView and provide support for scrolling and resizing. The rela-
tionships between these classes are shown in Figure 6.4.

CensusVisualizer

CensusVisualizerHeader

QScrollArea

CensusVisualizerView

Figure 6.4 The CensusVisualizer classes in relation to one another

We will start by looking at the creation of the visualizer in the application’s
main() function.

CensusVisualizer *censusVisualizer = new CensusVisualizer;

censusVisualizer->setModel(model);

This looks and works exactly like we’d expect—the visualizer is created and
we call CensusVisualizer::setModel() to give it the model. Later on in the
program’s main() function, the QTableView is created, both views are laid out,
and various signal–slot connections are made to give the program its behavior.
We will ignore all of that and just focus our attention on the design and coding
of the visualizer class and its aggregated header and view classes.

The Visualizer Widget |||

The visualizer widget is the one that our clients will use directly, so we will
start by reviewing the CensusVisualizer class. This will give us the context
we need to then go on to look at the two custom classes that the visualizer
aggregates to provide its appearance. Here’s the CensusVisualizer’s definition
in the header file, but excluding its private data:

ptg

226 Chapter 6. Model/View Views

class CensusVisualizer : public QWidget

{

Q_OBJECT

public:

explicit CensusVisualizer(QWidget *parent=0);

QAbstractItemModel *model() const { return m_model; }

void setModel(QAbstractItemModel *model);

QScrollArea *scrollArea() const { return m_scrollArea; }

int maximumPopulation() const { return m_maximumPopulation; }

int widthOfYearColumn() const { return m_widthOfYearColumn; }

int widthOfMaleFemaleColumn() const;

int widthOfTotalColumn() const { return m_widthOfTotalColumn; }

int selectedRow() const { return m_selectedRow; }

void setSelectedRow(int row);

int selectedColumn() const { return m_selectedColumn; }

void setSelectedColumn(int column);

void paintItemBorder(QPainter *painter, const QPalette &palette,

const QRect &rect);

QString maleFemaleHeaderText() const;

int maleFemaleHeaderTextWidth() const;

int xOffsetForMiddleOfColumn(int column) const;

int yOffsetForRow(int row) const;

public slots:

void setCurrentIndex(const QModelIndex &index);

signals:

void clicked(const QModelIndex&);

private:
···

};

Although the data isn’t shown, it is worth noting that the aggregated Census-

VisualizerHeader is held in the header private member variable and the Census-

VisualizerView is held in the view private member variable—both are pointers,
of course. The class also holds a pointer to the model and to the QScrollArea

that contains the CensusVisualizerView. The other private member data are all
integers most of whose getters are implemented inline and shown here, and
whose setters—for those that are writable—we will review shortly.

Themaximumpopulation is used by the view to compute themaximumwidths
of the male–female bars to make the best use of the available space, and is
calculated whenever setModel() is called.

The width getters are used by both the header and the view when they are
painting themselves. The selected row and column are kept track of and their

ptg

Model-Specific Visualizing Views 227

values are used by the header to highlight the selected column,and by the view
to highlight the selected item (or the selected male–female item pair).

The signal is included so that if the selected item is changed by the user click-
ing on the view, we emit a clicked() signal to notify any interested objects.

The non-inline parts of the CensusVisualizer class are the constructor and ten
methods. The paintItemBorder(), maleFemaleHeaderText(), and maleFemaleHead-

erTextWidth() methods are used by the aggregated header and view, so we will
defer our review of them until we see themused, but we will review all the oth-
ers here.

const int Invalid = -1;

CensusVisualizer::CensusVisualizer(QWidget *parent)

: QWidget(parent), m_model(0), m_selectedRow(Invalid),

m_selectedColumn(Invalid), m_maximumPopulation(Invalid)

{

QFontMetrics fm(font());

m_widthOfYearColumn = fm.width("W9999W");

m_widthOfTotalColumn = fm.width("W9,999,999W");

view = new CensusVisualizerView(this);

header = new CensusVisualizerHeader(this);

m_scrollArea = new QScrollArea;

m_scrollArea->setBackgroundRole(QPalette::Light);

m_scrollArea->setWidget(view);

m_scrollArea->installEventFilter(view);

QVBoxLayout *layout = new QVBoxLayout;

layout->addWidget(header);

layout->addWidget(m_scrollArea);

layout->setContentsMargins(0, 0, 0, 0);

layout->setSpacing(0);

setLayout(layout);

connect(view, SIGNAL(clicked(const QModelIndex&)),

this, SIGNAL(clicked(const QModelIndex&)));

}

We begin by setting fixed widths for the year and total columns based on the
largest numbers we expect them to handle, plus some margin.★ The width of
the total columnset here is just an initial default; the actualwidth is recalculat-
ed in the setModel() method and depends on the model’smaximum population.
We then create the aggregated view and header widgets. Although we pass
this as their parent, because we use a QScrollArea to contain the view, the view
will be reparented to the QScrollArea.

★In this book the practice is to use “W”s when we want horizontal padding, and “n”s when we want
a single character’s width, for example, for horizontal scrolling.

ptg

228 Chapter 6. Model/View Views

The QScrollArea class is unusual for Qt in that it is not designed to be sub-
classed. Instead the usage pattern is to aggregate the QScrollArea inside anoth-
er widget aswe have done here. Although this approach is by far the easiest to
use, if we want to use inheritance, we can derive our subclass from QAbstract-

ScrollArea as some of Qt’s built-in classes do.

We install the view as an event filter for the scroll area—this means that
every event that goes to the scroll area will first be sent to the view’s event-

Filter()method. Wewill seewhy this is necessary whenwe review the Census-
VisualizerView class further on.

The layout is quite conventional except that we set the layout’s margins and
spacing to 0; this makes the CensusVisualizer have the same look as other wid-
gets, with no extraneous border area, and with no gap between the Census-

VisualizerHeader and the CensusVisualizerView (contained in the QScrollArea).

The connection is slightly unusual since it is a signal–signal connection. These
set up a relationshipwhereby when the first signal is emitted the second signal
is emitted as a consequence. So in this case,when the user clicks the view (i.e.,
to select an item), the view’s clicked() signal goes to the CensusVisualizer, and
this in turn emits a matching clicked() signal with the same QModelIndex pa-
rameter. Thismeans that CensusVisualizer clients can connect to the CensusVi-
sualizer’s clicked() signal without having to know or care about the internals.
This makes the CensusVisualizer much more of a self-contained component
than it would be if, for example, it exposed the widgets it aggregates.

enum {Year, Males, Females, Total};

void CensusVisualizer::setModel(QAbstractItemModel *model)

{

if (model) {

QLocale locale;

for (int row = 0; row < model->rowCount(); ++row) {

int total = locale.toInt(model->data(

model->index(row, Total)).toString());

if (total > m_maximumPopulation)

m_maximumPopulation = total;

}

QString population = QString::number(m_maximumPopulation);

population = QString("%1%2")

.arg(population.left(1).toInt() + 1)

.arg(QString(population.length() - 1, QChar('0')));

m_maximumPopulation = population.toInt();

QFontMetrics fm(font());

m_widthOfTotalColumn = fm.width(QString("W%1%2W")

.arg(population)

.arg(QString(population.length() / 3, ',')));

ptg

Model-Specific Visualizing Views 229

}

m_model = model;

header->update();

view->update();

}

When a new model is set we must tell the header and view to update them-
selves. But first wemust calculate a suitablemaximumpopulation. We do this
by finding the biggest total population in the data, and then rounding it up to
the smallest number with a most significant digit that is one larger. For exam-
ple, if the biggest total is 8392174, the maximum becomes 9000000.

The algorithm used is very crude, but effective: we create a string that starts
with the number’s first digit plus one, followed by one less than as many zeros
as there are digits in the number, and convert this string to an int. For the
zeros we used one of QString’s two-argument constructors that takes a count
and a character and returns a string that contains exactly count occurrences
of the character.

Notice that we cannot retrieve the totals using model->data(model->index(row,

Total).toInt(), because the model happens to hold the values as localized
strings (e.g., “8,392,174” in the U.S. and UK, and “8.392.174” in Germany),
rather than as integers. The solution is to use toString() to extract the data
and then to use QLocale::toInt()—which takes an integer in the form of a
localized string and returns the integer value.

The QLocale class also has corresponding toFloat() and toDouble() methods, as
well as methods for other integral types—such as toUInt()—and also methods
for extracting dates and times from localized strings. When a QLocale is
constructed it defaults to using the application’s current locale, but this can be
overridden by using the one-argument constructor and a locale name that has
the ISO 639 language code and ISO 3166 country code, or the two-argument
constructor using Qt’s language and country enums.

In the constructor we set an initial width for the total column, but here we
can set one that is appropriate for the actual total. The width is set to be the
number of pixels needed to show themaximumnumber, plus space for a couple
of “W”s for padding, plus space for a comma (or other grouping marker) for
every three digits.

const int ExtraWidth = 5;

int CensusVisualizer::widthOfMaleFemaleColumn() const

{

return width() - (m_widthOfYearColumn +

m_widthOfTotalColumn + ExtraWidth +

m_scrollArea->verticalScrollBar()->sizeHint().width());

}

ptg

230 Chapter 6. Model/View Views

This method returns a suitable width for the male–female column. It calcu-
lates the width as themaximumavailable width given the width of the Census-
Visualizer itself, the widths of the other two columns, the width of the scroll
area’s vertical scrollbar, and a little bit of margin. This ensures that when the
CensusVisualizer is resized, any extra width is always given to themale–female
column.

void CensusVisualizer::setSelectedRow(int row)

{

m_selectedRow = row;

view->update();

}

void CensusVisualizer::setSelectedColumn(int column)

{

m_selectedColumn = column;

header->update();

}

If the selected row is changed programmatically, the viewmust update itself to
show the correct highlighted item. Similarly, if the selected column is changed,
the header must highlight the title of the selected column.

void CensusVisualizer::setCurrentIndex(const QModelIndex &index)

{

setSelectedRow(index.row());

setSelectedColumn(index.column());

int x = xOffsetForMiddleOfColumn(index.column());

int y = yOffsetForRow(index.row());

m_scrollArea->ensureVisible(x, y, 10, 20);

}

This slot is provided as a service to clients, so that they can change the Census-

Visualizer’s selected item by using a signal–slot connection.

Once the row and column are set, we make sure that they are visible in the
scroll area. The QScrollArea::ensureVisible() method takes x- and y-coordi-
nates, and optionally some horizontal and vertical margin (which defaults to
50 pixels each). We’ve reduced the margins so as to avoid unwanted scrolling
when the user clicks the top or bottom visible row.

There is actually a trade-off to bemadehere. If the verticalmargin is too large,
clicking the top or bottom item will cause unnecessary scrolling. And if the
margin is too small, if the user Tabs to the widget and uses the down arrow to
reach the bottom item, the item won’t be shown fully.

ptg

Model-Specific Visualizing Views 231

int CensusVisualizer::xOffsetForMiddleOfColumn(int column) const

{

switch (column) {

case Year: return widthOfYearColumn() / 2;

case Males: return widthOfYearColumn() +

(widthOfMaleFemaleColumn() / 4);

case Females: return widthOfYearColumn() +

((widthOfMaleFemaleColumn() * 4) / 3);

default: return widthOfYearColumn() +

widthOfMaleFemaleColumn() +

(widthOfTotalColumn() / 2);

}

}

This method is used to get a suitable x-offset for the current column. It does
this by computing the given column’s horizontal midpoint based on the
column widths.

const int ExtraHeight = 5;

int CensusVisualizer::yOffsetForRow(int row) const

{

return static_cast<int>((QFontMetricsF(font()).height()

+ ExtraHeight) * row);

}

This method is used to get the y-offset for the given row, which it calculates by
multiplying the height of one row by the given row index.

The x- and y-offsets returned by the xOffsetForMiddleOfColumn() and yOff-

setForRow() methods assume that the CensusVisualizerView is exactly the size
needed to showall thedata. Thisassumption isvalid because the CensusVisual-
izerView enforces it—aswewill see when we look at the CensusVisualizerView::
eventFilter()method. Thismeans that even though only a portion of the view
might be displayed, we don’t have to do any scrolling-related computations
because the QScrollArea that contains the CensusVisualizerView takes care of
them for us.

We have now finished reviewing the CensusVisualizer class. Apart from the
constructor and the setModel() method, it has very little code. This is because
all of the widget’s appearance, and most of its behavior, are handled by the
instances of the CensusVisualizerHeader and CensusVisualizerView classes that
the CensusVisualizer creates and lays out in its constructor. Wewill now review
each of these aggregated classes in turn, starting with the header.

ptg

232 Chapter 6. Model/View Views

The Visualizer’s Aggregated Header Widget |||

The CensusVisualizerHeaderwidget provides the column headers for the Census-
Visualizer, as Figure 6.3 illustrates (224 ➤). Since we are painting it ourselves
wehave taken the opportunity to give it a stronger three-dimensional look than
QHeaderView normally provides by using a different gradient fill. (If we had
wanted to exactly match QHeaderView, we could have done the painting using
QStyle methods.)

The class’s definition in the header file is quite simple; here is its complete
public API:

class CensusVisualizerHeader : public QWidget

{

Q_OBJECT

public:

explicit CensusVisualizerHeader(QWidget *parent)

: QWidget(parent) {}

QSize minimumSizeHint() const;

QSize sizeHint() const { return minimumSizeHint(); }

protected:

void paintEvent(QPaintEvent *event);
···

};

The constructor has an empty body. The only methods that are implemented
are the minimumSizeHint(), the sizeHint(), the paintEvent(), and a couple of
private helper methods (covered later) that paintEvent() calls.

QSize CensusVisualizerHeader::minimumSizeHint() const

{

CensusVisualizer *visualizer = qobject_cast<CensusVisualizer*>(

parent());

Q_ASSERT(visualizer);

return QSize(visualizer->widthOfYearColumn() +

visualizer->maleFemaleHeaderTextWidth() +

visualizer->widthOfTotalColumn(),

QFontMetrics(font()).height() + ExtraHeight);

}

The column widths are available from the parent CensusVisualizer, so we must
cast—using qobject_cast<>() as here, or dynamic_cast<>()—to get a pointer to
the parent that we can use to access the data we require. (If dynamic_cast<>()
is used the compiler must have RTTI—Run Time Type Information—turned
on, which most do by default nowadays.) The minimum width we need is the

ptg

Model-Specific Visualizing Views 233

sum of the widths of all the columns, and the minimum height is the height of
a character in the widget’s font plus some margin.

The maleFemaleHeaderTextWidth() method, and the method it depends on, are
provided by the CensusVisualizer class since they are used by both of the
aggregated custom widgets. We show them here for completeness.

int CensusVisualizer::maleFemaleHeaderTextWidth() const

{

return QFontMetrics(font()).width(maleFemaleHeaderText());

}

QString CensusVisualizer::maleFemaleHeaderText() const

{

if (!m_model)

return " - ";

return QString("%1 - %2")

.arg(m_model->headerData(Males, Qt::Horizontal).toString())

.arg(m_model->headerData(Females, Qt::Horizontal)

.toString());

}

The maleFemaleHeaderTextWidth() method returns the width needed by the
male–female column to show its title, and the maleFemaleHeaderText() method
returns the title itself.

void CensusVisualizerHeader::paintEvent(QPaintEvent*)

{

QPainter painter(this);

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

paintHeader(&painter, height());

painter.setPen(QPen(palette().button().color().darker(), 0.5));

painter.drawRect(0, 0, width(), height());

}

The paintEvent() sets up the painter, passes most of the work on to the paint-

Header() method, and finishes off by drawing a rectangle around the entire
header.

void CensusVisualizerHeader::paintHeader(QPainter *painter,

const int RowHeight)

{

const int Padding = 2;

CensusVisualizer *visualizer = qobject_cast<CensusVisualizer*>(

parent());

Q_ASSERT(visualizer);

ptg

234 Chapter 6. Model/View Views

paintHeaderItem(painter,

QRect(0, 0, visualizer->widthOfYearColumn() + Padding,

RowHeight),

visualizer->model()->headerData(Year, Qt::Horizontal)

.toString(),

visualizer->selectedColumn() == Year);

paintHeaderItem(painter,

QRect(visualizer->widthOfYearColumn() + Padding, 0,

visualizer->widthOfMaleFemaleColumn(), RowHeight),

visualizer->maleFemaleHeaderText(),

visualizer->selectedColumn() == Males ||

visualizer->selectedColumn() == Females);
···

}

This method paints each column header in turn. For each one it calls paint-

HeaderItem(), passing it the painter, the rectangle in which to do the painting,
the text to paint, and whether this item (i.e., this column) is selected. We have
omitted the code for the total column since it is very similar to that used for the
year column.

void CensusVisualizerHeader::paintHeaderItem(QPainter *painter,

const QRect &rect, const QString &text, bool selected)

{

CensusVisualizer *visualizer = qobject_cast<CensusVisualizer*>(

parent());

Q_ASSERT(visualizer);

int x = rect.center().x();

QLinearGradient gradient(x, rect.top(), x, rect.bottom());

QColor color = selected ? palette().highlight().color()

: palette().button().color();

gradient.setColorAt(0, color.darker(125));

gradient.setColorAt(0.5, color.lighter(125));

gradient.setColorAt(1, color.darker(125));

painter->fillRect(rect, gradient);

visualizer->paintItemBorder(painter, palette(), rect);

painter->setPen(selected ? palette().highlightedText().color()

: palette().buttonText().color());

painter->drawText(rect, text, QTextOption(Qt::AlignCenter));

}

This is the method that actually paints each header item. We begin by getting
a pointer to the CensusVisualizer since we use one of itsmethods. Then we cre-
ate a linear gradient whose coloring depends on whether this item is selected.
The gradient goes from a lighter color in themiddle to a darker color at the top
and bottom, using lighter and darker colors than the ones used by QHeaderView,

ptg

Model-Specific Visualizing Views 235

to produce a stronger three-dimensional effect. Once the gradient is set up
we use it to paint the item’s background. Next we draw an outline around the
item—actually we draw just two lines, one along the bottom, and the other on
the right edge. And finally, we draw the text centered in the middle.

For completeness, here is the paintItemBorder() method:

void CensusVisualizer::paintItemBorder(QPainter *painter,

const QPalette &palette, const QRect &rect)

{

painter->setPen(QPen(palette.button().color().darker(), 0.33));

painter->drawLine(rect.bottomLeft(), rect.bottomRight());

painter->drawLine(rect.bottomRight(), rect.topRight());

}

We chose to draw the “outline” using just two lines because in this example it
produces a better effect than drawing a rectangle.

This completes our review of the CensusVisualizerHeader class. The class is
surprisingly straightforward,withmost of thework simply amatter of setting
up the painter and gradient and doing some simple drawing. This is quite a
contrast with the CensusVisualizerView class where we must implement both
its appearance and its behavior, as we will see in the next subsection.

The Visualizer’s Aggregated View Widget |||

The custom CensusVisualizerView widget is used to display the model’s data.
It doesn’t matter as such what size the widget is since it is embedded in a
QScrollAreawhich provides scrollbarswhen necessary and generally takes care
of all scrolling-related matters for us. This leaves us free to concentrate on
the widget’s appearance and behavior. Here is the public part of the widget’s
definition from the header file:

class CensusVisualizerView : public QWidget

{

Q_OBJECT

public:

explicit CensusVisualizerView(QWidget *parent);

QSize minimumSizeHint() const;

QSize sizeHint() const;

signals:

void clicked(const QModelIndex&);

protected:

bool eventFilter(QObject *target, QEvent *event);

ptg

236 Chapter 6. Model/View Views

void mousePressEvent(QMouseEvent *event);

void keyPressEvent(QKeyEvent *event);

void paintEvent(QPaintEvent *event);
···

};

The class also has several private methods, all of which are used to support
painting the data—and which we will review later—and one private data
member, a pointer to the parent CensusVisualizer. We will briefly look at the
public methods and the slot, and then work our way through the protected
event handlers to see what they do and how they do it—but first we will look
at the constructor.

CensusVisualizerView::CensusVisualizerView(QWidget *parent)

: QWidget(parent)

{

visualizer = qobject_cast<CensusVisualizer*>(parent);

Q_ASSERT(visualizer);

setFocusPolicy(Qt::WheelFocus);

setMinimumSize(minimumSizeHint());

}

The CensusVisualizerView is created inside the CensusVisualizer constructor
and passed as parent the CensusVisualizer itself (227 ➤). Nonetheless we have
chosen to keep a private CensusVisualizer pointer member (visualizer), to give
us access to the CensusVisualizer, because after the view has been constructed
it is given to a QScrollArea—and this takes ownership of the view and becomes
the view’s parent. (Alternatively we could avoid keeping a member variable
and access the visualizer by calling qobject_cast<CensusVisualizer*>(parent()

->parent()) instead.)

Qt provides several different focus policies: Qt::NoFocus (useful for labels and
other read-only widgets), Qt::TabFocus (the widget accepts focus when tabbed
to), Qt::ClickFocus (the widget accepts focus when clicked), Qt::StrongFocus
(this combines tab and click focus), and Qt::WheelFocus (this is strong focus plus
accepting the focus when the mouse wheel is used). Here we have used Qt::

WheelFocus which is the usual choice for editable widgets.

We have omitted the minimumSizeHint() method’s implementation since it is
almost identical to CensusVisualizerHeader::minimumSizeHint() (232 ➤), the
only difference being that here we have the visualizer member built into the
class. (The CensusVisualizerHeader’s parent is the CensusVisualizer and it isn’t
reparented, so it doesn’t need a separate visualizer member variable.)

QSize CensusVisualizerView::sizeHint() const

{

int rows = visualizer->model()

? visualizer->model()->rowCount() : 1;

ptg

Model-Specific Visualizing Views 237

return QSize(visualizer->widthOfYearColumn() +

qMax(100, visualizer->maleFemaleHeaderTextWidth()) +

visualizer->widthOfTotalColumn(),

visualizer->yOffsetForRow(rows));

}

If a model has been set we allow enough room for all its rows; otherwise we
allow room for a single row. The y-offset returned by the CensusVisualizer::

yOffsetForRow() method is the height we need since we pass it a row that is
equal to the number of rows in the model. For the columns we use the fixed
widths calculatedwhen the CensusVisualizerwas constructed,plus the comput-
ed width of the male–female column (or 100 pixels, whichever is greater).

bool CensusVisualizerView::eventFilter(QObject *target, QEvent *event)

{

if (QScrollArea *scrollArea = visualizer->scrollArea()) {

if (target == scrollArea && event->type() == QEvent::Resize) {

if (QResizeEvent *resizeEvent =

static_cast<QResizeEvent*>(event)) {

QSize size = resizeEvent->size();

size.setHeight(sizeHint().height());

int width = size.width() - (ExtraWidth +

scrollArea->verticalScrollBar()->sizeHint()

.width());

size.setWidth(width);

resize(size);

}

}

}

return QWidget::eventFilter(target, event);

}

The CensusVisualizerView was made an event filter for the QScrollArea that
contains it (227 ➤). This means that every event that is sent to the QScrollArea

goes to this method first.

The only event we are interested in is QEvent::Resize. When this event occurs,
that is, when the scroll area is resized, we also resize the CensusVisualizerView

widget. We always make the view the height needed to show all of its data,
and we set its width to the available width while allowing for the width of the
vertical scrollbar. This means that if the user has scrolled the view and, for
example, clicks a row, we can work as if the entire widget is visible without
having to account for the scrolling to compute which row was clicked.

Inside an eventFilter() reimplementation we are free, at least in principle, to
do what we like with the event: we can change it, replace it, delete it, or ignore
it. To stop an event from going further (whether or not we do anything with

ptg

238 Chapter 6. Model/View Views

it), or if we delete an event, we must return true to indicate that it has been
handled; otherwise we must return false. Here we make use of the event, but
don’t want to interferewith its behavior, so we leave the arguments unchanged
and call the base class implementation at the end.

void CensusVisualizerView::mousePressEvent(QMouseEvent *event)

{

int row = static_cast<int>(event->y() /

(QFontMetricsF(font()).height() + ExtraHeight));

int column;

if (event->x() < visualizer->widthOfYearColumn())

column = Year;

else if (event->x() < (visualizer->widthOfYearColumn() +

visualizer->widthOfMaleFemaleColumn() / 2))

column = Males;

else if (event->x() < (visualizer->widthOfYearColumn() +

visualizer->widthOfMaleFemaleColumn()))

column = Females;

else

column = Total;

visualizer->setSelectedRow(row);

visualizer->setSelectedColumn(column);

emit clicked(visualizer->model()->index(row, column));

}

The QMouseEvent::y() method returns the mouse click’s y-offset relative to
the top of the widget. Thanks to the CensusVisualizerView being embedded in
a QScrollArea, and thanks to it always being exactly high enough to hold all
the data—something we ensure in the eventFilter()—we can work directly
with the y-offset no matter whether the widget has been scrolled. So here, we
determine the row by dividing the y-offset by the height of one row.

To work out the column, we compare the x-offset: if it is less than the width of
the year column then the year columnwas clicked; if it is less than thewidth of
the year column plus half the width of the male–female column then the male
column was clicked; and so on.

Once the row and column are known we tell the CensusVisualizer to select
them, safe in the knowledge that doing this will also result in update() being
called both on this view and on the header so that the correct row and column
are properly highlighted. And finally, we emit the clicked() signal with the
model index—as computed by the model—of the selected item, which in turn
will cause the CensusVisualizer to emit its own clicked() signal with the same
model index for the benefit of any connected objects.

void CensusVisualizerView::keyPressEvent(QKeyEvent *event)

{

ptg

Model-Specific Visualizing Views 239

if (visualizer->model()) {

int row = Invalid;

int column = Invalid;

if (event->key() == Qt::Key_Left) {

column = visualizer->selectedColumn();

if (column == Males || column == Total)

--column;

else if (column == Females)

column = Year;

}
···
else if (event->key() == Qt::Key_Up)

row = qMax(0, visualizer->selectedRow() - 1);

else if (event->key() == Qt::Key_Down)

row = qMin(visualizer->selectedRow() + 1,

visualizer->model()->rowCount() - 1);

row = row == Invalid ? visualizer->selectedRow() : row;

column = column == Invalid ? visualizer->selectedColumn()

: column;

if (row != visualizer->selectedRow() ||

column != visualizer->selectedColumn()) {

QModelIndex index = visualizer->model()->index(row,

column);

visualizer->setCurrentIndex(index);

emit clicked(index);

return;
}

QWidget::keyPressEvent(event);
}

This event handler is used to provide navigation inside the view by the use of
the keyboard arrow keys.

Inside the CensusVisualizer we keep track of the selected row and column, but
in the case of the male and female columns they are visually—and therefore
from the user’s perspective—a single column. To account for this, if the user
presses the left arrow and the current column is either the male or the female
column, we set the column to be the year column. If the current column is the
year column, we do nothing, and if the current column is the total column we
set the column to be the female column. The handling of right arrow presses is
very similar (so we have omitted the code): if the current column is either the
male or the female column, we set the column to be the total column. And if
the current column is the year column we set it to be the male column, and if
the current column is the total column we do nothing.

If the user presses the up arrow, we set the current row to be one less than the
current row—or do nothing if they are already on the first row. And similarly,

ptg

240 Chapter 6. Model/View Views

if the user presses the down arrow,we set the current row to be one more than
the current row—or do nothing if they are already on the last row.

If the new selected row or column or both are different from the currently se-
lected ones, we set the selected row and column. This will cause update() to be
called on the view and the header, and will also ensure that the selected item is
visible. We also emit a clicked() signal with the selected item’s model index.

At the end, if we selected a new item,wemust not call the base class implemen-
tation, since we have handled the key press ourselves and don’t want it to go
to the scroll area. This is because the scroll area handles the arrow keys itself,
interpreting them as requests to scroll, which we don’t want—or need—since
we handle the scrolling ourselves. And conversely, if we didn’t handle the key
press, we call the base class implementation to handle it for us.

Compare this method with the mouse event handler where we set the row and
column without having to ensure that the selected item is visible—since the
user must have clicked it. But here, the user could be pressing, say, the down
arrow, on the last visible row, so we must call QScrollArea::ensureVisible()

(which is done by CensusVisualizer::setCurrentIndex(); 230 ➤) so that the view
is scrolled appropriately.

Adding support for the Home, End, PageUp, and PageDown keys follows the same
principles as the code used for the arrow keys, and is left as an exercise. (When
implementing PageUp and PageDown, it is conventional to move up or down by
the widget’s visible height minus one line or row so that the user has one line
of context by which they can orient themselves.)

The eventFilter(), mousePressEvent(), and keyPressEvent() methods that we
have just reviewed provide the view’s behavior. Now we will look at the paint-

Event() and the privatehelpermethods it uses to see how the view’sappearance
is rendered.

void CensusVisualizerView::paintEvent(QPaintEvent *event)

{

if (!visualizer->model())

return;

QFontMetricsF fm(font());

const int RowHeight = fm.height() + ExtraHeight;

const int MinY = qMax(0, event->rect().y() - RowHeight);

const int MaxY = MinY + event->rect().height() + RowHeight;

QPainter painter(this);

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

int row = MinY / RowHeight;

int y = row * RowHeight;

for (; row < visualizer->model()->rowCount(); ++row) {

ptg

Model-Specific Visualizing Views 241

paintRow(&painter, row, y, RowHeight);

y += RowHeight;

if (y > MaxY)

break;

}

}

This method begins by computing some constants, in particular, the height
to allow for each row, and the paint event’s minimum and maximum y-coordi-
nates, minus or plus one row’s height to ensure that even if only a portion of a
row is visible, it is still painted.

Since the widget is inside a QScrollArea and its height is always precisely that
needed to show all the items,we do not need to compute any offsets or work out
for ourselveswhat is visible and what isn’t. However, for the sake of efficiency,
we should paint only visible items.

The paint event that is passed in has a QRect that specifies the rectangle that
needs repainting. For small widgets we often ignore this rectangle and just
repaint the whole thing, but for a model-visualizing widget that could have
large amounts of data we want to be more efficient and only paint what needs
painting. So with the constants in place, we set up the painter and calculate
the first row that needs painting, and that row’s y-coordinate. (It may be
tempting to initialize y with y = MinY; but MinY is not usually the same as row *
RowHeight because of the—desired—integer truncation that occurs in the MinY

/ RowHeight expression.)

With everything in place, we iterate through the model’s rows, starting at
the first one that is visible, and painting each one until the y-coordinate takes
us beyond the rectangle that needs repainting, at which point we stop. This
ensures that we retrieve and paint at most the rows that are visible plus two
extra rows, which could be a considerable savings if the model has thousands
or tens of thousands of rows or more.

void CensusVisualizerView::paintRow(QPainter *painter, int row,

int y, const int RowHeight)

{

paintYear(painter, row,

QRect(0, y, visualizer->widthOfYearColumn(), RowHeight));

paintMaleFemale(painter, row,

QRect(visualizer->widthOfYearColumn(), y,

visualizer->widthOfMaleFemaleColumn(), RowHeight));

paintTotal(painter, row,

QRect(visualizer->widthOfYearColumn() +

visualizer->widthOfMaleFemaleColumn(), y,

visualizer->widthOfTotalColumn(), RowHeight));

}

ptg

242 Chapter 6. Model/View Views

This method is used simply to create a suitable rectangle and call a column-
specific paint method for each column.

void CensusVisualizerView::paintYear(QPainter *painter, int row,

const QRect &rect)

{

paintItemBackground(painter, rect,

row == visualizer->selectedRow() &&

visualizer->selectedColumn() == Year);

painter->drawText(rect,

visualizer->model()->data(

visualizer->model()->index(row, Year)).toString(),

QTextOption(Qt::AlignCenter));

}

Once the background is painted, all that remains is for the item’s text to
be drawn. The text is retrieved from the model and painted centered in its
column.

The CensusVisualizerView::paintTotal() method is very similar to this one (so
we don’t show it), with the only difference being that we right-align the total.

void CensusVisualizerView::paintItemBackground(QPainter *painter,

const QRect &rect, bool selected)

{

painter->fillRect(rect, selected ? palette().highlight()

: palette().base());

visualizer->paintItemBorder(painter, palette(), rect);

painter->setPen(selected ? palette().highlightedText().color()

: palette().windowText().color());

}

Which backgroundand foreground colors to use dependsonwhether the item is
selected. This method paints the background and the border and sets the pen
color ready for the caller to paint its text.

The paintMaleFemale() method is slightly longer so we will review it in three
parts.

void CensusVisualizerView::paintMaleFemale(QPainter *painter,

int row, const QRect &rect)

{

QRect rectangle(rect);

QLocale locale;

int males = locale.toInt(visualizer->model()->data(

visualizer->model()->index(row, Males)).toString());

int females = locale.toInt(visualizer->model()->data(

ptg

Model-Specific Visualizing Views 243

visualizer->model()->index(row, Females)).toString());

qreal total = males + females;

int offset = qRound(

((1 - (total / visualizer->maximumPopulation())) / 2) *
rectangle.width());

We begin by finding out how many males and females there are and the total
they sum to. (We discussed the use of QLocale to get numbers from localized
strings earlier; 229 ➤.) Then we compute howmuch width the complete colored
bar should occupy and use that to work out the offset by which the bar must be
indented from the left and from the right to make the bar the right size within
the available rectangle.

painter->fillRect(rectangle,

(row == visualizer->selectedRow() &&

(visualizer->selectedColumn() == Females ||

visualizer->selectedColumn() == Males))

? palette().highlight() : palette().base());

The first thing we paint is the background, with the color determined by
whether the males or females column is selected.

visualizer->paintItemBorder(painter, palette(), rectangle);

rectangle.setLeft(rectangle.left() + offset);

rectangle.setRight(rectangle.right() - offset);

int rectY = rectangle.center().y();

painter->fillRect(rectangle.adjusted(0, 1, 0, -1),

maleFemaleGradient(rectangle.left(), rectY,

rectangle.right(), rectY, males / total));
}

Toward the end, we paint the item’s border and then resize the available
rectangle—potentially making it smaller—so that it has the correct size and
position to serve as the rectangle for drawing the colored bar. Finally, we draw
the bar—with a tiny reduction in height—using a gradient fill which goes from
dark green to light green (left to right) for the male part, and from light red to
dark red (left to right) for the female part.

QLinearGradient CensusVisualizerView::maleFemaleGradient(

qreal x1, qreal y1, qreal x2, qreal y2, qreal crossOver)

{

QLinearGradient gradient(x1, y1, x2, y2);

QColor maleColor = Qt::green;

QColor femaleColor = Qt::red;

gradient.setColorAt(0, maleColor.darker());

gradient.setColorAt(crossOver - 0.001, maleColor.lighter());

gradient.setColorAt(crossOver + 0.001, femaleColor.lighter());

ptg

244 Chapter 6. Model/View Views

gradient.setColorAt(1, femaleColor.darker());

return gradient;

}

This method is shown for completeness. It creates a linear gradient that goes
from dark to light in one color and then from light to dark in another color with
a crossover between the colors at the specified position. The crossover point is
computed by the caller as males / total; this ensures that thewidths of themale
and female parts are in correct proportion to their populations.

Qt also has QConicalGradient and QRadialGradient classes with similar APIs.

We have now finished the CensusVisualizer class and its aggregated Census-

VisualizerHeader and CensusVisualizerView classes that do somuch of the work.
Creating customclasses like this is ideal whenwehave amodel thatwewant to
visualize in a uniqueway andwhere items are shown combined in someway so
that using a custom delegate or a custom view based on the QAbstractItemView

API is not sufficient.

We have now completed our review of the TiledListView class, and of the
CensusVisualizer class. The TiledListView is much shorter because it didn’t
have to show any column captions and because it could rely on the base class
for some of its functionality. If we want to present model data in unique ways,
for example, graphically, or if we want to present some model items combined,
then a custom delegate is insufficient and we must use a custom view. If we
take the approach used for the CensusVisualizer class, we get complete control,
and only have to implement the features that we actually need. However, if we
choose to create a QAbstractItemView subclass, we still get complete control, we
get some functionality for free, and we get much more potential for reuse—but
we are obliged to reimplement all the pure virtual methods, and in general at
least those methods listed in Table 6.1 (210 ➤).

This chapter is the last of the four chapters dedicated to Qt’smodel/view archi-
tecture. In general, it is easiest to start by using a QStandardItemModel, subclass-
ing it (or QStandardItem) tomake the data serializable and deserializable. Later
on, if the need arises, a custommodel can always be used as a drop-in replace-
ment. Similarly, using one of Qt’s standard views is the best way to start view-
ing model data, and if the need for customizing the appearance or editing of
items is required, it is best—and easiest—to use customdelegates. However, if
no combination of standard view and customdelegate can visualize the data in
thedesiredway, thenwemust createa customviewusing one of theapproaches
shown in this chapter.

ptg

Threading with QtConcurrent |||||

7
● Executing Functions in Threads

● Filtering andMapping in Threads

Threading is very popular, and sometimes very useful. However, because it is
fashionable, some programmers seem to use it unnecessarily, and end up cre-
ating needlessly complicated applications. (See “The Threading Controversy”
sidebar; ➤ 246.) Note that this chapter assumes a basic knowledge of Qt
threading—it is designed to show how to use Qt’s threading support, not as a
tutorial on threading itself.★

Before we dive into threading it is worth pausing for thought about some of
the issues threading raises. Most often we want to use threading to improve
performance, but to achieve this sometimes requires us to approach things
rather differently than when we are writing single-threaded applications.

In fact, we cannot be certain that using multiple threads will actually deliver
better performance at all. For example, if we increase the number of threads
we use in proportion to the number of cores the systemhas available,wemight
end up degrading performance because the gains are outweighed by the in-
creased contention. And sometimes the most efficient algorithm in a single-
threaded context may turn out not to be the most efficient when multiple
threads are used. So, if we want to be confident that we really are delivering
better performance, ideally, we should produce different implementations and
profile them to compare their performance—using the samehardwareand soft-
ware configurations as our users.

Caveats aside, if threading is the right solution, Qt provides plenty of sup-
port for it. In particular, Qt 4.4 introduced the QRunnable class and the Qt-

Concurrent namespace, both designed to provide high-level APIs to support
threading without the need for programmers to use the low-level API offered
by QThread and its related classes. These high-level APIs relieve us of many of

★Those readers familiar with threading in general, but not with Qt threading,might benefit from
reading Qt’s threading documentation, qt.nokia.com/doc/threads.html, or the “Multithreading”
chapter of C++ GUI Programming with Qt 4,Second Edition.

245

ptg

246 Chapter 7. Threadingwith QtConcurrent

The Threading Controversy

Thanks in large part to Java’s built-in support for threading, and more re-
cently the advent of multi-core processors, the interest in writing threaded
programs has grown considerably in recent years.

Yet despite its popularity, threading is controversial. It can add significant
complexity to programs and can make debugging and maintenance much
harder than for single-threaded programs. And it isn’t always possible to
split up processing to make using threads worthwhile. Also, performance
benefits are not always achieved due to the overhead of threading itself, or
simply because it is much easier to make mistakes in threaded programs.

Leading Sun developer Tim Bray said, “Now that the best and the brightest
have spent a decade building and debugging threading frameworks in Java
and .NET, it’s increasingly starting to look like threading is a bad idea;
don’t go there” (Tim Bray’s weblog, “Processors” paragraph, www.tbray.org/
ongoing/When/200x/2008/04/24/Inflection). Nor is his an isolated voice. One
of the fathers of computer science,Donald Knuth, said, “I won’t be surprised
at all if the whole threading idea turns out to be a flop” (interview with
Donald Knuth, www.informit.com/articles/article.aspx?p=1193856).

There seem to be two main problems. One is that using threading often re-
quires programmers to add a significant amount of code to support thread-
ing that is actually tangential to solving the problems at hand. And worse,
this code can be very subtle and difficult to get right, and can be very hard
to debug. Another problem is that at a hardware level there are many dif-
ferent solutions to parallelism, each of which requires that compiler writers
use different techniques, and which may be superceded by new hardware
approaches as progress is made.

The news isn’t entirely bad. One technique that might allow threading to
be used in a higher-level way without burdening programmerswith a lot of
low-level bookkeeping (i.e., locking and unlocking) is software transactional
memory. Libraries for this are under development for C++. And Qt itself
provides the QtConcurrent functions—introduced in this chapter—which are
designed to provide high-level access to threading, and that take care of all
the low-level details. Other possible solutions include the Erlang and Go
programming languages, and Apple’s Grand Central Dispatch.

And, of course, there is another approach altogether, which can take advan-
tage of multiple cores without most of the disadvantages of threading—but
without some of its advantages, and with its own set of burdens:multi-pro-
cessing. This involves handing off work to separate processes, for example,
using Qt’s QProcess class. While this approach can relieve us of some of the
subtle risks and extra code required to support concurrency, it leaves us re-
sponsible for handling all the inter-process communication ourselves.

www.tbray.org/ongoing/When/200x/2008/04/24/Inflection
www.tbray.org/ongoing/When/200x/2008/04/24/Inflection
www.informit.com/articles/article.aspx?p=1193856

ptg

Executing Functions in Threads 247

the responsibilities normally associated with threading (although some care is
still needed).

The QRunnable class and the QtConcurrent::run() function are well suited to sit-
uations where we want to perform some background processing in one or more
secondary threads without needing the full power and flexibility provided by
QThread. These are covered in this chapter’s first section.

The QtConcurrent namespace also provides functions for filtering, mapping,
and reducing—concepts that we will explain when we cover these functions
in this chapter’s second section. These functions are ideal for situationswhere
there are lots of items that need to be processed. Unfortunately,we cannot use
these functions to process the items in a QAbstractItemModel or a QGraphicsScene,
because Qt does not support the locking of models, scenes, or of the items they
contain; however, we will see how to work around this problem at some cost in
memory and processing overhead.

Sometimes, using the low-level API is the right approach. The next chapter
shows the use of QThread. Using QThread is potentially one of the most chal-
lenging ways of doing threading in Qt—but the dividend we get is very fine
control.

In both this chapter’s sections and in the next chapter, we try to minimize
the risks and complexities of threading. This is done primarily by avoiding
the need to lock at all—for example, by giving each thread its own unique
processing to do. And where locking is necessary, we try to minimize it, or try
tomake it transparent—for example, by creating classes that handle their own
locks so that clients don’t have to do any locking themselves.

Qt also offers some even lower-level classes, such as QAtomicInt and QAtomic-

Pointer. These classes are ideal for creating thread-safe data structures and
other low-level threaded components, but are beyond the scope of this book.
(See The Art of Multiprocessor Programming—listed in the bibliography—for
ideas about using them; ➤ 495.)

Qt’s threading APIalso includes QSemaphore,QThreadStorage, and QWaitCondition.
These classes are most often used in conjunction with QThread subclasses, al-
though this chapter and the next don’t happen to use them, relying instead on
other classes and techniques, for example, using volatile bool. (See C++ GUI
Programming with Qt 4—listed in the bibliography—for examples that show
the use of the QSemaphore, QThreadStorage, and QWaitCondition classes.)

The volatile keyword is used to mark a variable as one that might change be-
hind the program’s back—this means that it will never be optimized away (or
cached!) by the compiler. This is useful for situations where a variable is at a
memory address that can be changed from outside the program—for example,
at a hardware port. But in addition, volatile bool can be useful in threaded
programs, where such a variable’s value might be changed by one thread and

ptg

248 Chapter 7. Threadingwith QtConcurrent

read by another. It is important to note that although volatile is not suitable
for threaded use with other datatypes (not even with ints) because of the pos-
sibility of two separate bytes being updated by separate threads, it is safe to
use with bools.★ In addition to volatile bool, the book’s threading examples use
QMutex, QMutexLocker, QReadWriteLock, QReadLocker, and QWriteLocker, and in the
case of the QtConcurrent namespace’s functions, QFuture and QFutureWatcher.

In general threading pays back best when the cost of setting up and running
separate threads is outweighed by the benefits of spreading the work over
multiple cores or processors. So apart from the obvious use in implementing
parallel algorithms, threading is most effectively applied where we have at
least one—and potentially many—relatively expensive bits of processing to do
that can be done wholly or mostly independently.

There is one other important use case for threading in a GUI context. If we
have expensiveprocessing to performandwant to avoid tying up theuser inter-
face we might choose to solve the problem by creating a secondary thread that
handles the processing. For networking this isn’t necessary since Qt already
handles network access asynchronously, but for our own processing, using one
or more secondary threads can sometimes be very useful. A lighter-weight al-
ternative that is viable in some cases is to use a local event loop as we saw in
Chapter 2 (74 ➤).

Executing Functions in Threads ||||

In caseswhere the number of items to process is quite small, but the processing
of each is expensive, it is often convenient to do the processing in a separate
thread of execution to keep the user interface responsive. Similarly, if there
are lots of items to process, but they can be grouped together (or put on a work
queue), then spreading the processing over just a few separate threads might
make sense.

There are four main ways that processing can be spread over a few threads
of execution or over a few processes: we can execute separate processes using
the QProcess class (e.g., running multiple copies of a self-contained “worker”
program); we can use QtConcurrent::run() to run functions or methods in sec-
ondary threads from Qt’s global thread pool; we can create QRunnable objects
and run them in secondary threads fromQt’s global thread pool; or we can cre-
ate QThread objects and execute them as secondary threads. In this section we
will see how to use QtConcurrent::run() and QRunnable, and in the next chapter
we will use QThread.

★See, for example, “volatile—Multithreaded Programmer’s Best Friend” by Andrei Alexandrescu,
www.ddj.com/cpp/184403766.

www.ddj.com/cpp/184403766

ptg

Executing Functions in Threads 249

Using the QtConcurrent::run() function is straightforward: we create a func-
tion or method that does the processing we want and pass it to the QtConcur-

rent::run() function to execute. We can pass the same function (normally
with different arguments)multiple times if we want to usemultiple secondary
threads. Using a QRunnable is quite similar. We create a QRunnable subclass and
put all our processing inside our reimplementation of the pure virtual run()
method, and pass as many instances as we want secondary threads to the
QThreadPool::start() method.

Doing processing in secondary threads using QtConcurrent::run() or QRunnable
has two potential drawbacks compared with using QThread. First, there is no
support for signals and slots, so no communication facility (e.g., to indicate
progress) is built in. Second, we are not notified when processing is finished,
so if we need to know this, we must find out for ourselves. It is quite straight-
forward to overcome both of these drawbacks—and to provide support for stop-
ping—as we will see later on in this section.

In this section we will create the Image2Image application (image2image), a
program that searches a specified directory for image files and for each one
creates a copy of the image using the specified format (such as .bmp, .tiff, and
so on). The application is shown in Figure 7.1.★

Figure 7.1 The Image2Image application

Converting an image involves reading it into memory in its original format
and then saving it out again in a new format—a mixture of disk I/O and
processing. For this application we have chosen to do the work in one or more
secondary threads, with each thread being given its own unique list of files to
convert. Since each thread has its own private work to do and there is no need
for communication between the secondary threads, no locking is necessary. Of
course, we will want to notify the main (GUI) thread about progress, but we’ll

★Incidentally, the line edit used to enter the path uses a QCompleter which pops up a list of valid
directories to minimize how much the user must type—this is covered in Chapter 9; ➤ 320.

ptg

250 Chapter 7. Threadingwith QtConcurrent

do that by using techniques that leave Qt to take care of any locking that may
be needed.

We havewritten the application so that it can use either QtConcurrent::run() or
QRunnable, depending on a #define. In the following subsection we will see how
to use QtConcurrent::run(), and in the subsection after that we will see how to
use QRunnable. In both subsections we will cover the bare minimum of the user
interface-related code, focusing instead on the threading aspects.

Althoughweuse the samemainwindow infrastructureand cancelation control
for both,we use differentmeans to communicateprogress for each of them. For
QtConcurrent::run() we communicate by using a custom event. For QRunnable

we communicate by invoking a slot—and since QRunnable is not a QObject

subclass, the slot must be called without using emit (i.e., without sending a
signal in the normalQt way).The use of these two approaches is purely to show
the different techniques; we could just as easily have used custom events for
both or invoked slots for both.

Apart from its methods and widgets, the main window class has three items of
private data:

int total;

int done;

volatile bool stopped;

The total variable holds the total number of images to process, the done vari-
able holds the number of images that were successfully converted, and the
stopped Boolean is used to notify secondary threads if the user has canceled.
Note that we use a single button (convertOrCancelButton) for initiating the con-
versions and for canceling.

Once the user has chosen a directory and their source and target formats, they
can then click the Convert button to initiate the conversions. Once pressed this
button becomes a Cancel button (simply by changing its text), so the user can
stop the conversions at any time. This button is connected to the convertOr-

Cancel() slot.

void MainWindow::convertOrCancel()

{

stopped = true;

if (QThreadPool::globalInstance()->activeThreadCount())

QThreadPool::globalInstance()->waitForDone();

if (convertOrCancelButton->text() == tr("&Cancel")) {

updateUi();

return;

}

QString sourceType = sourceTypeComboBox->currentText();

ptg

Executing Functions in Threads 251

QStringList sourceFiles;

QDirIterator i(directoryEdit->text(), QDir::Files|QDir::Readable);

while (i.hasNext()) {

const QString &filenameAndPath = i.next();

if (i.fileInfo().suffix().toUpper() == sourceType)

sourceFiles << filenameAndPath;

}

if (sourceFiles.isEmpty())

AQP::warning(this, tr("No Images Error"),

tr("No matching files found"));

else {

logEdit->clear();

convertFiles(sourceFiles);

}

}

This slot starts by setting the stopped variable to true to notify any running
secondary threads that they must stop. Then it checks to see if there are any
secondary threads still running in Qt’s global thread queue, and if there are it
waits (blocks) until they are all done.

The QThreadPool::globalInstance() method returns a pointer to Qt’s global
QThreadPool object, and QThreadPool::activeThreadCount() returns the number
of threads in the thread pool that are actively working—this could be 0, of
course. The QThreadPool::waitForDone()method waits for all the threads in the
thread pool to finish, so it could potentially block the user interface for a long
time. To avoid thisproblemwemust ensure thatwe tell all the threads to finish
before waiting for them, and in this application, we achieve this by setting the
stopped variable to true.

If the user has canceled, we simply call the updateUi() method (not shown) to
change the Cancel button’s text to Convert and return, since we have stopped all
the secondary threads.

If the user has clicked Convert we create a list of files in the chosen directory
that have a suffix that matches the chosen source type. If the list is empty, we
notify the user and return. If the list is nonempty we clear the log (a read-only
QPlainTextEdit), and call convertFiles()with the list of files to actually perform
the conversions.

We have two implementationsof convertFiles(), one using QtConcurrent::run()

which is shown in the following subsection, and another that uses QRunnable

which is shown in the second subsection. In both cases we will show the
convertFiles() method and the supporting infrastructure methods.

ptg

252 Chapter 7. Threadingwith QtConcurrent

Using QtConcurrent::run() |||

The QtConcurrent::run() function takes a function, and optionally one or more
arguments to pass to the function, and executes the function in a secondary
thread from Qt’s global thread pool. Its signature is

QFuture<T> run(Function, ...)

The Function must be a pointer to a function (or functor) that returns an object
of type T. The ellipsis (...) indicates a variable argument list (i.e., zero or more
additional arguments). If present, these arguments are passed to the Function

when it is called by QtConcurrent, so if any of these arguments are passed, they
must match the Function’s signature.

Now we’ll return to the image2image application and see an example of how
QtConcurrent::run() is called in practice.

void MainWindow::convertFiles(const QStringList &sourceFiles)

{

stopped = false;

updateUi();

total = sourceFiles.count();

done = 0;

const QVector<int> sizes = AQP::chunkSizes(sourceFiles.count(),

QThread::idealThreadCount());

int offset = 0;

foreach (const int chunkSize, sizes) {

QtConcurrent::run(convertImages, this, &stopped,

sourceFiles.mid(offset, chunkSize),

targetTypeComboBox->currentText());

offset += chunkSize;

}

checkIfDone();

}

We begin by setting the stopped variable to false and then calling the update-

Ui() method (not shown) to change the Convert button to a Cancel button by
changing its text. We then set the total variable to the number of files in the
list, and the done variable to 0, since none have been converted yet.

We could create a function to convert a single image file and call QtConcurrent::
run() with the function and a filename once for each file we have to process,
potentially creating as many secondary threads as there are files in the list.
For a few very large files such an approach might make sense, but for lots of
files no matter what their sizes, the setup costs of creating so many threads

ptg

Executing Functions in Threads 253

(especially on Windows) are likely to be out of all proportion to the potential
savings of spreading the work over secondary threads.

Fortunately, the number of secondary threads that is best for the machine
the program is running on—taking account of the operating system and the
number of processors and cores themachine has—is provided by the QThread::
idealThreadCount() method. This might return a value of 1 for a single proces-
sor, single core machine, and higher numbers for machines with more proces-
sors and cores. The number is unlikely to exactly match the number of fileswe
have to process, so we need to divide up thework so that each secondary thread
(assuming more than one is used) gets as equal a number of files to process as
possible. (Of course, dividing the work by the number of files may not be the
best approach in all cases—for example, if we had a list of twenty files where
the first ten files were very large and the last ten files were very small.)

To spread the load over the most appropriate number of secondary threads
we begin by calling the custom AQP::chunkSizes() function (not shown, but
included in the book’s source code in the aqp.{hpp,cpp} module) which given
the number of items in a container (here, the number of files), and the number
of chunks we want (here, the ideal number of secondary threads), returns a
vector of chunk sizes that sum to the number of items and that have the most
equal numberspossible. For example,given a list of 97 items,with a number of
chunksof 1 (one secondary thread)wewould get the vector [97];with a number
of chunks of 2 we would get the vector [49, 48]; with 3 we’d get [33, 32, 32];
and so on.

Once we have the vector of chunk sizes,we iterate over it (just once if the ideal
thread count is 1 since then there will be only one chunk size), and for each one
we call QtConcurrent::run(). We pass five arguments: the convertImages() func-
tion (this is the function that will be run), and four other arguments that will
be passed to convertImages()when it is called. These remaining argumentsare
a pointer to themainwindow (this)whichweneed for communicating progress,
a pointer to the volatile stopped Boolean so that we can see if processing has
been canceled, a unique list of files taken from the full list, and the target file
type’s suffix. Each call to QtConcurrent::run() is non-blocking, and once made,
the convertImages() function is called in a secondary thread with the argu-
ments intended for it.★

The QStringList::mid() method (actually, QList<T>::mid()) takes an offset and
optionally a count and returns a sublist of count items from the offset—or of
all items from the offset if offset + count is greater than the number of items,
or if count isn’t specified.

Once all the secondary threads have been started up, we call the checkIfDone()

slot (which we will review shortly), which polls to see if processing has fin-

★As we noted earlier (247 ➤), using volatile bool is safe across threads, but this technique does not
work with other datatypes.

ptg

254 Chapter 7. Threadingwith QtConcurrent

ished. The QtConcurrent::run() function returns a QFuture<T> which if given to
a QFutureWatcher<T> can be used to detect when the secondary thread has fin-
ished. We’ll see how to handle QFuture<T>s returned by QtConcurrent functions
in the next section, but here we prefer to ignore QtConcurrent::run()’s return
value and poll, purely to show an example that uses polling.

void convertImages(QObject *receiver, volatile bool *stopped,

const QStringList &sourceFiles, const QString &targetType)

{

foreach (const QString &source, sourceFiles) {

if (*stopped)

return;

QImage image(source);

QString target(source);

target.chop(QFileInfo(source).suffix().length());

target += targetType.toLower();

if (*stopped)

return;

bool saved = image.save(target);

QString message = saved

? QObject::tr("Saved '%1'")

.arg(QDir::toNativeSeparators(target))

: QObject::tr("Failed to convert '%1'")

.arg(QDir::toNativeSeparators(source));

QApplication::postEvent(receiver,

new ProgressEvent(saved, message));

}

}

This function is called in one ormore secondary threads, each timewith its own
unique list of files to process. Just before each expensive operation (loading
and saving an image file), it checks to see if the user has canceled—if they
have, the function returns and the thread it is executing in becomes inactive.

The processing itself is straightforward: for each image file in the list, we
create a QImage object (the constructor reads in the given image file), then
create a suitable name for the target image, and then save the image using
the target’s name. The QImage::save()method returns a simple success/failure
Boolean flag.

The QDir::toNativeSeparators() static method takes a path or path and
filename string and returns a string with directories separated by QDir::

separator() (e.g., “\” on Windows and “/” on Unix-like systems). In source code,
it is usually more convenient to use “/”s since these don’t need to be escaped in
stringsandQt understandsthemnomatterwhat theunderlying platform. But

ptg

Executing Functions in Threads 255

when we want to show paths to the user, it is best to present them in the form
that is correct for the platform the application is running on.

We want to notify the user of progress for each file that is processed. The easi-
est and best way to do this is to invoke a slot in the calling widget—something
wewill see in the next subsection. But here we use the slightly less convenient
approach of posting a custom event, just to show how it is done.

We begin by creating a message string, and then we post it, along with the
success flag, inside a custom event to the receiver object (in this case the main
window). The QApplication::postEvent() method takes ownership of the event,
so we don’t have to worry about deleting it.

In fact, there are two methods that can be used for sending events: QApplica-
tion::sendEvent() and QApplication::postEvent().

The sendEvent() method dispatches the event immediately—but it should
be used sparingly, if at all. For example, in threaded programs sendEvent()

makes the event handling occur in the sender’s thread rather than in the re-
ceiver’s thread. Also, no event compression or reordering can be done—for ex-
ample, multiple paint events cannot be compressed into one. And sendEvent()

doesn’t delete the event, so the practice is to create events for sendEvent() on
the stack.

The postEvent() method adds the event—which should be created on the heap
using new—to the receiver’s event queue so that it gets processed as part of the
receiver’s event loop processing. This is the technique that should normally be
used, since it cooperates nicely with Qt’s event processing.

In either case, we don’t have to concern ourselves with the fact that the event
goes from one thread to another—Qt seamlessly handles that for us.

struct ProgressEvent : public QEvent

{

enum {EventId = QEvent::User};

explicit ProgressEvent(bool saved_, const QString &message_)

: QEvent(static_cast<Type>(EventId)),

saved(saved_), message(message_) {}

const bool saved;

const QString message;

};

Here is the complete definition of the custom ProgressEvent. It is important to
give every custom event a unique ID (QEvent::User, QEvent::User + 1, etc.) of
type QEvent::Type, to avoid one event being mistaken for another. We have
made the event a struct and left the Boolean saved flag and the message text
publicly accessible.

ptg

256 Chapter 7. Threadingwith QtConcurrent

bool MainWindow::event(QEvent *event)

{

if (!stopped && event->type() ==

static_cast<QEvent::Type>(ProgressEvent::EventId)) {

ProgressEvent *progressEvent =

static_cast<ProgressEvent*>(event);

Q_ASSERT(progressEvent);

logEdit->appendPlainText(progressEvent->message);

if (progressEvent->saved)

++done;

return true;

}

return QMainWindow::event(event);

}

We must reimplement QWidget::event() if we want to be able to detect and
process custom events in a particular widget. Here, if processing is ongoing
(i.e., hasn’t been canceled), and we get a custom ProgressEvent, we append the
event’s message text to the QPlainTextEdit log, and if the save was successful,
increment the count of files that have been done. We also return true to in-
dicate that we have handled the event so that Qt will delete the event rather
than looking for another event handler to process it. But if the processing has
stopped, and for any other events, we pass the work on to the base class event
handler.

const int PollTimeout = 100;

void MainWindow::checkIfDone()

{

if (QThreadPool::globalInstance()->activeThreadCount())

QTimer::singleShot(PollTimeout, this, SLOT(checkIfDone()));

else {

QString message;

if (done == total)

message = tr("All %n image(s) converted", "", done);

else

message = tr("Converted %n/%1 image(s)", "", done)

.arg(total);

logEdit->appendPlainText(message);

stopped = true;

updateUi();

}

}

This slot is called at the end of the convertFiles() slot to initiate polling. (The
QObject::tr() usage is discussed later in the “Using the Three-Argument Form

ptg

Executing Functions in Threads 257

of tr()” sidebar;➤ 276.) We could have used a custom event or invoked a signal
whenever a convertImages() function finished, but we would still have to check
the active thread count to see if they had all finished, so there would be no real
advantage over polling. An alternative approach is to keep the QFuture<T>s
returned by the QtConcurrent::run() calls, and use QFutureWatcher<T>s to notify
us when each secondary thread has finished—we will see how to use this
approach in this chapter’s second section.

Here, we begin by seeing if any of the secondary threads are running. If any
are, we create a single shot timer and call this slot in 100 milliseconds time.
Otherwise, they have all finished, so we append a suitable message to the log,
reset the stopped variable (whichwill already be true if they finished due to the
user canceling), and update the user interface (i.e., change the Cancel button’s
text to Convert).

void MainWindow::closeEvent(QCloseEvent *event)

{

stopped = true;

if (QThreadPool::globalInstance()->activeThreadCount())

QThreadPool::globalInstance()->waitForDone();

event->accept();

}

To achieve a safe cleanup, for multithreaded programs it is best to stop all
secondary threads before terminating the application. We have done this
by reimplementing the application’s closeEvent(), and making sure that any
active threads have finished before allowing the termination to proceed.

Using QRunnable |||

An alternative to using QtConcurrent::run() is to create a QRunnable subclass
and execute it in a thread from Qt’s global thread pool. In this subsection
we will look at an alternative implementation of the previous subsection’s
convertFiles() method, along with the necessary supporting methods, to see
how this is done.

void MainWindow::convertFiles(const QStringList &sourceFiles)

{

stopped = false;

updateUi();

total = sourceFiles.count();

done = 0;

const QVector<int> sizes = AQP::chunkSizes(sourceFiles.count(),

QThread::idealThreadCount());

int offset = 0;

ptg

258 Chapter 7. Threadingwith QtConcurrent

foreach (const int chunkSize, sizes) {

ConvertImageTask *convertImageTask = new ConvertImageTask(

this, &stopped, sourceFiles.mid(offset, chunkSize),

targetTypeComboBox->currentText());

QThreadPool::globalInstance()->start(convertImageTask);

offset += chunkSize;

}

checkIfDone();

}

This version of the convertFiles() method is structurally identical to the one
we saw earlier (252 ➤). The key difference is that for each chunk of files we
want to process we create a ConvertImageTask object (a QRunnable subclass) to
do the processing. (And we give the object exactly the same arguments as we
gave QtConcurrent::run() to pass on to the convertImages() function.) Once the
runnable is created we call QThreadPool::start() on it—this gives ownership of
the runnable to Qt’s global thread pool and starts it running.

The thread pool will delete the runnable when it has finished, which is what
we want here. We can prevent this behavior by calling QRunnable::setAuto-

Delete(false), in which case we must take responsibility for deleting the
runnable ourselves.

class ConvertImageTask : public QRunnable

{

public:

explicit ConvertImageTask(QObject *receiver,

volatile bool *stopped, const QStringList &sourceFiles,

const QString &targetType)

: m_receiver(receiver), m_stopped(stopped),

m_sourceFiles(sourceFiles),

m_targetType(targetType.toLower()) {}

private:

void run();
···

}

Here is the ConvertImageTask’s definition, apart from the private member data
which we’ve omitted. By making its run()method private,we prevent the class
from being subclassed, but also prevent run() from being called on instances
(since run() should be called only by QThreadPool::start()).

void ConvertImageTask::run()

{

foreach (const QString &source, m_sourceFiles) {

if (*m_stopped)

return;

ptg

Executing Functions in Threads 259

QImage image(source);

QString target(source);

target.chop(QFileInfo(source).suffix().length());

target += m_targetType;

if (*m_stopped)

return;

bool saved = image.save(target);

QString message = saved

? QObject::tr("Saved '%1'")

.arg(QDir::toNativeSeparators(target))

: QObject::tr("Failed to convert '%1'")

.arg(QDir::toNativeSeparators(source));

QMetaObject::invokeMethod(m_receiver, "announceProgress",

Qt::QueuedConnection, Q_ARG(bool, saved),

Q_ARG(QString, message));

}

}

This method is structurally identical to the convertImages() function we saw
earlier (253 ➤). The only difference is that instead of communicating progress
using a custom event, we do so by invoking a slot in the main window (Main-
Window::announceProgress()).

Since QRunnable is not a QObject subclass, it has no built-in support for signals
and slots. One solutionwould be tomultiply inherit both QObject and QRunnable,
but if we wanted to do that we would be better off simply creating a QThread

subclass since that is a QObject subclass and has several useful built-in signals
and slots as standard. Another solution is to use custom events as we did in
the previous subsection.

Here we have chosen to simply invoke a slot using the QMetaObject::invoke-

Method() method. This method takes a receiver, the name of a slot to call, the
type of connection (Qt::QueuedConnection is best for secondary threads since it
uses the event queue just like QApplication::postEvent()), and the arguments
to send. Each argumentmust be specifiedusing Qt’s Q_ARGmacrowhich takesa
type and a value. The QMetaObject::invokeMethod()method can pass up to nine
arguments,and canalso specify a returnvalue,althoughusing the returnvalue
only makes sense if the Qt::DirectConnection connection is used.

Since the slot invocation is put on the main (GUI) event queue, the slot exe-
cution takes place in the GUI thread, not in the secondary thread that called
QMetaObject::invokeMethod(). This is also true of signals that are emitted in
a secondary thread since behind the scenes Qt turns signals from secondary
threads into events.

Some programmers consider using QMetaObject::invokeMethod() to be better
style than sending a custom event since it works seamlessly with Qt’s signals

ptg

260 Chapter 7. Threadingwith QtConcurrent

and slots mechanism and doesn’t require the creation of a custom QEvent

subclass or the reimplementation of QWidget::event() in the widgets the event
will be sent to. Under thehood, signalsand slots that cross threadsare actually
implemented using Qt’s event mechanism, but we don’t have to know or care
about that to use QMetaObject::invokeMethod() and to enjoy the convenience of
invoking methods rather than creating custom events.

void MainWindow::announceProgress(bool saved, const QString &message)

{

if (stopped)

return;

logEdit->appendPlainText(message);

if (saved)

++done;

}

This method appends the given message to the log and updates the number
of files that have been done if the save was successful—or does nothing if the
processing has stopped.

The rest of the infrastructureneeded to support the ConvertImageTask QRunnable
is the same as was needed for QtConcurrent::run(): polling to see if all the
processing has finished using the checkIfDone() slot (256 ➤), and making sure
that all the secondary threads are finished when the user terminates the
application by reimplementing the closeEvent() (257 ➤).

Although we used custom events for communicating progress in the Qt-

Concurrent::run() version and slot invocation in the QRunnable version,we could
have used custom events for both, or slot invocation for both. In general, it is
best to use slot invocation since it is more convenient and requires less code.
For QRunnables we can monitor progress using polling as we have done here,
but for QtConcurrent::run() we can either use polling or a QFutureWatcher<T>

(QFuture<T> and QFutureWatcher<T> are covered in the next section).

The key difference between QtConcurrent::run() and QRunnable is that Qt-

Concurrent::run() returns a QFuture<T>—this provides a means of keeping
track of (and controlling) the processing’s progress, and is something we will
cover in the next section when we look at other QtConcurrent functions that re-
turn QFuture<T>s. Compare this with a QRunnable, where we must build in the
functionality for monitoring and controlling progress ourselves.

Using QtConcurrent::run() or QRunnable is particularly useful when we have a
lot of secondary processing to do, such as the need to process a few large items
or, ashere, the need to process lots of items,but doing so in chunks. Sometimes,
though, we have to process lots of items where it isn’t convenient to handle
them in chunks. For such situations,Qt provides other QtConcurrent functions,
as we will see in the next section.

ptg

Filtering andMapping in Threads 261

Filtering and Mapping in Threads ||||

The functions in the QtConcurrent namespace are ideal for situations where
we have lots of data items that we want to process in the same way. For small
numbers of items (say, fewer than five per core) we could create a function
for QtConcurrent::run(), or a QRunnable, or a QThread to process each one. But
when we have lots of items—perhaps even hundreds or thousands of items
or more—then creating a thread for each one would probably involve such a
massive overhead as tomake processing the data sequentially much faster. As
we saw in the previous section, one solution is to create just a few secondary
threads and have each one process a group of items. But in some cases we re-
ally want each item to be processed individually,and QtConcurrent has functions
to support this.

The functions offered by the QtConcurrent module are of four kinds: filters,
mappers, reducers—all of which we cover in this section—and a run function
that we covered in the previous section. The use case for filters, mappers, and
reducers is to give them a collection of items to process—and to leave it up to
Qt to distribute the work and perform the processing in its global thread pool’s
secondary threads.

The filtering and mapping concepts come from functional programming. In
that context a filter is a higher-order function (i.e., a function that takes a
function as one of its arguments) that given a sequence and a filter function
returns a new sequence of those items for which the filter function returned
true. And a mapper is a function that takes a sequence and a map function and
returns a new sequence where each of the new items is produced by applying
the map function to the corresponding item in the input sequence.

The QtConcurrent filters and mappers closely follow the functional program-
ming approach. So, in QtConcurrent, filters take a sequence of items and a filter
function and produce a new sequence that contains only those items from the
original sequence that the filter function returns true for. This means that the
resultant sequence could have no items, just some of the original items, or all
of the original items. Conceptually a filter works like this:

QList<Item> filter(QList<Item> items, FilterFunction isOK)

{

QList<Item> results;

foreach (Item item, items)

if (isOK(item))

results << item;

return results;

}

ptg

262 Chapter 7. Threadingwith QtConcurrent

Althoughwe have used a QList, any sequential container—or part of a contain-
er specified by using begin and end iterators—can be used for the items to be
filtered, and any sequential container can be used for the results.

Mappers (not to be confused with the QMap container class!) take a sequence
of items and a map function and produce a new sequence with exactly the
same number of items (possibly of a different type from the original items)
where each item in the original sequence has had the map function applied
to it to produce an item in the result sequence. Conceptually a mapper works
like this:

QList<Type2> mapper(QList<Type1> items, MapFunction map)

{

QList<Type2> results;

foreach (Type1 item, items)

results << map(item);

return results;

}

Here Type1 and Type2 could be the same type or different types—all that
matters is that the map function accepts an item of type Type1 and returns an
item of type Type2.

Reducers take a sequence of items and reduce them to a single item. For
example,wemight have a sequence of numbersandwant to compute their sum
or mean (average). The QtConcurrent namespace has functions that combine
filtering with reducing and mapping with reducing. Conceptually, they work
like this:

// Filter-Reduce

ResultType result;

foreach (Item item, items)

if (isOK(item))

result.merge(item);

// Map-Reduce

ResultType result;

foreach (Item item, items)

result.merge(map(item));

Here we’ve used isOK() as a filter function and map() as a map function. The
result object’s merge()method takes in each item (or processed item, in the case
of map–reduce), and somehow incorporates it into itself. For example:

struct ResultType

{

ResultType() : sum(0) {}

void merge(int item) { sum += item; }

int sum;

};

ptg

Filtering andMapping in Threads 263

If this ResultType were used with a sequence of numbers, after map–reducing
(and assuming that the processing function was the identity function, int
identity(int x) { return x; }), the sum would be available as result.sum.

Of course, what makes the QtConcurrent functions much more than simple for

loops is that rather than process each item sequentially as shown here, they
perform their processing in one or more secondary threads so that multiple
items can be processed concurrently. What should also be clear is that for
lightweight processing the overhead is probably not worthwhile, but for heavy
processing, the QtConcurrent functions can improve throughput.

The QtConcurrent namespace provides both blocking and non-blocking (thread-
ing) versions of the filtering, mapping, and reducing functions. The blocking
versionsare suitable for use inside existing secondary threads (i.e., in QRunnable

or QThread subclasses), or where we simply want the function’s behavior and
don’t care about blocking. It is the non-blocking versions that we will consider
in this chapter.

At the time of this writing, Qt’s documentation indicates that no locking is
required when using the QtConcurrent functions. This is true when processing
independent data items that don’t affect anything else. But what we cannot do
is process the items in a model or a graphics scene, because Qt does not provide
a means of locking models, scenes, or the items they contain. This can be
solved by serially creating our own surrogate items, concurrently processing
them, and then serially updating the model or scene—providing, of course,
that the overhead is outweighed by the advantage of processing the items in
parallel.

Figure 7.2 The Number Grid application

In this section we will review the Number Grid example (numbergrid). This pro-
gram presents a grid of numbers, and is shown in Figure 7.2.We can generate

ptg

264 Chapter 7. Threadingwith QtConcurrent

an initial set of predefined or random numbers, and we can dynamically popu-
late or change the grid’s contents by creating a JavaScript script and executing
it. (The script we create is called once for every cell and has predefined vari-
ables for the cell’s value, row, and column.)

We have decided to perform all the number grid processing in secondary
threads. To do this,wheneverwewant to process items,wemust serially create
a surrogate item for each model item we want to process, then give the surro-
gate items to a QtConcurrent function to process concurrently, and finally, seri-
ally iterate over the resultant surrogate items updating the model items as we
go. By using independent surrogate items we avoid any requirement to lock
the model, the view, or the model’s items (none of which are possible anyway).

When it comes to applying a user-defined JavaScript script to items, although
the steps are the same as those just described, we also want to keep track
of how many errors occurred and also of the (unique) error messages. This
requires that all the secondary threads be able to update the count and the
error messages, and so for this aspect, we will need to use locking. As we will
see, we will abstract all the locking details away in a small class, so that the
client code can access the count and error messages without having to do any
explicit locking itself.

The Number Grid uses QtConcurrent namespace functions to filter, filter and
reduce, and to map. In particular, it uses filtering to select all the cells in the
grid that meet certain criteria; filtering and reducing to count the number of
cells that meet certain criteria; and mapping to apply a JavaScript script to
every cell (or every selected cell) in the grid.

Using QtConcurrent functions to count and select cells in the Number Grid ex-
ample is probably slower than counting and selecting themdirectly, since these
operations are so cheap, so these particular uses should be taken merely as
illustrations of how to use the QtConcurrent filtering and filter–reduce func-
tions. However, the mapping usage where we apply a script to all or just the
selected cells may well run faster using QtConcurrent than if we applied the
script sequentially to each relevant cell. The potential speed improvement
is more likely if the per-cell processing is expensive and a lot of cells must be
processed. This is because the cost of setting up and running the threadsmay
be outweighed by the ability to do the processing for two or more cells concur-
rently.

The Number Grid application is a conventional main-window-style C++/Qt
application. It offers a traditional File menu with New, Open…, Save, Save As…,
and Quit options. We won’t look at any of these, since they are all standard.

The Edit menu has the optionsCount…,Select…,Apply Script, and Stop, all of which
make use of QtConcurrent functions. If the user chooses to count or select, a
dialog is popped up throughwhich they can set the criteria to apply. For count-
ing the user can specify a numeric relational operator (“<”, “<=”, “=>”, “>”, and

ptg

Filtering andMapping in Threads 265

“~=”—approximately equal), and a numerical amount, and whether to count
all the cells that the criteria are true of or just count among those cells that are
selected. For selecting, the user can specify a numeric relational operator and
an amount, and these criteria are applied to all of the grid’s cells. For applying
a script the user is given a dialog where they can enter an arbitrary JavaScript
script, and where the global variables cellValue, cellRow, and cellColumn are
predefined. They can then choosewhether to apply the script to all of the grid’s
cells, or to only those cells that are selected.

The slots called to perform the edit actions are editCount(), editSelect(), and
editApplyScript(). We will review each of these in turn, followed by those
classes, methods, or functions the slots make use of, so that we can build up a
complete picture of how to use the QtConcurrent functions. Although the data
processed by QtConcurrent functions should all be independent, in one case we
do in fact use a QMutex to allow us to access some shared data. Before we look
at the slots themselves, here is an extract from themain window’s definition in
the header file, showing some of its private data:

QStandardItemModel *model;

QFutureWatcher<SurrogateItem> selectWatcher;

QFutureWatcher<Results> countWatcher;

QFutureWatcher<SurrogateItem> applyScriptWatcher;

MatchCriteria countCriteria;

bool applyToAll;

mutable bool cacheIsDirty;

QString script;

ThreadSafeErrorInfo errorInfo;

We assume that the QStandardItemModel is familiar—this is used as a tabular
model to hold all of the grid’s numbers in a QStandardItem subclass which
stores them as doubles in the Qt::EditRole. (Qt’s table models were covered in
Chapter 3.)

Aswewill see further on,when a non-blocking (threaded)QtConcurrent function
is called, it immediately returnsa QFuture<T>which represents the result of the
computation. However, the returned QFuture<T> is not normally of any use—at
least not straightaway—because the computation has only just been started.
In fact, if we attempt to access a QFuture<T> before the computation is finished,
the access will block until the computation has completed, which isn’t normal-
ly what we want to happen. Once the computation is finished, the QFuture<T>

will hold the expected result (in the case of reducing) or results (in the case of
filtering and mapping).

The normal pattern of use with the non-blocking QtConcurrent functions is to
give the returned QFuture<T> to a QFutureWatcher<T>. A future watcher keeps
track of the QtConcurrent function’s progress and emits signals indicating
which result or results are ready (in the case of filtering and mapping which

ptg

266 Chapter 7. Threadingwith QtConcurrent

produce a sequence of results),andwhen the computationhasfinished (or been
paused, resumed, or canceled). Future watchers also provide an API through
which we can control the behavior of the QtConcurrent function—for example,
using pause(), resume(), and cancel().

Notice that although filtering and mapping produce sequences of results, the
type T used in QFuture<T> is always the type of a single result item, and the type
T used in QFutureWatcher<T> must always be the same as the one used by the
future being watched.

Here we have one future watcher for each QtConcurrent operation the applica-
tion supports. For selecting cells and applying a script to cells in the grid we
have a QFutureWatcher<SurrogateItem>—recall that we cannot concurrently pro-
cess items in a model directly since we cannot lock a model or its items, so we
must use surrogates instead, as we will see further on. For counting we have a
QFutureWatcher<Results>; Results is a simple struct that is used to hold a count
and a total value, as we will see later.

For both counting and selecting we let the user set criteria to specify which
cells should be counted or selected. Here is the definition of the MatchCriteria

structure and the enum it uses:

enum ComparisonType {LessThan, LessThanOrEqual, GreaterThan,

GreaterThanOrEqual, ApproximatelyEqual};

struct MatchCriteria

{

ComparisonType comparisonType;

double value;

bool applyToAll;

};

The private member data declares countCriteria of type MatchCriteria to hold
the criteria used for counting. For selecting and applying a script the criteria
are held inside the SurrogateItems, as we will see later. When selecting, the
applyToAll Boolean is ignored.

There is also a MainWindow::applyToAll Boolean member variable; if true then
the counting or applying of a script is applied to all of the grid’s cells, otherwise
to only those cells that are selected.

The cacheIsDirty Boolean is used to keep track of whether the grid’s data has
changed. It is mutable so that we can use it inside const methods. We will see
it in use later on.

The script string holds the JavaScript that will be executed on every cell (or
every selected cell) if the user chooses the Apply Script… option. When execut-
ing the script, it is possible that an error will occur. We don’t want to pop up
a warning message box for every single error, because we could be processing

ptg

Filtering andMapping in Threads 267

hundredsor thousandsof cellswith an error occurring for each one. So instead,
we simply keep a count of the number of errors that have occurred and a list
of the unique error messages. Since the error count and error messages must
be updatable from any of the threads that the QtConcurrent functions use, we
need to provide a locking mechanism to serialize access to them, to ensure that
only one thread is allowed to update the error count and error messages at any
one time.

One approach to serializing access to the error information would be to create
three variables, say, int errorCount, QStringList errorMessages, and QMutex

errorMutex. Then, whenever we needed to access the error information we
would have to lock the mutex. Such an approach means that we must do all
the bookkeeping ourselves. We have chosen a different approach and created
a ThreadSafeErrorInfo class. This class provides methods for reading the error
information and for updating it, and internally has its own mutex and does its
own locking. Thismeans that users of the class’s instances don’t have to worry
about locking, since that is handled automatically. Here is an extract from the
ThreadSafeErrorInfo’s definition:

class ThreadSafeErrorInfo

{

public:

explicit ThreadSafeErrorInfo() : m_count(0) {}
···

private:

mutable QMutex mutex;

int m_count;

QSet<QString> m_errors;

};

Superficially, the class is littlemore than a struct holding the two items of data
we are interested in plus a mutex. We’ll look at a few of itsmethods to see how
the mutex is used.

QStringList errors() const

{

QMutexLocker locker(&mutex);

return QStringList::fromSet(m_errors);

}

The QMutexLocker takes a pointer to a mutex and blocks until it can lock the
mutex. It releases the lock when it goes out of scope. The QList<T>::fromSet()

static method produces a list from a set.

The ThreadSafeErrorInfo class also has a count() method that returns the num-
ber of error messages that occurred (including duplicates) and an isEmpty()

method that returns true if the error count is 0: both these have exactly the
same structure as the errors() method (and so are not shown).

ptg

268 Chapter 7. Threadingwith QtConcurrent

void add(const QString &error)

{

QMutexLocker locker(&mutex);

++m_count;

m_errors << error;

}

This method increments the count of error messages and adds the new
message to the set of messages. Since the messages are held in a set, if we try
to add a duplicate message, it is silently discarded.

An alternative approach would be to store the messages in a QStringList and
inside the errors() method, copy the list, call QStringList::removeDuplicates()
on the copy, and then return the copy. However, thiswouldmean that wemight
end up holding thousands or tens of thousands of duplicate error messages in
memory, rather than just the unique ones held by the m_errors set.

void clear()

{

QMutexLocker locker(&mutex);

m_count = 0;

m_errors.clear();

}

Thismethod is used to clear the data, for example, ready for a new QtConcurrent

function to be called.

Using a QMutex works fine for the ThreadSafeErrorInfo class—but is it the most
efficient locking class to use in this situation? When we lock a mutex, we pre-
vent any other access, including read-only access. In the ThreadSafeErrorInfo

class we have some methods that need only read access, and others that need
write access, so potentially, if no thread was writing, we could allow several
threads to use the read access methods concurrently without any problem.

To distinguish between read and write accesses we would need to replace the
QMutex with a QReadWriteLock. Then, in the read access methods (count(), er-
rors(), and isEmpty()), we would use a QReadLocker, and in the write access
methods (add() and clear()), we would use a QWriteLocker. We’ll see an exam-
ple of using a QReadWriteLock later on (➤ 304). So, although in this particular
example, if only one secondary thread is used (e.g., on a single processor, single
core machine), using a QMutex rather than a QReadWriteLock doesn’t make any
difference, on a machine with an ideal thread count greater than one, using a
QReadWriteLock should improve performance—at least, in theory.

A class whose instances provide their own locking mechanism such as Thread-
SafeErrorInfo and ThreadSafeHash (a class we’ll see later on) is called a monitor.
To avoid deadlock, a monitor method whose code is within the scope of a lock
should not call another one of its methods that locks. And, of course, every

ptg

Filtering andMapping in Threads 269

lock that is applied in a monitor method must be unlocked before the method
returns—a condition that is easy to achieve using Qt’s QMutexLocker (or QRead-

Locker or QWriteLocker).★

Now that we’ve had a brief introduction to the private member data, we will
turn our attention to the general usage pattern for the QtConcurrent functions.
We begin by calling a QtConcurrent function (e.g., filtered(), mapped(), filtered-
Reduced(), or mappedReduced()), and store the returned QFuture<T> in a variable.
Next, we call QFutureWatcher<T>::setFuture(), passing it the QFuture<T> as its
argument. We can keep track of progress by connecting to the futurewatcher’s
signals, but at the least, we should connect to the finished() signal so that we
know when processing is complete so that we can then access the results. This
pattern is illustrated in Figure 7.3.

QtConcurrent::filtered() QFuture<T>

Report progress QFutureWatcher<T>

Canceled?

Handle cancelation Retrieve and process the results

QFutureWatcher<T>::setFuture()

fi

finished() or canceled()progressRangeChanged(),
resultReadyAt(), etc.

No

Y

Yes

Figure 7.3 Using QFutureWatcher

The three futurewatchers used by theNumber Grid application are all private
member variables, and for all of them we initially create two signal–slot con-
nections.

connect(editStopAction, SIGNAL(triggered()),

&selectWatcher, SLOT(cancel()));

connect(&selectWatcher, SIGNAL(finished()),

this, SLOT(finishedSelecting()));

Here are the initial connections for the selectWatcher—the same connections
are used for the countWatcher and for the applyScriptWatcher, except that for
them their finished() signals are connected to the finishedCounting() and
finishedApplyingScript() slots.

★ For a more detailed introduction to creating monitors, see the two-part Qt Quarterly article
“Monitors and Wait Conditions in Qt” (qt.nokia.com/doc/qq/qq21-monitors.html).

ptg

270 Chapter 7. Threadingwith QtConcurrent

The user interface provides a Stop menu option and toolbar button, so the
user can cancel a long-running operation if they want to. To cater for this
we connect the stop action to the future watcher’s cancel() slot. Whether a
concurrent computation finishes normally or as the result of being canceled,
the finished() signal is always emitted.

We will see shortly that we also make additional connections whenever the
future watcher is given a future to watch, so that we can show progress to the
user using a progress bar that is superimposed on the status bar during pro-
cessing.

In the following subsectionswewill look at how to filter, reduce,andmap,using
QtConcurrent functions, focusing mostly on the QtConcurrent-related code.

Using QtConcurrent to Filter |||

One way of processing all those items in a model that meet some criteria set
programmatically or by theuser is to use a QtConcurrent filter function. Several
filter functionsare provided,but the onewewill use is QtConcurrent::filtered()
which has these signatures:

QFuture<T> filtered(Sequence, FilterFunction)

QFuture<T> filtered(ConstIterator, ConstIterator, FilterFunction)

The Sequence is an iterable collection of items such as a QList<T> or a QVector<T>.
The ConstIterators are begin and end iterators that identify a start point and
an end point in a Sequence. The FilterFunction is used to identify which items
to put in the result and which to drop. It must have the following signature:

bool filterFunction(const T&)

The type T must be the same type of item that is stored in the Sequence (and
the same type that is used for the QFuture<T>). This function must return true

for items that should be put in the results and false for those that should
be dropped.

Since we cannot apply a QtConcurrent function directly to the items in a model,
we must use the three-step process described earlier: first, create a sequence
of surrogate items, each one corresponding to an item in the model; second,
apply the QtConcurrent filter function, giving it the criteria, to the sequence of
surrogate items—this produces a new sequence of those surrogate items that
meet the criteria;and third, iterate over the result sequence of surrogate items,
and for each one update the equivalent model item accordingly.

In the case of theNumberGrid,wewant to use filtering to select all those items
in the model that match the user’s criteria—for example, to select all the cells

ptg

Filtering andMapping in Threads 271

that have a value less than 3250. To do this we need surrogate items—here is
the complete SurrogateItem class:

struct SurrogateItem

{

explicit SurrogateItem(int row_=0, int column_=0,

double value_=0.0)

: row(row_), column(column_), value(value_) {}

int row;

int column;

double value;

};

The class is trivial, but nonetheless essential. We will now look at how the
three steps described above are done in practice, starting with the editSelect()
slot that is invoked when the user chooses the Select… option.

void MainWindow::editSelect()

{

MatchForm matchForm(MatchForm::Select, this);

if (matchForm.exec()) {

MatchCriteria matchCriteria = matchForm.result();

stop();

view->setEditTriggers(QAbstractItemView::NoEditTriggers);

QList<SurrogateItem> items = allSurrogateItems();

QFuture<SurrogateItem> future = QtConcurrent::filtered(items,

SurrogateItemMatcher(matchCriteria));

selectWatcher.setFuture(future);

setUpProgressBar(selectWatcher);

editStopAction->setEnabled(true);

}

}

First we pop up a MatchForm dialog (not shown) to get the user’s match criteria,
that is,which comparison operator andnumeric value theywant to use. If they
click OK we retrieve the match criteria and start off the selection process (we
saw the MatchCriteria class earlier; 266 ➤).We begin by stopping any selection,
count, or script applying that is in progress. Then wemake the view read-only
since we don’t want the user to change any values during processing because
that could invalidate the computation. Next we retrieve a list of surrogate
items, one for each cell in the grid.

Oncewe have the surrogate items ready for processing we call the QtConcurrent
function, in this case the non-blocking QtConcurrent::filtered() function, pass-
ing it the sequence of items to process and a filter function. The filter func-
tion is actually a functor (an instance of a class that implements operator()(),

ptg

272 Chapter 7. Threadingwith QtConcurrent

which we will review shortly). The filter function (or functor’s operator()()) is
called once for every item and must return true for those items that should go
in the results, and false for those items that should be discarded.

The QtConcurrent::filtered() function immediately returns a QFuture<T>, and
begins to perform its processing in one or more secondary threads, leaving
the method it was called from to continue processing. We set the returned
QFuture<SurrogateItem> as the future for the selectWatcher (of type QFuture-

Watcher<SurrogateItem>); this will report progress and also provide a means of
interacting with the processing—for example, to pause, resume, or stop it.

At the end we set up a progress bar to show the progress of the processing,
and enable a Stop action (which has a corresponding menu option and toolbar
button), so that the user can stop the processing at any time. In this case we
have not provided the ability to pause and resume, but doing so is conceptually
no different from providing the ability to stop the processing.

void MainWindow::stop()

{

editStopAction->setEnabled(false);

if (selectWatcher.isRunning())

selectWatcher.cancel();
···
if (selectWatcher.isRunning())

selectWatcher.waitForFinished();
···
editStopAction->setEnabled(false);

}

If the user invokes the Stop action this method is called. We have shown the
code applicable in all cases (the first and last lines), but only the parts relevant
to the selectWatcher regarding the future watchers since the same code is also
present for the countWatcher and for the applyScriptWatcher. We begin by dis-
abling theStopaction to give theuser immediate feedback thatwe are stopping.
Stopping is a two-step process: first we cancel the processing; and second we
call QFutureWatcher<T>::waitForFinished() (which blocks) to make sure that the
processing really has stopped before we continue.

The approach used here, that is, telling each secondary thread in turn to stop,
and then waiting on each one in turn,works perfectly well in this case because
we know that only one secondary thread (selecting, counting, or script apply-
ing) is ever active at a time. But in situations where two or more secondary
threads could be executing, this approach means that we wait for the sum of
the stopping times (sincewewait for each one in turn linearly).Later onwewill
see how to stopmultiple secondary threadswith a stopping time pretty close to
that of the slowest stopping thread (➤ 293).

ptg

Filtering andMapping in Threads 273

const QList<SurrogateItem> MainWindow::allSurrogateItems() const

{

static QList<SurrogateItem> items;

if (cacheIsDirty) {

items.clear();

for (int row = 0; row < model->rowCount(); ++row) {

for (int column = 0; column < model->columnCount();

++column) {

double value = model->item(row, column)->

data(Qt::EditRole).toDouble();

items << SurrogateItem(row, column, value);

}

}

cacheIsDirty = false;

}

return items;

}

This method is used to create a list of surrogate items, one for each cell in the
grid. Although the list we return could have tens of thousandsof items, thanks
to Qt’s widespread use of copy-on-write, only a pointer or so’s worth of data is
actually returned from the method.

We further improve the method’s performance by making the list static to
cache the items between calls—at some cost in memory—and only updating
the list if the grid has changed. (The cacheIsDirty Boolean is set to true when-
ever the model emits a dataChanged() signal thanks to a signal–slot connection
that isn’t shown.)

void MainWindow::setUpProgressBar(QFutureWatcher<T> &futureWatcher)

{

progressBar->setRange(futureWatcher.progressMinimum(),

futureWatcher.progressMaximum());

connect(&futureWatcher, SIGNAL(progressRangeChanged(int,int)),

progressBar, SLOT(setRange(int,int)));

connect(&futureWatcher, SIGNAL(progressValueChanged(int)),

progressBar, SLOT(setValue(int)));

progressBar->show();

}

When processing is started we call this function, and pass it the associated
future watcher. The progress bar was created in the constructor, hidden, and
added to the status bar. Here we set the progress bar’s range to that provided
by the future watcher and create a couple of signal–slot connections to ensure
that the progress bar’s range and value are kept up to date. Wemust of course
show the widget to make it visible—this will cause it to be superimposed over

ptg

274 Chapter 7. Threadingwith QtConcurrent

the status bar. Wewill see when the progress bar is hidden againwhenwe look
at the finishedSelecting() method.

Here is the entire SurrogateItemMatcher class:

class SurrogateItemMatcher

{

public:

explicit SurrogateItemMatcher(MatchCriteria matchCriteria_)

: matchCriteria(matchCriteria_) {}

typedef bool result_type;

bool operator()(const SurrogateItem &item)

{

switch (matchCriteria.comparisonType) {

case LessThan:

return item.value < matchCriteria.value;

case LessThanOrEqual:

return item.value <= matchCriteria.value;

case GreaterThanOrEqual:

return item.value >= matchCriteria.value;

case GreaterThan:

return item.value > matchCriteria.value;

case ApproximatelyEqual:

return qFuzzyCompare(item.value, matchCriteria.value);

}

Q_ASSERT(false);

return false;

}

private:

MatchCriteria matchCriteria;

};

The SurrogateItemMatcher is a class whose instances are functors. To have
functor instances, a class must implement the operator()() method. And for
a functor to be suitable for use as the “function” passed to a QtConcurrent filter
function, itmust have a public result_type typedef that specifies the result type
of the operator()() method.

When we create the functor instance we pass the match criteria to use (which
contain the comparison operator and the numeric value) to the constructor.

Whenever an item is filtered, the QtConcurrent::filtered() function calls the
functor’s operator()() method and passes it the item to be considered. The
operator()() method returns a bool depending on whether the item meets
the criteria.

ptg

Filtering andMapping in Threads 275

For the ApproximatelyEqual (~=) comparison, we use Qt’s global qFuzzyCompare()
function. This function can compare two floats or doubles for approximate
equality (which is the best that can be achieved using standard floating-point
representations).

Of course, it is perfectly possible to pass a normal function as a filter function—
such a function must accept a const T& (i.e., an item) and must return a bool.

void MainWindow::finishedSelecting()

{

editStopAction->setEnabled(false);

progressBar->hide();

if (!selectWatcher.isCanceled()) {

view->clearSelection();

QItemSelectionModel *selectionModel = view->selectionModel();

const QList<SurrogateItem> items = selectWatcher.future()

.results();

QListIterator<SurrogateItem> i(items);

while (i.hasNext()) {

const SurrogateItem &item = i.next();

selectionModel->select(

model->index(item.row, item.column),

QItemSelectionModel::Select);

}

statusBar()->showMessage(

tr("Selected %Ln cell(s)", "", items.count()),

StatusTimeout);

}

view->setEditTriggers(editTriggers);

}

When the future watchers were created, each had its finished() signal con-
nected to a corresponding slot, in the case of the selectWatcher to this finished-
Selecting() method. So when the filtering process stops—whether because
it completed, or was stopped by the user invoking the Stop action—this slot is
called.

We begin by disabling the Stop action, since that no longer makes sense, and
we hide the progress bar since processing has finished. If the processing was
not canceled, we start by clearing any existing selection. Then we iterate over
all the surrogate items that were not filtered away (i.e., all those that met the
user’s selection criteria), and for each one, we select the corresponding item—
whose model index is retrieved from the model—in the view, using the view’s
selection model.

The QObject::tr() call we have used for the status bar message is unusual.
Normally, we just use the single argument form. The second argument is a

ptg

276 Chapter 7. Threadingwith QtConcurrent

Using the Three-Argument Form of tr()

The most common uses of QObject::tr() are with one argument—the text
to translate—or with two arguments,where the second argument is a string
used to disambiguate when the text to translate is the same in two or more
places but must be translated differently depending on context.

The three-argument formwas introduced in Qt 4.2 and is usedwhen dealing
with numbers,andwhere the third argument is an integer count. When this
form isused, the text for translation should contain %nwhichwill be replaced
by the count (or %Ln for a localized version of the count, e.g., with grouping
commas in the U.S.). For English, it is also useful to add (s) at the end of the
word that must be made singular or plural. Without translation, the text
will appear pretty well as is, for example, “Selected 1 cell(s)” for a count of
1, which is readable if rather amateur-looking. But if a translation is used,
then we can use our own choice of texts for the singular and plural cases.

Qt’s translation tools are smart enough to be able to offer translators the
opportunity to provide simple singular and plural forms for languages that
pluralize like English (such as Dutch, Greek, Hebrew, and Zulu), and more
options for those that don’t (such as Arabic, Czech, French, Irish, Maori,
Polish, and Russian).★

For applications developed in English it may seem strange to have an En-
glish translation file but it can often be useful. In the first place almost
none of the words need be translated since Qt will default to the original
English text if no translation is provided, so we only need to translate the
three-argument QObject::tr() calls and can safely leave the rest untrans-
lated. And in addition, if we find typos or other problems with some of our
user-visible strings after the application has been deployed, if it has a stand
alone .qm file, the erroneous texts can be “translated”, in effect replaced, by
correct texts simply by sending users a new .qm file.

In the case of the numbergrid application, out of a total of over sixty user-
visible strings, we only needed to provide translations for four of them. For
example, the text Selected %Ln cell(s) was translated as Selected one cell

(singular) and Selected %Ln cells (plural).

string for disambiguation and is not needed here. The third argument is a
numeric count, and is discussed in the “Using the Three-Argument Form of
tr()” sidebar.

At the end we restore the edit triggers so that the user can once again interact
with the cells in the grid. (The edit triggers are of type QAbstractItemView::

★For complete details see theQt Quarterly article “Plural Form(s) in Translation(s)”, qt.nokia.com/
doc/qq/qq19-plurals.html.

ptg

Filtering andMapping in Threads 277

EditTriggers; they were retrieved from the view when it was created, and are
held in a member variable.)

We have now seen how to use QtConcurrent::filtered() with a sequence of
items and a filter function (in our case a filter functor) to produce a filtered
sequence in one or more secondary threads. In the next subsectionwewill look
at how to perform a filter and reduce, and in the subsection after that, at how
to map.

Using QtConcurrent to Filter and Reduce |||

There are several QtConcurrent functions for reducing, including QtConcurrent::

mappedReduced(), and the QtConcurrent::filteredReduced() function that we will
use in this subsection, and whose signatures are

QFuture<T> filteredReduced(Sequence, FilterFunction,

ReduceFunction, QtConcurrent::ReduceOptions)

QFuture<T> filteredReduced(ConstIterator, ConstIterator,

FilterFunction, ReduceFunction, QtConcurrent::ReduceOptions)

Just as for the QtConcurrent::filtered() function, the Sequence is an iterable
collection of items such as a QList<T> or a QVector<T>, and the ConstIterators
are begin and end iterators that identify a start point and an end point in
a Sequence. Similarly, the FilterFunction is used to identify which items to
put in the result and which to drop (we saw its signature earlier; 270 ➤). The
ReduceFunction must have the following signature:

void reduceFunction(R&, const T&)

Strictly speaking the return type doesn’t have to be void since it is ignored. The
non-const R type is used to accumulate the results; the T type is the same type
as the items in the Sequence and in the QFuture<T>.

The QtConcurrent::ReduceOptions is an enum type and in both overloads it has a
default value of UnorderedReduce|SequentialReduce, so this argument is optional.
The UnorderedReduce part says that items will be processed in whatever order
QtConcurrent sees fit—we can force the Sequence’s natural order to be respected
by using OrderedReduce instead. The SequentialReduce part says that only one
thread will enter the ReduceFunction at a time. This means that the reduce
function need not be reentrant or thread-safe. (At the time of thiswriting there
is no alternative to this option, although some future version of Qt might sup-
port a parallel reduce option which presumably will require a reduce function
that is reentrant or thread-safe.)

Filtering and reducing is similar to filtering in that we must pass a Qt-

Concurrent function a sequence of items and a function or functor that decides
whether an item should be counted. But in addition we must pass a function

ptg

278 Chapter 7. Threadingwith QtConcurrent

that can be used as a results accumulator—this could perform some kind of
merge of some aspect of each acceptable item, or it could be a simple counter;
here we will do both.

Structurally the code for filtering and reducing is just like that for plain
filtering: a slot to initiate the process (here, editCount()), and a slot that is
called when the processing is finished or canceled (here, finishedCounting()),
both of which we will now review, along with their supporting code.

void MainWindow::editCount()

{

MatchForm matchForm(MatchForm::Count, this);

if (matchForm.exec()) {

countCriteria = matchForm.result();

stop();

view->setEditTriggers(QAbstractItemView::NoEditTriggers);

applyToAll = countCriteria.applyToAll;

QList<SurrogateItem> items = applyToAll ? allSurrogateItems()

: selectedSurrogateItems();

QFuture<Results> future = QtConcurrent::filteredReduced(

items, SurrogateItemMatcher(countCriteria),

itemAccumulator);

countWatcher.setFuture(future);

setUpProgressBar(countWatcher);

editStopAction->setEnabled(true);

}

}

When passed a MatchForm::Count argument, the match form allows the user to
choose a comparison operator, a value, and also whether the count should be
applied to all the items, or only the selected items. If the user clicks OK in the
dialog, we retrieve the match criteria (of type MatchCriteria; 266 ➤). Then, just
as for the editSelect() slot we saw in the previous subsection, we stop any
processing that might still be in progress and make the view read-only.

We note whether the processing should apply to all the items or just to the
selected ones in the applyToAll member variable since we will need to know
which was chosen when the processing is finished so that we can present an
appropriate message. If the user wants to count all the items we retrieve
the sequence of surrogate items from the allSurrogateItems() method (272 ➤);
otherwise we use the very similar selectedSurrogateItems() method that we
will see in amoment. The surrogate itemsare the same as the ones used before
(271 ➤).

The QtConcurrent::filteredReduced() function takes a sequence of items, a fil-
ter function or functor (here again we have used a SurrogateItemMatcher func-
tor; 274 ➤), and an accumulator function, itemAccumulator() (which we will

ptg

Filtering andMapping in Threads 279

return to shortly). The call returns immediately with a QFuture<Results>; Re-
sults is a custom structwe have created for use by the accumulator function—
we will look at it when we review the accumulator.

The last few lines are almost the same as for the editSelect() slot: we pass the
future to a future watcher, set up the progress bar (273 ➤), and enable the Stop
action so that the user can cancel if they want to.

QList<SurrogateItem> MainWindow::selectedSurrogateItems() const

{

QList<SurrogateItem> items;

QItemSelectionModel *selectionModel = view->selectionModel();

for (int row = 0; row < model->rowCount(); ++row) {

for (int column = 0; column < model->columnCount();

++column) {

QStandardItem *item = model->item(row, column);

if (selectionModel->isSelected(item->index())) {

double value = item->data(Qt::EditRole).toDouble();

items << SurrogateItem(row, column, value);

}

}

}

return items;

}

This method is structurally similar to the allSurrogateItems() method (272 ➤).
The only real differences are that instead of adding a surrogate for every item,
we only add a surrogate for those items that are selected, and we don’t cache
the items.

Here, caching would cost us memory with no benefit in speed, since which
items go in the list depends on the selection model’s items which are quite
likely to change from one call to the next.

struct Results

{

explicit Results() : count(0), sum(0.0) {}

int count;

long double sum;

};

This struct is in the main window’s header file—it must go (or be included)
there becausewe use it in the declaration of the count futurewatcher:QFuture-
Watcher<Results> countWatcher;. The count member is used to keep a count of
the matching items and the sum member is used to accumulate the total value
of the matching items.

ptg

280 Chapter 7. Threadingwith QtConcurrent

void itemAccumulator(Results &results, const SurrogateItem &item)

{

++results.count;

results.sum += item.value;

}

This function is passed as the penultimate argument to the QtConcurrent::

filteredReduced() function; we saw its signature earlier (277 ➤). This function
is called for only those items that have been accepted by the filter function or
functor. Here we simply increment the count of items and the sum of their
values. Note that the initial results object (of type Results in this example)
is created by Qt, so it is important that we provide a default constructor that
correctly initializes the struct’s values.

Accumulating the sum of large numbers of floating-point numbers by adding
them one at a time is simple—and naïve. The potential problem is that sum-
ming two floating-point numbers that have very differentmagnitudes can lead
to loss of accuracy; that is, if we add a small enough number to a big enough
number the big number will be unchanged and the addition “lost”. This can
happen even if all the numbers we start out with are small—if there are
enough of them—since eventually the sumwe are accumulatingmight become
so big that adding more small numbers to it has no effect. There are solutions
to this problem, for example, the Kahan summation algorithm (en.wikipedia.
org/wiki/Kahan_summation_algorithm).

void MainWindow::finishedCounting()

{

editStopAction->setEnabled(false);

progressBar->hide();

if (!countWatcher.isCanceled()) {

Results results = countWatcher.result();

QString selected(applyToAll ? QString()

: tr(" from those selected"));

AQP::information(this, tr("Count"),

tr("A total of %Ln cell(s)%2 are %3 %4.\n"

"Their total value is %L5.", "", results.count)

.arg(selected)

.arg(comparisonName(countCriteria.comparisonType))

.arg(countCriteria.value)

.arg(stringForLongDouble(results.sum)));

}

view->setEditTriggers(editTriggers);

}

This function is structurally the same as the finishedSelecting() method we
saw earlier (275 ➤). The key difference is that instead of retrieving a sequence

ptg

Filtering andMapping in Threads 281

of results we retrieve a single result object—this was created for us by Qt and
was updated through calls to the accumulator function, one for each item that
was accepted by the filter.

The comparisonName() function (not shown) simply returns a QString for a given
comparison type—for example, given LessThan, it returns "<".

Unfortunately, at the time of this writing, there is no QString::arg() method
that accepts a long double, so we have had to create our own function to produce
a QString for a given long double.

QString stringForLongDouble(const long double &x)

{

const int BUFFER_SIZE = 20;

char longDouble[BUFFER_SIZE + 1];

int i = snprintf(longDouble, BUFFER_SIZE, "%.3Lf", x);

if (i < 0 || i >= BUFFER_SIZE) // Error or truncation

return QString("#####");

return QString(longDouble);

}

This function uses the snprintf() function from the <cstdio> module. Rather
than raising an exception or returning an error codewehave chosen to return a
spreadsheet-style error string in the case of a conversion error or truncation.

We have now seen how to filter and how to filter and reduce. In the next sub-
sectionwewill see how tomap. Wedon’t explicitly covermapping and reducing
because it works the same way as filtering and reducing, the only difference
being that all (processed) itemsare passed to the accumulator rather than only
those that are accepted by a filter function.

Using QtConcurrent to Map |||

Mapping is a process whereby each item in a sequence of items is passed to a
map function which in turn returns an item (perhaps of a different type) for
each item it receives. There are several QtConcurrent mapping functions; the
one we will use here has the following signatures:

QFuture<T> mapped(Sequence, MapFunction)

QFuture<T> mapped(ConstIterator, ConstIterator, MapFunction)

Just as for the filter and reduce functions we have already seen, the Sequence

is an iterable collection of items such as a QList<T> or a QVector<T>, and the
ConstIterators are begin and end iterators that identify a start point and an
end point in a Sequence. The MapFunction must have the following signature:

U mapFunction(const T&)

ptg

282 Chapter 7. Threadingwith QtConcurrent

The T type is the same type as the items in the Sequence and in the QFuture<T>.
The U type is the type of the result produced by processing each T type
item—and it can be type T if we want to produce a sequence of modified Ts.

In this subsection we will see how to process all the items in a table model. As
with filtering,we cannot work directly on the items in themodel because there
is no way to lock them. So instead we create a sequence of surrogate items,
pass each one to a map function, and then iterate over the resultant sequence,
updating the model as we go.

In this particular example we will apply a user-created JavaScript script to
each value in the grid.

void MainWindow::editApplyScript()

{

ScriptForm scriptForm(script, this);

if (scriptForm.exec()) {

script = scriptForm.script();

stop();

view->setEditTriggers(QAbstractItemView::NoEditTriggers);

errorInfo.clear();

applyToAll = scriptForm.applyToAll();

QList<SurrogateItem> items = applyToAll ? allSurrogateItems()

: selectedSurrogateItems();

QFuture<SurrogateItem> future = QtConcurrent::mapped(items,

SurrogateItemApplier(script, &errorInfo));

applyScriptWatcher.setFuture(future);

setUpProgressBar(applyScriptWatcher);

editStopAction->setEnabled(true);

}

}

The script form is a simple dialog (not shown) that allows the user to enter
some JavaScript code. In addition to the standard JavaScript functions and
variables, we will provide three global variables, cellValue, cellRow, and cell-

Column, that the user can make use of in their script. We have not provided
access to the values of arbitrary cells in the grid—to do this would add a fair
amount of complexity and would take us too far from this chapter’s threading
topic. (This constraint is why the program is merely a number grid and not a
spreadsheet.)

If the user clicksOK we retrieve the script they want to apply. The ScriptForm::
accept() method uses the QScriptEngine::checkSyntax() method introduced in
Qt 4.5, and only allows the user to leave the script form with a syntactically
valid script—or by clicking Cancel.

As usual we stop any processing that is still ongoing, and make the view read-
only. We also clear the error count and the script error messages using the

ptg

Filtering andMapping in Threads 283

errorInfo member variable of type ThreadSafeErrorInfo that we discussed ear-
lier (267 ➤). We retrieve either all the items or just the selected items, depend-
ing on what the user requested. The QtConcurrent::mapped() function takes a
sequence of items and a map function or functor—in this case we have used a
functor, a SurrogateItemApplier instance.

Themap function returns immediately and we set its future to the correspond-
ing future watcher. Then we update the status bar and enable the Stop action.

Here is the complete definition of the SurrogateItemApplier class:

class SurrogateItemApplier

{

public:

explicit SurrogateItemApplier(const QString &script_,

ThreadSafeErrorInfo *errorInfo_)

: script(script_), errorInfo(errorInfo_) {}

typedef SurrogateItem result_type;

SurrogateItem operator()(const SurrogateItem &item)

{

QScriptEngine javaScriptParser;

javaScriptParser.globalObject().setProperty("cellRow",

item.row);

javaScriptParser.globalObject().setProperty("cellColumn",

item.column);

javaScriptParser.globalObject().setProperty("cellValue",

item.value);

QScriptValue result = javaScriptParser.evaluate(script);

if (javaScriptParser.hasUncaughtException()) {

QString error = javaScriptParser.uncaughtException()

.toString();

errorInfo->add(error);

return item;

}

return SurrogateItem(item.row, item.column,

result.toNumber());

}

private:

QString script;

ThreadSafeErrorInfo *errorInfo;

};

The classmust provide a result_type typedef so that its instances can be passed
to QtConcurrent functions. Other than that we simply keep the script, and a
pointer to the ThreadSafeErrorInfo object that was passed to the constructor.

ptg

284 Chapter 7. Threadingwith QtConcurrent

The operator()()method is called for each of the items in the sequence of items
passed to the QtConcurrent::mapped() function. In this case we have chosen to
return an object of the same type, SurrogateItem, but there is no requirement
to do so—we can return any type we like so long as we specify it using the
result_type typedef.

We begin by creating a JavaScript parser and setting three global values: the
item’s row, column, and value. We then evaluate the JavaScript script and
retrieve the return value (the value of the last expression in the script). Here
is a simple JavaScript example:

Java-
Script

var result = cellValue;

if (cellRow < 10 && cellColumn < 10)

result *= 2;

result;

Clearly this script simply doubles the values of the upper-left-most 100 cells.

If the script has an error and produces an unhandled exception, we add the
error message to the errorInfo object. We don’t have to worry about locking
even though more than one secondary thread might be processing items, since
the ThreadSafeErrorInfo class takes care of that for us (267 ➤).

At the end we return the original item unchanged (if an unhandled exception
occurred), or a new item with the same row and column numbers as the origi-
nal item, but with its numeric value set to the result returned by the evaluat-
ed script.

Although the finishedApplyingScript() slot is structurally similar to finished-

Selecting() (275 ➤) and finishedCounting() (280 ➤), we will still review it so that
we can see how script errors are handled.

void MainWindow::finishedApplyingScript()

{

editStopAction->setEnabled(false);

progressBar->hide();

if (!applyScriptWatcher.isCanceled() &&

(errorInfo.isEmpty() || applyDespiteErrors())) {

const QList<SurrogateItem> items = applyScriptWatcher.future()

.results();

QListIterator<SurrogateItem> i(items);

while (i.hasNext()) {

const SurrogateItem &item = i.next();

model->item(item.row, item.column)->setData(item.value,

Qt::EditRole);

}

QString selected(applyToAll ? QString()

: tr(" from those selected"));

ptg

Filtering andMapping in Threads 285

statusBar()->showMessage(tr("Finished applying script "

"to %Ln cell(s)%1", "", items.count())

.arg(selected), StatusTimeout);

}

view->setEditTriggers(editTriggers);

}

If the processing completed (i.e., if it wasn’t canceled), and if there were no
errors or the user wants to apply the script despite errors, we begin by retriev-
ing the processed items. (At this stage the model’s data is unchanged; all the
results are in the surrogate items.) We then iterate over every result item and
set each corresponding item in themodel to its newly computed value. We then
output a status message to tell the user how many cells were affected. And at
the endwe restore the edit triggers so that the user can oncemore interactwith
the grid’s values.

bool MainWindow::applyDespiteErrors()

{

const int MaxErrorStrings = 15;

QStringList errors = errorInfo.errors();

if (errors.count() > MaxErrorStrings) {

errors = errors.mid(0, MaxErrorStrings);

errors.append(tr("(and %L1 others...)")

.arg(errorInfo.count() - MaxErrorStrings));

}

return AQP::question(this, tr("Apply Script Error"),

tr("%Ln error(s) occurred:\n%1", "", errorInfo.count())

.arg(errors.join("\n")),

"", tr("&Apply Anyway"), tr("&Don't Apply"));

}

If one or more errors occurred, this method is called. It pops up a dialog
showing at most 15 error messages (and indicates how many others there are
if there are more than 15). The reason for our caution about how many error
messages we show is that since the grid might have thousands of cells it is
possible that we will get thousands of error messages, far more than it could
ever be useful to show in a dialog.

We discussed the QStringList::mid() method earlier (253 ➤). The AQP::ques-

tion() function is like the similar functions we have seen earlier (e.g., AQP::ok-
ToDelete(); 101 ➤).

We have now completed our review of the QtConcurrent functions. We have
seen how to do filtering, filtering and reducing, mapping, and in the previous
section, running functions. We have not shownmapping and reducing, but the

ptg

286 Chapter 7. Threadingwith QtConcurrent

technique is the same as we used for filtering and reducing, only we use a map
function (or functor) instead of a filter function (or functor).

Using the non-blocking QtConcurrent functions involves some overhead in
setting up the secondary threads, and in the case of model or graphics scene
data, the creation of surrogate items. This overhead should be offset if the
processing of each item is sufficiently expensive, especially if there are large
numbers of items to process.

While QtConcurrent is ideal for performing costly computations on large num-
bers of items, there are cases where we have one or very few items that have
expensive processing that we want to perform without making the user inter-
face unresponsive. One solution is to use the QtConcurrent::run() function or a
QRunnable aswe saw in the previous section. But if wewant to exercise fine con-
trol and have the convenience of Qt’s signals and slots mechanism, then using
QThread might be the best solution.

We have now completed our review of Qt’s high-level threading classes. These
provide the easiest route to enjoy the benefits of threading and at the same
time minimize the risks. But in some situations we want to exercise finer con-
trol, and are prepared to take more responsibility for locking and for avoiding
deadlocks. In such cases, we can use the lower-level QThread class—the subject
of the next chapter.

ptg

Threading with QThread |||||

8
● Processing Independent Items

● Processing Shared Items

This chapter covers the QThread class which provides fine control over thread-
ing, and support for Qt’s signals and slotsmechanism. Like the previous chap-
ter it assumes prior knowledge of threading in general and the basics of Qt
threading in particular. The chapter also assumes that you have at least read
the beginning of the previous chapter.

If we have a small number of items (or a small number of groups of items) to
process in the background, and we want to keep track of progress and comple-
tion, then often the best solution is to create a QThread subclass. Qt’s QThread

class (and also QRunnable) wasmodeled on Java’s Thread class and so has a sim-
ilar overall design—for example,requiring subclassesto reimplement the run()
method, and starting thread execution by calling the start() method.

A key difference between QThread and QRunnable is that QThread is a QObject

subclass, so we can use signals and slots to monitor progress—and in fact
QThread provides some useful signals and slots that we can connect to.

Figure 8.1 provides a schematic illustration of how multiple QThread subclass
instances are created and used.

In this chapter we will look at two different applications that use QThread, one
that uses secondary threads to process independent items, and so requires
no locking, and one that populates a shared data structure and needs to use
locking to ensure safe access.

Processing Independent Items ||||

In this section we will review the Cross Fader application (crossfader) shown
in Figure 8.2. This application lets the user choose two images and creates
a user-specified number of intermediate images to produce a sequence of
crossfaded images. For example, if the user chose to create three crossfaded

287

ptg

288 Chapter 8. Threadingwith QThread

Create secondary threads

Thread #1

Process data… Cancel

Report progress
Finished

OK?

Handle results Handle cancelation

Thread #2 … Thread #n

All secondary threads finished
Y

Yes

No

Figure 8.1 Using QThread to process data

images, they would end up with a sequence of five images with proportions
(first image:second image) as follows: first image (100:0), crossfaded image #1
(75:25), crossfaded image #2 (50:50), crossfaded image #3 (25:75), second im-
age (0:100).

Figure 8.2 The Cross Fader application

ptg

Processing Independent Items 289

Figure 8.3 Six images—four crossfaded

The effect of crossfading using four intermediate images is illustrated in the
screenshot in Figure 8.2 and in the resulting images shown in Figure 8.3which
shows the first and last images and four crossfaded images in between, with
proportions (100:0), (80:20), (60:40), (40:60), (20:80), (0:100).

TheCrossFader application uses a separate QThread subclass instance to create
each crossfaded image. This is a reasonable choice since we limit the number
of intermediate images that can be created. Also, since all the processing
is done independently, no locks are required. If we wanted to allow a large
number of images to be created concurrently,we might be better off using just
a few worker threads and a shared work queue, an approach we will use in the
application shown in the next section.

The application also creates a QLabel and a QProgressBar for each crossfaded
image so that the user can monitor the application’s progress. And since the
user could choose to create any number of crossfaded images (actually,we have
set the spinbox to allow a maximum of fourteen), we create as many threads,
labels, and progress bars as the number they choose. In view of the fact that
the number of labels and progress bars is variable, we lay them out inside
a QScrollArea so that if there isn’t enough room to show them all, a vertical
scrollbar will automatically be provided.

We have opted to use a single button for generating and for canceling, so we set
its text to Generate or Cancel depending on the circumstances. Also, if the user
checks the Show Images checkbox, we open a platform-specific image viewer (if
there is one available) to show the crossfaded images once all the images have
been created.

Just as we did in the previous chapter, we will begin by showing the basic in-
frastructure to provide some context, and then we will look at the threading-
related code, in this case the CrossFader QThread subclass that is used to create
each image.

ptg

290 Chapter 8. Threadingwith QThread

We will start by looking at an enum and a few of the private members of the
application’s MainWindow class.

enum StopState {Stopping, Terminating};

QWidget *progressWidget;

QMap<QString, QPointer<QProgressBar> > progressBarForFilename;

QList<QPointer<QLabel> > progressLabels;

QList<QPointer<CrossFader> > crossFaders;

bool canceled;

The StopState is used to distinguish between stopping because the user
canceled and stopping because the user has quit; we’ll see why this matters
when we look at the cleanUp() method.

The progressWidget is put inside a QScrollArea and contains a QGridLayout.
When the user starts generating images we will create a fresh set of labels
and progress bars and lay them out inside this widget. We keep pointers to the
progress bars in a QMap; each key is the filename of the image that the progress
bar is showing progress for.

Rather than storing the widgets using plain pointerswe have used QPointers—
these are guarded pointers, that is, pointers that are automatically set to null
if the object they point to is deleted. Like all kinds of smart pointers, QPointer
is more expensive than a plain pointer—it uses slightly more memory and
may be slightly slower to access—but the convenience of being able to check a
QPointer before using it is really valuable in situationswherewewant to access
an object if it hasn’t been deleted. (Qt’s other smart pointers were described
earlier, in the “Qt’s Smart Pointers” sidebar; 62 ➤.)

The QWeakPointer class introduced in Qt 4.6 can be used as a general weak
pointer, or, for QObject subclasses, as a more efficient replacement for QPointer.
However, QWeakPointer’s API is different from—and slightly less convenient
than—QPointer’s, so we prefer to use QPointer here because its relative ineffi-
ciency is completely overshadowed by the expense of the processing (so doesn’t
matter). Using QPointer also means that our code compiles unchanged with
Qt 4.5 and Qt 4.6.

The list of crossfaders is used to make it easy to perform actions on all the
running secondary threads—for example, stopping themall if the user cancels.
We will see why we hold the crossfaders using QPointers when we review the
cleanUp() method. The canceled Boolean is used purely by the user interface;
it is not used by the secondary threads (so it doesn’t need to be volatile).

As soon as the user has chosen two images, the Generate button becomes
enabled (due to some signal–slot connections not shown). If the user clicks this
button, the generateOrCancelImages() slot is called and processing begins.

ptg

Processing Independent Items 291

void MainWindow::generateOrCancelImages()

{

if (generateOrCancelButton->text() == tr("G&enerate")) {

generateOrCancelButton->setEnabled(false);

statusBar->showMessage(tr("Generating..."));

canceled = false;

cleanUp();

QImage firstImage(firstLabel->text());

QImage lastImage(lastLabel->text());

for (int i = 0; i < numberSpinBox->value(); ++i)

createAndRunACrossFader(i, firstImage, lastImage);

generateOrCancelButton->setText(tr("Canc&el"));

}

else {

canceled = true;

cleanUp();

generateOrCancelButton->setText(tr("G&enerate"));

}

updateUi();

}

This slot is called when the generateOrCancelButton is clicked, but its behavior
depends on whether the button is being used to initiate the generation of
images or to cancel.

If the user has clicked Generate, we do some user interface-related things
such as updating the status bar and setting canceled to false. We also call
cleanUp() to make sure that no secondary threads are running and that any
labels and progress bars laid out in the progress widget are deleted ready for
a fresh start.

We then create one crossfader for each crossfaded image the user wants, and
change the generateOrCancelButton into a Cancel button.

On the other hand, if the user has clicked Cancel, we set canceled to true so
that other main windowmethods know that the generation has been canceled.
Then we clean up, and turn the button back into a Generate button.

In either case, at the end we call the updateUi() method (not shown); this
method simply enables or disables the Generate button depending on whether
the user has chosen two filenames.

Asusual, the keyboardacceleratorsare set automatically, in this case by calling
AQP::accelerateWidget(this); in the constructor, after the widgets are created.
But the generateOrCancelImages() method relies on knowing the text used by
the Generate/Cancel button, and we cannot be certain where AQP::accelerate-

Widget() will put the ampersand. One solution would be to compare the button
text after stripping out the ampersand, for example, generateOrCancelButton->

ptg

292 Chapter 8. Threadingwith QThread

text().replace("&", "") == tr("Generate"). But we chose to put the ampersands
in the two texts this button uses ourselves, so as to ensure that the button al-
ways has the same accelerator (Alt+E), whether it shows Generate or Cancel. The
accelerate*() functions honor any manually set accelerators. (For more about
the alt_key.{hpp,cpp}module that provides the accelerate*() functions, see the
“Keyboard Accelerators” sidebar; 15 ➤.)

It is now time to review the cleanUp() method. This method is called before a
new set of images is generated, or when the generation is canceled, or when
the program is terminated. We will review the method in two short parts for
ease of explanation. In fact we will begin by showing a naïve implementation
of the first part, then we’ll discuss a problem that this approach has, and then
we will review an implementation that avoids the problem. And after that we
will look at the second part, which is the same for both first parts.

The first part of the cleanUp() method is concerned with stopping any running
crossfader threads. We’ll start by looking at the naïve version.

void MainWindow::cleanUp(StopState stopState)

{

foreach (CrossFader *crossFader, crossFaders) { // Naive!

crossFader->stop();

crossFader->wait();

crossFader->deleteLater();

}

crossFaders.clear();

This is the simplest possible approach. We iterate over all the crossfaders and
call Crossfader::stop() on each one. This takes almost no time since all the
method does is set a bool to true. Next we call QThread::wait()—the crossfader
knows that it must stop so it will finish as soon as it reaches an if (m_stopped)

statement. Once the QThread::wait() call returns we know that the thread has
finished sowe tell it to delete itself. And at the endwe clear the crossFaders list
since it now just contains dangling pointers.

This approach is simple, and we don’t even need to use QPointers for our Cross-
Faders, since plain pointers are sufficient. But there is one potentially impor-
tant drawback: we wait for each thread to stop in turn, so overall it takes as
long to stop as the sumof the threads’ stopping times. If we are prepared to use
a more complex algorithm,we can avoid this problem and reduce the stopping
time to close to that of the slowest stopping thread.

Of course, there is no harm in using this simple approach and only switching
to the more complex approach if it measurably outperforms the simpler one in
realistic tests. However, if we do use the simple approach it would probably be
better to use two separate loops, one for stopping and one for the waiting and
deleting, as we’ll see when we discuss the more complex approach.

ptg

Processing Independent Items 293

The Cross Fader source code includes both implementations, with the one ac-
tually compiled dependent on a #define. Here’s the first part of the implemen-
tation that is used by default:

const int StopWait = 100;

void MainWindow::cleanUp(StopState stopState)

{

foreach (CrossFader *crossFader, crossFaders)

crossFader->stop();

while (crossFaders.count()) {

QMutableListIterator<QPointer<CrossFader> > i(crossFaders);

while (i.hasNext()) {

CrossFader *crossFader = i.next();

if (crossFader) {

if (crossFader->wait(StopWait)) {

delete crossFader;

i.remove();

}

}

else

i.remove();

}

}

The first thing the method does is to tell each crossfader to stop. And as we
noted earlier, the calls to CrossFader::stop() are fast since each call merely
involves setting a bool to true.So, at the end of this loop every crossfader knows
that it must stop.

The next loop is to wait for the crossfaders to actually stop so that we can delete
them. Why use two loops? Because if we called stop() and then wait() (which
blocks), each crossfader would be stopped serially rather than concurrently, so
the total stopping timewould be the sum of the stopping times. What wewant
to achieve is a total stopping time as close to that of the stopping time of the
thread that’s slowest to stop. For this reason, we tell the threads to stop in one
loop, and then wait for them to stop in another.

The algorithmwehave used to stop the threads is to continually iterate over all
the crossfaders, retrieving each one in turn. If the crossfader has been deleted,
thanks to the QPointer, it will be null, so we can simply remove it from the list
of crossfaders (as we do in the else clause). If the crossfader still exists we call
QThread::wait() on it. Normally this method waits “forever”, but here we only
wait for 100 milliseconds. If the thread has finished, wait() will return true,
and in this case we delete the thread and remove it from the list. Otherwise,
we do nothing, and on the next pass through the loop we try again.

ptg

294 Chapter 8. Threadingwith QThread

This approach effectively gives each thread as many 100 millisecond time-
slices as it needs in which to stop. It also means that if a thread is taking a
long time to stop, it doesn’t delay us from stopping the other threads because
once the timeout has expired we try the next thread. This makes the overall
stopping time much closer to that of the slowest stopping thread than to the
sum of the threads’ stopping times.

In the case of the Cross Fader application, the more complex algorithm pro-
vides little advantage over the simpler approach. This is because the QImage::

save() method blocks and is slow (in terms of disk access compared with pro-
cessing), so any thread that is saving its image to disk must wait for the save to
complete even if we have told it to stop. So, here, the time-slicing isn’t as bene-
ficial as we might have expected.

The secondpart of the cleanUp()method is the samenomatterwhich algorithm
we use for stopping the threads; we’ll review this part now.

if (stopState == Terminating)

return;

foreach (QProgressBar *progressBar, progressBarForFilename)

if (progressBar)

progressBar->deleteLater();

progressBarForFilename.clear();

foreach (QLabel *progressLabel, progressLabels)

if (progressLabel)

progressLabel->deleteLater();

progressLabels.clear();
}

Once all the threads have been stopped, if the application is terminating, we
have done all that is necessary and can return. But if the cleanup is to prepare
for another image generation, or is the result of generation being canceled,
we also need to get rid of any labels and progress bars that were used to show
progress from the previous generation (if any).

The deletion is straightforward:we iterate over all the progressbarsand labels,
and for those that still exist, we schedule them to delete themselves when the
event loop has time, and then clear the container that held them. We don’t
have to bother doing this if the application is terminating because all the labels
and progress bars are in a layout—this means that they all have parents, and
so they will be deleted by Qt in the normal way when their parent widget (the
progress widget) is deleted.

Deleting the label and progress bar widgets and then creating fresh ones as
needed is clearly less efficient than reusing them. But reuse would require
more code—for example, to hide those that have been created but are no longer
needed (due to generating fewer images than last time), or to create extra ones
(due to generating more images than last time).And also, if the user goes from

ptg

Processing Independent Items 295

wanting fourteen images to wanting five, it would mean that we kept nine
unneeded labels and progress bars. By deleting and creating we minimize
memory use at the expense of processing time. This seems a sensible trade-off
since the time needed to create even one crossfaded image is likely to dominate
the time needed to delete and create the labels and progress bars.

Each crossfader thread is created and started in the generateOrCancelImages()

method by calls to the createAndRunACrossFader() method—we will review this
now, in two short parts.

void MainWindow::createAndRunACrossFader(int number,

const QImage &firstImage, const QImage &lastImage)

{

QString filename = QString("%1%2.png").arg(baseNameEdit->text())

.arg(number + 1, 2, 10, QChar('0'));

QLabel *progressLabel = new QLabel(filename);

progressLabels << progressLabel;

QProgressBar *progressBar = new QProgressBar;

progressBar->setRange(0, 100);

progressBarForFilename[filename] = progressBar;

QGridLayout *layout = qobject_cast<QGridLayout*>(

progressWidget->layout());

Q_ASSERT(layout);

layout->addWidget(progressLabel, number, 0);

layout->addWidget(progressBar, number, 1);

The number passed in is the 0-based number of the crossfaded image to be
created. We begin by creating a suitable name for the image (Image-01.png,
Image-02.png, and so on), using 1-based two-digit base-10 numbers, padded
with a leading 0 if necessary. Then we create a new label which we add to
the list of labels, and a new progress bar which we add to the map of progress
bars, using the filename as its key. We then retrieve the progress widget’s grid
layout—which thanks to the earlier cleanUp() call will be empty—and add both
the label and the progress bar to the layout in the row corresponding to the
image’s number.

double firstWeight = (number + 1) /

static_cast<double>(numberSpinBox->value() + 1);

double secondWeight = 1.0 - firstWeight;

CrossFader *crossFader = new CrossFader(filename, firstImage,

firstWeight, lastImage, secondWeight, this);

crossFaders << crossFader;

connect(crossFader, SIGNAL(progress(int)),

progressBar, SLOT(setValue(int)));

connect(crossFader, SIGNAL(saving(const QString&)),

this, SLOT(saving(const QString&)));

ptg

296 Chapter 8. Threadingwith QThread

connect(crossFader, SIGNAL(saved(bool, const QString&)),

this, SLOT(saved(bool, const QString&)));

connect(crossFader, SIGNAL(finished()),

this, SLOT(finished()));

crossFader->start();
}

With the user interface set up we next turn to creating and starting the thread
that will create the crossfaded image. First we compute the “weights” to use—
for example, if the image was to be created with the proportions (60:40), the
weights would be 0.6 and 0.4. When the CrossFader object is created we give it
the filename to save to, and the images and weights to use. We then add the
crossfader to the crossfader list for ease of cleanup.

Since CrossFader is a QThread subclass (itself a QObject subclass), we can take
advantage of its signals and slots, and don’t need to create custom events or
manually invoke slots as we did in the previous chapter’s examples.

Here, we connect the crossfader’s custom progress() signal directly to the
progress bar, and connect the other custom signals, and also the QThread::

finished() signal, to the corresponding main window slots. And at the end we
call QThread::start() to start the thread running.

const int StatusTimeout = AQP::MSecPerSecond * 10;

void MainWindow::saving(const QString &filename)

{

statusBar->showMessage(tr("Saving '%1'").arg(filename),

StatusTimeout);

if (QProgressBar *progressBar = progressBarForFilename[filename])

progressBar->setRange(0, 0);

}

Whenever a crossfader finishes creating an image, just before it starts to save
the image it emits a custom saving() signal which results in this slot being
called. The slot informs the user via the status bar. And it also sets the corre-
sponding progress bar’s range to (0, 0), a special setting that tells the progress
bar to show a “busy” indicator rather than a percentage, which makes sense
since we don’t know how long the save will take.

void MainWindow::saved(bool saved, const QString &filename)

{

const QString message = saved ? tr("Saved '%1'")

: tr("Failed to save '%1'");

statusBar->showMessage(message.arg(filename), StatusTimeout);

if (QProgressBar *progressBar =

progressBarForFilename[filename]) {

progressBar->setRange(0, 1);

ptg

Processing Independent Items 297

progressBar->setValue(saved ? 1 : 0);

progressBar->setEnabled(false);

}

}

Whenever a crossfader finishes saving an image, it emits a custom saved()

signal which results in this slot being called. The Boolean is the one returned
by QImage::save() and indicates whether the save was successful. Just like
the saving() method, this method informs the user via the status bar. It then
updates the corresponding progress bar giving it an arbitrary range (but
where themaximum is greater than theminimum),and setting its value to the
maximum if the image was saved (this makes the progress bar show 100%) or
to the minimum otherwise (which makes the progress bar show 0%). And the
progress bar is also disabled to complete the effect of showing that work on the
image has finished.

void MainWindow::finished()

{

foreach (CrossFader *crossFader, crossFaders)

if (crossFader && !crossFader->isFinished())

return;

generateOrCancelButton->setText(tr("G&enerate"));

if (canceled)

statusBar->showMessage(tr("Canceled"), StatusTimeout);

else {

statusBar->showMessage(tr("Finished"));

if (statusBar->checkBox()->isChecked())

QDesktopServices::openUrl(QUrl::fromLocalFile(

firstLabel->text()));

}

}

As with the saving() and saved() signals and slots, whenever a crossfader
finishes, it emitsa finished() signalwhich results in this slot being called. This
slot iterates over all the crossfaders and if it finds one that hasn’t finished it
returns and does nothing, since work is still going on.

If all the crossfaders are finished the Generate button’s text is changed back
from Cancel and the user is informed via the status bar. If the generation fin-
ished rather than being canceled and if the Show Images checkbox is checked,
the QDesktopServices::openUrl()method is called with the first image file’s file-
name passed as a file:// protocol URL using the static QUrl::fromLocalFile()
method.★ If the openUrl() method is given an http:// protocol URL it tries to

★Qt 4.6 has an additional static method, QUrl::fromUserInput(), that takes a string and returns a
QUrl which could use the file://, ftp://, or http:// protocol, depending on the input string.

ptg

298 Chapter 8. Threadingwith QThread

start the system’swebbrowser (or to open a new tab if a browser is already run-
ning) at the given URL.But if the openUrl() method is given a file:// protocol
URL, it starts the platform-dependent application that is associated with the
file’s suffix, if such an association exists. So in this case, if the computer has a
suitable image viewer, it will be launched and given the first image’s filename.

Some image viewers will show the given image and also show thumbnails of
any other images in the same directory, making it easy to navigate between
them. Of course, it would be straightforward to add an image viewing facility
to the Cross Fader application; this is left as an exercise.

The call to statusBar->checkBox() is slightly surprising. Rather than using a
QStatusBar we have created a custom StatusButtonBar (not shown) that has a
QLabel, a QCheckBox, and a QDialogButtonBox laid out in a QHBoxLayout, which is
why all three are in the same “line” rather than having the status bar on the
line below. This is illustrated by the screenshot in Figure 8.2 (288 ➤).

We have now completed our review of the application’s user interface infra-
structure, so we can now turn our attention to the CrossFader QThread subclass
where all the work is done. We will begin by looking at some of the class’s defi-
nition in the header file to provide some context.

class CrossFader : public QThread

{

Q_OBJECT

public:

explicit CrossFader(const QString &filename, const QImage &first,

const double &firstWeight, const QImage &last,

const double &lastWeight, QObject *parent=0);

public slots:

void stop() { m_stopped = true; }

signals:

void progress(int);

void saving(const QString&);

void saved(bool, const QString&);

private:

void run();
···
volatile bool m_stopped;

The volatile m_stopped variable is used to notify the thread that it should stop.
(We discussed volatile bools in the previous chapter; 247 ➤.) We have just seen
the slots the three custom signals are connected to; the finished() signal is
inherited from QThread. We have not shown the private members that hold the
variables passed in to the constructor (m_filename, m_first, and so on).

ptg

Processing Independent Items 299

CrossFader::CrossFader(const QString &filename, const QImage &first,

const double &firstWeight, const QImage &last,

const double &lastWeight, QObject *parent)

: QThread(parent),

m_filename(filename), m_firstWeight(firstWeight),

m_lastWeight(lastWeight), m_stopped(false)

{

QSize size = first.size().boundedTo(last.size());

m_first = first.scaled(size, Qt::IgnoreAspectRatio,

Qt::SmoothTransformation);

m_last = last.scaled(size, Qt::IgnoreAspectRatio,

Qt::SmoothTransformation);

}

When a crossfader is created we start by finding out the size of the smaller of
the two images—or the size of both images if they are the same size. (Corre-
spondingly, the QSize::expandedTo()method returns the larger size of the QSize
it is called on and the QSize it is passed.) We then scale both images to this
minimumsize so that both the imageswework on,and the resultant crossfaded
images, will be the same size.

When QImage::scaled() is called Qt checks the image’s size against the request-
ed size and if they’re the same, it simply returns the original image. And re-
turning the original image is cheap because Qt uses copy-on-write under the
hood so all that’s really passed is a pointer or so’s worth of data.

For ease of explanation, we will review the run() method in two parts. And we
will show two versions of the first part: one that is easy to understand but slow,
and another that is slightly trickier but very fast.

void CrossFader::run()

{

QImage image(m_first.width(), m_first.height(),

QImage::Format_RGB32);

emit progress(0);

const float onePercent = image.width() / 100.0;

for (int x = 0; x < image.width(); ++x) { // Naive and slow!

for (int y = 0; y < image.height(); ++y) {

QRgb firstPixel = m_first.pixel(x, y);

QRgb lastPixel = m_last.pixel(x, y);

int red = qRound((qRed(firstPixel) * m_firstWeight) +

(qRed(lastPixel) * m_lastWeight));

int green = qRound((qGreen(firstPixel) * m_firstWeight) +

(qGreen(lastPixel) * m_lastWeight));

int blue = qRound((qBlue(firstPixel) * m_firstWeight) +

(qBlue(lastPixel) * m_lastWeight));

ptg

300 Chapter 8. Threadingwith QThread

image.setPixel(x, y, qRgb(red, green, blue));

if ((y % 64) == 0 && m_stopped)

return;

}

if (m_stopped)

return;

emit progress(qRound(x / onePercent));

}

This method is where all the work is done. We begin by creating a new QImage

of the right size and using 32-bit RGB(red,green,blue) colors. (We could easily
have accounted for an alpha channel—transparency—but this would just
make the code longer without changing its essential structure, so is left as an
exercise.) Once the image is created we emit an initial progress() signal. The
slot that this signal is connected to is in a different thread—the main (GUI)
thread. Qt handles cross-thread signals by turning them into events that are
added to the main thread’s event queue. When the main thread reaches the
event it responds by calling the slot the signal was connected to (passing any
arguments that the signal may have had), so the slot is executed in the main
thread, not the secondary thread from which the signal was emitted.

The crossfading is done by reading the first and last images’ RGBvalues for all
of their pixels, and for each one creating a new RGB value that is the rounded
sum of the first and last images’ weighted RGB values. For example, if the
first image had a red value of 240 and a weighting of 0.6 and the second image
had a red value of 120 and a weighting of 0.4, the crossfaded pixel would have
a red value of 192: (240 × 0.6) + (120 × 0.4) = 144 + 48 = 192.

The QImage::pixel()method returnsunsigned integers;QRgb is simply a typedef

that makes their meaning clearer. The qRed(), qGreen(), and qBlue() functions,
given a QRgb, return an integer—the appropriate red, green, or blue component.
There is also a QRgba typedef that includes an alpha (transparency) component,
and a qAlpha() function,aswell as a qGray() function that producesa gray value
given a QRgb (or given three integers for red, green, and blue).

The outer loop works by x-coordinates (columns) and the inner loop works
by y-coordinates (rows). To make the thread sensitive to cancelation, every
64th pixel we check to see if the thread has been stopped. We also check after
each column is completed, and emit a progress() signal with the column we
have reached.

Unfortunately using QImage::pixel() and QImage::setPixel() is quite slow.
There are two alternatives, both based on the knowledge that internally QImage

stores its pixel data as a single contiguous array of values. One approach is to
work in terms of horizontal scan lines (y-coordinates). The QImage::scanLine()

method returns a pointer to a single “row” of pixel data. We can then work on
this data directly rather than getting and setting pixels, and doing so provides

ptg

Processing Independent Items 301

a significant speedup. (Source code that shows this approach is included in
the example’s source code but not shown here.) Another approach is to work
in terms of the raw array of values. This is accessed by the QImage::bits()

method and produces the fastest possible access.Here’s the same code as before
but this time using QImage::bits():

void CrossFader::run()

{

QImage image(m_first.width(), m_first.height(),

QImage::Format_RGB32);

emit progress(0);

const int onePercent = qRound(image.width() * image.height() /

100.0);

QRgb *firstPixels = reinterpret_cast<QRgb*>(m_first.bits());

QRgb *lastPixels = reinterpret_cast<QRgb*>(m_last.bits());

QRgb *pixels = reinterpret_cast<QRgb*>(image.bits()); // Fastest

for (int i = 0; i < image.width() * image.height(); ++i) {

QRgb firstPixel = firstPixels[i];

QRgb lastPixel = lastPixels[i];

int red = qRound((qRed(firstPixel) * m_firstWeight) +

(qRed(lastPixel) * m_lastWeight));

int green = qRound((qGreen(firstPixel) * m_firstWeight) +

(qGreen(lastPixel) * m_lastWeight));

int blue = qRound((qBlue(firstPixel) * m_firstWeight) +

(qBlue(lastPixel) * m_lastWeight));

pixels[i] = qRgb(red, green, blue);

if ((i % onePercent) == 0) {

if (m_stopped)

return;

emit progress(i / onePercent);

}

}

We use three calls to QImage::bits() to give us read-write access to all three im-
ages. Then, instead of iterating by x- or y-coordinates, we simply iterate over
every bit in one fast linear sweep. (The source code has #defines that can be
used to switch between the different approaches—they are worth experiment-
ing with to see just how much faster using QImage::bits() is.) The only thing
that slows down this implementation is the if statement—without that the
code would run even faster, but at the price of being harder for the user to stop
and with a much coarser indication of progress.

emit progress(image.width());

if (m_stopped)

return;

ptg

302 Chapter 8. Threadingwith QThread

emit saving(m_filename);

if (m_stopped)

return;

emit saved(image.save(m_filename), m_filename);
}

Once the new image has been completed we emit a last progress() signal, and
if the user has not canceled we then emit a saving() signal. Finally, we try to
save the image, and emit a saved() signal with the result of the QImage::save()

call. We do not explicitly emit a finished() signal; the base class will do that
for us automatically once the run() method has finished.

Using QThread for this application was not difficult because no locking was
required, and we could make full use of Qt’s signals and slots mechanism.
But if the number of images we wanted to concurrently create was potentially
large, using a shared work queue and just a few threads—an approach we will
look at in the next section—would provide a more scalable solution.

Processing Shared Items ||||

If we have a large number of items to process and due to varying item sizes we
don’t know how to distribute them fairly among threads to get the maximum
throughput, we may be better off using a shared work queue. In some scenar-
ios involving sharedwork queueswe can start putting work onto the queue and
then start up a fixed number of secondary threads that can begin processing,
adding work as we go. If we make the work queue thread-safe (i.e., if we build
in locking), then each secondary thread that accesses the queue can treat it like
any other data structure.

The scenario we will use in this section is slightly different since we use the
secondary threads to populate a shared data structure (a hash) in the first
place, and once the hash is populated the application then populates a model
that reflects the hash’s data into a view.

In this section wewill develop the Find Duplicates application (findduplicates)
shown in Figure 8.4. This application searches the user-specified directory
and all its subdirectories to find duplicate files.★ Duplication is determined by
considering each file’s size and MD5 signature. MD5 (Message-Digest algo-
rithm 5) is a cryptography function that given a chunk of data—for example, a
file—provides a 128-bit (16 bytes) hash value. If two files have the same length
and the same MD5, then they are very likely to have the same contents.

★Incidentally, just as with the Image2Image program discussed in the previous chapter, the line
edit used to enter the user’s choice of root directory uses a QCompleterwhich pops up a list of valid
directories to minimize how much the user must type—this is covered in Chapter 9; ➤ 320.

ptg

Processing Shared Items 303

Figure 8.4 The Find Duplicates application

The application iterates over all the directories and populates a QHash<QPair<

QByteArray, qint64>, QStringList>. The hash’s keys are made up of a QByteArray

to hold an MD5 and a qint64 to hold a file size; the value is a QStringList of
filenames (including full paths) of those files that have the correspondingMD5
and size. Once the hash is populated we can iterate over it knowing that any
itemswhose value containsmore than one filename contains a list of duplicate
files. One advantage of using this approach is that we find duplicate files even
where their filenames differ. (See, for example, the w39MLRes.DLL entry shown
in Figure 8.4.)

Computing a file’s MD5 is potentially expensive (proportional to the file’s
size), so we want to distribute the work over one or more secondary threads
(the precise number being the ideal thread count that Qt reports). But why
bother going to the expense of computing MD5s when we could simply store
the files’ contents in the QByteArray part of the hash keys, especially since we
have to read the file anyway to compute the MD5? If we did this we would end
up with a hash whose keys would consume as much memory as the directory’s
contents (perhaps tens or hundredsof megabytes ormore),whereas everyMD5
QByteArray is a mere 16 bytes, no matter how large the file it represents.

The applicationneeds to knowwhich files itmust process (i.e.,which files to cal-
culate theMD5 for and that should be added to the shared hash).The approach
we have taken is to create a list of the subdirectories in the user’s chosen di-
rectory and divide this list as evenly as possible among the secondary threads.
Each secondary thread is then expected to add entries to the hash for every file
in every directory it processes, and for every file in every directory’s subdirec-
tories, and so on. This does not guarantee a fair distribution of work—for ex-
ample, one secondary thread could end upwith directories containing tiny icon
files and another with directories containing large music or DVD files.

ptg

304 Chapter 8. Threadingwith QThread

If we wanted to guarantee a fair distribution of work, one approach would
be to create a single data structure containing all the files—for example, a
QMap<qint64, QString> with file size keys and filename values intrinsically or-
dered by size. Then we would have to allocate filenames to the threads accord-
ing to file size. For example, if we had three secondary threads and twenty
files to process we’d have to allocate the work (using index positions into the
map—although in practice we’d simply use an iterator) as follows: thread #1
[0, 3, 6, 9, 12, 15, 18]; thread #2 [1, 4, 7, 10, 13, 16, 19]; thread #3 [2, 5, 8,

11, 14, 17]. This would add only a little more complexity to the program, but
the real issue is that using this approachmight take longer overall than the po-
tentially unfair approach that we have used, and will certainly consumemuch
more memory. This is because of the overhead involved in creating the list of
all the files to be processed in the first place (even if we spread this work over
one or more secondary threads), compared with simply giving each secondary
thread a directory to work on, and not needing a possibly huge list of files. It
might be interesting to compare the twoapproaches in practice;creating a truly
fair version and comparing performance is left as an exercise.

Clearly, the key to this application is having a shared hash that all the sec-
ondary threads can update. Making a complete thread-safe hash is non-trivial,
so what we have done is created a cut-down hash that provides the function-
ality that the program needs, and leaves out a lot of useful but unnecessary
features.

We will start our coverage by looking at the application’s bare bones Thread-

SafeHash class. Then we will look at some of the infrastructure in the main
window, and finally we will look at the QThread subclass where the processing
takes place.

Here is the definition of the ThreadSafeHash class; we will look at some of its
methods in a moment.

template<typename Key, typename Value>

class ThreadSafeHash

{

public:

explicit ThreadSafeHash() {}
···

private:

mutable QReadWriteLock lock;

QMultiHash<Key, Value> hash;

};

The difference between a QMultiHash and a QHash (and similarly between a
QMultiMap and a QMap) is thatmultiple values can be inserted for a given key. So,
in effect, each key has a list of values. This leads to subtly different semantics
compared with the single valued hash and map, so we must be careful to keep

ptg

Processing Shared Items 305

in mind the differences when using a QMultiHash or a QMultiMap. (In fact, both
QHash and QMap have insertMulti() methods that allow for multiple values to
be stored for the same key, but if that’s our requirement, using QMultiHash and
QMultiMap is likely to be more convenient.)

We have used a QReadWriteLock so that we can minimize locking times—for
example, if nowrite lock is active,any number of threads can obtain read locks.
The lock must be mutable since it will be used in some const methods.

QList<Value> values(const Key &key) const

{

QReadLocker locker(&lock);

return hash.values(key);

}

Thismethod returns the values corresponding to the given key, or an empty list
of values if the hash doesn’t have an item with the given key.

A QReadLocker blocks until it gets a read lock on the QReadWriteLock it is passed
as argument. When the QReadLocker is destroyed, its destructor releases the
lock. This ensures that the lock is always released—whether the function
or method containing the read locker returns normally, or is exited due to an
unhandled exception.

For the Find Duplicates program the keys are of type QPair<QByteArray,

qint64>, and the values are of type QString, so the value returned from this
method will be a (possibly empty) QList<QString>.

A QList<QString> is compatible with QStringList—which inherits QList—but
doesn’t provide some of the QStringList conveniencemethods. If necessary we
can easily convert a QList<QString> into a QStringList to get the extra methods
since QStringList has a constructor that accepts a QList<QString>.

The ThreadSafeHash has several other methods with the same structure as
this one—that is, they use a QReadLocker and return the result of a call on the
aggregated hash. These include contains(), count(), and isEmpty() (none of
which are shown).

void insert(const Key &key, const Value &value)

{

QWriteLocker locker(&lock);

hash.insert(key, value);

}

This method is used to insert a single value into the hash under the given key.
If two or more values are inserted with the same key, they are all kept (in
insertion order). If the key is not in the hash a new item is created with the
given key and value.

ptg

306 Chapter 8. Threadingwith QThread

A QWriteLocker blocks until it gets a write lock on the QReadWriteLock it is passed
as argument. When the QWriteLocker is destroyed, its destructor releases the
lock—exactly the same as for a QReadLocker.

const QList<Value> takeOne(bool *more)

{

Q_ASSERT(more);

QWriteLocker locker(&lock);

typename QMultiHash<Key, Value>::const_iterator i =

hash.constBegin();

if (i == hash.constEnd()) {

*more = false;

return QList<Value>();

}

*more = true;

const QList<Value> values = hash.values(i.key());

hash.remove(i.key());

return values;

}

Providing a thread-safe iteration mechanism is non-trivial, so we have cho-
sen instead to implement a method that destructively removes arbitrary
items from the hash, since this is sufficient for the Find Duplicates applica-
tion’s needs.

We begin by acquiring a write lock since we plan to change the hash. Since we
don’t have a particular key in mind (we just want to take any key), we must
somehow access an item. Here,we have simply retrieved a const iterator to the
“first” item in the hash. (We say “first” in quotes because unlike a QMap, a QHash

or QMultiHash has no intrinsic order.) Unfortunately, the iterator declaration
confuses some compilers so we have been forced to use typename to make the
meaning clear.

If the iterator points past the end of the hash we know that the hash is empty.
In this case, we set the Boolean more pointer’s value to false and return an
empty list of values.

If the hash is nonempty, we set more’s value to true, and retrieve the list of val-
ues for the itempointed to by the iterator’skey. (We can’t use i.value() because
that will return a single value, i.e., just the first value in the item’s list of val-
ues.) Oncewe have a copy of the valueswe remove the item from the hash, and
then return the values. Wewill see further on that theFindDuplicatesapplica-
tion uses this method to populate a model once all the secondary threads have
finished populating the thread-safe hash.

We have now finished reviewing all the relevant parts of the ThreadSafeHash.
This data structure means that the threads used in the rest of the program

ptg

Processing Shared Items 307

can effectively treat the ThreadSafeHash as a normal data structure without us
having to worry about locking.

We cannow turn our attention to the application’smainwindow infrastructure,
startingwith itsdatamembers (but excluding themodel and thewidgetswhich
are all standard).

volatile bool stopped;

QList<QPointer<GetMD5sThread> > threads;

FilesForMD5 filesForMD5;

The stopped variable is used to tell the threads that the user has canceled.
Keeping a list of the secondary threads is convenient as we will see when
we review the processDirectories(), finished(), and stopThreads() methods
further on. Wewill review the GetMD5sThread QThread subclass toward the end of
this section. The filesForMD5 variable is the shared thread-safe hash that the
secondary threads populate.

typedef ThreadSafeHash<QPair<QByteArray, qint64>,

QString> FilesForMD5;

We have created this typedef as a convenience so that we can avoid typing the
rather unwieldy name for the hash in all the places it is needed.★ The QPair is
used as the hash’s key, and the QString is the type of the values stored in each
item’s list of values.

void MainWindow::find()

{

stopThreads();

rootDirectoryEdit->setEnabled(false);

view->setSortingEnabled(false);

model->clear();

model->setColumnCount(2);

model->setHorizontalHeaderLabels(QStringList() << tr("File")

<< tr("Size"));

findButton->hide();

cancelButton->show();

cancelButton->setEnabled(true);

cancelButton->setFocus();

stopped = false;

prepareToProcess();

}

★The use of a typedef here is quite a rare occurrence in this book. In fact, we avoid the use of
typedefs as much as possible—purely to save readers from having to remember or look back every
time they encounter one. However, we certainly advocate their use in production code.

ptg

308 Chapter 8. Threadingwith QThread

This method is called when the user clicks the Find button. It begins by stop-
ping any running secondary threads, and then updates the user interface and
clears the model so that no duplicates are shown. It is best to switch off view
sorting beforemaking big changes to a model since this improves performance.
And since clearing a model also sets its row and column counts to 0 and wipes
out its headers,wemust restore these ready for when themodel is repopulated.
At the end the method sets the stopped variable to false since the user has not
canceled, and calls prepareToProcess() to get the list of directories to process.

Incidentally, rather than using a single button for Find and Cancel and chang-
ing its text, we have used two separate buttons, added one after the other in a
QHBoxLayout. At any one time only one of the buttons is visible. Thismeans that
we can have the convenience of never having to change the buttons’ texts and
of having two separate slots, find() and cancel(), instead of a single findOrCan-
cel() slot.

const int StopWait = 100;

void MainWindow::stopThreads()

{

stopped = true;

while (threads.count()) {

QMutableListIterator<QPointer<GetMD5sThread> > i(threads);

while (i.hasNext()) {

QPointer<GetMD5sThread> thread = i.next();

if (thread) {

if (thread->wait(StopWait)) {

delete thread;

i.remove();

}

}

else

i.remove();

}

}

Q_ASSERT(threads.isEmpty());

}

This method uses the same algorithm as we used in the Cross Fader example’s
cleanUp() method (293 ➤), and is designed to make the overall stopping time as
close to that of the slowest stopping thread as possible.

void MainWindow::prepareToProcess()

{

statusBar()->showMessage(tr("Reading files..."));

QStringList directories;

directories << rootDirectoryEdit->text();

ptg

Processing Shared Items 309

QDirIterator i(directories.first());

while (!stopped && i.hasNext()) {

const QString &pathAndFilename = i.next();

const QFileInfo &info = i.fileInfo();

if (info.isDir() && !info.isSymLink() &&

i.fileName() != "." && i.fileName() != "..")

directories << pathAndFilename;

}

if (stopped)

return;

processDirectories(directories);

}

This method is used to create a list of directories to process. The first item in
the list is the directory entered by the user (the “root”), and the others (if any)
are the root’s subdirectories. Even on a large directory, creating this list should
be very fast and not consume toomuchmemory sincewe only go one level deep.
Once the list is complete we call processDirectories() to get the work done.

If the directory could be very large, then it might be worth putting the if

(stopped) check inside the loop, so that at least the user could cancel if they
changed their minds. Or we could even process it using multiple threads.

void MainWindow::processDirectories(const QStringList &directories)

{

const QVector<int> sizes = AQP::chunkSizes(directories.count(),

QThread::idealThreadCount());

int offset = 0;

foreach (const int chunkSize, sizes) {

QPointer<GetMD5sThread> thread = QPointer<GetMD5sThread>(

new GetMD5sThread(&stopped, directories.first(),

directories.mid(offset, chunkSize),

&filesForMD5));

threads << thread;

connect(thread, SIGNAL(readOneFile()),

this, SLOT(readOneFile()));

connect(thread, SIGNAL(finished()), this, SLOT(finished()));

thread->start();

offset += chunkSize;

}

}

This method uses the same algorithm for distributing the work as we used
in the previous chapter’s convertFiles() methods (252 ➤). Each GetMD5sThread

object is created with a pointer to the stopped variable (so that it can detect if

ptg

310 Chapter 8. Threadingwith QThread

the user canceled), the root directory (since this one shouldn’t be recursed into),
the directories to process, and the hash that the thread is to update.

Once a GetMD5sThread is created we add it to the list of threads. Then we con-
nect the thread’s custom readOneFile() signal and inherited finished() signal
to corresponding slots in the main window, and start the thread processing.

void MainWindow::readOneFile()

{

statusBar()->showMessage(tr("Read %Ln file(s)", "",

filesForMD5.count()));

}

Whenever a GetMD5sThread adds a filename to the hash it emits a readOneFile()

signalwhich in turn calls this slot. Since the FilesForMD5 hash is thread-safewe
don’t have to worry about locking to access its count; and, of course, the count
is the total for all the secondary threads since they all share the same hash.

Strictly speaking the count is wrong, since it measures the number of unique
(MD5, size) pairs rather than the actual number of files processed—a number
that could be larger depending on how many duplicates there are. Nonethe-
less, the count is sufficiently close to being correct for indicating progress. This
illustrates a trade-off that is sometimesmade between accuracy and efficiency.
Here, we don’t need accuracy—the number shown will keep changing anyway,
and is good enough to let the user know that the processing is taking place—so
we don’t waste CPU cycles or memory trying to compute a truly accurate
result.

void MainWindow::finished()

{

foreach (QPointer<GetMD5sThread> thread, threads)

if (thread && thread->isRunning())

return;

processResults();

}

Whenever a GetMD5sThread finishes it emits a finished() signal (a behavior
it inherits from its QThread base class). Since we might have more than one
secondary thread we check them all to see if any are still running—if any are,
we return and do nothing. And if there are no secondary threads running we
know that this slot was called by the last one to finish, so we are able to call
processResults().

void MainWindow::processResults()

{

stopThreads();

qint64 maximumSize;

ptg

Processing Shared Items 311

forever {

bool more;

QStringList files = filesForMD5.takeOne(&more);

if (!more)

break;

if (files.count() < 2)

continue;

addOneResult(files, &maximumSize);

}

updateView(maximumSize);

statusBar()->showMessage(tr("Found %Ln duplicate file(s)", "",

model->rowCount()));

completed();

}

This method is used to present the results to the user. It begins with a call
to stopThreads() which deletes all the secondary threads since they are no
longer needed.

We keep track of the largest-sized file since we will use this to determine how
wide to make the view’s Size column. The bare bones ThreadSafeHash doesn’t
provide an iterator or any way to index items except by their keys (and pro-
vides no means of supplying the keys); all it has is the destructive takeOne()

method—but this is sufficient for our needs. We start an infinite loop using
Qt’s forever macro (essentially the same as while(1)), and try to retrieve a list
of filenames. (The ThreadSafeHash::takeOne()method returns a QList<QString>;
we rely on thenon-explicit QStringList(QList<QString>&) constructor to perform
the conversion.) If more is set to false the hash is empty and we break out of
the loop. Otherwise, providing the list of filenames has at least two items (i.e.,
at least one duplicate), we call addOneResult() to populate the model with this
information.

At the end we update the view—sorting it and setting its column widths—tell
the user howmany files are duplicated,and call completed() to prepare the user
interface for another search.

void MainWindow::addOneResult(const QStringList &files,

qint64 *maximumSize)

{

QFileInfo info(files.first());

if (info.size() > *maximumSize)

*maximumSize = info.size();

QStandardItem *parentItem = model->invisibleRootItem();

QStandardItem *treeItem = new QStandardItem(info.fileName());

QStandardItem *sizeItem = new QStandardItem(

QString("%L1").arg(info.size(), 20, 10, QChar(' ')));

sizeItem->setTextAlignment(Qt::AlignVCenter|Qt::AlignRight);

ptg

312 Chapter 8. Threadingwith QThread

parentItem->appendRow(QList<QStandardItem*>() << treeItem

<< sizeItem);

foreach (const QString &filename, files)

treeItem->appendRow(new QStandardItem(

QDir::toNativeSeparators(filename)));

}

This method creates a new top-level row based on the first filename in the list
of filenames. The row’s first item (i.e., its first column) is given the filename
(stripped of its path), and the row’s second item (i.e., its second column) is
given the file’s size (as a string). The method then adds one child row for every
filename in the list, creating a single item for each one to hold the filename
(including its path). This means there will always be at least two child rows
for each top-level row. Note also that child items might not have the same
filename as the top-level row’s first item, since Find Duplicates finds duplicate
files irrespective of their actual filenames.

The file size is displayed as a localized string but padded with leading white-
space so that if the user sorts the size column (by clicking theSize columnhead-
er), the default alphabetical sorting will sort the numerical values correctly.
And, of course, we use the static QDir::toNativeSeparators() method to make
sure that path separators are shown correctly for the platform.

void MainWindow::updateView(qint64 maximumSize)

{

if (model->rowCount()) {

model->sort(0, Qt::AscendingOrder);

view->expand(model->invisibleRootItem()->child(0)->index());

QFontMetrics fm(font());

int sizeWidth = fm.width(QString("W%L1W").arg(maximumSize));

view->setColumnWidth(1, sizeWidth);

sizeWidth += fm.width("W");

view->setColumnWidth(0, view->width() - (sizeWidth +

view->verticalScrollBar()->sizeHint().width()));

}

}

This method is called once the model has been populated with duplicate files.
It sorts the model by top-level filename and expands the first item to show its
duplicates. It then computes a suitable width for the size column, using the
localized maximum size and two “W”s to provide some horizontal margin. It
then sets thewidth of the filename column to bewhatever is left over, including
accounting for the width of the vertical scrollbar plus some extra margin.

void MainWindow::completed()

{

view->setSortingEnabled(true);

ptg

Processing Shared Items 313

cancelButton->setEnabled(false);

cancelButton->hide();

findButton->show();

findButton->setEnabled(true);

findButton->setFocus();

rootDirectoryEdit->setEnabled(true);

}

Once the search is completed (or canceled), thismethod is called to prepare the
user interface for another search. It also re-enables sorting (since all changes
to the model have now been done), so that the user can sort by clicking the
column headers.

void MainWindow::cancel()

{

stopThreads();

completed();

statusBar()->showMessage(tr("Canceled"), StatusTimeout);

}

If the user cancels, this slot is called. It stops the threads, prepares the user
interface for another search, and confirms the cancelation. What it does not
do is clear the model, so any duplicates found so far are shown. This is easy to
change, of course.

void MainWindow::closeEvent(QCloseEvent *event)

{

stopThreads();

event->accept();

}

If the user tries to terminate the application, we first make sure that any
running secondary threads are finished, and then we allow the termination
to proceed.

We have now reviewed enough of the application’s infrastructure to see how
the threads are created, connected to, and used. We will now review the—
surprisingly straightforward—GetMD5sThread class. Wewill begin by looking at
an extract from its definition, and then we will look at its run() method.

class GetMD5sThread : public QThread

{

Q_OBJECT

public:

explicit GetMD5sThread(volatile bool *stopped,

const QString &root, const QStringList &directories,

FilesForMD5 *filesForMD5)

ptg

314 Chapter 8. Threadingwith QThread

: m_stopped(stopped), m_root(root),

m_directories(directories), m_filesForMD5(filesForMD5) {}

signals:

void readOneFile();

private:

void run();
···

};

The constructor takes the parameters needed to define the work that the
thread must perform and stores them in member variables. Only one signal
is declared since the finished() signal is inherited from QThread. By making
its run() method private, we prevent the class from being subclassed, but also
prevent run() being called on instances (since run() should be called only by
QThread::start()).

void GetMD5sThread::run()

{

foreach (const QString &directory, m_directories) {

QDirIterator::IteratorFlag flag = directory == m_root

? QDirIterator::NoIteratorFlags

: QDirIterator::Subdirectories;

QDirIterator i(directory, flag);

while (i.hasNext()) {

const QString &filename = i.next();

const QFileInfo &info = i.fileInfo();

if (!info.isFile() || info.isSymLink() ||

info.size() == 0)

continue;

if (*m_stopped)

return;

QFile file(filename);

if (!file.open(QIODevice::ReadOnly))

continue;

QByteArray md5 = QCryptographicHash::hash(file.readAll(),

QCryptographicHash::Md5);

if (*m_stopped)

return;

m_filesForMD5->insert(qMakePair(md5, info.size()),

filename);

emit readOneFile();

}

}

}

ptg

Processing Shared Items 315

This method is at the heart of the application, and is where all the work is
done. The thread iterates over the list of directories it has been given, and for
each one creates a QDirIterator with which to iterate over the files that are to
be processed. The original directory list was populated with the user-chosen
directory (the “root”) and that directory’s immediate subdirectories. This
means that the first thread’s first directory will be the root whose directories
are already in the list for processing, so if the directory to process is the root
directory, we must not recurse into its subdirectories—something we account
for by setting the QDirIterator flag.

We ignore anything that isn’t a file, and also ignore zero-length files (even
though, logically, these are all duplicates of each other).For those fileswewant
to handle, we open them for reading in binary mode, and if the QFile::open()

call succeeds, we pass their entire contents to the QCryptographicHash::hash()

function to compute their MD5 using QFile::readAll(). Then we update the
hash data structure, creating (or accessing) the item whose key has the MD5
and file size of the file we are working on, and appending the filename to its
list of string values. Qt’s global qMakePair() function is used to create QPair

objects—in this case a (QByteArray, qint64) key. And, of course,we don’t have to
worry about locking since the ThreadSafeHash takes care of it for us.

At the endwe emit a signal indicating that a file hasbeen read. Since QThread is
a QObject subclass we can use Qt’s signals and slots mechanism normally—we
don’t have to resort to custom events or to invoking slots directly. (Behind
the scenes, Qt uses its event processing mechanism to handle cross-thread
signal–slot connections, but this is all done transparently, so we do not have to
know or care about how it works.)

Notice that in a couple of places we check to see if the user has canceled, and
immediately finish if they have.

Qt’s QCryptographicHash class was introduced with Qt 4.3. It can provide a cryp-
tographic hash using any of the MD5, MD4, or SHA1 algorithms. The stat-
ic QCryptographicHash::hash() method we have used here takes a QByteArray

(which iswhat QFile::readAll() returns),and the algorithm to use, and returns
the cryptographic hash as a QByteArray. It is also possible to create a QCrypto-

graphicHash object and add data to it using one of its addData()methods (taking
a char* and a length or taking a QByteArray), and calling QCryptographicHash::

result() for the hash at the end.

We have now completed our review of the Find Duplicates application. This
application demonstrates how to use QThread in conjunction with a thread-safe
data structure. A slightly more useful variant might have a third column
showing the number of duplicates of each file so that users could sort by this
column to see which files had the most duplicates irrespective of their names
or sizes. Another improvement would be the ability to delete files, and for
Unix-like operating systems, the ability to link files (i.e., delete a duplicate and

ptg

316 Chapter 8. Threadingwith QThread

then create a soft link from one version to the now deleted duplicate). Adding
all this functionality is left as an exercise.

We have now completed our review of Qt’s high-level threading classes (in
the previous chapter), and of QThread. Qt’s support for threading is excellent,
but there is no avoiding the fact that writing—and especially maintaining—
threaded programs is potentially much more demanding than for single
threaded programs. For this reason, threading should be used only when
necessary, and with great care. We can minimize the risks and maximize the
benefits that threading can provide by avoiding the need for locking at all (by
processing items independently),or where locking is required,encapsulating it
in a class so that the class’s clients don’t have to take on any locking responsi-
bilities themselves. Using Qt’s QtConcurrent functions and the QRunnable class
makes the processing of independent items quite straightforward—and we
can still use locking if necessary (for example, the ThreadSafeErrorInfo class
we created in the previous chapter’s second section).Even using QThread classes
need not be too demanding, particularly if we use thread-safe data structures,
although writing these can be quite a challenge if we want them to be both
efficient and fully functional.

ptg

Creating Rich Text Editors |||||

9
● IntroducingQTextDocument

● CreatingCustom Text Editors

● A Rich Text Single Line Editor

● Multi-line Rich Text Editing

Qt provides a rich text engine that can format and display text, lists, tables,
and images.★ The heart of this text formatting engine is QTextDocument—this
class can hold a single piece of text, a line, or an entire multi-page document,
and fully supports text formatting (e.g., bold, italic, color, subscript), right down
to the level of individual characters.

One of QTextDocument’s great conveniences is that it can be given HTML,which
makes it easy to include rich text in applications. And just like a web browser,
QTextDocument can accept a CSS (Cascading Style Sheet) to provide globally
consistent styling of the text it contains. Another feature QTextDocument has
in common with web browsers is that it safely ignores markup it doesn’t
understand. The HTML tags and the CSS properties that Qt’s rich text engine
support are listed at qt.nokia.com/doc/richtext-html-subset.html.

In this chapter we will focus on creating rich text editors, including completion
and syntax highlighting. And in the next chapter we will focus on outputting
rich text, both by exporting to files—for example, in .odt (Open Document Text
Format) and .pdf (Portable Document Format)—and by printing.

In the chapter’s first section we will begin with an overview of the QText-

Document class which provides in-memory storage of rich text documents. This
overview is relevant to this chapter and to the next one. Then, in the second
section we will show how to provide completion for a line editor, and then we
will create a custom multi-line XML editor that provides both completion and
syntax highlighting. In the third section we will show how to create a single
line rich text editor. And in the fourth section we will show how to create a
multi-line rich text editor—this allows us to provide more features than the

★Qt’s rich text format is an in-memory data format that should not be confused with Microsoft’s
.rtf (rich text format) document interchange format, or with enriched text (RFC 1896) or with the
text/richtextMIME type (RFCs 1341 and 1521), all of which are completely different.

317

ptg

318 Chapter 9. Creating Rich Text Editors

single line editor,such as text alignment and indicating the character andpara-
graph formatting attributes that are in force at the cursor position.

Introducing QTextDocument ||||

In this section we will briefly describe the structure of QTextDocuments. In this
chapter we will use QTextDocuments to hold the rich text of custom editors, and
in this chapter and the next we will use QTextCursors to programmatically edit
and populate QTextDocuments.

It might appear that storing rich text is quite straightforward,but a glimpse of
the 700-page Open Document Format specification (or Microsoft’s 6000-page
OOXML specification) suggests that things aren’t quite as simple as we might
suppose. Fortunately, Qt rich text supports only a carefully chosen range of
features, so it is not too difficult to learn, and at the same time is sufficient for
most everyday needs.

Internally, QTextDocument stores its documents using a recursive structure that
consists of a root frame that contains one (possibly empty) text block, followed
by a sequence of zero or more frames, text blocks, or tables. Each frame under
the root itself contains one (possibly empty) text block, again followed by a
sequence of zero or more frames, text blocks, and tables. And this pattern
repeats for frames within frames. Qt always puts a text block (even if empty)
as a separator between each frame or table.

Figure 9.1 illustrates the structure of a QTextDocument with a schematic rep-
resentation of a sample document’s first page. The second page is also inside
the root frame, and simply follows the last text block shown in the figure. Both
pages’ contents consist of a text block (holding a title), a text table (holding
cells, each of which contains a text block containing a caption), and another
text block (holding a paragraph at the end, and for all except the last page a
page break indicator).

A QTextBlock can represent either a paragraph or a list, and nested lists are
fully supported. If a text block represents a list, the QTextBlock::textList()

method returns a pointer to a QTextList; otherwise (if it is just a paragraph
of text) it returns 0. A QTextList consists of one or more QTextBlocks whose at-
tributes (bullet or numbering style and indent) are stored in a single QTextList-
Format.

A QTextBlock’s paragraph formatting is stored in a QTextBlockFormat—this
stores attributes such as the paragraph’s alignment, margins, indents, and so
on. A text block is composed of zero or more QTextFragments, each one of which
holds a piece of text whose attributes (font, underlining, and so on) are stored
in a single QTextCharFormat. The text could be as little as a single character
(such as an underlined letter), or as much as a paragraph’s worth of text. A

ptg

IntroducingQTextDocument 319

Document

Root Frame

Text Block

Text Table

Text Table Cell

Text Block

… three more cells …

Text Block

… second page …

Figure 9.1 A schematic representation of a sample document’s first page

nonempty text block whose text is all of the same format will usually contain
a single text fragment.

The QTextFragment class should not be confused with the QTextDocumentFragment

class. A QTextBlock is made up of one or more QTextFragments, while a QText-

DocumentFragment is used to hold an arbitrary piece of a QTextDocument, and could
contain paragraphs, tables, or even an entire QTextDocument. When the user
makes a selection we can retrieve what they have selected using the QText-

Cursor::selection() method—which returns a QTextDocumentFragment.

Images are represented by using a placeholder character (Unicode character
U+FFFC) which is contained in a QTextFragment. This character has a QTextImage-

Format (a QTextCharFormat subclass) that holds the size and name of the image.
The name is the name of an image in the application’s resources.

Tables are represented by the QTextTable class whose attributes (alignment,
cell padding, cell spacing, number of columns, and so on) are stored in a single
QTextTableFormat. Table cells are represented by the QTextTableCell class and
can contain text blocks—or frames; so complex nesting is possible. Cells know
the position they occupy in the table (their column and row), and have column
and row span attributes and a QTextCharFormat.

Tables and frames are treated similarly in the document structure since the
QTextTable class is a subclass of QTextFrame, the class used to represent frames.
Each frame’s attributes (border,margins, padding,width, and so on) are stored
in a single QTextFrameFormat.

ptg

320 Chapter 9. Creating Rich Text Editors

Qt has many more rich text-related classes, although several of the others are
concerned with laying out the text rather than with the storing of document
elements. One very important class in relation to QTextDocument is QTextCursor
which provides a programmatic means of editing QTextDocuments. In this
chapter we use QTextCursors to edit existing documents and in the next chapter
we use them to create documents from scratch.

Creating Custom Text Editors ||||

In this sectionwewill look at how tomake a line edit and a plain textmulti-line
editor more convenient for users.

The first convenience we will add to both is completion. Completion is where
as the user types text (or, in some implementations, when they type a particu-
lar key sequence), they are presented with possible choices of text to complete
what they’re typing—typically in the form of a list. The user can navigate
through the list to choose a text using the arrow keys and then press Enter—or
they can just click the one they want. Or they can ignore the list—by continu-
ing to type or by pressing Esc, or by clicking outside the list.★

The other convenienceswewill add—to themulti-line editor—arehighlighting
of the current line and color syntax highlighting. Current line highlighting
makes it easier for users to see where they are, and syntax highlighting helps
reveal the structure of the text (for texts that use a particular syntax, in our
example, XML), as well as making it easier for users to spot syntax errors.

Completion for Line Edits and Comboboxes |||

In both the Image2Image program (Chapter 7; 248 ➤) and the Find Duplicates
program (Chapter 8; 302 ➤) we used a QCompleter in conjunction with a QLine-

Edit to provide userswith completion when entering paths. In these programs
we used a popup list of completions, although QCompleter can also perform in-
line completion; both kinds are shown in Figure 9.2.

The QCompleter class takes a QAbstractItemModel (which should either have a list
or tree of items), and uses themodel’s items as the completion candidates. The
model used by the QCompleter may have its items sorted (case-insensitively or
case-sensitively), or unsorted.

★ A concept that is closely related to completion is input methods—these are means by which
users can enter text. An everyday example is pressing the digit buttons on a cell phone to enter
a text message. A desktop computing example is where, say, a Japanese user types sequences of
Latin characters which are received by the program they’re using as Japanese characters; see the
QInputContext class’s documentation for details.

ptg

CreatingCustom Text Editors 321

Figure 9.2 Inline and popup completions

Here is the start of the Find Duplicates program’s MainWindow::createWidgets()
method, where the line edit and its completer are created:

void MainWindow::createWidgets()

{

rootDirectoryLabel = new QLabel(tr("Root Directory:"));

rootDirectoryEdit = new QLineEdit(QDir::toNativeSeparators(

QDir::homePath()));

rootDirectoryLabel->setBuddy(rootDirectoryEdit);

QCompleter *directoryCompleter = new QCompleter(this);

directoryCompleter->setCaseSensitivity(Qt::CaseInsensitive);

directoryCompleter->setModel(new DirModel(directoryCompleter));

rootDirectoryEdit->setCompleter(directoryCompleter);

This is all that is necessary to provide completion—create a completer, give it
a model, and set it on the editor widget—since Qt automatically handles the
keyboard interaction and the popup list once everything is set up.

In this particular case, rather than using a QDirModel as is, we have created a
custom subclass based on it.★ This is purely so that we can show the correct
path separators on all platforms. For completeness, here is the code for the
custommodel (it is almost identical to the one in Qt’s examples/tools/completer
example):

class DirModel : public QDirModel

{

public:

explicit DirModel(QObject *parent=0) : QDirModel(parent) {}

QVariant data(const QModelIndex &index,

int role=Qt::DisplayRole) const

{

if (role == Qt::DisplayRole && index.column() == 0) {

QString path = QDir::toNativeSeparators(filePath(index));

if (path.endsWith(QDir::separator()))

★From Qt 4.7, QDirModel is likely to be superceded by a new asynchronous QFileSystemModel class.

ptg

322 Chapter 9. Creating Rich Text Editors

path.chop(1);

return path;

}

return QDirModel::data(index, role);

}

};

Thismodel subclass simply replaces the QAbstractItemModel::data()method for
the Qt::DisplayRole and ensures that the path shown to the user uses native
separators and doesn’t end with a path separator.

Clearly, it is easy to set up a completer for a QLineEdit—or for a QComboBoxwhich
also has a setCompleter() method that works the same way. And the setup is
even easier if we have a static list of strings, since in such caseswe can pass the
strings to the QCompleter constructor and do not need to explicitly set a model
at all.

Creating a completer for a multi-line text editor is somewhatmore challenging
since we must provide some means of invoking it (e.g., a particular key
sequence), and we must populate it and position it correctly. We’ll see how all
this is done in the next subsection.

Completion and Syntax Highlighting for Text Editors |||

In this subsection we will develop a basic text editor widget for XML. In addi-
tion to all the functionality that we get for free from QPlainTextEdit and QText-

Edit (such as copy and paste, undo/redo, and zooming), the two key features
that we will add are completion and syntax highlighting.

Figure 9.3 XmlEdit’s one word and multiple choice completions

Figure 9.3 shows the XmlEdit widget (xmledit) we will cover in this subsection.
The left-hand image showswhen a user has entered des and then Ctrl+M (which
is the keyboard shortcut we’ve used to invoke completion), and where there is
only one word beginning with “des” in the completionmodel. In such cases the
editor immediately inserts the missing portion of the one matching word and
selects the inserted text. The user can accept the insertion by pressing Enter (in
which case the inserted text is deselected and the cursor ismoved to the end of

ptg

CreatingCustom Text Editors 323

the word), or they can reject it by pressing Esc (or by pressing Del, or simply by
typing more characters).The right-hand image showswhen a user has entered
cat and then Ctrl+M, and where there are several words beginning with “cat”. In
these cases the editor pops up a list of words for the user to choose from. The
user can choose a word from the list by clicking it, or by navigating to it using
the up and down arrow keys and pressing Enter on the highlighted word. Or
they can cancel, by pressing Esc, or by clicking somewhere other than the list,
or simply by continuing to type.★

The XML shown in the images also gives an impression of the color syntax
highlighting. We have chosen to color tags dark blue, attribute names blue,
attribute values dark yellow, entities dark red, and comments green with an
italic font. Notice also that both images show the background of the line the
user is on highlighted. (For the screenshotswe used a darker highlight than is
in the source code; build and run the program to see the colors actually used.)

If we wanted to go a little further, it would be straightforward to add line
numbering, although we leave this as an exercise—see Qt’s examples/widgets/

codeeditor example to see how it is done. But if we want a full-blown feature-
rich Qt plain text editor with syntax highlighting support for multiple lan-
guages and a whole host of power features,wewould probably be best off using
QScintilla (www.riverbankcomputing.co.uk/software/qscintilla), a Qt port of the
C++ Scintilla editor component (www.scintilla.org).

Completion for Multi-line Editors ||

For the XmlEdit widget we will provide two kinds of completion. If the user
invokes completion and there is a single candidate word, the rest of that word
will be inserted immediately, and the inserted text will be selected. At this
point, if the user presses Esc or Del, or types anything other than Enter (which
accepts the insertion), the selected text will be removed, and in the case of the
user typing a character, the character will be inserted as normal. If the user
invokes completion and there are multiple candidates, a popup list of words
to choose from will be presented, and the user can either choose from or cancel
the popup.

We have chosen to subclass QPlainTextEdit rather than QTextEdit as the basis of
the XmlEdit class. The QPlainTextEdit class has a slightly misleading name—it
should perhaps have been called QBasicTextEdit—since it fully supports char-
acter formatting, such as bold, italic, and color, and even provides the QPlain-

TextEdit::appendHtml()method! The QPlainTextEdit is very similar to QTextEdit
and supports much of the same functionality, including the ability to utilize a

★On most platforms there is no standardized key press for completion, so, for example, different
applications on Linux and Windows use their own unique ones. However, on Mac OS X, Esc is
the standard key press for completion; if we want to honor that standard we could use an #ifdef

Q_WS_MAC to set Esc as the completion key press on Mac OS X.

www.riverbankcomputing.co.uk/software/qscintilla
www.scintilla.org

ptg

324 Chapter 9. Creating Rich Text Editors

QSyntaxHighlighter, as we will see in the next subsubsection. The key differ-
ences are that QPlainTextEdit does not support frames or tables, and it uses a
much simpler algorithm for laying out the text. This means that QPlainText-
Edit is much faster than QTextEdit when it comes to handling large documents,
whichmakes it an ideal class to use as a log viewer and as the basis for creating
custom plain text editors.

In support of completion the XmlEdit class has three privatemember variables:
completedAndSelected of type bool, completer of type QCompleter*, and model of
type QStringListModel*. In addition to the constructor and methods to create
the widget’s child widgets and set up its connections, we must reimplement
two event handlers and provide three slots and six (small) supporting methods
to complete the implementation. We will start with the constructor to provide
context.

XmlEdit::XmlEdit(QWidget *parent)

: QPlainTextEdit(parent), completedAndSelected(false)

{

createWidgets();

createConnections();

highlightCurrentLine();

}

The constructor is quite conventional. Wewill cover the highlightCurrentLine()
method when we look at syntax highlighting in the next subsubsection.

void XmlEdit::createWidgets()

{

(void) new XmlHighlighter(document());

model = new QStringListModel(this);

completer = new QCompleter(this);

completer->setWidget(this);

completer->setCompletionMode(QCompleter::PopupCompletion);

completer->setModel(model);

completer->setModelSorting(

QCompleter::CaseInsensitivelySortedModel);

completer->setCaseSensitivity(Qt::CaseInsensitive);

completer->setWrapAround(true);

}

The first call creates a custom syntax highlighter and applies it to the QText-

Document (from the base class) that holds the XmlEdit’s text and formatting
data.

The rest of the method is concerned with completion. We begin by creating a
model/view model for the completer to use, and then create a completer. We

ptg

CreatingCustom Text Editors 325

have chosen to use the popup completion mode, but we could have used QCom-

pleter::InlineCompletion or QCompleter::UnfilteredPopupCompletion instead.

The call to QCompleter::setModelSorting() tells the completer how the model is
sorted—it does not cause any sorting to be done! Here we have said that the
model is using case-insensitive sorting; other options are QCompleter::CaseSen-

sitivelySortedModel and QCompleter::UnsortedModel. If the completion model’s
completion role’s data for its completion column is sorted, we should tell the
completer that the model is sorted (as we have done here). If the completer
knows that it has a sorted completion model it will use a fast binary search
rather than a slow linear search when looking for completions—this can pro-
duce considerable performance improvements for large completion models.

The call to QCompleter::setCaseSensitivity() tells the completer whether it
should be case-sensitive or not—if not, then it will showand insert completions
regardless of case; otherwise it will show and insert only those completions
thatmatch the case of the text being completed. The last call, QCompleter::set-
WrapAround(), is used to determine what happens if the user navigates to the
bottom or top of the completion list—for example, if set to true, then going
“above” the top (first) item takes them to the bottom (last) item.

void XmlEdit::createConnections()

{

connect(this, SIGNAL(cursorPositionChanged()),

this, SLOT(highlightCurrentLine()));

connect(completer, SIGNAL(activated(const QString&)),

this, SLOT(insertCompletion(const QString&)));

(void) new QShortcut(QKeySequence(tr("Ctrl+M", "Complete")),

this, SLOT(performCompletion()));

}

Three signal–slot connectionsare required, the second twoused for completion.
Thefirst connection isused to ensure thatwhenever the cursor ismoved (by the
user typing, or navigating—for example, with the arrow keys, or by clicking),
the current line is highlighted. We will discuss this in the next subsubsection.

The completer emits the activated() signal when the user chooses an item
from the completion list; we connect to this signal so that we can insert the
appropriate completion when this occurs.

The third connection is made as part of creating a new QShortcut, and is
used to ensure that when the user presses Ctrl+M the performCompletion() slot
is called.

void XmlEdit::performCompletion()

{

QTextCursor cursor = textCursor();

cursor.select(QTextCursor::WordUnderCursor);

ptg

326 Chapter 9. Creating Rich Text Editors

const QString completionPrefix = cursor.selectedText();

if (!completionPrefix.isEmpty() &&

completionPrefix.at(completionPrefix.length() - 1)

.isLetter())

performCompletion(completionPrefix);

}

When the user types Ctrl+M to invoke completion, we only want to set the com-
pletion process in motion if there is actually some text to complete. This slot
starts by obtaining a cursor into the underlying QTextDocument, and then selects
and retrieves theword (which could be a single character) the cursor is inside or
that is immediately before the cursor (with no intervening whitespace). If the
cursor is not inside a word or immediately following a word, an empty string is
obtained.

If the word (i.e., the completion prefix) isn’t empty and if it ends with a letter,
we call the private overloaded performCompletion() method with the prefix.

Notice that we did not call QPlainTextEdit::setTextCursor() with the modified
cursor. Thismeans that the changewe did (i.e., selecting a word) is not applied
to the document, which is exactly what we want in this case.

As well as the ability to select individual words, the QTextCursor::select()

method can be used to select the current line (QTextCursor::LineUnderCursor),
the current paragraph (QTextCursor::BlockUnderCursor), or even the entire
document (QTextCursor::Document). The QTextCursor API is shown in Tables 9.1,
9.2, and 9.3 (➤ 328–330).

void XmlEdit::performCompletion(const QString &completionPrefix)

{

populateModel(completionPrefix);

if (completionPrefix != completer->completionPrefix()) {

completer->setCompletionPrefix(completionPrefix);

completer->popup()->setCurrentIndex(

completer->completionModel()->index(0, 0));

}

if (completer->completionCount() == 1)

insertCompletion(completer->currentCompletion(), true);

else {

QRect rect = cursorRect();

rect.setWidth(completer->popup()->sizeHintForColumn(0) +

completer->popup()->verticalScrollBar()->

sizeHint().width());

completer->complete(rect);

}

}

ptg

CreatingCustom Text Editors 327

This method begins by populating the model used by the completer. It then
makes sure that the completion prefix used by the completer matches the
actual completion prefix, and selects the first item in the list of completions.

If there is only a single completion, we insert it immediately, passing true

as the second argument to insertCompletion() to indicate this. Otherwise
we call QCompleter::complete() to pop up the list of completions—the list will
have the width and be at the position specified by the QRect we pass in. The
QPlainTextEdit::cursorRect() method returns the text cursor’s rectangle, but
this is clearly much too narrow (a few pixels) to use for the popup list’s width.
So we set the rectangle’s width to be wide enough for the popup’s first (and
normally, only) column, also allowing for the width of a vertical scrollbar.

Thanks to a signal–slot connection wemade earlier (325 ➤), if the user chooses
a completion from the popup list, the insertCompletion() slot will be called
(with a default second argument of false, meaning a completion from a list of
words, rather than from a single word).

void XmlEdit::populateModel(const QString &completionPrefix)

{

QStringList strings = toPlainText().split(QRegExp("\\W+"));

strings.removeAll(completionPrefix);

strings.removeDuplicates();

qSort(strings.begin(), strings.end(), caseInsensitiveLessThan);

model->setStringList(strings);

}

This method is called every time a completion is invoked. It dynamically
populates the completion model with words from the current document. This
is done by extracting the document’s entire text and splitting it into a list of
words. Then we remove the completion prefix (if present), and any duplicate
words,and thenwe sort thewordsand replace themodel’s existing stringswith
the new ones.

Creating a fresh list of completion words like this is fine for small documents,
but may be computationally expensive for large documents. Also, for an empty
document there will be no completions at all. One alternative would be to
read in a list of words from a dictionary at application startup and populate
the model just once. Another alternative would be to use an initial dictionary
as just described, and to add any new unique words to it that the user enters
as they type into the document. With either of these alternatives the model
would be set once and never repopulated (although in the second alternative it
would be updated).

Performing the sort is essential—the earlier call to QCompleter::setModelSort-

ing(QCompleter::CaseInsensitivelySortedModel) told the completer how (or if)
the model is sorted. So we must now honor that by ensuring that the model is
sorted how we said it would be.

ptg

328 Chapter 9. Creating Rich Text Editors

Table 9.1 The QTextCursor API #1

Method Description

anchor() Returns the anchor position; see also position()

atBlockEnd() Returns true if the cursor is at the end of a block

atBlockStart() Returns true if the cursor is at the start of a block

atEnd() Returns true if the cursor is at the end of the document

atStart() Returns true if the cursor is at the start of the document

beginEdit-

Block()

Notifies the cursor that the editing actions to follow
should be treated as a single action from an undo/redo
perspective; see endEditBlock()

block() Returns the QTextBlock that contains the cursor

blockChar-

Format()

Returns the QTextCharFormat for the block containing the
cursor; see also charFormat()

blockFormat() Returns the QTextBlockFormat for the block containing
the cursor

blockNumber() Returns the line number for the cursor position in
documents that don’t have tables or frames (other than
the root frame), such as QPlainTextEdit’s QTextDocument

charFormat() Returns the QTextCharFormat for the character
immediately preceding the cursor position

clear-

Selection()

Moves the anchor to the cursor position so that nothing is
selected; see also removeSelectedText()

columnNumber() Returns the position of the cursor in the line

createList(

QTextList-

Format)

Inserts and returns a QTextList using the given format
(or given a QTextListFormat::Style) and with the current
paragraph as the list’s first item; see also insertList()

currentFrame() Returns the current frame as a QTextFrame*

currentList() Returns the current list as a QTextList* or 0 if the cursor
position isn’t in a list

currentTable() Returns the current table as a QTextTable* or 0 if the
cursor position isn’t in a table

deleteChar() If there is selected text, deletes it; otherwise deletes the
character at the cursor position

deletePrevious-

Char()

If there is selected text, deletes it; otherwise deletes the
character before the cursor position

document() Returns the cursor’s document as a QTextDocument*

ptg

CreatingCustom Text Editors 329

Table 9.2 The QTextCursor API #2

Method Description

endEditBlock() Notifies the cursor that the sequence of editing
actions initiated by beginEditBlock() has finished

hasComplexSelection() Returns true if the selection isn’t a simple span of
text, such as two or more cells in a table

hasSelection() Returns true if there is a selection of any kind

insertBlock(

QTextBlockFormat,

QTextCharFormat)

Inserts a new empty block at the cursor position;
there are two other overloads, one just taking a
block format and the other taking no arguments

insertFragment(QText-

DocumentFragment)

Inserts the given document fragment at the cursor
position

insertFrame(QText-

FrameFormat)

Inserts a QTextFrame with the given format at the
cursor position, and moves the position (and any
selection) into the frame

insertHtml(QString) Inserts the HTML string at the cursor position

insertImage(...) Inserts an image at the cursor position. There
are overloads that accept a QTextImageFormat

(optionally with a QTextFrameFormat::Position), a
QString (filename), and a QImage

insertList(QText-

ListFormat)

Inserts a new block at the cursor position and
makes it the first item of a new QTextList using the
given format (or given QTextListFormat::Style), and
returns the list; see also createList()

insertTable(

int, int,

QTextTableFormat)

Inserts and returns a new QTextTable with the
given number of rows and columns and with the
(optional) format; see the text

insertText(QString,

QTextCharFormat)

Inserts the text at the cursor position using the
(optional) format

isCopyOf(QTextCursor) Returns true if the given cursor is a copy of this
cursor

isNull() Returns true if this cursor is null (i.e., constructed
without a QTextDocument)

joinPreviousEdit-

Block()

Effectively “deletes” the last endEditBlock(),
thus extending the scope of the previous
beginEditBlock()

mergeBlockCharFormat(

QTextCharFormat)

Merges the given format with the current block’s
(or selection’s) character format

mergeBlockFormat(

QTextBlockFormat)

Merges the given format with the current block’s
(or selection’s) format

ptg

330 Chapter 9. Creating Rich Text Editors

Table 9.3 The QTextCursor API #3

Method Description

mergeCharFormat(

QTextCharFormat)

Merges the given format with the format of the
character (or selection) at the cursor position

movePosition(

MoveOperation,

MoveMode, int)

Moves the cursor position by the (optional) count
times using the given operation. If the (optional)
mode is KeepAnchor the anchor stays, thus creating a
selection; the default mode is MoveAnchor (the move
operations are listed in Table 9.4; ➤ 334).

position() Returns the cursor’s position; see setPosition()

removeSelectedText() Deletes whatever is selected

select(

SelectionType)

Selects text according to the type (Document,
BlockUnderCursor, LineUnderCursor, WordUnderCursor)

selectedTableCells(

int*, int*,

int*, int*)

Populates the pointed-to ints with the first row and
row count, and first column and column count, that
identify the selected table cells

selectedText() Returns the selection’s text as plain text

selection() Returns the selection as a QTextDocumentFragment

selectionEnd() Returns the position of the end of the selection

selectionStart() Returns the position of the start of the selection

setBlockCharFormat(

QTextCharFormat)

Sets the character format for the current
block (or for the current selection); see also
mergeBlockCharFormat()

setBlockFormat(

QTextBlockFormat)

Sets the block format for the current block (or for the
current selection); see also mergeBlockFormat()

setCharFormat(

QTextCharFormat)

Sets the format for the current character; see also
mergeCharFormat()

setPosition(int,

MoveMode)

Moves the cursor to the given position; if the move
mode is KeepAnchor the anchor stays, thus creating a
selection; see movePosition()

setVisual-

Navigation(bool)

If set to true, hidden paragraphs are skipped when
moving; the default is false

visualNavigation() Returns the visual navigation setting as a bool

The global qSort() function can be called with a sequence such as QList<T>,
QStringList, or QVector<T>, or with begin and end iterators if we want to sort
just a portion of the sequence, or—as here—if we want to also provide a
comparison function or functor. The sequences used by the qSort() function
must provide an operator<() method, but the default < for QStrings performs a

ptg

CreatingCustom Text Editors 331

case-sensitive comparison, so here we have supplied our own tiny comparison
function.

Qt also provides qStableSort() functions with the same APIs as the qSort()

functions. Stable sorts have the same time complexity as standard sorts,
but preserve the relative order of items where two or more items compare
as equal.

bool caseInsensitiveLessThan(const QString &a, const QString &b)

{

return a.compare(b, Qt::CaseInsensitive) < 0;

}

The QString::compare() methods are not locale-aware beyond the ability to do
simple case folding if we pass Qt::CaseInsensitive as we do here.

We would have preferred to use a QString::localeAwareCompare()method, since
these are specifically designed for sorting lists of user-visible strings. However,
since at the time of this writing, the documentation is silent regarding the
sorting understood by QCompleter, we have stuck with the simpler and faster
QString::compare() method.

void XmlEdit::insertCompletion(const QString &completion,

bool singleWord)

{

QTextCursor cursor = textCursor();

int numberOfCharsToComplete = completion.length() -

completer->completionPrefix().length();

int insertionPosition = cursor.position();

cursor.insertText(completion.right(numberOfCharsToComplete));

if (singleWord) {

cursor.setPosition(insertionPosition);

cursor.movePosition(QTextCursor::EndOfWord,

QTextCursor::KeepAnchor);

completedAndSelected = true;

}

setTextCursor(cursor);

}

Thismethod inserts the charactersneeded to performthe completion. It begins
by getting a cursor into the document. It then calculates howmany characters
need to be inserted—the completion list shows whole words but we only
want to insert those characters necessary to complete the word the user has
started to enter. Next we record the cursor’s position (i.e., the position where
the completion characters will be inserted) and then insert the portion of the
completion string necessary to complete the word.

ptg

332 Chapter 9. Creating Rich Text Editors

If singleWord is true it means that a single word completion has occurred and
wemust select the inserted characters so that the user can see them and easily
be able to get rid of them if they’re unwanted. In this case we put the cursor
back to where the insertion was made and then use the QTextCursor::movePo-

sition()method tomove the cursor to the end of the completed word. This has
the effect of selecting the inserted characters (aswe’ll discuss in amoment).We
also set completedAndSelected to true since we need to treat the next key press
(or mouse click) specially so that the user can easily accept or reject the single
word completion.

At the end we set the document’s cursor to the modified cursor to make our
changes (insertion, and possibly selection) take effect.

The QTextCursor::movePosition() method mimics the user navigating in the
document, and has enums for all the standard movements—these are listed in
Table 9.4.

The QTextCursor maintains two positions, QTextCursor::position() (the current
cursor position), and QTextCursor::anchor() (some other cursor position).
Usually the position and anchor are the same, but if they are different, then
everything between them is selected. That is, QTextCursor defines a selection in
terms of the anchor and the position—and if they are the same then nothing
is selected.

The position can be set directly using QTextCursor::setPosition(), but the an-
chor can only be set indirectly. The QTextCursor::movePosition() method has
two modes of operation (passed as the second argument), QTextCursor::Move-
Anchor (the default) and QTextCursor::KeepAnchor. If we choose the KeepAnchor

mode, the anchor position will be where the position was before the move and
the position will be the position after the move.

Note that our implementation has a weakness—in some use cases—in that
it does not fix the case of the entered text to match that of the completion
text. For example, if the user typed “ali” and the chosen completion word was
“AlignLeft”, the result would be “alignLeft”. Modifying this method to match
the case of completions is left as an exercise.

void XmlEdit::keyPressEvent(QKeyEvent *event)

{

if (completedAndSelected && handledCompletedAndSelected(event))

return;

completedAndSelected = false;

if (completer->popup()->isVisible()) {

switch (event->key()) {

case Qt::Key_Up: // Fallthrough

case Qt::Key_Down: // Fallthrough

case Qt::Key_Enter: // Fallthrough

ptg

CreatingCustom Text Editors 333

case Qt::Key_Return: // Fallthrough

case Qt::Key_Escape: event->ignore(); return;

default: completer->popup()->hide(); break;

}

}

QPlainTextEdit::keyPressEvent(event);

}

This event handler is called whenever the user presses a key in the XmlEdit

widget. We have reimplemented it to handle two specific situations. First, if
the user has done a single word completion, the following key press (or mouse
click) they make determines whether the completion is accepted or rejected.
And second, we want to ignore any key presses handled by the completion
popup if the popup is active.

If completedAndSelected is true then we know that a single word completion has
just been made, and so this key press is the following one. In this case we call
the handledCompletedAndSelected()method which returns a Boolean to indicate
whether it handled the key press, in which case we can return, or if we should
continue with the event handler.

If the completer’s popup is visible, we ignore the key press if it is one that the
completer handles (i.e., the up and down arrowkeys to choose a completion,Esc
to cancel, and Enter to accept).For any other key presswe cancel the completion
by hiding the completer, and pass the event to the base class’s keyPressEvent()
handler to process in the normal way.

Note also that in all cases, completedAndSelected is set to false—it is only ever
true immediatelyafter a singleword completion has occurred,andmust always
be made false on the next key press or mouse click.

bool XmlEdit::handledCompletedAndSelected(QKeyEvent *event)

{

completedAndSelected = false;

QTextCursor cursor = textCursor();

switch (event->key()) {

case Qt::Key_Enter: // Fallthrough

case Qt::Key_Return: cursor.clearSelection(); break;

case Qt::Key_Escape: cursor.removeSelectedText(); break;

default: return false;

}

setTextCursor(cursor);

event->accept();

return true;

}

ptg

334 Chapter 9. Creating Rich Text Editors

Table 9.4 The QTextCursor::MoveOperation enum

Enum Description

Down Moves the cursor down one line

End Moves the cursor to the end of the document

EndOfBlock Moves the cursor to the end of the current block

EndOfLine Moves the cursor to the end of the current line

EndOfWord Moves the cursor to the end of the current word

Left Moves the cursor left one character

NextBlock Moves the cursor to the start of the next block

NextCell Moves the cursor to the table’s next cell

NextCharacter Moves the cursor to the next character

NextRow Moves the cursor to the first cell of the table’s next row

NextWord Moves the cursor to the start of the next word

NoMove Does not move the cursor position

PreviousBlock Moves the cursor to the start of the previous block

PreviousCell Moves the cursor to the table’s previous cell

PreviousCharacter Moves the cursor to the previous character

PreviousRow Moves the cursor to the last cell of the table’s previous
row

PreviousWord Moves the cursor to the start of the previous word

Right Moves the cursor right one character

Start Moves the cursor to the start of the document

StartOfBlock Moves the cursor to the start of the current block

StartOfLine Moves the cursor to the start of the current line

StartOfWord Moves the cursor to the start of the current word

Up Moves the cursor up one line

WordLeft Moves the cursor left one word

WordRight Moves the cursor right one word

The QTextCursor class is used to programmatically create and edit QTextDoc-

uments. A suitable cursor can be obtained by calling QPlainTextEdit::textCur-

sor(); this is effectively the same as calling QTextCursor(document()) since the
QPlainTextEdit::document() method returns a pointer to the QTextDocument that
holds its text and formatting. (All this is also true of QTextEdit, as is everything
else we cover here.)

ptg

CreatingCustom Text Editors 335

A QTextCursor allows us to mimic a user’s actions—navigating through the
document, inserting, deleting, and selecting text, and so on—through the API
that it provides. We will see a lot more of this class in the next chapter when
we use it to programmatically create QTextDocuments. The pattern of use for
QTextCursor with QPlainTextEdit and QTextEdit is quite simple: obtain a cursor
into the document, perform editing actions using the QTextCursor API, and
then set the modified cursor as the document’s cursor to make the changes
take effect.

The handledCompletedAndSelected() method is called when the user presses
a key immediately after a single word completion has been made. If they
pressed Enter (or Return) to accept the completion, we clear the selection (since
for single word completions the inserted text is selected, as we saw earlier;
331 ➤). If they pressed Esc to reject the completion, we delete the selected text.
In either of these cases we call accept() on the event to tell Qt that we have
handled it and return true to signify to our reimplemented keyPressEvent()

method that there is no more to do.

If the user typed something else we return false so that what they typed can
be handled. For example, if they typed a letter, the base class’s key press event
handler will delete the selected text and insert the letter that was typed. For
almost every editing widget (and not just those provided by Qt) this is the
default behavior when typing over selected text. Thismeans that the user can
reject a single word completion simply by continuing to type.

void XmlEdit::mousePressEvent(QMouseEvent *event)

{

if (completedAndSelected) {

completedAndSelected = false;

QTextCursor cursor = textCursor();

cursor.removeSelectedText();

setTextCursor(cursor);

}

QPlainTextEdit::mousePressEvent(event);

}

If a single word completion has just taken place, completedAndSelected is true,
and the user can accept or reject the completion using the keyboard aswe have
just seen. And for consistency with the completion popup, they can also reject
the completion simply by clicking the mouse somewhere in the document.
The code for removing the completion text is the same as that used in the
handledCompletedAndSelected() method we saw earlier.

No matter whether a single word completion is accepted or rejected, as soon as
the user has pressed a key or clicked the mouse, completedAndSelected must be
set to false so that subsequent key presses are handled correctly.

ptg

336 Chapter 9. Creating Rich Text Editors

We have now completed our review of completion. As we saw earlier, setting
up completion for QLineEdits and QComboBoxes is easily done by calling their
setCompleter() method. But for multi-line widgets such as QPlainTextEdit or
QTextEdit, there is rather more work to do. In contrast, setting up current line
highlighting and syntax highlighting is much more straightforward, although
for the latter a good knowledge of regular expressions is very helpful, as we
will see in the next subsubsection.

Syntax Highlighting ||

In this subsubsection we will focus primarily on syntax highlighting, but we
will begin with a brief diversion to see how to highlight the current line. In the
previous subsubsection we saw a signal–slot connection from the QPlainText-

Edit’s cursorPositionChanged() signal to a custom highlightCurrentLine() slot
(325 ➤). This connection ensures that whenever the cursor is moved (whether
by keyboard or mouse), the slot is called.

void XmlEdit::highlightCurrentLine()

{

QList<QTextEdit::ExtraSelection> extraSelections;

QTextEdit::ExtraSelection selection;

QBrush highlightColor = palette().alternateBase();

selection.format.setBackground(highlightColor);

selection.format.setProperty(QTextFormat::FullWidthSelection,

true);

selection.cursor = textCursor();

selection.cursor.clearSelection();

extraSelections.append(selection);

setExtraSelections(extraSelections);

}

Since Qt 4.2, the QPlainTextEdit and QTextEdit classes have supported the
ability to programmatically add extra selections. The main use of these is to
provide additional highlighting, such as here where we highlight the current
line, or to highlight lines that have breakpoints, and so on.

The method begins by creating a list of selections (to which we will just add
one). It then sets the selection’sQTextCharFormat’s background color and also one
of its properties. The QTextFormat class (QTextCharFormat’s base class) provides a
property mechanism to make it easy to add more properties without breaking
binary compatibility in future Qt releases. Some of the properties are for
paragraphs (i.e., for QTextBlockFormat), others for characters, and some for
either. Here we have said that the selection’s formatting should apply to the
selection’s full width.

ptg

CreatingCustom Text Editors 337

With the selection’s format set up we retrieve the document’s cursor and clear
any existing selection—this moves the anchor to the current cursor position.
We then set the extra selections—which includes the selection we have just
created. After this we would not normally expect to see any selection at all—
the anchor and position are at the same place, so there is nothing to select
between them. However, by turning on the QTextFormat::FullWidthSelection

propertywehave ensured that the selection is effectively extended over the full
width of the line the cursor is in, regardless of the anchor.

The signal–slot connection and the highlightCurrentLine() method are all we
need to provide current line highlighting. In contrast, to provide syntax high-
lighting, we just need to create an instance of a QSyntaxHighlighter subclass
with a pointer to our QTextDocument—and, of course, we must create the sub-
class. (We saw the instance created earlier; 324 ➤.)

The Qt examples and source code include some ready-made QSyntaxHighlight-

er subclasses. In the examples/richtext/syntaxhighlighter example, there is
a syntax highlighter for C++/Qt code. And all the examples/xmlpatterns ex-
amples have an XML syntax highlighter that is a bit shorter and simpler
than the one we will review here. In addition, the Qt Designer source code,
tools/designer/src/lib/shared, contains three syntax highlighters, csshigh-

lighter.cpp for CSS (Cascading Style Sheets), htmlhighlighter.cpp for HTML,
and qscripthighlighter.cpp for JavaScript. None of these are part of Qt’s pub-
lic API, but they might serve as useful starting points. Something else to con-
sider is theGNUSource-Highlight library (www.gnu.org/software/src-highlite).
This library provides syntax highlighting for a wide range of languages and
formats, and the Source-Highlight Qt library (srchiliteqt.sourceforge.net)
provides a QSyntaxHighlighter wrapper for it.

One of themost convenient ways of doing syntax highlighting is to use regular
expressions (regexes), and that is one of the approaches we take here, so
we assume a basic knowledge of regexes.★ Using regexes can result in poor
performance on large documents (which may be why the htmlhighlighter.cpp

mentioned earlier doesn’t use them).

A QSyntaxHighlighter subclass must provide an implementation of the high-

lightBlock() method. This method is called to provide the highlighting for a
single line of text and iscalledautomaticallywhenevernecessary. For syntaxes
that span multiple lines (such as multi-line comments) it is often necessary to
maintain some state to determinewhether a given line is inside somemultiple-
line-spanning construct. To support this, we can associate an integer (i.e., a

★ The QRegExp documentation at qt.nokia.com/doc/qregexp.html provides a very brief overview
of regexes. A good book on regular expressions is Mastering Regular Expressions by Jeffrey
E. F. Friedl, ISBN 0596528124—it does not explicitly cover QRegExp, but it does cover Perl regexes
which are similar (although with many more features).

www.gnu.org/software/src-highlite

ptg

338 Chapter 9. Creating Rich Text Editors

state ID) to each line using the setCurrentBlockState()method, andwe can find
out the state of the preceding line with the previousBlockState() method.

For the XmlEdit’s XmlHighlighter class we support two states, four types of
syntactic elements, and highlight using five different character formats.
Here are the states, types, and formats we use—they are all private data in
xmlhighlighter.hpp:

enum State {Normal=0x01, InComment=0x02};

enum Type {Tag, Attribute, Entity, Comment};

QTextCharFormat tagFormat;

QTextCharFormat attributeNameFormat;

QTextCharFormat attributeValueFormat;

QTextCharFormat entityFormat;

QTextCharFormat commentFormat;

QMultiHash<Type, QRegExp> regexForType;

We have used a QMultiHash to associate one or more regexes with each element
type. Wherever one of the regexes matches, we will apply the formatting ap-
propriate for its corresponding type. (We introduced QMultiHash in the previous
chapter; 304 ➤.)

We will now review the constructor, the highlightBlock() method, and all their
supporting methods to see how the syntax highlighting is achieved.

XmlHighlighter::XmlHighlighter(QTextDocument *parent)

: QSyntaxHighlighter(parent)

{

tagFormat.setForeground(Qt::darkBlue);

attributeNameFormat.setForeground(Qt::blue);

attributeValueFormat.setForeground(Qt::darkYellow);

entityFormat.setForeground(Qt::darkRed);

commentFormat.setForeground(Qt::darkGreen);

commentFormat.setFontItalic(true);

addRegex(Tag, "<[!?]?\\w+(?:/>)?", false);

addRegex(Tag, "(?:</\\w+)?[?]?>");

addRegex(Attribute, "(\\w+(?::\\w+)?)=(\"[^\"]+\"|'[^\']+')");

addRegex(Entity, "&(:?#\\d+|\\w+);");

addRegex(Comment, "<!--.*-->");

}

In the constructor we pass to the base class the QTextDocument that the high-
lighting should be applied to. We also set up the QTextCharFormats—in most
cases just setting a foreground text color, but for comments we also make the
font italic. Naturally,we could apply any other formatting that QTextCharFormat
supports.

ptg

CreatingCustom Text Editors 339

For each XML element we want to syntax highlight we add a regex to the
QMultiHash using a custom addRegex() helper method. The helper’s third argu-
ment defaults to true (which means use minimal, i.e., non-greedy, matching).

The first regex is used to match the opening part of a tag, or tags that are com-
plete in themselves—for example,<tag, <!tag, <?tag, or <tag/>.The second regex
is used to match a closing tag or the closing part of a tag—for example, </tag>,
?>, or >. The third regex matches a key=value attribute, such as key="value".
Strictly speaking, attributes should only be highlighted if they occur inside
a tag, but here we have taken a more simplistic approach and highlight any
key=value we encounter. The fourth regex is used to match entities—for ex-
ample, é or é. The last regex is used to match comments that occur
within a single line—we will see how to match multi-line-spanning comments
shortly. Apart from the first, all the regexes use minimal matching.

void XmlHighlighter::addRegex(Type type, const QString &pattern,

bool minimal)

{

QRegExp regex(pattern);

regex.setPatternSyntax(QRegExp::RegExp2);

regex.setMinimal(minimal);

regexForType.insert(type, regex);

}

This helpermethod creates a QRegExp, and inserts it into the QMultiHashwith the
type as its key.

Whenever we use capturing parentheses, we always call QRegExp::setPattern-
Syntax(QRegExp::RegExp2). This ensures that when we use non-minimal (i.e.,
greedy)matching, the behavior is like that of most other regex engines (in par-
ticular, Perl’s) rather than QRegExp’s own rather idiosyncratic behavior. (The
more Perl-like behavior is expected to be the default in Qt 5.)

void XmlHighlighter::highlightBlock(const QString &text)

{

setCurrentBlockState(Normal);

highlightPatterns(text);

highlightComments(text);

}

By default we assume that the current line’s state is Normal (although we
may change it). We have factored out the two approaches we use for syntax
highlighting into two separate methods. The highlightPatterns() method
uses regexes that work within the context of a single line, and the highlight-

Comments() method uses string searching and handles multiple-line-spanning
comments. Wemust call highlightComments() second becausewewant the high-
lighting for commented-out XML to override any other highlighting.

ptg

340 Chapter 9. Creating Rich Text Editors

void XmlHighlighter::highlightPatterns(const QString &text)

{

QHashIterator<Type, QRegExp> i(regexForType);

while (i.hasNext()) {

i.next();

Type type = i.key();

const QRegExp ®ex = i.value();

int index = regex.indexIn(text);

while (index > -1) {

int length = regex.matchedLength();

if (type == Tag)

setFormat(index, length, tagFormat);

else if (type == Attribute) {

setFormat(index, regex.pos(2) - index - 1,

attributeNameFormat);

setFormat(regex.pos(2) + 1, regex.cap(2).length() - 2,

attributeValueFormat);

}

else if (type == Entity)

setFormat(index, length, entityFormat);

else if (type == Comment)

setFormat(index, length, commentFormat);

index = regex.indexIn(text, index + length);

}

}

}

This method is conceptually simple: we iterate over every regex in the QMulti-

Hash, apply the regex to the current line (in text), and if we get a match, we
apply the highlighting that is appropriate for the Type the regex is associat-
ed with.

It doesn’t matter that some keys have more than one value; the iterator will
return as many key–value pairs as there are values in the hash. Every time
a regex matches, for most elements we apply the corresponding QTextCharFor-

mat for the length of the match. The exception is for attributes where we for-
mat the key and value parts separately. Notice that although the first call to
QRegExp::indexIn() starts from the beginning of the text (since no offset is giv-
en), the subsequent calls that occur inside the while loop are offset past the end
of the last match.

One of the regex patterns matched comments that begin and end in the same
line. The highlightComments() method is used to provide highlighting for
comments that span multiple lines.

void XmlHighlighter::highlightComments(const QString &text)

{

ptg

CreatingCustom Text Editors 341

const QString StartOfComment("<!--");

const QString EndOfComment("-->");

if (previousBlockState() > -1 &&

(previousBlockState() & InComment) == InComment) {

int end = text.indexOf(EndOfComment);

if (end == -1) {

setFormat(0, text.length(), commentFormat);

setCurrentBlockState(currentBlockState() | InComment);

return;

}

else

setFormat(0, end + EndOfComment.length(), commentFormat);

}

int start = text.lastIndexOf(StartOfComment);

if (start != -1) {

int end = text.lastIndexOf(EndOfComment);

if (end < start) {

setFormat(start, text.length(), commentFormat);

setCurrentBlockState(currentBlockState() | InComment);

}

}

}

The default block “state” value is -1, so we always use positive integers for
our custom block states, in this case using 0x01 and 0x02 for the Normal and
InComment states. We have chosen to specify the values in hexadecimal to make
it more obvious that we want to be able to use bitwise operators on them. This
isn’t really necessary in this example, but for more complex highlighters, we
might have more states (0x04, 0x08, 0x10, etc.) and might want to be able to
combine states (say, 0x01 | 0x04, to produce a value of 0x05which contains states
1 and 4).

The cases that this method must consider are:

1. We are already in a multi-line comment and the comment does or does not
end in this line.

2. A multi-line comment begins in this line.

3. Neither of the above.

If we are already in a multi-line comment then the QSyntaxHighlighter::pre-

viousBlockState() will contain the InComment state. Since we want to support
the ability to combine states, instead of comparing the previous block state
directly with InComment, we mask the previous block state with InComment and
then do the comparison. This approach allows us to detect the state we are in-
terested in even if two or more states are combined. If we are inside a multi-

ptg

342 Chapter 9. Creating Rich Text Editors

line comment we check to see if the comment ends in this line. If the comment
does not end here,we apply the comment format to this entire line and combine
the InComment state with the current block’s existing state (which we had set to
Normal earlier; 339 ➤), and then return, since there is no more to do. But if the
comment ends in this line, we apply comment formatting up to the end of the
comment, and then continue with the method since a new multi-line comment
might begin further on in the line.

If we are not in a multi-line comment, or if such a comment has ended in the
current line, we look to see if a new multi-line comment begins in this line. If
we find the start of a comment,we look for the comment’s end. We must make
sure that we ignore comments that both start and end in the line since we al-
ready format those elsewhere, and we must be careful that if we find an end
comment element it occursbefore the start comment element (i.e., any end com-
ment element found is associated with a previous comment and is not the end
of the multi-line comment starting in this line). And if a multi-line comment
does begin on this line,we apply comment formatting from the comment’s start
to the end of the line, and combine the InComment state with the current state.

In any other case we do nothing since either there is no formatting to do at
all, or the formatting has already been handled by the highlightPatterns()

method.

This completes our review of the XmlHighlighter class and of syntax highlight-
ing. We used regexes for some of our highlighting, and simple string searches
for some of it. Another approach is to implement a parser and to read the text
character by character. And if a state integer or bit-pattern isn’t sufficient,we
can supplement it by associating custom data with each line (using QSyntax-

Highlighter::setCurrentBlockUserData()).

Of course, sometimes, it isn’t highlighting that we want, but rather to give the
user the ability to enter text with the colors, fonts, and font attributes of their
choice. In the following sections we will see how this can be achieved, both for
a single line editor, and for a multi-line editor.

A Rich Text Single Line Editor ||||

Qt already provides a widget that can be used for editing rich text—QText-

Edit—but it is designed for editing multiple lines of text rather than just the
single line that is often what we need. Nonetheless, by subclassing QTextEdit

we can take advantage of all the editing and rendering features it offers, and at
the same time only allow a single line to be displayed and edited. We could, of
course, subclass QPlainTextEdit, but using QTextEdit ismore convenient since it
provides many useful slots—such as QTextEdit::setFontItalic()—that are not
provided by QPlainTextEdit.

ptg

A Rich Text Single Line Editor 343

Figure 9.4 The RichTextLineEdit’s tooltip and context menu

In this section we will create a RichTextLineEdit widget that can be used to edit
a single line of text and that allows the user to apply text effects to individual
characters and words in the text, such as bold, italic, or setting the color. The
RichTextLineEdit is used by the Timelog applications’ RichTextDelegate that we
saw in Chapter 5 (193 ➤). Figure 9.4 shows the tooltip and context menu that
we will provide for the RichTextLineEdit.

We’ll start by looking at an extract from the class’s definition, but we won’t
show most of the private slots, methods, or data (although we will cover them
all as we review the public and protected methods and slots).

class RichTextLineEdit : public QTextEdit

{

Q_OBJECT

public:

explicit RichTextLineEdit(QWidget *parent=0);

QString toSimpleHtml() const;

QSize sizeHint() const;

QSize minimumSizeHint() const;

public slots:

void toggleItalic() { setFontItalic(!fontItalic()); }

void toggleBold() { setFontWeight(fontWeight() > QFont::Normal

? QFont::Normal : QFont::Bold); }

signals:

void returnPressed();

protected:

void keyPressEvent(QKeyEvent *event);
···

private:

enum Style {Bold, Italic, StrikeOut, NoSuperOrSubscript,

Subscript, Superscript};
···

};

ptg

344 Chapter 9. Creating Rich Text Editors

The setFontItalic() and setFontWeight()methodsare inherited from QTextEdit,
and although Qt can handle several different font weights, we have reduced
the choice to a simple on/off for bold.

The returnPressed() signal is designed to make the RichTextLineEdit more like
QLineEdit and helps the delegate (or any other object that connects to it) to
know that the user has finished and confirmed their editing. The reimplemen-
tation of the keyPressEvent() is where we detect Enter and Return and emit the
signal.

Sincewe have subclassed QTextEdit,we don’t have to do any painting ourselves,
and much of the standard behavior (such as copy and paste and undo/redo) is
inherited. This means that the only work we must do is ensure that the Rich-

TextLineEdit is fixed to show only one line, and to provide the additional custom
behaviors we want. We will start our review, as usual, with the constructor.

RichTextLineEdit::RichTextLineEdit(QWidget *parent)

: QTextEdit(parent)

{

setLineWrapMode(QTextEdit::NoWrap);

setWordWrapMode(QTextOption::NoWrap);

setAcceptRichText(true);

setTabChangesFocus(true);

setVerticalScrollBarPolicy(Qt::ScrollBarAlwaysOff);

setHorizontalScrollBarPolicy(Qt::ScrollBarAlwaysOff);

createShortcuts();

createActions();

setContextMenuPolicy(Qt::CustomContextMenu);

connect(this, SIGNAL(customContextMenuRequested(const QPoint&)),

this, SLOT(customContextMenuRequested(const QPoint&)));

}

We use the constructor to do all the obvious changes that we need to make: we
switch off line and word wrapping, ensure that if HTML is pasted from the
clipboard it is accepted as rich text, make the Tab key move the focus rather
than insert a tab character, and switch off the scrollbars.

The easiest way to provide a context menu is to add QActions to a widget and to
set a context menu policy of Qt::ActionsContextMenu, and leave Qt to take care
of it. For this particular widget, though, this is not a suitable solution since we
want to update the checked state of the actions whenever the context menu is
invoked. So the approachwehave taken for the RichTextLineEdit is to set a con-
text menu policy of Qt::CustomContextMenu, and to connect the customContext-

MenuRequested() signal that is emitted when a context menu is invoked when
this policy is in force to a custom slot of the same name where we will set up
and show the context menu ourselves.

ptg

A Rich Text Single Line Editor 345

void RichTextLineEdit::createShortcuts()

{

QShortcut *boldShortcut = new QShortcut(QKeySequence::Bold,

this, SLOT(toggleBold()));

QShortcut *italicShortcut = new QShortcut(QKeySequence::Italic,

this, SLOT(toggleItalic()));

setToolTip(tr("<p>Use %1 to toggle bold, %2 to toggle italic, "

"and the context menu for color and other effects.")

.arg(boldShortcut->key().toString(

QKeySequence::NativeText))

.arg(italicShortcut->key().toString(

QKeySequence::NativeText)));

}

We provide keyboard shortcuts for bold and italic by creating suitable QShort-

cuts and using standard QKeySequences. On Linux and Windows the bold ac-
tion’s shortcut will be Ctrl+B, but on Mac OS X it will be +B.★

Once we have the shortcuts, we create a tooltip that shows them—converting
them into string forms so that they appear correctly for the platform that the
program is being run on.

void RichTextLineEdit::createActions()

{

boldAction = createAction(tr("Bold"), Bold);
···
colorAction = new QAction(tr("Color"), this);

colorAction->setMenu(createColorMenu());

addActions(QList<QAction*>() << boldAction << italicAction

<< strikeOutAction << noSubOrSuperScriptAction

<< superScriptAction << subScriptAction << colorAction);

AQP::accelerateActions(actions());
}

This method is used to create the actions—most of which we’ve omitted since
all but the last are created in the sameway. The createAction()method,which
we will look at in a moment, takes two arguments: the text to appear in the
menu and an item of data—in this case one of the enums.

★Many standard keyboard shortcuts that use the Ctrl key on Windows and Linux (such as Ctrl+C to
copy) use the key onMac OSX (e.g., +C). In view of this, when Qt was first ported toMac OSX,
to simplify cross-platform development, Qt simply “swapped” the Ctrl and keys—which is why
pressing, say, +X onMac OSX is the same as pressing Ctrl+X on other platforms. With the benefit
of hindsight this may not seem like such a wise decision, and from Qt 4.6 it is possible to prevent
the key swap being done by calling QApplication::setAttribute(Qt::AA_MacDontSwapCtrlAndMeta).

ptg

346 Chapter 9. Creating Rich Text Editors

Figure 9.5 The RichTextLineEdit’s color submenu

The color action is unusual in that we don’t connect it to anything, but instead
we give it a menu.

Toward the end we add all the actions to the RichTextLineEdit; we could just as
easily have held them in a private QList<QAction*>.And at the endwe give them
keyboard accelerators.

QAction *RichTextLineEdit::createAction(const QString &text,

const QVariant &data)

{

QAction *action = new QAction(text, this);

action->setData(data);

action->setCheckable(true);

action->setChecked(false);

connect(action, SIGNAL(triggered()), SLOT(applyTextEffect()));

return action;

}

This is a convenience method that creates the actions we need, making them
all checkable and initially unchecked. Each of these actions is connected to the
applyTextEffect() method.

QMenu *RichTextLineEdit::createColorMenu()

{

QMenu *colorMenu = new QMenu(this);

QPixmap pixmap(22, 22);

typedef QPair<QColor, QString> ColorPair;

foreach (const ColorPair &pair, QList<ColorPair>()

<< qMakePair(QColor(Qt::black), tr("Black"))
···
<< qMakePair(QColor(Qt::darkRed), tr("Dark Red"))) {

pixmap.fill(pair.first);

QAction *action = colorMenu->addAction(pixmap, pair.second);

action->setData(pair.first);

ptg

A Rich Text Single Line Editor 347

}
connect(colorMenu, SIGNAL(triggered(QAction*)),

this, SLOT(applyColor(QAction*)));

AQP::accelerateMenu(colorMenu);

return colorMenu;
}

Thismethod is used to create the color menu used by the color action; themenu
is shown in Figure 9.5.We begin by creating a new QMenu on the heap and then
we create a list of pairs—QColors and their names—that we immediately iter-
ate over. For each pair,we create an actionwith a pixmap of the corresponding
color, and with the name of the color, and set the action’s data to the QColor val-
ue. (Qt’s QPixmaps work like value classes since they use copy-on-write, so each
action gets its own unique pixmap. In Chapter 12 we will see how to create
nicer color swatches than the plain square ones we have used here.)

We connect themenu’s triggered() action to the applyColor() slot—the QAction*
that is passed is the one corresponding to the menu option chosen by the user.
Finally, we create keyboard accelerators for the menu items and return the
menu to the caller.

The use of the typedef is necessary because Qt’s foreach macro has the syntax
foreach (item, sequence). The comma is part of the syntax and used to distin-
guish between the item and the sequence. (It doesn’t matter if the sequence
has commas; only the first comma is important.) So, for item pairs, we must
either use a typedef, or we must create the list and item in advance; for ex-
ample:

QList<QPair<QColor, QString> > pairList;

pairList << qMakePair(QColor(Qt::black), tr("Black"))

...

<< qMakePair(QColor(Qt::darkRed), tr("Dark Red"));

QPair<QColor, QString> pair;

foreach (pair, pairList)

...

Using this approach requires slightly more code, but is obviously more conve-
nient if we want to create the pairs separately—for example, to reuse them
later—rather than at the point of use.

void RichTextLineEdit::applyColor(QAction *action)

{

Q_ASSERT(action);

setTextColor(action->data().value<QColor>());

}

ptg

348 Chapter 9. Creating Rich Text Editors

This slot is called whenever the user chooses a color from the context menu’s
color submenu. It simply calls the base class’s setTextColor()method to set the
chosen color.

For classes in the QtCore library, QVariant provides getter methods—for
example, QVariant::toDate(), QVariant::toPoint(), QVariant::toString(), and
so on. But for classes in other Qt libraries (such as QtGui), we must use the
QVariant::value<T>() getter, with T being the type we want to retrieve.

void RichTextLineEdit::applyTextEffect()

{

if (QAction *action = qobject_cast<QAction*>(sender())) {

Style style = static_cast<Style>(action->data().toInt());

QTextCharFormat format = currentCharFormat();

switch (style) {

case Bold: toggleBold(); return;

case Italic: toggleItalic(); return;

case StrikeOut:

format.setFontStrikeOut(!format.fontStrikeOut());

break;

case NoSuperOrSubscript:

format.setVerticalAlignment(

QTextCharFormat::AlignNormal);

break;

case Superscript:

format.setVerticalAlignment(

QTextCharFormat::AlignSuperScript);

break;

case Subscript:

format.setVerticalAlignment(

QTextCharFormat::AlignSubScript);

break;

}

mergeCurrentCharFormat(format);

}

}

If the user invokes any of the actions from the context menu (apart from the
colors in the color submenu), then this slot is called. First we cast the invoking
object to a QAction pointer (which should always work), then we extract the
action’s data—in this case the value of the RichTextLineEdit class’s private
Style enum. We then use this value to decide what formatting to apply. In the
case of bold and italic, we just toggle the current setting and return. But for
setting the strikeout state or the vertical alignment, we must update the copy
of the current QTextCharFormat, and then merge this copy with the current
format to make the change take effect.

ptg

A Rich Text Single Line Editor 349

The QObject::sender() method returns the QObject that invoked the slot (or
0 if the slot was called as a method). In this case the slot is only ever called
by QActions. We could just as easily have used dynamic_cast<>() rather than
qobject_cast<>(), but we prefer to always use qobject_cast<>() for QObjects,
since it works even without RTTI (Run Time Type Information) support, and
it works across dynamic library boundaries. An alternative to using sender()

is to use a QSignalMapper; that would provide better encapsulation, at the cost
of slightly increasing the size of the code. Or, of course, we could create a
separate slot for every action.

void RichTextLineEdit::keyPressEvent(QKeyEvent *event)

{

if (event->key() == Qt::Key_Enter ||

event->key() == Qt::Key_Return) {

emit returnPressed();

event->accept();

}

else

QTextEdit::keyPressEvent(event);

}

This handler is reimplemented purely to provide the returnPressed() signal,
and to otherwise ignore Enter or Return key presses. All other key presses are
passed on to the base class.

void RichTextLineEdit::customContextMenuRequested(const QPoint &pos)

{

updateContextMenuActions();

QMenu menu(this);

menu.addActions(actions());

menu.exec(mapToGlobal(pos));

}

When the user invokes the context menu (by right-clicking or by using a
platform-specific key sequence), as a result of a signal–slot connection made
in the constructor, this slot is called. We begin by calling updateContextMenu-

Actions() to set each action’s checked state appropriately. Then we create a
menu and add to it the widget’s actions (which we created earlier). At the end
we pop up the menu, having converted the widget-relative position into the
screen-relative (i.e., global) position, used by QMenu::exec().

If the user chooses a color from the color submenu, the applyColor() method
we saw earlier will be called. Similarly, if any other option is chosen, the
applyTextEffect() method is called.

ptg

350 Chapter 9. Creating Rich Text Editors

void RichTextLineEdit::updateContextMenuActions()

{

boldAction->setChecked(fontWeight() > QFont::Normal);

italicAction->setChecked(fontItalic());

const QTextCharFormat &format = currentCharFormat();

strikeOutAction->setChecked(format.fontStrikeOut());

noSubOrSuperScriptAction->setChecked(format.verticalAlignment() ==

QTextCharFormat::AlignNormal);

superScriptAction->setChecked(format.verticalAlignment() ==

QTextCharFormat::AlignSuperScript);

subScriptAction->setChecked(format.verticalAlignment() ==

QTextCharFormat::AlignSubScript);

}

This method is used to update the context menu’s actions so that they reflect
the state of the text at the cursor’s position. For all its long lines, the code is
very simple, checking or unchecking each action depending on the state of the
text’s format at the current cursor position.

QSize RichTextLineEdit::sizeHint() const

{

QFontMetrics fm(font());

return QSize(document()->idealWidth() + fm.width("W"),

fm.height() + 5);

}

The size hint should be the ideal size the widget would like to be. We have cre-
ated a size that is in effect based on the plain text content (since the non-dis-
played HTML markup would distort the calculation as we discussed when we
reviewed the RichTextDelegate::sizeHint() method; 198 ➤), and we have added
the width of one “W” character to allow a bit of horizontal margin. Similarly,
we give a height that is the actual height needed plus 5 pixels to give some ver-
tical margin.

QSize RichTextLineEdit::minimumSizeHint() const

{

QFontMetrics fm(font());

return QSize(fm.width("WWWW"), fm.height() + 5);

}

The minimum size hint is actually the smallest size that Qt will ever shrink
the widget to. Here we have set it to be the width of four “W” characters, and
with the same height we used for the sizeHint().

We have now covered all the methods that the RichTextLineEdit really needs.
However, we added one additional custommethod which we will now discuss.

ptg

A Rich Text Single Line Editor 351

The QTextEdit base class has a toHtml() method that returns the text in HTML
format. We have chosen to ignore this and provide our own toSimpleHtml()

method since we only need a very small subset of the HTML that QTextEdit

can handle, and by restricting ourselves in this way we can produce the most
compact HTML possible. To put this in perspective, if we have the HTML text
The bold blue bear, the QTextEdit::toHtml()
method will return the following HTML (with some spaces replaced with
newlines to make it fit on the page):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"

"http://www.w3.org/TR/REC-html40/strict.dtd">

<html><head><meta name="qrichtext" content="1" />

<style type="text/css">p, li { white-space: pre-wrap; }</style>

</head><body style=" font-family:'Nimbus Sans L';

font-size:12pt; font-weight:400; font-style:normal;">

<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px;

margin-right:0px; -qt-block-indent:0; text-indent:0px;">The

bold

blue bear</p>

</body></html>

The actual output has 545 characters, although in practice this will vary
slightly since the default font (here, Nimbus Sans L) will probably be different
on other machines. Also, the output may differ between Qt versions. Compare
this with the HTML produced by toSimpleHtml():

The bold blue bear

This is just 54 characters. (Strictly speaking, this output isn’t valid HTML;
to be valid it would at the least need a DOCTYPE declaration and <html>, <head>,
and <body> tags.) Of course, the toSimpleHtml() method is very limited and the
toHtml() method is much more powerful, but for single lines of simple HTML,
using a more compact format is clearly desirable.

QString RichTextLineEdit::toSimpleHtml() const

{

QString html;

for (QTextBlock block = document()->begin(); block.isValid();

block = block.next()) {

for (QTextBlock::iterator i = block.begin(); !i.atEnd();

++i) {

QTextFragment fragment = i.fragment();

if (fragment.isValid()) {

QTextCharFormat format = fragment.charFormat();

QColor color = format.foreground().color();

QString text = Qt::escape(fragment.text());

ptg

352 Chapter 9. Creating Rich Text Editors

QStringList tags;

if (format.verticalAlignment() ==

QTextCharFormat::AlignSubScript)

tags << "sub";

else if (format.verticalAlignment() ==

QTextCharFormat::AlignSuperScript)

tags << "sup";

if (format.fontItalic())

tags << "i";

if (format.fontWeight() > QFont::Normal)

tags << "b";

if (format.fontStrikeOut())

tags << "s";

while (!tags.isEmpty())

text = QString("<%1>%2</%1>")

.arg(tags.takeFirst()).arg(text);

if (color != QColor(Qt::black))

text = QString("%2")

.arg(color.name()).arg(text);

html += text;

}

}

}

return html;

}

We need to iterate over all the text held in the base class’s internal QText-
Document and output the corresponding HTML while accounting for each piece
of text’s format attributes. The QTextDocument class uses a tree-like hierarchy
that consists of a “root frame”which holds a sequence of QTextBlocks and QText-

Frames. Frames can contain blocks (and other things, such as lists and tables).
Each block consists of one or more fragments of text where each fragment has
its own uniform formatting. (The QTextDocument structure was discussed in the
chapter’s first section; see also Figure 9.1; 319 ➤.)

Since we are concerned only with text, and in fact, with only one block since
the RichTextLineEdit holds only one line,we can iterate over the QTextDocument’s
text blocks, and ignore frames—and in any case, there shouldn’t be any frames
apart from the root frame. (In thisparticular case,we could even drop the outer
loop and just work on the first text block, since there will be only one, but we
prefer to use a more generic approach.)

Oncewehave a valid text block (i.e., line in this case),wemust iterate over each
of its text fragments. In fact, if the line’s text is all formatted the same, then
there will normally be just one fragment with one format. In our “bear” exam-
ple the line has several different formats (e.g., some bold text and some colored

ptg

A Rich Text Single Line Editor 353

text), so we would expect to have a single text block with five fragments: “The ”
(including a following space), “bold” (in bold), “ ” (a space), “blue” (colored blue),
and “ bear” (including a preceding space).

For each fragment we retrieve its format (held in a QTextCharFormat object), its
color, and its text. We HTML-escape the text, that is, we convert “&”, “<”, and
“>” to their HTML equivalents (&, <, and >). Then we build up a string
list of HTML formatting tags based on the fragment’s format. We need to use a
list becausemultiple formatting attributes could be set—for example, bold and
italic. Once we have the list of tags we wrap each one as a pair of start–end
tags around the text (and around any previous pairs of tags), and then, if the
text’s color isn’t black, we wrap the text in a pair of tags to set the color.
We then add the text, which now has all the necessary HTML formatting, to
the html string we are building up, which the method returns at the end.

We have now completed our review of the RichTextLineEdit class. Using this
class, or one inspired by it, we can give users the means to enter single lines
of rich text, and we can store their text in the most compact HTML format
possible. And, of course, out of the box, Qt already supports multi-line rich
text editing with the QTextEdit class. But tomake QTextEdit really useful to end
users, we need to provide some means of applying font effects and so forth, as
we did for the RichTextLineEdit. We’ll see how to do this in the next section.

Multi-line Rich Text Editing ||||

Qt’s QTextEdit class provides so much functionality that we don’t have to do
much work to extend it into being a useful rich text editor. In this section we
will create the TextEdit class shown in Figure 9.6. This class combines a couple
of toolbars with a QTextEdit and makes it possible for the user to toggle bold
and italic, set a text color, font, and font size, and to align the text. This by no
means exhausts the character and paragraph formatting possibilities that we
could support, but is sufficient to show the principles and practices involved.
The Text Edit example (textedit) provides a means of testing and experiment-
ing with the TextEdit class; and Chapter 12’s PageDesigner application (➤ 447)
makes use of a TextEdit, but with the alignment functionality switched off.

There are basically two things that the TextEdit class must achieve. First, it
must provide a means by which the user can apply the formatting they want.
And second, it must show the formatting that is in force at the cursor’s po-
sition.

Most of the work involved in creating the TextEdit is conventional: we cre-
ate and set up the widgets, create actions, lay out the widgets, and create con-
nections. Here are all the widgets’ private member variables (taken from
textedit.hpp), to provide some context:

ptg

354 Chapter 9. Creating Rich Text Editors

QToolBar *fontToolBar;

QAction *boldAction;

QAction *italicAction;

QAction *colorAction;

QColorDialog *colorDialog;

QFontComboBox *fontComboBox;

QDoubleSpinBox *fontSizeSpinBox;

QToolBar *alignmentToolBar;

QAction *alignLeftAction;

QAction *alignCenterAction;

QAction *alignJustifyAction;

QAction *alignRightAction;

QTextEdit *textEdit;

The alignment actionsare put in an action group in the createWidgets()method
(not shown). Simply doing this ensures that only one alignment is checked at
a time, since by default action groups treat their actions as exclusive.

Figure 9.6 The TextEdit component

Most of the widget’s behaviors can be implemented by calling the aggregated
textEdit using simple adaptor methods. Here are some examples, again taken
from the header:

QString toHtml() const { return textEdit->toHtml(); }

void setHtml(const QString &html) { textEdit->setHtml(html); }

void setBold(bool on)

{ textEdit->setFontWeight(on ? QFont::Bold : QFont::Normal); }

void setFontPointSize(double points)

{ textEdit->setFontPointSize(static_cast<qreal>(points)); }

void setFontFamily(const QFont &font)

{ textEdit->setFontFamily(font.family()); }

void alignLeft() { textEdit->setAlignment(Qt::AlignLeft); }

In addition to these, there are other adaptor methods that also pass on the
work to the aggregated QTextEdit—for example, toPlainText(), alignCenter(),
and so on. We haven’t shown them since they are so similar to those shown.

ptg

Multi-line Rich Text Editing 355

Some actions, such as toggling italic, can be implemented purely by signal and
slot connections, while others require an adaptor or a custommethod. We will
review some of the signal–slot connections and the custom methods, but we
will skip the constructor, and the createWidgets() and createLayout() methods,
since they are all conventional.

void TextEdit::createConnections()

{

connect(fontComboBox, SIGNAL(currentFontChanged(const QFont&)),

this, SLOT(setFontFamily(const QFont&)));

connect(fontSizeSpinBox, SIGNAL(valueChanged(double)),

this, SLOT(setFontPointSize(double)));

connect(boldAction, SIGNAL(toggled(bool)),

this, SLOT(setBold(bool)));

connect(italicAction, SIGNAL(toggled(bool)),

textEdit, SLOT(setFontItalic(bool)));

connect(colorAction, SIGNAL(triggered()), this, SLOT(setColor()));

connect(alignLeftAction, SIGNAL(triggered()),

this, SLOT(alignLeft()));
···
connect(textEdit, SIGNAL(currentCharFormatChanged(

const QTextCharFormat&)),

this, SLOT(currentCharFormatChanged(

const QTextCharFormat&)));

connect(textEdit, SIGNAL(cursorPositionChanged()),

this, SLOT(cursorPositionChanged()));

connect(textEdit, SIGNAL(textChanged()),

this, SIGNAL(textChanged()));
}

The first five connections shown here are concerned with changing character
attributes, and the sixth with changing a paragraph attribute. We use the
QFontComboBox’s currentFontChanged() signal purely to change the font family.
The font’s size is changed by a connection from the fontSizeSpinBox. The bold
and italic actions are both toggle (checkable) actions used to toggle the corre-
sponding font attributes. The color action is used to pop up a color chooser dia-
log. In addition to the connection for the align left toggle action, there are also
equivalent connections for the other alignments (center, justify, right) that are
not shown.

Notice that we are able to connect the italic action directly to the aggregated
QTextEdit, whereas with the exception of the color action, all the others are
connected to tiny adaptor methods implemented in the header (shown earlier)
that in turn call the appropriate QTextEdit method.

The two penultimate connections are used to ensure that the toolbar’s widgets
correctly reflect the character and paragraph state at the cursor’s position.

ptg

356 Chapter 9. Creating Rich Text Editors

The state might change due to navigation (the user clicks somewhere else in
the text or uses the arrow or other keys to move somewhere else), or due to
changing the state at the current position—for example, the user clicks the
bold toolbar button. The last connection (a signal–signal connection) is used to
provide the TextEdit with a signal to match that of the aggregated QTextEdit.

Wewill look at both of themethodsused to keep the toolbar buttons’ state up to
date in a moment, but first we will look at the setColor()method and its helper
slot since it is the only state changing method that isn’t implemented using an
adaptor in the header.

void TextEdit::setColor()

{

if (!colorDialog) {

colorDialog = new QColorDialog(this);

connect(colorDialog, SIGNAL(colorSelected(const QColor&)),

this, SLOT(updateColor(const QColor&)));

}

colorDialog->setCurrentColor(textEdit->textColor());

colorDialog->open();

}

This method pops up a platform-specific window-modal color chooser dialog
with its initial color set to the current text color.★ If the user clicks OK, the
colorSelected() signal is emitted. We have connected this to a custom update-

Color() slot.

void TextEdit::updateColor(const QColor &color)

{

textEdit->setTextColor(color);

updateColorSwatch();

}

This slot is used to set the current text color to the given color and to update
the color swatch used in the toolbar. The toolbar’s color action uses an icon that
shows a bold “C” on a background that is the current text’s foreground color.
Whenever the color is changed, the icon must be updated, and this is done by
the updateColorSwatch() method.

void TextEdit::updateColorSwatch()

{

colorAction->setIcon(colorSwatch(textEdit->textColor(),

★Unfortunately, this approach does not work well on Mac OS X using Qt 4.6. On the author’s
MacBook running Leopard (10.5.8), with Qt 4.6.0 the program segfaults, and with Qt 4.6.1 and
Qt 4.6.2, setting a color once works fine, but attempting to set it a second time freezes the program.
The example contains #ifs so that the static QColorDialog::getColor()method is used onMac OSX
with Qt 4.6.

ptg

Multi-line Rich Text Editing 357

QSize(48, 48)));

}

Thismethod calls a custom global colorSwatch() function that takes a color and
a size and returns an icon of the requested size and color. The colorSwatch()

function and some others (brushSwatch(), penStyleSwatch(), penCapSwatch(),
and penJoinSwatch()) are used by Chapter 12’s Page Designer application
(colorSwatch(); ➤ 442).

Although the code is only one line, we prefer to put it in a method of its own
since its functionality is needed in more than one place.

void TextEdit::currentCharFormatChanged(

const QTextCharFormat &format)

{

fontComboBox->setCurrentFont(format.font());

fontSizeSpinBox->setValue(format.fontPointSize());

boldAction->setChecked(format.fontWeight() == QFont::Bold);

italicAction->setChecked(format.fontItalic());

updateColorSwatch();

}

This slot is called whenever the current character format changes—it is not
called for paragraph-level changes such as changed alignment. It simply
updates the toolbars’ widgets to reflect the character format. The format could
change as the result of a state change (such as the user changing the color), or
as a result of navigation (the user moves onto a character that has a different
format from the previous character the cursor was on).

void TextEdit::cursorPositionChanged()

{

QTextCursor cursor = textEdit->textCursor();

QTextBlockFormat format = cursor.blockFormat();

switch (format.alignment()) {

case Qt::AlignLeft:

alignLeftAction->setChecked(true); break;

case Qt::AlignCenter:

alignCenterAction->setChecked(true); break;

case Qt::AlignJustify:

alignJustifyAction->setChecked(true); break;

case Qt::AlignRight:

alignRightAction->setChecked(true); break;

}

}

This slot is only needed if we want to keep track of paragraph format changes.
Whenever the cursor position changes it could mean that the cursor is now in

ptg

358 Chapter 9. Creating Rich Text Editors

a different paragraph. Since we only allow the user to change the paragraph’s
alignment, that is the only part of the formatweneed to keep track of. Here,we
simply check whichever alignment action matches the paragraph’s alignment,
relying on the exclusive action group to uncheck all the others for us.

For the TextEdit we chose a subset of the most common character formatting
and simple alignment for paragraph formatting, to show how to provide the
user with the means to change these, and how to reflect their current states
in the user interface. There are many other attributes that we could provide
the means for the user to control and that we could track. For example, QText-
CharFormat has methods for controlling overlining, strike-out, and underlining
(including the line’s color and style), as well as for setting a URL and a tooltip.
And as we saw earlier when discussing the rich text single line editor, vertical
positioning to produce subscripts and superscripts is also supported (342 ➤).
There are also many other attributes we can expose for paragraphs. For ex-
ample, QTextBlockFormat hasmethods for setting a paragraph’s first line indent
and its overall indent, and for setting margins and tab positions.

If we were more ambitious, we could provide the means for users to create
lists and tables, and to insert hyperlinks and images. In fact, providing basic
support for bulleted lists is extremely easy:we just call QTextEdit::setAutoFor-
matting(QTextEdit::AutoBulletList), and the user can start a bulleted list by
inserting an “*” (asterisk) in the left margin. However, it takes more work to
provide a means of indenting and unindenting (to achieve nested lists), and for
inserting and editing tables, and so on. All of these things are left as an exer-
cise for those who want to dig more deeply into Qt’s rich text engine.

We have now completed our review of the creation of rich text editors, includ-
ing coverage of how to provide completion and syntax highlighting. But what
if we want to create rich text documents programmatically—for example, to
produce payslips or end of month customer bills. And how do we print such
documents or export them into standard document formats? We will address
these questions in the next chapter, as well as seeing how we can simply paint
what we want without creating a QTextDocument at all.

ptg

Creating Rich Text
Documents

|||||

10
● ExportedQTextDocument File

Quality

● CreatingQTextDocuments

● Exporting and Printing Documents

● Painting Pages

In this chapter we will review three different approaches to creating rich text
documents, and we will see how to export such documents in a variety of stan-
dard formats and also how to print them.★ This chapter assumes a basic famil-
iarity with QTextDocument, as covered in the first section of the previous chapter
(318 ➤). The three approaches we will use are, first, populating a QTextDocument

with raw HTML, second, populating a QTextDocument using a QTextCursor, and
third, painting a document with QPainter, in this last case purely for exporting
and printing, with no in-memory representation.

Unfortunately, this can be a frustrating area of Qt programming, particularly
for those wanting cross-platform solutions. This is because Qt’s behavior re-
garding the export and printing of rich text documents can vary considerably
across platformsand acrossQt versions. In view of this,wewill present a sum-
mary covering specific Qt versions, Qt 4.5.2 and Qt 4.6.1, on Mac OS X, Linux,
andWindows, tomake it easy to pick the approach that is likely towork best for
your circumstances. Note, however, that the sample document wewill work on
is fairly complex—it involves a table, embedded SVG images, and rich text—so
it may be the case that for other documents the quality of the results may be
slightly, or even radically, different.

The two-page sample document we will produce is shown in Figure 10.1. The
figure is a screenshot of a PDF file that has been exported from a QTextDocument

that was created from raw HTML on Linux using Qt 4.5.2.

In this chapter we will begin by comparing the quality and sizes of exported
files that represent the sample document in various formats. We will follow
this by showing QTextDocument in use, in the second section populating it both

★Aswenoted in the previous chapter,Qt’s rich text format is an in-memory data format that should
not be confused with other “rich text” formats.

359

ptg

360 Chapter 10. Creating Rich Text Documents

Figure 10.1 The sample two-page rich text document viewed in evince

from raw HTML and using a QTextCursor. In the third section we will see
how to export a QTextDocument in a variety of formats, and also how to print
QTextDocuments. And in the chapter’s last section we will see how to create the
same document purely by painting it, and how to export or print the results.

Before we dive into the chapter’s sections, we will quickly review the data
structures from which the sample document’s page data originates, since this
is common to all the approaches we cover.

struct OnePage

{

QString title;

QStringList filenames;

QStringList captions;

QString descriptionHtml;

};

The title holds a plain text page title. The two string lists hold parallel sets
of image filenames and plain text caption texts. The descriptionHtml holds the
paragraph that follows the table and uses HTMLmarkup for text effects (such
as color, bold, etc.).

ptg

ExportedQTextDocument File Quality 361

The data for the document is held in a custom PageData object which holds
a private variable, pages, of type QList<OnePage>. We will not cover the driver
classes, or even most of the PageData class; instead we will focus on just those
methods that are necessary to show how to populate a QTextDocument and how
to export and print documents.

Exported QTextDocument File Quality ||||

In this section we will compare the quality and file sizes that result from ex-
porting (and painting) the sample document in many of the standard formats
that Qt supports.

Figure 10.2 The Output Sampler program

The following figures are designed to give some hints as to what can be expect-
ed from each approach.✪ But in view of the variation across formats, platforms,
Qt versions, and documents, we recommend being skeptical of the results pre-
sented here, and to do your own testing. All the output shown in this chapter
was produced by the Output Sampler example (outputsampler) shown in Fig-
ure 10.2. It should be straightforward to adapt this example to output your own
documents for testing purposes.

PDF Output Technique [Quality Bytes]
Platform/

Qt version QTextDocument/

HTML

QTextDocument/

QTextCursor QPainter

Linux/4.5.2 ★★★★★ 136251 ★★★★★ 136216 ★★★★✩ 5956141

Linux/4.6.1 ★★★★★ 143985 ★★★★★ 136302 ★★★✩✩ 6669547

Mac/4.5.2 ★★★✩✩ 135407 ★★★★✩ 135316 ★★★★✩ 5991845

Mac/4.6.1 ★★★★✩ 135890 ★★★★★ 135481 ★★★✩✩ 6687444

Windows/4.5.2 ★★★★★ 147838 ★★★★★ 150680 ★★★★★ 5998190

Windows/4.6.1 ★★★★★ 148045 ★★★★★ 150881 ★★★★✩ 6689564

Figure 10.3 Comparison of PDF output quality and size

✪The “quality” stars reflect the author’s subjective opinion and will vary for different documents.
The sizes in bytes will also vary—they are included purely as a guide to relative file sizes.

ptg

362 Chapter 10. Creating Rich Text Documents

Figure 10.3 comparesPDF outputs produced by exporting using a QPrinter and
outputting to file. PDF files can also be created by printing a document via
the print dialog, and choosing the “print to file” option—this usually results
in a different PDF output which may be slightly better or worse than is pro-
ducedwhen using the exporting approach.✪ Another point to note is that QText-
Document puts the pagenumber in the bottom-right corner of each pagewhether
wewant this or not,andwith no control over the pagenumber’s formatting. For
documents produced with QPainter we paint everything ourselves of course.

The file sizes shown in the figure reveal that PDFs that are output using
QPainter with embedded SVG images are very large. If we were to output
pixmaps instead (which can be done by undefining EMBED_SVG in the .pro file),
the QPainter-produced PDFs would shrink in size to around 100KB.

The outputsampler program can also export the document in PostScript (.ps)
format. In our tests—using Qt 4.6.1 on Linux—we found that Qt’s PostScript
output of the sample document varied considerably in size depending on
whether it was produced using a QTextDocument (~7MB with embedded SVG
images and ~170KB with embedded .png images) or a QPainter (~16MB re-
gardless of the embedded images’ format).Also, we found that the sample doc-
ument’s PostScript files could not be viewed using the evince viewer (projects.
gnome.org/evince), but worked fine in the more basic gv viewer (www.gnu.org/
software/gv).However,wewon’t present a comparison table, since for most pur-
poses PDF format has superceded PostScript.

ODT Output Technique [Quality Bytes]
Platform/

Qt version QTextDocument/

HTML

QTextDocument/

QTextCursor

Linux/Qt 4.5.2 ★★✩✩✩ 135432 ✩✩✩✩✩ invalid

Linux/Qt 4.6.1 ★★✩✩✩ 135437 ★★✩✩✩ 135438

Mac/Qt 4.5.2 ★★✩✩✩ 135441 ✩✩✩✩✩ invalid

Mac/Qt 4.6.1 ★★✩✩✩ 135444 ★★✩✩✩ 135443

Windows/Qt 4.5.2 ★★✩✩✩ 135407 ✩✩✩✩✩ invalid

Windows/Qt 4.6.1 ★★✩✩✩ 135413 ★★✩✩✩ 135409

Figure 10.4 Comparison of Open Document Format output quality and size

Figure 10.4 shows the results of exporting the sample document as an Open
DocumentFormat (.odt) file. These can only be producedusing a QTextDocument;

✪On Windows, “print to file” will only produce PDF output if there is a PDF writer printer driver
installed. Without this, the only way to output PDF on Windows is by exporting.

www.gnu.org/software/gv
www.gnu.org/software/gv

ptg

ExportedQTextDocument File Quality 363

they cannot be painted with a QPainter. We tested the exported .odt files us-
ing OpenOffice.org 3 (www.openoffice.org).✪ The figure clearly indicates that
Qt’s support for this format is somewhat rudimentary, but also that it is im-
proving.

DespiteQt’spoor showing in our tests, it would be unwise to dismissQt’s ability
to output good .odt files. The sample document we have used, although short,
is quite complex,and itmay well be the case that other documentsare output to
a higher standard. And, of course,Qt’s ability to export in .odt format is bound
to improve in future versions.

HTML Output Technique [Quality Bytes]
Platform/

Qt version QTextDocument/

HTML

QTextDocument/

QTextCursor

Linux/Qt 4.5.2 ★★★★✩ 8355 ★★★★✩ 6795

Linux/Qt 4.6.1 ★★★★✩ 8346 ★★★★✩ 6795

Mac/Qt 4.5.2 ★★★★★ 8363 ★★★★★ 6803

Mac/Qt 4.6.1 ★★★★★ 8363 ★★★★★ 6803

Windows/Qt 4.5.2 ★★★★✩ 8106 ★★★★✩ 6539

Windows/Qt 4.6.1 ★★★★✩ 8106 ★★★★✩ 6539

Figure 10.5 Comparison of HTML output quality and size

Figure 10.5 shows a comparison of HTML format exports. HTML is such a
ubiquitous format that being able to output HTML is essential for many ap-
plications. Qt’s XML classes make this easy to do—for example, using QXml-

StreamWriter—but often we want to have a single in-memory document (e.g., a
QTextDocument) from which we can produce a variety of outputs, one of which
is HTML. Just like Open Document Format, HTML cannot be painted with
QPainter.

On Mac OS X we tested using the Safari web browser—this rendered the
HTML pages extremely well, including the embedded SVG images. On Linux
and Windows we used Firefox, and this did not show the SVG images at all.

Figure 10.6 shows a comparison of Scalable Vector Graphics (.svg) format out-
puts—and for this example, we only output the first page of the sample docu-
ment. SVG supports what its name suggests—scalability without degrading
quality.

✪The generic term is “Open Document Format”, and this includes formats for rich text documents
(.odt), spreadsheets (.ods), and other document types. The use of the file suffix .odt (Open
Document Text) is essential for correct interpretation by OpenOffice.org.

www.openoffice.org

ptg

364 Chapter 10. Creating Rich Text Documents

SVGOutput Technique [Quality Bytes]
Platform/

Qt version QTextDocument/

HTML

QTextDocument/

QTextCursor QPainter

Linux/Qt 4.5.2 ★★★✩✩ 94535 ★★★✩✩ 94560 ★★★★★ 94156

Linux/Qt 4.6.1 ★★★★✩ 91756 ★★★★✩ 91436 ★★★★✩ 102061

Mac/Qt 4.5.2 ★★★✩✩ 91203 ★★★✩✩ 91195 ★★★★✩ 94124

Mac/Qt 4.6.1 ★★★★✩ 92905 ★★★✩✩ 91804 ★★★★✩ 99360

Windows/Qt 4.5.2 ★★★✩✩ 92066 ★★★✩✩ 92087 ★★★★★ 95338

Windows/Qt 4.6.1 ★★★✩✩ 92597 ★★★✩✩ 92663 ★★★★✩ 100544

Figure 10.6 Comparison of SVG output quality and size

Documents can also be output using pixmap formats such as .png (Portable
Network Graphics) or .bmp (Windows Bitmap). These formats do not scale
well—this is an intrinsic limitation of their design that has nothing to do with
Qt—so these formats are ideal for images that will not be scaled. We haven’t
provided a figure comparing them since they are output with excellent fidelity
using all of the platforms, Qt versions, and techniques that we have used for
all the other formats.

Creating QTextDocuments ||||

There are two techniques that can be used to populate a QTextDocument: give
it a QString of HTML-formatted text, or use a QTextCursor. We will show both
approaches in this section, starting with the use of HTML.

Of course, in some cases, we don’t need a document at all, but simply want to
render our data into a file in a standard format or to print our data. In such
cases—and providing we don’t need HTML or ODF output—we can avoid
using a QTextDocument at all and simply use a QPainter; this is covered in this
chapter’s last section (➤ 379).

Creating QTextDocuments with HTML |||

Populating a QTextDocument using HTML is very convenient if we have a decent
knowledge of HTML,and probably requires the least code of all the techniques
considered in this chapter.

In the outputsampler example, to populate a QTextDocument using HTML, we
begin by creating an empty QTextDocument, and then pass a pointer to the

ptg

CreatingQTextDocuments 365

document to the PageData::populateDocumentUsingHtml() method, which itself
has two helper methods.

void PageData::populateDocumentUsingHtml(QTextDocument *document)

{

QString html("<html>\n<body>\n");

for (int page = 0; page < pages.count(); ++page) {

html += pageAsHtml(page, false);

if (page + 1 < pages.count())

html += "<br style='page-break-after:always;'/>\n";

}

html += "</body>\n</html>\n";

document->setHtml(html);

}

This method creates a QString of HTML that it then sets on the QTextDocument

it is passed. It begins by adding a standard HTML <html> tag, omits a <head>

tag, and begins the document proper with a <body> tag. Then, for each page in
the list of OnePages it adds the HTML for the page, and for all except the last
page adds a tag with the Qt-specific page-break-after style attribute to force a
page break. And at the end, the opening tags are closed.

Notice that we have chosen to include newlines (\n) in our HTML; this is not
necessary, but is sometimes convenient for debugging, and makes the HTML
more human readable.

QString PageData::pageAsHtml(int page, bool selfContained)

{

const OnePage &thePage = pages.at(page);

QString html;

if (selfContained)

html += "<html>\n<body>\n";

html += QString("<h1 align='center'>%1</h1>\n")

.arg(Qt::escape(thePage.title));

html += "<p>";

html += itemsAsHtmlTable(thePage);

html += "</p>\n";

html += QString("<p style='font-size:15pt;font-family:times'>"

"%1</p><hr>\n").arg(thePage.descriptionHtml);

if (selfContained)

html += "</body>\n</html>\n";

return html;

}

ptg

366 Chapter 10. Creating Rich Text Documents

This method can be used to produce a simple self-contained HTML page if the
second argument is true; the populateDocumentUsingHtml() method always calls
it with this argument set to false.

The method begins by getting a reference to the page data that is to be con-
verted to HTML. It creates an <h1> tag for the title, and is careful to use Qt’s
Qt::escape() function to convert any “&”, “<”, and “>” characters that might be
in the title to HTML-escaped versions—&, <, and >.★

The HTML table used for the images and their captions is handled by a
separate method that we will look at next. The descriptionHtml text is added
at the end unescaped—since it is already in HTML format—but we precede it
with a paragraph tag with a style attribute that provides a suitable font family
and size. We also add a horizontal rule after the text.

The page number shown in the screenshot in Figure 10.1 (360 ➤) is added by
Qt and we have no control over it.

QString PageData::itemsAsHtmlTable(const OnePage &thePage)

{

QString html("<table border='1' cellpadding='20' width='100%'>");

for (int i = 0; i < thePage.filenames.count(); ++i) {

if (i % 2 == 0)

html += "<tr>\n";

html += QString("<td align='center'>"

"<p style='font-size:18pt'>%2</p></td>\n")

.arg(thePage.filenames.at(i))

.arg(Qt::escape(thePage.captions.at(i)));

if (i % 2 != 0)

html += "</tr>\n";

}

if (!html.endsWith("</tr>\n"))

html += "</tr>\n";

html += "</table>\n";

return html;

}

This method creates an HTML table with four cells (2 × 2). Each cell contains
an tag whose src attribute is the image filename and a paragraph tag
with a large font size to show the corresponding HTML-escaped plain text
caption. (By default the outputsampler programuses SVG images, but it can be
made to use PNG images by commenting out the EMBED_SVG symbol defined in
the .pro file.)

★In Qt 4.5, Qt::escape() is not suitable for escaping text for HTML attribute values since it does
not escape quotes. From Qt 4.6, Qt::escape() does escape double quotes.

ptg

CreatingQTextDocuments 367

These three methods are sufficient to create a long QString containing the
HTML text to represent the document. Populating the QTextDocument with the
string of HTML is a matter of a single method call: QTextDocument::setHtml().
And although we didn’t use CSS (Cascading Style Sheets) for this particular
example, as we mentioned in the last chapter, Qt does support them; see qt.

nokia.com/doc/richtext-html-subset.html.

Creating QTextDocuments with QTextCursor |||

The QTextCursor class allows us to programmatically navigate and edit a QText-

Document without needing to know any HTML.The QTextCursor class was intro-
duced in the previous chapter where it was used for editing documents; in this
subsectionwewill use it to create QTextDocuments from scratch. The QTextCursor
API is shown in the previous chapter (328–330 ➤). The QTextCursor::movePosi-

tion() method was also discussed in the previous chapter (332 ➤), along with
the QTextCursor::MoveOperation enum (334 ➤).

One unusual aspect of the QTextCursor API is that there are two different
methods for inserting lists: createList() and insertList(). The former creates
and inserts a list into the document with the current paragraph as its first
item. The latter creates and inserts a list into the document and creates a new
paragraph which becomes its first item.

The code that we have used to populate a QTextDocument using a QTextCursor

is structurally very similar to that used for creating an HTML string, but
requires the use of more helper methods. Aswith the HTML version,we begin
by creating an empty QTextDocument and pass a pointer to it to a method that
will populate the document.

void PageData::populateDocumentUsingQTextCursor(

QTextDocument *document)

{

document->setDefaultFont(QFont("Times", 15));

QTextCursor cursor(document);

for (int page = 0; page < pages.count(); ++page) {

addPageToDocument(&cursor, page);

if (page + 1 < pages.count()) {

QTextBlockFormat blockFormat;

blockFormat.setPageBreakPolicy(

QTextFormat::PageBreak_AlwaysAfter);

cursor.mergeBlockFormat(blockFormat);

}

}

}

ptg

368 Chapter 10. Creating Rich Text Documents

We begin by giving the document a default font—slightly larger than would
normally be used but intended to be at least vaguely readable in the screenshot
in Figure 10.1 (360 ➤).

We create a QTextCursor for the QTextDocument, and pass the cursor rather than
the document to the helper methods. Just as we did for the HTML version, we
add each page to the document in turn.

And for all pages except the last one, we put in a page break at the end. This
is done by creating a new QTextBlockFormat (i.e., a paragraph format), and
setting its page break policy to PageBreak_AlwaysAfter; two other policies are
available—PageBreak_Autowhich leavesQt to figure out page breaks for us, and
PageBreak_AlwaysBefore which forces a page break before the paragraph with
this set for its block format. Once we have created the format, wemerge it into
the cursor’s current block format (i.e., the format of the last paragraph that the
cursor has inserted). The QTextCursor::mergeBlockFormat() method overrides
the current block format’s settings with any non-default settings from the
format it is passed. There is a similar QTextCursor::mergeCharFormat() method
for merging character format settings.

void PageData::addPageToDocument(QTextCursor *cursor, int page)

{

const OnePage &thePage = pages.at(page);

addTitleToDocument(cursor, thePage.title);

addItemsToDocument(cursor, thePage);

cursor->insertHtml(thePage.descriptionHtml);

addRuleToDocument(cursor);

}

This method passes most of its work on to helper methods. The exception is
the call to QTextCursor::insertHtml() which can be used to insert an arbitrary
piece of HTML text into a QTextDocument at the cursor position.

void PageData::addTitleToDocument(QTextCursor *cursor,

const QString &title)

{

QTextBlockFormat blockFormat;

blockFormat.setAlignment(Qt::AlignHCenter);

blockFormat.setTopMargin(0);

cursor->insertBlock(blockFormat);

QTextCharFormat charFormat;

charFormat.setFont(QFont("Helvetica", 24, QFont::Bold));

cursor->insertText(title, charFormat);

}

We want the document’s title to be horizontally centered and to use a big font.
We also want the title to appear at the top of the page (i.e., immediately below

ptg

CreatingQTextDocuments 369

the top margin). To achieve this we create a new text block format to provide
the paragraph-level settings—alignment and the top margin—and insert a
new block (i.e., an empty paragraph with the specified formatting) into the
document with this format. We then create a text character format with the
big font we want and insert the title text into the current paragraph using the
character format we just created.

There is also a QTextCursor::insertText() method that takes only a QString

argument, and therefore uses whatever formatting is already in force. And
there is an overloaded QTextCursor::insertBlock() method that accepts both a
text block format and a character text format. We almost always prefer to use
the insertBlock() method which just accepts a text block format and to insert
text using the insertText() methods, using the two-argument form where a
character format is specified as we have done here, when that suits our needs.

void PageData::addItemsToDocument(QTextCursor *cursor,

const OnePage &thePage)

{

QTextDocument tableDocument;

QTextCursor tableCursor(&tableDocument);

QTextTable *table = tableCursor.insertTable(2, 2, tableFormat());

for (int i = 0; i < thePage.filenames.count(); ++i)

populateTableCell(table->cellAt(i / 2, i % 2), thePage, i);

cursor->insertFragment(QTextDocumentFragment(&tableDocument));

}

Programmatically adding a table to a QTextDocument using a QTextCursor is
slightly long-winded, although none of the steps are difficult.

If we try inserting a QTextTable directly into a QTextDocument using the QTextCur-
sor::insertTable()method, it is very easy to get into amess! This is becausewe
must be sure to remember that oncewe have populated the tablewemustmove
the cursor to theposition immediately following the table,beforepopulating the
rest of the document. This arises becausewhenwe insert the last item into the
last cell in the table, the cursor is positioned immediately after this item—but
is still inside the table’s last cell.

Fortunately, there is a nice generic solution to this problem: we can create a
stand-alone QTextDocument that only contains the table, and then we can insert
this document as a document fragment into the document we are populating.
This leaves the cursor neatly positioned after the fragment (i.e., immediately
after the table), so we can then continue populating the document without
having to worry about explicitly moving the cursor out of the table.

So, in thismethod,we create a new QTextDocument, the tableDocument, and create
a new text cursorwhichweuse to populate it. We start by calling QTextCursor::

insertTable(), giving it the number of rows and columns, and the QTextTable-

Format to use. (We will look at the tableFormat() method next.)

ptg

370 Chapter 10. Creating Rich Text Documents

Once we have the QTextTable, we populate each of its QTextTableCells—re-
trieved using the QTextTable::cellAt() method—using a helper method.

And at the end, we insert the table document as a QTextDocumentFragment into
the document we are populating. At this point the cursor will be positioned (as
usual after a cursor insertion) immediately after the last thing we inserted.
This means that the cursor will be positioned exactly where we want it: imme-
diately after the table.

QTextTableFormat PageData::tableFormat()

{

QTextTableFormat tableFormat;

tableFormat.setAlignment(Qt::AlignCenter);

tableFormat.setCellPadding(10);

tableFormat.setTopMargin(10);

tableFormat.setBottomMargin(10);

QVector<QTextLength> widths;

widths << QTextLength(QTextLength::PercentageLength, 50)

<< QTextLength(QTextLength::PercentageLength, 50);

tableFormat.setColumnWidthConstraints(widths);

return tableFormat;

}

We create the QTextTableFormat in this method, setting its alignment, padding,
and two of its margins. (For the left and right margins we use the defaults
since we don’t specifically set them.) Rather than setting explicit widths for
the two columns, we set each one to be 50% of the table’s overall width. This
leavesQt to do the detailed calculations and ensures that the columnshave the
same width.

The QTextLength class can accept two other enum values, VariableLength and
FixedLength; naturally we can use any combination of lengths for the columns
of a table. Each FixedLength’s value is a floating-point (qreal) number of
pixels. To create a QTextLength representing a variable size use the default (no
argument) constructor.

void PageData::populateTableCell(QTextTableCell tableCell,

const OnePage &thePage, int index)

{

QTextBlockFormat blockFormat;

blockFormat.setAlignment(Qt::AlignHCenter);

QTextCursor cursor = tableCell.firstCursorPosition();

cursor.insertBlock(blockFormat);

cursor.insertImage(thePage.filenames.at(index));

blockFormat.setTopMargin(30);

cursor.insertBlock(blockFormat);

QTextCharFormat charFormat;

ptg

CreatingQTextDocuments 371

charFormat.setFont(QFont("Helvetica", 18));

cursor.insertText(thePage.captions.at(index), charFormat);

}

This method is used to insert an image and a caption into each QTextTableCell

it is passed. Since we want both the image and the caption to be horizontally
centered, we begin by creating a text block format and setting its alignment
accordingly. We then retrieve a cursor into the cell using the QTextTableCell::

firstCursorPosition() method, and use this cursor to insert an empty para-
graph with the block format we created. We then insert the image into this
paragraph using the QTextCursor::insertImage() method.

The QTextCursor::insertImage()method has various overloads; the onewe have
used here takes a filename, but there is also one that accepts a QImage.

To ensure a bit of vertical spacing between the bottom of the image and the top
of the caption we next set the block format’s top margin—this will only affect
future uses of the format. We then insert an empty paragraph, again using
the block format. Then we create a character format and set a large font, and
insert the caption using the character format.

void PageData::addRuleToDocument(QTextCursor *cursor)

{

QTextBlockFormat blockFormat;

blockFormat.setProperty(

QTextFormat::BlockTrailingHorizontalRulerWidth, 1);

cursor->insertBlock(blockFormat);

}

At the end of each page we want to draw a horizontal rule. This is easily
achieved by creating a text block format, setting its BlockTrailingHorizontal-

RulerWidth property to 1, and inserting the block. (In fact, in our tests, setting
the property to any value at all was sufficient to get the rule.)

The QTextFormat class (QTextBlockFormat’s base class) supports over seventy
properties (many of which canbe accessedmore conventionally using property-
specific methods). However, the existence of QTextFormat::setProperty() and
various getter methods (e.g., QTextFormat::intProperty()) means that the num-
ber of properties can be increased at any time (even forminor and patch releas-
es), without affecting binary compatibility.

Exporting and Printing Documents ||||

A QTextDocument can be output in a variety of standard formats, including Open
Document Format and HTML. Such documents can also be output in vector
formats (such as PDF, PostScript, or SVG), and in any of the pixmap formats

ptg

372 Chapter 10. Creating Rich Text Documents

that Qt supports (such as .png or .bmp).Documents can also be printed. Wewill
cover all of these possibilities in this section.

Exporting QTextDocuments |||

In this subsection we will see how to export the fully formatted contents of a
QTextDocument, including rich text andembedded images. For the image formats
(SVG and pixmap formats), we will look at how to export a single image of a
single page, and for all the other formatswewill look at how to export an entire
multi-page document.

In all cases we begin by creating an empty QTextDocument, and for the single
page SVG and pixmap exportswe explicitly set the page size andmargins. Qt’s
documentation doesn’t usually specify units, but in general units are pixels
except for printing, where they are normally points (1

72").

QTextDocument document;

document.setPageSize(printer.pageRect().size());

document.setDocumentMargin(25);

For single page documentswe set a default font, and create a QTextCursor, pass-
ing the QTextDocument as argument. Then we use the PageData::addPageToDoc-

ument() method we saw earlier to add just one page to the document (368 ➤).

For multi-page documents we call a populateDocument() method that takes a
pointer to the empty QTextDocument as argument. We have seen two versions
of this method: PageData::populateDocumentUsingHtml() (365 ➤) and PageData::

populateDocumentUsingQTextCursor() (367 ➤). In theory, it shouldn’t make any
differencewhich of these twomethodswe use, but in our experimentswe found
that the results usually differ, so we recommend performing your own tests on
the documents, platforms, and formats that are of interest.

Exporting in PDF and PostScript Format ||

To export a document in PDF or PostScript format is very easy, given a
filename and a QTextDocument. The method that we show here assumes that the
filename it receives ends with .pdf or .ps.

bool MainWindow::exportPdfOrPs(const QString &filename,

QTextDocument *document)

{

Q_ASSERT(filename.endsWith(".ps") || filename.endsWith(".pdf"));

QPrinter printer(QPrinter::HighResolution);

printer.setOutputFileName(filename);

printer.setOutputFormat(filename.endsWith(".pdf")

ptg

Exporting and Printing Documents 373

? QPrinter::PdfFormat : QPrinter::PostScriptFormat);

document->print(&printer);

return true;

}

To export in PDF or PostScript we use a QPrinter, but instead of printing
paper pages we use it to “print to file”.★ (We can also paint PDF and PostScript
documents to a QPrinter using a QPainter, as we will see further on; ➤ 387.)

In most applications we would have a QPrinter as a private member variable
in the main window. The advantage of doing this is that once the user has set
up the printer any further uses of it start with the settings the user chose last
time. But for the outputsampler application we have chosen to create a fresh
QPrinter for those documents that we output without user intervention—such
as when we export the sample document.

Apart from a little bit of setup for the QPrinter, the actual export is simply a
matter of calling QTextDocument::print() and giving it a pointer to the QPrinter
we want it to print on. By default, the print() method paginates using the
printer’s QPrinter::paperRect() as its printing area, but with a 20mmmargin.

Exporting in Open Document Format ||

Exporting a QTextDocument in Open Document Format is even easier than
exporting to PDF or PostScript, thanks to the QTextDocumentWriter class.

bool MainWindow::exportOdf(const QString &filename,

QTextDocument *document)

{

Q_ASSERT(filename.endsWith(".odt"));

QTextDocumentWriter writer(filename);

return writer.write(document);

}

Again, we pass a filename (this time assumed to have a file suffix of .odt),
and a QTextDocument. In fact, the QTextDocumentWriter::write() method returns
a Boolean success flag that we return to the caller. A QTextDocumentWriter can
also be used to export in other formats by calling the QTextDocumentWriter::set-
Format() method with a QByteArray argument of plaintext or html. The default
format is "odf", but as we noted earlier, for the document to be recognized
by OpenOffice.org, the file suffix must be .odt. The complete list of formats
(which will always include at least these three) is returned by QTextDocument-

Writer::supportedFormats().

★ On Mac OS X if we use an output format of QPrinter::NativeFormat, the result will be PDF
rendered using Apple’s Quartz 2D drawing engine. For the sample file this doubled the size of the
PDF and produced a very slight improvement in quality.

ptg

374 Chapter 10. Creating Rich Text Documents

Unfortunately, as Figure 10.4 (362 ➤) indicates, Qt’s Open Document Format
output—at the time of this writing—is rather weak. Our experiments have
shown that outputting Open Document Format can be very sensitive both
to the document’s contents, and sometimes even to how the document was
populated. In view of this we recommend testing the output quality of your
own documents using your target Qt versions and platforms to ensure that the
output is satisfactory.

Exporting in HTML Format ||

To export in HTML format, we must create a string containing the HTML
and then write the string to file. This is all standard C++/Qt, although we’ll
mention one subtle point after seeing the code.

bool MainWindow::exportHtml(const QString &filename,

QTextDocument *document)

{

Q_ASSERT(filename.endsWith(".htm") || filename.endsWith(".html"));

QFile file(filename);

if (!file.open(QIODevice::WriteOnly|QIODevice::Text)) {

AQP::warning(this, tr("Error"),

tr("Failed to export %1: %2").arg(filename)

.arg(file.errorString()));

return false;

}

QTextStream out(&file);

out.setCodec("utf-8");

out << document->toHtml("utf-8");

file.close();

return true;

}

Qt’s QTextStream::setCodec()method is quite liberal about the encoding names
that it will accept. Here, for example,we could have used "utf8".But the QText-
Document::toHtml() method requires us to use an encoding name (if we specify
an encoding at all) that is W3C (World Wide Web Consortium) compliant.★ If
no encoding is specified then the HTML’s meta-data will not include a charset

attribute; we recommend always using the UTF-8 encoding for HTML files.

If we only need to createHTMLfiles,we can do so directly in code using QString

—as we did when we populated a QTextDocument from HTML earlier in the
chapter—or we can use Qt’s QXmlStreamWriter which makes it easy to ensure
that attributes and text are correctly escaped (since it is done for us).

★ See www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and www.iana.org/assignments/char-

acter-sets for information about XML encodings.

www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
www.iana.org/assignments/character-sets
www.iana.org/assignments/character-sets

ptg

Exporting and Printing Documents 375

Exporting in SVG Format ||

For our example of exporting in SVG format, for simplicity’s sake,we have only
populated the QTextDocumentwith a single page. The code to perform the export
isn’t difficult, but does have some important details that we’ll discuss. Note
that to use Qt’s SVG support we must add the line QT += svg to the program’s
.pro file.

bool MainWindow::exportSvg(const QString &filename,

QTextDocument *document)

{

Q_ASSERT(filename.endsWith(".svg"));

QSvgGenerator svg;

svg.setFileName(filename);

QRect rect = printer.pageRect().adjusted(25, 25, -25, 25);

svg.setSize(rect.size());

QPainter painter(&svg);

painter.setViewport(rect);

document->drawContents(&painter);

return true;

}

An SVG image is created by painting to a QSvgGenerator. Here we have used a
QPrinter member variable, and we match the SVG image’s size to that of the
printer’s page size, allowing for some margin. Having set up the SVG gen-
erator, we create a QPainter to paint on it, and set the painter’s viewport (i.e.,
the area that will actually get painted on) to the SVG image’s rectangle. The
QTextDocument::drawContents() method is similar to QTextDocument::print(), ex-
cept that it drawson a painter rather than on a printer,and acceptsan optional
clipping rectangle.

Here we have painted an SVG image using a QTextDocument convenience
method. However, we can just as easily create SVG images using the QPainter

API to draw shapes, images, and text, just as with any other paint device
we care to draw on, as we will see further on when we look at the paintSvg()

method (➤ 387).

Exporting in Pixmap Formats ||

Qt supports a lot of pixmap image formats out of the box. These normally in-
clude at least .bmp (Windows Bitmap), .jpg and .jpeg (Joint Photographic Ex-
perts Group), .png (Portable Network Graphics), .ppm (Portable Pixmap), .tiff
(Tagged Image File Format), and .xpm (X11 Pixmap), but may include others.
The precise list is reported by QImageWriter::supportedImageFormats(). (Note
that the formats that Qt can write are usually fewer than those that it can

ptg

376 Chapter 10. Creating Rich Text Documents

read; the latter are returned by QImageReader::supportedImageFormats(). Also,
the range of formats can be increased by the use of format-specific plugins.)

bool MainWindow::exportImage(const QString &filename,

QTextDocument *document)

{

QImage image(printer.paperRect().size(), QImage::Format_ARGB32);

QPainter painter(&image);

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

painter.fillRect(painter.viewport(), Qt::white);

painter.setViewport(printer.paperRect());

document->drawContents(&painter);

return image.save(filename);

}

Thismethod will export the given QTextDocument to the given file using whatev-
er file format the filename’s suffix indicates, providing the suffix is in the list
of supported image formats for image writing.

Structurally, the code is fairly similar to that used for exporting an SVG image,
only here we begin by creating a QImage rather than a QSvgGenerator. And the
code is virtually identical to that used for painting a pixmap image to file, as
we will see when we look at the paintImage() method further on (➤ 388).

We create a painter to draw the image, set up antialiasing, and give the image
a white background. (We could just as easily have used Qt::transparent for the
background instead.) As a rule of thumb we use antialiasing when producing
on-screen and pixmap images (such as .bmp or .png), but not when printing
or producing vector images (such as .svg). We set the painter’s viewport to
match the printer’s paper rectangle—with no margins this time—and draw
the document’s contents. At the end we call QImage::save() (which returns a
Boolean success flag) to save the image to the file in the requested format.

Printing and Previewing QTextDocuments |||

Printing a QTextDocument is very similar to exporting it, although normally we
would give the user the option of setting up the printer and possibly doing a
page preview before actually printing it.

For the outputsampler program we have chosen to have a QPageSetupDialog

pointer as a main window member variable, and to create the dialog only if
it is needed. This makes it simple to provide the user with page setup, and
consumes almost no memory unless the dialog is actually used.

void MainWindow::pageSetup()

{

ptg

Exporting and Printing Documents 377

if (!pageSetupDialog)

pageSetupDialog = new QPageSetupDialog(&printer, this);

pageSetupDialog->open();

}

If we didn’t offer page preview we might pass parameters to the QPageSetup-

Dialog::open() call, for example, pageSetupDialog->open(this, SLOT(print()));
this will result in the print() slot being called if the user accepts the setup
dialog. The use of open() rather than exec() is so that the dialog appears as a
sheet on Mac OS X; on other platforms it appears as a modal dialog as usual.
(We touched on this issue earlier—for example,Chapter 2; 61 ➤, and Chapter 3;
102 ➤.)

For print preview we have opted to create a QPrintPreviewDialog on demand—
and to do so every time one is required. This seems to be necessary because
the preview dialog appears to cache its results. This is inconvenient for the
outputsampler program since it can change how the pages are generated de-
pending on which radio button is checked, so we need to force a fresh preview
each time. In most other applications this shouldn’t be necessary.

void MainWindow::printPreview()

{

if (printPreviewDialog)

delete printPreviewDialog;

printPreviewDialog = new QPrintPreviewDialog(&printer, this);

QSize size = qApp->desktop()->availableGeometry().size();

size.rwidth() /= 2;

printPreviewDialog->resize(size);

if (painterRadioButton->isChecked())

connect(printPreviewDialog, SIGNAL(paintRequested(QPrinter*)),

&pageData, SLOT(paintPages(QPrinter*)));

else

connect(printPreviewDialog, SIGNAL(paintRequested(QPrinter*)),

this, SLOT(printDocument(QPrinter*)));

printPreviewDialog->open();

}

Wewant the dialog to occupy the entire height of the user’s screen so that they
can see as much as possible. The QDesktopWidget returned by QApplication::

desktop() can provide uswith the actual screen geometry (screenGeometry()), or,
as we have used here, the available geometry which excludes taskbars, and on
Mac OS X excludes the menu bar and the dock. Both these methods accept an
optional screen number for multi-head systems, and QDesktopWidget::screen-

Count() returns the number of screens that are present. Since most modern
desktop screens are much wider than they are tall, we have set the width to be
half that of the screen.

ptg

378 Chapter 10. Creating Rich Text Documents

For print preview to work we must supply a connection to the print preview
dialog’s paintRequested() signal. For the outputsampler example we have
provided for two possibilities, although normally there would just be one. The
second connection is to a printDocument() slot which we’ll look at now, while we
will cover the PageData::paintPages() slot in the next section.

Just like the QPageSetupDialog’s open()method, the QPrintPreviewDialog::open()
method can be given a receiving object and a print slot to call if the user accepts
the dialog.

Print Preview Output Technique
Platform/

Qt version QTextDocument/

HTML

QTextDocument/

QTextCursor QPainter

Linux/4.5.2 ✔ ✔ ✔

Linux/4.6.1 ✔ ✔ ✔

Mac/4.5.2 ✘ ✘ ✓

Mac/4.6.1 ✘ ✘ ✓

Windows/4.5.2 ✔ ✔ ✔

Windows/4.6.1 ✔ ✔ ✔

Figure 10.7 Comparison of print previews

Figure 10.7 shows the results of our print preview tests. Unfortunately, we
observed problems on Mac OS X: print preview of QTextDocuments did not work
at all, and print preview of painted documents rendered the preview on pages
that were too narrow.

void MainWindow::printDocument(QPrinter *printer)

{

QTextDocument document;

populateDocument(&document);

document.print(printer);

}

Thismethod creates an empty QTextDocument, populates it using PageData:: pop-

ulateDocumentUsingHtml() (365 ➤) or PageData::populateDocumentUsingQTextCur-

sor() (367 ➤), and then tells the document to print itself on the given printer.

void MainWindow::populateDocument(QTextDocument *document)

{

Q_ASSERT(!painterRadioButton->isChecked());

if (htmlRadioButton->isChecked())

pageData.populateDocumentUsingHtml(document);

ptg

Exporting and Printing Documents 379

else if (cursorRadioButton->isChecked())

pageData.populateDocumentUsingQTextCursor(document);

}

We show this method for completeness. It simply chooses which populate
document method to use depending on the user’s choice.

Painting Pages ||||

We paint single page documents (such as SVG and pixmap files) by creating a
QPainter and using the PageData::paintPage()method. And for multi-page doc-
uments we do almost the same thing, only we use the PageData::paintPages()

method. In this section we will review the PageData methods used to paint
pages, and then in the section’s subsections we’ll see how the paintPage() and
paintPages()methodsare used to paint PDF,PostScript,SVG,and pixmapfiles.
For print preview, we have already seen that the page preview dialog calls the
PageData::paintPages() method. There is no difference between exporting and
printing when it comes to producing output using a QPainter.

Using QPainter places the burden of calculation on us rather than on, say,
QTextDocument, but the payback we get is complete control over what is painted
and where.

void PageData::paintPages(QPrinter *printer, bool noUserInteraction)

{

if (noUserInteraction)

printer->setPageMargins(25, 25, 25, 25, QPrinter::Millimeter);

QPainter painter(printer);

for (int page = 0; page < pages.count(); ++page) {

paintPage(&painter, page);

if (page + 1 < pages.count())

printer->newPage();

}

}

This method has the same essential structure as the PageData::populateDoc-

umentUsingHtml() (365 ➤) and PageData::populateDocumentUsingQTextCursor()

(367 ➤) methods that we reviewed earlier.

If the pages are being output without user interaction, we set some page
margins, otherwise we use the user’s settings. Then we create a QPainter, and
paint each individual page. We haven’t switched on antialiasing since we
consider painting to a printer to be like painting to a vector format file (such
as an SVG file).After every page except for the last we call QPrinter::newPage();
this ejects the page that’s just been printed and loads a fresh page ready to be

ptg

380 Chapter 10. Creating Rich Text Documents

printed. The newPage() method returns a Boolean success flag, although we
have chosen to ignore it.

void PageData::paintPage(QPainter *painter, int page)

{

const OnePage &thePage = pages.at(page);

int y = paintTitle(painter, thePage.title);

y = paintItems(painter, y, thePage);

paintHtmlParagraph(painter, y, thePage.descriptionHtml);

paintFooter(painter, tr("- %1 -").arg(page + 1));

}

Again, this method is structurally similar to one we have seen before (e.g.,
PageData::addPageToDocument(); 368 ➤), passing on the work for each part of the
page to helper methods. One important difference with the helpers used here,
though, is that each one except the last returns a y-coordinate. The coordinate
is the furthest down the page that the helper hasprinted—so that the following
method can continue printing down the page without overprinting what has
gone before. (Although the paintHtmlParagraph() method returns the y-coordi-
nate for the line after the paragraph, we ignore it because the paintFooter()

method computes its y-coordinate based on the viewport’s height and the foot-
er’s height, regardless of what has already been painted.)

If this method is used to paint a page onto a pixmap image, the caller that
created the painter is expected to have switched on antialiasing.

int PageData::paintTitle(QPainter *painter, const QString &title)

{

painter->setFont(QFont("Helvetica", 24, QFont::Bold));

QRect rect(0, 0, painter->viewport().width(),

painter->fontMetrics().height());

painter->drawText(rect, title, QTextOption(Qt::AlignCenter));

return qRound(painter->fontMetrics().lineSpacing() * 1.5);

}

This method prints the title in a very large font, horizontally centered. The
rectangle’s y-coordinate is 0which iswhere the topmargin lies, and is also used
by the painter as the font’s top position. In other words, the bottom of the text
is at y + painter->fontMetrics().height().

Once the text is drawn we return a y-coordinate for the next thing to be
drawn, with a bit of vertical space in between. This is computed by using a
y-coordinate that is one and a half lines down,which in effect creates a gaphalf
a line high.

int PageData::paintItems(QPainter *painter, int y,

const OnePage &thePage)

ptg

Painting Pages 381

{

const int ItemHeight = painter->viewport().height() / 3;

const int ItemWidth = painter->viewport().width() / 2;

paintItem(painter, QRect(0, y, ItemWidth, ItemHeight),

thePage.filenames.at(0), thePage.captions.at(0));

paintItem(painter, QRect(ItemWidth, y, ItemWidth, ItemHeight),

thePage.filenames.at(1), thePage.captions.at(1));

y += ItemHeight;

paintItem(painter, QRect(0, y, ItemWidth, ItemHeight),

thePage.filenames.at(2), thePage.captions.at(2));

paintItem(painter, QRect(ItemWidth, y, ItemWidth, ItemHeight),

thePage.filenames.at(3), thePage.captions.at(3));

return y + ItemHeight + painter->fontMetrics().height();

}

In the case of the outputsampler program we want to draw a 2 × 2 table of
“items”—images and accompanying captions. This method is used to compute
the rectangle that each item will occupy, and passes on the actual drawing to
the paintItem() helper method.

The painter’s viewport already accounts for the page’s margins, so we can do
calculations using the viewport directly. Here we have said that each item
should be one-third of the page high and half of the page wide.

At the end we return a y-coordinate that is the height of two items plus
QPainter::fontMetrics().height() which is the character height for the cur-
rent font. An alternative would have been to use the current font’s line height
(QFontMetrics::lineSpacing()).

void PageData::paintItem(QPainter *painter, const QRect &rect,

const QString &filename, const QString &caption)

{

painter->drawRect(rect);

const int Margin = 20;

painter->setFont(QFont("Helvetica", 18));

const int LineHeight = painter->fontMetrics().lineSpacing();

QRect imageRect(rect);

imageRect.adjust(Margin, Margin, -Margin, -(Margin + LineHeight));

QSvgRenderer svg(filename);

QSize size(svg.defaultSize());

size.scale(imageRect.size(), Qt::KeepAspectRatio);

imageRect.setSize(size);

const int Xoffset = (imageRect.width() - size.width()) / 2;

imageRect.moveTo(imageRect.x() + Xoffset, imageRect.y());

svg.render(painter, imageRect);

ptg

382 Chapter 10. Creating Rich Text Documents

int y = rect.y() + rect.height() - LineHeight;

QRect captionRect(rect.x(), y, rect.width(), LineHeight);

painter->drawText(captionRect, caption,

QTextOption(Qt::AlignCenter));

}

We draw each item in three parts: a rectangle outline, an image, and a caption.
The rectangle is easy since it is passed as a parameter. We want the image to
fit neatly inside the rectangle, and not to collide with the caption, so we begin
by setting a margin and the caption’s font. Once we have set the font we can
use the painter’s font metrics to compute a line height for the text.

We prefer to use SVG images since they can be scaled without degrading
quality. We begin by creating a rectangle for the image based on the item’s
rectangle, but then reduce the image rectangle’s size by themargin size, except
for its height (actually its bottom y-coordinate),which we reduce by themargin
plus the height of the caption line.

We use a QSvgRenderer to load and draw the SVG image on the painter. Once
it is loaded, we retrieve the SVG image’s default (“natural”) size, and then
scale this size to fit within the image rectangle, while preserving the aspect
ratio. Using Qt::KeepAspectRatio reduces the size to fit. The other valid enums
are Qt::IgnoreAspectRatio and Qt::KeepAspectRatioByExpanding; the expanding
one causes the image to be expanded until one of its dimensions (width or
height) matches the width or height that has been specified, with the other
dimension expanded beyond its given dimension if necessary to preserve the
aspect ratio.

Since we want the image to be horizontally centered, we compute a suitable
x-offset. Then we set the image rectangle’s size to the scaled size and move the
rectangle so that it is horizontally centered. And then we call the QSvgRender-

er::render() method to draw the SVG image on the painter using the image
rectangle.

If wewere using pixmap images rather than SVG images, the code for painting
the image would be almost identical:

QImage image(filename);

QSize size(image.size());

size.scale(imageRect.size(), Qt::KeepAspectRatio);

imageRect.setSize(size);

const int Xoffset = (imageRect.width() - size.width()) / 2;

imageRect.moveTo(imageRect.x() + Xoffset, imageRect.y());

painter->drawImage(imageRect, image);

The only difference is that we use QImage rather than QSvgRenderer to load the
image and obtain its size, and that we use QPainter::drawImage() rather than
QSvgRenderer::render() to draw the image. One improvement that we could

ptg

Painting Pages 383

consider would be to only scale the pixmap image’s rectangle (and therefore
the drawn pixmap) if the image’s size is larger than the image rectangle’s
size. (Note that in the source code we use a #define to switch between using
embedded SVG and embedded pixmap images, with the default being to use
SVG images.)

Once the image has been drawn,wemust draw the caption. We find the neces-
sary y-coordinate by taking the y-coordinate of the rectangle passed in, plus its
height to give the coordinate of the bottom of the rectangle, and then reduce
this (i.e.,move back up) by one line. We then create a suitable rectangle for the
caption and draw it centered (both horizontally and vertically) within the rect-
angle. This ensures that the caption is drawn at the bottom of the rectangle,
with a gap (the size of the margin) between the top of the caption and the bot-
tom of the image. This does mean that descenders from the caption will reach
the bottom of the rectangle (and so come very close to the rectangle outline
drawn at the beginning);we leave the adding of somemargin below the text as
an exercise.

When it comes to painting paragraphs of HTML text we can give the HTML to
a QTextDocument. This then gives us two choices about how we render the docu-
ment’s contents. The easier approach is to get the QTextDocument to render the
HTMLdirectly on the painter; the harder approach is to treat the QTextDocument
as a container of rich text fragments and to iterate over these fragments our-
selves, painting each one as we go. We will show both approaches, beginning
with the code that creates the QTextDocument and that is common to both. (The
source code covers both approaches, using a #define to switch between them at
compile time.)

int PageData::paintHtmlParagraph(QPainter *painter, int y,

const QString &html)

{

const QFont ParagraphFont("Times", 15);

painter->setFont(ParagraphFont);

QTextDocument document;

document.setHtml(html);

We begin by setting a default paragraph font; as we noted earlier, this is larger
than would normally be used but is intended to be more legible in the screen-
shot (360 ➤).We set the font on the painter so that we can use the painter’s font
metrics. Then we create a QTextDocument and populate it with the paragraph of
HTML that has been passed in.

document.setDefaultFont(ParagraphFont);

document.setUseDesignMetrics(true);

document.setTextWidth(painter->viewport().width());

QRect rect(0, y, painter->viewport().width(),

painter->viewport().height());

ptg

384 Chapter 10. Creating Rich Text Documents

painter->save();

painter->setViewport(rect);

document.drawContents(painter);

painter->restore();

return y + document.documentLayout()->documentSize().height() +

painter->fontMetrics().lineSpacing();
}

We begin by giving the QTextDocument the same default font as the painter.
We tell the document to use design metrics since this should produce higher-
quality results. We also limit the document’s width to the width of the
viewport—this is crucial to get the layout to work well (although if we were
not constrained by the physical page size we could use QTextDocument::ideal-

Width()). The QTextDocument::drawContents() method can accept a second ar-
gument of a clipping rectangle, but we don’t need it here. We want the text
drawnabout two-thirds of theway down the page,but there is noway to tell the
QTextDocument to do this. So instead, we save the painter’s state and change its
viewport to be a rectangle starting at the y-coordinate we want and having the
width andheight of the page. We then tell the document to draw its contentson
the painter (which will occur within the painter’s new viewport, exactly where
we want it), and then we restore the painter’s original viewport.

At the end we compute the y-coordinate for whatever follows the paragraph
(such as another paragraph), by adding the height of the document (which is
now known since to draw its contents the document had to lay itself out), plus
one line’s spacing.

The second possibility for painting an HTML paragraph using a QTextDocument

is to paint the text ourselves. If this is the case, we are in effect using QText-

Document as an HTML parser which convertsHTML into an internal document
structure that we then iterate over, painting each individualword aswe go. We
will see how this is done by looking at another version of the second part of the
paintHtmlParagraph() method.

QTextBlock block = document.begin();

Q_ASSERT(block.isValid());

int x = 0;

for (QTextBlock::iterator i = block.begin(); !i.atEnd(); ++i) {

QTextFragment fragment = i.fragment();

if (fragment.isValid()) {

QTextCharFormat format = fragment.charFormat();

foreach (QString word,

fragment.text().split(QRegExp("\\s+"))) {

int width = painter->fontMetrics().width(word);

if (x + width > painter->viewport().width()) {

x = 0;

y += painter->fontMetrics().lineSpacing();

ptg

Painting Pages 385

}

else if (x != 0)

word.prepend(" ");

x += paintWord(painter, x, y, word, ParagraphFont,

format);

}

}

}

return y + painter->fontMetrics().lineSpacing();
}

A paragraph is held in a single QTextBlock, and the block contains one or more
QTextFragments, each with its own QTextCharFormat. We iterate over the frag-
ments (or the fragment, if the paragraph’s text all has the same character for-
mat), and for each fragment we extract its format and iterate over the words it
contains. The regex we use for breaking the fragment’s text into words splits
on “one or more whitespaces”, so in effect we are treating any sequence of one
or morewhitespaces as a single whitespace. Thismakes sense since the source
of the text wasHTMLwhich uses exactly this logic regarding whitespace. (In-
cidentally, creating the regex inside the loop isn’t as expensive as it looks: QReg-
Exp is smart enough to remember the most recently used regexes, so the regex
will be compiled into the internal regex format the first time it is constructed,
and on subsequent iterations the already compiled format will be used.)

Once we have a word we ask the painter’s font metrics to tell us how wide it is.
If the word will not fit on the current line we reset the x-coordinate to 0 and
increment the y-coordinate by one line; otherwise we prepend a space to the
word (to separate it horizontally from the previousword on the line), and leave
the coordinates unchanged. Then we call our paintWord() helper method, and
increment the x-coordinate by the offset the method returns.

And at the end, we return the y-coordinate plus one line’s height so that the
next thing that gets painted will be on the line below the paragraph.

int PageData::paintWord(QPainter *painter, int x, int y,

const QString &word, const QFont ¶graphFont,

const QTextCharFormat &format)

{

QFont font(format.font());

font.setFamily(paragraphFont.family());

font.setPointSize(paragraphFont.pointSize());

painter->setFont(font);

painter->setPen(format.foreground().color());

painter->drawText(x, y, word);

return painter->fontMetrics().width(word);

}

ptg

386 Chapter 10. Creating Rich Text Documents

For each word that we paint (which is either a word or a space followed by a
word), we begin by creating a font based on the character format’s font, but
then overriding the family and point size by the paragraph font’s family and
size. We then set this font on the painter, and set the painter’s pen to be the for-
mat’s foreground color, so that we honor colored text. We then draw the text at
the given x- and y-coordinates. And finally, we return the width of the word we
have just drawn so that the caller can increment its x-coordinate’s position.

void PageData::paintFooter(QPainter *painter, const QString &footer)

{

painter->setFont(QFont("Helvetica", 11));

painter->setPen(Qt::black);

const int LineHeight = painter->fontMetrics().lineSpacing();

int y = painter->viewport().height() - LineHeight;

painter->drawLine(0, y, painter->viewport().width(), y);

y += LineHeight / 10;

painter->drawText(

QRect(0, y, painter->viewport().width(), LineHeight),

footer, QTextOption(Qt::AlignCenter));

}

We set a different font for the footer and set the pen to the default color. We
draw a horizontal rule across the page at a position one line above the bot-
tom margin. And then we draw the footer (plain) text centered just below
the rule.

We have now completed our review of the code for painting a document
rather than using a QTextDocument. If we were to count lines of code we would
probably find that for the sample document, using a QTextDocument with raw
HTML required the least code and painting required the most; but this may
well be different for different documents, so we recommend using whichever
approach best suits the circumstances rather than whichever is likely to need
the fewest lines.

The methods we have seen are all called from PageData::paintPages() (which
takes a QPrinter argument), which in turn calls PageData::paintPage() (which
takes a QPainter argument). This means that these methods can be used to
paint the sample document on any printer or other paint device, as we will see
in the following short subsections.

ptg

Painting Pages 387

Painting PDF or PostScript |||

We can paint a PDF or PostScript document directly; all we need is a filename
ending with .pdf or .ps.

bool MainWindow::paintPdfOrPs(const QString &filename)

{

Q_ASSERT(filename.endsWith(".ps") || filename.endsWith(".pdf"));

QPrinter printer(QPrinter::HighResolution);

printer.setOutputFileName(filename);

printer.setOutputFormat(filename.endsWith(".pdf")

? QPrinter::PdfFormat : QPrinter::PostScriptFormat);

pageData.paintPages(&printer);

return true;

}

We begin by creating a QPrinter, but instead of using the printer to print paper
pages,we set it to “print to file”, giving it the filename to print to and the format
to use. (Structurally, this code is just the same as the exportPdfOrPs() method
we saw earlier; 372 ➤.)

Painting SVG |||

SVG files can be painted using a QSvgGenerator, given a filename to write the
SVG to, and a page size. (Even though SVG images are scalable it is conven-
tional to provide a default or “natural” size for them.) For SVG files we have
opted to create a single SVG image for a single page rather than using the en-
tire multi-page document.

bool MainWindow::paintSvg(const QString &filename)

{

Q_ASSERT(filename.endsWith(".svg"));

QSvgGenerator svg;

svg.setFileName(filename);

QRect rect = printer.pageRect().adjusted(25, 25, -25, 25);

svg.setSize(rect.size());

QPainter painter(&svg);

painter.setViewport(rect);

pageData.paintPage(&painter, 0);

return true;

}

The painting is very simple: we create a QPainter, and paint a page (page 0).
Herewe have chosen to offset the image to provide somemargin. (Structurally,
this code is the same as in the exportSvg() method we saw before; 375 ➤.)

ptg

388 Chapter 10. Creating Rich Text Documents

Painting Pixmaps |||

A QPainter paints imageswhich can be rendered as pixmaps or as vectors. So, a
QPainter can paint to a QImage and a QImage can be saved in any pixmap format
that Qt supports. (The list of formats is returned by the static QImageWriter::
supportedImageFormats() method.)

bool MainWindow::paintImage(const QString &filename)

{

QImage image(printer.paperRect().size(), QImage::Format_ARGB32);

QPainter painter(&image);

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

painter.fillRect(painter.viewport(), Qt::white);

painter.setViewport(printer.pageRect());

pageData.paintPage(&painter, 0);

return image.save(filename);

}

Here we create a QImage of the size we need, set up antialiasing, fill the back-
ground with white to clear it—we could just as easily have used Qt::transpar-

ent—and then we paint one page (page 0). Just as for painting SVG images we
have opted to create a single image for a single page. (Structurally, thismethod
is identical to the exportImage() method we saw earlier; 375 ➤.)

We have now seen how to print and export documents that include rich text,
images, and complex formatting (e.g., tables). We have seen how to print and
export a single page of a QTextDocument as an SVG image and in any of the
standard pixmap formats that Qt supports, and how to achieve the same thing
directly using a QPainter. We have also seen how to print and export entire
multi-page QTextDocument documents in PDF, PostScript, Open Document For-
mat, and HTML, and how to paint documents directly using a QPainter to pro-
duce PDF and PostScript.

In this chapter we made extensive use of QPainter to paint documents, and as
we know from previous chapters, QPainter is also used to paint custom widgets
and graphics. But Qt offers a powerful alternative to QPainter for sophisticated
graphics: the graphics/view architecture, which is the subject of the next
two chapters.

ptg

Creating Graphics/View
Windows

|||||

11
● The Graphics/View Architecture

● Graphics/View Widgets and Layouts

● IntroducingGraphics Items

By reimplementing a custom QWidget subclass’s paintEvent() and using a
QPainter, we can draw anything we want. This is ideal for custom widgets, but
is not at all convenient if we want to draw lots of individual items, especially
if we want to provide the user with the ability to interact with the items. For
example, in the past some users have created graphical applications using lit-
erally thousands of custom widgets to stand as graphical items, and although
widget painting is very fast, handling a single mouse click in such situations
could easily consumealmost thewholeCPU’sprocessing capability. Fortunate-
ly, Qt 4.2 introduced the graphics/view architecture which perfectly fulfills the
need for high-performance item-based drawing and interaction.

Although originally designed as a superior replacement for Qt 3’s QCanvas class,
Qt 4’s graphics/view architecture has gone far beyond the canvas’s functional-
ity. In fact, some applications now use a QGraphicsView as their main window’s
central widget and place all the widgets used to provide the user interface in-
side the view as graphics items in their own right.

In this chapter’s first section we begin with a brief overview of the graph-
ics/view architecture, including a sidebar on some significant changes intro-
duced in Qt 4.6. Then, in the second section, we will review an application
whose main window’s central widget is a QGraphicsView and which has both
widget items and conventional graphics items. And finally, in the chapter’s
third section,wewill look at a simple QGraphicsItem subclass and the QGraphics-
Item API.

In the next chapter we will look at a more conventional graphics/view applica-
tion—a basic drawing program—and there we will look more closely at most
of the graphics/view classes, and will present more examples of how to create
custom graphics items. Incidentally, we will revisit the examples presented in

389

ptg

390 Chapter 11. CreatingGraphics/View Windows

this chapter and the next in Chapter 13 where we create modified versions of
them that make use of some Qt 4.6-specific features.

The Graphics/View Architecture ||||

Rather like Qt’s model/view architecture, the graphics/view architecture has
a non-visual class for holding the item data as a model (QGraphicsScene), and a
class for visualizing the data (QGraphicsView). We can visualize the same scene
in many different views if that is required. A graphics scene contains items
that are derived from the abstract QGraphicsItem class.

Since its original introduction, Qt’s graphics/view architecture has benefited
from a great deal of development effort to improve both its speed and its
capabilities. Scenes can be scaled, rotated, and printed, and rendering can
be done using Qt’s rendering engine or using OpenGL. The architecture also
supports animation and drag and drop. Graphics scenes can be used to present
anything from just a few items up to tens of thousands of items or more.

Qt provides many predefined graphics item types that can be used out of the
box; they are shown in Figure 11.1.Most of the class names are self-explanato-
ry, but we will mention a few that may not be so obvious. A QGraphicsPathItem

represents a QPainterPath—essentially an arbitrary shape that is composed
of all the fundamental things that Qt can draw, including, arcs, Bézier curves,
chords, ellipses, lines, rectangles, and text. A QGraphicsSimpleTextItem repre-
sents a piece of plain text and a QGraphicsTextItem represents a piece of Qt rich
text (which can be specified using HTML;we discussed rich text in the previous
two chapters). The QGraphicsWidget class is provided as a base class for the cre-
ation of custom widgets that are designed to live in graphics scenes. It is also
possible to embed standard QWidget-derived widgets in scenes—this is done by
adding the widget to a QGraphicsProxyWidget and putting the proxy widget into
the scene. Using proxy widgets (or QWidgets directly) is “slow”—but whether
this is noticeable will depend on the application.★ The QGraphicsWebView class
was introduced in Qt 4.6 and provides a graphics item version of the QWebView

class we discussed in Chapter 1, for presenting web content in a scene.

For scenes that have small numbers of items we can use the QGraphicsObjects
introduced in Qt 4.6—or for Qt 4.5 and earlier, we can derive from both QObject

and QGraphicsItem—as the basis for our own custom items. This increases
each item’s overhead (e.g., items consume more memory), but provides the
convenience of support for signals and slots and for Qt’s property system. For
scenes that have lots and lots of items it is usually best to use the lightweight
QGraphicsItem class as the basis for the custom items that will appear in large

★For a discussion of the performance issues of using QWidgets and proxies in scenes, see labs.qt.

nokia.com/blogs/2010/01/11/qt-graphics-and-performance-the-cost-of-convenience.

ptg

The Graphics/View Architecture 391

QGraphicsEllipseItem

QGraphicsPathItem
QAbstractGraphics-

ShapeItem

QGraphicsPolygonItem

QGraphicsItemGroup QGraphicsRectItem

QGraphicsLineItem
QGraphicsSimpleText-

Item

QGraphicsSvgItem

QGraphicsTextItemQGraphicsObject

QGraphicsWidget

QGraphicsProxyWidget

Q
G
r
a
p
h
i
c
s
I
t
e
m

QGraphicsPixmapItem
QGraphicsWebView

Figure 11.1 Qt’s QGraphicsItem hierarchy

numbers, and only use QGraphicsObjects for items that will appear in small
numbers.

The graphics view classes are essentially two-dimensional, although every
item has a z value, with higher z-valued items being drawn in front of those
with lower z values. Collision detection is based on item (x, y) positions. In
addition to information about collisions, the scene can tell us which items
contain a particular point or are in a particular region, and which are selected.
Scenes also have a foreground layer which is useful, for example, to draw a grid
that overlays all the items in the scene; they also have a background layer that
is drawn underneath all the items, useful for providing a background image or
color.

Items are either children of the scene, or a child of another item, rather like
Qt’s normal parent–child widget relationships. When transformations are ap-
plied to an item, they are automatically applied to all the item’s children, re-
cursively to the greatest descendant. Thismeans that if an item ismoved—for
example, dragged by the user—all of its children (and their children, and
so on) will be dragged with it. It is possible to make a child item ignore its
parent’s transformations by calling QGraphicsItem::setFlag(QGraphicsItem::

ItemIgnoresTransformations). Other,more commonly used flags include ones for
making an item movable, selectable, and focusable by the user. (All the flags
are listed in Tables 11.6 and 11.7; ➤ 406–407.) Items can also be grouped by
making them children of a QGraphicsItemGroup; this is useful for creating ad hoc
collections of items.

ptg

392 Chapter 11. CreatingGraphics/View Windows

(0, 0)

(0, 0)

(width, height)

(width, height)

e
Scene

Viewport

Item #1

Ite
m

#2

Text Item

0

(0
, 0

)

(0, 0)

(0, 0)

Figure 11.2 Graphics items use local logical coordinates

The graphics view classes use three different coordinate systems, although in
practicewe usually care about only two of them. Viewsuse the physical coordi-
nate system. Scenesuse a logical coordinate system thatwenormally defineby
passing a QRectF to their constructor. Qt automatically maps scene coordinates
to view coordinates. In essence, scenes use “window” (logical) coordinates and
views use “viewport” (physical) coordinates. So, when we are positioning items
we place them in terms of scene coordinates. The third coordinate system is
the one used by items. This is particularly convenient because it is a logical
coordinate system centered on point (0, 0). Each item’s (0, 0) is actually at the
item’s center position in the scene (apart from text items where it is the item’s
top-left corner).Thismeans that in practice,we can alwaysdraw items in terms
of their own center point—and we do not have to care about any transforma-
tions that have been applied to them by parent items, since the scenewill auto-
matically take care of these for us. Note also that in Qt, y-coordinates increase
downward—for example, point (5, 8) is 6 pixels above point (5, 14). Figure 11.2
illustrates the relationship between scene and item coordinates.

Certain aspects of Qt’s graphics/view architecture’s behavior have changed
between Qt 4.5 and Qt 4.6; these are summarized in the “Qt 4.6 Graphics/View
Behavior Changes” sidebar (➤ 393).

Graphics/View Widgets and Layouts ||||

In this section we will review the Petri Dish application (petridish1) shown in
Figure 11.3. The application has a MainWindow class that inherits QMainWindow

and uses a QGraphicsView as its central widget. Petri Dish is a dialog-style sim-
ulation application that simulates “cells” that grow if they aren’t too crowded,
but shrink if they are too isolated, too crowded,or too big, andwhere small cells
randomly “die”. We won’t say much more about the simulation itself, or about
the application’s logic, since the focus of this chapter is Qt’s graphics/view ar-
chitecture.

ptg

Graphics/View Widgets and Layouts 393

Qt 4.6 Graphics/View Behavior Changes

The graphics/view classes underwent considerable development between
Qt 4.5 and Qt 4.6, resulting in greatly improved performance. One conse-
quence of these under the hood changes is that certain user-visible behav-
ior changes were necessary to allow for the best possible optimizations to be
achieved. The key behavior changes are as follows:

• QStyleOptionGraphicsItem’s public variable, exposedRect of type QRectF,
holds the item’s exposed rectangle in item coordinates. However, this
variable is only ever set for graphics items that have the ItemUses-

ExtendedStyleOption flag set.

• QStyleOptionGraphicsItem’s levelOfDetail and matrix variables are both
obsolete. The correct Qt 4.6 way to get the level of detail is to use the
static QStyleOptionGraphicsItem::levelOfDetailFromTransform()method.

• QGraphicsView no longer calls QGraphicsView::drawItems() or QGraphics-

View::drawItem()—unless you set the QGraphicsView::IndirectPainting

“optimization” flag (which is not recommended).

• QGraphicsItem no longer calls itemChange() for position and transforma-
tion changes. To be notified of these changes, set the QGraphicsItem::

ItemSendsGeometryChanges flag. (This flag is already set by default for
QGraphicsWidgets and for QGraphicsProxyWidgets.)

Even with the ItemSendsGeometryChanges flag set, when transformations
are made, itemChange() is only called if setTransform() is used. From
Qt 4.7 it is expected that if the flag is set, itemChange() will also be
called if setRotation(), setScale(), or setTransformOriginPoint() (all
introduced in Qt 4.6) are called.

How much—or even whether—these changes will affect any particular
application depends on what graphics/view features the application uses.
In the case of the examples presented in this book, the next chapter’s Page
Designer application was affected by the last behavior change listed above.

Here wewill review the relevantmain windowmethods (or extracts from these
methods) to show how to create a main window based on a graphics scene. And
in the next section we will look at the Cell items (derived from QGraphicsItem),
focusing on the basics of creating a custom graphics item and introducing the
QGraphicsItem API without looking at the irrelevant simulation logic. (The
source code is in the petridish1 subdirectory.)

The application has start, pause/resume, stop, and quit buttons to control the
simulation, and the user can set an initial cell count and whether to show cell
IDs—which is useful for cells that are otherwise too small to see. (The initial
cell count is disabled during a simulation run, as the screenshot illustrates.)

ptg

394 Chapter 11. CreatingGraphics/View Windows

Figure 11.3 The Petri Dish application

The user interface uses a couple of QLCDNumbers to show howmany cells are left
and how many iterations the simulation has run for.

We will begin by looking at the main window’s constructor, and then at some
of the helper methods that are relevant to the graphics/view programming we
are concerned with here.

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), simulationState(Stopped), iterations(0)

{

scene = new QGraphicsScene(this);

scene->setItemIndexMethod(QGraphicsScene::NoIndex);

createWidgets();

createProxyWidgets();

createLayout();

createCentralWidget();

createConnections();

startButton->setFocus();

setWindowTitle(QApplication::applicationName());

}

The creation of the QGraphicsScene is slightly unusual since we have not spec-
ified the scene’s dimensions. Although we know the height we need (high
enough for the petri dish plus some margin), the width depends on how wide
the widgets are, so we will set the dimensions once the widgets have been cre-
ated and laid out.

ptg

Graphics/View Widgets and Layouts 395

When items are added,moved, or removed from a scene, location computations
are required. For example, if an item is added in a visible portion of the scene
it must be drawn, or if a visible item is moved or removed, whatever it had
covered and is now revealed must be drawn. For scenes with lots of static
items these computations can be considerably speeded up by using an index
method of QGraphicsScene::BspTreeIndex (Binary Space Partitioning); but for
highly dynamic sceneswith lots of items added,moved, or removed, it is better
to switch off indexing (as we do here), since the overhead of using it outweighs
the savings it delivers.

In common with our coding style throughout the book, we call helper methods
in the constructor to perform most of the widget’s initialization. Since we are
using a graphics scene for the main window’s central widget, all of the helpers
are relevant, so we will show and discuss them all (but omitting repetitive code
where possible).

void MainWindow::createWidgets()

{

startButton = new QPushButton(tr("St&art"));

pauseOrResumeButton = new QPushButton(tr("Pa&use"));

pauseOrResumeButton->setEnabled(false);

stopButton = new QPushButton(tr("Stop"));

quitButton = new QPushButton(tr("Quit"));

QString styleSheet("background-color: bisque;");

initialCountLabel = new QLabel(tr("Initial count:"));

initialCountLabel->setStyleSheet(styleSheet);
···
AQP::accelerateWidgets(QList<QWidget*>() << startButton

<< stopButton << quitButton << initialCountLabel

<< showIdsCheckBox);
}

The application uses standard QWidgets, and their creation holds no surprises.
The only slightly unusual thing we have done is to provide the widgets (not
including the push buttons) with a style sheet that provides a uniform back-
ground color. The push buttons are not given style sheets because we prefer
them to retain their platform- and theme-specific look.

void MainWindow::createProxyWidgets()

{

proxyForName["startButton"] = scene->addWidget(startButton);

proxyForName["pauseOrResumeButton"] = scene->addWidget(

pauseOrResumeButton);
···

}

ptg

396 Chapter 11. CreatingGraphics/View Windows

All the widgets must be added to the scene since the scene’s view is the main
window’s central widget. We could easily have adopted a different approach—
for example, using a plain QWidget as the central widget, and giving the widget
a QHBoxLayout, with this layout having a QVBoxLayout holding the buttons, then
the QGraphicsView, and then another QVBoxLayout holding the otherwidgets. But
just to show that it can be done, we have chosen to use the QGraphicsView itself
as the central widget and to put all the other widgets, as well as the graphics
items, inside it.

The way to add standard QWidgets to a scene is to create a QGraphicsProxyWidget

for each QWidget, and add the proxy to the scene. In this method we use the
QGraphicsScene::addWidget()method which creates a QGraphicsProxyWidget that
represents the widget it is passed as argument, and returns a pointer to the
proxy widget as its result. For convenience, we keep a hash whose keys are
widget names and whose values are proxy widget pointers, and add each proxy
we create to the hash. (The hash is declared in the header file as QHash<QString,
QGraphicsProxyWidget*> proxyForName;.)

Once the widgets and their proxies have been created we can lay them out.
Thisworks in a similar way to using Qt’s standard layouts, except thatwemust
use graphics-scene-specific layout classes. We will look at the createLayout()

method in two parts, first looking at the creation of the layouts, and second
looking at the setting of the scene’s dimensions.

const int DishSize = 350;

const int Margin = 20;

void MainWindow::createLayout()

{

QGraphicsLinearLayout *leftLayout = new QGraphicsLinearLayout(

Qt::Vertical);

leftLayout->addItem(proxyForName["startButton"]);

leftLayout->addItem(proxyForName["pauseOrResumeButton"]);

leftLayout->addItem(proxyForName["stopButton"]);

leftLayout->addItem(proxyForName["quitButton"]);

QGraphicsLinearLayout *rightLayout = new QGraphicsLinearLayout(

Qt::Vertical);

foreach (const QString &name, QStringList()

<< "initialCountLabel" << "initialCountSpinBox"

<< "currentCountLabel" << "currentCountLCD"

<< "iterationsLabel" << "iterationsLCD"

<< "showIdsCheckBox")

rightLayout->addItem(proxyForName[name]);

QGraphicsLinearLayout *layout = new QGraphicsLinearLayout;

layout->addItem(leftLayout);

layout->setItemSpacing(0, DishSize + Margin);

ptg

Graphics/View Widgets and Layouts 397

layout->addItem(rightLayout);

QGraphicsWidget *widget = new QGraphicsWidget;

widget->setLayout(layout);

scene->addItem(widget);

The QGraphicsLinearLayout class is a graphics/view layout class that corre-
sponds to the QBoxLayout class from which the QHBoxLayout and QVBoxLayout

classes are derived. The APIs are very similar, except that instead of adding
widgets using QBoxLayout::addWidget(), we use QGraphicsLinearLayout::add-

Item(). This method adds a QGraphicsLayoutItem (which is one of QGraphicsWid-

get’s—and therefore QGraphicsProxyWidget’s—base classes) to the layout. There
is also a QGraphicsGridLayout class that corresponds to the QGridLayout class.
And Qt 4.6 introduced the QGraphicsAnchorLayout class which implements a
novel approach to layouts not seen in Qt before, based on positioning widgets
relative to each other, and to the edges and corners of the rectangle the layout
occupies.

Layout

leftLayout

startButton

pauseOrResumeButton

stopButton

quitButton

← Spacing→

rightLayout

initialCountLabel

initialCountSpinBox

currentCountLabel

currentCountLCD

iterationsLabel

iterationsLCD

showIdsCheckBox

Figure 11.4 The Petri Dish’s main window layout

In thismethod we create three QGraphicsLinearLayouts. The first layout is used
to provide a vertical column of the buttons’ proxy widgets on the left, and the
second is used to provide a vertical column of proxy widgets on the right. The
third is used to provide an overall horizontal layout which contains the left
layout, a spacer (to provide room for the petri dish itself), and the right layout.
The layout is shown schematically in Figure 11.4.

Once we have created the layouts, we create a new “blank” QGraphicsWidget.
This class has no visual representation of itself and is specifically designed
both to serve as a base class for custom graphics/view widgets and for the
purpose we put it to here—to contain one or more child widgets organized

ptg

398 Chapter 11. CreatingGraphics/View Windows

into a layout. After creating the widget, we set the overall layout on it, and
add the widget to the scene. As a result, all the layouts and proxy widgets are
reparented—for example, the proxy widgets as children of the scene. (The
widgets are reparented to their proxies during the QGraphicsScene::addWidget()
calls.)

int width = qRound(layout->preferredWidth());

int height = DishSize + (2 * Margin);

setMinimumSize(width, height);

scene->setSceneRect(0, 0, width, height);
}

We set the scene to be wide enough to show the layout at its preferred width,
and tall enough to display the petri dish with some vertical margin. We also
set the main window’s minimum size so that it can never be shrunk too small
to properly show the petri dish and the widgets.

void MainWindow::createCentralWidget()

{

dishItem = new QGraphicsEllipseItem;

dishItem->setFlags(QGraphicsItem::ItemClipsChildrenToShape);

dishItem->setPen(QPen(QColor("brown"), 2.5));

dishItem->setBrush(Qt::white);

dishItem->setRect(pauseOrResumeButton->width() + Margin,

Margin, DishSize, DishSize);

scene->addItem(dishItem);

view = new QGraphicsView(scene);

view->setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

view->setBackgroundBrush(QColor("bisque"));

setCentralWidget(view);

}

Once we have created the scene and populated it with widgets (or rather, with
widget proxies), this method is called to create the petri dish and the view to
complete the setting up of the application’s appearance.

We begin by creating a new graphics ellipse item—although in this case it will
be a circle since wemake its width and height the same. We set the item to clip
its children. All the simulated cells are created as children of the petri dish, so
this ensures that any cells that are outside the petri dish’s area are not shown,
and that any cells that straddle the dish’s border only have that portion of
themselves that is within the border drawn. We set the petri dish’s rectangle
to have an x-coordinate that is the width of one of the buttons in the left-hand
layout plus some margin, and its y-coordinate to allow a little margin above it.
Once the dish item has been created, we add it to the scene.

ptg

Graphics/View Widgets and Layouts 399

We create a standard QGraphicsView with antialiasing switched on and using
the same background color as we set in the style sheet for some of the widgets.
We thenmake the view themainwindow’s centralwidget,and the application’s
appearance is complete.

Structurally, using the graphics/view architecture to provide a main window’s
widgets is not so very different from the more conventional approach. The
only significant differences are that we must create and add proxy widgets for
the actual widgets, and that wemust use graphics/view-specific layouts rather
than the standard layout classes. Of course, if we wanted to use QGraphicsWid-
get subclasses there would be no need to create proxies for them, since we can
add these directly into a scene. (At the time of this writing the only QGraphics-

Widget subclass besides QGraphicsProxyWidget is QGraphicsWebView, although we
can freely create our own QGraphicsWidget subclasses if we wish.)

void MainWindow::createConnections()

{

connect(startButton, SIGNAL(clicked()), this, SLOT(start()));

connect(pauseOrResumeButton, SIGNAL(clicked()),

this, SLOT(pauseOrResume()));

connect(stopButton, SIGNAL(clicked()), this, SLOT(stop()));

connect(quitButton, SIGNAL(clicked()), this, SLOT(close()));

connect(showIdsCheckBox, SIGNAL(toggled(bool)),

this, SLOT(showIds(bool)));

}

This method is just like those we have seen many times in earlier chapters,
with connections being made from the (actual) widgets’ clicked() signals to
corresponding slots. It isn’t relevant to graphics/view programming as such,
but is presented here to provide a contrast with the Qt 4.6 version of the exam-
ple shown in Chapter 13which uses a QStateMachine to control the application’s
behavior, and as a result has fewer slots and simpler logic.

Introducing Graphics Items ||||

The QGraphicsItem class is the base class for all graphics items. Although the
class provides a prodigious number of methods—over two hundred in Qt 4.6—
it cannot be instantiated because it has two pure virtual methods: bounding-
Rect() and paint(). The paint() method corresponds to QWidget::paintEvent(),
and must be reimplemented to paint the item. The boundingRect() method
gives the graphics/view architecture a bounding rectangle for the item—this is
used for collision detection and to ensure that the item is only repainted if it is
visible in a QGraphicsView’s viewport.

ptg

400 Chapter 11. CreatingGraphics/View Windows

If we are creating non-rectangular custom graphics items, it is best to also
reimplement the shape() method. This method returns a QPainterPath that
precisely describes the item’s outline. This is useful for accurate collision and
mouse click detection.

There are many virtual methods that can be reimplemented, including ad-

vance(), boundingRect(), collidesWithItem(), collidesWithPath(), contains(),
isObscuredBy(), opaqueArea(), paint(), shape(), and type(). All the protected

methods (except for prepareGeometryChange()) are also virtual, so all the graph-
ics item event handlers (including contextMenuEvent(), keyPressEvent, and the
mouse events) can be reimplemented. All these are very briefly described in
Tables 11.1 through 11.4 (➤ 403–406).

If we want a custom shape it is easiest to use one of the standard QGraphics-

Item subclasses, such as QGraphicsPathItem or QGraphicsPolygonItem. And if we
also want the shape to have custom behavior, we can subclass the item and
reimplement some of the protected event handlers such as keyPressEvent()

and mousePressEvent(). If we simply prefer to do our own painting, we can sub-
class QGraphicsItem directly and reimplement the boundingRect(), paint(), and
shape() methods, plus any event handlers needed to provide the behaviors we
want. And for all QGraphicsItem subclasses it is best to provide a Type enum and
reimplement the type() method as we will discuss in a moment.

Here we will briefly review the pure graphics/view aspects of the Petri Dish
application’s Cell class, a direct QGraphicsItem subclass. We will start with the
definition in the header file, but omit the private section.

class Cell : public QGraphicsItem

{

public:

enum {Type = UserType + 1};

explicit Cell(int id, QGraphicsItem *parent=0);

QRectF boundingRect() const { return m_path.boundingRect(); }

QPainterPath shape() const { return m_path; }

void paint(QPainter *painter,

const QStyleOptionGraphicsItem *option, QWidget *widget);

int type() const { return Type; }
···

};

Although it is not mandatory to reimplement the type() method or to provide
a Type enum, we recommend supplying both for every custom graphics item
subclass. This makes it easy to uniquely identify each of our custom graphics
items’ types, and alsomeans that they will work with qgraphicsitem_cast<>()—
which casts QGraphicsItem pointers to the correct QGraphicsItem subclass. (The
qgraphicsitem_cast<>() function only supports casts from QGraphicsItem point-

ptg

IntroducingGraphics Items 401

ers to subclasses, not from subclasses back to QGraphicsItem pointers. For casts
back to QGraphicsItem pointers we must use other techniques. We will discuss
graphics item casts further in the next chapter;➤ 423.)

In this particular example, we have a private member variable, m_path of type
QPainterPath (which changes shape dynamically as the simulation progresses).
Sincewe have this path,we are able to use it to supply both the item’sbounding
rectangle and its shape. Note, though, that computing a bounding rectangle
from a painter path is not particularly fast, although it is quick enough for the
Petri Dish application. Other applications that use a painter path in this way
might benefit from caching the path’s bounding rectangle.

The shape() method is trivial to implement since, as we will see in a moment,
the path is painted with no pen, only a brush. If we were painting a path with
a pen—say a doughnut-shaped item produced by using a path that was an
ellipse and using a big pen—then the returned shape would not be accurate
since it would not account for the thickness of the outline. Thismeans that the
user might click the outline to no effect because it is “outside” the ellipse. In
such cases we could create a QPainterPathStroker, set its pen-related methods
(setWidth(), setJoinStyle(), etc.), and then call QPainterPathStroker::create-

Stroke(), giving it the painter path as argument. The createStroke() method’s
return value is a new painter path that is an outline of the original path but
using the pen-related settings we set.

For the Cell, all the constructor (not shown) does, is to set a brush and an initial
size and to call a private method (also not shown) to create the initial shape.
Thismakes the paint()methodmuch simpler than it would otherwise be, since
it only has to paint the path—and optionally an item ID.

void Cell::paint(QPainter *painter,

const QStyleOptionGraphicsItem *option, QWidget*)

{

painter->setPen(Qt::NoPen);

painter->setBrush(m_brush);

painter->drawPath(m_path);

if (s_showIds) {

QPointF center = m_path.boundingRect().center();

QString id = QString::number(m_id);

center.setX(center.x() - (option->fontMetrics.width(id) / 2));

center.setY(center.y() + (option->fontMetrics.height() / 4));

painter->setPen(QPen());

painter->drawText(center, id);

}

}

We begin by setting up the painter’s pen (Qt::NoPen means no outline will be
drawn), and its brush, and then we draw the cell’s path. (The Cell class also

ptg

402 Chapter 11. CreatingGraphics/View Windows

has a Boolean static variable, s_showIds, with some static accessors, and an ID
member variable—m_id of type int—none of which are shown.) If the item’s
ID is to be shown we find the center of the path and draw the ID horizontally
centered and vertically a quarter of the way down from the top using a QPen().
Thedefault QPen constructorproducesa cosmeticpenwith a black solid line that
is 1 pixel wide. A pen is described as cosmetic if it ignores transformations.

The QStyleOptionGraphicsItem* parameter holds, for example, the item’s
exposed rectangle, font metrics—which is what we have used it for here—and
palette. The QWidget* parameter is rarely used.

The paint()method’s implementation is fast enough for the Petri Dish applica-
tion,but it is far fromoptimal. It probably isn’tworth caching thepath’sbound-
ing rectangle in this case because Cells shrink or grow at every iteration of the
simulation. But cell IDs never change, so we could trade a tiny bit of memory
for speed and keep a private member variable, m_idString of type QString, that
we would create in the constructor—this will avoid using QString::number() in
the paint()methodwhich allocatesmemory every time it is called. Computing
the font metrics width and height is also slow; we could easily calculate these
in the constructor and cache the results. As a rule of thumb it is probably
best to just get the painting working, and then, if it turns out to be too slow,
start finding things that can be cached. Naturally, it is best to benchmark any
changes, just to be sure that the hoped-for benefits really are achieved.

The Cell class does not reimplement any event handlers, nor does it set any
flags (such as ItemIsMovable or ItemIsSelectable), so it is not possible for users
to interact directly with Cell items. Wewill see exampleswhere these flags are
set and where event handlers are implemented in the following chapter. The
end of this chapter is devoted to tables summarizing the QGraphicsItemAPI.Ta-
bles 11.1 through 11.4 (➤ 403–406) summarize the QGraphicsItem class’s meth-
ods, and Tables 11.5 through 11.7 (➤ 406–407) summarize the most important
enums used by the methods.

We have now finished our review of the Petri Dish application, and of the
QGraphicsItem API. There are a few details of minor interest in the example’s
source code that we haven’t covered. For example, after each iteration we use
a single shot timer to initiate the next iteration—we can’t use a QTimer with a
fixed time interval since the time it takes to perform the computations in each
iteration varies. Also, we make the entire window slightly transparent when
the application is paused, an effect that seems to work best on Windows.

In the next chapter we will look at an application that makes more conven-
tional use of the graphics/view architecture, and see more examples of how to
create custom graphics items, as well as covering how to save and load scenes
to and from files, and how to manipulate items in scenes—for example, trans-
forming them, and copying, cutting, and pasting them.

ptg

Chapter 11. CreatingGraphics/View Windows 403

Table 11.1 The QGraphicsItemAPI (Selected Methods) #1

Method Description

advance() Reimplement to do animations; other
approaches can also be used (see, for
example, Chapters 12 and 13)

boundingRect() Reimplement to return the item’s
bounding rectangle in item coordinates; see
sceneBoundingRect() and shape()

childItems() Returns a list of the item’s immediate
children (Qt 4.4)

collidesWithItem(

QGraphicsItem*,

Qt::ItemSelectionMode)

Returns true if this item collides with the
given item according to the mode; see the
Qt::ItemSelectionMode enum (➤ 406)

collidesWithPath(

QPainterPath,

Qt::ItemSelectionMode)

Returns true if this item collides with the
given path according to the mode

collidingItems(

Qt::ItemSelectionMode)

Returns a list of all the items this item
collides with according to the mode

contains(QPointF) Returns true if the point is within this item

ensureVisible() Forces any QGraphicsViews associated with
the scene containing this item to scroll if
necessary to show this item

group() Returns the QGraphicsItemGroup this item
belongs to or 0 if it doesn’t belong to one

hide() Hides this item; see show() and
setVisible()

isObscuredBy(QGraphicsItem*) Returns true if this item’s bounding
rectangle is completely obscured by the
shape of the given non-transparent item

isSelected() Returns true if this item is selected; see
setSelected()

isVisible() Returns true if this item is logically visible
(even if it is fully obscured or is outside the
view’s viewport)

keyPressEvent(QKeyEvent*) Reimplement this to handle key presses
on the item—it will only be called if the
ItemIsFocusable flag is set

mouseDoubleClickEvent(

QGraphicsSceneMouseEvent*)

Reimplement this to handle double clicks

ptg

404 Chapter 11. CreatingGraphics/View Windows

Table 11.2 The QGraphicsItemAPI (Selected Methods) #2

Method Description

mouseMoveEvent(

QGraphicsSceneMouseEvent*)

Reimplement this to handle mouse moves

mousePressEvent(

QGraphicsSceneMouseEvent*)

Reimplement this to handle mouse presses

moveBy(qreal, qreal) Moves the item by the given amounts
horizontally and vertically

opaqueArea() Reimplement this to return a painter path
that shows where the item is opaque, as
used by isObscuredBy()

paint(QPainter*,

QStyleOptionGraphicsItem*,

QWidget*)

Reimplement this to paint the item; see also
boundingRect() and shape()

parentItem() Returns the item’s parent item or 0

pos() Returns the item’s position in its parent’s
coordinates—or in scene coordinates if it
has no parent; see scenePos()

prepareGeometryChange() Thismethodmust be called before changing
an item’s bounding rectangle; it will
automatically call update()

resetTransform() Resets the item’s transformation matrix to
the identity matrix, thus eliminating any
rotation, scaling, or shearing

rotation() Returns the item’s rotation in degrees
(-360.0°, 360.0°); the default is 0.0° (Qt 4.6)

scale() Returns the item’s scale factor; the default is
1.0, that is, unscaled (Qt 4.6)

scene() Returns the scene that the item belongs to
or 0 if it hasn’t been added to a scene

sceneBoundingRect() Returns the item’s bounding rectangle in
scene coordinates; see boundingRect()

scenePos() Returns the item’s position in scene
coordinates—this is the same as pos() for
items with no parent

setFlag(GraphicsItemFlag,

bool)

Sets the flag on or off according to the
Boolean (default on)

setFlags(

GraphicsItemFlags)

Sets the OR-ed flags on; see
the QGraphicsItem::GraphicsItemFlag enum

(➤ 406)

ptg

Chapter 11. CreatingGraphics/View Windows 405

Table 11.3 The QGraphicsItemAPI (Selected Methods) #3

Method Description

setGraphicsEffect(

QGraphicsEffect*)

Sets the given graphics effect on the item
(deleting any previous one); these include
QGraphicsBlurEffect, QGraphicsDropShadowEffect,
and QGraphicsOpacityEffect (Qt 4.6)

setGroup(

QGraphicsItemGroup*)

Adds this item to the given group

setParentItem(

QGraphicsItem*)

Sets (or changes) the item’s parent to the given
item

setPos(QPointF) Sets the item’s position in parent coordinates;
there is also an overload that takes two qreals

setRotation(qreal) Sets the item’s rotation to the given number of
degrees (-360.0°, 360.0°) (Qt 4.6)

setScale(qreal) Scales the item; 1.0 means unscaled (Qt 4.6)

setSelected(bool) Selects or deselects the item depending on the
Boolean

setToolTip(QString) Sets a tooltip for the item

setTransform(

QTransform,

bool)

Sets the item’s transformation matrix to the
given one; or combines it with the given one if
the Boolean is true (Qt 4.3); there is also a rather
different setTransformations() method

setVisible(bool) Hides or shows the item depending on the given
Boolean

setX(qreal) Sets the item’s x position in its parent’s
coordinates (Qt 4.6)

setY(qreal) Sets the item’s y position in its parent’s
coordinates (Qt 4.6)

setZValue(qreal) Sets the item’s z value

shape() Reimplement this to return a painter path
describing the exact shape of the item; see
boundingRect() and paint()

show() Shows the item; see hide() and setVisible()

toolTip() Returns the item’s tooltip

transform() Returns the item’s transformationmatrix; there is
also a transformations() method

type() Returns the item’s QGraphicsItem::Type as an int;
custom QGraphicsItem subclasses should normally
reimplement this and provide a Type enum

ptg

406 Chapter 11. CreatingGraphics/View Windows

Table 11.4 The QGraphicsItemAPI (Selected Methods) #4

Method Description

update() Schedules a paint event for the item

x() Returns the item’s x position in its parent’s coordinates

y() Returns the item’s y position in its parent’s coordinates

zValue() Returns the item’s z value

Table 11.5 The Qt::ItemSelectionMode enum

enum Description

Qt::ContainsItemShape Select items whose shape is completely
within the selection area

Qt::IntersectsItemShape Select items whose shape is within or
intersects the selection area

Qt::ContainsItemBoundingRect Select items whose bounding rectangle is
completely within the selection area

Qt::IntersectsItemBoundingRect Select items whose bounding rectangle is
within or intersects the selection area

Table 11.6 The QGraphicsItem::GraphicsItemFlag enum #1

enum Description

QGraphicsItem::

ItemAcceptsInputMethod

The item supports input methods (Qt 4.6)

QGraphicsItem::

ItemClipsChildrenToShape

The item clips all its children (recursively) to its
own shape (Qt 4.3)

QGraphicsItem::

ItemClipsToShape

The item is clipped to its own shape regardless of
how it is painted; nor can it receive events (e.g.,
mouse clicks) outside of its shape (Qt 4.3)

QGraphicsItem::

ItemDoesntPropagate-

OpacityToChildren

The item does not propagate its opacity to its
children (Qt 4.5)

QGraphicsItem::

ItemHasNoContents

The item does not paint anything (Qt 4.6)

QGraphicsItem::

ItemIgnoresParent-

Opacity

The item’s opacity is whatever it has been set
to rather than combined with that of its parent
(Qt 4.5)

ptg

Chapter 11. CreatingGraphics/View Windows 407

Table 11.7 The QGraphicsItem::GraphicsItemFlag enum #2

enum Description

QGraphicsItem::

ItemIgnores-

Transformations

The item ignores transformations applied to its parent
(although its position is still tied to its parent);useful for
items that are used as text labels (Qt 4.3)

QGraphicsItem::

ItemIsFocusable

The item accepts key presses

QGraphicsItem::

ItemIsMovable

The item (and its children, recursively) can bemoved by
being clicked and dragged

QGraphicsItem::

ItemIsPanel

The item is a panel (Qt 4.6); see the online
documentation for more about panels

QGraphicsItem::

ItemIsSelectable

The item can be selected by clicking, by rubber
band dragging, or if it is in the region affected by a
QGraphicsScene::setSelectionArea() call

QGraphicsItem::

ItemNegativeZ-

StacksBehindParent

The item automatically stacks behind its parent if its z
value is negative

QGraphicsItem::

ItemSends-

GeometryChanges

The item calls itemChange() for changes of position
and for transformations (Qt 4.6); see also the “Qt 4.6
Graphics/View Behavior Changes” sidebar (393 ➤)

QGraphicsItem::

ItemSendsScene-

PositionChanges

The item calls itemChange() for position changes
(Qt 4.6)

QGraphicsItem::

ItemStacks-

BehindParent

The item is stacked behind its parent rather than in
front (which is the default); useful for creating drop
shadows

QGraphicsItem::

ItemUsesExtended-

StyleOption

This gives the item access to additional
QStyleOptionGraphicsItem attributes

ptg

This page intentionally left blank

ptg

Creating Graphics/View
Scenes

|||||

12
● Scenes, Items, and Actions

● EnhancingQGraphicsView

● Creating a Dock Widget Toolbox

● CreatingCustomGraphics Items

In this chapter we will look at a conventional application that makes use of
Qt’s graphics/view architecture. The program is a basic drawing application
that shows how to create various kinds of custom items and how to save and
load graphics items using a custom file format. The application’s implemen-
tation also shows how to provide the user with the means to add items to a
scene, change their properties (including those of groups of selected items),
and remove items. Considered together, this example and the one shown in the
previous chapter cover a lot of the features and functionality provided by the
graphics/view architecture—although by no means all of it. Nonetheless, this
chapter and the previous one should provide a solid foundation for learning
more and for developing your own graphics/view applications. Incidentally, as
we mentioned in the previous chapter, we will revisit both these examples in
Chapter 13 where we create modified versions of them that make use of some
Qt 4.6-specific features.

In this chapter we will review the Page Designer application (pagedesigner1).
This is by far the largest and most “complete” example presented in the book,
weighing in at nearly 3300 lines of code. Even so, Page Designer is still only
a bare bones application and lacks many useful features. However, it is more
than adequate to serve its primary purpose of showing key graphics/view
features. The application is shown in action in Figure 12.1.

Page Designer is a standard main window-style application, and uses dock
widgets to present three “toolboxes”, one for transformations, one for setting
the brush (fill), and one for setting the pen (outline). The application has all
the standard Filemenu options:New,Open…,Save,Save As…,Export… (in pixmap
or SVG formats), Print…, and Quit. And particularly relevant to graphics/view
programming, the application has an Edit menu that offers Edit Selected Item…
(which will call an item’s custom edit() slot if it has one, e.g., to pop up an item-
specific context menu or dialog),Add Text… (for adding a rich text item),Add Box

409

ptg

410 Chapter 12. CreatingGraphics/View Scenes

Figure 12.1 The Page Designer application

(for adding a resizable rectangle), and Add Smiley (for adding an application-
specific custom item with a non-rectangular shape). In addition, the Edit menu
offers the usual Cut,Copy, and Paste options, and also an Alignment submenu (for
lining up two ormore selected items in relation to each other), and a convenient
Clear Transformations option to reset the selected items’ rotation and shears to 0.
The application also has a View menu through which the user can zoom in or
out and show or hide the guideline grid. Most of the menu options are also
accessible via toolbar buttons.

Although the application provides only three kinds of graphics items (text, box,
and smiley), between them, these represent all the kinds of graphics items that
are needed in a drawing program. For example, the code relating to box items
can serve as an example for adding any other standard shaped items, and the
smiley-related code can serve for adding any other custom shaped items.

When an individual item is selected (e.g., by clicking it), the toolboxes are up-
dated to reflect the item’sangle, shears,brush,and pen settings. PageDesigner
also supports some operations on groups of selected items. (The QGraphicsView

class supports the selection of items by Ctrl+Clicking them, or +Clicking on
Mac OS X. It is also possible—as we will see later—to switch on rubber band
selection where everything in or touching the rubber band’s rectangle is select-
ed.) For example, all the selected items can be cut, copied, deleted, or aligned
in relation to each other. Similarly, clearing or setting transformations, and
setting the brush and pen, are applied to the selected item or items.

ptg

Scenes, Items, and Actions 411

In this chapter’s sectionswewill look at the application’s overall infrastructure
to give an overview of how it works—including saving and loading scenes—
and then we will look at various graphics/view-related aspects in more detail.
First, we will begin with the application’s main window.

Scenes, Items, and Actions ||||

The application’s main window has a private slot for each of the File, Edit, and
View menus’ actions. It also has many private helper methods. Here we will
begin by looking at themainwindow’sprivate data (but excluding the QActions)
to provide some context.

private:
···
TransformWidget *transformWidget;

BrushWidget *brushWidget;

PenWidget *penWidget;

QPrinter *printer;

QGraphicsScene *scene;

GraphicsView *view;

QGraphicsItemGroup *gridGroup;

QPoint previousPoint;

int addOffset;

int pasteOffset;
};

The three custom widgets are the toolboxes held in the application’s dock wid-
gets. We keep pointers to them because whenever a new item is added to the
scene we connect it to the relevant toolboxes so that when an item is selected,
its properties (such as its brush and pen) are reflected into the toolboxes. We
will review one of these widgets in a later section (➤ 440).

We keep a pointer to a QPrinter so that each time the user prints, the settings
from the previous printing are retained for the user’s convenience. When a
QPrinter is constructed, it starts with sensible defaults—for example, using
U.S. Letter size in the U.S. or A4 size in Europe.

Rather than setting the guideline grid as a background we have chosen to cre-
ate it out of graphics items. This is really just to show how to use a QGraphics-

ItemGroup and how to be selective in what items we save, print, and export.

We will discuss the previousPoint and the addOffset and pasteOffset when we
cover the code that uses them.

There is no filename string—instead we store the filename using setWindow-

FilePath(). This method puts the filename in the window’s title bar (so long as

ptg

412 Chapter 12. CreatingGraphics/View Scenes

we don’t use setWindowTitle()), in a platform-appropriate way—for example,
showing just the name and not the path—along with the application’s name.
For this method to be used sensibly we must have called QApplication::set-

ApplicationName(), typically in main(). Whenever we need the filename, we can
retrieve it using windowFilePath()—for new files we will get back "Unnamed", as-
suming we set this string in the fileNew() method.

For the rest of the main window, we will look at the (interesting) code in the
following subsections, starting with the main window’s constructor and some
of its helper methods.

Creating the Main Window |||

As with most small to medium-sized Qt applications, the main window is at
the heart of things. And as usual, the main window’s constructor is where
the user interface is created—both in terms of its appearance, and in terms of
its behaviors.

const int OffsetIncrement = 5;

const QString ShowGrid("ShowGrid");

const QString MostRecentFile("MostRecentFile");

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), gridGroup(0), addOffset(OffsetIncrement),

pasteOffset(OffsetIncrement)

{

printer = new QPrinter(QPrinter::HighResolution);

createSceneAndView();

createActions();

createMenusAndToolBars();

createDockWidgets();

createConnections();

QSettings settings;

viewShowGridAction->setChecked(

settings.value(ShowGrid, true).toBool());

QString filename = settings.value(MostRecentFile).toString();

if (filename.isEmpty() || filename == tr("Unnamed"))

QTimer::singleShot(0, this, SLOT(fileNew()));

else {

setWindowFilePath(filename);

QTimer::singleShot(0, this, SLOT(loadFile()));

}

}

ptg

Scenes, Items, and Actions 413

The constructor begins by setting some variables that we will discusswhen we
make use of them later on. It then creates a printer—the printer’s page size is
used as the basis for the main window’s initial size in the reimplemented size-

Hint() method (not shown).The rest of the user interface setup is offloaded on-
to various helper methods, in a style that should be very familiar by now. The
createActions(), createMenusAndToolBars(), and createConnections() methods
all follow the same patterns that we have seen many times before, so we won’t
quote them here. (As always, the source code is available in the book’s exam-
ples, in this case in the pagedesigner1 subdirectory.)

We start with the guideline grid shown or hidden depending on how it was set
the last time the application was run—defaulting to shown if this is the very
first run. Wewill cover the private custom viewShowGrid() slot that is connected
to the viewShowGridAction’s triggered() signal later on (➤ 435).

At the end of the constructor we retrieve the name of the file that the applica-
tion was editing the last time it was run. If this is empty (because the appli-
cation is being run for the first time) or is “Unnamed” (because the last edited
page design was never saved),we invoke the fileNew() slot (not shown), so that
the user can start drawing immediately. Otherwise,we load the file. As usual,
we use single shot timers so that fileNew() or loadFile() is called after con-
struction is complete.

Both the ShowGrid and MostRecentFile settings are saved in the reimplemented
closeEvent() (not shown).

void MainWindow::createSceneAndView()

{

view = new GraphicsView;

scene = new QGraphicsScene(this);

QSize pageSize = printer->paperSize(QPrinter::Point).toSize();

scene->setSceneRect(0, 0, pageSize.width(), pageSize.height());

view->setScene(scene);

setCentralWidget(view);

}

The creating and the setting up of the view, the scene, and the application’s
central widget are all straightforward. We make the scene’s size proportional
to the paper size, effectively mapping points (1

72") to pixels. (The paperSize()

method returnsa QSizeFwhichwe convert to a QSize using the QSizeF::toSize()
method.) The only notable aspect is that we have used a custom GraphicsView

class (a QGraphicsView subclass) which provides zooming and mouse wheel
support. We will review this tiny subclass later on (➤ 439).

void MainWindow::createDockWidgets()

{

setDockOptions(QMainWindow::AnimatedDocks);

ptg

414 Chapter 12. CreatingGraphics/View Scenes

QDockWidget::DockWidgetFeatures features =

QDockWidget::DockWidgetMovable|

QDockWidget::DockWidgetFloatable;

transformWidget = new TransformWidget;

QDockWidget *transformDockWidget = new QDockWidget(

tr("Transform"), this);

transformDockWidget->setFeatures(features);

transformDockWidget->setWidget(transformWidget);

addDockWidget(Qt::RightDockWidgetArea, transformDockWidget);
···

}

This method is where the three toolbox widgets are created and added to dock
widgets. We have only shown the first one since the code for all of them is
identical apart from the particular toolbox widget added to each one.

We begin by setting the dock options. The QMainWindow::AnimatedDocks option
means that when the user drags a dock widget over a dock area, the dock area
creates a gap showing where the dock widget will go if dropped,moving other
dock widgets out of the way if necessary. This makes it much easier for users
to see what is happening.

The default dock options are QMainWindow::AnimatedDocks|QMainWindow::Allow-

TabbedDocks, so by setting only the former,we disallow the latter. When tabbed
docks are allowed, the user can drop a dock widget between other dock wid-
gets (the usual behavior), or on another dock widget, in which case Qt puts the
dropped dock widget and the dock widget it was dropped on into a tab widget
with only the dropped dock visible. The user can then click the tabs to switch
between the widgets. By default, the tabs appear at the bottom of the dock
widget, but this can be changed by using QMainWindow::setTabPosition(). Clear-
ly, this is a useful option when the number of dock widgets is large—or when
individual dock widgets occupy a lot of space.

Figure 12.2 The Page Designer pen dock widget with vertical title bar and free-standing

There are two other dock options that can be used (and that are mutually
exclusive). One is QMainWindow::ForceTabbedDocks; this forces all dock widgets
to be tabbed, but has the disadvantage that at most only one dock widget will
be visible in each dock area. The other is QMainWindow::AllowNestedDocks; if

ptg

Scenes, Items, and Actions 415

this is set, each dock area can be split to create more than one row (or column)
of dock widgets in the area. This has the disadvantage of making the user
interface more difficult for the user to manipulate. Both of these options are
best avoided where possible.

For each of the dock widgets, we set two features: QDockWidget::DockWidget-
Movable, which means that users can drag dock widgets from one dock area to
another; and QDockWidget::DockWidgetFloatable, which means that users can
drag dock widgets out of their dock area and have them float as free-standing
windows in their own right. If wewanted the user to have the option of closing
(i.e., hiding) dock widgets we could set QDockWidget::DockWidgetClosable. One
other feature is supported: QDockWidget::DockWidgetVerticalTitleBar. This fea-
ture can reduce the amount of vertical space occupied by dock widgets,which is
especially useful for dock widgets in the left and right dock areas. Figure 12.2
shows a dock widget with a vertical title bar and a dock widget that has been
dragged out of its dock area and that is floating free-standing as a window in
its own right.

We didn’t show the code for the creation of the main window’s actions, menus,
and toolbars, since the code is standard, but in the following subsection’s sub-
subsections, we will look at the methods that implement the application’s
high-level graphics/view-related behaviors, starting with saving and load-
ing scenes.

Saving, Loading, Printing, and Exporting Scenes |||

The Page Designer application has the usual Save, Open, Print…, and Export…
actionsand corresponding fileSave(), fileOpen(), filePrint(), and fileExport()

slots. We’ll skip the file saving and loading infrastructure (it is very similar to
what we have used in earlier examples), and focuspurely on the graphics/view-
relevant methods and their helpers.

Saving Scenes ||

Inside the fileSave() slot, the application opens a QFile object in binary mode,
and opens a QDataStream to write to the file. The Page Designer magic number
and file format version numbers (both integers) are written to the data stream,
and then the stream’s version is set—in this case to Qt 4.5.Thismeans that the
application cannot be compiled with any earlier Qt version, and ensures that
the data will be readable no matter what Qt 4.x version (where x ≥ 5) is used.
Next, the MainWindow::writeItems() method is called with two arguments—the
data stream, and a list of all the scene’s items.

The QGraphicsScene::items() method that we use to provide the second-argu-
ment returns a list of all the scene’s graphics items. There are several items()

ptg

416 Chapter 12. CreatingGraphics/View Scenes

overloads, including one that accepts a sort order, one that returns the items
that intersect a particular point, and ones that are within or intersect a partic-
ular rectangle, polygon, or painter path. In this example, the items include the
items used for the guideline grid which we don’t need or want to save, but this
isn’t a problem as we will see in a moment.

void MainWindow::writeItems(QDataStream &out,

const QList<QGraphicsItem*> &items)

{

foreach (QGraphicsItem *item, items) {

if (item == gridGroup || item->group() == gridGroup)

continue;

qint32 type = static_cast<qint32>(item->type());

out << type;

switch (type) {

case BoxItemType:

out << *static_cast<BoxItem*>(item); break;

case SmileyItemType:

out << *static_cast<SmileyItem*>(item); break;

case TextItemType:

out << *static_cast<TextItem*>(item); break;

default: Q_ASSERT(false);

}

}

}

This method iterates over the list of graphics items it is passed. For each one
it first checks to see if the item is or belongs to the gridGroup (of type QGraphics-
ItemGroup*) that the guideline items belong to, and if it is or does, the item is
skipped since we don’t want to save the guidelines. For the other items, the
method then writes each one’s QGraphicsItem::Type (a unique constant integer
identifying each type of graphics item and returned by a reimplementation of
the QGraphicsItem::type()method),and then the graphics item itself. Themain
window’s writeItems() method does not know how to save the graphics items,
instead relying on them to provide an operator<<() method that operates on
a QDataStream (which they all do, of course, as we will see when we cover the
graphics items themselves).

An additional benefit of factoring the writeItems()method out of the fileSave()
method is that we can reuse this method when we want to cut or copy items—
something we will cover in a later subsubsection (➤ 427).

Using the writeItems()method we have saved the scene in the easiest possible
way, simply as a sequence of graphics items. A more sophisticated application
would probably save some meta-data as well as the items themselves. Now
that we have seen how a scene is saved, we will see how it is loaded, and

ptg

Scenes, Items, and Actions 417

then we will see how to print and export the scene in standard pixmap and
vector formats.

Loading Scenes ||

Inside the fileOpen() slot, the application prompts the user to provide a file-
name, and if one is chosen a QFile is created for the file. Then, a QDataStream is
created to read thefile’s contents,and themagic number andfile format version
number are read. If any problem occurs, a warning message box is popped up
to inform the user. Otherwise, the data stream is set to Qt 4.5 tomatch the ver-
sion used for saving, then the existing scene’s items are cleared, and the items
stored in the file are read in to repopulate the scene.

It is slightly regrettable that the readItems() method (like the writeItems()

method we have just seen and the editAddItem() method covered further on)
must operate in terms of specific known types, since this means that if we add
new item types these three methods must be modified to account for each new
type that is added. However, there doesn’t seem to be any really nice solution
to this issue. On a more positive note, all the other methods use Qt’s property
system (since all our custom item types inherit QObject), which means that
they will work unchanged—and correctly—even if we add new item types,
providing, of course, that the new item types also inherit QObject.

void MainWindow::clear()

{

scene->clear();

gridGroup = 0;

viewShowGrid(viewShowGridAction->isChecked());

}

The QGraphicsScene::clear() method removes every graphics item—including
those used for the guideline grid, so wemust be sure to set the gridGroup to null
since it has been deleted. Of course, the need for a grid group wouldn’t arise
if the guideline grid was produced by using a background brush or painted
by reimplementing QGraphicsView::drawBackground()—one of which is what we
would do in practice. (For the Page Designer application, we use a QGraphics-

ItemGroup for the background purely to show how to use the class and to show
how to distinguish between sets of items.) We then call viewShowGrid() (➤ 435)
to createa newset of guidelines,which are set to be visible or hiddendepending
on the state of the viewShowGridAction.

void MainWindow::readItems(QDataStream &in, int offset, bool select)

{

QSet<QGraphicsItem*> items;

qint32 itemType;

QGraphicsItem *item = 0;

ptg

418 Chapter 12. CreatingGraphics/View Scenes

while (!in.atEnd()) {

in >> itemType;

switch (itemType) {

case BoxItemType: {

BoxItem *boxItem = new BoxItem(QRect(), scene);

in >> *boxItem;

connectItem(boxItem);

item = boxItem;

break;

}
···

}

if (item) {

item->moveBy(offset, offset);

if (select)

items << item;

item = 0;

}
}

if (select)

selectItems(items);

else

selectionChanged();
}

This method is used to read a scene’s items from a QDataStream opened on a file.
And it is also used to paste copied or cut items back into the scene, in which
case the reading is from a data stream opened on a QByteArray retrieved from
the clipboard rather than from a file. The offset (which has a default of 0) and
the select (which has a default of false) are used only when pasting.

Thismethod reads the data stream until it reaches the end. It reads each item
in two parts, first the item’s QGraphicsItem::Type, and then the item itself. The
code for reading smiley and text items has been elided since it is almost identi-
cal to that shown for box items, the difference being that for the smiley and text
items the first argument passed to their constructors is QPoint() rather than
QRect(). All itemsneed to be connected to the relevant toolbox widgets, and this
is done by the connectItem() method that we will review next. Similarly to the
writeItems() method, the readItems() method does not know how to read our
custom item types, instead relying on them to provide suitable operator>>()

methods that operate on a QDataStream (as, of course, they do).

If the items are being pasted, the offsetwill be nonzero and selectwill be true,
in which case the item is moved relative to its current position and added to a
set of items. At the end, if select is true, all the items in the set are selected;
otherwise we call selectionChanged() to ensure that the toolbox widgets reflect

ptg

Scenes, Items, and Actions 419

the properties of the selected item since the last item read will select itself in
its constructor, as we will see further on (➤ 449).

void MainWindow::connectItem(QObject *item)

{

connect(item, SIGNAL(dirty()), this, SLOT(setDirty()));

const QMetaObject *metaObject = item->metaObject();

if (metaObject->indexOfProperty("brush") > -1)

connect(brushWidget, SIGNAL(brushChanged(const QBrush&)),

item, SLOT(setBrush(const QBrush&)));

if (metaObject->indexOfProperty("pen") > -1)

connect(penWidget, SIGNAL(penChanged(const QPen&)),

item, SLOT(setPen(const QPen&)));

if (metaObject->indexOfProperty("angle") > -1) {

connect(transformWidget, SIGNAL(angleChanged(double)),

item, SLOT(setAngle(double)));

connect(transformWidget, SIGNAL(shearChanged(double, double)),

item, SLOT(setShear(double, double)));

}

}

This method is called by the readItems() method (i.e., when a new item is read
from a scene file, and when a new item is pasted into a scene), and when a new
item is added to a scene. It relies on items being QObject subclasses so that we
can use Qt’s property system to determine which signal–slot connections to
make. The disadvantage of this approach is that all of our custom item types
must inherit QObject, but the advantage is that we don’t have to know which
specific item type is being connected—and this makes the method much more
scalable, since no matter how many new item types we add, the method does
not have to be changed at all.

We have adopted the convention that for the Page Designer application, all
items—apart from the guideline grid items—are QObjects and emit a custom
dirty() signal if they experience a significant change of state.

For each propertyweare interested in,we ask the item’smeta-object if the item
(or more specifically, if an item of the QObject class the meta-object is for) has
the property. (A property index of -1 signifies that there is no such property.)

Box items have brush, pen, angle (of rotation), and horizontal and vertical
shear properties,so for them,all of the connectionsaremade. Wehave adopted
the convention for the Page Designer application that if an item has an angle

property, then it can also be sheared. We could easily separate these if pre-
ferred, just as we could choose to assume that items with a pen property also
have a brush property rather than checking for them individually.

The connections ensure that if the user changes one of these properties in one
of the toolbox widgets—for example, if they change the brush—this box item

ptg

420 Chapter 12. CreatingGraphics/View Scenes

(and indeed, all the items that are connected to the BrushWidget’s brushChanged()
signal) will be notified of the change. And as we will see when we review the
box item, the notification is only acted upon by those items that are selected.

The connections could have been made inside the readItems() method, but we
have factored them out becausewe also need tomake themwhen the user adds
a new item to the scene.

At the end of the readItems() method we saw earlier, if the items read are to
be selected (which they will be if they have been pasted rather than read from
file), the selectItems() method is called to do the selecting.

void MainWindow::selectItems(const QSet<QGraphicsItem*> &items)

{

scene->clearSelection();

foreach (QGraphicsItem *item, items)

item->setSelected(true);

selectionChanged();

}

This method deselects all the scene’s items and then iterates over all the
items that need to be selected and selects each one of them. Then it calls the
selectionChanged() method (covered later; ➤ 433), so that the toolbox widgets
are updated to reflect the properties of one of the selected items.

Printing and Exporting Scenes ||

In addition to saving and loading scenes, we can also print them, and export
them, both in vector (SVG) format, and in any of the pixmap formats that Qt
supports. Printing is easily achieved using the filePrint() method. To print
or export a scene we must create a suitable QPainter, get rid of the guideline
grid, and render the scene to the painter.

const int StatusTimeout = AQP::MSecPerSecond * 30;

void MainWindow::filePrint()

{

QPrintDialog dialog(printer);

if (dialog.exec()) {

{

QPainter painter(printer);

paintScene(&painter);

}

statusBar()->showMessage(tr("Printed %1")

.arg(windowFilePath()), StatusTimeout);

}

}

ptg

Scenes, Items, and Actions 421

The print dialog gives the user the opportunity to change various printing-
related settings before printing, and because we pass it a QPrinter pointer, it
starts out with the QPrinter’s settings as its defaults. By this means settings
are preserved between printings. If the user accepts the dialog we create a
painter to paint on the printer (i.e., on the printer’s page), and paint the scene
using the custom paintScene() method.

One slightly unusual aspect of this method and the other methods that call
paintScene() is that we create the painter and paint the scene inside a scope
(i.e., inside a separate braces-delimited block). This is simply a convenience
that ensures that the painter is destroyed when we have finished with it,
since it releases any resources it uses in its destructor. An alternative that
doesn’t require the use of a scope is to call QPainter::end() once the painting
is finished.

The string returned by windowFilePath() is the filename (including path) we
set with setWindowFilePath()—this could be "Unnamed", in the case of a new file
that hasn’t been saved, assuming that we set this as the window file path in
the fileNew() method (which we do, of course).

void MainWindow::paintScene(QPainter *painter)

{

bool showGrid = viewShowGridAction->isChecked();

if (showGrid)

viewShowGrid(false);

QList<QGraphicsItem*> items = scene->selectedItems();

scene->clearSelection();

scene->render(painter);

if (showGrid)

viewShowGrid(true);

foreach (QGraphicsItem *item, items)

item->setSelected(true);

selectionChanged();

}

When rendering the scene we want to avoid painting the guideline grid or
selection rectangles. We do this by hiding all the guidelines (using viewShow-

Grid(), a method we will review later on; ➤ 435), and by saving a list of the se-
lected items and then clearing the selection.

Once the preparations are complete we render the scene to the painter. The
QGraphicsScene::render() method can optionally be passed both a target
rectangle (useful for rendering onto part of an existing image), and a source
rectangle (for rendering just a particular portion of a scene).And if both target
and source rectangles are supplied, another optional argument—of type Qt::

ptg

422 Chapter 12. CreatingGraphics/View Scenes

AspectRatioMode—can be given, which is useful if the dimensions of the target
and source rectangles are different.

Once the painting is done we show the guideline grid if it was previously
visible, and re-select any items that were selected before, so that the scene is
restored to the state it had prior to the export. We also call selectionChanged()
to make the toolbox widgets reflect one of the selected items’ properties.

When it comes to exporting a scene, setting up the painter is very similar to
what we did in Chapter 10 when we exported QTextDocuments (379 ➤). For com-
pleteness, we will show both export methods, both of which rely on the custom
paintScene()method that we have just seen. There is a single fileExport() slot
that pops up a file save dialog and that chooses the export method to call based
on the file suffix of the filename that the user entered.

void MainWindow::exportSvg(const QString &filename)

{

QSvgGenerator svg;

svg.setFileName(filename);

svg.setSize(printer->paperSize(QPrinter::Point).toSize());

{

QPainter painter(&svg);

paintScene(&painter);

}

statusBar()->showMessage(tr("Exported %1").arg(filename),

StatusTimeout);

}

Tomakeuse of Qt’sSVG functionality wemust put QT += svg in the application’s
.pro file. We begin by creating an SVG generator object and giving it the file-
name of the file towrite to. We set its page size to thePageDesigner’spage size,
create a painter to paint on the SVG generator, and then call the paintScene()

helper method to do the work. We could use a very similar approach to render
the scene to a PDF file by using a QPrinter as the paint device, as we saw in
Chapter 10; we leave this as an exercise.

void MainWindow::exportImage(const QString &filename)

{

QImage image(printer->paperSize(QPrinter::Point).toSize(),

QImage::Format_ARGB32);

{

QPainter painter(&image);

painter.setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

paintScene(&painter);

}

if (image.save(filename))

ptg

Scenes, Items, and Actions 423

statusBar()->showMessage(tr("Exported %1").arg(filename),

StatusTimeout);

else

AQP::warning(this, tr("Error"), tr("Failed to export: %1")

.arg(filename));

}

Exporting a pixmap image works in a very similar way to exporting an SVG
image, except that we turn on antialiasing (since our rule of thumb is to use
antialiasing for on-screen and pixmap images but not for printing or vector
images). Also, since QImage::save() returns a Boolean success indicator, we
have made use of it.

Now that we have seen how to save, load, print, and export scenes, we are
ready to see how individual items are added to a scene, and how items are
manipulated—for example, copied or cut and pasted, and aligned.

Manipulating Graphics Items |||

Page Designer supports adding items, manipulating individual items (i.e.,
the one selected item), and for some operations, manipulating all the selected
items. For example, if the user invokes the Edit Selected Item… action, the
corresponding slot is called.

void MainWindow::editSelectedItem()

{

QList<QGraphicsItem*> items = scene->selectedItems();

if (items.count() != 1)

return;

if (QObject *item = dynamic_cast<QObject*>(items.at(0))) {

const QMetaObject *metaObject = item->metaObject();

metaObject->invokeMethod(item, "edit", Qt::DirectConnection);

}

}

We allow only one item to be edited at a time, so we begin by seeing if there is
exactly one selected item. If there is, we retrieve the meta-object associated
with the item, and attempt to call the item’s edit() slot. The QMetaObject::in-

vokeMethod() method returns true if the named slot exists and can be invoked;
otherwise it safely does nothing and returns false. The Qt::DirectConnection

argument tells Qt to call the slot immediately rather than scheduling it to be
called when the event loop has time. We discussed invokeMethod() in an earlier
chapter (134 ➤). This means that the editSelectedItem() method does not need
to knowanything about the selected item’s type,and sowill work correctly even
if new item types are added and regardless of whether they have an edit()

slot—always providing that they inherit QObject.

ptg

424 Chapter 12. CreatingGraphics/View Scenes

In the case of the Page Designer application, our BoxItems don’t have an edit()

slot, so for them this method harmlessly does nothing. But both SmileyItems
and TextItems have edit() slots, which for smileys pops up a context menu and
for text items pops up an editor dialog. So, if we were to allow edit() to be
called on every selected item rather than only one, we might have dozens or
even hundreds of menus and dialogs pop up.

The use of dynamic_cast<>() here (and elsewhere) means that Page Design-
er is dependent on RTTI (Run Time Type Information). Most modern compil-
ers for desktop systems support this and have it switched on by default. But
RTTI may not be switched on—or even available—for compilers targeting
embedded devices. An alternative is to use qobject_cast<>() which doesn’t de-
pend on RTTI, but unfortunately it won’t work in this case because it doesn’t
accept QGraphicsItem pointers. However, it is possible to get qobject_cast<>()

to work. It would mean that all of our graphics items would have to be de-
rived from QGraphicsObject, in which case the cast would be written as QObject
object = qobject_cast<QObject>(item->toGraphicsObject()), at least for Qt 4.6,
which introduced the QGraphicsItem::toGraphicsObject() method. In Page De-
signer’s case, this would work for smiley and text items, both of which derive
from QGraphicsObject, but not for box items which don’t, although we can work
around this as we will see in a moment.

A solution that avoids dynamic_cast<>(), and that also avoids using Qt’s meta-
object system—perhaps because we don’t want all of our custom item types
to be QObject subclasses—is to use qgraphicsitem_cast<>(). The disadvantage
of doing this is that we must hard-code the specific item types, but of course
we must do that anyway when writing, reading, or adding items. To use
qgraphicsitem_cast<>() we must replace the editSelectedItem() method’s sec-
ond if statement and associated block with these lines:

QGraphicsItem *item = items.at(0);

if (TextItem *textItem = qgraphicsitem_cast<TextItem*>(item))

textItem->edit();

else if (SmileyItem *smileyItem =

qgraphicsitem_cast<SmileyItem*>(item))

smileyItem->edit();

Here we retrieve the selected item as a QGraphicsItem pointer rather than as
a QObject pointer. Notice also that we make no mention of BoxItems since they
don’t have an edit() slot, and so are safely ignored. If we added a BoxItem::

edit() slot, we would have to add another else if to the code shown here—
although in the version of the code that uses Qt’s meta-object system, no
changes to this method would be required at all.

For the pagedesigner2 version (which requires Qt 4.6, and which we discuss in
Chapter 13), we do not use dynamic_cast<>() at all. Instead, we have a single

ptg

Scenes, Items, and Actions 425

function, qObjectFrom(), which returns a QObject pointer given a QGraphicsItem

pointer.

QObject *qObjectFrom(QGraphicsItem *item)

{

if (!item)

return 0;

// Types not inheriting QGraphicsObject must be handled explicitly

if (item->type() == BoxItemType)

return qobject_cast<QObject*>(static_cast<BoxItem*>(item));

// Types inheriting QGraphicsObject can be handled generically

return item->toGraphicsObject();

}

For those items that are not derived from QGraphicsObject, we must cast them
to their actual QGraphicsItem class (which must also inherit QObject), and then
cast this to a QObject. But for all types that inherit QGraphicsObject, we can
simply use QGraphicsItem::toGraphicsObject() to give us the QObject pointer
we need.

With this function in place, the Qt 4.6 version of Page Designer (using an
#ifdef) replaces every use of dynamic_cast<QObject*>(item) with qObjectFrom(

item). The downside of this approach is that if we add new (QObject-derived)
item types,wemust edit qObjectFrom() to explicitly add any new types that are
not QGraphicsObject subclasses,whereas if we use dynamic_cast<>(), no changes
to our code would be required.

Adding Items ||

The application’s user interface provides separate actions for adding each type
of item that is supported. Each of these actions has the relevant item Type as
user data and all of them are connected to the same editAddItem() slot.

void MainWindow::editAddItem()

{

QAction *action = qobject_cast<QAction*>(sender());

if (!action)

return;

QObject *item = 0;

int type = action->data().toInt();

if (type == BoxItemType)

item = new BoxItem(QRect(position(), QSize(90, 30)), scene);

else if (type == SmileyItemType)

item = new SmileyItem(position(), scene);

else if (type == TextItemType) {

TextItemDialog dialog(0, position(), scene, this);

ptg

426 Chapter 12. CreatingGraphics/View Scenes

if (dialog.exec())

item = dialog.textItem();

}

if (item) {

connectItem(item);

setDirty(true);

}

}

This slot is invoked if the user asks to add any kind of item. (We discussed
using QObject::sender() and alternatives earlier; 349 ➤.) If a box has been re-
quested it is given a default size and a position returned by the position()

method that we will look at shortly. For a text item, instead of simply creating
a default item aswe do for boxes and smileys,we have chosen to pop up a dialog
so that the user can set the text item’s text to what they want in the first place.
The TextItemDialog (code not shown,but pictured in Figure 12.3;➤ 450) is a typ-
ical add/edit dialog where the first argument is an item to edit (when invoked
by a call to the item’s edit() slot) or 0 (as here),with 0meaning that a new item
must be created (if the user clicks OK in the dialog). If the dialog is accepted,
we retrieve a newly created TextItem using the custom TextItemDialog::text-

Item() method.

Once we have created the requested item, we connect it to the appropriate
toolbox widgets so that the user can change the item’s properties—in the case
of a box item, for example, its brush, pen, and transformations. We covered the
connectItem() method earlier (419 ➤). And, of course, we must call setDirty()
(➤ 437) since adding a new item changes the scene significantly.

const int OffsetIncrement = 5;

QPoint MainWindow::position()

{

QPoint point = mapFromGlobal(QCursor::pos());

if (!view->geometry().contains(point)) {

point = previousPoint.isNull()

? view->pos() + QPoint(10, 10) : previousPoint;

}

if (!previousPoint.isNull() && point == previousPoint) {

point += QPoint(addOffset, addOffset);

addOffset += OffsetIncrement;

}

else {

addOffset = OffsetIncrement;

previousPoint = point;

}

return view->mapToScene(point - view->pos()).toPoint();

}

ptg

Scenes, Items, and Actions 427

This method is used to provide a suitable position for newly added items. We
start by creating a QPoint at the mouse position. If this is not within the view
we set the point to be just inside the view—or to the previous point where an
item was added if there is one. Then, if the point is the same as the previous
one at which an item was added, we add an offset to move the point slightly
right and down, and also increase the add offset increment. Otherwise—if the
new point isn’t in the same place as the previous one—we reset the increment
to its original amount and set the previous point to this point. And at the end
we return the point offset into the scene and in scene coordinates. This ensures
that if items are repeatedly added, each one is added offset slightly right and
below the previous one rather than all added on top of one another, to make
them more visible to the user.

Now that we have seen how individual items have their edit() method called
(if they have one), and how they are added by the user,wewill look at howPage
Designer provides support for copy, cut, and paste.

Copying, Cutting, and Pasting Items ||

To support copying, cutting, and pasting, we use the system’s clipboard. This
has the advantages that other applications can access our copied or cut items
(assuming that they can understand our data format), and Page Designer
can paste items put on the clipboard by other applications (providing we can
understand their data format). The one disadvantage of using the clipboard
to hold our copied or cut items (rather than, say, a private QByteArray member
variable) is that if the user context switches to another application and does a
copy or cut, our items are deleted from the clipboard. The solution, of course, is
to provide undo/redo support, something we don’t cover, but will mention again
at the end of the chapter.

In addition to using the clipboardwe alsomaintain a privatemember variable,
pasteOffset (of type int), which is used to ensure that when items are pasted
they are offset slightly from their original positions so that the user can more
clearly see that the paste has taken place.

void MainWindow::editCopy()

{

QList<QGraphicsItem*> items = scene->selectedItems();

if (items.isEmpty())

return;

pasteOffset = OffsetIncrement;

copyItems(items);

updateUi();

}

ptg

428 Chapter 12. CreatingGraphics/View Scenes

When the user invokes the Copy action, this slot retrieves the list of selected
items, resets the paste offset to its initial setting (5 pixels), and calls the
copyItems() helper method to copy the selected items to the clipboard. These
items can then be pasted back; but they will be lost (overwritten or deleted) if
another copy (or cut) is done—in this application or by another application—or
if the user quits the application, before a paste occurs. And at the end, we call
updateUi() (➤ 437) to make sure that the Paste action is enabled.

const QString MimeType = "application/vnd.qtrac.pagedesigner";

void MainWindow::copyItems(const QList<QGraphicsItem*> &items)

{

QByteArray copiedItems;

QDataStream out(&copiedItems, QIODevice::WriteOnly);

writeItems(out, items);

QMimeData *mimeData = new QMimeData;

mimeData->setData(MimeType, copiedItems);

QClipboard *clipboard = QApplication::clipboard();

clipboard->setMimeData(mimeData);

}

This method creates an empty QByteArray and then uses the writeItems()

method that we saw earlier (416 ➤) to populate it with the items to be copied.
It then creates a new QMimeData object on the heap and gives it the byte ar-
ray specifying our custom MIME type to identify the data’s format. We then
get a pointer to the system’s clipboard and give the MIME data to the clip-
board—which also takes ownership of the data, so we don’t have responsibility
for deleting it.

void MainWindow::editCut()

{

QList<QGraphicsItem*> items = scene->selectedItems();

if (items.isEmpty())

return;

copyItems(items);

QListIterator<QGraphicsItem*> i(items);

while (i.hasNext()) {

QScopedPointer<QGraphicsItem> item(i.next());

scene->removeItem(item.data());

}

setDirty(true);

}

Cutting items from a scene is slightly more involved than copying since they
must be both copied and removed. This method starts out the same as the
editCopy() method, but having done the copy it then goes on to remove—and
delete—each copied item from the scene.

ptg

Scenes, Items, and Actions 429

The QGraphicsScene::removeItem()method removes the item it is given (and the
item’s children, recursively) from the scene, and passes ownership of the item
to the caller. Here, we immediately delete removed items (and their children,
recursively), to avoid memory leaks, as soon as the scoped pointer goes out of
scope, that is, at the end of each iteration through the loop.★ And at the end
we call setDirty() since cutting items (unlike merely copying them) changes
the scene. (The setDirty() slot calls the updateUi() slot, so after a cut, the Paste
action will be enabled; ➤ 436.)

void MainWindow::editPaste()

{

QClipboard *clipboard = QApplication::clipboard();

const QMimeData *mimeData = clipboard->mimeData();

if (!mimeData)

return;

if (mimeData->hasFormat(MimeType)) {

QByteArray copiedItems = mimeData->data(MimeType);

QDataStream in(&copiedItems, QIODevice::ReadOnly);

readItems(in, pasteOffset, true);

pasteOffset += OffsetIncrement;

}

else if (mimeData->hasHtml() || mimeData->hasText()) {

TextItem *textItem = new TextItem(position(), scene);

connectItem(textItem);

if (mimeData->hasHtml())

textItem->setHtml(mimeData->html());

else

textItem->setPlainText(mimeData->text());

}

else

return;

setDirty(true);

}

If the user has copied or cut items they can paste the items back into the scene
using this method. Also, we have added the ability to paste HTML and plain
text copied from other applications.

We begin by getting a pointer to the system’s clipboard and retrieving a QMime-

Data object that holds the clipboard’s data—if it has any. Next we check to see
if the MIME data has data in Page Designer’s custom format. If it has, we
retrieve the data as a QByteArray and use the readItems() method we reviewed
earlier (417 ➤) to populate the scenewith the items. Unlikewhen reading items

★In the source code we have an #if QT_VERSION so that the code will compile with Qt 4.5 and where
we use a plain QGraphicsItem* and call delete on each item that has been removed from the scene.

ptg

430 Chapter 12. CreatingGraphics/View Scenes

from a file, here we provide an offset to ensure that pasted items are not pasted
exactly on top of the original items (since the user might not even see them if
we did so), and the itemsare also selected so that they can bemanipulated—for
example, moved or deleted—as a group. Afterwards we increment the paste
offset; this ensures that if the user pastes the same items repeatedly, each
paste is offset from the last, again to help make them visible to the user.

If the MIME data doesn’t offer our custom Page Designer format, we check
to see if it offers HTML or plain text. In either of these cases we create a new
TextItem at a suitable place in the scene using the position() method (426 ➤),
and connect it to the toolbox widgets. Then we insert the HTML or plain text
into the text item using the appropriatemethods. (Note that we should always
check MIME formats in our order of preference, i.e., most preferred first. For
example, if we have HTML text in the clipboard both QMimeData::hasText()

and QMimeData::hasHtml() are likely to return true, since many applications
will copy text in multiple formats to the clipboard and will probably offer both
text/html and text/plain formats.)

At the end, if we added items by reading them or created a new text item, we
call setDirty() since a pasting significantly changes the scene.

Manipulating Selected Items ||

In this subsubsectionwewill review the editAlign() slot and its helper method
to see a typical example of how a method that is used to manipulate two or
more selected items is implemented. And we will also look at what happens
when the selection changes.

The user interface allows the user to align multiple items in either of two
ways: they can invoke a specific alignment action (such as Align Top) using the
menu or the Align toolbar button’s menu; or they can click the Align toolbar but-
ton in which case the last alignment that was used is applied—or the default
alignment if this is the first alignment applied since the application started.

To provide some context, here is how the alignment actions are set up (quoted
from the main window’s createMenusAndToolBars() method):

QMenu *alignmentMenu = new QMenu(tr("Align"), this);

foreach (QAction *action, QList<QAction*>()

<< editAlignLeftAction << editAlignRightAction

<< editAlignTopAction << editAlignBottomAction)

alignmentMenu->addAction(action);

editAlignmentAction->setMenu(alignmentMenu);

Further on, the edit alignment action is added to the edit menu and to the edit
toolbar. Whenusing themenu, theuser can only select one of the specific align-
ment actions, but when using the toolbar the user can either click the toolbar

ptg

Scenes, Items, and Actions 431

button itself (thus invoking the edit alignment action), or its menu, in which
case they can click one of the specific alignment actions. In view of this our
code must account for the possibility that either a specific alignment action,
or the edit alignment action itself, is invoked. Note also that the updateUi()

slot (➤ 437) enables the alignment action only if there are at least two selected
items, since alignment doesn’t make sense if one or no item is selected.

We will look at the slot in three parts for ease of explanation.

void MainWindow::editAlign()

{

QAction *action = qobject_cast<QAction*>(sender());

if (!action)

return;

Qt::Alignment alignment = static_cast<Qt::Alignment>(

action->data().toInt());

if (action != editAlignmentAction) {

editAlignmentAction->setData(action->data());

editAlignmentAction->setIcon(action->icon());

}

Webegin by finding out which action invoked the slot. The required alignment
is stored in the action’s data, so we retrieve it for use further on. If the action
is not the edit alignment action itself, we set the edit alignment action’s data
to be the chosen specific alignment, and its icon to match this alignment. This
ensures that if the edit alignment action is invoked rather than a specific
alignment, it will use the last specific alignment that was set.

QList<QGraphicsItem*> items = scene->selectedItems();

QVector<double> coordinates;

populateCoordinates(alignment, &coordinates, items);

double offset;

if (alignment == Qt::AlignLeft || alignment == Qt::AlignTop)

offset = *std::min_element(coordinates.constBegin(),

coordinates.constEnd());

else

offset = *std::max_element(coordinates.constBegin(),

coordinates.constEnd());

The algorithm we use to do the alignment is quite simple. We create a vector
of all the items’ edge coordinates for the required alignment, for example, their
x-coordinates if we are aligning left, or their y-coordinates plus their heights if
we are aligning bottom. We then compute an offset which is the minimum co-
ordinate (for left or top alignment) or maximum (for right or bottom), andmove
every item by the difference between the offset and its actual coordinate.

ptg

432 Chapter 12. CreatingGraphics/View Scenes

The std::min_element() and std::max_element() functions are provided by the
STL (Standard Template Library) in the <algorithm> header. These functions
accept a start and end iterator and return an iterator that points to the mini-
mum (ormaximum) element in the sequence the iterators refer to. So, here,we
immediately extract the value from the iterator using operator*(). (If wewant-
ed to avoid the STL we could write our own template min() and max() functions
that take a sequence argument, or we could write, say, qSort(coordinates);
offset = coordinates.first(); for the minimum and use coordinates.last() for
the maximum.)

if (alignment == Qt::AlignLeft || alignment == Qt::AlignRight) {

for (int i = 0; i < items.count(); ++i)

items.at(i)->moveBy(offset - coordinates.at(i), 0);

}

else {

for (int i = 0; i < items.count(); ++i)

items.at(i)->moveBy(0, offset - coordinates.at(i));

}

setDirty(true);
}

Here is where we iterate over every item, moving it horizontally or vertically
by the amount necessary to line it up with the left-most (or right-most, and so
on) item. And once all the items have been moved,we call setDirty(), since the
scene has been changed significantly.

From the user’s point of view, as soon as they invoke an alignment action the
selected items immediately snap into their new positions. In Chapter 13 we
will revisit thismethod and see how to animate the alignment to make it more
obvious to the user which items were moved, and at the same time make the
moving more visually elegant.

void MainWindow::populateCoordinates(const Qt::Alignment &alignment,

QVector<double> *coordinates,

const QList<QGraphicsItem*> &items)

{

QListIterator<QGraphicsItem*> i(items);

while (i.hasNext()) {

QRectF rect = i.next()->sceneBoundingRect();

switch (alignment) {

case Qt::AlignLeft:

coordinates->append(rect.x()); break;

case Qt::AlignRight:

coordinates->append(rect.x() + rect.width()); break;

case Qt::AlignTop:

coordinates->append(rect.y()); break;

case Qt::AlignBottom:

ptg

Scenes, Items, and Actions 433

coordinates->append(rect.y() + rect.height()); break;

}

}

}

This method iterates over the list of items it is given and populates the vector
of doubles it is given with the corresponding x- or y-coordinates. The QGraphics-
Item::sceneBoundingRect() method returns the item’s bounding rectangle in
scene coordinates. It is much more common to use QGraphicsItem::bounding-

Rect() which returns the item’s bounding rectangle in item coordinates, but
here we need scene coordinates because we plan to move items within the
scene (i.e., to line them up). Selected methods from the QGraphicsItem API, as
well as key enums used by the API,were presented earlier in Tables 11.1 to 11.7
(403–407 ➤).

Another common requirement for drawing programs is to be able to distribute
items vertically or horizontally. This means, given three or more items, while
keeping the two end items in place, moving the item or items in between such
that the gap between each item is the same. Since implementing this would
not teach anything more about the graphics/view architecture than is already
covered, we leave adding such functionality to Page Designer as an exercise.

Before leaving this subsubsection on manipulating graphics items we will
review one more slot.

void MainWindow::selectionChanged()

{

QList<QGraphicsItem*> items = scene->selectedItems();

if (items.count() == 1) {

if (QObject *item = dynamic_cast<QObject*>(items.at(0))) {

if (item->property("brush").isValid())

brushWidget->setBrush(

item->property("brush").value<QBrush>());

if (item->property("pen").isValid())

penWidget->setPen(

item->property("pen").value<QPen>());

if (item->property("angle").isValid()) {

transformWidget->setAngle(

item->property("angle").toDouble());

transformWidget->setShear(

item->property("shearHorizontal").toDouble(),

item->property("shearVertical").toDouble());

}

}

}

updateUi();

}

ptg

434 Chapter 12. CreatingGraphics/View Scenes

This slot is connected to the QGraphicsScene::selectionChanged() signal, and we
use it to make sure that the toolbox widgets reflect the properties of the select-
ed item. (Asnoted earlier, theuse of dynamic_cast<>()makestheapplicationde-
pendent on the availability of RTTI—Run Time Type Information—although
there are various ways to avoid this; 424 ➤.)

Herewe are concernedwith the casewhere the selection has changed such that
a single item only is selected. If two or more items are selected we would not
know which one’s brush, pen, or transformation properties to show, so in such
caseswe leave the toolboxes unchanged. We cannot disable the toolboxeswhen
two or more items are selected, though, because the user might want to apply
a change to multiple items in one go—for example, to rotate all the selected
items, or to change their brushes.

Once again we have used Qt’s meta-object system to make the method as
generic as possible, so that it will not need to be changed even if new cus-
tom item types are added. (And as already noted, we could use qgraphics-

item_cast<>() instead if we didn’t want our custom item types to be QObjects.)
Earlier, in the connectItem() method (419 ➤), we used the item’s (class’s) meta-
object and the QMetaObject::indexOfProperty() method to see if a particu-
lar item had a particular property. Here, we have taken a more direct—yet
more ambiguous—approach, and used the QObject::property() method. This
method takes a property name and returns a QVariant—an invalid QVariant if
the object does not have a property with the given name.★

How many items are selected (none, one, two or more) profoundly affects the
user interface. If no items are selected, then the toolbox widgets ought to be
disabled because they can have no effect; if exactly one item is selected the Edit
Selected Item… action should be enabled; and if two or more items are selected
the alignment actions should be enabled. All of this, and more, is handled by
the updateUi() slot which we will review shortly (➤ 436).

As Page Designer stands, the BrushWidget and PenWidget will show the selected
item’s brush and pen if the item is a box or smiley, and the TransformWidgetwill
show the item’s rotation and shears. (We will review the BrushWidget later on;
➤ 440.) Recall that if the user changes the properties in a toolbox widget—for
example, the brush—every item that has a brush property is notified; but only
the selected item or items update their brushes in response, as we will see
when we cover the custom graphics items further on (➤ 447).

★The QObject::property()methodwill return an invalid QVariant if there is no property of the given
name—or if the property’s value is an invalid QVariant. So if we really need to know whether an
object has a particular property, we must use the QMetaObject::indexOfProperty()approach.

ptg

Scenes, Items, and Actions 435

Showing and Hiding the Guideline Grid ||

It is probably easiest and best to show a guideline grid by setting the scene’s
background to a suitable brush using QGraphicsScene::setBackgroundBrush(), or
by reimplementing the QGraphicsScene::drawBackground()method. We chose to
use neither of these approaches purely to show how to use QGraphicsItemGroup,
and how to be selective regarding the items we save or manipulate.

In the Page Designer application we have a viewShowGridAction toggle action
that is connected to the viewShowGrid() slot that creates and shows or hides the
guideline grid.

void MainWindow::viewShowGrid(bool on)

{

if (!gridGroup) {

const int GridSize = 40;

QPen pen(QColor(175, 175, 175, 127));

gridGroup = new QGraphicsItemGroup;

const int MaxX = static_cast<int>(std::ceil(scene->width())

/ GridSize) * GridSize;

const int MaxY = static_cast<int>(std::ceil(scene->height())

/ GridSize) * GridSize;

for (int x = 0; x <= MaxX; x += GridSize) {

QGraphicsLineItem *item = new QGraphicsLineItem(x, 0, x,

MaxY);

item->setPen(pen);

item->setZValue(std::numeric_limits<int>::min());

gridGroup->addToGroup(item);

}
···
scene->addItem(gridGroup);

}

gridGroup->setVisible(on);
}

When this method is called, we create the guidelines’ grid group if it doesn’t
exist—for example,because the applicationhas just started or becausewehave
cleared the scene. We set the pen that draws the guidelines to be a semi-trans-
parent light gray. And since we haven’t specified a pen width it will default to
0, which means a cosmetic pen, 1 pixel wide. Cosmetic pens (whatever their
width) are always painted at their specifiedwidth,nomatter what transforma-
tions are in force (except for width 0, which is treated as 1). Contrast this with
non-cosmetic pens whose width is scaled in proportion to whatever scaling is
in force.

We create a new QGraphicsItemGroup and compute the furthest x- and y-coordi-
nates in the scene. We then iterate in GridSize increments froman x-coordinate

ptg

436 Chapter 12. CreatingGraphics/View Scenes

of 0 to MaxX, and in each iteration we create a standard QGraphicsLineItem pass-
ing it (x1, y1, x2, y2) coordinates. And sincewe give it two identical x-coordinates
and different y-coordinates, we get a vertical line. Once we have the line we
set its pen to the one we created earlier, and give it a large negative z value to
make sure that it is always underneath any other items, and then add it to the
grid group. There is an analogous loop for drawing the horizontal lines that
has been elided since it is structurally the same as the one shown.

When a QGraphicsItem is created, all the graphics item flags are disabled, so, for
example, by default a graphics item cannot be moved or selected by the user.
This behavior is exactly what we want for the guidelines.

Once all the line items have been created and added to the group, the group is
added to the scene. And at the end, we show or hide the group (and therefore
all the line items it contains) depending on the on Boolean passed as the slot’s
parameter by the corresponding action’s toggled(bool) signal.

Incidentally, the std::ceil() function (from <cmath>) returns the smallest inte-
ger that is greater than or equal to its argument, and the std::numeric_limits<

int>::min() function (from <limits>) returns the smallest (i.e., most negative)
integer.

Onemethod that we haven’t covered here is editClearTransforms(); we will cov-
er this later, at the end of the “Graphics Item Transformations” subsubsection
(➤ 453).

Keeping the User Interface Up to Date ||

A lazy way to reflect application state changes into the user interface is not to
reflect them at all. With this approach, the user can invoke any action at any
time, and each action is responsible for checking that it makes sense, and doing
nothing if it doesn’t. For example,we could leave the Paste action permanently
enabled, even if there is nothing to paste, and similarly leave the Copy action
enabled, even if no item or items are selected (and thus there is nothing
to copy).

Unfortunately, leaving every action enabled can confuse users. For example,
theymight invoke thePaste action and thenwonderwhy nothing hasappeared.
So, insofar as possible, we prefer to enable and disable actions and the widgets
insidedockwidgetsdepending on theapplication’sstate. This isn’t alwayseasy.
For example, if the user has selected a box item, a smiley item, and a text item,
which toolbox widgets should we enable? We could just enable the toolbox or
toolboxes that are applicable to all the selected items, so in this case we would
only enable the transformations toolbox. For Page Designer, we decided that
this would be inconvenient for users, so instead we enable every toolbox that
applies to at least one of the selected items. So, in this casewe enable the trans-
formations, pen, and brush toolboxes, even though text items don’t have pen or

ptg

Scenes, Items, and Actions 437

brush properties. Thisworkswell since if we change, say, the brush, the change
will be safely ignored by text items but will correctly be applied to any selected
box and smiley items.

In Page Designer, whenever a significant change takes place, the setDirty()

slot is called. In the case of the Save action, it is called with a false argument,
since after saving the scene isn’t dirty. But for most other changes it is called
with true (which is its argument’s default value).

void MainWindow::setDirty(bool on)

{

setWindowModified(on);

updateUi();

}

Rather than maintain our own Boolean dirty member variable we make use
of the main window’s windowModified property. And whenever a change in the
dirty state occurs we call updateUi() (which is also called from elsewhere—for
example, in editCopy() and selectionChanged()), to appropriately enable or
disable the application’s actions and toolbox widgets.

void MainWindow::updateUi()

{

fileSaveAction->setEnabled(isWindowModified());

bool hasItems = sceneHasItems();

fileSaveAsAction->setEnabled(hasItems);

fileExportAction->setEnabled(hasItems);

filePrintAction->setEnabled(hasItems);

int selected = scene->selectedItems().count();

editSelectedItemAction->setEnabled(selected == 1);

editCopyAction->setEnabled(selected >= 1);

editCutAction->setEnabled(selected >= 1);

QClipboard *clipboard = QApplication::clipboard();

const QMimeData *mimeData = clipboard->mimeData();

editPasteAction->setEnabled(mimeData &&

(mimeData->hasFormat(MimeType) || mimeData->hasHtml() ||

mimeData->hasText()));

editAlignmentAction->setEnabled(selected >= 2);

editClearTransformsAction->setEnabled(selected >= 1);

transformWidget->setEnabled(selected >= 1);

bool hasBrushProperty;

bool hasPenProperty;

getSelectionProperties(&hasBrushProperty, &hasPenProperty);

brushWidget->setEnabled(hasBrushProperty);

penWidget->setEnabled(hasPenProperty);

}

ptg

438 Chapter 12. CreatingGraphics/View Scenes

The Save action is enabled if there are unsaved changes. The Save As, Export,
and Print actions are enabled if the scene has at least one item. The Edit Selected
Item… action is enabled if there is exactly one selected item, and the Copy and
Cut actions are enabled if there is at least one selected item. The Paste action is
enabled if the system clipboard has data in PageDesigner’s ownMIMEformat,
or hasHTML or plain text;we discussed the clipboard handling earlier (427 ➤).
The Align action (and therefore the Align Left, Align Right, and so on, actions) is
enabled if at least two items are selected. And the Clear Transformations action
is enabled if at least one item is selected. Strictly speaking, we should only
enable the Clear Transformations action if the selected item (or at least one of the
selected items) has a nonzero rotation or shear; checking for this isn’t difficult,
but we leave this refinement as an exercise.

We enable the transformation toolbox widget if at least one item is selected
since all of Page Designer’s custom items support transformations. But we
only enable the brush and pen toolbox widgets if the selected item (or at least
one of the selected items) has a brush or pen property.

For completeness, we will very briefly review the updateUi() slot’s two helper
methods.

bool MainWindow::sceneHasItems() const

{

foreach (QGraphicsItem *item, scene->items())

if (item != gridGroup && item->group() != gridGroup)

return true;

return false;

}

This method returns true if the scene has at least one item (not including the
guideline grid).

void MainWindow::getSelectionProperties(bool *hasBrushProperty,

bool *hasPenProperty) const

{

Q_ASSERT(hasBrushProperty && hasPenProperty);

*hasBrushProperty = false;

*hasPenProperty = false;

foreach (QGraphicsItem *item, scene->selectedItems()) {

if (QObject *object = dynamic_cast<QObject*>(item)) {

const QMetaObject *metaObject = object->metaObject();

if (metaObject->indexOfProperty("brush") > -1)

*hasBrushProperty = true;

if (metaObject->indexOfProperty("pen") > -1)

*hasPenProperty = true;

if (*hasBrushProperty && *hasPenProperty)

break;

ptg

Scenes, Items, and Actions 439

}

}

}

Thismethod iterates over every selected item, checking to see if it has a brush
or pen property. Wehave included a tiny efficiency shortcut in that if the brush
and pen properties are both truewe know that we can return immediately. (As
noted earlier, the use of dynamic_cast<>() makes the application dependent on
the availability of RTTI, although this can be avoided; 424 ➤.)

Enhancing QGraphicsView ||||

The QGraphicsView class does not support zooming out of the box, so we have
created a tiny subclass (all implemented in a header file) that provides the nec-
essary functionality, and also taken the opportunity to switch on antialiasing
and support for rubber band selections. Here is the complete definition of the
GraphicsView class:

class GraphicsView : public QGraphicsView

{

Q_OBJECT

public:

explicit GraphicsView(QWidget *parent=0) : QGraphicsView(parent)

{

setDragMode(RubberBandDrag);

setRenderHints(QPainter::Antialiasing|

QPainter::TextAntialiasing);

}

public slots:

void zoomIn() { scaleBy(1.1); }

void zoomOut() { scaleBy(1.0 / 1.1); }

protected:

void wheelEvent(QWheelEvent *event)

{ scaleBy(std::pow(4.0 / 3.0, (-event->delta() / 240.0))); }

private:

void scaleBy(double factor) { scale(factor, factor); }

};

In the constructor we begin by switching on rubber band drag mode. This
means that if the user clicks and drags, a rubber band (i.e., a rectangle, filled
with a semi-transparent color on some platforms) is stretched out, and ev-
ery item in or touching the rectangle is selected. The default drag mode is
QGraphicsView::NoDrag which does nothing. One other drag mode is supported:

ptg

440 Chapter 12. CreatingGraphics/View Scenes

QGraphicsView::ScrollHandDrag; when this is set, clicking and dragging scrolls
the view.

To support zooming we have provided two slots, both of which scale the view.
And we have also reimplemented the mouse wheel event handler, to scale in
proportion to how far the wheel has been rotated—zooming out for forward
movement and zooming in for backward movement. The QWheelEvent::delta()

value reports how far the wheel has been rotated in “steps” (where each step
usually corresponds to a wheel rotation of 15°), with positive values indicating
forward movement and negative values indicating backward movement. The
std::pow() function (from the <cmath> header) raises its first argument to the
power specified by its second argument. In essence,whatwe dohere is increase
or decrease the scale by a factor of 11

3 for every mouse wheel step.

All the scaling is done by the private scaleBy() method that simply calls the
QGraphicsView::scale() method and uses the single scale factor as the amount
to scale both horizontally and vertically to maintain the view’s aspect ratio.

By default, a QGraphicsView uses wheel events for scrolling, so by reimplement-
ing the wheelEvent() event handler, we have effectively disabled this behavior.
This means that users can only use the mouse wheel for scrolling if the mouse
is actually over a scrollbar.

Creating a Dock Widget Toolbox ||||

The Page Designer’smain window has three dock widgets, one for transforma-
tions (rotation and shears), one for the brush, and one for the pen. Structurally
all three widgets are similar, and logically they are all used for the same two
purposes: to reflect the relevant properties of the single selected widget—for
example, to show its brush color and style—and to change the relevant proper-
ties of the selected item or items when the user manipulates the dock widget’s
editing widgets.

All of Page Designer’s dock widgets are similar in structure and function, so
we will review only one of them—the BrushWidget. The code for others is, of
course, in the application’s source code. All three dock widgets can be seen in
Figure 12.1 (410 ➤).

As we often do, we will begin by looking at the class’s definition in the header
file, but eliding the private slots and methods, all of which we will cover as
needed when we review the public slots and methods.

class BrushWidget : public QWidget

{

Q_OBJECT

public:

ptg

Creating a Dock Widget Toolbox 441

explicit BrushWidget(QWidget *parent=0);

QBrush brush() const { return m_brush; }

public slots:

void setBrush(const QBrush &brush);

signals:

void brushChanged(const QBrush &brush);
···

};

The widget has one item of private member data, m_brush of type QBrush. The
class provides a suitable getter, and a slot as a setter so that the brush can
be set as the result of the activating of a signal–slot connection. If the brush
is changed—for example, if the user changes the color or style—the brush-

Changed() signal is emitted. We saw earlier that every item that has a brush
property, that is, box and smiley items, connects to this signal. (Wewill see how
they respond to the signal when we cover the custom items’ implementations
later on; ➤ 447.)

BrushWidget::BrushWidget(QWidget *parent)

: QWidget(parent)

{

createWidgets();

setBrush(QBrush());

createLayout();

createConnections();

setFixedSize(minimumSizeHint());

}

The constructor passes most of its work on to private helper methods. It sets
an initial black brush with a style of Qt::NoBrush (so the brush won’t actually
have any effect). Once the child widgets have been created and laid out we
set the brush widget to have a fixed size of its minimum size hint since there
doesn’t seem to be much point in letting the user resize it. (For the curious it
might be worth commenting out the setFixedSize() calls in all three toolbox
widgets and seeing what effect this has.)

void BrushWidget::createWidgets()

{

colorComboBox = new QComboBox;

foreach (const QString &name, QColor::colorNames()) {

QColor color(name);

colorComboBox->addItem(colorSwatch(color), name, color);

}

styleComboBox = new QComboBox;

ptg

442 Chapter 12. CreatingGraphics/View Scenes

typedef QPair<QString, Qt::BrushStyle> BrushPair;

foreach (const BrushPair &pair, QList<BrushPair>()

<< qMakePair(tr("No Brush"), Qt::NoBrush)

<< qMakePair(tr("Solid"), Qt::SolidPattern)
···
<< qMakePair(tr("Diagonal Cross"), Qt::DiagCrossPattern))

styleComboBox->addItem(brushSwatch(pair.second), pair.first,

pair.second);
}

The widget contains four child widgets—two labels and two comboboxes. To
help the user choose the brush color or brush style, rather than simply list
their names we provide swatches (little pixmaps) to illustrate the values. For
each color we use a circular pixmap filled with the associated color, and for
each brush style we use a square pixmap filled with the current color (which is
initially black), using the corresponding brush style.

For each color,we add a combobox item that has a color swatch, the name of the
color (in the form of a QString using HTML color syntax, e.g., "#FF0000" for red),
and a data QVariant holding the QColor itself. The static QColor::colorNames()

method returns a sorted QStringList of human-readable color names (such as
“palegreen”, “red”, and so on).★ We take the same approach for brush styles,
giving each combobox item a swatch illustrating the brush style, the style’s
name, and a data QVariant holding the style’s enum value—and, of course, we
have elided most of the brush pairs from the code shown above since they all
follow the same pattern.

As we noted in Chapter 9 (347 ➤), inside Qt’s foreach construct the first comma
encountered is used to separate the item from the sequence, so we cannot use
items that contain a comma. We have solved the problem here using our usual
practice of creating a typedef.

One other aspect to notice is that we create only the comboboxes,not the labels.
We will get the layout class to create the labels for us, as we will see shortly.

The application has five swatch functions: colorSwatch(), brushSwatch(), pen-
StyleSwatch(), penCapSwatch(), and penJoinSwatch(). We will review only the
simplest of them—brushSwatch()—as representative. (The others are more
complicated, but not in particularly interesting ways—for example, the color
swatch can add a “C” character in a contrasting color, and the pen join swatch
paints a polyline of two lines that meet so as to show the join style.)

★At the time of thiswriting, the documentation doesn’t explicitly say that the color names are sort-
ed, so it would be more defensive to retrieve the names into a variable and call QStringList::sort()
before adding them, or to just call QComboBox::model()->sort(0), to sort the first (and only) column
in ascending order, after populating the combobox.

ptg

Creating a Dock Widget Toolbox 443

QPixmap brushSwatch(const Qt::BrushStyle style, const QColor &color,

const QSize &size)

{

QString key = QString("BRUSHSTYLESWATCH:%1:%2:%3x%4")

.arg(static_cast<int>(style)).arg(color.name())

.arg(size.width()).arg(size.height());

QPixmap pixmap(size);

if (!QPixmapCache::find(key, &pixmap)) {

pixmap.fill(Qt::transparent);

QPainter painter(&pixmap);

painter.setRenderHint(QPainter::Antialiasing);

painter.setPen(Qt::NoPen);

painter.setBrush(QBrush(color, style));

painter.drawRect(0, 0, size.width(), size.height());

painter.end();

QPixmapCache::insert(key, pixmap);

}

return pixmap;

}

This function takes a brush style, an optional color (which defaults to black),
and an optional size (which defaults to 24 × 24 pixels) and returns a square
pixmap drawn using a brush of the specified style, color, and size.

Rather than creating a fresh pixmap every time the function is called we
cache pixmaps—up to 10MB worth by default, and changeable using QPixmap-

Cache::setCacheLimit(). To use the cache we must uniquely identify each
pixmap we cache with a key. Here we use a string that identifies the pixmap
as a brush swatch (in contrast to a color swatch, pen style swatch, and so on),
and that is followed by information that identifies the swatch, in this case the
brush style (as an int), the color (as an HTML color string), and the pixmap’s
width and height. For example, a solid brown 24 × 24 brush would have a key
of "BRUSHSTYLESWATCH:1:#a52a2a:24x24".

Once we have created the key we create a pixmap of the right size. The QPix-

mapCache::find() method is used to retrieve a pixmap from the cache with the
given key. The method returns true and populates the QPixmap it is passed by
pointer—or by non-const reference (i.e., no &) for Qt 4.5 and earlier—if the key
is found; otherwise it returns false. So, the first time we request a particular
pixmap its key is not found and we fill the pixmap ourselves. We begin by fill-
ing it with transparent color, and then we create a QPainter to paint a rectangle
over the entire pixmapusing the specified brush. Although we paint thewhole
pixmap, we must still fill it with transparent or some other color in the first
place, since most brush styles aren’t solid and leave some background showing
through. Once created,we insert the pixmap into the cache using the key. And
at the end we return the pixmap we retrieved or created.

ptg

444 Chapter 12. CreatingGraphics/View Scenes

Structurally, all the other swatch methods are the same as this one—they
differ only in that they use different keys and draw different things on the
pixmap. Note that thekeysweusemust never beginwith the string "$qt" since
Qt uses the QPixmapCache itself with this as the prefix for all of its own keys.

void BrushWidget::createLayout()

{

QFormLayout *layout = new QFormLayout;

layout->addRow(tr("Color"), colorComboBox);

layout->addRow(tr("Style"), styleComboBox);

setLayout(layout);

}

Wehave chosen to show the createLayout()method since it uses the QFormLayout
class introduced in Qt 4.4, and creates two of the labels for us. One nice feature
of creating labels in this way is that Qt automatically makes them buddies of
the widget that is added,which means that if the keyboard focus goes to one of
the labels it is immediately passed on to its buddy.

void BrushWidget::createConnections()

{

connect(colorComboBox, SIGNAL(currentIndexChanged(int)),

this, SLOT(updateColor(int)));

connect(styleComboBox, SIGNAL(currentIndexChanged(int)),

this, SLOT(updateStyle(int)));

}

This method is shown for completeness. If the user changes the color or the
brush style, a corresponding slot is called so that any connected widgets can
be notified, and in the case of color changes so that we can update the brush
swatches to use the newly set color.

We have now finished looking at the constructor and its private helper meth-
ods. Nextwewill look at the public setBrush() slot,and then at the private slots
and a private helper method.

void BrushWidget::setBrush(const QBrush &brush)

{

if (m_brush != brush) {

m_brush = brush;

colorComboBox->setCurrentIndex(

colorComboBox->findData(m_brush.color()));

styleComboBox->setCurrentIndex(

styleComboBox->findData(

static_cast<int>(m_brush.style())));

}

}

ptg

Creating a Dock Widget Toolbox 445

This slot is calledwhen exactly one item is selected in the view—providing that
itemhasa brush property,as box and smiley itemsdo. In response this slot sets
the private brush to the one passed in and sets the two comboboxes’ current
items to match the color and style of the new brush.

The QComboBox::findData() method takes a QVariant and returns the index of
the first matching item (or -1). We can use QColors directly, but for enums we
must cast them to ints since that is how they are stored in QVariants.

void BrushWidget::updateColor(int index)

{

m_brush.setColor(colorComboBox->itemData(index).value<QColor>());

updateSwatches();

emit brushChanged(m_brush);

}

Whenever thebrush color changes—either asa result of theusermanipulating
the colorComboBox or due to an item being selected and calling the setBrush()

slot—this method is called.

The QComboBox::itemData() method returns the QVariant of data associated
with the item with the given index. (By default this is an invalid QVariant.)
And since QVariant only provides conversion methods for QtCore types (QVari-
ant::toInt(), QVariant::toSize(), and so on), for other types we must use the
QVariant::value<T>() template method, specifying the type of the value we
want it to return.

Once we have updated the private brush to use the new color, we call the
private updateSwatches() method to make sure that the brush style swatches
are shown using the new color. And at the end we emit the brushChanged()

signal to notify any connected QObjects of the new brush.

void BrushWidget::updateStyle(int index)

{

m_brush.setStyle(static_cast<Qt::BrushStyle>(

styleComboBox->itemData(index).toInt()));

emit brushChanged(m_brush);

}

This method is the brush style equivalent of the updateColor() method. The
brush style is specified using an enum, so we begin by retrieving the data
QVariant for the given item as an int, and then we cast this to the appropriate
enum type before updating the private brush. And at the end we emit the brush-
Changed() signal with the updated brush.

There is no need to call updateSwatches() from this method, since all the
swatches in the combobox are updated whenever the color is changed, so when

ptg

446 Chapter 12. CreatingGraphics/View Scenes

the brush style combobox is manipulated by the user or has its index changed
programmatically, it already has swatches that use the correct color.

void BrushWidget::updateSwatches()

{

QColor color = colorComboBox->itemData(

colorComboBox->currentIndex()).value<QColor>();

for (int i = 0; i < styleComboBox->count(); ++i)

styleComboBox->setItemIcon(i, brushSwatch(

static_cast<Qt::BrushStyle>(

styleComboBox->itemData(i).toInt()), color));

}

Tomake it as easy as possible for users to see the effects of changing brush col-
ors,whenever the brush color is changedwe update the brush style swatches in
the styleComboBox so that they use the same color. The effect can easily be seen
by running PageDesigner, clicking the brush style combobox,and choosing any
style except NoBrush, then clicking the brush color combobox and using the up
and down arrow keys to change the color—while watching the swatch shown
in the brush style combobox as it changes to match the chosen color. (On some
platforms it is necessary to click Esc after first clicking the color combobox so
that when the arrow keys are used the brush combobox is visible.) And the
same effect can be achieved with the pen toolbox by using the up and down
arrows on the pen color combobox and watching the pen style, cap, and join
swatches change color.

The method begins by retrieving the current color. Then we iterate over
every item in the brush style combobox, and for each one we change the icon
it uses (and relying on a non-explicit QIcon constructor that takes a QPixmap

argument) to one returned by a call to the brushSwatch() function. For the first
argument to the brushSwatch() function we pass the brush style by retrieving
the data QVariant’s value as an int and then casting it to the appropriate enum

type. And instead of using the default black color,we pass the color combobox’s
current color as second argument.

The TransformWidget and PenWidget (neither of which is shown) are structurally
and logically very similar to the BrushWidget we have reviewed here.

We have now reviewed all of the Page Designer application’s infrastructure,
including how to save, load, and export scenes, how to add and manipulate
individual items, and how to manipulate groups of selected items. The only
things left to cover are the implementations of the custom graphics items
themselves, which is the subject of the next section.

ptg

CreatingCustomGraphics Items 447

Creating CustomGraphics Items ||||

All graphics/view itemshave QGraphicsItem as their direct or indirect base class.
Most of the QGraphicsItem convenience subclasses were introduced with the
graphics/view architecture in Qt 4.2, with QGraphicsProxyWidget and QGraphics-

Widget being added in Qt 4.4, and QGraphicsObject and QGraphicsWebView in
Qt 4.6. (Qt 4.7 may add QGraphicsVideoItem for showing videos in scenes which
makes use of Qt’s low-level QtMultimedia module.) The class hierarchy was
shown earlier (391 ➤), as were selected QGraphicsItem methods and enums (in Ta-
bles 11.1 to 11.7; 403–407 ➤).

Having somany graphics item classesmeans that inmost caseswe do not need
to create subclasses purely to paint custom shapes. After all, practically any-
thing can be drawn using QGraphicsEllipseItem, QGraphicsLineItem, QGraphics-
PathItem, QGraphicsPolygonItem, and QGraphicsRectItem. So the main purpose of
subclassing graphics items is to provide custom behavior.

In this section we will review three different custom graphics item types to
show a variety of approaches. The first subclass we will look at is a QGraphics-

TextItem subclass which merely adds some simple behavior, leaving all the
painting to Qt. The second we will look at is a QObject and QGraphicsRectItem

subclass which adds more sophisticated behaviors, including key press and
mouse interactions. The third is a QGraphicsObject subclass (or QObject and
QGraphicsItem subclass for Qt 4.5 and earlier) that implements custombehavior
and also paints itself—aswell as providing implementations of boundingRect()
and shape(). In fact, this last class could have avoided doing its own paint-
ing had it been a QGraphicsPathItem subclass—something that is true of most
shapes—but we wanted to show an example where both behavior and appear-
ance are implemented.

For convenience we have defined the custom item type numbers in a separate
header file:

const int BoxItemType = QGraphicsItem::UserType + 1;

const int SmileyItemType = QGraphicsItem::UserType + 2;

const int TextItemType = QGraphicsItem::UserType + 3;

Hopefully, this will help us to avoid accidentally giving two custom items the
same type numbers.

Enhancing QGraphicsTextItem |||

The QGraphicsTextItem class—which inherits both QObject and QGraphicsItem—
is used to show Qt rich text in a scene. (If plain text is sufficient, that is, text
that has a single font and color, we can use QGraphicsSimpleTextItems instead.)

ptg

448 Chapter 12. CreatingGraphics/View Scenes

We need to subclass QGraphicsTextItem because we want to provide it with cus-
tom behavior. In particular, we want the user to be able to rotate and shear it
through theuser interface,and to be able to edit the text it shows. Wealsowant
the subclass to announce changes via a custom dirty() signal, and to be able to
write and read itself to and from a QDataStream. The painting, and the compu-
tation of the bounding rectangle and the shape, are left to the base class.

We will start by looking at the definition of the custom TextItem class in the
header file, but omitting the private section.

class TextItem : public QGraphicsTextItem

{

Q_OBJECT

Q_PROPERTY(double angle READ angle WRITE setAngle)

Q_PROPERTY(double shearHorizontal READ shearHorizontal

WRITE setShearHorizontal)

Q_PROPERTY(double shearVertical READ shearVertical

WRITE setShearVertical)

public:

enum {Type = TextItemType};

explicit TextItem(const QPoint &position, QGraphicsScene *scene);

int type() const { return Type; }

double angle() const { return m_angle; }

double shearHorizontal() const { return m_shearHorizontal; }

double shearVertical() const { return m_shearVertical; }

public slots:

void setAngle(double angle);

void setShearHorizontal(double shearHorizontal)

{ setShear(shearHorizontal, m_shearVertical); }

void setShearVertical(double shearVertical)

{ setShear(m_shearHorizontal, shearVertical); }

void setShear(double shearHorizontal, double shearVertical);

void edit();

signals:

void dirty();

protected:

QVariant itemChange(GraphicsItemChange change,

const QVariant &value);

void mouseDoubleClickEvent(QGraphicsSceneMouseEvent*) { edit(); }
···

};

ptg

CreatingCustomGraphics Items 449

As we mentioned in the previous chapter, it is good practice to provide a Type

enum and to reimplement the type() method to support the use of qgraphics-

item_cast<>()which is used to cast QGraphicsItem pointers to the correct QGraph-
icsItem subclass.

We have made the item’s angle of rotation and shears into properties so that
we can query and set them via Qt’s property system—for example, querying
them in the selectionChanged() method (433 ➤), and setting them in the edit-

ClearTransforms()method (➤ 454).Andwe havemade them doubles rather than
qreals to ensure that they are saved and loaded correctly. (We discussed the
fact that qreals should never be used with QDataStreams in Chapter 3; 104 ➤.)

The first two slots are used to make the item able to respond to changes in
the TransformWidget toolbox. The itemChange() method is used to emit the
dirty() signal if the change matters—for example, if the item’s position or
transformation is changed, but not if the item becomes selected or deselected.

The provision of an edit() slot is a convention we have adopted for the Page
Designer application, so that we can have an Edit Selected Item…action that will
invoke edit() to provide item-specific editing. (The editSelectedItem() slot was
covered earlier; 423 ➤.) In addition, we reimplement the mouse double-click
event handler to provide another means of invoking edit().

In addition to the class definition, the header also includes two other decla-
rations:

QDataStream &operator<<(QDataStream &out, const TextItem &textItem);

QDataStream &operator>>(QDataStream &in, TextItem &textItem);

These operators are used by the readItems() and writeItems() methods we
discussed earlier (417 ➤and 416 ➤).

Wewill now review all themethods that are not implemented in the header file
as well as the global stream operators, beginning with the constructor.

TextItem::TextItem(const QPoint &position, QGraphicsScene *scene)

: QGraphicsTextItem(), m_angle(0.0), m_shearHorizontal(0.0),

m_shearVertical(0.0)

{

setFont(QFont("Helvetica", 11));

setFlags(QGraphicsItem::ItemIsSelectable|

QGraphicsItem::ItemSendsGeometryChanges|

QGraphicsItem::ItemIsMovable);

setPos(position);

scene->clearSelection();

scene->addItem(this);

setSelected(true);

}

ptg

450 Chapter 12. CreatingGraphics/View Scenes

When a TextItem is constructed we set its angle and shears to 0.0 and then we
give it an initial position (in scene coordinates) and the scene it belongs to.

Wewant the user to be able to select andmove the item, so we set the appropri-
ate flags to permit this. In Qt 4.5 and earlier,when an item’s geometry changes
(e.g.,when it is resized), itemChange() is called; but fromQt 4.6, for performance
reasons, this no longer happens unless we explicitly request it by setting the
ItemSendsGeometryChangesflag aswedohere. (Wediscussed this issue in thepre-
vious chapter in the “Qt 4.6 Graphics/ViewBehavior Changes” sidebar; 393 ➤.)
Next, we set the item’s position, clear any existing selection, and add the item
to the scene. And at the end, we select the item—so that the user can immedi-
ately delete it or edit it.

void TextItem::edit()

{

QWidget *window = 0;

QList<QGraphicsView*> views = scene()->views();

if (!views.isEmpty())

window = views.at(0)->window();

TextItemDialog dialog(this, QPoint(), scene(), window);

if (dialog.exec())

emit dirty();

}

This slot is called when a single TextItem is selected and the user invokes the
Edit Selected Item… action (via the menu or toolbar), or when the user double-
clicks a TextItem.

Figure 12.3 The Page Designer application’s TextItemDialog in edit mode

The custom TextItemDialog (code not shown, but pictured in Figure 12.3) is
an add/edit-style dialog that provides the user with the means of editing the
item’s text, including using different fonts and colors. We want to make sure
that the dialog pops up in the right place and does not produce an additional

ptg

CreatingCustomGraphics Items 451

entry in the taskbar, both easily achieved by giving it a top-level window as
its parent. However,we don’t have a pointer to a top-level window handy. One
solution would be to call QApplication::topLevelWidgets(), and to use the first
one from that list that isn’t hidden. But while that will get a top-level window,
it might not be the most appropriate one. So instead, we retrieve the list of
views associated with the item’s scene—of which in this application there is
just one—and then call QWidget::window() to get the view’s top-level window (or
the view itself, it if was being used as a top-level window in its own right).

Internally, the TextItemDialog uses the TextEdit class we reviewed in Chapter 9
(353 ➤), but without the text alignment functionality. The dialog is smart (i.e.,
the dialog has application knowledge, and can operate almost independently),
so if the user clicks OK, it updates the TextItem and schedules it for a repaint,
so all we have to do is emit dirty() if the dialog is accepted.

QVariant TextItem::itemChange(GraphicsItemChange change,

const QVariant &value)

{

if (isDirtyChange(change))

emit dirty();

return QGraphicsTextItem::itemChange(change, value);

}

This method is called by Qt whenever the item experiences a change of state.
However, as we have noted, from Qt 4.6, for certain changes (e.g., those affect-
ing its position and transformation),Qtwill only call thismethod if we have ex-
plicitly asked it to by setting an appropriate QGraphicsItem::GraphicsItemChange
flag, that is, QGraphicsItem::ItemSendsGeometryChanges. (Recall also that even
with the flag set, the only transformation changes that result in itemChange()

being called are those made by setTransform(). Qt 4.7 is due to extend this to
cover the setRotation(), setScale(), and setTransformOriginPoint() methods
that were introduced in Qt 4.6.)

We only want to emit the dirty() signal for those changes that affect the scene
in termsof saving and loading it. For example,we do not keep track of selected
items in scene files, so changes to an item’s selected state do not make the
scene dirty.

Since all our custom graphics items reimplement the itemChange() method we
have factored out the determination of whether a change makes the scene
dirty into the global isDirtyChange() function.

bool isDirtyChange(QGraphicsItem::GraphicsItemChange change)

{

return (change == QGraphicsItem::ItemPositionChange ||

change == QGraphicsItem::ItemPositionHasChanged ||

change == QGraphicsItem::ItemTransformChange ||

ptg

452 Chapter 12. CreatingGraphics/View Scenes

change == QGraphicsItem::ItemTransformHasChanged);

}

This function returns true if the item’s position or transformationhas changed;
for any other change it returns false.

We will look at the last TextItem methods, setAngle() and setShear(), in a sep-
arate subsubsection shortly, when we discuss graphics item transformations.
First, though, we will look at the global QDataStream operators through which
TextItems are written to and read from data streams.

QDataStream &operator<<(QDataStream &out, const TextItem &textItem)

{

out << textItem.pos() << textItem.angle()

<< textItem.shearHorizontal() << textItem.shearVertical()

<< textItem.zValue() << textItem.toHtml();

return out;

}

For all the custom item operator<<()s,we write out the item’s position (in scene
coordinates), its angle, its shears, and its z value. (Page Designer does not
provide any means of changing z values; adding such functionality is left as an
exercise.) Next we write the item-specific data, in this case simply the item’s
text in HTML format (to preserve the fonts, colors, and other formatting).

As we saw earlier, this operator is used both to write TextItems to files, and also
into a QByteArray when they are copied or cut to the clipboard (416 ➤; 427 ➤).

QDataStream &operator>>(QDataStream &in, TextItem &textItem)

{

QPointF position;

double angle;

double shearHorizontal;

double shearVertical;

double z;

QString html;

in >> position >> angle >> shearHorizontal >> shearVertical >> z

>> html;

textItem.setPos(position);

textItem.setAngle(angle);

textItem.setShear(shearHorizontal, shearVertical);

textItem.setZValue(z);

textItem.setHtml(html);

return in;

}

ptg

CreatingCustomGraphics Items 453

This get from operator is used to read in the items written by the put to opera-
tor. As alwayswith QDataStream, it is essential thatwe read back the same types
in the same order as they were written. And just as with the put to operator,
this operator is used for two purposes—to read files, and to paste the items from
a QByteArray held in the system’s clipboard into the scene (417 ➤; 427 ➤).

Graphics Item Transformations ||

If an item is rotated (with no shearing or scaling), it can be restored to its
original position by changing its rotation back to its original angle (e.g., 0°).
Similarly, if an item is sheared horizontally (with no rotation, no scaling, and
no vertical shear), it can be restored by setting its horizontal shear back to
its original value (e.g., 0.0). And the same applies for a vertical shear. But if
any of these are combined (rotation with shearing, or vertical shearing with
horizontal shearing, or rotation with scaling, and so on), restoring the angle to
0°, the shears to 0.0,and the scaling to 1.0willnot restore the original image. In
fact, we can’t generally undo transformations simply by reversing the actions
(i.e., by applying “opposite” transformations) that we took to apply them. (This
is because transformationsare normally—and inQt—represented asmatrices,
and not all matrices are invertible.)

For the Page Designer application, we have solved this problem by never
applying transformations to transformations. Instead we always create and
set fresh transformations, and this entirely avoids the undo problem. The way
we achieve this is by maintaining private member variables in each item that
hold the angle of rotation and the shears. This means that whenever the user
changes the angle or shears, we create and set a new QTransform for the item.

We have not provided control over horizontal and vertical scaling because
the code and logic would be almost the same as for shearing, and so would not
teach anything beyond what we already cover. So,we leave adding support for
scaling as an exercise.

To provide transformation support we need one method for each kind of trans-
formation to set the relevant transformation component (angle, shears, etc.),
and a private updateTransform()method to create and set a suitable QTransform.
We’ll start by looking at the setAngle() and setShear() slots, and then we will
look at the updateTransform() method.

void TextItem::setAngle(double angle)

{

if (isSelected() && !qFuzzyCompare(m_angle, angle)) {

m_angle = angle;

updateTransform();

}

}

ptg

454 Chapter 12. CreatingGraphics/View Scenes

This method is called if the item is rotated, that is, if the user has changed
the angle in the TransformWidget’s angle spinbox. Since every item is connected
to the angle spinbox’s valueChanged() signal, we must be careful to apply the
change only to the item or items that are selected. In addition, we have used
qFuzzyCompare() as an optimization that ensures that we apply the transforma-
tion only if the new angle is different enough from the old angle to matter.

void TextItem::setShear(double shearHorizontal, double shearVertical)

{

if (isSelected() &&

(!qFuzzyCompare(m_shearHorizontal, shearHorizontal) ||

!qFuzzyCompare(m_shearVertical, shearVertical))) {

m_shearHorizontal = shearHorizontal;

m_shearVertical = shearVertical;

updateTransform();

}

}

As with the setAngle() method, we only change this item’s shear if the item is
selected and if at least one of the new shears is different enough from the old.

void TextItem::updateTransform()

{

QTransform transform;

transform.shear(m_shearHorizontal, m_shearVertical);

transform.rotate(m_angle);

setTransform(transform);

}

This privatemethod is used to apply a transformation to the item. We begin by
creating a fresh QTransform (which holds an identity matrix, i.e., it has no rota-
tion, scaling, or shearing). Then we apply the shears and the angle of rotation,
and at the end we set the item’s transformation to the one we have created.

Notice that we do not explicitly emit the dirty() signal; thanks to setting the
ItemSendsGeometryChanges flag, the itemChange() method is called, and that is
where dirty() is emitted.

We mentioned earlier that the main window provides a Clear Transformations
action. To round off this subsubsection on transformations,we will review the
main window slot that is called when that action is invoked.

void MainWindow::editClearTransforms()

{

QList<QGraphicsItem*> items = scene->selectedItems();

Q_ASSERT(!items.isEmpty());

QListIterator<QGraphicsItem*> i(items);

ptg

CreatingCustomGraphics Items 455

while (i.hasNext()) {

if (QObject *item = dynamic_cast<QObject*>(i.next())) {

if (item->property("angle").isValid()) {

item->setProperty("angle", 0.0);

item->setProperty("shearHorizontal", 0.0);

item->setProperty("shearVertical", 0.0);

}

}

}

transformWidget->setAngle(0.0);

transformWidget->setShear(0.0, 0.0);

setDirty(true);

}

This method clears transformations from the selected items, by setting their
rotation angles to 0.0° and setting their shears to 0.0. Then we update the
TransformWidget so that it correctly reflects the transformation state of the
selected item or items by setting its angle to 0.0° and its shears to 0.0. And
at the end, we call setDirty() since the changes are significant. (The use of
dynamic_cast<>() requires the use of RTTI, although it is possible to avoid it;
424 ➤.)

We use an assertion to check that the list isn’t empty—after all, we only enable
the Clear Transformations action if there is at least one selected item—so if the
list is empty our program has a bug.

Strictly speaking thismethod isn’t necessary since users can achieve the same
thing by selecting the relevant items and changing the angle and shears in the
TransformWidget to 0.0.But having themethod is convenient—merely requiring
the user to click a toolbar button, rather than to set three spinboxes to 0.0.
And if support for scaling were added to the application, thismethod would be
even more convenient, because without it the user would have to set up to five
spinboxes to 0.0.

Enhancing an Existing Graphics Item |||

In this subsection we will look at the BoxItem subclass which multiply inherits
QObject and QGraphicsRectItem. This class has more custom behavior than the
previous subsection’s TextItem class. In particular, the user can move a box
item by dragging it or by pressing an arrow key with the Ctrl key held down (
key on Mac OS X), and they can resize the box by Shift+Clicking a corner and
then dragging or by pressing an arrow key with the Shift key held down.

class BoxItem : public QObject, public QGraphicsRectItem

{

Q_OBJECT

ptg

456 Chapter 12. CreatingGraphics/View Scenes

Q_PROPERTY(QBrush brush READ brush WRITE setBrush)

Q_PROPERTY(QPen pen READ pen WRITE setPen)
···

public:

enum {Type = BoxItemType};

explicit BoxItem(const QRect &rect, QGraphicsScene *scene);

int type() const { return Type; }
···

signals:

void dirty();

public slots:

void setPen(const QPen &pen);

void setBrush(const QBrush &brush);
···

protected:

QVariant itemChange(GraphicsItemChange change,

const QVariant &value);

void keyPressEvent(QKeyEvent *event);

void mousePressEvent(QGraphicsSceneMouseEvent *event);

void mouseMoveEvent(QGraphicsSceneMouseEvent *event);

void mouseReleaseEvent(QGraphicsSceneMouseEvent *event);
···

};

We have elided the angle and shear properties, accessors, and slots, since they
are the same as for the TextItem we saw in the previous subsection.

The constructor’s implementation (not shown) is very similar to the TextItem

constructor we saw in the previous subsection, only for BoxItems we set an ad-
ditional flag (QGraphicsItem::ItemIsFocusable) so that they can receivekeyboard
events, and of course we set the QGraphicsRectItem’s base class’s rectangle to
that passed to the constructor. The BoxItem also has a private m_resizing vari-
able of type bool, in addition to the same private angle and shear doubles as
TextItems.

The BoxItem has public slots for setting its pen, brush, angle, and shears, and
reimplements the protected itemChange(), keyPressEvent(), mousePressEvent(),
mouseMoveEvent(), and mouseReleaseEvent() event handlers. We will review all
the event handlers except for itemChange()which is the sameas for the TextItem.
Of the slots,we will review only setBrush() since the setPen() slot is structural-
ly identical,and the setAngle() and setShear() slots are the sameas those in the
TextItem that we have already seen. We will start with the setBrush() slot.

void BoxItem::setBrush(const QBrush &brush_)

{

if (isSelected() && brush_ != brush()) {

QGraphicsRectItem::setBrush(brush_);

ptg

CreatingCustomGraphics Items 457

emit dirty();

}

}

Since all items that have a brush property are connected to the BrushWidget,
we only apply a brush change to an item if it is selected—and then only if the
new brush is different from the old one. If a new brush is set we emit dirty()
to notify any interested objects.

void BoxItem::keyPressEvent(QKeyEvent *event)

{

if (event->modifiers() & Qt::ShiftModifier ||

event->modifiers() & Qt::ControlModifier) {

bool move = event->modifiers() & Qt::ControlModifier;

bool changed = true;

double dx1 = 0.0;

double dy1 = 0.0;

double dx2 = 0.0;

double dy2 = 0.0;

switch (event->key()) {

case Qt::Key_Left:

if (move)

dx1 = -1.0;

dx2 = -1.0;

break;
···

default:

changed = false;
}
if (changed) {

setRect(rect().adjusted(dx1, dy1, dx2, dy2));

event->accept();

emit dirty();

return;

}
}

QGraphicsRectItem::keyPressEvent(event);
}

We have provided keyboard support for moving items (Ctrl+arrow or +arrow
on Mac OS X), and for resizing items (Shift+arrow). (In QGraphicsViews, using the
arrow keys without using a keyboard modifier scrolls the view.) In both cases
we compute x- and y-coordinate differences depending on which arrow key
was pressed and then reset the box’s rectangle to a new rectangle based on the
current one but adjusted by the computed coordinate differences. If we have
handled the key press,we accept the event (so that Qt can forget about it), emit
dirty() since a move or resizing is a significant change, and return; otherwise

ptg

458 Chapter 12. CreatingGraphics/View Scenes

we pass on the key processing to the base class to handle (which in this case
means the key press will be ignored).

void BoxItem::mousePressEvent(QGraphicsSceneMouseEvent *event)

{

if (event->modifiers() & Qt::ShiftModifier) {

m_resizing = true;

setCursor(Qt::SizeAllCursor);

}

else

QGraphicsRectItem::mousePressEvent(event);

}

Since we set the QGraphicsItem::ItemIsMovable flag, the user can move box
itemssimply by clicking and dragging. Wehave extended the box’s behavior by
providing support for resizing, both using the keyboard as we have just seen,
and also by Shift+Clicking and then dragging.

If the user clicks with the Shift key held down, we initiate resizing by setting
m_resizing to true and changing the mouse cursor.

void BoxItem::mouseMoveEvent(QGraphicsSceneMouseEvent *event)

{

if (m_resizing) {

QRectF rectangle = rect();

if (event->pos().x() < rectangle.x())

rectangle.setBottomLeft(event->pos());

else

rectangle.setBottomRight(event->pos());

setRect(rectangle);

}

else

QGraphicsRectItem::mouseMoveEvent(event);

}

If resizing is in progress we simply update the box’s rectangle’s bottom left
or right corner to match the current mouse position. A more sophisticated
algorithm would handle the x- and y-coordinates separately, but what we have
here is sufficient to illustrate the idea.

void BoxItem::mouseReleaseEvent(QGraphicsSceneMouseEvent *event)

{

if (m_resizing) {

m_resizing = false;

setCursor(Qt::ArrowCursor);

emit dirty();

}

ptg

CreatingCustomGraphics Items 459

else

QGraphicsRectItem::mouseReleaseEvent(event);

}

Once the user releases the mouse during resizing, we switch off resizing and
restore the mouse cursor. We also emit dirty() because resizing an item is a
significant change.

We have now covered almost all of the BoxItem class. We won’t show the
streaming operators since they are very similar to those used for TextItems,
only instead of writing and reading a string of HTML, we write and read the
box’s rectangle, pen, and brush instead.

Creating a CustomGraphics Item from Scratch |||

In this subsection we will review the SmileyItem class, a QGraphicsItem subclass
that provides code for both its appearance and its behavior. For Qt 4.5 and
earlier wemust inherit both QObject and QGraphicsItem, but for Qt 4.6 and later
we only need to inherit QGraphicsObject. Since the definition in the header file is
rather long we have elided the properties and their accessors and slots (which
are all the same as those for BoxItems), as well as the private parts.

class SmileyItem : public QGraphicsObject

{
···

public:

enum Face {Happy, Sad, Neutral};

enum {Type = SmileyItemType};

explicit SmileyItem(const QPoint &position,

QGraphicsScene *scene);

int type() const { return Type; }
···
Face face() const { return m_face; }

bool isShowingHat() const { return m_showHat; }

void paint(QPainter *painter,

const QStyleOptionGraphicsItem *option, QWidget *widget);

QRectF boundingRect() const;

QPainterPath shape() const;

signals:

void dirty();

public slots:
···
void setFace(Face face);

void setShowHat(bool on);

ptg

460 Chapter 12. CreatingGraphics/View Scenes

void edit();

protected:

QVariant itemChange(GraphicsItemChange change,

const QVariant &value);

void mouseDoubleClickEvent(QGraphicsSceneMouseEvent*) { edit(); }

void contextMenuEvent(QGraphicsSceneContextMenuEvent*) { edit(); }
···

};

In addition to the standard Type enumwe have also provided a class-specific enum
to indicate which kind of face the item is to have. And since we are handling
the item’s appearance ourselves, we must also provide reimplementations of
the paint(), boundingRect(), and shape() methods.

To provide the item’s behavior we have provided various public slots (only a
few of which are shown) to set the item’s properties, and also a dirty() signal
and an edit() slot to fit in with the conventions we have adopted for the Page
Designer application.

As usual, we have reimplemented itemChange() so that we can emit the dirty()

signal when appropriate. We have also provided two means of invoking the
item’s edit() slot—mouse double click, which is a Page Designer convention,
and context menu invocation, since for this item the edit action is to pop up
a menu.

The private data (not shown) is used to keep track of the pen, brush, face,
whether the hat is to be shown, and the angle and shears. We also keep two
painter paths—the face path is simply an ellipse, while the hat path is a more
complex eight-point polygon.

The constructor (not shown) is similar to the one used for TextItems, only we
set initial values for the private data (happy face, no pen, yellow brush, not
showing hat, angle of 0.0°, and shears of 0.0), and call the createPaths() helper
method to create the face and hat paths.

const int SmileySize = 60;
···
void SmileyItem::createPaths()

{

m_facePath.addEllipse(-SmileyHalfSize, -SmileyHalfSize,

SmileySize, SmileySize);

const int LeftX = -(SmileyHalfSize + (SmileyMargin / 2));

const int RightX = SmileyHalfSize - (SmileyMargin / 2);

const int Y = -SmileyHalfSize + (SmileyMargin / 2);

QPolygonF polygon;

polygon << QPointF(LeftX * 1.4, Y + SmileyMargin)
···
<< QPointF(LeftX * 1.4, Y + SmileyMargin);

ptg

CreatingCustomGraphics Items 461

m_hatPath.addPolygon(polygon);
}

We have elided most of the points used for the hat’s polygon, and also most
of the constants. The hat’s shape can be seen in the smiley item shown in
Figure 12.4.

void SmileyItem::setFace(Face face)

{

if (m_face != face) {

m_face = face;

update();

emit dirty();

}

}

Thismethod is used to change the face. If the new face setting is different from
the current one the private variable is updated, update() is called to schedule a
repaint, and dirty() is emitted, since a change of face is a significant change.

We won’t show the setPen(), setBrush(), setAngle(), setShear(), or itemChange()
methods, since all of them have the same code as we have seen in the previous
two subsections.

void SmileyItem::setShowHat(bool on)

{

if (m_showHat != on) {

prepareGeometryChange();

m_showHat = on;

emit dirty();

}

}

This slot is used to show or hide the hat. Clearly, the bounding box and shape
of the itemwill be different depending onwhether the hat is shown, sowemust
notify the graphics/view architecture that the item’s geometry is changing.
This is easily done by calling QGraphicsItem::prepareGeometryChange()—which
in turn calls update() which is why we don’t need to call it ourselves.

void SmileyItem::edit()

{

QMenu menu;

QAction *showHatAction = createMenuAction(&menu, QIcon(),

tr("Show Hat"), m_showHat);

connect(showHatAction, SIGNAL(triggered(bool)),

this, SLOT(setShowHat(bool)));

menu.addSeparator();

ptg

462 Chapter 12. CreatingGraphics/View Scenes

QActionGroup *group = new QActionGroup(this);

createMenuAction(&menu, QIcon(":/smileysmile.png"),

tr("Happy"), m_face == Happy, group, Happy);
···
AQP::accelerateMenu(&menu);

QAction *chosen = menu.exec(QCursor::pos());

if (chosen && chosen != showHatAction)

setFace(static_cast<Face>(chosen->data().toInt()));
}

For this item type we have set its edit action to pop up a context menu. The
menu offers the ability to show or hide the hat and to choose the face; it is
shown in Figure 12.4.

Figure 12.4 The Page Designer application’s smiley context menu

We’ve elided the creation of the neutral and sad face actions since the code is
structurally the same as for the happy face—and in all three cases we pass on
most of the work to a helper method. For the showHatAction, we make a direct
signal–slot connection to the item’s setShowHat() slot, so that action takes care
of itself. But for the face choosing actions we haven’t made any connections at
all. Instead, if the user chooses an action—they don’t have to; they could click
Esc to cancel the menu—we check to see what action they have chosen, and if
they chose one at all and it isn’t the showHatAction, then it must be one of the
face choosing actions, so we call setFace(). In the createMenuAction() method,
we associate the appropriate Face enum valuewith each action, sowe can extract
and use it to choose the face the user specified.

QAction *SmileyItem::createMenuAction(QMenu *menu, const QIcon &icon,

const QString &text, bool checked, QActionGroup *group,

const QVariant &data)

{

QAction *action = menu->addAction(icon, text);

action->setCheckable(true);

action->setChecked(checked);

if (group)

group->addAction(action);

action->setData(data);

return action;

}

ptg

CreatingCustomGraphics Items 463

This small convenience helper method saves us a few lines of code in the edit()
slot. The action group ensures that only one of the items in the group is ever
checked at any one time.

We have now covered the methods and slots that provide the item’s behavior
(apart from those shown in earlier subsections). The streaming operators are
much the same as for TextItems, only instead of writing and reading an HTML
string we write and read the item’s face (converting the enum to and from a
qint16), pen,brush,andwhether the hat is showing. So nowwe canfinish off by
covering the painting and the shape() and boundingRect() reimplementations.

void SmileyItem::paint(QPainter *painter,

const QStyleOptionGraphicsItem*, QWidget*)

{

paintFace(painter);

if (m_showHat)

paintHat(painter);

if (isSelected())

paintSelectionOutline(painter);

}

We’ve refactored this method so that it shows the high-level logic without
getting bogged downwith any of the details. In all caseswe paint the face, then
we paint the hat if that’s required,and finally we paint the selection indicating
outline if the item is selected.

void SmileyItem::paintFace(QPainter *painter)

{

painter->setPen(m_pen);

painter->setBrush(m_brush);

painter->drawPath(m_facePath);

int leftX = -SmileyHalfSize + SmileyMargin;

int rightX = SmileyHalfSize - SmileyEyeWidth - SmileyMargin;

paintEyes(painter, leftX, rightX);

paintMouth(painter, leftX, rightX);

}

To paint the facewe draw the face path (an ellipse), and then draw the eyes and
mouth on top of it.

void SmileyItem::paintEyes(QPainter *painter, int leftX, int rightX)

{

int y = -SmileyHalfSize + qRound(SmileyMargin * 1.5);

painter->setBrush(m_brush.color().darker());

painter->drawEllipse(leftX, y, SmileyEyeWidth, SmileyEyeHeight);

painter->drawEllipse(rightX, y, SmileyEyeWidth, SmileyEyeHeight);

}

ptg

464 Chapter 12. CreatingGraphics/View Scenes

Using Off-Screen Rendering

The performance of graphics/view-based applications depends on what is
rendered and how it is rendered. If our custom item needs to draw complex
shapes, text, or gradients, or to apply complex clipping, our application’s
performance may suffer.

If slow and complex rendering is required, one solution is to create an im-
age of the item using an image editing application, and in our QGraphics-

Item::paint() reimplementation, load the image into a QPixmap and draw
the pixmap. In most cases, drawing a single pixmap will outperform clas-
sic piece-by-piece rendering. Unfortunately, this approach hasmany limita-
tions, the most obvious being that the pixmap cannot visually react to state
changes (e.g., if the item changes color), and any transformations—such as
scaling—are likely to make the pixmap look pixelated and fuzzy.

A more versatile solution is to make use of the off-screen cache that QGraph-
icsItems provide. By default the CacheMode is QGraphicsItem::NoCache, but if
we enable caching by calling QGraphicsItem::setCacheMode(), the cached item
will render itself into a pixmap. We canmanually set the size of the pixmap
by passing a QSize as a second argument to setCacheMode(); otherwise the
size will be calculated for us based on the item’s boundingRect(). This pixmap
is then reused for subsequent exposures of the same item, completely elim-
inating calls to QGraphicsItem::paint(). The cache operates transparently,
so whenever we call update(), the pixmap will be updated before the item is
rendered.
We can, of course, enable caching for existing items, such as QGraphicsText-
Item, to speed up rendering when thismakes sense. Be aware, however, that
extensive use of caching may exhaust the machine’s graphics memory.

The cache has two operatingmodes that determinewhich coordinate system
is used. If we use the ItemCoordinateCache mode, the item will be rendered
in local coordinates. This mode converts the item’s logical units into pixels,
which means that the visual result will degrade if we scale or zoom the
item or the view—for example, if we zoom in, the item will look pixelated
and fuzzy. In this mode the cache persists when the item is transformed.
This makes the mode ideal for items that use animated transformations
such as being rotated—for example, in OpenGL applications that have lots
of transformations.
The second cache mode, DeviceCoordinateCache, renders the item in device
coordinates. This mode ensures a pixel-perfect visual result, with transfor-
mations of the item resulting in the cache being regenerated to keep the vi-
sual result correct. In fact, the cache remains valid as long as we only move
the item or scroll the view, so it is only regenerated if, say, the item is rotat-
ed. Thismakes themode very fast—for example,much faster than painting
when items are moved—and convenient, since it always renders perfectly.

ptg

CreatingCustomGraphics Items 465

The eyes are just two ellipses painted with a slightly darker brush than we use
for the face itself.

void SmileyItem::paintMouth(QPainter *painter, int leftX, int rightX)

{

int y = SmileyHalfSize - qRound(SmileyMargin * 1.1);

int offset = 0;

if (m_face == Neutral)

offset = SmileyMargin;

else {

offset = SmileyMargin / 2;

if (m_face == Happy)

y -= SmileyMargin;

else if (m_face == Sad)

y -= SmileyMargin / 2;

}

QPointF leftPoint(leftX + offset, y);

QPointF rightPoint(rightX + SmileyEyeWidth - offset, y);

QRectF mouthRect(leftPoint, rightPoint);

mouthRect.setHeight(m_face == Neutral ? SmileyMargin / 2

: SmileyMargin);

if (m_face == Neutral)

painter->drawRoundedRect(mouthRect, 5, 5);

else if (m_face == Happy)

painter->drawChord(mouthRect, 170 * 16, 200 * 16);

else

painter->drawChord(mouthRect, 30 * 16, 120 * 16);

}

This is the most complicated part that must be drawn. For a neutral face’s
mouth we draw a rounded rectangle, but for happy and sad faces we draw
the mouth as a chord, with the ends pointing up or down accordingly. The
QPainter::drawRoundedRect() method takes a rectangle and the radii of the
ellipses used to define the rounded corners, while the QPainter::drawChord()

method takes a rectangle, a start position angle, and a span angle—with both
angles specified in 1

16 of a degree.

void SmileyItem::paintHat(QPainter *painter)

{

QPen pen(m_pen);

if (pen.style() != Qt::NoPen)

pen.setColor(pen.color().lighter());

painter->setPen(pen);

QBrush brush(m_brush);

if (brush.style() != Qt::NoBrush)

brush.setColor(brush.color().lighter());

ptg

466 Chapter 12. CreatingGraphics/View Scenes

painter->setBrush(brush);

painter->drawPath(m_hatPath);

}

If the hat is to be paintedwe use a slightly lighter pen (or no pen) and a slightly
lighter brush (or no brush), and then simply draw the hat painter path.

void SmileyItem::paintSelectionOutline(QPainter *painter)

{

QPen pen(Qt::DashLine);

pen.setColor(Qt::black);

painter->setPen(pen);

painter->setBrush(Qt::NoBrush);

painter->drawPath(m_showHat ? m_facePath.united(m_hatPath)

: m_facePath);

}

To paint a selection outline we have chosen to use a dashed black 1 pixel wide
cosmetic (i.e., unscaled) pen, and no brush. We draw the outline by drawing
the face path, or the face path united with the hat path if the hat is showing.

QRectF SmileyItem::boundingRect() const

{

QRectF rect(-SmileyHalfSize, -SmileyHalfSize, SmileySize,

SmileySize);

if (m_showHat)

rect = rect.united(m_hatPath.boundingRect());

return rect;

}

For the bounding rectangle, we could have used the statement QRectF rect(

m_facePath.boundingRect()); but we have opted to do a simpler and faster
computation instead based on the item’s size. However, if the hat is showing,
we extend the rectangle to incorporate the hat’s bounding rectangle.

QPainterPath SmileyItem::shape() const

{

QPainterPath path;

path.addPath(m_facePath);

if (m_showHat)

path.addPath(m_hatPath);

return path;

}

The item’s shape is easy to calculate since it is either the face’s path, or the
face’s path combined with the hat’s path.

ptg

Chapter 12. CreatingGraphics/View Scenes 467

Wehave now completed our review of the PageDesigner application, including
its graphics items. There are many improvements that could be made to the
application, the most obvious being the addition of new shapes. This should
be easy to do since every new shape could follow the pattern of the box, smiley,
or text items that are already supported. It would also be a good idea to get
rid of the guideline items and provide the guideline grid using a background
brush or by reimplementing QGraphicsView::drawBackground(). And, of course,
we have already mentioned some other features that could be added such as
distributing items. Adding drag and drop support would be nice too, that is,
allowing the user to drag from a shape toolbar button such as the smiley, and
drop it onto the page. Of course, just clicking the toolbar button is easier, but
with drag and drop the user can drop the item exactly where they want it to be.
A much larger and more complex improvement would be to make use of Qt’s
undo/redo architecture so that users could undo and redo all their actions.★ We
leave all these as an exercise.

This also brings us to the end of our coverage of Qt’s graphics/view architec-
ture. Our examples have taken the classic Qt approach where the behavior
and appearanceof widgets (or graphics items)are providedby thosewidgets (or
items) themselves. But when we have scenes containing thousands or tens of
thousands of itemswemay prefer to use a different approach. Instead of mak-
ing each item a QObject subclass,wemight rely instead on the facilities offered
by QGraphicsScene and QGraphicsView to provide item-specific behaviors. For ex-
ample,we could create a scene or view subclass, reimplement its key press and
mouse event handlers, and use the various items() methods to see which item
was interacted with, and apply changes to it accordingly. The graphics/view
architecture is very rich, and has improved in speed and quality with each new
Qt release. It is well worth learning about and experimenting with, and the
demos and examples that Qt provides are interesting to study.

★Qt provides two graphics/view examples that show undo/redo—examples/tools/undoframework for
the basics, and demos/undo for more advanced features. Qt’s documentation provides an overview
of the undo/redo framework, and there is also an article by this author introducing it—using
PyQt4—at www.informit.com/articles/article.aspx?p=1187104.

www.informit.com/articles/article.aspx?p=1187104

ptg

This page intentionally left blank

ptg

The Animation and State
Machine Frameworks

|||||

13
● Introducing the Animation

Framework

● Introducing the State Machine
Framework

● Combining Animations and State
Machines

Qt 4.6 introduced many new features, including two major frameworks: the
animation framework (part of the “Kinetic” project), and the state machine
framework. In this chapter we will briefly introduce both of these frame-
works.★ Doing animations in Qt has always been possible using timers, and
this was made a great deal easier when Qt 4.2 introduced the QTimeLine class.
(We very briefly mentioned this class in an earlier chapter; 133 ➤.) The new
animation framework in Qt 4.6 provides a higher-level,more flexible, andmore
sophisticated approach to animations.

In the chapter’s first section we will introduce the animation framework and
present a smallmodification toChapter 12’sPageDesigner application (pagede-
signer2) to animate the alignment of graphics items rather than having them
jump immediately into position. In the chapter’s second section we will intro-
duce the state machine framework and present a modified version of Chap-
ter 11’s Petri Dish application (petridish2), showing how to implement the
application’s logic using a statemachine rather thanmanaging it all ourselves.
And in the final section we will present a small dialog that makes use of both
the animation and state machine frameworks to show how they can be used
together, and where the animation is of standard widgets rather than of the
graphics items shown in this chapter’s first section.

Introducing the Animation Framework ||||

Qt’s animation framework is quite sophisticated,but the fundamental concepts
are easy to understand. The underlying theory is based on David Harel’s fi-

★Unlike all the previous chapters’ examples, the examplespresented in this chapter useQt 4.6-spe-
cific features and will not compile with Qt 4.5.

469

ptg

470 Chapter 13. The Animation and State Machine Frameworks

nite Statecharts, with the semantics of the state machine’s execution based
on SCXML (State Chart XML). In practical terms, the framework is based
on QObjects and Qt’s property system. The simplest approach is to create a
QPropertyAnimation for each property of each QObject we want to animate, and
to give the property animation a duration, an initial value, and a final value.

All property animations operate on QVariants, and the properties concerned
must be writable (i.e., they must have a setter). For Qt 4.6 the QVariant types
that can be animated—that is, those types that Qt can interpolate values
for—are int, float, double, QColor, QLine, QLineF, QPoint, QPointF, QRect, QRectF,
QSize, and QSizeF.

For example, we might give a duration of 5000 milliseconds and initial and
final geometries specified as QRects. Once the animation is started the object
will immediately be set to the initial geometry, and then its geometry will be
changed over a 5 second period to reach the final geometry, with Qt setting
the intermediate geometry values using linear interpolation. So, if the initial
width was 100 pixels and the final width 400 pixels, the width would be 160
pixels after 1 second, 220 pixels after 2 seconds, 280 pixels after 3 seconds, 340
pixels after 4 seconds, and finally, 400 pixels after 5 seconds. (In this case the
increment is 60 pixels per second calculated from the difference between the
final and initial widths divided by the duration, i.e., 400 − 100

5
= 60. Of course, Qt

will use a much finer time granularity than seconds, so the actual change of
width might be from 100 pixels to 103 pixels to 106 pixels and so on.)

Although the animation framework is simple to use for simple cases, we can
easily achieve more advanced effects. For one thing, we are not limited to
linear interpolation—Qt provides the QEasingCurve classwhich offers over forty
different interpolation graphs. Also, animations can be grouped and executed
either sequentially or in parallel. The animation framework can be used with
the graphics/view architecture—but only with items that are QObjects—or
with ordinary QWidgets.

In this section we will show a very short and simple example that adds anima-
tion to the manipulation of some graphics items; in the chapter’s last section
we will look at a more complex animation that involves widgets.

The Page Designer application has alignment actions that allow the user to
line up two or more selected graphics items to the left-most (or right-most, or
top-most, or bottom-most) item. The alignment occurs immediately, with the
items jumping into their new positions too fast for the eye to see. It would be
nice to provide some visual feedback to the user to show them which items
are being aligned and for them to see the alignment actually take place. We
must, of course, be careful not tomake the alignment too slow since that would
be irritating.

The code for doing the alignment is in the editAlign() slot that we discussed
in Chapter 12’s “Manipulating Selected Items” subsubsection (430 ➤). We

ptg

Introducing the Animation Framework 471

originally reviewed the slot in three parts,with the alignment being performed
in the last part. Here is a new version of that last part, only this time instead
of calling QGraphicsItem::moveBy() on each item in the loops, we merely record
what the new position should be.

QList<QPointF> positions;

if (alignment == Qt::AlignLeft || alignment == Qt::AlignRight) {

for (int i = 0; i < items.count(); ++i)

positions << items.at(i)->pos() +

QPointF(offset - coordinates.at(i), 0);

}

else {

for (int i = 0; i < items.count(); ++i)

positions << items.at(i)->pos() +

QPointF(0, offset - coordinates.at(i));

}

animateAlignment(items, positions);

setDirty(true);

At the end of whichever loop is executed we know the new position that each
item should occupy. We call the custom animateAlignment() method to perform
the moves, passing it the list of items and a parallel list of the new positions.

void MainWindow::animateAlignment(const QList<QGraphicsItem*> &items,

const QList<QPointF> &positions)

{

int duration = ((qApp->keyboardModifiers() & Qt::ShiftModifier)

!= Qt::ShiftModifier) ? 1000 : 5000;

for (int i = 0; i < items.count(); ++i) {

QObject *object = dynamic_cast<QObject*>(items.at(i));

if (!object)

continue;

QPropertyAnimation *animation = new QPropertyAnimation(

object, "pos", this);

animation->setDuration(duration);

animation->setEasingCurve(QEasingCurve::InOutBack);

animation->setKeyValueAt(0.0, items.at(i)->pos());

animation->setKeyValueAt(1.0, positions.at(i));

animation->start(QAbstractAnimation::DeleteWhenStopped);

}

}

We have set a duration of 1 second—or 5 seconds if the Shift key is held down.
One second is long enough for normal use, but if we want to see the effect
of the animation more slowly to show it off, or to help us see how it works
during development, then we can press Shift to make it take a more leisurely 5

ptg

472 Chapter 13. The Animation and State Machine Frameworks

seconds. (Note that the QApplication::keyboardModifiers()method returns the
modifiers that were in force at the last key press event. There is also a similar
QApplication::mouseButtons() method.)

We iterate over every item that is to be aligned. For each one we create a new
QPropertyAnimation, giving it the QObject it is to operate on (recall that all of
the graphics items apart from the guideline grid items in the Page Designer
application are QObjects), the name of the property to animate, and a parent.
(As noted in Chapter 12, the use of dynamic_cast<>() makes the application de-
pendent on the availability of RTTI—Run Time Type Information—although
there are various ways to avoid this; 424 ➤.)

Youmight remember that whenwe reviewed the PageDesigner’s custom items
and saw their properties none of them had a pos property. In fact, we didn’t
show that property because it wasn’t relevant at the time, but every one has
the following property declaration:

Q_PROPERTY(QPointF pos READ pos WRITE setPos)

This is in addition to the other property declarations that we saw. The getter
and setter are provided by the QGraphicsItem base class, so nothing more is
needed to get a pos property.

Once the property animation has been created we set its duration, its easing
curve (which is optional and defaults to QEasingCurve::Linear), and its initial
and final property values. The QPropertyAnimation::setKeyValueAt() method
is used to set a property value for a particular point in the animation, where
0.0 is the start and 1.0 is the end. Here, we have set the start value of the
pos property to be the item’s current position, and the end value of the pos

property to be the item’s aligned position. We can set intermediate values too,
for example, at 0.5, or at 0.3 and 0.6, and so on. If we have only a start and an
end value, as here, we could instead use QPropertyAnimation::setStartValue()

and QPropertyAnimation::setEndValue() which both take a single QVariant; but
we preferred to show setKeyValueAt() since it is more versatile.

With the animation set up we call QPropertyAnimation::start() to start it
executing. By default, property animations remain in memory until their
parent is deleted, but we don’t need the animations after we have finishedwith
them, sowe pass a deletion policy to the start()methodwhich ensures that the
animation will delete itself once it has completed.

The easing curve we chose to use, QEasingCurve::InOutBack, provides quite an
amusing effect. For example, if the user selects some items and chooses Align
Left, what will happen is that the itemswill all move right (thewrong way!), but
only a little bit. Then they will bounce back to the left, but instead of stopping
at the left-most position they will overshoot. And finally they’ll bounce back
to be left-aligned with whichever one of them was left-most in the first place.

ptg

Introducing the Animation Framework 473

(a) Start (b) Moving right…

(c) Moving left… (d) Moving left…

(e) Overshooting… (f) Left-aligned

Figure 13.1 Aligning left with an InOutBack easing curve

And thanks to the interpolations that Qt applies, all of these movements are
completely smooth. A left alignment is illustrated in Figure 13.1.

One other point to note is that the animations were started off sequentially.
This isn’t a problem here in practice since the start() calls return almost
immediately. However, if we wanted to be sure that the animations occur in
parallel we could achieve this using a QParallelAnimationGroup as the following
animateAlignment() implementation shows.

void MainWindow::animateAlignment(const QList<QGraphicsItem*> &items,

const QList<QPointF> &positions)

{

int duration = ((qApp->keyboardModifiers() & Qt::ShiftModifier)

!= Qt::ShiftModifier) ? 1000 : 5000;

QParallelAnimationGroup *group = new QParallelAnimationGroup;

for (int i = 0; i < items.count(); ++i) {

QObject *object = dynamic_cast<QObject*>(items.at(i));

if (!object)

continue;

QPropertyAnimation *animation = new QPropertyAnimation(

ptg

474 Chapter 13. The Animation and State Machine Frameworks

object, "pos", this);

animation->setDuration(duration);

animation->setEasingCurve(QEasingCurve::InOutBack);

animation->setStartValue(items.at(i)->pos());

animation->setEndValue(positions.at(i));

group->addAnimation(animation);

}

group->start(QAbstractAnimation::DeleteWhenStopped);

}

Here, instead of starting off each animation as soon as it is created we add it
to a QParallelAnimationGroup, and only at the end do we start off the animation.
The start() call will start all the group’s animations simultaneously, and
because of the deletion policy, once all the animations are complete both the
group and the animations it contains will be deleted. Notice also that we used
setStartValue() and setEndValue(),which aremore convenient in cases like this
where there are no intermediate values that we want to use.

Qt’s animation framework is easy to use and very effective for creating special
effects. We’ll make use of it again in this chapter’s last section when we
combine it with a state machine and use it to animate standard QWidgets.

Introducing the State Machine Framework ||||

The state machine framework provides a means of maintaining state in
complex applications. For simple dialogs and main windows the framework
offers no real benefits—in fact, it can require much more code. However, as
complexity increases, the state machine framework becomes more and more
attractive, since it scales very well and makes managing complex states much
easier than doing everything by hand.

The user interfaces for some kinds of applications—such as calculators and
media players—are intrinsically stateful. Keeping track of the state (such as
degrees/radians,playing/paused,and so on) can be quite tricky using variables,
especially if there are nested states. In these cases, using a state machine
can be very advantageous, with the state machine diagram serving as useful
documentation, and with maintenance often a matter of simply adding or
removing transitions.

Using Qt’s statemachine framework is quite straightforwardand only involves
understanding a few basic concepts. And like the animation framework, it is
heavily dependent on QObjects and Qt’s property system. To set up a state ma-
chine we begin by creating a QStateMachine. Then we create the states we need
(these are instances of QState or QFinalState), and for each state we specify
triples of (QObject, property, value), so that the statemachine knows that in the
given state the object’s propertymust be set to the given value. Once the states

ptg

Introducing the State Machine Framework 475

have been set up we then create the transitions—these specify how the state
machine goes from one state to another. For example, clicking a particular but-
ton in a particular state might switch the state machine into another state.

Whenever a change of state occurs the state that has been left emits an
exited() signal, and the state that has been entered emits an entered() signal.
When (and if) the state machine finishes, it emits a finished() signal.

Once everything is set up we tell the state machine which state to use as its
initial state and then call QStateMachine::start() to start things off.

Even as described here, the state machine framework is very powerful and
flexible, but it has far more functionality than we have mentioned so far. For
example, states can be grouped, state histories can be tracked so that states can
be saved and restored, parallel states can be set up, and much more besides.
Nor is the framework confined to graphics—it could just as easily be applied to
modeling a network communications protocol.

In this section we will show how to use the state machine in practice by cre-
ating a new version of the Petri Dish application (in the petridish2 examples
directory and shown in Figure 11.3; 394 ➤).Recall that the application has four
buttons, Start, Pause/Resume, Stop, and Quit, an Initial count spinbox, and a Show
IDs checkbox. The simulation might be running, paused, or stopped, and in
each case we must make sure that the correct widgets are enabled or disabled
and that in the case of the Pause/Resume button it shows the correct text. In
the original version (petridish1), we achieved this by having a SimulationState

enum and start(), pauseOrResume(), and stop() slots which not only effected the
appropriate simulation behavior but also enabled/disabled the widgets and set
the Pause/Resume button’s text.

For the statemachine Petri Dish,we don’t need the enum, the start() slot is con-
cerned purely with setting up the simulation, the thirteen line pauseOrResume()
slot is replacedwith a two line pause() slot, and the six line stop() slot has been
eliminated altogether. Nonetheless, the statemachine version’smainwindow.cpp
file is about forty lines longer than the original. This is because there is more
setup code for the statemachine. However, if the complexity of the stateswere
to increase, or if more states were added, at some point the state machine ver-
sion would almost certainly have fewer lines of code since it will scale better.

Before diving into the code it is best to make a plan identifying the states that
are required and how we are going to transition between them. There are
three obvious states that will be needed: stopped, running, and paused. But
in addition, we will create an initial state where we can do any setup that’s
necessary at application startup, and a final state which we can use to do any
cleanup and to stop the application. And since we want the user to be able to
quit the application at any time we will create the “normal” state which will
serve as a parent state for the stopped, paused, and running states, so that no

ptg

476 Chapter 13. The Animation and State Machine Frameworks

stopped

running

paused

t

initial

n final

normal

properties
assigned

Start

Pause

Quit

Stop

Resume

Stop

Quit

Quit

Figure 13.2 The Petri Dish state transitions

matter which of these states is active, the normal state is also active and can
be used to transition to the final state.

As soon as the initial state’s properties have been set we can transition into the
stopped state. If the user clicks the Start button wewill transition into the run-
ning state. In the running state the user could click the Stop button in which
case we must transition back to the stopped state, or the Pause/Resume button
in which case we must transition to the paused state. In the paused state the
user could click the Stop button in which case we must transition back to the
stopped state, or the Pause/Resume button in which case we must transition to
the running state. Since the stopped, running, and paused states are all chil-
dren of the normal state, after the initial state has been left, the statemachine
is always in the normal state (and some child state, such as running). If the
user clicks the Quit button wemust transition from the normal state (nomatter
what the current child state) to the final state. The transitions are illustrated
in Figure 13.2.

Now that we have an overview of what needs to be done we will look at the
code. We’ll start with some extracts from the header file.

Q_PROPERTY(bool running READ running WRITE setRunning)
···

private:
···
bool running() const { return m_running; }

void setRunning(bool running) { m_running = running; }
···
QStateMachine stateMachine;

QState *initialState;

QState *normalState;

ptg

Introducing the State Machine Framework 477

QState *stoppedState;

QState *runningState;

QState *pausedState;

QFinalState *finalState;

bool m_running;

We use the running property to keep track of whether the simulation is
currently running. We have a statemachine and one QState for each state plus
a QFinalState for the final state.★ We also have the private m_running Boolean to
store the running property’s value.

MainWindow::MainWindow(QWidget *parent)

: QMainWindow(parent), iterations(0), m_running(false)

{

scene = new QGraphicsScene(this);

scene->setItemIndexMethod(QGraphicsScene::NoIndex);

createWidgets();

createProxyWidgets();

createLayout();

createCentralWidget();

createStates();

createTransitions();

createConnections();

setWindowTitle(tr("%1 (State Machine)")

.arg(QApplication::applicationName()));

stateMachine.setInitialState(initialState);

QTimer::singleShot(0, &stateMachine, SLOT(start()));

}

The constructor is very similar to the original version, only this time we create
the states and transitions, set up some signal–slot connections (different from
and fewer than before), give the state machine its initial state, and start it
off. As usual, we use a single shot timer to ensure that the window is fully
constructed beforewe start processing. Nowwewill review the createStates(),
createTransitions(), and createConnections()methods. For ease of explanation
we will review the createStates() method in four short parts.

void MainWindow::createStates()

{

initialState = new QState(&stateMachine);

★Due to a subtle bug known to affect Qt 4.6.0–4.6.2 on Windows and Mac OS X, for this particular
example,we had to change the QStates and the QFinalStatemember variables intomodule variables
in the .cpp file using #if statements, to prevent the application from crashing at startup.

ptg

478 Chapter 13. The Animation and State Machine Frameworks

initialState->assignProperty(showIdsCheckBox, "checked", true);

initialState->assignProperty(initialCountSpinBox, "minimum", 1);

initialState->assignProperty(initialCountSpinBox, "maximum", 100);

initialState->assignProperty(initialCountSpinBox, "value", 60);

We begin by creating our first state as a child of the state machine, and set
some property triples using the QState::assignProperty() method. These
calls do not set the given objects’ properties to the given values! Instead, they
record that if and when this state is entered, the given objectsmust have these
properties set to the specified values.

normalState = new QState(&stateMachine);

runningState = new QState(normalState);

runningState->assignProperty(startButton, "enabled", false);

runningState->assignProperty(initialCountSpinBox, "enabled",

false);

runningState->assignProperty(stopButton, "enabled", true);

runningState->assignProperty(pauseOrResumeButton, "enabled",

true);

runningState->assignProperty(pauseOrResumeButton, "text",

tr("Pa&use"));

runningState->assignProperty(this, "running", true);

The initial state was created as a child of the state machine itself, and so is
the normal state. The normal state exists purely to group states inside it
(running, paused, stopped), so that we can have transitions that apply no
matter which of the normal state’s child states is active. Tomake thiswork we
must give the child states the normal state as their parent rather than using
the state machine.

For the running statewe ensure that theStart button and Initialcount spinbox are
disabled, the Stop and Pause/Resume buttons are enabled, and the latter has the
correct text. We also set the main window’s running property to true. As noted
before,none of these settings is applied at the time of the assignProperty() calls
—they only occur when (and if) the state is entered.

pausedState = new QState(normalState);

pausedState->assignProperty(pauseOrResumeButton, "text",

tr("Res&ume"));

pausedState->assignProperty(this, "running", false);

In the paused state we set the Pause/Resume button’s text and set the main
window’s running property to false. In this state the Start button should be
disabled, but we don’t have to set this explicitly (although it is harmless to do
so), because the button is disabled when we enter the running state and the

ptg

Introducing the State Machine Framework 479

paused state can only be transitioned to from the running state, so we know
that the Start button is already correctly disabled.

stoppedState = new QState(normalState);

stoppedState->assignProperty(startButton, "enabled", true);

stoppedState->assignProperty(initialCountSpinBox, "enabled",

true);

stoppedState->assignProperty(pauseOrResumeButton, "enabled",

false);

stoppedState->assignProperty(pauseOrResumeButton, "text",

tr("Pa&use"));

stoppedState->assignProperty(stopButton, "enabled", false);

stoppedState->assignProperty(this, "running", false);

finalState = new QFinalState(&stateMachine);
}

In the stopped state we enable the Start button and the Initial count spinbox,
disable the Pause/Resume button (and set its text), and disable the Stop button.
We also set the running property to false.

We have created the final state purely to provide a state to transition to (from
the normal state)when the user quits, since this saves us from having to create
individual transitions from each of the stopped, paused, and running states.

void MainWindow::createTransitions()

{

initialState->addTransition(initialState,

SIGNAL(propertiesAssigned()), stoppedState);

stoppedState->addTransition(startButton, SIGNAL(clicked()),

runningState);

runningState->addTransition(pauseOrResumeButton,

SIGNAL(clicked()), pausedState);

runningState->addTransition(stopButton, SIGNAL(clicked()),

stoppedState);

pausedState->addTransition(pauseOrResumeButton,

SIGNAL(clicked()), runningState);

pausedState->addTransition(stopButton,

SIGNAL(clicked()), stoppedState);

normalState->addTransition(quitButton, SIGNAL(clicked()),

finalState);

}

The first transition we create is from the initial state to the stopped state. This
transition occurs as soon as the initial state’s properties have been assigned.
From the user’s point of view this transition happensas soon as the application
starts up (actually when the QStateMachine::start() slot is called once the

ptg

480 Chapter 13. The Animation and State Machine Frameworks

window’s construction is complete), so the initial state is only entered once,
briefly, and from then on the application is in the normal state plus one of its
child states (stopped, paused, or running).

For the stopped state we create a transition to the running state. And for the
running state we create two transitions, one to the paused state and another
to the stopped state. Similarly, for the paused statewe create transitions to the
running state and to the stopped state. We also create a transition from the
normal state (which includes all of its child states) to the final state.

Notice that there are two different transitions that can occur when the Pause/
Resume button is pressed. If we are in the running state, pressing the button
causes a transition to the paused state, and if we are in the paused state,
pressing the button causes a transition to the running state. This ability
to interpret the same button click in two completely different ways is a very
powerful feature of the state machine framework. (In the original Petri Dish
application we had to create a pauseOrResume() slot that was connected to the
button’s clicked() signal and that used the button’s text to decide whether the
user was pausing or resuming; the state machine approach used here is much
cleaner and simpler.)

void MainWindow::createConnections()

{

connect(showIdsCheckBox, SIGNAL(toggled(bool)),

this, SLOT(showIds(bool)));

connect(runningState, SIGNAL(entered()), this, SLOT(start()));

connect(pausedState, SIGNAL(entered()),

this, SLOT(pause()));

connect(&stateMachine, SIGNAL(finished()), this, SLOT(close()));

}

The first connection is quite conventional and is used to update the simulation
to show or hide cell IDs.

The other three connectionsare all statemachine related. The connection from
the running state’sentered() signalmeans that in addition to the propertiesbe-
ing set appropriatelywhen the running state is entered,we also call the start()
slot which is used to set up the simulation and to start it running. Similarly,
when the paused state is entered, in addition to properties being set we call the
pause() slot (which is used purely to make the window slightly transparent, an
effect most noticeable onWindows and very subtle on Mac OSX). The last con-
nection is activated when the state machine finishes (i.e., when the final state
is entered); here we just use it to close the application.

Qt’s state machine framework has a lot more facilities than we made use
of in this example. Nonetheless, we have covered the key concepts that the
framework uses and seen it in practical use. In the next section we will use a

ptg

Introducing the State Machine Framework 481

couple of state machines and combine one with the animation framework we
covered in the chapter’s first section to show more complex effects.

Combining Animations and State Machines ||||

In this section we will review the Find Dialog example (finddialog), a typical
example of a dialog used for performing search operations. The dialog uses two
independent state machines, one to enable/disable the Find button depending
on whether the user has entered any search text, and another that works in
conjunction with the animation framework to show or hide extra widgets de-
pending on the state of the More toggle button.

When the dialog first appears the More button is in the “up” position (i.e., un-
checked)and the extrawidgetsarenot visible. If theuser clicks theMorebutton
it goes into the “down” position (i.e., checked), and at the same time the dialog
increases in size to allow for the extra widgets. Once the dialog has enlarged,
the extra widgets emerge from beneath the More button, initially tiny in size,
with a very small font size, and transparent. They grow, increase their font
size, and becomemore opaque, as they slide left and down toward their final po-
sitions. By the time the extra widgetshave reached their correct positions they
are of the right size,have the correct font size, and are completely opaque. This
process is illustrated in Figure 13.3. If the user clicks the More button again,
it returns to the “up” position, and the extra widgets slide back under the More
button, shrinking,decreasing their font size,and becoming transparent as they
go. And at the end, the dialog itself shrinks to fit around the visible widgets.

We will start with a brief extract from the dialog’s header file to see some of its
private member data.

QCheckBox *wholeWordsCheckBox;

QLabel *syntaxLabel;

QComboBox *syntaxComboBox;

QList<QWidget*> extraWidgets;

QStateMachine *findStateMachine;

QState *nothingToFindState;

QState *somethingToFindState;

QStateMachine *extraStateMachine;

QState *showExtraWidgetsState;

QState *hideExtraWidgetsState;

We have omitted the widgets that are always visible (the line edit, the Find
button, and so on), but have shown the extra widgets that are shown or hidden
depending on the state of the More button. We also keep a list of the extra
widgets so that we can process them all together.

ptg

482 Chapter 13. The Animation and State Machine Frameworks

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13.3 Clicking the FindDialog’sMore button

Both state machines have only two states each, and their names should make
their meanings clear.

The constructor (not shown) follows a familiar pattern, creating the widgets,
layout, and connections, and then creating the state machines and transitions.
Here is an extract from the createWidgets() method that shows the creation
and setup of the extra widgets:

wholeWordsCheckBox = new QCheckBox(tr("Whole Words Only"), this);

wholeWordsCheckBox->setChecked(false);

syntaxLabel = new QLabel(tr("Syntax:"), this);

syntaxComboBox = new QComboBox(this);

syntaxLabel->setBuddy(syntaxComboBox);

syntaxComboBox->addItem(tr("Literal"), QRegExp::FixedString);

syntaxComboBox->addItem(tr("Regex"), QRegExp::RegExp2);

syntaxComboBox->addItem(tr("Wildcard"), QRegExp::Wildcard);

syntaxComboBox->setCurrentIndex(0);

ptg

Combining Animations and State Machines 483

extraWidgets << wholeWordsCheckBox << syntaxLabel

<< syntaxComboBox;

foreach (QWidget *widget, extraWidgets) {

QGraphicsOpacityEffect *effect = new QGraphicsOpacityEffect;

effect->setOpacity(1.0);

widget->setGraphicsEffect(effect);

}

The QGraphicsEffect classand its subclasses,QGraphicsBlurEffect,QGraphicsCol-
orizeEffect, QGraphicsDropShadowEffect, and QGraphicsOpacityEffect,were intro-
duced in Qt 4.6. They can be used with the QGraphicsItems in a QGraphicsScene,
or, as here, with ordinary QWidgets. We have added an opacity effect to each of
the extra widgets, setting the initial opacity to 1.0 (fully opaque).

void FindDialog::createStateMachines()

{

findStateMachine = new QStateMachine(this);

createFindStates();

createFindTransitions();

findStateMachine->setInitialState(nothingToFindState);

findStateMachine->start();

extraStateMachine = new QStateMachine(this);

createShowExtraWidgetsState();

createHideExtraWidgetsState();

createShowExtraWidgetsTransitions();

createHideExtraWidgetsTransitions();

extraStateMachine->setInitialState(hideExtraWidgetsState);

extraStateMachine->start();

}

This method is used to create, set up, and start the two state machines. For
the extra state machine we set up the show and hide states and transitions in
separate helper methods to keep each method a manageable size.

void FindDialog::createFindStates()

{

nothingToFindState = new QState(findStateMachine);

nothingToFindState->assignProperty(findButton, "enabled", false);

somethingToFindState = new QState(findStateMachine);

somethingToFindState->assignProperty(findButton, "enabled", true);

}

The find states are very simple: the Find button is enabled or it is disabled.

ptg

484 Chapter 13. The Animation and State Machine Frameworks

void FindDialog::createFindTransitions()

{

nothingToFindState->addTransition(this,

SIGNAL(findTextIsNonEmpty()), somethingToFindState);

somethingToFindState->addTransition(this,

SIGNAL(findTextIsEmpty()), nothingToFindState);

}

The find state transitions are made depending on whether the find text is
empty or not, and like the find states are very simple.

We could have implemented control over the Find button’s enabled property
using an updateUi() slot aswe have done inmany earlier examples—and doing
so would involve much less code than we have used here. However, using the
state machine approach gives us a clean separation of logic into individual
states, and should make maintenance and the addition of more functionality
much easier and less error-prone than relying on an increasing spaghetti of
signal–slot connections.

void FindDialog::createConnections()

{

connect(findTextLineEdit, SIGNAL(textEdited(const QString&)),

this, SLOT(findTextChanged(const QString&)));

connect(moreButton, SIGNAL(toggled(bool)),

this, SLOT(showOrHideExtra(bool)));

connect(buttonBox, SIGNAL(rejected()), this, SLOT(close()));

}

We need to emit a findTextIsEmpty() signal or a findTextIsNonEmpty() signal
whenever the find text changes. To do this we connect the find text line edit’s
textEdited() signal to a custom findTextChanged() slot which emits the signal
we need depending on the find text.

Buttons don’t have “checked” and “unchecked” signals, only clicked(bool)

and toggled(bool), but we need to emit showExtra() and hideExtra() signals,
depending on whether the More button is up or down. So, we connect the More
button’s toggled() signal to a custom showOrHideExtra() slot that emits the
correct signal depending on the button’s toggled state.

The third signal is used to close the dialog.

void FindDialog::findTextChanged(const QString &text)

{

if (text.isEmpty())

emit findTextIsEmpty();

else

emit findTextIsNonEmpty();

}

ptg

Combining Animations and State Machines 485

This slot in effect converts the QLineEdit::textEdited() signal into either a
findTextIsEmpty() signal or a findTextIsNonEmpty() signal, and these are used
by the find state machine to transition between the nothing to find state and
the something to find state.

void FindDialog::showOrHideExtra(bool on)

{

if (on)

emit showExtra();

else

emit hideExtra();

}

In effect, this slot is used to convert the QPushButton::toggled() signal into
either a showExtra() signal or a hideExtra() signal depending on the More
button’s toggled state. We will see how these signals are used further on when
we look at the extra state machine’s transitions, but first we will look at the
setting up of the extra state machine’s states.

void FindDialog::createShowExtraWidgetsState()

{

QSize size = extraSize();

size.rheight() += minimumSizeHint().height();

size.setWidth(qMax(size.width(), minimumSizeHint().width()));

QList<QRectF> rects;

int y = sizeHint().height() - margin;

rects << QRectF(margin, y, wholeWordsCheckBox->sizeHint().width(),

wholeWordsCheckBox->sizeHint().height());

y += wholeWordsCheckBox->sizeHint().height() + margin;

int height = qMax(syntaxLabel->sizeHint().height(),

syntaxComboBox->sizeHint().height());

int width = syntaxLabel->sizeHint().width();

rects << QRectF(margin, y, width, height);

int x = margin + syntaxLabel->sizeHint().width() + margin;

width = qMin(sizeHint().width(), size.width()) - (x + margin);

rects << QRectF(x, y, width, height);

showExtraWidgetsState = new QState(extraStateMachine);

foreach (QWidget *widget, extraWidgets) {

showExtraWidgetsState->assignProperty(

widget, "geometry", rects.takeFirst());

showExtraWidgetsState->assignProperty(

widget, "font", font());

showExtraWidgetsState->assignProperty(

widget->graphicsEffect(), "opacity", 1.0);

}

ptg

486 Chapter 13. The Animation and State Machine Frameworks

showExtraWidgetsState->assignProperty(this, "minimumSize", size);

}

For the show extra widgets state we need to provide a geometry (position and
size) and a font for each of the extra widgets, and to set their opacity effects
to 1.0 (fully opaque). And we also need to set the dialog’s minimum size to
be large enough to accommodate the extra widgets. All this is achieved in
this method.

We begin by computing the additional width and height needed to show the ex-
tra widgets and create a size object of type QSize that accounts for this and rep-
resents theminimum size the dialog should be. We then create a list of QRectFs
holding the geometries of each of the extra widgets. Once we have completed
the calculations we create the show extra widgets state. Then, for each extra
widget in this state,we assign to thewidget’s geometry property the correspond-
ing computed rectangle, and to the widget’s font property the dialog’s font. We
also set every extra widget’s opacity effect’s opacity property to 1.0. (As always,
no properties are set at this time; they are only set when and if the relevant
state is entered.) Finally, we set the dialog’s minimum size to the size we cal-
culated was necessary to show the dialog with all the extra widgets.

QSize FindDialog::extraSize() const

{

const int Width = syntaxLabel->sizeHint().width() +

syntaxComboBox->sizeHint().width() + (2 * margin);

const int Height = wholeWordsCheckBox->sizeHint().height() +

qMax(syntaxLabel->sizeHint().height(),

syntaxComboBox->sizeHint().height()) + (2 * margin);

return QSize(Width, Height);

}

This helper method calculates the extra width necessary by using the sum of
the widths of the syntax label and syntax combobox plus somemargin, and the
extra height by using the sum of the whole words checkbox, and the tallest of
the syntax label and syntax combobox, again plus some margin.

void FindDialog::createHideExtraWidgetsState()

{

QRectF rect = QRectF(buttonBox->x() + (moreButton->width() / 2),

buttonBox->height() - (moreButton->height() / 2), 1, 1);

QFont smallFont(font());

smallFont.setPointSizeF(1.0);

hideExtraWidgetsState = new QState(extraStateMachine);

foreach (QWidget *widget, extraWidgets) {

hideExtraWidgetsState->assignProperty(

widget, "geometry", rect);

ptg

Combining Animations and State Machines 487

hideExtraWidgetsState->assignProperty(

widget, "font", smallFont);

hideExtraWidgetsState->assignProperty(

widget->graphicsEffect(), "opacity", 0.0);

}

hideExtraWidgetsState->assignProperty(

this, "minimumSize", minimumSizeHint());

}

The hide extra widgets state is a bit simpler than the show extra widgets state
since every extra widget gets the same property values. We set each extra
widget’s geometry property to a 1 × 1 rectangle positioned in the middle of the
More button, the font property to a small font, and the graphics effect’s opacity
property to 0.0 (fully transparent). And finally, we set the dialog’s minimum
size property to itsminimum size hint (which correctly does not account for the
extra widgets).

const int Duration = 1500;

void FindDialog::createShowExtraWidgetsTransitions()

{

QSignalTransition *transition =

hideExtraWidgetsState->addTransition(this,

SIGNAL(showExtra()), showExtraWidgetsState);

createCommonTransitions(transition);

QPropertyAnimation *animation;

animation = new QPropertyAnimation(this, "minimumSize");

animation->setDuration(Duration / 3);

transition->addAnimation(animation);

animation = new QPropertyAnimation(this, "size");

animation->setDuration(Duration / 3);

QSize size = extraSize();

size = QSize(qMax(size.width(), width()),

sizeHint().height() + size.height());

animation->setEndValue(size);

transition->addAnimation(animation);

}

We create a transition from the hide extra widgets state to the show extra
widgets state that is triggered by the showExtra() signal. We also keep a pointer
to the transition so that we can use it to add animations.

For this transitionwewant to control five properties:the dialog’sminimumsize
and size, and each extra widget’s geometry, font, and opacity effect’s opacity.

ptg

488 Chapter 13. The Animation and State Machine Frameworks

For the extra widgetswe have pushed the work onto a helper method since the
same property animations are used for showing and hiding the extra widgets.

For the dialog’s minimum size and size properties we set up property anima-
tions that will take one-third of the time we use to do the widget property an-
imations (i.e., it will happen faster). For the size property we set an end value
size that is large enough to accommodate the extra widgets.

void FindDialog::createCommonTransitions(

QSignalTransition *transition)

{

QPropertyAnimation *animation;

foreach (QWidget *widget, extraWidgets) {

animation = new QPropertyAnimation(widget, "geometry");

animation->setDuration(Duration);

transition->addAnimation(animation);

animation = new QPropertyAnimation(widget, "font");

animation->setDuration(Duration);

transition->addAnimation(animation);

if (QGraphicsOpacityEffect *effect =

static_cast<QGraphicsOpacityEffect*>(

widget->graphicsEffect())) {

animation = new QPropertyAnimation(effect, "opacity");

animation->setDuration(Duration);

animation->setEasingCurve(QEasingCurve::OutInCirc);

transition->addAnimation(animation);

}

}

}

Whether we are showing or hiding the extra widgetswe use the same property
animations. For the geometry and font properties (and for the dialog property
animations)weuse a linear easing curve (sincewedon’t explicitly set an easing
curve and linear is the default), but for the opacity we use QEasingCurve::In-

OutCirc which changes slowly at first, then changes rapidly, and then changes
slowly at the end.

All the property animations we have set up change the property from its start
state to its end state. Yet here we use the same animations for transitioning
from the hide extra widgets state to the show extra widgets state and from
the show extra widgets state back to the hide extra widgets state. This works
because for both states we have defined property values—for example, in the
hide extra widgets state we have set the opacity effect’s opacity property to 0.0,
and in the show extra widgets state the opacity property is 1.0. So, when the
animation takes place it either goes from 0.0 to 1.0 or from 1.0 to 0.0 depending
on which transition is taking place, and therefore the animation uses 0.0 (or
1.0) as the start value and 1.0 (or 0.0) as the end value.

ptg

Combining Animations and State Machines 489

void FindDialog::createHideExtraWidgetsTransitions()

{

QSignalTransition *transition =

showExtraWidgetsState->addTransition(this,

SIGNAL(hideExtra()), hideExtraWidgetsState);

createCommonTransitions(transition);

QPropertyAnimation *animation = new QPropertyAnimation(this,

"size");

animation->setDuration(Duration);

animation->setEndValue(sizeHint());

transition->addAnimation(animation);

}

The transition from the show extra widgets state to the hide extra widgets
state uses the same animations as the transition that goes the opposite way.
And in addition, we animate the dialog’s size property—this time taking as
much time as the widget transitions so that the size doesn’t reduce more
quickly than the time it takes for the extra widgets to shrink and hide.

Aswe noted earlier, all property animations operate on QVariants, and the prop-
erties concerned must be writable. It is also possible to provide custom inter-
polators for those QVariant types for which no animation support is currently
provided. One approach is to subclass QVariantAnimation (QPropertyAnimation’s
base class) and reimplement the interpolated() method. Another approach is
to implement an interpolation function that takes start and end values of the
typewewant to interpolate and a qreal progressvalue,and returns the interpo-
lated value asa QVariant.This functionmust then be registeredusing the global
qRegisterAnimationInterpolator<>() function.

You might have noticed that Qt does not support interpolation for QFonts, yet
we successfully interpolated the extra widgets’ font property from one point to
the default font size. This was achieved by putting a fontInterpolator() func-
tion in the finddialog.cpp file, and registering the function in the FindDialog’s
constructor.

QVariant fontInterpolator(const QFont &start, const QFont &end,

qreal progress)

{

qreal startSize = start.pointSizeF();

qreal endSize = end.pointSizeF();

qreal newSize = startSize + ((endSize - startSize) *
qBound(0.0, progress, 1.0));

QFont font(start);

font.setPointSizeF(newSize);

return font;

}

ptg

490 Chapter 13. The Animation and State Machine Frameworks

This interpolator function returns a font whose size ranges from the size of the
start font to the size of the end font. The progress value normally ranges from
0.0 to 1.0, but for some easing curves it may have negative values or values
greater than 1.0, so we must account for this. Here, we have simply clamped
the progress value since negative font sizes don’t make sense;we could, howev-
er, have used qMax(0.0, progress) to ensure that the font size is always greater
than or equal to 0.0 but could be greater than 1.0 times the end font size.

The interpolator function must be registered for it to have any effect. Here’s
the line that we used in the FindDialog constructor:

qRegisterAnimationInterpolator<QFont>(fontInterpolator);

The template argument tells Qt that the given function should be used as the
interpolation function for objects of the specified type—in this case for QFonts.

We have now completed our review of the Find Dialog. It would be easy to
add an effect to the Find button—for example, a blur effect that is animated
to turn on when the button is disabled and off when it is enabled. The extra
widgets’ moving, resizing, and opacity animations work well, but they have
one limitation: the widgets retain their essentially rectangular shapes dur-
ing the transitions. It would have been a lot more attractive if the widgets
had deformed—for example, as they went away, having their right-hand ends
shrink faster than their left-hand ends tomake them funnel shaped during the
transitions—a “genie” transition.★

We have now seen how to use the state machine framework for controlling
widget states, and how to use it in conjunction with the animation framework
to produce smooth visual transitions from one state to another. Using anima-
tion effects requires more code (thus introducing more scope for bugs), and
consumesmore CPU cycles than if they were not used. However, just as mod-
ern GUI applications usually feature lots of icons (e.g., in menus and toolbars),
more and more applications are using animation effects. And, of course, an-
imations have some very concrete benefits: they can be used to make it much
more obvious to users what has happened (e.g., when we animated the align-
ment of graphics items in the previous section), whereas the user might not
even notice an instant change andmay try to repeat the operation not realizing
that it has already been completed.

★For more about genie transitions see labs.qt.nokia.com/blogs/2008/12/15/genie-fx.

ptg

Epilogue ||||

This book has presented a broad range of approaches and techniques for Qt
programming, although it has concentrated on key areas of Qt’s functionality.
All of the book’s examples—the .hpp and .cpp code files, the .qrc resource files,
and the Qt .pro project files—were created and edited using a plain text editor,
and Qt Designer wasn’t used at all. Nowadays, Qt development need not be
quite so austere. For those who prefer to design their windows visually, theQt
Designer tool is available, and for those who want a complete IDE (Integrated
DevelopmentEnvironment), theQtCreator tool (which integratesQtDesigner)
can be used. For the libraries and basic tools get a standard Qt distribution;
for everything—including Qt Creator—get the Qt SDK distribution.

Qt contains an enormous amount of functionality, but nonetheless, addi-
tional components are available. Some are available from Qt Development
Frameworks—for example, the Qt Solutions, many of which are now LGPL li-
censed. These providemany additional widgets and various utility classes; see
qt.nokia.com/products/appdev/add-on-products/catalog/4. There are also third-
party component providers. The Qwt library (qwt.sourceforge.net) provides
widgets and utility classes of particular use in scientific and engineering ap-
plications. TheLibQxt library (www.libqxt.org) providesa lot of utilitymodules
and classes including bindings to the Berkeley DB library, and a wide variety
of additional widgets. The qt-apps.orgweb site provides a repository for third-
party Qt add-ons, and includes a large collection of components and widgets.

To learn more about Qt, naturally it is worth looking at the wide variety of
Qt books now available—Qt Development Frameworks maintains a list of
them at qt.nokia.com/developer/books. In addition, ICS (Integrated Comput-
er Solutions, Inc.; www.ics.com/learning/icsnetwork) regularly provides free
online video webcasts that explain Qt technologies and provide summaries
of what’s new in new Qt releases. Most of the talks given at the Qt Devel-
opment Frameworks annual Qt Developer Days are filmed and viewable on-
line, with the keynotes and technical sessions being particularly interesting
(qt.nokia.com/developer/learning/online/talks).Another useful source of Qt in-
formation isQtQuarterly, a free onlinemagazine that provides short timely ar-
ticles on Qt programming (qt.nokia.com/doc/qq/index.html), although for more
up to the minute information there is the corporate Qt blog, blog.qt.nokia.com,
and even better, theQt developers’Qt Labsblog,labs.qt.nokia.com/blogs.Ques-
tions can be asked on the qt-interest mailing list—this is a very high-traffic
list, but it has some really excellent posters—just be sure to check with Google
and the documentation first, to avoid being flamed!

491

www.libqxt.org
www.ics.com/learning/icsnetwork

ptg

492 Epilogue

Qt Development Frameworks provides a roadmap (qt.nokia.com/developer/
qt-roadmap) that describes where Qt is heading. As might be expected from
a Nokia-owned company, the roadmap includes new APIs supporting touch
screensandmobile phone-relatedAPIs formessaging andmobile services. But
there is also lots of interest for desktop developers.

The biggest new feature, scheduled for release in Qt 4.7, is Qt Quick (Qt User
Interface Creation Kit).Thiswill introduce a completely new paradigm for cre-
ating user interfaces. Qt Quick uses a JavaScript-based declarative language,
QML—Qt Meta-Object Language—that makes full use of the animation and
state machine frameworks to provide very slick and easy-to-create user inter-
faces. Using QtQuick ismuchmore flexible than the conventionalwidgetsand
layouts approach, and makes it really easy to apply animated transformations
to widgets. Qt Quick is best for situationswhere an application needs different
user interfaces for different devices and form factors. The traditional QWidgets
approach is best for when we want a single user interface design to be used on
all targets and that has excellent integration with the platform’s native look
and feel. So, overall, Qt Quick is ideal for consumer electronics and embedded
devices, whereas QWidgets are ideal for desktop applications.

In the medium to long term, there is also a huge amount of work going on in
the field of graphics. Considerable efforts are being made to provide a simpler
andmoreQt-like 3DAPI as a layer above theOpenGLAPIs (which will remain
fully accessible), so as to abstract away asmuch of the complexity and platform
specificity of the OpenGL APIs as possible.

Here are a few things that aren’t on the roadmap, that perhaps should be. The
undo/redo framework ought to be fully integrated with the model/view archi-
tecture. At present it isn’t easy to provide undo/redo for models and evenwhen
it is achieved,wemust be careful to use our ownmethods for certain operations
rather than the usual ones, to keep the undo/redo working correctly. Anoth-
er thing that would be nice to see is improved database support. At present
no Qt widget understands NULL values, and the database support feels like it
has been rather awkwardly squeezed to fit the model/view architecture. Also,
database behavior, particularly regarding SQLite, seems to change in subtle
ways even betweenminor releases. Let’s hope that future Qt versions improve
in this area. On a more positive note, the Item Views NG (Next Generation)
project seems to be making steady progress, and is on its way to being more
powerful, more flexible, and yet easier to use than the current model/view
architecture—and by the time you read this, it might be ready for prime time.

A few more “blue sky”—and personal—wishes for a future Qt would be the
addition of a PDF API that supports the reading, editing, and writing of PDF
files, and that covers every PDF feature. It would also be nice if Qt provided a
similar API for reading and editing OpenDocument Format files, aswell as im-
proving the writing of files in this format. Support for reading and writing the
most common archive formatswould be useful—especially .tar files (including

ptg

Epilogue 493

those compressed with gzip or bzip2), and .zip files (for which Qt already has
internal APIs, at least for writing). It would also be nice to see Qt increasing its
support of larger environments—for example, with high-level APIs to support
client–server programming. And, of course, more widgets would be welcome,
particularly 2D and 3D graph widgets that would make Qt more convenient
for scientific and engineering users out of the box. For Qt 5, it would be nice to
see theMeta-Object Compiler being dropped. TheBoost libraries have already
shown that it is possible to implement a signals and slots mechanism and a
property system using standard C++, but whether it is possible to implement
all of (or enough of) Qt’s object model remains an open question.

Of course, it is no longer necessary to wait for the Qt developers to add the fea-
tures that we want. Qt is now developed in a more open way than ever before,
so if there is a feature you would like added, you can implement it yourself
and try to get it merged into the official version of Qt: see qt.gitorious.org for
details.

Qt is a superb software development framework that has seen a huge invest-
ment by Nokia to improve and extend the functionality it offers. Qt can be used
for non-GUIprogramming,including servers,web backends,and command line
tools;and forGUIprogramming,supporting applicationsthat have sophisticat-
ed, attractive, and highly dynamic user interfaces. Qt can be used on embed-
ded devices—anything from toasters to mobile phones and PDAs—through to
desktop systems and way beyond.

Qt’s huge size can be daunting, but once the fundamentals are learned, Qt’s
API consistency makes it straightforward to learn whatever other classes and
modules are relevant to your needs. The excellent documentation, Qt’s exam-
ples’ and demos’ source code,books such as this, the online resourcesmentioned
above, training courses, and, of course, Qt’s own source code should be suffi-
cient for anyone’s learning needs. And unlike some platform-specific libraries
we could mention, Qt makes programming a pleasure, allowing us to develop
on the platform of our choice, and to deploy on the platforms our users prefer.

ptg

This page intentionally left blank

ptg

Selected Bibliography ||||

The Art of Multiprocessor Programming
Maurice Herlihy and Nir Shavit (Morgan Kaufmann, 2008, ISBN 978-
0123705914)
This book provides a thorough introduction to multithreaded program-
ming, including small but complete working examples (in Java) that
demonstrate all the key techniques. The last chapter provides a brief in-
troduction to transactionalmemory, one of the hopes for a higher-level ap-
proach to threading that doesn’t burden programmers with all the petty
bookkeeping details that conventional techniques demand.

C++ GUI Programming with Qt 4,Second Edition
Jasmin Blanchette and Mark Summerfield (Prentice Hall, 2008,
ISBN 0132354160)
This is the ideal introduction to C++/Qt programming, and a perfect com-
plement to the Qt documentation. The book teaches C++ programmers
how to make the best use of Qt’s classes and modules to create complete
applications. This is the official Qt textbook.

C++ in a Nutshell
Ray Lischner (O’Reilly, 2003, ISBN 059600298X)
This very useful book provides a solid, compact, and comprehensive
reference to the C++ language and its standard libraries (including the C
libraries that are part of the C++ standard).

The C++ Programming Language,Third Edition
Bjarne Stroustrup (Addison-Wesley, 2000, ISBN 0201889544)
This is the standard C++ text written by the creator of C++. It serves as a
useful reference.

Clean Code
Robert C.Martin (Prentice Hall, 2009, ISBN 0132350882)
This book addresses many of the “tactical” issues in programming: good
naming, function design, refactoring, and similar. The book has many
interesting and useful ideas that should help any programmer improve
their coding style and make their programs more maintainable. (The
book’s examples are in Java.)

495

ptg

496 Selected Bibliography

Code Complete: A Practical Handbook of Software Construction,Second Edition
Steve McConnell (Microsoft Press, 2004, ISBN 0735619670)
This book shows how to build solid software, going beyond the language
specifics into the realms of ideas, principles, and practices. The book is
packed with ideas that will make any programmer think more deeply
about their programming.

Design Patterns
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley, 1998, ISBN 0201633612)
One of themost influential programming books of modern times, even if it
isn’t always easy to read. The design patterns are fascinating and of great
practical use in everyday programming.

Domain-DrivenDesign
Eric Evans (Addison-Wesley, 2004, ISBN 0321125215)
A very interesting book on software design, particularly useful for large
multi-person projects. At heart it is about creating and refining domain
models that represent what the system is designed to do, and about
creating a ubiquitous language through which all those involved with the
system—not just software engineers—can communicate their ideas.

Effective C++,Third Edition
Scott Meyers (Addison-Wesley, 2005, ISBN 0321334876)
This book is essential reading for any C++programmer. It describesmany
subtle pitfalls and explains lots of good practices.

GUI Bloopers 2.0
Jeff Johnson (Morgan Kaufmann, 2008, ISBN 9780123706430)
Don’t be put off by the slightly whimsical title; this is a serious book that
every GUI programmer should read. You won’t agree with every single
suggestion, but you will think more carefully and with more insight about
user interface design after reading this book.

JavaScript: The Definitive Guide,Fifth Edition
David Flanagan (O’Reilly, 2006, ISBN 9780596101992)
This is an ideal tutorial and reference for JavaScript/ECMAScript, and is
deservedly the book that the Qt documentation recommends for learning
QtScript. It will also be of use to those learning the Qt Quick QML
language that will be introduced in Qt 4.7.

The Little Manual of API Design
Jasmin Blanchette (Trolltech/Nokia, 2009)
This very short document (www4.in.tum.de/~blanchet/api-design.pdf) pro-
vides ideas and insight into the design of APIs, and draws most of its ex-
amples from Qt.

www4.in.tum.de/~blanchet/api-design.pdf

ptg

Selected Bibliography 497

Mastering Regular Expressions,Third Edition
Jeffrey E. F. Friedl (O’Reilly, 2006, ISBN 0596528124)
This is the standard text on regular expressions—a very interesting and
useful book.

Rapid GUI Programming with Python and Qt
Mark Summerfield (Prentice Hall, 2007, ISBN 0132354187)
This book teaches PyQt4 programing, probably the easiest route into
Qt programming generally. PyQt can be used to create applications in
their own right, and can also be used as a prototyping tool for C++/Qt
programs.

ptg

This page intentionally left blank

ptg

Index

All non-global functions and methods are listed under their class (or their
class’s base class—which could be QWidget or QObject), and as top-level terms in
their own right.Where a method or function name is close enough to a concept,
the concept is not usually listed. For example, there is no entry for “joining a
string list”, but there are entries for the QString::join() method. Note also that
many references are purely to quoted code (i.e., to show examples of use).

Symbols

key, 218, 345
() (call function or method opera-

tor); see operator()()
* (multiplication and dereference

operator); see operator*()
+= (augmented assignment opera-

tor); see operator+=()
- (negation and subtraction opera-

tor); see operator-()
< (less than operator); see opera-

tor<()

<< (append and put to operator); see
operator<<()

== (equal operator); see operator==()
>> (get from operator); see opera-

tor>>()

[] (subscript operator); see opera-
tor[]()

A

absolutePath() (QFileInfo), 58, 60
accelerateActions() (AQP), 26, 345
accelerateMenu() (AQP), 12, 15, 29, 56,

132, 347
accelerateWidget() (AQP), 15, 93, 291
accelerateWidgets() (AQP), 15, 395
accelerators, keyboard, 15
accuracy vs. efficiency, 310

actions() (QWidget), 29
actions, exclusive, 13
activeThreadCount() (QThreadPool),

251, 256, 257
addAction()

QActionGroup, 12
QMenu, 12, 347, 349, 430, 463

addActions() (QWidget), 345
addButton() (QMessageBox), 101, 137
addDockWidget() (QMainWindow), 414
addItem()

QComboBox, 35, 442, 483
QGraphicsScene, 397, 398, 435, 450

addItems() (QComboBox), 203
addSeparator() (QMenu), 12, 462
addToJavaScriptWindowObject()

(QWebFrame), 40
addTransition() (QState), 479, 484,

487, 489
addWidget() (QGraphicsScene), 396,

397

adjust() (QRect/QRectF), 382
adjusted() (QRect/QRectF), 191, 222,

243, 457
advance() (QGraphicsItem), 403
aggregating widgets, 225
<algorithm>, 432
algorithms

Kahan summation, 280
Kuhn-Munkres, 15

alpha channel; see transparency
Alt key, 15

499

ptg

500 Index

alternateBase() (QPalette), 336
anchor() (QTextCursor), 328, 332
animation, 133

bouncing, 472
framework, 469–474, 481–490
of dialogs, 481–490
of properties, 470
policy, 53
QDockWidget, 414
see also video

antialiasing; see QGraphics-
View::setRenderHints() and
QPainter::setRenderHints()

antialiasing policy, 376, 379, 423
append()

QList, 285
QVector, 433

appendPlainText() (QPlainTextEdit),
256

appendRow()

QStandardItem, 312
QStandardItemModel, 99, 106, 312

application settings; see QSettings
applicationDirPath() (QApplication),

33

applicationName() (QApplication), 32,
56

applicationPathOf() (AQP), 33, 57
applications

settings policy, 20
taskbar tray, 7
terminating, 8, 79, 257
web-based, 5

AQP

accelerateActions(), 26, 345
accelerateMenu(), 12, 15, 29, 56,
132, 347

accelerateWidget(), 15, 93, 291
accelerateWidgets(), 15, 395
applicationPathOf(), 33, 57
chunkSizes(), 252, 253, 258, 309
Error, 104, 105, 126, 144
filenameFilter(), 58, 84
hoursMinutesSecondsForMSec(), 74
information(), 61, 280

AQP (cont.)
okToClearData(), 61, 136–138
okToDelete(), 61, 100, 101, 140
question(), 61, 285
radiansFromDegrees(), 192
suffixesForMimeTypes(), 71, 72
warning(), 60, 61, 76, 77, 374

arg() (QString), 13, 18, 74, 100, 187, 202,
205, 295

aspect ratio, 382, 422, 440
assertion policy, 200
assignProperty() (QState), 478, 479,

483, 486, 487
at()

QList, 120, 150, 183, 432, 471
QString, 326
QVector, 432

atBlockEnd() (QTextCursor), 328
atBlockStart() (QTextCursor), 328
atEnd() (QTextCursor), 328
atStart() (QTextCursor), 328
audio

category, 66, 81
codecs, 53
meta-data, 71
policy, 53, 55

aural cues, 53
availableGeometry() (QDesktop-

Widget), 377

B

base() (QPalette), 243
baseName() (QFileInfo), 84
begin()

QList, 327
QTextDocument, 352, 385

beginEditBlock() (QTextCursor), 328,
329

beginInsertColumns() (QAbstract-
ItemModel), 118

beginInsertRows() (QAbstractItem-
Model), 118, 125, 166, 171, 176

ptg

Index 501

beginMoveColumns() (QAbstractItem-
Model), 159

beginMoveRows() (QAbstractItem-
Model), 159

beginRemoveColumns() (QAbstract-
ItemModel), 118

beginRemoveRows() (QAbstractItem-
Model), 118, 125, 167, 175

binary file formats, 103, 104
bits() (QImage), 301
block() (QTextCursor), 328
blockCharFormat() (QTextCursor), 328
blockFormat() (QTextCursor), 328, 357
blocking calls, 102
.bmp (files), 364, 375, 388
bool, volatile, 247–248, 307
Boost library, 62
bottom() (QRect/QRectF), 215
bouncing, 472
boundedTo() (QSize/QSizeF), 299
boundingRect() (QGraphicsItem), 399,

400, 403, 433, 466
Browser Window example, 22–30
buddies, 444
busy indicator, 296
busy-waiting loop, 74
button; see QAbstractButton and

QPushButton

button()

QMessageBox, 137
QPalette, 233, 234

buttonText() (QPalette), 234

C

C++⇔JavaScript communication,
39

caching
graphics items, 464
icons, 11, 17, 19, 443–444
items, 273
pixmaps, 443–444
strings, 108

cancel() (QFutureWatcher), 272

canceling edits, 200
cap() (QRegExp), 340
ceil() (std), 435, 436
Census Visualizer example, 224–244
center() (QRect/QRectF), 191, 218, 243,

401

changes, unsaved, 94, 99, 136, 137
changing binary file formats, 104
changing trees, policy, 154
character formatting; see QTextChar-

Format

charFormat() (QTextCursor), 328
child()

QStandardItem, 141, 146
QTreeWidgetItem, 79

childItems() (QGraphicsItem), 403
chop() (QString), 254, 322
chunkSizes() (AQP), 252, 253, 258, 309
class, template, 304
clear()

QComboBox, 35
QGraphicsScene, 417
QList, 292, 294
QStandardItemModel, 103, 144, 308
QString, 110

clearSelection()

QAbstractItemView, 275
QGraphicsScene, 420, 421, 450
QTextCursor, 328, 334, 336

clickedButton() (QMessageBox), 101,
137

clipboard; see QClipboard
clipboard() (QApplication), 428, 429,

438

clone() (QStandardItem), 187
close() (QFile), 374
closeEvent() (QWidget), 79, 136, 257,

313

cloud computing, 5
codecs, audio, sound, and video, 53
codecs, text, 374
collidesWithItem() (QGraphicsItem),

403

collidesWithPath() (QGraphicsItem),
403

ptg

502 Index

collidingItems() (QGraphicsItem),
403

collision detection, 391, 399
color gradient; see QConicalGradient,

QLinearGradient, and QRadial-

Gradient

color syntax highlighting; see QSyn-
taxHighlighter and syntax
highlighting

colorNames() (QColor), 442
column() (QModelIndex), 120, 202, 203,

204

columnCount()

QAbstractItemModel, 99, 118, 123,
163

QStandardItemModel, 273
columnNumber() (QTextCursor), 328
combobox; see QComboBox
combobox model, 93
compare() (QString), 70, 331
complete() (QCompleter), 327
completion, 320–322, 322–323,

323–336

completionCount() (QCompleter), 327
completionPrefix() (QCompleter), 327,

331

components, 207, 228
computing cloud, 5
conditionals policy, 200
configuration (application);seeQSet-

tings

confirming edits, 199, 200
connect() (QObject), 12, 27, 39, 74, 94,

95, 227, 273, 344, 355, 484
connection, signal–signal, 228, 355,

356

connections; see QObject::connect()
constBegin()

QHash, 306
QVector, 431

constEnd()

QHash, 306
QVector, 431

constructors; using single shot
timers, 12

contains()

QGraphicsItem, 403
QList, 116
QRect/QRectF, 216, 427
QSet, 29, 69, 108
QString, 27

context menu, 349
creating, 12, 344
policy, 26, 29, 344

contextMenuEvent() (QGraphicsItem),
460

contiguous selections, 218
controversy, threading, 246
convenience functions, avoiding, 61
converting

HTML to plain text, 17, 37
long double to string, 281

coordinates, 392
logical, 392
physical, 392
scene, 433
system, 392
viewport, 392
viewport vs. widget, 214, 216, 220,
221, 222, 224

window, 392
copying to the clipboard, 428
cosmetic pens, 401, 435
count()

QComboBox, 35
QList, 116, 120, 157, 285, 293, 308

createEditor() (QStyledItemDele-
gate), 194, 199, 203

createIndex() (QAbstractItemModel),
164, 165, 174, 175, 176, 178, 179

createList() (QTextCursor), 328, 367
createPlugin() (QWebPage), 47–48
Cross Fader example, 287–302
cross-thread signals, 300
CSS (Cascading Style Sheet), 317,

395

<cstdio>, 281
<cstdlib>, 46
Ctrl key, 15, 218, 345
cues, aural and visual, 53

ptg

Index 503

current line highlighting, 320,
336–337

currentBlockState() (QSyntaxHigh-
lighter), 341

currentCharFormat() (QTextEdit), 350
currentCompletion() (QCompleter),

327

currentDate() (QDate), 192
currentFrame() (QTextCursor), 328
currentIndex()

QAbstractItemView, 136, 138, 140,
218, 222

QComboBox, 38, 446
currentItem() (QTreeWidget), 75
currentList() (QTextCursor), 328
currentPath() (QDir), 189
currentTable() (QTextCursor), 328
currentText() (QComboBox), 96, 204
cursor, mouse; see QCursor
cursor, text; see QTextCursor
cursorRect() (QPlainTextEdit), 327
custom events, 255–256
custom events vs. slot invocation,

260

custom graphics items, 400, 447–466
custom items vs. QStandardItems, 156
custommodels vs. QStandardItem-

Model, 112
custom property interpolation,

489–490

custom shapes, 400
cutting to the clipboard, 428

D

dark() (QPalette), 222
darker() (QColor), 233, 234, 244, 465
data()

QAbstractItemModel, 108, 111, 118,
120–122, 161, 196, 322

QAction, 29, 348, 426, 431
QMimeData, 429
QStandardItem, 187

data sources, media, 63

data stream version policy, 104
dataChanged()

QAbstractItemModel, 118, 124, 166,
174, 178, 179

QAbstractItemView, 210, 216
date/times, ISO 8601, 143, 188
deadlock, 268
delete, 69, 93, 160, 175, 181, 195, 293,

308

eliminating, 62
see also qDeleteAll()

deleteChar() (QTextCursor), 328
deleteLater() (QObject), 292, 294
deletePreviousChar() (QTextCursor),

328

deleting
dialogs, 101
model rows, 99–100

desktop() (QApplication), 377
desktop applications vs. web appli-

cations, 5–6
devices, media, 63
dialogs

animated, 481–490
deleting, 101
modal, 61
modeless, 102
window-modal, 356
see also QDialog

directories, iterating; see QDir-
Iterator

directories, standard; see QDir
DirectShow library, 60, 63
DirectX library, 60
disconnect() (QObject), 55
dock windows; see QDockWidget
document; see QTextDocument
document()

QPlainTextEdit, 324, 335
QTextCursor, 328

document-centric, 131
documentLayout() (QTextDocument),

384

documents
inserting images into, 371

ptg

504 Index

documents (cont.)
inserting tables into, 369–371
selecting in, 326, 330, 332, 336

DOM (Document Object Model),
XML, 18

downloading, 13
downloads, synchronous, 43
drag and drop, 168–173
drawBackground()

QGraphicsScene, 435
QGraphicsView, 417

drawChord() (QPainter), 465
drawContents() (QTextDocument), 375,

376, 384
drawEllipse() (QPainter), 192, 465
drawImage() (QPainter), 382
drawing; see QPainter and the graph-

ics/view classes
drawLine() (QPainter), 192, 222, 235,

386

drawPath() (QPainter), 401, 463, 466
drawPixmap() (QPainter), 197
drawRect() (QPainter), 222, 382
drawRoundedRect() (QPainter), 465
drawText() (QPainter), 193, 202, 380,

382, 386, 401
dropMimeData() (QAbstractItemModel),

159, 171
dynamic_cast<>(), 232, 349, 423,

424–425, 434, 439, 455, 471
avoiding, 424–425
vs. qobject_cast<>(), 349

E

easing curves; see QEasingCurve
edit() (QAbstractItemView), 99, 139,

153

edit, cancel, 200
edit confirmation, 199, 200
editing, in-place, 99, 121, 153, 194
editor, Scintilla, 323
editor widget; see QLineEdit, QPlain-

TextEdit, and QTextEdit

efficiency vs. accuracy, 310
elidedText() (QFontMetrics), 29, 30
eliminating delete, 62
emit, 238, 239, 300, 301, 302, 315, 349,

457, 485
encoding (files), 145, 147, 374
end()

QList, 327
QPainter, 421

endEditBlock() (QTextCursor), 329
endInsertColumns() (QAbstractItem-

Model), 118
endInsertRows() (QAbstractItem-

Model), 118, 125, 166, 171, 176
endMoveColumns() (QAbstractItem-

Model), 159
endMoveRows() (QAbstractItemModel),

159

endRemoveColumns() (QAbstractItem-
Model), 118

endRemoveRows() (QAbstractItem-
Model), 118, 125, 167, 175

endsWith() (QString), 13, 41, 322
ensureVisible()

QGraphicsItem, 403
QScrollArea, 230

Enter key, 153, 199, 200
Error (AQP), 104, 105, 126, 144
errorString() (QFile), 144, 374
Esc key, 30, 82, 200
escape() (Qt), 352, 366
escaping HTML and XML, 145, 147,

352, 353
evaluate() (QScriptEngine), 283
evaluateJavaScript() (QWebFrame), 41
event() (QWidget), 256
event filter, 82–83, 228, 237–238
event loop, 74, 83, 134, 259, 300
event processing, 102, 255
eventFilter() (QObject), 83, 237–238
events, custom, 255–256
events, custom vs. slot invocation,

260

events, posting, 255–256

ptg

Index 505

examples
Browser Window, 22–30
Census Visualizer, 224–244
Cross Fader, 287–302
Find Dialog, 481–490
Find Duplicates, 302–316, 320–322
Folder View, 188–193
Image2Image, 249–260, 320
Matrix Quiz, 44–52
Movie Jingle, 54–60
NewYork Review of BooksView-
er, 31–43

Number Grid, 186–188, 263–286
Output Sampler, 361–388
Page Designer, 409–467, 470–474
Petri Dish, 392–402, 475–480
Play Music, 64–79
Play Video, 80–85
RssPanel, 20
TextEdit, 353–358
TiledListView, 208–224
Timelog (custommodel), 151–183,
193–200, 343–353

Timelog (QStandardItemModel),
130–150, 193–200, 343–353

Weather Tray Icon, 7–20
XmlEdit, 322–342
Zipcodes (custommodel), 113–128,
201–205

Zipcodes (QStandardItemModel),
90–107, 201–205

exception (std), 105
exclusive actions, 13
exec()

QApplication, 8
QDialog, 61
QDialog, problems with, 102
QEventLoop, 74, 83
QMenu, 30, 349, 462
QMessageBox, 101, 137

executing JavaScript, 41
exists() (QFile), 33, 76
expand()

QAbstractItemView, 189
QTreeView, 312

expandedTo() (QSize/QSizeF), 299
exporting

.html files, 374

.odt files, 373

.pdf and .ps files, 372
pixmap files, 375, 423
scenes, 420–423
.svg files, 375, 422

extension; see files

F

F2 key, 153
file quality (QTextDocument), 361–364
fileName() (QFileInfo), 312
filenameFilter() (AQP), 58, 84
files

binary formats, 103
.bmp, 364, 375, 388
changing binary formats, 104
downloading, 13
encoding, 145, 147, 374
exporting, 372, 373, 374, 375, 422,
423

formats, 58
.gif, 53
.html, 363, 374
.jpg and .jpeg, 375, 388
locating, 33
.mng, 53
.ods, 363
.odt, 362, 363, 373
.oga and .ogg, 54
.pdf and .ps, 362, 372, 387
pixmap format, 364
.png, 364, 375, 388
.ppm, 375
printing, 387, 388
.pro, 114
.qm, 276
suffixes, 58, 60, 69, 71, 72
.svg, 362, 363, 375, 382, 387, 422
.tiff, 375, 388
.wav, 53

ptg

506 Index

files (cont.)
.xpm, 375

fill() (QPixmap), 347
fillRect() (QPainter), 191, 202, 376,

388

filterAcceptsRow() (QSortFilter-
ProxyModel), 108, 111

filtered() (QtConcurrent), 270, 271
filteredReduced() (QtConcurrent),

277, 278–279
filtering models; see QSortFilter-

ProxyModel

filters, 261–262, 270–281
find() (QPixmapCache), 197, 443
Find Dialog example, 481–490
Find Duplicates example, 302–316,

320–322

findChildren() (QObject), 32
findData() (QComboBox), 445
findText() (QComboBox), 100, 204
firewalls, 9
first() (QList), 309, 312
flags() (QAbstractItemModel), 118,

120, 161
floating-point format, 104
floating-point numbers, summing,

280

flyweight items, 112
focus policy, 50, 236
focusInEvent() (QWidget), 24
Folder View example, 188–193
folders, iterating; see QDirIterator
font()

QApplication, 211
QTextCharFormat, 357
QWidget, 218, 486

fontItalic()

QTextCharFormat, 352, 357
QTextEdit, 350

fontMetrics() (QPainter), 380, 382,
385, 386

fontPointSize() (QTextCharFormat),
357

fontStrikeOut() (QTextCharFormat),
348, 350, 352

fontWeight()

QTextCharFormat, 352, 357
QTextEdit, 344, 350

foreach, 94, 106, 252, 292, 294, 297, 309,
310, 347, 397, 442

foreground() (QTextCharFormat), 352
forever, 311
format properties, 336, 371
formats (files), 58
formatting, text; see QTextBlockFor-

mat and QTextCharFormat

fromHtml() (QTextDocumentFragment),
17, 37

fromLocalFile() (QUrl), 45, 297
fromSet() (QList), 267
fromString() (QDateTime), 147, 173
fromUserInput() (QUrl), 297
fromUtf8() (QString), 41, 105
full-screen mode, 83
function, template, 138
functional programming, 261
functors, 252, 271, 274–275, 278

see also operator()()

future() (QFutureWatcher), 275, 285

G

geometry() (QWidget), 427
get() (QNetworkAccessManager), 13
get from operator; see operator<<()
getExistingDirectory() (QFileDia-

log), 68
getOpenFileName() (QFileDialog), 58,

83

getSaveFileName() (QFileDialog), 60
.gif (files), 53
globalInstance() (QThreadPool), 251,

258

globalObject() (QScriptEngine), 283
grabWidget() (QPixmap), 197
gradient; see QConicalGradient, QLin-

earGradient, and QRadialGradi-

ent

graphics item coordinates, 392
graphics items, caching, 464

ptg

Index 507

graphicsEffect() (QWidget), 486, 487,
488

GraphicsItemFlag enum (QGraphics-
Item), 406–407

graphics/view classes; see QGraph-
icsItem, QGraphicsScene, and
QGraphicsView

group() (QGraphicsItem), 403, 416
GStreamer library, 60
guarded pointers, 62, 290

see also QPointer and QWeakPoint-

er

GUI blocking, 102

H

hasComplexSelection() (QTextCursor),
329

hasFormat() (QMimeData), 429, 438
hash, thread-safe, 304
hasHtml() (QMimeData), 429, 438
hasSelection() (QTextCursor), 329
hasText() (QMimeData), 429, 438
hasUncaughtException()

(QScriptEngine), 283
headerData() (QAbstractItemModel),

118, 120, 121, 163
headerDataChanged() (QAbstractItem-

Model), 118, 125
height()

QFontMetrics, 121, 198, 212
QImage, 300, 301
QRect/QRectF, 214, 382

hide()

QGraphicsItem, 403
QWidget, 275, 280, 308, 313

hiding rows, 141
higher-order functions, 261
highlight() (QPalette), 234, 243
highlightBlock() (QSyntaxHigh-

lighter), 337, 339
highlightedText() (QPalette), 234,

242

highlighting, current line, 320

highlighting, syntax; see current
line highlighting, QSyntaxHigh-
lighter, and syntax highlight-
ing

home() (QDir), 189
homePath() (QDir), 189, 321
horizontal padding, 227
horizontalHeader() (QTableView), 95
horizontalHeaderItem() (QStandard-

ItemModel), 144
horizontalOffset() (QAbstractItem-

View), 210, 219
horizontalScrollBar() (QAbstract-

ScrollArea), 211, 223
hoursMinutesSecondsForMSec() (AQP),

74

HTML, 363
converting to plain text, 17, 37
escaping, 352, 353
exporting, 374
rendering, 30
text width, 198
see also .html, QPlainTextEdit,
QTextDocument, and QTextEdit

.html (files), 363, 374
html() (QMimeData), 429
HTTP redirection, 19

I

icon() (QAction), 431
icons (caching), 11, 17, 19, 443–444
idealThreadCount() (QThread), 252,

253, 258, 309
idealWidth() (QTextDocument), 198,

350

Image2Image example, 249–260, 320
images

in documents, 319, 371
storing, 60

in-place editing, 99, 121, 153, 194
index()

QAbstractItemModel, 108, 111, 118,
153, 154, 164, 212

ptg

508 Index

index() (cont.)
QModelIndex, 189
QStandardItem, 134, 139
QStandardItemModel, 279

index, model; see QModelIndex
indexAt() (QAbstractItemView), 210,

216

indexIn() (QRegExp), 340
indexing, scenes, 395
indexOf()

QList, 116, 157
QString, 341

indexOfProperty() (QMetaObject), 419,
434, 439

information() (AQP), 61, 280
insert()

QCache, 19
QList, 125, 157
QMultiHash, 305, 339
QPixmapCache, 197, 443

insertBlock() (QTextCursor), 329, 368,
369, 371

insertColumns() (QAbstractItem-
Model), 116, 118, 123

insertFragment() (QTextCursor), 329,
369

insertFrame() (QTextCursor), 329
insertHtml() (QTextCursor), 329, 368
insertImage() (QTextCursor), 329, 371
insertList() (QTextCursor), 329, 367
insertRow() (QAbstractItemModel),

115, 125, 153, 167
insertRows() (QAbstractItemModel),

115, 116, 118, 123, 125, 166
insertTable() (QTextCursor), 329, 369
insertText() (QTextCursor), 329, 331,

368, 369, 371
installEventFilter() (QObject), 82,

227

internalPointer() (QModelIndex), 162
international numbers, 98
internationalization; see QLocale
Internet-aware widgets, 6
Internet downloading, 13

interpolation; see property anima-
tion

interpretText() (QAbstractSpinBox),
204

intersects() (QRect/QRectF), 220
intProperty() (QTextCharFormat), 371
invalidateFilter() (QSortFilter-

ProxyModel), 110
invisibleRootItem()

QStandardItemModel, 141, 144, 146,
147, 312

QTreeWidget, 73
invokeMethod() (QMetaObject),

133–134, 259–260, 423
isCanceled() (QFutureWatcher), 275,

285

isCopyOf() (QTextCursor), 329
isDir() (QFileInfo), 309
isEmpty()

QList, 157, 308, 428
QString, 17, 326
QStringList, 352

isFile() (QFileInfo), 69, 315
isFinished() (QThread), 297
isIndexHidden() (QAbstractItemView),

210, 214
isLetter() (QString), 326
isNull()

QIcon, 17
QPixmap, 59
QPoint/QPointF, 427
QTextCursor, 329

ISO 8601 date/times, 143, 188
isObscuredBy() (QGraphicsItem), 403
isRunning()

QFutureWatcher, 272
QThread, 310

isSelected() (QGraphicsItem), 403,
454, 457, 463

isSymLink() (QFileInfo), 309, 315
isValid()

QModelIndex, 100, 120, 139, 154, 162
QVariant, 434

isVisible() (QGraphicsItem), 403

ptg

Index 509

isWindowModified() (QWidget), 137,
438

item() (QStandardItemModel), 273, 279,
285

item, root of trees, 147
itemBelow() (QTreeWidget), 79
itemChange() (QGraphicsItem), 393,

407, 450, 451
itemChanged() (QStandardItemModel),

94, 136
itemData() (QComboBox), 36, 445, 446
ItemDataRole enum (Qt), 119
itemDelegate() (QAbstractItemView),

222

ItemFlag enum (Qt), 119
items

caching, 273
custom graphics, 400, 447–466
flyweight, 112
selecting in views, 97
surrogate, 264, 266

items() (QGraphicsScene), 415, 438
ItemSelectionMode enum (Qt), 406

J

JavaScript
C++ communication, 39
executing, 41
window objects, 40

jingle; seeMovie Jingle example
join() (QStringList), 71, 285
joinPreviousEditBlock() (QTextCur-

sor), 329
.jpg and .jpeg (files), 375, 388

K

Kahan summation algorithm, 280
KDE (‘K’ Desktop Environment),

21, 60
keyboard accelerators, 15
keyboard shortcuts, 15, 82

keyboardModifiers() (QApplication),
471

keyPressEvent()

QGraphicsItem, 403
QWidget, 239, 333, 349, 457

kinds of models, 89
Kuhn-Munkres algorithm, 15

L

lastIndexOf()

QList, 116
QString, 341

layout() (QWidget), 295
layoutDirection()

QApplication, 224
QWidget, 224

layouts; see QFormLayout, QGridLayout,
and QVBoxLayout

layouts (QGraphicsScene), 396–398
lazy updates, 209
left()

QRect/QRectF, 215, 243
QString, 229

length() (QString), 121, 229, 326
lighter() (QColor), 234, 244, 466
lightweight items, 112
lineSpacing() (QFontMetrics), 380,

385

load() (QWebView), 27
loadFromData() (QPixmap), 19
loading data, 105–107, 146–148
loading scenes, 417–420
local event loop, 74, 83
localeAwareCompare() (QString), 331
localization; see QLocale
localized numbers, 98
localized strings, 276
locating files, 33
location

of movies, 83
of music files, 68
of video files, 83

locks; see QMutex and QReadWriteLock

logical coordinates, 392

ptg

510 Index

long double, converting to string, 281

M

Mac OS X
platform differences, 26, 61, 211,
378

sheets, 61
magic numbers, 72, 106
main window; see QMainWindow
main window startup policy, 133
mainFrame() (QWebPage), 39, 41
mapFromGlobal() (QWidget), 427
mapped() (QtConcurrent), 281, 282
mappers, 262, 281–286
mapToGlobal() (QWidget), 349
mapToScene() (QGraphicsView), 427
matchedLength() (QRegExp), 340
Matrix Quiz example, 44–52
max_element() (std), 431, 432
MD5 (Message-Digest algorithm 5),

302

media data sources, devices, and
nodes, 63

see also audio and video
media path, 64
menus

creating context, 12, 344, 349
creating popup, 29

mergeBlockCharFormat() (QTextCur-
sor), 329

mergeBlockFormat() (QTextCursor),
329, 368

mergeCharFormat() (QTextCursor), 330,
368

mergeCurrentCharFormat() (QTextEd-
it), 348

meta-data, audio, 71
metaObject() (QObject), 419, 423, 439
method invocation, 134
method pointer, 137
mid()

QList, 150, 183, 252, 253, 258, 285,
309

mid() (cont.)
QString, 13

MIME types, 71, 72, 159, 169, 428
see also QMimeData

mimeData()

QAbstractItemModel, 159, 169
QClipboard, 429, 438

mimeTypes() (QAbstractItemModel),
159, 169

min_element() (std), 431, 432
minimumSizeHint() (QWidget), 232, 236,

350, 441, 486, 487
.mng (files), 53
modal (window-modal) dialogs, 356
modal dialogs, 61
model index; see QModelIndex
modeless dialogs, 102
models

class hierarchy, 89
creation policy, 112
custom vs. QStandardItemModel,
112

deleting rows, 99–100
filtering, 99
for combobox, 93
for views, 95
kinds of , 89
mapping selection model index-
es, 100

non-string data, 99, 106, 186
proxy, 92, 93
proxy source model, 94
resizable, 116, 123, 125, 158
selecting items in, 97
sorting, 111, 312
see also QAbstractItemModel,
QItemSelectionModel, and QSort-

FilterProxyModel

ModelTest, 114–115, 135
model/view classes; see QAbstract-

ItemModel and QAbstractItem-

View

modules
Phonon, 60, 72, 85
QtCore, 20, 348

ptg

Index 511

modules (cont.)
QtGui, 348
QtMultimedia, 86, 447
QtNetwork, 6
QtWebKit, 6, 21
QtXml, 16, 20

monitors, 268
mouse cursor; see QCursor
mouse wheel, 236
mouseButtons() (QApplication), 472
mouseDoubleClickEvent() (QGraphics-

Item), 403, 449, 460
mouseMoveEvent() (QGraphicsItem),

404, 458
mousePressEvent()

QAbstractItemView, 210, 223
QGraphicsItem, 404, 458
QWidget, 238, 335

mouseReleaseEvent() (QGraphicsItem),
459

moveBy() (QGraphicsItem), 404, 418,
432

moveCursor() (QAbstractItemView),
210, 218

MoveOperation enum (QTextCursor), 334
movePosition() (QTextCursor), 330, 331,

332

moveTo() (QRect/QRectF), 382
Movie Jingle example, 54–60
movies, location of , 83
moving items in views, 158–159,

173–180

music files, location of , 68
music player; see Play Music exam-

ple
mutex; see QMutex
mutexes vs. read-write locks, 268

N

name() (QColor), 443
network proxying, 9
New York Review of Books Viewer

example, 31–43

nodes, media, 63
non-contiguous selections, 219
non-resizable models, 123
non-string model data, 99, 106, 186
normalized() (QRect/QRectF), 220
number() (QString), 50, 121, 401, 402
Number Grid example, 186–188,

263–286

numbers, localized, 98
numbers, rounding up, 229

see also qRound()

numeric_limits<>::max() (std), 186
numeric_limits<>::min() (std), 436

O

object() (QCache), 17
.ods (files), 363
.odt (files), 362, 363, 373
off-screen rendering, 464
.oga and .ogg (files), 54
okToClearData() (AQP), 61, 136–138
okToDelete() (AQP), 61, 100, 101, 140
opacity; see transparency
opaqueArea() (QGraphicsItem), 404
open()

QDialog, 102
QFile, 41, 104, 126, 315, 374

Open Document Format; see .odt
openUrl() (QDesktopServices), 297
operator()(), 271, 274–275, 283
operator*(), 432
operator+=() (QPoint/QPointF), 427
operator-() (QPoint/QPointF), 427
operator<(), 330

for QList items, 116, 117
QTreeWidgetItem, 70

operator<<()

QDataStream, 126, 416, 452
QList, 157, 203, 295, 309, 345, 395,
397, 442, 483, 486

QSet, 108, 268, 418
QTextStream, 374
QVector, 370

ptg

512 Index

operator==()

for QList items, 116, 117
operator>>() (QDataStream), 127, 418,

453

operator[]()

QHash, 212, 396, 397
QList, 124
QMap, 295, 296

ordering trees, 70
outline; see QPainterPath
Output Sampler example, 361–388

P

padding, horizontal, 227
page break, inserting, 368
Page Designer example, 409–467,

470–474

page numbers, 362
paint()

QGraphicsItem, 399, 401–402, 404,
463

QStyledItemDelegate, 191, 194, 196,
202

paintEvent()

QAbstractScrollArea, 210, 222
QWidget, 233, 241

painting
only what’s needed, 241
.pdf and .ps files, 387
pixmaps, 388
rich text, 383–386
.svg files, 387
widgets, 195–198
see also QPainter and the graph-
ics/view classes

palette; see QPalette
palette() (QWidget), 222, 233, 234, 242,

243, 336
paragraph; see QTextBlock
paragraph formatting; see

QTextBlockFormat

parameterizing slot invocation, 13
parent()

QAbstractItemModel, 118, 165

parent() (cont.)
QModelIndex, 100, 140, 141
QObject, 236

parentItem() (QGraphicsItem), 404
pasting from the clipboard, 429
path, media, 64
path, painter; see QPainterPath
path separators, 57
.pdf (files), 362, 372, 387
pens, cosmetic, 401, 435
Petri Dish example, 392–402,

475–480

Phonon classes, 63
Phononmodule, 60, 72, 85
physical coordinates, 392
pixel() (QImage), 300
pixmap files, 375, 423
pixmap formats, 364
pixmaps (caching), 443–444
platform differences, 359

Mac OS X, 26, 61, 211, 378
Windows, 254

Play Music example, 64–79
Play Video example, 80–85
playing a sound, 55
.png (files), 364, 375, 388
pointer, to method, 137
pointers, guarded and smart, 62,

290

policies
animation, 53
antialiasing, 376, 379, 423
application settings, 20
assertion, 200
audio, 53, 55
conditionals, 200
context menu, 26, 29, 344
data stream version, 104
focus, 50, 236
model creation, 112
QRegExp capturing, 339
sound, 53, 55
startup, 133
trees, changing, 154

polling, 256–257, 260

ptg

Index 513

popup() (QCompleter), 327, 333
popup menu, creating, 29
Portable Document Format; see

.pdf

pos()

QCursor, 29, 427, 462
QGraphicsItem, 404, 452
QWidget, 427

position() (QTextCursor), 330, 331,
332

postEvent() (QApplication), 254, 255
posting events, 255–256
PostScript; see .ps
pow() (std), 439, 440
.ppm (files), 375
predefined actions, QWebView, 26
prepareGeometryChange() (QGraphics-

Item), 404, 461
prepend()

QList, 150, 182
QString, 27, 385

preview, print, 377–378
previousBlockState() (QSyntaxHigh-

lighter), 337, 341
print() (QTextDocument), 373, 378
print preview, 377–378
printer setup, 377
printing

.pdf and .ps files, 387
pixmaps, 388
scenes, 420–423
.svg files, 387

.pro (files), 114
progressMaximum() (QFutureWatcher),

273

progressMinimum() (QFutureWatcher),
273

properties, of formats, 336, 371
property() (QObject), 434, 455
property animation, 470
property interpolation, custom,

489–490

property system, 419, 449, 470, 474
proxy model; see QSortFilterProxy-

Model

proxy server, 9
.ps (files), 362, 372, 387
put to operator; see operator>>()

Q

Q_ARG, 259
Q_ASSERT, 76, 114, 121, 158, 161, 164, 174,

175, 199, 200, 204
Q_PROPERTY, 449, 456, 472, 477
Q_WS_MAC, 26
Q_WS_X11, 17
qAbs(), 46
QAbstractButton, 101

setChecked(), 196
setText(), 291
text(), 251, 291
see also QCheckBox, QPushButton,
and QRadioButton

QAbstractItemModel, 117, 158, 160
beginInsertColumns(), 118
beginInsertRows(), 118, 125, 166,
171, 176

beginMoveColumns(), 159
beginMoveRows(), 159
beginRemoveColumns(), 118
beginRemoveRows(), 118, 125, 167,
175

class hierarchy, 89
columnCount(), 99, 118, 123, 163
createIndex(), 164, 165, 174, 175,
176, 178, 179

data(), 108, 111, 118, 120–122, 161,
196, 322

dataChanged(), 118, 124, 166, 174,
178, 179

dropMimeData(), 159, 171
endInsertColumns(), 118
endInsertRows(), 118, 125, 166, 171,
176

endMoveColumns(), 159
endMoveRows(), 159
endRemoveColumns(), 118
endRemoveRows(), 118, 125, 167, 175

ptg

514 Index

QAbstractItemModel (cont.)
flags(), 118, 120, 161
headerData(), 118, 120, 121, 163
headerDataChanged(), 118, 125
index(), 108, 111, 118, 153, 154, 164,
212

insertColumns(), 116, 118, 123
insertRow(), 115, 125, 153, 167
insertRows(), 115, 116, 118, 123, 125,
166

mimeData(), 159, 169
mimeTypes(), 159, 169
parent(), 118, 165
removeColumns(), 116, 118, 123
removeRow(), 100, 126, 140
removeRows(), 116, 118, 123, 125, 167
reset(), 181
rowCount(), 115, 118, 123, 154, 163,
212

setData(), 118, 124, 166, 204
setHeaderData(), 118, 125, 165
sort(), 442
supportedDragActions(), 159, 168
supportedDropActions(), 159, 168
see also QAbstractListModel and
QAbstractTableModel

QAbstractItemView, 207, 208, 209, 211
clearSelection(), 275
currentIndex(), 136, 138, 140, 218,
222

dataChanged(), 210, 216
edit(), 99, 139, 153
expand(), 189
horizontalOffset(), 210, 219
indexAt(), 210, 216
isIndexHidden(), 210, 214
itemDelegate(), 222
mousePressEvent(), 210, 223
moveCursor(), 210, 218
resizeEvent(), 210, 223
rootIndex(), 212, 213, 216, 221
rowsAboutToBeRemoved(), 210, 217
rowsInserted(), 210, 217
scrollContentsBy(), 210, 219
scrollDirtyRegion(), 219

QAbstractItemView (cont.)
scrollTo(), 97, 134, 189, 210, 215
scrollToBottom(), 99
selectionModel(), 95, 100, 136, 220,
222, 275, 279

setColumnHidden(), 189
setCurrentIndex(), 134, 189, 223
setCurrentItem(), 99
setDragDropMode(), 152
setEditTriggers(), 271, 275
setItemDelegateForColumn(), 135,
152, 189

setModel(), 135, 152, 189, 209, 210,
211

setSelection(), 210, 220
updateGeometries(), 210, 223
verticalOffset(), 210, 219
viewOptions(), 222
visualRect(), 210, 213, 221
visualRegionForSelection(), 210,
221

see also QColumnView, QHeaderView,
QListView, QTableView, and
QTreeView

QAbstractListModel, 123
see also QAbstractItemModel

QAbstractScrollArea, 223, 228
horizontalScrollBar(), 211, 223
paintEvent(), 210, 222
setHorizontalScrollBarPolicy(),
344

setVerticalScrollBarPolicy(),
344

verticalScrollBar(), 211, 223, 230,
312

viewport(), 199, 209, 212, 215, 219,
222

see also QGraphicsView, QPlain-
TextEdit, QScrollArea, and
QTextEdit

QAbstractSocket, 9
QAbstractSpinBox

interpretText(), 204
setAlignment(), 186, 205

ptg

Index 515

QAbstractSpinBox (cont.)
see also QDoubleSpinBox and
QSpinBox

QAbstractTableModel, 116, 117
see also QAbstractItemModel

QAction, 12, 30, 55, 346, 348, 354, 426
data(), 29, 348, 426, 431
icon(), 431
setCheckable(), 12, 346, 463
setChecked(), 12, 346, 350, 357, 463
setData(), 12, 29, 346, 347, 431, 463
setIcon(), 59, 357, 431
setMenu(), 345, 430
setShortcuts(), 26, 57
setText(), 59

QActionGroup, 12, 462
addAction(), 12
triggered(), 13

qAlpha(), 300
QApplication, 8

applicationDirPath(), 33
applicationName(), 32, 56
clipboard(), 428, 429, 438
desktop(), 377
exec(), 8
font(), 211
keyboardModifiers(), 471
layoutDirection(), 224
mouseButtons(), 472
postEvent(), 254, 255
restoreOverrideCursor(), 69
sendEvent(), 255
setApplicationName(), 8, 412
setAttribute(), 345
setOrganizationDomain(), 8
setOrganizationName(), 8
setOverrideCursor(), 69
setQuitOnLastWindowClosed(), 8
style(), 121

qBlue(), 300, 301
qBound(), 46, 490
QBrush, 441, 445, 466
QByteArray, 14, 41, 58, 169, 171, 307, 315,

428, 429
readAll(), 19, 41

QCache, 10–11, 17
insert(), 19
object(), 17

QChar, 229, 295
QCheckBox, 194, 481, 483

setChecked(), 483
see also QAbstractButton

QClipboard, 427–430, 438
mimeData(), 429, 438
setMimeData(), 428

QCloseEvent, 257, 313
QColor, 192, 234, 244, 347, 352, 435, 442,

470

colorNames(), 442
darker(), 233, 234, 244, 465
lighter(), 234, 244, 466
name(), 443

QColorDialog, 354, 356
QColumnView, 88, 185

see also QAbstractItemView

QComboBox, 88, 185, 203, 322, 442, 481,
483

addItem(), 35, 442, 483
addItems(), 203
clear(), 35
count(), 35
currentIndex(), 38, 446
currentText(), 96, 204
findData(), 445
findText(), 100, 204
itemData(), 36, 445, 446
setCurrentIndex(), 35, 100, 204,
445, 483

setItemIcon(), 446
setModel(), 93
setModelColumn(), 93, 94

QCompleter, 320, 321, 322, 324, 331
complete(), 327
completionCount(), 327
completionPrefix(), 327, 331
currentCompletion(), 327
popup(), 327, 333
setCaseSensitivity(), 321, 324,
325

setCompletionMode(), 324

ptg

516 Index

QCompleter (cont.)
setCompletionPrefix(), 327
setModel(), 321, 324
setModelSorting(), 324, 325, 327
setWrapAround(), 324, 325

qCompress(), 169
QConicalGradient, 244
QCryptographicHash, 315
QCursor::pos(), 29, 427, 462
QDataStream, 104, 106, 126, 127, 416,

418, 428, 453
operator<<(), 126, 416, 452
operator>>(), 127, 418, 453
setVersion(), 104, 106, 127

QDate

currentDate(), 192
QDateTime, 142, 146, 156, 170

fromString(), 147, 173
toString(), 146, 170, 193

qDebug(), 43, 46
qDeleteAll(), 157
QDesktopServices

openUrl(), 297
storageLocation(), 68, 83

QDesktopWidget

availableGeometry(), 377
screenCount(), 377
screenGeometry(), 377

QDialog

exec(), 61
exec(), problems with, 102
open(), 102
show(), 102

QDir

currentPath(), 189
home(), 189
homePath(), 189, 321
rootPath(), 189
separator(), 254, 322
tempPath(), 189
toNativeSeparators(), 254, 312,
321, 322

QDirIterator, 69, 251, 309, 315
QDirModel, 321, 322
QDockWidget, 414–415

QDomDocument, 14, 16
QDoubleSpinBox, 186, 354

setDecimals(), 186
setRange(), 186
see also QAbstractSpinBox and
QSpinBox

QEasingCurve, 470
QEvent, 83, 255, 256
QEventLoop, 74, 83

exec(), 74, 83
QFile, 41, 104, 126, 315, 374

close(), 374
errorString(), 144, 374
exists(), 33, 76
open(), 41, 104, 126, 315, 374
readAll(), 315

QFileDialog

getExistingDirectory(), 68
getOpenFileName(), 58, 83
getSaveFileName(), 60

QFileInfo, 312
absolutePath(), 58, 60
baseName(), 84
fileName(), 312
isDir(), 309
isFile(), 69, 315
isSymLink(), 309, 315
size(), 312, 315
suffix(), 69, 251, 254

QFileSystemModel, 189, 321
QFileSystemWatcher, 190
QFinalState, 474, 477, 479
QFont, 380, 386, 487, 490
QFontComboBox, 354
QFontMetrics, 29, 121, 212, 227, 350

elidedText(), 29, 30
height(), 121, 198, 212
lineSpacing(), 380, 385
width(), 121, 198, 212, 227, 385, 386

QFormLayout, 444
QFrame, 24

setFrameStyle(), 25
QFuture, 265–266, 269, 271, 272, 278,

282

QFutureWatcher, 265–266, 269

ptg

Index 517

QFutureWatcher (cont.)
cancel(), 272
future(), 275, 285
isCanceled(), 275, 285
isRunning(), 272
progressMaximum(), 273
progressMinimum(), 273
result(), 280
setFuture(), 271, 278, 282
waitForFinished(), 272

qFuzzyCompare(), 46, 274, 275, 454
QGraphicsAbstractShapeItem

setBrush(), 398
setPen(), 398
see also QGraphicsItem

QGraphicsAnchorLayout, 397
QGraphicsBlurEffect, 483
QGraphicsColorizeEffect, 483
QGraphicsDropShadowEffect, 483
QGraphicsEffect, 405
QGraphicsEllipseItem, 398

see also QGraphicsAbstract-

ShapeItem

QGraphicsGridLayout, 397
QGraphicsItem, 390, 393, 399–407, 416,

418, 420, 436, 472, 483
advance(), 403
boundingRect(), 399, 400, 403, 433,
466

childItems(), 403
class hierarchy, 391
collidesWithItem(), 403
collidesWithPath(), 403
collidingItems(), 403
contains(), 403
contextMenuEvent(), 460
ensureVisible(), 403
GraphicsItemFlag enum, 406–407
group(), 403, 416
hide(), 403
isObscuredBy(), 403
isSelected(), 403, 454, 457, 463
isVisible(), 403
itemChange(), 393, 407, 450, 451
keyPressEvent(), 403

QGraphicsItem (cont.)
mouseDoubleClickEvent(), 403, 449,
460

mouseMoveEvent(), 404, 458
mousePressEvent(), 404, 458
mouseReleaseEvent(), 459
moveBy(), 404, 418, 432
opaqueArea(), 404
paint(), 399, 401–402, 404, 463
parentItem(), 404
pos(), 404, 452
prepareGeometryChange(), 404, 461
resetTransform(), 404
rotation(), 404
scale(), 404
scene(), 404
sceneBoundingRect(), 404, 433
scenePos(), 404
setCacheMode(), 464
setCursor(), 458, 459
setFlag(), 391, 404
setFlags(), 398, 404, 450
setFont(), 450
setGraphicsEffect(), 405
setGroup(), 405
setParentItem(), 405
setPen(), 435
setPos(), 405, 450, 453
setRotation(), 393, 405, 451
setScale(), 393, 405, 451
setSelected(), 405, 420, 421, 450
setToolTip(), 405
setTransform(), 393, 405, 451, 454
setTransformOriginPoint(), 393,
451

setVisible(), 405, 435
setX(), 405
setY(), 405
setZValue(), 405, 435, 453
shape(), 400, 405, 466
show(), 405
toGraphicsObject(), 424, 425
toolTip(), 405
transform(), 405
type(), 400, 405, 416, 425, 449, 456

ptg

518 Index

QGraphicsItem (cont.)
update(), 406, 461
vs. QGraphicsObject, 390
x(), 406
y(), 406
zValue(), 406, 452
see also QGraphicsAbstract-

ShapeItem

qgraphicsitem_cast<>(), 401, 424, 449
QGraphicsItemGroup, 391, 403, 405, 417,

435

QGraphicsLayoutItem, 397
QGraphicsLinearLayout, 397
QGraphicsLineItem, 435
QGraphicsObject, 390, 424, 447,

459–466

vs. QGraphicsItem, 390
QGraphicsOpacityEffect, 483, 488
QGraphicsPathItem, 390
QGraphicsProxyWidget, 390, 393, 396,

447

QGraphicsRectItem, 455–459
QGraphicsScene, 390, 394, 413, 467, 477

addItem(), 397, 398, 435, 450
addWidget(), 396, 397
clear(), 417
clearSelection(), 420, 421, 450
drawBackground(), 435
items(), 415, 438
layouts, 396–398
removeItem(), 428, 429
render(), 421–422
selectedItems(), 421, 423, 428, 431,
434, 438, 439, 455

setBackgroundBrush(), 435
setItemIndexMethod(), 394, 477
setSceneRect(), 398, 413
views(), 450, 451
width(), 435

QGraphicsSceneMouseEvent, 458, 459
QGraphicsSimpleTextItem, 390
QGraphicsTextItem, 390, 447–455
QGraphicsVideoItem, 447
QGraphicsView, 390, 393, 398, 439–440,

467

QGraphicsView (cont.)
drawBackground(), 417
mapToScene(), 427
scale(), 439, 440
setBackgroundBrush(), 398, 417
setDragMode(), 439
setRenderHints(), 398, 439
setScene(), 413
see also QAbstractScrollArea

QGraphicsWebView, 390, 447
QGraphicsWidget, 390, 393, 397, 399,

447

qGray(), 300
qGreen(), 300, 301
QGridLayout, 295
QHash, 69, 209, 396

constBegin(), 306
constEnd(), 306
operator[](), 212, 396, 397
value(), 73, 214
values(), 305, 306
vs. QMultiHash, 304
see also QMultiHash

qHash(), 11
QHashIterator, 216, 220, 340
QHeaderView, 49

see also QAbstractItemView

QIcon, 17
isNull(), 17

QImage, 254, 291, 300, 376, 382, 388, 423
bits(), 301
height(), 300, 301
pixel(), 300
save(), 254, 294, 302, 376, 388, 423
scaled(), 299
scanLine(), 300
setPixel(), 300
size(), 299
width(), 300, 301

QImageReader, 376
QImageWriter, 375, 388
QInputDialog::getText(), 28
QIODevice, 14, 63
QItemDelegate, 185
QItemEditorCreatorBase, 186

ptg

Index 519

QItemEditorFactory, 186
QItemSelection, 97, 220
QItemSelectionModel, 95, 96, 97, 100,

275, 279
QItemSelectionRange, 221
QKeyEvent, 239, 333, 334, 349, 457
QKeySequence, 26, 57, 82, 325, 345
QLabel, 194, 290, 295, 395, 481, 483

setBuddy(), 483
setText(), 196
setTextFormat(), 194
setWordWrap(), 194

QLinearGradient, 234, 244
QLineEdit, 321, 322

setCompleter(), 321
QLine/QLineF, 470
QLinkedList, 116
QList, 58, 94, 99, 106, 116, 142, 156, 271,

273, 290, 305, 306, 307, 336, 345,
347, 395, 416, 433, 442, 471, 481,
486

append(), 285
at(), 120, 150, 183, 432, 471
begin(), 327
clear(), 292, 294
contains(), 116
count(), 116, 120, 157, 285, 293, 308
end(), 327
first(), 309, 312
fromSet(), 267
indexOf(), 116, 157
insert(), 125, 157
isEmpty(), 157, 308, 428
items needing operator<(), 116,
117

items needing operator==(), 116,
117

lastIndexOf(), 116
mid(), 150, 183, 252, 253, 258, 285,
309

operator<<(), 157, 203, 295, 309,
345, 395, 397, 442, 483, 486

operator[](), 124
prepend(), 150, 182
removeAll(), 116, 327

QList (cont.)
removeAt(), 125
removeOne(), 116
swap(), 157
takeAt(), 158
takeFirst(), 352, 486
value(), 157

QListIterator, 29, 126, 146, 170, 275,
285, 428, 433, 455

QListView, 88, 185
see also QAbstractItemView

QListWidget, 88
QLocale, 229, 243

toDouble(), 229
toFloat(), 229
toInt(), 229, 243
toUInt(), 229

.qm (files), 276
QMainWindow, 66, 81, 91, 93, 114, 132, 394,

413, 477
addDockWidget(), 414
setCentralWidget(), 135, 152, 398,
413

setDockOptions(), 414
setTabPosition(), 414

qmake, 114
qMakePair(), 315, 347, 442
QMap, 35, 39, 106, 290

operator[](), 295, 296
vs. QMultiMap, 304
see also QMultiMap

QMapIterator, 35, 106
qMax(), 46, 196, 223, 486, 490
QMenu, 10, 29, 347, 349, 430, 462

addAction(), 12, 347, 349, 430, 463
addSeparator(), 12, 462
exec(), 30, 349, 462

QMessageBox, 61, 101, 137
addButton(), 101, 137
button(), 137
clickedButton(), 101, 137
exec(), 101, 137
setDefaultButton(), 101
setIcon(), 101, 137
setText(), 101, 137, 139

ptg

520 Index

QMessageBox (cont.)
setWindowModality(), 61, 101, 137

QMetaObject, 419, 423, 439
indexOfProperty(), 419, 434, 439
invokeMethod(), 133–134, 259–260,
423

QMimeData, 159, 169, 171, 428, 429–430,
438

data(), 429
hasFormat(), 429, 438
hasHtml(), 429, 438
hasText(), 429, 438
html(), 429
setData(), 428
text(), 429

qMin(), 46, 191, 215
QModelIndex, 97, 100, 108, 111, 118, 125,

138, 139, 153, 154, 162, 164
column(), 120, 202, 203, 204
index(), 189
internalPointer(), 162
isValid(), 100, 120, 139, 154, 162
parent(), 100, 140, 141
row(), 100, 120, 140

QMouseEvent, 223, 238, 335
QMovie, 56, 58
QMultiHash, 304, 306, 338

insert(), 305, 339
remove(), 306
vs. QHash, 304
see also QHash

QMultiMap

see also QMap

QMultiMap vs. QMap, 304
QMutableListIterator, 293, 308
QMutableMapIterator, 37
QMutex, 267

vs. QReadWriteLock, 268
QMutexLocker, 267, 268
QNetworkAccessManager, 6, 10, 11

get(), 13
QNetworkProxy, 9
QNetworkReply, 14, 19
QNetworkRequest, 13

QObject, 39, 470
connect(), 12, 27, 39, 74, 94, 95, 227,
273, 344, 355, 484

deleteLater(), 292, 294
disconnect(), 55
eventFilter(), 83, 237–238
findChildren(), 32
installEventFilter(), 82, 227
metaObject(), 419, 423, 439
parent(), 236
property(), 434, 455
sender(), 200, 348, 349, 426, 431
setProperty(), 455
signal–signal connection, 228,
355, 356

tr(), 33, 140, 256, 275–276, 280, 285
qobject_cast<>(), 199, 200, 204, 232,

236, 295, 348, 349, 424, 425, 426
vs. dynamic_cast<>(), 349

QPageSetupDialog, 377
QPainter, 233, 375, 376, 379, 387, 388,

421, 422, 423
drawChord(), 465
drawEllipse(), 192, 465
drawImage(), 382
drawLine(), 192, 222, 235, 386
drawPath(), 401, 463, 466
drawPixmap(), 197
drawRect(), 222, 382
drawRoundedRect(), 465
drawText(), 193, 202, 380, 382, 386,
401

end(), 421
fillRect(), 191, 202, 376, 388
fontMetrics(), 380, 382, 385, 386
restore(), 191, 202, 222, 384
save(), 191, 202, 222, 384
setBrush(), 192, 401, 463, 466
setFont(), 380, 382, 383, 386
setPen(), 192, 193, 202, 222, 386,
401, 463

setRenderHints(), 191, 202, 376, 388,
423

setViewport(), 375, 376, 384, 387,
388

ptg

Index 521

QPainter (cont.)
viewport(), 376, 380, 384, 385, 388

QPainterPath, 390, 401, 461, 466
QPainterPathStroker, 401
QPaintEvent, 241
QPair, 142, 146, 156, 170, 307, 315, 347,

442

QPalette, 191, 193, 196, 202
alternateBase(), 336
base(), 243
button(), 233, 234
buttonText(), 234
dark(), 222
highlight(), 234, 243
highlightedText(), 234, 242
windowText(), 242

QParallelAnimationGroup, 473–474
QPen, 222, 233, 235, 435, 466

cosmetic, 401, 435
QPixmap, 197, 347, 443

fill(), 347
grabWidget(), 197
isNull(), 59
loadFromData(), 19
save(), 60

QPixmapCache, 197–198, 443–444
find(), 197, 443
insert(), 197, 443
setCacheLimit(), 443

QPlainTextEdit, 322, 323, 324, 336
appendPlainText(), 256
cursorRect(), 327
document(), 324, 335
setExtraSelections(), 336
setTextCursor(), 331, 334, 335
textCursor(), 326, 331, 334, 335,
336

toPlainText(), 327
vs. QTextEdit, 323
see also QAbstractScrollArea and
QTextEdit

QPointer, 62, 290, 293, 307, 308, 309,
310

QPoint/QPointF, 192, 216, 349, 427, 461,
470, 471

QPoint/QPointF (cont.)
isNull(), 427
operator+=(), 427
operator-(), 427
rx(), 216, 218
ry(), 216
setX(), 216, 401
setY(), 401
x(), 216, 218

QPolygon/QPolygonF, 461
qPrintable(), 43, 46
QPrintDialog, 421
QPrinter, 373, 411, 413
QPrintPreviewDialog, 377
QProcess, 248
QProgressBar, 290, 295

setRange(), 295, 296
QPropertyAnimation, 470, 471–474, 487,

488, 489
setDuration(), 471, 487, 488, 489
setEasingCurve(), 471, 488
setEndValue(), 474, 487, 488, 489
setKeyValueAt(), 471, 472
setStartValue(), 474
start(), 471, 472

QPushButton, 101, 395
see also QAbstractButton

QRadialGradient, 244
QRadioButton, 94

see also QAbstractButton

qrand(), 45, 46, 50
QReadLocker, 305
QReadWriteLock, 304, 305

vs. QMutex, 268
qreal, unsuitable for files, 104
QRect/QRectF, 191, 212, 382, 458, 470,

486

adjust(), 382
adjusted(), 191, 222, 243, 457
bottom(), 215
center(), 191, 218, 243, 401
contains(), 216, 427
height(), 214, 382
intersects(), 220
left(), 215, 243

ptg

522 Index

QRect/QRectF (cont.)
moveTo(), 382
normalized(), 220
right(), 215, 243
setBottomLeft(), 458
setBottomRight(), 458
setHeight(), 191
setSize(), 382
setWidth(), 191, 327
size(), 382
top(), 215
translated(), 220
united(), 466
width(), 214, 382
x(), 382
y(), 382

qRed(), 300, 301
QRegExp, 327, 337, 338, 339, 340, 385

cap(), 340
capturing policy, 339
indexIn(), 340
matchedLength(), 340
setMinimal(), 339
setPatternSyntax(), 339

QRegion, 221
qRegisterAnimationInterpolator<>(),

489, 490
QResizeEvent, 237
QRgb, 300, 301
qRgb(), 300, 301
QRgba, 300
qRound(), 46, 193, 243, 300, 301, 380,

398, 465
qRound64(), 46
QRunnable, 257–260

run(), 258
QScintilla text editor, 323
QScopedPointer, 61, 62, 101, 137, 428
QScriptEngine, 283

evaluate(), 283
globalObject(), 283
hasUncaughtException(), 283
uncaughtException(), 283

QScriptValue, 283

QScrollArea, 225, 227–228, 231, 235,
237, 238

ensureVisible(), 230
setWidget(), 227
see also QAbstractScrollArea

QScrollBar

setPageStep(), 223
setRange(), 211, 223
setSingleStep(), 223

QSet, 29, 71, 108, 267, 418, 420
contains(), 29, 69, 108
operator<<(), 108, 268, 418

QSettings, 8, 12, 133, 136, 413
QSharedPointer, 61, 62, 101
QShortcut, 82, 325, 345
QSignalTransition, 487, 488, 489
QSize/QSizeF, 198, 232, 237, 350, 357,

382, 413, 470, 486
boundedTo(), 299
expandedTo(), 299
rheight(), 486
rwidth(), 377
scale(), 382
setWidth(), 486

qSort(), 116, 127, 327, 330
QSortFilterProxyModel, 107–113

filterAcceptsRow(), 108, 111
invalidateFilter(), 110
setFilterKeyColumn(), 111
setFilterRegExp(), 111
setSourceModel(), 93, 108, 114
sort(), 93, 111

QSound, 55, 57
QSpinBox, 205

setRange(), 205
setValue(), 204
textFromValue(), 205
value(), 204, 291
see also QAbstractSpinBox and
QDoubleSpinBox

qsrand(), 45, 46
qStableSort(), 331
QStack, 147
QStandardItem, 99, 106, 112, 142, 147,

186–188, 279, 312

ptg

Index 523

QStandardItem (cont.)
appendRow(), 312
child(), 141, 146
clone(), 187
data(), 187
index(), 134, 139
row(), 141
rowCount(), 140, 141, 146
setData(), 187, 285
setTextAlignment(), 312
text(), 146
vs. custom item, 156

QStandardItemEditorCreator, 186
QStandardItemModel, 102, 112, 144, 186,

265

appendRow(), 99, 106, 312
clear(), 103, 144, 308
columnCount(), 273
horizontalHeaderItem(), 144
index(), 279
invisibleRootItem(), 141, 144, 146,
147, 312

item(), 273, 279, 285
itemChanged(), 94, 136
rowCount(), 273, 312
setColumnCount(), 308
sort(), 312
takeRow(), 129
vs. custommodels, 112

QState, 474, 477, 478, 479, 481, 483, 486,
487

addTransition(), 479, 484, 487, 489
assignProperty(), 478, 479, 483,
486, 487

QStateMachine, 474, 477, 481, 483
setInitialState(), 477, 483
start(), 475, 483

QStatusBar::showMessage(), 56, 93,
275, 285

QString, 13, 229
arg(), 13, 18, 74, 100, 187, 202, 205,
295

at(), 326
chop(), 254, 322
clear(), 110

QString (cont.)
compare(), 70, 331
contains(), 27
endsWith(), 13, 41, 322
from long double, 281
fromUtf8(), 41, 105
indexOf(), 341
isEmpty(), 17, 326
isLetter(), 326
lastIndexOf(), 341
left(), 229
length(), 121, 229, 326
localeAwareCompare(), 331
mid(), 13
number(), 50, 121, 401, 402
prepend(), 27, 385
replace(), 292
right(), 331
split(), 327, 385
startsWith(), 13
toLower(), 70, 254
toUpper(), 251
toUtf8(), 105
trimmed(), 33, 71

QStringList, 12, 71, 106, 150, 169, 182,
203, 308, 309, 352, 397

isEmpty(), 352
join(), 71, 285
removeDuplicates(), 268, 327
sort(), 442
see also QList

QStringListModel, 324
QStringRef, 147
QStyle, 194

sizeFromContents(), 121
QStyledItemDelegate, 185, 190, 194,

201

createEditor(), 194, 199, 203
paint(), 191, 194, 196, 202
setEditorData(), 194, 199, 204
setModelData(), 194, 200, 204
sizeHint(), 194, 198
updateEditorGeometry(), 194

QStyleOptionComboBox, 121

ptg

524 Index

QStyleOptionGraphicsItem, 393, 401,
402

QStyleOptionViewItem, 191, 193, 202,
222

QSvgGenerator, 375, 387, 422
QSvgRenderer, 382
QSyntaxHighlighter, 337, 338

currentBlockState(), 341
highlightBlock(), 337, 339
previousBlockState(), 337, 341
setCurrentBlockState(), 337, 339,
341

setFormat(), 340, 341
QSystemTrayIcon, 10

setIcon(), 17
Qt

escape(), 352, 366
ItemDataRole enum, 119
ItemFlag enum, 119
ItemSelectionMode enum, 406

Qt⇔JavaScript communication, 39
Qt rich text; see QTextDocument
QTableView, 88, 91, 93, 185

horizontalHeader(), 95
setItemDelegate(), 93
setModel(), 93
sortByColumn(), 95, 111
verticalHeader(), 93
see also QAbstractItemView

QTableWidget, 49, 88
QTableWidgetItem, 49
QtConcurrent

filtered(), 270, 271
filteredReduced(), 277, 278–279
mapped(), 281, 282
run(), 252–257

QtCoremodule, 20, 348
<QtDebug>, 46
QTextBlock, 318, 328, 352, 385
QTextBlockFormat, 318, 329, 357, 358,

368, 371
QTextCharFormat, 329, 336, 338, 340,

348, 350, 352, 357, 358, 368, 371,
385

font(), 357

QTextCharFormat (cont.)
fontItalic(), 352, 357
fontPointSize(), 357
fontStrikeOut(), 348, 350, 352
fontWeight(), 352, 357
foreground(), 352
intProperty(), 371
setBackground(), 336
setFontItalic(), 338
setFontStrikeOut(), 348
setForeground(), 338
setProperty(), 336, 371
setVerticalAlignment(), 348
verticalAlignment(), 350, 352

QTextCursor, 326, 331, 332, 334, 335,
357, 367–371

anchor(), 328, 332
atBlockEnd(), 328
atBlockStart(), 328
atEnd(), 328
atStart(), 328
beginEditBlock(), 328, 329
block(), 328
blockCharFormat(), 328
blockFormat(), 328, 357
charFormat(), 328
clearSelection(), 328, 334, 336
columnNumber(), 328
createList(), 328, 367
currentFrame(), 328
currentList(), 328
currentTable(), 328
deleteChar(), 328
deletePreviousChar(), 328
document(), 328
endEditBlock(), 329
hasComplexSelection(), 329
hasSelection(), 329
insertBlock(), 329, 368, 369, 371
insertFragment(), 329, 369
insertFrame(), 329
insertHtml(), 329, 368
insertImage(), 329, 371
insertList(), 329, 367
insertTable(), 329, 369

ptg

Index 525

QTextCursor (cont.)
insertText(), 329, 331, 368, 369,
371

isCopyOf(), 329
isNull(), 329
joinPreviousEditBlock(), 329
mergeBlockCharFormat(), 329
mergeBlockFormat(), 329, 368
mergeCharFormat(), 330, 368
MoveOperation enum, 334
movePosition(), 330, 331, 332
position(), 330, 331, 332
removeSelectedText(), 330, 334,
335

select(), 326, 330
selectedTableCells(), 330
selectedText(), 326, 330
selection(), 319, 330
selectionEnd(), 330
selectionStart(), 330
setBlockCharFormat(), 330
setBlockFormat(), 330
setCharFormat(), 330
setPosition(), 330, 331, 332
setVisualNavigation(), 330
visualNavigation(), 330

QTextDocument, 37, 198, 317, 318–320,
328, 329, 335, 364–379, 383–385

begin(), 352, 385
documentLayout(), 384
drawContents(), 375, 376, 384
file quality, 361–364
idealWidth(), 198, 350
print(), 373, 378
setDefaultFont(), 198, 368, 384
setDocumentMargin(), 372
setHtml(), 37, 198, 365, 383
setPageSize(), 372
setTextWidth(), 384
setUseDesignMetrics(), 384
toHtml(), 374
toPlainText(), 37

QTextDocumentFragment, 319, 329, 330,
369

fromHtml(), 17, 37

QTextDocumentFragment (cont.)
toPlainText(), 17, 37
vs. QTextFragment, 319

QTextDocumentWriter, 373
QTextEdit, 322, 335, 336, 344, 354

currentCharFormat(), 350
fontItalic(), 350
fontWeight(), 344, 350
mergeCurrentCharFormat(), 348
setAcceptRichText(), 344
setAlignment(), 354
setFontFamily(), 354
setFontItalic(), 344
setFontPointSize(), 354
setFontWeight(), 344, 354
setHtml(), 354
setLineWrapMode(), 344
setTabChangesFocus(), 344
setTextColor(), 348, 356
setWordWrapMode(), 344
textColor(), 357
textCursor(), 357
toHtml(), 351, 354
vs. QPlainTextEdit, 323
see also QAbstractScrollArea and
QPlainTextEdit

QTextFormat, 336, 371
QTextFragment, 318, 319, 352, 385

vs. QTextDocumentFragment, 319
QTextFrame, 319, 328, 329
QTextFrameFormat, 319, 329
QTextImageFormat, 319, 329
QTextLength, 370
QTextList, 318, 328, 329
QTextListFormat, 329
QTextOption, 193, 202
QTextStream, 374

operator<<(), 374
setCodec(), 374

QTextTable, 319, 328, 329, 369
QTextTableCell, 319, 370, 371
QTextTableFormat, 319, 329, 370
QtGuimodule, 348

ptg

526 Index

QThread, 298, 314
idealThreadCount(), 252, 253, 258,
309

isFinished(), 297
isRunning(), 310
start(), 296, 309
wait(), 292, 293, 308

QThreadPool

activeThreadCount(), 251, 256, 257
globalInstance(), 251, 258
start(), 258
waitForDone(), 251, 257

QTimeLine, 133
QTimer, 74, 83, 133

setInterval(), 74, 83
setSingleShot(), 74, 83
singleShot(), 11, 14, 32, 133, 413,
477

QtMultimediamodule, 86, 447
QtNetworkmodule, 6
QToolBar, 354
QTransform, 405, 454
QTreeView, 88, 132, 135, 163, 185, 188

expand(), 312
resizeColumnToContents(), 69
setAllColumnsShowFocus(), 135,
152

setColumnWidth(), 312
setRowHidden(), 141
setSortingEnabled(), 308, 313
see also QAbstractItemView

QTreeWidget, 88
currentItem(), 75
invisibleRootItem(), 73
itemBelow(), 79

QTreeWidgetItem, 66, 70, 79
child(), 79
operator<(), 70

QtWebKitmodule, 6, 21
QtXmlmodule, 16, 20
question() (AQP), 61, 285
QuickTime library, 60
QUiLoader, 48
qUncompress(), 171

QUrl, 13
fromLocalFile(), 45, 297
fromUserInput(), 297
toString(), 11

QVariant, 12, 66, 118, 161, 186, 442, 470,
489

invalid, 120, 122, 161, 163, 434
isValid(), 434
toBool(), 166
toByteArray(), 133
toDate(), 348
toDouble(), 187, 273, 434
toInt(), 97, 100, 124, 445
toPoint(), 348
toSize(), 445
toString(), 70, 98, 348
toStringList(), 133
toUInt(), 104
value<>(), 121, 348, 434, 445

QVariantAnimation, 489
QVBoxLayout, 227
QVector, 116, 252, 258, 309, 370, 431,

433

append(), 433
at(), 432
constBegin(), 431
constEnd(), 431
operator<<(), 370

qVersion(), 46
QWeakPointer, 62, 290
QWebElement, 21
QWebFrame, 21, 40, 41

addToJavaScriptWindowObject(),
40

evaluateJavaScript(), 41
QWebHistory, 21
QWebHistoryItem, 21, 29
QWebInspector, 22–23
QWebPage, 21, 25, 32, 39, 47

createPlugin(), 47–48
mainFrame(), 39, 41

QWebSettings, 21, 23, 39, 45
QWebView, 21, 25, 48, 390

load(), 27
predefined actions, 26

ptg

Index 527

QWheelEvent, 439
QWidget, 48, 226, 227, 236, 290, 396, 441,

450, 481, 483
actions(), 29
addActions(), 345
closeEvent(), 79, 136, 257, 313
event(), 256
focusInEvent(), 24
font(), 218, 486
geometry(), 427
graphicsEffect(), 486, 487, 488
hide(), 275, 280, 308, 313
isWindowModified(), 137, 438
keyPressEvent(), 239, 333, 349, 457
layout(), 295
layoutDirection(), 224
mapFromGlobal(), 427
mapToGlobal(), 349
minimumSizeHint(), 232, 236, 350,
441, 486, 487

mousePressEvent(), 238, 335
paintEvent(), 233, 241
palette(), 222, 233, 234, 242, 243,
336

pos(), 427
resize(), 237, 377
restoreGeometry(), 133
saveGeometry(), 136
setAttribute(), 101
setBackgroundRole(), 227
setContextMenu(), 12
setContextMenuPolicy(), 26, 29,
344

setFixedSize(), 194, 196, 441
setFocus(), 24, 99, 308, 313, 394
setFocusPolicy(), 211, 236
setFont(), 211
setGraphicsEffect(), 483
setLayout(), 444
setMinimumSize(), 236, 398
setPalette(), 196
setStyleSheet(), 395
setToolTip(), 345
setWindowFilePath(), 411, 413, 421

QWidget (cont.)
setWindowModified(), 91, 94, 132,
437

setWindowTitle(), 132, 137, 412
show(), 8, 273, 313
sizeHint(), 194, 232, 237, 327, 350,
486

wheelEvent(), 439
window(), 450
windowFilePath(), 412, 421

QWriteLocker, 305, 306
QXmlStreamAttributes, 147
QXmlStreamReader, 147, 171, 173, 181
QXmlStreamWriter, 144, 169, 170, 181

R

radiansFromDegrees() (AQP), 192
RAII (Resource Acquisition Is Ini-

tialization), 62
RAND_MAX, 46
read-write locks; see QMutex and

QReadWriteLock

read-write locks vs. mutexes, 268
readAll()

QByteArray, 19, 41
QFile, 315

redirection, HTTP, 19
reducers, 262–263, 277–281
reinterpret_cast<>(), 301
remove() (QMultiHash), 306
removeAll() (QList), 116, 327
removeAt() (QList), 125
removeColumns() (QAbstractItem-

Model), 116, 118, 123
removeDuplicates() (QStringList),

268, 327
removeItem() (QGraphicsScene), 428,

429

removeOne() (QList), 116
removeRow() (QAbstractItemModel),

100, 126, 140
removeRows() (QAbstractItemModel),

116, 118, 123, 125, 167

ptg

528 Index

removeSelectedText() (QTextCursor),
330, 334, 335

render() (QGraphicsScene), 421–422
rendering, HTML, 30
rendering, off-screen, 464
replace() (QString), 292
reset() (QAbstractItemModel), 181
resetTransform() (QGraphicsItem),

404

resizable models, 116, 123, 125, 158
resizeColumnToContents() (QTree-

View), 69
resizeEvent() (QAbstractItemView),

210, 223
resize() (QWidget), 237, 377
restore() (QPainter), 191, 202, 222,

384

restoreGeometry() (QWidget), 133
restoreOverrideCursor() (QApplica-

tion), 69
result() (QFutureWatcher), 280
Return key, 199, 200
RGB (Red, Green, Blue), 192, 300
rheight() (QSize/QSizeF), 486
rich text; see QTextDocument
rich text, painting, 383–386
right()

QRect/QRectF, 215, 243
QString, 331

root item, of trees, 147
rootIndex() (QAbstractItemView), 212,

213, 216, 221
rootPath() (QDir), 189
rotation() (QGraphicsItem), 404
rounding up numbers, 229

see also qRound()

row()

QModelIndex, 100, 120, 140
QStandardItem, 141

rowCount()

QAbstractItemModel, 115, 118, 123,
154, 163, 212

QStandardItem, 140
QStandardItemModel, 273, 312

rows, hiding, 141

rowsAboutToBeRemoved() (QAbstract-
ItemView), 210, 217

rowsInserted() (QAbstractItemView),
210, 217

RssPanel example, 20
RTTI (Run Time Type Information),

232, 349, 424
rubber band selections, 439
run()

QRunnable, 258
QtConcurrent, 252–257

rwidth() (QSize/QSizeF), 377
rx() (QPoint/QPointF), 216, 218
ry() (QPoint/QPointF), 216

S

save()

QImage, 254, 294, 302, 376, 388, 423
QPainter, 191, 202, 222, 384
QPixmap, 60

saveGeometry() (QWidget), 136
saving data, 103–105, 144–146
saving scenes, 415–417
Scalable Vector Graphics; see .svg
scale()

QGraphicsItem, 404
QGraphicsView, 439, 440
QSize/QSizeF, 382

scaled() (QImage), 299
scaling, 382
scanLine() (QImage), 300
scene() (QGraphicsItem), 404
sceneBoundingRect() (QGraphicsItem),

404, 433
scenePos() (QGraphicsItem), 404
scenes

coordinates, 433
exporting, 420–423
indexing, 395
loading, 417–420
printing, 420–423
saving, 415–417
see also QGraphicsScene

Scintilla text editor, 323

ptg

Index 529

screenCount() (QDesktopWidget), 377
screenGeometry() (QDesktopWidget),

377

scroll area vs. viewport, 209, 213
scrollbar; see QScrollBar
scrollContentsBy() (QAbstractItem-

View), 210, 219
scrollDirtyRegion() (QAbstractItem-

View), 219
scrolling; see QAbstractScrollArea

and QScrollArea

scrollTo() (QAbstractItemView), 97,
134, 189, 210, 215

scrollToBottom() (QAbstractItem-
View), 99

SCXML (State Chart XML), 470
select() (QTextCursor), 326, 330
selectedItems() (QGraphicsScene),

421, 423, 428, 431, 434, 438, 439,
455

selectedTableCells() (QTextCursor),
330

selectedText() (QTextCursor), 326,
330

selecting in documents, 326, 330, 332,
336

selecting items in views, 97
selection() (QTextCursor), 319, 330
selectionEnd() (QTextCursor), 330
selectionModel() (QAbstractItem-

View), 95, 100, 136, 220, 222, 275,
279

selections, 218–219, 330, 332, 336
rubber band, 439

selectionStart() (QTextCursor), 330
sender() (QObject), 200, 348, 349, 426,

431

sendEvent() (QApplication), 255
separator() (QDir), 254, 322
separator, path, 57
setAcceptRichText() (QTextEdit), 344
setAlignment()

QAbstractSpinBox, 186, 205
QTextEdit, 354

setAllColumnsShowFocus() (QTree-
View), 135, 152

setApplicationName() (QApplication),
8, 412

setAttribute()

QApplication, 345
QWidget, 101

setBackground() (QTextCharFormat),
336

setBackgroundBrush()

QGraphicsScene, 435
QGraphicsView, 398, 417

setBackgroundRole() (QWidget), 227
setBlockCharFormat() (QTextCursor),

330

setBlockFormat() (QTextCursor), 330
setBottomLeft() (QRect/QRectF), 458
setBottomRight() (QRect/QRectF), 458
setBrush()

QGraphicsAbstractShapeItem, 398
QPainter, 192, 401, 463, 466

setBuddy() (QLabel), 483
setCacheLimit() (QPixmapCache), 443
setCacheMode() (QGraphicsItem), 464
setCaseSensitivity() (QCompleter),

321, 324, 325
setCentralWidget() (QMainWindow),

135, 152, 398, 413
setCharFormat() (QTextCursor), 330
setCheckable() (QAction), 12, 346, 463
setChecked()

QAbstractButton, 196
QAction, 12, 346, 350, 357, 463
QCheckBox, 483

setCodec() (QTextStream), 374
setColumnCount() (QStandardItem-

Model), 308
setColumnHidden() (QAbstractItem-

View), 189
setColumnWidth() (QTreeView), 312
setCompleter() (QLineEdit), 321
setCompletionMode() (QCompleter),

324

setCompletionPrefix() (QCompleter),
327

ptg

530 Index

setContextMenu() (QWidget), 12
setContextMenuPolicy() (QWidget), 26,

29, 344
setCurrentBlockState() (QSyntax-

Highlighter), 337, 339, 341
setCurrentIndex()

QAbstractItemView, 134, 189, 223
QComboBox, 35, 100, 204, 445, 483

setCurrentItem() (QAbstractItem-
View), 99

setCursor() (QGraphicsItem), 458, 459
setData()

QAbstractItemModel, 118, 124, 166,
204

QAction, 12, 29, 346, 347, 431, 463
QMimeData, 428
QStandardItem, 187, 285

setDecimals() (QDoubleSpinBox), 186
setDefaultButton() (QMessageBox), 101
setDefaultFont() (QTextDocument),

198, 368, 384
setDockOptions() (QMainWindow), 414
setDocumentMargin() (QTextDocument),

372

setDragDropMode() (QAbstractItem-
View), 152

setDragMode() (QGraphicsView), 439
setDuration() (QPropertyAnimation),

471, 487, 488, 489
setEasingCurve() (QPropertyAnima-

tion), 471, 488
setEditorData() (QStyledItemDele-

gate), 194, 199, 204
setEditTriggers() (QAbstractItem-

View), 271, 275
setEndValue() (QPropertyAnimation),

474, 487, 488, 489
setExtraSelections() (QPlainTextEd-

it), 336
setFilterKeyColumn() (QSortFilter-

ProxyModel), 111
setFilterRegExp() (QSortFilter-

ProxyModel), 111
setFixedSize() (QWidget), 194, 196, 441
setFlag() (QGraphicsItem), 391, 404

setFlags() (QGraphicsItem), 398, 404,
450

setFocus() (QWidget), 24, 99, 308, 313,
394

setFocusPolicy() (QWidget), 211, 236
setFont()

QGraphicsItem, 450
QPainter, 380, 382, 383, 386
QWidget, 211

setFontFamily() (QTextEdit), 354
setFontItalic()

QTextCharFormat, 338
QTextEdit, 344

setFontPointSize() (QTextEdit), 354
setFontStrikeOut() (QTextCharFor-

mat), 348
setFontWeight() (QTextEdit), 344, 354
setForeground() (QTextCharFormat),

338

setFormat() (QSyntaxHighlighter),
340, 341

setFrameStyle() (QFrame), 25
setFuture() (QFutureWatcher), 271, 278,

282

setGraphicsEffect()

QGraphicsItem, 405
QWidget, 483

setGroup() (QGraphicsItem), 405
setHeaderData() (QAbstractItem-

Model), 118, 125, 165
setHeight() (QRect/QRectF), 191
setHorizontalScrollBarPolicy()

(QAbstractScrollArea), 344
setHtml()

QTextDocument, 37, 198, 365, 383
QTextEdit, 354

setIcon()

QAction, 59, 357, 431
QMessageBox, 101, 137
QSystemTrayIcon, 17

setInitialState() (QStateMachine),
477, 483

setInterval() (QTimer), 74, 83
setItemDelegate() (QTableView), 93

ptg

Index 531

setItemDelegateForColumn() (QAb-
stractItemView), 135, 152, 189

setItemIcon() (QComboBox), 446
setItemIndexMethod() (QGraphics-

Scene), 394, 477
setKeyValueAt() (QPropertyAnima-

tion), 471, 472
setLayout() (QWidget), 444
setLineWrapMode() (QTextEdit), 344
setMenu() (QAction), 345, 430
setMimeData() (QClipboard), 428
setMinimal() (QRegExp), 339
setMinimumSize() (QWidget), 236, 398
setModel()

QAbstractItemView, 135, 152, 189,
209, 210, 211

QComboBox, 93
QCompleter, 321, 324
QTableView, 93

setModelColumn() (QComboBox), 93, 94
setModelData() (QStyledItemDele-

gate), 194, 200, 204
setModelSorting() (QCompleter), 324,

325, 327
setOrganizationDomain() (QApplica-

tion), 8
setOrganizationName() (QApplica-

tion), 8
setOverrideCursor() (QApplication),

69

setPageSize() (QTextDocument), 372
setPageStep() (QScrollBar), 223
setPalette() (QWidget), 196
setParentItem() (QGraphicsItem), 405
setPatternSyntax() (QRegExp), 339
setPen()

QGraphicsAbstractShapeItem, 398
QGraphicsItem, 435
QPainter, 192, 193, 202, 222, 386,
401, 463

setPixel() (QImage), 300
setPos() (QGraphicsItem), 405, 450,

453

setPosition() (QTextCursor), 330, 331,
332

setProperty()

QObject, 455
QTextCharFormat, 336, 371

setQuitOnLastWindowClosed() (QAp-
plication), 8

setRange()

QDoubleSpinBox, 186
QProgressBar, 295, 296
QScrollBar, 211, 223
QSpinBox, 205

setRenderHints()

QGraphicsView, 398, 439
QPainter, 191, 202, 376, 388, 423

setRotation() (QGraphicsItem), 393,
405, 451

setRowHidden() (QTreeView), 141
setScale() (QGraphicsItem), 393, 405,

451

setScene() (QGraphicsView), 413
setSceneRect() (QGraphicsScene), 398,

413

setSelected() (QGraphicsItem), 405,
420, 421, 450

setSelection() (QAbstractItemView),
210, 220

setShortcuts() (QAction), 26, 57
setSingleShot() (QTimer), 74, 83
setSingleStep() (QScrollBar), 223
setSize() (QRect/QRectF), 382
setSortingEnabled() (QTreeView), 308,

313

setSourceModel() (QSortFilterProxy-
Model), 93, 108, 114

setStartValue() (QPropertyAnima-
tion), 474

setStyleSheet() (QWidget), 395
setTabChangesFocus() (QTextEdit),

344

setTabPosition() (QMainWindow), 414
setText()

QAbstractButton, 291
QAction, 59
QLabel, 196
QMessageBox, 101, 137, 139

ptg

532 Index

setTextAlignment() (QStandardItem),
312

setTextColor() (QTextEdit), 348, 356
setTextCursor() (QPlainTextEdit), 331,

334, 335
setTextFormat() (QLabel), 194
setTextWidth() (QTextDocument), 384
settings; see QSettings
settings, policy, 20
setToolTip()

QGraphicsItem, 405
QWidget, 345

setTransform() (QGraphicsItem), 393,
405, 451, 454

setTransformOriginPoint() (QGraph-
icsItem), 393, 451

setup, printer, 377
setUseDesignMetrics() (QTextDocu-

ment), 384
setValue() (QSpinBox), 204
setVersion() (QDataStream), 104, 106,

127

setVerticalAlignment() (QTextChar-
Format), 348

setVerticalScrollBarPolicy() (QAb-
stractScrollArea), 344

setViewport() (QPainter), 375, 376,
384, 387, 388

setVisible() (QGraphicsItem), 405,
435

setVisualNavigation() (QTextCursor),
330

setWidget() (QScrollArea), 227
setWidth()

QRect/QRectF, 191, 327
QSize/QSizeF, 486

setWindowFilePath() (QWidget), 411,
413, 421

setWindowModality() (QMessageBox), 61,
101, 137

setWindowModified() (QWidget), 91, 94,
132, 437

setWindowTitle() (QWidget), 132, 137,
412

setWordWrap() (QLabel), 194

setWordWrapMode() (QTextEdit), 344
setWrapAround() (QCompleter), 324,

325

setX()

QGraphicsItem, 405
QPoint/QPointF, 216, 401

setY()

QGraphicsItem, 405
QPoint/QPointF, 401

setZValue() (QGraphicsItem), 405, 435,
453

shape() (QGraphicsItem), 400, 405, 466
shapes, custom, 400
shared_ptr() (std), 62
shortcuts, keyboard, 15, 82
show()

QDialog, 102
QGraphicsItem, 405
QWidget, 8, 273, 313

showMessage() (QStatusBar), 56, 93,
275, 285

signal–signal connection, 228, 355,
356

signals, across threads, 300
single shot timers in constructors,

12

singleShot() (QTimer), 11, 14, 32, 133,
413, 477

size()

QFileInfo, 312, 315
QImage, 299
QRect/QRectF, 382

sizeFromContents() (QStyle), 121
sizeHint()

QStyledItemDelegate, 194, 198
QWidget, 194, 232, 237, 327, 350, 486

slot invocation, 134
parameterizing, 13

slot invocation vs. custom events,
260

smart pointers, 62
see also QScopedPointer, QShared-
Pointer, and QWeakPointer

snprintf(), 281

ptg

Index 533

software patents, disadvantages of ,
53

sort()

QAbstractItemModel, 442
QSortFilterProxyModel, 93, 111
QStandardItemModel, 312
QStringList, 442

sortByColumn() (QTableView), 95, 111
sorting models; see QSortFilter-

ProxyModel

sorting trees, 70
sound

codecs, 53
playing, 55
policy, 53, 55

Source-Highlight Qt library, 337
Space key, 65
spinbox; see QAbstractSpinBox, QDou-

bleSpinBox, and QSpinBox

split() (QString), 327, 385
standard directories; see QDir
start()

QPropertyAnimation, 471, 472
QStateMachine, 475, 483
QThread, 296, 309
QThreadPool, 258

startsWith() (QString), 13
startup policy, 133
state machine framework, 474–490
states; see QFinalState, QState, and

QStateMachine

status bar; see QStatusBar
std

ceil(), 435, 436
exception, 105
max_element(), 431, 432
min_element(), 431, 432
numeric_limits<>::max(), 186
numeric_limits<>::min(), 436
pow(), 439, 440
shared_ptr(), 62

stopping threads, 292–294
storageLocation() (QDesktopSer-

vices), 68, 83
storing images, 60

strings
caching, 108
localized, 276
see also QLocale and QString

style() (QApplication), 121
suffix; see files
suffix() (QFileInfo), 69, 251, 254
suffixesForMimeTypes() (AQP), 71, 72
summing floating-point numbers,

280

supportedDragActions() (QAbstract-
ItemModel), 159, 168

supportedDropActions() (QAbstract-
ItemModel), 159, 168

surrogate items, 264, 266
.svg (files), 362, 363, 375, 382, 387, 422
swap() (QList), 157
synchronous downloads, 43
syntax highlighting, 320, 337–342

see also QSyntaxHighlighter

syntax highlighting, Source-High-
light Qt library, 337

T

Tab key, 50
table models vs. tree models, 89
tables

in documents, 319
inserting into documents,
369–371

see also QTableView and
QTableWidget

takeAt() (QList), 158
takeFirst() (QList), 352, 486
takeRow() (QStandardItemModel), 129
taskbar tray applications, 7
template class, 304
template function, 138
tempPath() (QDir), 189
terminating applications, 8, 79, 257
text()

QAbstractButton, 251, 291
QMimeData, 429
QStandardItem, 146

ptg

534 Index

text, selecting, 326
text cursor; see QTextCursor
text editor; see QLineEdit, QPlain-

TextEdit, and QTextEdit

text editor, Scintilla, 323
textColor() (QTextEdit), 357
textCursor()

QPlainTextEdit, 326, 331, 334, 335,
336

QTextEdit, 357
TextEdit example, 353–358
textFromValue() (QSpinBox), 205
thread-safe hash, 304
threading controversy, 246
threads

signals across, 300
stopping, 292–294

.tiff (files), 375, 388
TiledListView example, 208–224
Timelog (custommodel) example,

151–183, 193–200, 343–353
Timelog (QStandardItemModel) exam-

ple, 130–150, 193–200, 343–353
toBool() (QVariant), 166
toByteArray() (QVariant), 133
toDate() (QVariant), 348
toDouble()

QLocale, 229
QVariant, 187, 273, 434

toFloat() (QLocale), 229
toGraphicsObject() (QGraphicsItem),

424, 425
toHtml()

QTextDocument, 374
QTextEdit, 351, 354

toInt()

QLocale, 229, 243
QVariant, 97, 100, 124, 445

toLower() (QString), 70, 254
toNativeSeparators() (QDir), 254, 312,

321, 322
toolTip() (QGraphicsItem), 405
top() (QRect/QRectF), 215
toPlainText()

QPlainTextEdit, 327

toPlainText() (cont.)
QTextDocument, 37
QTextDocumentFragment, 17, 37

toPoint() (QVariant), 348
toSize() (QVariant), 445
toString()

QDateTime, 146, 170, 193
QUrl, 11
QVariant, 70, 98, 348

toStringList() (QVariant), 133
toUInt()

QLocale, 229
QVariant, 104

toUpper() (QString), 251
toUtf8() (QString), 105
tr() (QObject), 33, 140, 256, 275–276,

280, 285
transform() (QGraphicsItem), 405
transformations, graphics, 391
transitions; see state machine

framework
translated() (QRect/QRectF), 220
transparency, 300
tree changing policy, 154
tree models vs. table models, 89
tree root item, 147
trees; see QTreeView and QTreeWidget

triggered() (QActionGroup), 13
trimmed() (QString), 33, 71
type() (QGraphicsItem), 400, 405, 416,

425, 449, 456
typedef, 274, 283, 307, 347, 442
typename, 306

U

uncaughtException() (QScriptEngine),
283

Unicode, 41, 374
united() (QRect/QRectF), 466
unsaved changes, 94, 99, 136, 137
update() (QGraphicsItem), 406, 461
updateEditorGeometry() (QStyled-

ItemDelegate), 194

ptg

Index 535

updateGeometries() (QAbstractItem-
View), 210, 223

updates, lazy, 209
user data, 73
user interface blocking, 102
UTF-8 encoding, 374
UTI (Uniform Type Identifier), 72

V

value()

QHash, 73, 214
QList, 157
QSpinBox, 204, 291

value<>() (QVariant), 121, 348, 434,
445

values() (QHash), 305, 306
verticalAlignment() (QTextCharFor-

mat), 350, 352
verticalHeader() (QTableView), 93
verticalOffset() (QAbstractItem-

View), 210, 219
verticalScrollBar() (QAbstract-

ScrollArea), 211, 223, 230, 312
video

codecs, 53
files, location of , 83

video player; see Play Video exam-
ple

view components, 207
viewOptions() (QAbstractItemView),

222

viewport()

QAbstractScrollArea, 199, 209, 212,
215, 219, 222

QPainter, 376, 380, 384, 385, 388
viewport coordinates, 214, 216, 220,

221, 222, 224, 392
viewport vs. scroll area, 209, 213
views; see QAbstractItemView and

QGraphicsView

views() (QGraphicsScene), 450, 451
views, moving items in, 158–159,

173–180

visual cues, 53

visualNavigation() (QTextCursor),
330

visualRect() (QAbstractItemView),
210, 213, 221

visualRegionForSelection() (QAb-
stractItemView), 210, 221

volatile bool, 247–248, 307

W

wait() (QThread), 292, 293, 308
waitForDone() (QThreadPool), 251, 257
waitForFinished() (QFutureWatcher),

272

warning() (AQP), 60, 61, 76, 77, 374
.wav (files), 53
Weather Tray Icon example, 7–20
web applications vs. desktop appli-

cations, 5–6
web-based applications, 5
Web Inspector; see QWebInspector
web pages, zooming, 23
wheel, mouse, 236
wheelEvent() (QWidget), 439
widgets

aggregating, 225
coordinates, 214, 216, 220
Internet-aware, 6
painting, 195–198
when size doesn’t matter, 209,
213, 235, 238

see also QWidget

width()

QFontMetrics, 121, 198, 212, 227, 385,
386

QGraphicsScene, 435
QImage, 300, 301
QRect/QRectF, 214, 382

width, of HTML text, 198
window() (QWidget), 450
window coordinates, 392
window-modal dialogs, 356
windowFilePath() (QWidget), 412, 421
Windows platform differences, 254

ptg

536 Index

windowText() (QPalette), 242
write locks; see QMutex and QRead-

WriteLock

X

x()

QGraphicsItem, 406
QPoint/QPointF, 216, 218
QRect/QRectF, 382

XML; see QXmlStreamReader and QXml-

StreamWriter

XML,DOM (Document Object Mod-
el), 18

XML escaping, 145, 147, 352, 353
XmlEdit example, 322–342
.xpm (files), 375

Y

y()

QGraphicsItem, 406
QRect/QRectF, 382

Z

z value, 391
Zipcodes (custommodel) example,

113–128, 201–205
Zipcodes (QStandardItemModel) exam-

ple, 90–107, 201–205
zooming web pages, 23
zValue() (QGraphicsItem), 406, 452

ptg

About the Author

Mark Summerfield

Mark isa computer science graduatewithmany yearsof experienceworking in
the software industry, primarily as a programmer. He also spent almost three
yearsasTrolltech’sdocumentationmanager duringwhich he founded and edit-
ed Trolltech’s technical journal,Qt Quarterly. (Trolltech is now Nokia’s Qt De-
velopment Frameworks.) Mark is the coauthor of C++GUI Programmingwith
Qt 4 (with Jasmin Blanchette), and author of Rapid GUI Programming with
Python and Qt: The DefinitiveGuide to PyQt Programming, and Programming
inPython3:AComplete Introduction to thePythonLanguage.Mark ownsQtrac
Ltd., www.qtrac.eu, where he works as an independent consultant, programmer,
author, editor, and trainer, specializing in C++, Qt, Python, and PyQt.

Production

The text was written using the gvim text editor and marked up with the Lout
typesetting language. All the diagrams were produced using Lout. The index
was compiled by the author. All of the code snippets were automatically
extracted directly from the example programs and from test programs. The
text and source code were version-controlled using Bazaar. The monospaced
font used for code is derived from a condensed version of DejaVu Mono and
wasmodified using FontForge. Some of the images are from the Open Clip Art
Library and some are from Wikimedia Commons; most of the icons used are
those that come with Qt or are from KDE. The marked-up text was previewed
using gv, and especially evince, and converted to PostScript by Lout, then to
PDF by Ghostscript. The cover was provided by the publisher.

All the editing and processing were done on Ubuntu and Fedora systems. All
the example programs have been tested on Windows, Linux, and Mac OS X
using Qt 4.6 and where possible Qt 4.5 (e.g., using #if QT_VERSION).

4.6.1

www.qtrac.eu

	Contents
	List of Tables
	Foreword
	Introduction
	Acknowledgements

	Chapter 1. Hybrid Desktop/Internet Applications
	Internet-Aware Widgets
	Using WebKit
	A Generic Web Browser Window Component
	Creating Web Site-Specific Applications
	Embedding Qt Widgets in Web Pages

	Chapter 2. Audio and Video
	Using QSound and QMovie
	The Phonon Multimedia Framework
	Playing Music
	Playing Videos

	Chapter 3. Model/View Table Models
	Qt’s Model/View Architecture
	Using QStandardItemModels for Tables
	Changing a Table Model through the User Interface
	A QStandardItemModel Subclass for Tables
	A QSortFilterProxyModel to Filter Out Duplicate Rows
	A QSortFilterProxyModel to Filter In Wanted Rows

	Creating Custom Table Models
	Changing a Table Model through the User Interface
	A CustomQAbstractTableModel Subclass for Tables

	Chapter 4. Model/View Tree Models
	Using QStandardItemModels for Trees
	Changing a Tree Model through the User Interface
	A QStandardItem Subclass for Tree Items
	A QStandardItemModel Subclass for Trees

	Creating Custom Tree Models
	Changing a Tree Model through the User Interface
	A Custom Item Class for Tree Items
	A CustomQAbstractItemModel Subclass for Trees

	Chapter 5. Model/View Delegates
	Datatype-Specific Editors
	Datatype-Specific Delegates
	A Read–Only Column or Row Delegate
	An Editable Column or Row Delegate

	Model-Specific Delegates

	Chapter 6. Model/View Views
	QAbstractItemView Subclasses
	Model-Specific Visualizing Views
	The Visualizer Widget
	The Visualizer’s Aggregated Header Widget
	The Visualizer’s Aggregated View Widget

	Chapter 7. Threading with QtConcurrent
	Executing Functions in Threads
	Using QtConcurrent::run()
	Using QRunnable

	Filtering and Mapping in Threads
	Using QtConcurrent to Filter
	Using QtConcurrent to Filter and Reduce
	Using QtConcurrent to Map

	Chapter 8. Threading with QThread
	Processing Independent Items
	Processing Shared Items

	Chapter 9. Creating Rich Text Editors
	Introducing QTextDocument
	Creating CustomText Editors
	Completion for Line Edits and Comboboxes
	Completion and Syntax Highlighting for Text Editors

	A Rich Text Single Line Editor
	Multi-line Rich Text Editing

	Chapter 10. Creating Rich Text Documents
	Exported QTextDocument File Quality
	Creating QTextDocuments
	Creating QTextDocuments with HTML
	Creating QTextDocuments with QTextCursor

	Exporting and Printing Documents
	Exporting QTextDocuments
	Printing and Previewing QTextDocuments

	Painting Pages
	Painting PDF or PostScript
	Painting SVG
	Painting Pixmaps

	Chapter 11. Creating Graphics/View Windows
	The Graphics/View Architecture
	Graphics/View Widgets and Layouts
	Introducing Graphics Items

	Chapter 12. Creating Graphics/View Scenes
	Scenes, Items, and Actions
	Creating the Main Window
	Saving, Loading, Printing, and Exporting Scenes
	Manipulating Graphics Items

	Enhancing QGraphicsView
	Creating a Dock Widget Toolbox
	Creating Custom Graphics Items
	Enhancing QGraphicsTextItem
	Enhancing an Existing Graphics Item
	Creating a Custom Graphics Item from Scratch

	Chapter 13. The Animation and State Machine Frameworks
	Introducing the Animation Framework
	Introducing the State Machine Framework
	Combining Animations and State Machines

	Epilogue
	Selected Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

