

Agile Software
Architecture

Agile Software
Architecture

Aligning Agile Processes and

Software Architectures

Edited by

Muhammad Ali Babar

Alan W. Brown

Ivan Mistrik

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

fm

Acquiring Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Project Manager: Punithavathy Govindaradjane

Designer: Maria Inês Cruz

Morgan Kaufmann is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

Copyright # 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system,

without permission in writing from the publisher. Details on how to seek permission, further information

about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright

Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/

permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher

(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information or methods described herein. In using such information or methods they should

be mindful of their own safety and the safety of others, including parties for whom they have a professional

responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Agile software architecture : aligning agile processes and software architectures / edited by Muhammad

Ali Babar, Alan W. Brown, Ivan Mistrik.

pages cm

Includes bibliographical references and index.

ISBN 978-0-12-407772-0 (pbk.)

1. Agile software development. 2. Software architecture. I. Ali Babar, Muhammad. II. Brown,

Alan W., 1962- III. Mistrik, Ivan.

QA76.76.D47A3844 2013

005.1’2–dc23

2013040761

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-407772-0

This book has been manufactured using Print On Demand technology. Each copy is produced to order and

is limited to black ink. The online version of this book will show color figures where appropriate.

For information on all MK publications visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
http://www.mkp.com

Acknowledgments

The editors would like to acknowledge the significant effort Kai Koskimies made

during different phases of this book’s editing phases. Judith Stafford also helped

in framing the initial proposal for this book. We also sincerely thank many authors

who contributed their works to this book. The international team of anonymous

reviewers gave detailed feedback on early versions of chapters and helped us to

improve both the presentation and accessibility of the work. Ali Babar worked on this

project while based at Lancaster University UK and IT University of Copenhagen,

Denmark. Finally, we would like to thank the Elsevier management and editorial

teams, in particular to Todd Green and Lindsay Lawrence, for the opportunity

to produce this unique collection of articles covering the wide range of areas related

to aligning agile processes and software architectures.

xv

About the Editors

MUHAMMED ALI BABAR
Dr. M. Ali Babar is a Professor of Software Engineering (Chair) at the School of

Computer Science, the University of Adelaide, Australia. He also holds an Asso-

ciate Professorship at IT University of Copenhagen, Denmark. Prior to this, he

was a Reader in Software Engineering at Lancaster University UK. Previously,

he worked as a researcher and project leader in different research centers in

Ireland and Australia. He has authored/co-authored more than 140 peer-reviewed

research papers in journals, conferences, and workshops. He has co-edited a book,

Software Architecture Knowledge Management: Theory and Practice. Prof. Ali
Babar has been a guest editor of several special issues/sections of IEEE Software,
JSS, ESEJ, SoSyM, IST, and REJ. Apart from being on the program committees of

several international conferences such as WICSA/ECSA, ESEM, SPLC, ICGSE,

and ICSSP for several years, Prof. Ali Babar was the founding general chair of

the Nordic-Baltic Symposium on Cloud Computing and Internet Technologies

(NordiCloud) 2012. He has also been co-(chair) of the program committees of

several conferences such as NordiCloud 2013, WICSA/ECSA 2012, ECSA2010,

PROFES2010, and ICGSE2011. He is a member of steering committees of

WICSA, ECSA, NordiCloud and ICGSE. He has presented tutorials in the areas

of cloud computing, software architecture and empirical approaches at various

international conferences. Prior to joining R&D field, he worked as a software

engineer and an IT consultant for several years in Australia. He obtained a

PhD in computer science and engineering from University of New South Wales,

Australia.

ALAN W. BROWN
Alan W. Brown is Professor of Entrepreneurship and Innovation in the Surrey Busi-

ness School, University of Surrey, UK. where he leads activities in the area of cor-

porate entrepreneurship and open innovation models. In addition to teaching

activities, he focuses on innovation in a number of practical research areas with

regard to global enterprise software delivery, agile software supply chains, and

the investigation of "open commercial" software delivery models. He has formerly

held a wide range of roles in industry, including Distinguished Engineer and CTO at

IBM Rational, VP of Research at Sterling Software, Research Manager at Texas

Instruments Software, and Head of Business Development in a Silicon Valley

startup. In these roles Alan has worked with teams around the world on software

engineering strategy, process improvement, and the transition to agile delivery

approaches. He has published over 50 papers and written four books. He holds a

Ph.D. in Computing Science from the University of Newcastle upon Tyne, UK.

xvii

IVAN MISTRIK
Ivan Mistrik is a computer scientist who is interested in system and software engi-

neering (SE/SWE) and in system and software architecture (SA/SWA); in particular,

he is interested in life cycle system/software engineering, requirements engineering,

relating software requirements and architectures, knowledge management in soft-

ware development, rationale-based software development, aligning enterprise/sys-

tem/software architectures, and collaborative system/software engineering. He has

more than forty years’ experience in the field of computer systems engineering as

an information systems developer, R&D leader, SE/SA research analyst, educator

in computer sciences, and ICT management consultant. In the past 40 years, he

has worked primarily at various R&D institutions and has consulted on a variety

of large international projects sponsored by ESA, EU, NASA, NATO, and UN.

He has also taught university-level computer sciences courses in software engineer-

ing, software architecture, distributed information systems, and human-computer

interaction. He is the author or co-author of more than 80 articles and papers that

have been published in international journals and books and presented at interna-

tional conferences and workshops; most recently, he wrote the chapter “Capture

of Software Requirements and Rationale through Collaborative Software Develop-

ment” in the book Requirements Engineering for Sociotechnical Systems, the paper
“Knowledge Management in the Global Software Engineering Environment,” and

the paper “Architectural Knowledge Management in Global Software Develop-

ment.” He has also written over 90 technical reports and presented over 70 scien-

tific/technical talks. He has served on many program committees and panels of

reputable international conferences and organized a number of scientific workshops,

most recently two workshops on Knowledge Engineering in Global Software Devel-

opment at the International Conference on Global Software Engineering 2009 and

2010. He has been a guest editor of IEE Proceedings Software: A Special Issue
on Relating Software Requirements and Architectures, published by IEE in 2005.

He has also been lead editor of the book Rationale Management in Software Engi-
neering, published in 2006; the book Collaborative Software Engineering, published
in 2010; and the book Relating Software Requirements and Architectures, published
in 2011. He has also co-authored the book Rationale-Based Software Engineering,
published in May 2008. He is a lead editor of the Expert Systems Special Issue on
Knowledge Engineering in Global Software Development to be published in

2012, and he has organized the IEEE International Workshop on the Future of Soft-

ware Engineering for/in the Cloud (FoSEC) that was held in conjunction with IEEE

Cloud 2011. He was a guest editor of the Journal of Systems and Software Special
Issue on the Future of Software Engineering for/in the Cloud in 2013 and a lead

editor of the book on Aligning Enterprise, System, and Software Architectures to
be published in 2012.

xviii About the Editors

List of Contributors

Sarah Al-Azzani
University of Birmingham, Birmingham, UK

Ahmad Al-Natour
University of Birmingham, Birmingham, UK

Paris Avgeriou
University of Groningen, Groningen, The Netherlands

Muhammad Ali Babar
The University of Adelaide, Adelaide, SA, Australia

Rami Bahsoon
University of Birmingham, Birmingham, UK

Kawtar Benghazi
Universidad de Granada, Granada, Spain

Jan Bosch
Chalmers University of Technology, Gothenburg, Sweden

Georg Buchgeher
Software Competence Center Hagenberg (SCCH), Hagenberg, Austria

Lawrence Chung
University of Texas at Dallas, Richardson, TX, USA

James O. Coplien
Gertrud & Cope, Espergærde, Denmark

Jane Cleland-Huang
DePaul University, Chicago, IL, USA

Adam Czauderna
DePaul University, Chicago, IL, USA

Jessica Dı́az
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Peter Eeles
IBM, London, UK

Veli-Pekka Eloranta
Tampere University of Technology, Tampere, Finland

Uwe Friedrichsen
Codecentric AG, Solingen, Germany

Matthias Galster
University of Canterbury, Christchurch, New Zealand

xix

Juan Garbajosa
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Stephen Harcombe
Northwich, Cheshire, UK

Richard Hopkins
IBM, Cleveland, UK

Ben Isotta-Riches
Aviva, Norwich, UK

Kai Koskimies
Tampere University of Technology, Tampere, Finland

José Luis Garrido
Universidad de Granada, Granada, Spain

Mehdi Mirakhorli
DePaul University, Chicago, IL, USA

Manuel Noguera
Universidad de Granada, Granada, Spain

Jennifer Pérez
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

Janet Randell
Aviva, Norwich, UK

Trygve Reenskaug
University of Oslo, Oslo, Norway

Antonio Rico
Universidad de Granada, Granada, Spain

Jan Salvador van der Ven
Factlink, Groningen, The Netherlands

Michael Stal
Siemens AG, Corporate Research & Technology, Munich, Germany

Rainer Weinreich
Johannes Kepler University Linz, Linz, Austria

Agustı́n Yagüe
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

xx List of Contributors

Foreword by John Grundy
Architecture vs Agile: competition or
cooperation?

Until recently, conventional wisdom has held that software architecture design and

agile development methods are somehow “incompatible,” or at least they generally

work at cross-purposes [1]. Software architecture design has usually been seen by

many in the agile community as a prime example of the major agile anti-pattern

of “big design up front.” On the other hand, agile methods have been seen by many

of those focusing on the discipline of software architecture as lacking sufficient fore-

thought, rigor, and far too dependent on “emergent” architectures (a suitable one of

which may never actually emerge). In my view, there is both a degree of truth and a

substantial amount of falsehood in these somewhat extreme viewpoints. Hence, the

time seems ripe for a book exploring leading research and practice in an emerging

field of “agile software architecture,” and charting a path for incorporating the best of

both worlds in our engineering of complex software systems.

In this foreword, I briefly sketch the background of each approach and the anti-

agile, anti-software architecture viewpoints of both camps, as they seem to have

become known. I deliberately do this in a provocative and all-or-nothing way, mainly

to set the scene for the variety of very sensible, balanced approaches contained in this

book. I hope to seed in the reader’s mind both the traditional motivation of each

approach and how these viewpoints of two either-or, mutually exclusive approaches

to complex software systems engineering came about. I do hope that it is apparent

that I myself believe in the real benefits of both approaches and that they are certainly

in no way incompatible; agile software architecting—or architecting for agile, if you

prefer that viewpoint—is both a viable concept and arguably the way to approach the

current practice of software engineering.

SOFTWARE ARCHITECTURE—THE “TRADITIONAL” VIEW
The concept of “software architecture”—both from a theoretical viewpoint as a

means of capturing key software system structural characteristics [2] and practical

techniques to develop and describe [3, 4]—emerged in the early to mid-1980s

in response to the growing complexity and diversity of software systems. Practi-

tioners and researchers knew implicitly that the concept of a “software architecture”

existed in all but the most trivial systems. Software architecture incorporated ele-

ments including, but not limited to, human machine interfaces, databases, servers,

networks, machines, a variety of element interconnections, many diverse element

properties, and a variety of further structural and behavioral subdivisions (thread

xxi

management, proxies, synchronization, concurrency, real-time support, replication,

redundancy, security enforcement, etc.). Describing and reasoning about these ele-

ments of a system became increasingly important in order to engineer effective solu-

tions, with special purpose “architecture description languages” and a wide variety of

architecture modeling profiles for the Unified Modeling Language (UML). Software

architecting includes defining an architecture from various perspectives and levels of

abstraction, reasoning about the architecture’s various properties, ensuring the archi-

tecture is realizable by a suitable implementation which will meet system require-

ments, and evolving and integrating complex architectures.

A number of reusable “architecture patterns” [3] have emerged, some addressing

quite detailed concerns (e.g., concurrency management in complex systems), with

others addressing much larger-scale organizational concerns (e.g., multitier architec-

tures). This allowed a body of knowledge around software architecture to emerge,

allowing practitioners to leverage best-practice solutions for common problems

and researchers to study both the qualities of systems in use and to look for improve-

ments in software architectures and architecture engineering processes.

The position of “software architecting” in the software development lifecycle

was (and still is) somewhat more challenging to define. Architecture describes the

solution space of a system and therefore traditionally is thought of as an early part

of the design phase [3, 4]. Much work has gone into developing processes to support

architecting complex systems, modeling architectures, and refining and linking

architectural elements into detailed designs and implementations. Typically, one

would identify and capture requirements, both functional and nonfunctional, and

then attempt to define a software architecture that meets these requirements.

However, as all practitioners know, this is far easier said than done for many real-

world systems. Different architectural solutions themselves come with many

constraints—which requirements can be met and how they can be met, particularly

nonfunctional requirements, are important questions. Over-constrained requirements

may easily describe a system that has no suitable architectural realization. Many soft-

ware applications are in fact “systems of systems” with substantive parts of the appli-

cation already existent and incorporating complex, existent software architecture

that must be incorporated. In addition, architectural decisions heavily influence

requirements, and coevolution of requirements and architecture is becoming a com-

mon approach [5]. Hence, software architectural development as a top-down process

is under considerable question.

AGILE METHODS—THE “TRADITIONAL” VIEW
The focus in the 1980s and 90s on extensive up-front design of complex systems,

development of complex modeling tools and processes, and focus on large invest-

ment in architectural definition (among other software artifacts) were seen by many

to have some severe disadvantages [6]. Some of the major ones identified included

xxii Foreword by John Grundy

over-investment in design and wasted investment in over-engineering solutions,

inability to incorporate poorly defined and/or rapidly changing requirements, inabil-

ity to change architectures and implementations if they proved unsuitable, and lack

of a human focus (both customer and practitioner) in development processes and

methods. In response, a variety of “agile methods” were developed and became

highly popular in the early to mid- 2000s. One of my favorites and one that I think

exemplifies the type is Kent Beck’s eXtreme Programming (XP) [7].

XP is one of many agile methods that attempt to address these problems all the

way from underlying philosophy to pragmatic deployed techniques. Teams comprise

both customers and software practitioners. Generalist roles are favored over special-

ization. Frequent iterations deliver usable software to customers, ensuring rapid

feedback and continuous value delivery. Requirements are sourced from focused

user stories, and a backlog and planning game prioritizes requirements, tolerating

rapid evolution and maximizing value of development effort. Test-driven develop-

ment ensures requirements are made tangible and precise via executable tests. In

each iteration, enough work is done to pass these tests but no more, avoiding

over-engineering. Supporting practices, including 40-hour weeks, pair program-

ming, and customer-on-site avoid developer burnout, support risk mitigation and

shared ownership, and facilitate human-centric knowledge transfer.

A number of agile approaches to the development of a “software architecture”

exist, though most treat architecture as an “emergent” characteristic of systems.

Rather than the harshly criticized “big design up front” architecting approaches of

other methodologies, spikes and refactoring are used to test potential solutions

and continuously refine architectural elements in a more bottom-up way. Architec-

tural spikes in particular give a mechanism for identifying architectural deficiencies

and experimenting with practical solutions. Refactoring, whether small-scale or

larger-scale, is incorporated into iterations to counter “bad smells,”—which include

architectural-related problems including performance, reliability, maintainability,

portability, and understandability. These are almost always tackled on a need-to

basis, rather than explicitly as an up-front, forward-looking investment (though they

of course may bring such advantages).

SOFTWARE ARCHITECTURE—STRENGTHS AND WEAKNESSES
WITH REGARD TO AGILITY
Up-front software architecting of complex systems has a number of key advantages

[8]. Very complex systems typically have very complex architectures, many compo-

nents of which may be “fixed” as they come from third party systems incorporated

into the new whole. Understanding and validating a challenging set of requirements

may necessitate modeling and reasoning with a variety of architectural solutions,

many of which may be infeasible due to highly constrained requirements. Some

requirements may need to be traded off against others to even make the overall

xxiiiSoftware Architecture—Strengths and Weaknesses with Regard to Agility

system feasible. It has been found in many situations to be much better to do this in

advance of a large code base and complex architectural solution to try and refactor

[8]. It is much easier to scope resourcing and costing of systems when a software

architecture that documents key components exists upfront. This includes costing

nonsoftware components (networks, hardware), as well as necessary third party soft-

ware licenses, configuration, and maintenance.

A major criticism of upfront architecting is the potential for over-engineering and

thus over-investment in capacity that may never be used. In fact, a similar criticism

could be leveled in that it all too often results in an under-scoped architecture and

thus under-investing in required infrastructure, one of the major drivers in the move

to elastic and pay-as-you-go cloud computing [9]. Another major criticism is

the inability to adapt to potentially large requirements changes as customers repri-

oritize their requirements as they gain experience with parts of the delivered system

[6]. Upfront design implies at least some broad requirements—functional and

nonfunctional—that are consistent across the project lifespan. The relationship

between requirements and software architecture has indeed become one of mutual

influence and evolution [5].

AGILE—STRENGTHS AND WEAKNESSES WITH REGARD
TO SOFTWARE ARCHITECTURE
A big plus of agile methods is their inherent tolerance—and, in fact, encouragement—

of highly iterative, changeable requirements, focusing on delivering working, valuable

software for customers. Almost all impediments to requirements change are removed;

in fact, many agile project-planning methods explicitly encourage reconsideration of

requirements and priorities at each iteration review—the mostly widely known and

practiced being SCRUM [10]. Architectural characteristics of the system can be

explored using spikes and parts found wanting refactored appropriately. Minimizing

architectural changes by focusing on test-driven development—incorporating appro-

priate tests for performance, scaling, and reliability—goes a long way to avoiding

redundant, poorly fitting, and costly over-engineered solutions.

While every system has a software architecture, whether designed-in or emer-

gent, experience has shown that achieving a suitably complex software architecture

for large-scale systems is challenging with agile methods. The divide-and-conquer

approach used by most agile methods works reasonably well for small and some

medium-sized systems with simple architectures. It is much more problematic for

large-scale system architectures and for systems incorporating existent (and possibly

evolving!) software architectures [8]. Test-driven development can be very challeng-

ing when software really needs to exist in order to be able to define and formulate

appropriate tests for nonfunctional requirements. Spikes and refactoring support

small-system agile architecting but struggle to scale to large-scale or even

medium-scale architecture evolution. Some projects even find iteration sequences

xxiv Foreword by John Grundy

become one whole refactoring exercise after another, in order to try and massively

reengineer a system whose emergent architecture has become untenable.

BRINGING THE TWO TOGETHER—AGILE ARCHITECTING
OR ARCHITECTING FOR AGILE?
Is there a middle ground? Can agile techniques sensibly incorporate appropriate

levels of software architecture exploration, definition, and reasoning, before exten-

sive code bases using an inappropriate architecture are developed? Can software

architecture definition become more “agile,” deferring some or even most work until

requirements are clarified as develop unfolds? Do some systems best benefit from

some form of big design up front architecting but can then adopt more agile

approaches using this architecture? On the face of it, some of these seem counter-

intuitive and certainly go against the concepts of most agile methods and software

architecture design methods.

However, I think there is much to be gained by leveraging strengths from each

approach to mitigate the discovered weaknesses in the other. Incorporating software

architecture modeling, analysis, and validation in “architectural spikes” does not

seem at all unreasonable. This may include fleshing out user stories that help to sur-

face a variety of nonfunctional requirements. It may include developing a variety of

tests to validate that these requirements are met. If a system incorporates substantive

existing system architecture, exploring interaction with interfaces and whether the

composite systemmeets requirements by appropriate test-driven development seems

like eminently sensible early-phase, high-priority work. Incorporating software

architecture-related stories as priority measures in planning games and SCRUM-

based project management also seems compatible with both underlying conceptual

models and practical techniques. Emerging toolsets for architecture engineering, par-

ticularly focusing on analyzing nonfunctional properties, would seem to well support

and fit agile practices.

Incorporating agile principles into software architecting processes and tech-

niques also does not seem an impossible task, whether or not the rest of a project

uses agile methods. Iterative refinement of an architecture—including some form

of user stories surfacing architectural requirements, defining tests based on these

requirements, rapid prototyping to exercise these tests, and pair-based architecture

modeling and analysis—could all draw from the demonstrated advantages of agile

approaches. A similar discussion emerges when trying to identify how to leverage

design patterns and agile methods, user-centered design and agile methods, and

model-driven engineering and agile methods [1, 11, 12]. In each area, a number

of research and practice projects are exploring how the benefits of agile methods

might be brought to these more “traditional” approaches to software engineering,

and how agile approaches might incorporate well-known benefits of patterns, User

Centered Design (UCD), and Model Driven Engineering (MDE).

xxvBringing the Two Together—Agile Architecting or Architecting for Agile?

LOOKING AHEAD
Incorporating at least some rigorous software architecting techniques and tools into

agile approaches appears—to me, at least—to be necessary for successfully engi-

neering many nontrivial systems. Systems made up of architectures from diverse

solutions with very stringent requirements, particularly challenging, nonfunctional

ones, really need careful look-before-you-leap solutions. This is particularly so

when parts of the new system or components under development may adversely

impact existing systems (e.g., introduce security holes, privacy breaches, or

adversely impact performance, reliability, or robustness). Applying a variety of agile

techniques—and the philosophy of agile—to software architecting also seems highly

worthwhile. Ultimately, the purpose of software development is to deliver high-

quality, on-time, and on-budget software to customers, allowing for some sensible

future enhancements. A blend of agile focus on delivery, human-centric support

for customers and developers, incorporating dynamic requirements, and—where

possible—avoiding over-documenting and over-engineering exercises, all seem to

be of benefit to software architecture practice.

This book goes a long way toward realizing these trends of agile architecting and

architecting for agile. Chapters include a focus on refactoring architectures, tailoring

SCRUM to support more agile architecture practices, supporting an approach of

continuous architecture analysis, and conducting architecture design within an agile

process. Complementary chapters include analysis of the emergent architecture con-

cept, driving agile practices by using architecture requirements and practices, and

mitigating architecture problems found in many conventional agile practices.

Three interesting works address other topical areas of software engineering: engi-

neering highly adaptive systems, cloud applications, and security engineering. Each

of these areas has received increasing attention from the research and practice com-

munities. In my view, all could benefit from the balanced application of software

architecture engineering and agile practices described in these chapters.

I do hope that you enjoy this book as much as I enjoyed reading over the contri-

butions. Happy agile software architecting!

John Grundy
Swinburne University of Technology,

Hawthorn, Victoria, Australia

References
[1] Nord RL, Tomayko JE. Software architecture-centric methods and agile development.

IEEE Software 2006;23(2):47–53.

[2] GarlanD, ShawM. Software architecture: perspectives on an emerging discipline. Angus&

Robertson; 1996.

[3] Bass L, Clements P, Kazman R. Software architecture in practice. Angus & Robertson;

2003.

xxvi Foreword by John Grundy

http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0020

[4] Kruchten P. The 4þ 1 view model of architecture. IEEE Software 1995;12(6):42–50.

[5] Avgeriou P, Grundy J, Hall JG, Lago P, Mistrı́k I. Relating software requirements and

architectures. Springer; 2011.

[6] Beck K, Beedle M, Bennekum van A, Cockburn A, Cunningham W, Fowler M, et al.

Manifesto for agile software development, http://agilemanifesto.org/; 2001.

[7] Beck K. Embracing change with extreme programming. Computer 1999;32(10):70–7.

[8] Abrahamsson P, Babar MA, Kruchten P. Agility and architecture – can they co-exist?

IEEE Software 2010;27(2):16–22.

[9] Grundy J, Kaefer G, Keong J, Liu A. Software engineering for the cloud. IEEE Software

2012;29(2):26–9.

[10] Schwaber K. Agile project management with SCRUM. O’Reily; 2009.

[11] Dybå T, Dings�yr T. Empirical studies of agile software development: A systematic

review. Inform Software Tech 2008;50(9–10):833–59.

[12] McInerney P, Maurer F. UCD in agile projects: dream team or odd couple? Interactions

2005;12(6):19–23.

xxviiReferences

http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0030
http://agilemanifesto.org/
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.09992-5/rf0060

Foreword by Rick Kazman

Since their first appearance over a decade ago, the various flavors of agile methods

and processes have received increasing attention and adoption by the worldwide

software community. So it is natural that, with this increased attention, software

engineers are concerned about how agile methods fit with other engineering

practices.

New software processes do not just emerge out of thin air; they evolve in response

to a palpable need. In this case, the software development world was responding to a

need for projects to be more responsive to their stakeholders, to be quicker to develop

functionality that users care about, to show more and earlier progress in a project’s

lifecycle, and to be less burdened by documenting aspects of a project that would

inevitably change.

Is any of this inimical to the use of architecture? I believe that the answer to this

question is a clear “no.” In fact, the question for a software project is not “should I do

agile or architecture?” but rather questions such as “How much architecture should I

do up front versus how much should I defer until the project’s requirements have

solidified somewhat?”, “When and how should I refactor?”, “Howmuch of the archi-

tecture should I formally document, and when?”, and “Should I review my architec-

ture—and, if so, when?”. I believe that there are good answers to all of these

questions, and that agile methods and architecture are not just well-suited to live

together but in fact critical companions for many software projects.

We often think of the early software development methods that emerged in the

1970s—such as the waterfall method—as being plan-driven and inflexible. But this

inflexibility is not for nothing. Having a strong up-front plan provides for consider-

able predictability (as long as the requirements don’t change too much) and makes it

easier to coordinate large numbers of teams. Can you imagine a large construction or

aerospace project without heavy up-front planning?

Agile methods and practitioners, on the other hand, often scorn planning, instead

preferring teamwork, frequent face-to-face communication, flexibility, and adapta-

tion. This enhances invention and creativity. The next Pixar hit movie will not be

created by an up-front planning process—it is the result of a seemingly infinite num-

ber of tweaks and redos.

Agile processes were initially employed on small- to medium-sized projects with

short time frames and enjoyed considerable early success. In the early years, agile

processes were not often used for larger projects, particularly those employing dis-

tributed development. But these applications of agile methodologies are becoming

increasingly common. What are we to make of this evolution? Or, to put it another

way, is the agile mindset right for every project?

In my opinion, successful projects clearly need a successful blend of the two

approaches. For the vast majority of nontrivial projects this is not and never should

be an either/or choice. Too much up-front planning and commitment can stifle cre-

ativity and the ability to adapt to changing requirements. Too much agility can be

xxix

chaos. No one would want to fly in an aircraft with flight control software that had

not been rigorously planned and thoroughly analyzed. Similarly, no one would want

to spend 18 months planning an e-commerce web site for their latest cell phone

model, or video game, or women’s shoe style (all of which are guaranteed to be badly

out of fashion in 18 months).

There are two activities that can add time to the project schedule: (1) Up-front

design work on the architecture and up-front risk identification, planning, and res-

olution work, and (2) Rework due to fixing defects and addressing modification

requests. Intuitively, these two activities trade off against each other.

What we all want is the sweet spot—what George Fairbanks calls “just enough

architecture.” This is not just a matter of doing the right amount of architecture work,

but also doing it at the right time. Agile projects tend to want to evolve the architec-

ture, as needed, in real time, whereas large software projects have traditionally

favored considerable up-front analysis and planning.

And it doesn’t stop at the architecture. Surely we also want “just enough” archi-

tecture documentation. So, when creating documentation, we must not simply doc-

ument for the purpose of documentation. We must write with the reader in mind: If

the reader doesn’t need it, don’t write it. But always remember that the reader may be

a maintainer or other newcomer not yet on the project!

What about architecture evaluation? Does this belong in an agile project?

I think so. Meeting stakeholders’ important concerns is a cornerstone of agile philos-

ophies. An architecture evaluation is a way of increasing the probability that this

will actually occur. And an architecture evaluation need not be “heavyweight.” These

can be easily scaled down and made an organic part of development—no different

than testing or code walkthroughs—that support the goals of an agile project.

So what should an architect do when creating the architecture for a large-scale

agile project? Here are my thoughts:

• If you are building a large, complex system with relatively stable and well-

understood requirements and/or distributed development, doing a large amount

of architecture work up-front will likely pay off. On larger projects with unstable

requirements, start by quickly designing a candidate architecture even if it leaves

out many details.

• Be prepared to change and elaborate this architecture as circumstances dictate, as

you perform your spikes and experiments, and as functional and quality attribute

requirements emerge and solidify.

• On smaller projects with uncertain requirements, at least try to get agreement on

the major patterns to be employed. Don’t spend too much time on architecture

design, documentation, or analysis up front.

Rick Kazman
University of Hawaii and SEI/CMU,

Honolulu, Hawaii, USA

xxx Foreword by Rick Kazman

Preface

Today’s software-driven businesses feel increasing pressure to respond ever more

quickly to their customer and broader stakeholder needs. Not only is the drive for

increased business flexibility resulting in new kinds of products being brought to

market, it’s also accelerating evolution of existing solutions and services. Handling

such rapid-paced change is a critical factor in enterprise software delivery, driven by

market fluctuations, new technologies, announcements of competitive offerings,

enactment of new laws, and more. But change cannot mean chaos. In software-driven

businesses, all activities—and change activities in particular—must be governed by

a plethora of formal and informal procedures, practices, processes, and regulations.

These governance mechanisms provide an essential function in managing and con-

trolling how software is delivered into production.

Traditionally, the pressure on enterprise software delivery organizations has been

to balance their delivery capabilities across four key dimensions:

• Productivity of individuals and teams, typically measured in terms of lines of

code or function points delivered over unit time.

• Time-to-market for projects to complete and deliver a meaningful result to the

business. This can be measured in average time for project completion, project

over-runs, or turnaround time from request for a new capability to its delivery in a

product.

• Process maturity in the consistency, uniformity and standardization of practices.

Measurements can be based on adherence to common process norms or on

maturity approaches, such as capability maturity model levels.

• Quality in shipped code, errors handled, and turnaround of requests. Measures are

typically combinations of defect density rates and errors fixed per unit time.

However, with the increasing pressure to respond more quickly, finding an appro-

priate balance across these enterprise software delivery success factors is increas-

ingly difficult. For example, efforts to enhance productivity by introducing large

off-shore teams have frequently resulted in a negative impact on the quality of deliv-

ered solutions. Likewise, increasing process maturity by introducing common pro-

cess governance practices has typically extended time-to-market and reduced

flexibility.

These challenges are moving organizations toward rapidly embracing agile soft-

ware delivery techniques. Since the publication of the Manifesto for Agile Software
Development over a decade ago, there has been widespread adoption of techniques

that embody the key tenets of the “agile manifesto” to the point that a number of

surveys offer evidence that agile practices are the dominant approaches in many

of today’s software delivery organizations. However, these approaches are not with-

out their critics. Notably, agile delivery of software faces increasing pressure as the

context for software delivery moves from smaller colocated teams toward larger

xxxi

team structures involving a complex software supply chain of organizations in mul-

tiple locations. In these situations, the lighter-weight practices encouraged by agile

software delivery approaches come face-to-face with the more extensive control

structures inherent in any large-scale software delivery effort. How can flexibility

and speed of delivery be maintained when organizational inertia and complex team

dynamics threaten to overwhelm the essential nature of an agile approach?

For many people, the focus of this question revolves around the central theme of

software and systems architecture. It is this architectural aspect that provides coher-

ence to the delivered system. An architectural style guides the system’s organization,

the selection of key elements and their interfaces, and the system’s behavior through

collaboration among those elements. A software architecture encompasses the sig-

nificant decisions about the organization of the software system, the selection of

structural elements and interfaces by which the system is composed, and determines

their behavior through collaboration among these elements and their composition

into progressively larger subsystems. Hence, the software architecture provides

the skeleton of a system around which all other aspects of a system revolve. Conse-

quently, decisions concerning a system’s software architecture play a critical role in

enhancing or inhibiting its overall flexibility, determine the ease by which certain

changes to the system can be made, and guide many organizational aspects of

how a system is developed and delivered.

Over the past decade, many different opinions and viewpoints have been

expressed on the term “agile software architecture.” However, no clear consensus

has yet emerged. Fundamental questions remain open to debate: how much effort

is devoted to architecture-specific tasks in an agile project, is the architecture of

an agile software system designed up front or does it emerge as a consequence of

ongoing development activities, who participates in architectural design activities,

are specific architectural styles more appropriate to agile software delivery methods,

how are architecturally-significant changes to a system handled appropriately in

agile software delivery methods, and so on.

This book provides a collection of perspectives that represent one of the first

detailed discussions on the theme of agile software architecture. Through these view-

points, we gain significant insight into the challenges of agile software architecture

from experienced software architects, distinguished academics, and leading industry

commentators.

The book is organized into four major sections.

• Part I: Fundamentals of Agile Architecting explores several of the most basic

issues surrounding the task of agile software delivery and the role of architectural

design and decision-making.

• Part II: Managing Software Architecture in Agile Projects considers how core

architectural ideas impact other areas of software delivery, such as knowledge

management and continuous system delivery.

• Part III: Agile Architecting in Specific Domains offers deeper insight into how

agile software architecture issues affect specific solution domains.

xxxii Preface

• Part IV: Industrial Viewpoints on Agile Architecting takes a practical delivery

perspective on agile software delivery to provide insights from software

engineers and the lessons learned from the systems they have been responsible for

delivering.

As we summarize below, each of the chapters of this book provides you with

interesting and important insights into a key aspect of agile software architecture.

However, more importantly, the comprehensive nature of this book provides us with

the opportunity to take stock of how the emergence of agile software delivery prac-

tices change our understanding of the critical task of architecting enterprise-scale

software systems.

PART I: FUNDAMENTALS OF AGILE ARCHITECTING
Over the past few years, an increasingly large number of researchers and practi-

tioners have been emphasizing the need to integrate agile and software

architecture-centric approaches to enable software development professionals to

benefit from the potential advantages of using agile approaches without ignoring

the important role of architecture-related issues in software development

projects—a trend that can be called “agile architecting.” This section includes four

chapters that are aimed at emphasizing the importance of integrating agile and archi-

tectural approaches, as well as providing a set of practices and principles that can be

leveraged to support agile architecting. As such, the key objectives of the chapters

included in this section are the following:

• To provide a good understanding of the role and importance of software

architecture within software development teams using agile approaches, and

• To describe and illustrate a few practices for supporting agile architecting in

large-scale industrial software development.

In Chapter 2, Coplien and Reenskaug provide a detailed comparison of the evo-

lution of thinking about architecture in the building construction and the software

worlds. Such comparison is important and relevant for gaining an understanding

of the importance and role of integrating architecture-focused and agile approaches

due to similarities in constructing buildings and software in areas such as design pat-

terns. The authors argue that most of the progress in architectural thinking in both

fields is the result of learning in the field of design and in collective human endeavor.

They present and discuss a paradigm called DCI (data, context, and interaction) that

places the human experiences of design and use of programs equally at center stage.

According to the authors, DCI follows a vision of having computers and people

mutually supportive in Christopher Alexander’s sense of great design. They explain

different aspects of the DCI, its philosophical basis, and practical relevance to soft-

ware and systems delivery.

xxxiiiPart I: Fundamentals of Agile Architecting

In Chapter 3, Stal emphasizes the importance of systematic refactoring of soft-

ware architecture to prevent architectural erosion. The author argues that like any

other changes in a software intensive system, architectural modifications are also

quite common. According to the author, a systematic architectural refactoring

enables a software architect to prevent architectural erosion by evaluating the exist-

ing software design before adding new artifacts or changing existing ones. That

means software architects proactively identify architectural problems and immedi-

ately resolve them to ensure architectural sustainability. The author has presented

an agile architectural refactoring approach that consists of problem identification,

application of appropriate refactoring techniques, and testing of the resulting archi-

tecture. According to the author, the architecture refactoring is often combined with

code refactoring activities for the best value-add. Additionally, the refactoring pat-

terns can offer a toolset to software engineers.

In Chapter 4, Cleland-Huang, Czauderna, and Mirakhorli present an approach

aimed at addressing the challenges associated with eliciting and analyzing Architec-

turally Significant Requirements (ASRs) during the early phases of a project. Com-

pared with existing heavy-weight approaches (e.g., win-win and i*) to elicit and

analyze ASRs, they present a lightweight approach based on the use of personas

of different stakeholders of a system. They introduce the notion of architecturally-

savvy persona (ASP) for eliciting and analysing stakeholders’ quality concerns

and to drive and validate the architectural design. The authors present several per-

sonas from different domains and explain how personas can be used for discovering,

analyzing, and managing architecturally significant requirements, and designing and

evaluating architectural solutions. Through illustrated examples, the authors also

show how ASPs can be used to discover quality attributes, steer architectural design,

and support traceability.

In Chapter 5, van der Ven and Bosch address the important topic of improving the

architecture design decisions-making process when using agile development

methods. The authors present a framework of three axes that can be used to project

the architectural decision process, which they evaluate in five industrial case studies.

The findings from the case studies provide evidence to support the utility and use-

fulness of the presented Triple-A Framework for helping locate the places where the

architecture process can be improved as the agility of a project changes.

PART II: MANAGING SOFTWARE ARCHITECTURE IN AGILE
PROJECTS
Traditionally, various kinds of activities have been associated with the software

development process and seen as important areas of software engineering. These

activities include the main phases of a waterfall process, such as requirements anal-

ysis, design, coding, testing, integration, deployment, and maintenance. In addition,

there are more focused subactivities that either crosscut these main phases or are part

xxxiv Preface

of them. An example of the former is variability handling; an example of the latter is

software architecture analysis.

The need for all these activities has been recognized during several decades of

industrial software development, and there is no reason to doubt their rationale.

Whatever the process model is, the concerns that are behind these activities must

somehow be taken care of. The agile movement does not say that these concerns

are groundless, but rather that the activities are not sequential in nature, and that

for the most part these concerns can be satisfied without heavy management, relying

more on the capabilities of teams and individuals. In particular, we believe that the

agile movement is nowmature enough to more explicitly consider how various kinds

of focused subactivities can be manifested in an agile setting, without deviating from

the agile path. The chapters in this part argue that by doing this, it is possible to

strengthen agile projects from the viewpoint of a particular concern that can other-

wise be easily overlooked.

A particularly interesting crosscutting concern is variability—that is, the ability

of a software system to be adapted for a specific context. This is a central quality

property of almost any software system, essential not only for maintenance and reuse

but also for development time flexibility. The most systematic approaches for han-

dling variability have been developed in the context of product lines. On the other

hand, the core of agility is to embrace change. In a way, both product lines and agile

methods strive for malleable software: the former tries to plan and specify the

required variability beforehand and build variation points to support it, while the lat-

ter emphasizes practices that allow responding to changing requirements during

development. Obviously, agile methods benefit from software solutions that support

flexible changes in the system, and on the other hand the heavy-weightiness of tra-

ditional product-line engineering could be relieved by agile approaches.

In Chapter 6, Galster and Avgeriou discuss the challenges and benefits of com-

bining variability handling and agility, and propose an approach for agile-inspired

variability handling. In contrast to pure agile, their approach involves certain upfront

planning, namely the identification and expression of the desired variability—the so-

called variability profile—and an initial sketch of the software architecture with var-

iation points. Initial variability profiles and architectural sketches with variation

points can be regarded as the minimal amount of planning required for lightweight

variability handling during the development process. These artifacts are revised iter-

atively in the process when new variability requirements emerge. The approach is

demonstrated using a realistic running example.

Another concern which is generally overlooked in agile contexts is ensuring the

quality of software architecture. Software architecture is typically not identified as a

first-class artifact with explicit presentation in agile approaches. Accordingly, a cen-

tral concern in agile is not the quality of software architecture, but rather the overall

quality of the produced system as experienced by the customer. Still, architectural

analysis offers obvious benefits independently of the process paradigm. Software

architecture is a first expression of the system to be produced, and in principle it

allows the identification of problems and risks before spending resources to

xxxvPart II: Managing Software Architecture in Agile Projects

implement something that is not admissible. Unfortunately, most of the architectural

analysis techniques have been developed with a traditional waterfall mindset, assum-

ing comprehensive architectural descriptions and the availability of considerable

time and resources. Furthermore, architectural analysis has been traditionally

regarded as a one-shot activity, carried out when the architecture has been designed.

This has made it hard to integrate architectural analysis as a part of agile

development.

In Chapter 7, Buchgeher and Weinreich point out that in agile approaches, soft-

ware architecture is incomplete and continuously evolving. Thus, any architecture

analysis method applied in the agile context should be incremental, allowing contin-

uous analysis activity that can be carried out with reasonable resources and time. An

obvious approach for less resource-demanding architecture analysis is automation: if

a substantial part of the work can be automated with a simple tool, the analysis can be

performed in agile development without unreasonable deviation from the agile prin-

ciples. This could be compared to tool-assisted testing of the implementation. On the

other hand, the scope of automated architecture analysis is necessarily limited: this is

a tradeoff between coverage and efficiency.

Buchgeher andWeinreich discuss the benefits and problems of different architec-

ture analysis approaches in agile software development, and conclude that a potential

technique in this context would be so-called dependency analysis. This is an analysis

technique which aims to extract static dependencies from the source code and com-

pare the actually implemented architecture with the intended one, using the depen-

dencies as an indication of architecture-level relationships. They further present a

tool-assisted approach, LISA (Language for Integrated Software Architecture), to

support this kind of continuous architecture analysis in an agile project context. This

approach has been studied in several projects, including a sizable industrial one.

Another general crosscutting concern of software development is the manage-

ment of various kinds of knowledge produced and consumed during the development

process. Regarding software architecture, the term architecture knowledge manage-

ment (AKM) has been coined to refer to all the activities related to the creation, man-

aging, and using representations of software architecture and its rationale.

Traditionally, these kinds of activities are downplayed in agile development in favor

of face-to-face communication. However, there can be many reasons that make more

systematic approaches to AKM necessary in real life, regardless of the process par-

adigm. For example, in large multisite projects architectural knowledge needs to be

transferred between hundreds of stakeholders and globally distributed sites, and for

systems with a lifespan of decades, the architectural knowledge has to be transferred

over many generations of architects.

In Chapter 8, Eloranta and Koskimies suggest that it would be possible to achieve

a lightweight approach to AKM suitable for agile development by combining the use

of an architectural knowledge repository with a decision-based architecture evalua-

tion technique. This kind of evaluation technique analyzes the architecture decision

by decision, in a bottom-up manner, rather than taking a top-down, holistic view of

the architecture. Thus, decisions can be analyzed as soon as they are made in agile

xxxvi Preface

development, without a need for an offline, heavyweight architectural evaluation.

Since a decision-based analysis makes the architectural decisions and their rationale

explicit, a significant portion of architectural knowledge emerges and can be

recorded in a repository as a side effect of the analysis. Using existing techniques

for generating specialized documents from the repository, an agile project can be

augmented with virtually effortless architectural documentation services. The

authors further study in detail how the proposed approach could be applied in the

context of the observed architectural practices in industry.

The core activity related to software architecture is of course the actual design of

the architecture. Many agile approaches are deliberately vague about this activity.

Early agilists even argued that architecture need not be explicitly designed, but just

emerges during the development. While this might be true in some cases, today it is

generally understood that software architecture and its design play a significant role

in agile development—especially in large-scale projects. However, the incremental

and iterative nature of agile development poses a major challenge for software archi-

tecture design: how to build software architecture in a systematic manner piecewise,

in parallel with the implementation.

In Chapter 9, Pérez, Diaz, Garbajosa, and Yagüe address this question by intro-

ducing the concept of a working architecture. This is an architecture that evolves

together with the implemented product. A central element of a working architecture

is a malleable, incomplete, so-called plastic partial component. A new working

architecture can be expressed in each agile iteration cycle using such components.

Eventually, the components become complete, constituting the final architecture

associated with the delivered product. The approach supports changes in the require-

ments by maintaining traceability links between features and their realization in the

working architecture. Given a change in the features, the involved parts of the work-

ing architecture can be automatically detected using such links. The proposed tech-

niques are integrated with Scrum, and tried out in a large case study project.

PART III: AGILE ARCHITECTING IN SPECIFIC DOMAINS
Agile architecting in specific domains share many commonalities and many of their

concerns overlap, but they also have marked differences in focus and approach. Each

solves problems for different stakeholders, uses different technologies, and employs

different practices. The specialization on their respective solutions has made it dif-

ficult to transfer methods and knowledge across a broad range of topics. One way to

align these topics is to shift the focus from solution to problem domains. As the sys-

tem evolves, verifying its security posture is indispensable for building deployable

software systems. Traditional security testing lacks flexibility in (1) providing early

feedback to the architect on the resilience of the software to predict security threats so

that changes are made before the system is built, (2) responding to changes in

user and behavior requirements that could impact the security of software, and (3)

offering real design fixes that do not merely hide the symptoms of the problem

xxxviiPart III: Agile Architecting in Specific Domains

(e.g., patching). There is a need for an architecture-level test for security grounded

on incremental and continuous refinements to support agile principles.

Part III contains two chapters looking at agile architecting in specific domains.

The chapters in this section present practical approaches and cases. Chapter 10

focuses on architecture-centric testing for security from an agile perspective and

Chapter 11 describes supporting agile software development and deployment in

the cloud using a multitenancy multitarget architecture (MT2A).

In Chapter 10, Al-Azzani, Bahsoon, and Natour suggest using architecture as an

artifact for initiating the testing process for security, through subsequent and iterative

refinements. They extend the use of implied scenario detection technique to reveal

undesirable behavior caused by ambiguities in users’ requirements and to analyze its

security implications. The approach demonstrates how architecture-centric evalua-

tion and analysis can assist in developing secure agile systems. They apply the

approach to a case study to evaluate the security of identity management architec-

tures. They reflect on the effectiveness of the approach in detecting vulnerable

behaviors, and the cost-effectiveness in refining the architecture before vulnerabil-

ities are built into the system.

Chapter 11 emphasizes the need for a systematic approach for supporting agile

software development and deployment in the cloud. Rico, Noguera, Garrido,

Benghazi, and Chung propose a MT2A for managing the cloud adoption process.

Multitenancy (MT) architectures (MTAs) allow for multiple customers (i.e., tenants)

to be consolidated into the same operational system, reducing the overhead via amor-

tization over multiple customers. Lately, MTAs are drawing increasing attention,

since MT is regarded as an essential attribute of cloud computing. For MTAs to

be adopted in practice, however, agility becomes critical; there should be a fast

change to the system so as to accommodate potential tenants in as short a period

of time as possible. In this chapter, they introduce a MT2A. MT2As are an evolution

to traditional MTAs that reduce the various overhead by providing multiple services

instead of a single service. In MT2As, there are new components added to its corre-

sponding MTAs for managing the (now possibly) multiservice. MT2As enhance the

agility of MTAs, not only in deployment but also in development, by enabling the

reuse of common components of the architecture. In this chapter, they also present an

implementation of the architecture through an MT2 system called Globalgest.

PART IV: INDUSTRIAL VIEWPOINTS ON AGILE ARCHITECTING
For many people involved in creating, maintaining, or evolving software-intensive

systems, the reality of any approach is the extent to which it helps with the day-to-day

challenges of building complex software efficiently to support the business’s needs.

Hence, any discussion on agile software architecture would be incomplete without

considering the practical realities that face software engineers when they deliver new

capabilities into production. Here, the drive for speed and adaptability offered by an

agile approach must be aligned with the broader project delivery needs to supply the

xxxviii Preface

capabilities required by the stakeholders to a deadline and at a cost that makes busi-

ness sense to the managing organizations. This equation is yet more difficult to

resolve where such projects are large in scale, take place over many months or years,

and involve hundreds of people from perhaps dozens of different organizations.

Part IV contains four chapters that explore some of the practical considerations in

agile software architecture from the viewpoint of practicing software architects.

Chapter 12 considers the challenges facing agile software development practices

in the context of large-scale complex systems delivery situations. Hopkins and

Harcombe explore what happens when rapid delivery cycles and flexible

decision-making come up against large-scale systems engineering concerns typical

of enterprise solutions—hundreds of people, long project lifetimes, extensive

requirements planning, and a constant ebb and flow of changing priorities. A partic-

ular interest of this chapter is efficiency in large-scale software delivery, and the need

to manage distributed teams in the most effective manner possible. Through a series

of examples, Hopkins and Harcombe discuss critical success factors for agile soft-

ware delivery, and the critical role that architectural planning and design can play in

ensuring that as the project scale increases, the value of an agile approach is ampli-

fied rather than being overwhelmed.

In Chapter 13, Eeles considers the importance of supporting evolution and

change to a software-intensive system, and the practical implications of creating a

“change-ready” system. From his perspective, a focus on how a system changes

throughout its lifetime shapes the critical choices an architect makes during design

and construction of that system. Important elements of this viewpoint are highlighted

by tracing the history of software development practices from waterfall phases

through iterative design to agile techniques. A particular focus of the chapter is

the innovation that is essential in both the delivered system, and in the environment

of tools and practices that produces that system. Based on his work on several indus-

trial projects, Eeles makes a series of important observations to guide architects in

delivering solutions that are more adaptable to changing needs.

In Chapter 14, Friedrichsen addresses a question central to many discussions sur-

rounding agile approaches to architecting software: In agile projects, is the architec-

ture of the system designed up-front, or does it emerge over time as the result of the

agile software development process? For Friedrichsen, the idea of emergent archi-

tecture is the result of constant refactoring of a system based on a well-defined

set of architectural principles. The chapter considers the importance of such an emer-

gent style of architecture, its key properties, and the kinds of situations in which this

emergent approach has particular value. One of the main conclusions is that, in prac-

tice, a hybrid form combining both explicit and emergent architectural techniques is

feasible and useful.

Finally, Chapter 15 describes the journey toward more agile software develop-

ment practices that took place in one IT team as it took on the task of evolving a

complex software platform at a large insurance company in the United Kingdom.

Isotta-Riches and Randell discuss their motivations for adopting a more agile soft-

ware development approach, and the challenges they faced making the changes they

xxxixPart IV: Industrial Viewpoints on Agile Architecting

needed to their practices, processes, and skills. The importance of focusing on new

architectural thinking in the teams was soon considered to be central to this

journey, and the chapter highlights how this need surfaced, what they did to explore

its implications, and how they dealt with the challenges raised. As often occurs in

practice, the result was a compromise between the purity of an agile approach as

found in textbooks, and the need to address the practical business reality driving

the project’s timeframe, capabilities, and costs. The chapter offers sobering lessons

for all those involved with creating not only elegant solutions to problems, but

also systems that pay their way.

Muhammad Ali Babar

Alan W. Brown

Ivan Mistrik

xl Preface

CHAPTER

Making Software
Architecture and Agile
Approaches Work Together:
Foundations and
Approaches

1

Muhammad Ali Babar
The University of Adelaide, Adelaide, SA, Australia

CHAPTER CONTENTS

1.1 Introduction .. 1

1.2 Software Architecture .. 3

1.2.1 Software Architecture Process and Architecture Lifecycle4

1.2.2 Architecturally Significant Requirements ...6

1.2.3 Software Architecture Design Methods ...8

1.2.4 Documenting Software Architecture ..9

1.2.5 Software Architecture Evaluation ..10

1.3 Agile Software Development and Architecture ... 11

1.3.1 Scrum ..12

1.3.2 Extreme Programming ..13

1.4 Making Architectural and Agile Approaches Work ... 14

Acknowledgments .. 18

1.1 INTRODUCTION
The Agile software development (ASD) paradigm has been widely adopted by hun-

dreds of large and small companies in an effort to reduce costs and increase their

ability to handle changes in dynamic market conditions. Based on the principles

1

of the Agile Manifesto,a Agile practitioners have proposed several methods and

approaches, such as Scrum [1], feature-driven development [2], extreme program-

ming [3], and test-driven development. We refer to all of them as ASD methods in

this chapter.While there is no doubt that there has beenmanifold increase in the adop-

tion ofASDmethods by all sorts of companies, there has always been a growing skep-

ticism about the reliability, effectiveness, and efficiency of those ASD methods that

do not pay sufficient attention to the important roles of SA-related principles, prac-

tices, and artifacts [4–6]. It has been widely recognized that SA can be an effective

tool to cut development and evolution cost and time and to increase the conceptual

integrity and quality of a system [7]. However, the followers of ASD methods view

architecture-centric approaches as part of the plan-driven development paradigm [4].

According to them, upfront design and evaluation of SA as high ceremony activities

are likely to consume a lot of time and effort without providing a system’s customers

with valuable deliverables (i.e., code for features). The proponents of SA believe that

sound architectural practices cannot be followed using agile approaches.

It can be asserted that this situation has arisen from two extreme views of ASD

methods and SA-centric methods. The supporters of architecture-centric approaches

appear to be less convinced that any software-intensive system of a significant size

can be successfully built and evolved without paying sufficient attention to architec-

tural issues, especially in domains such as automotive, telecommunication, finance,

andmedical devices. The advocates ofASDmethods appear to apply You aren’t gonna
need it thinking to architecture-centric activities (e.g., design, evaluation, documenta-

tion). According to them, refactoring can help fix most of a software-intensive sys-

tem’s structural problems. It has been claimed that refactoring is worthwhile as

long as the high-level design is good enough to limit the need for large-scale refactor-

ing [6,8,9]. And many experiences show that large-scale refactoring often results in

significant defects, which are very costly to address later in the development lifecycle.

Most of the descriptions of ASDmethods pay very little attention to common archi-

tectural design activities [10], such as architectural analysis, architectural synthesis,

architectural evaluation, and the artifact types [10] associated with these activities.

Most of the ASDmethods tend to assume that architectural design is high-level design

without explicit structuring forces, such as quality attributes. Thapparambil [11]

asserts that Refactoring is the primary method to develop architecture in the Agile
world. The primary incremental design practice of the second edition of the XP book

[3] claims that architecture can emerge in daily design. The emergent design means

that architecture relies on looking for potentially poor architectural solutions in the

implemented code and making a better architecture when needed through refactory.

According to this approach, architecture emerges from code rather than some upfront

structure.

It is beginning to be recognized that both disciplines (i.e., ASD methods and

architecture-centric approaches) have important and complementary roles in

ahttp://agilemanifesto.org/

2 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

http://agilemanifesto.org/

software development and evolutionary activities. While ASD methods promise to

enable companies to achieve efficiency, quality, and flexibility for accommodating

changes, it is critically important to follow solid architectural practices for large-scale

software development projects. There is also a growing recognition of the importance

of paying more attention to architectural aspects in agile approaches [4–6,12].

This situation has stimulated several efforts aimed at identifying the mechanics

and prerequisites of integrating appropriate architecture-centric principles and

practices in ASD methods [4,8]. One of the main objectives of these efforts is to help

practitioners to understand the contextual factors and reasons for paying attention—

or not—to the role and importance of a system’s SA when implementing ASD

methods [8,13]. Researchers and practitioners have also identified the technical

and organizational challenges involved in integrating Agile approaches in traditional

software development methods [14,15]. However, while anecdotal evidence reveals

that there are large organizations in the midst of agile transformation, and that the

architectural issues are being addressed, there has been no significant effort to syn-

thesize and present a reliable body of knowledge about the architecture-centric

challenges faced by ASD projects and potential solutions to those challenges.

This book provides a unique and comprehensive body of knowledge about the chal-

lenges and opportunities for making agile and architectural approaches coexist when

developing safety, business, security, or mission-critical, software-intensive systems

and services. The body of knowledge presented in this book is expected to help com-

panies and practitioners build their architectural capabilities in the context of ASD

methods or enable architectural-centric companies to make their approaches and prac-

tices agile and lean. That means companies will be able to adopt ASDmethods without

compromising on the architectural aspects of their software-intensive systems. The

theories and practical examples in this book will enable companies of all sizes and

contexts to gain the expertise, knowledge, and technological know-how to combine

the strengths and benefits of architectural and ASD methods to achieve their goals.

Quality, productivity, and profitability can be increased by improving the efficiency

and effectiveness of companies’ software development processes.

In the following sections and subsections, we briefly describe some of the well-

known architecture-centric concepts and approaches and their origins and applicability

contexts. It can be asserted that the SA-related concepts and principles described in this

chapter can be tailored and integrated into ASD methods. Then we provide a brief

description of two of the most popular ASD methods. And eventually, we discuss a

few ways to integrate architecture-centric approaches in ASD methods.

1.2 SOFTWARE ARCHITECTURE
Software architecture is an important sub-discipline of software engineering. While

SA’s important role in achieving the quality goals of a software-intensive sys-

tem gained popularity during the 1990s, the idea of ensuring software quality

through high-level design decisions emerged in the 1970s. Parnas showed how

31.2 Software Architecture

modularization and information hiding could be used as a means of improving a sys-

tem’s flexibility and comprehensibility [16]. Soon after, Stevens et al. presented the

idea of module coupling and cohesion as a characteristic of quality software design

[17]. However, software engineers did not realize the importance of the relationship

between non-functional requirements (NFRs) and SA design until the early 1990s.

The practice of using design patterns and architectural styles for producing quality

designs in short periods of time provided impetus for new interest in addressing qual-

ity issues at the architecture level [18–20].

Software architecture may mean different things for different people. It is diffi-

cult to claim that there is a widely accepted definition of SA in the software industry

[21]. One of the first definitions of SA was provided by Perry and Wolf in their

widely cited paper [22]. They define SA as follows:

SA ¼ Elements;Form;Rationalef g
According to this definitionSA is a combinationof (1) a set of architectural elements

(i.e., processing, data, and connecting), (2) the form of these elements as principles

guiding the relationship between the elements and their properties, and (3) the rationale

for choosing elements and their form in certainway. This definition provided a basis for

initial research in the area of SA. The recent trend of describing SA as a set of design

decisions and the rationale underpinning those design decisions has highlighted the

importance of rationale in making and describing design decisions [23].

Bass, Clements, and Kazman [24] have defined SA in this way: The software
architecture of a system is the set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of both.

Structures in SA represent the partitioning and interaction decisions made to divide

the responsibilities of satisfying requirements among a set of components and defining

components’ relationships with each other. A structural partitioning is guided by the

specific requirements and constraints of an application. One of themain considerations

during the partitioning decisions is to create a loosely coupled architecture from a set of

highly cohesive components to minimize dependencies between components. By con-

trollingunnecessarydependencies, theeffectof changes indifferent component is local-

ized [7]. The structural partitioning should be driven by both functional requirements

and NFRs. Architectural structures of large-scale, software intensive systems are

considered critical to the satisfaction of many NFRs. Each architectural structure can

help architects reason about a system’s different quality attributes. Architectural struc-

tures are documented using various architectural views [7].

1.2.1 Software architecture process and architecture lifecycle
It is also important to have a good understanding of the SA design process and the so-

called lifecycle of SA. It is usually assumed that architecture design is a creative

activity without a well-defined process. It can be considered a correct assumption

for a large many systems’ architecture design. However, in a serious attempt to

design and evaluate SA for a large-scale, complex system, it is important that there

4 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

is a disciplined process that can support the creativity with a more controlled and

reflective approach. Moreover, like any other artifact, SA also has a lifecycle that

goes through different phases and activities. Each phase of the architecture lifecycle

has its own prerequisites for use and applicability.

Several process models and methods have been devised and promoted for sup-

porting the SA process. Some of the well-known ones are the attribute-driven design

(ADD) method [7], business architecture process and organization [25], the Ratio-

nale Unified Process’s 4þ1 Views [26], Siemens’ 4 Views [27], and architectural

separation of concerns [28]. In order to rationalize the options available to software

project managers and architects, the developers of five well-known architecture

design methods decided to develop a new general model of SA design by merging

their respective SA design methods [29]. The original general model of architecture

design consisted of three activities. This general model was extended by Tang and

colleagues [30] to cover architectural materialization and evolution activities. For

this chapter, we have slightly modified the names of the activities in the model. Each

of the activities in the general model of architecture design has been briefly described

below (see Figure 1.1):

1. Analyze problem domain: This activity consists of several sub-activities and

tasks. This activity aims at defining the problems to be solved. Some of the main

activities can be examining the architectural requirements (or even eliciting and

clarifying architectural requirements), going through the stakeholders’ concerns

and context to separate and prioritize the architecturally significant requirements

(ASRs) from those that are not architecturally significant.

2. Design and describe architectural decisions: This activity aims at making key

architectural design decisions based on the ASRs. An architect may consider

several available design options before selecting the ones that appear to be the

most appropriate and optimal. An architect is also responsible for documenting

the designed architecture using appropriate documentation notations and

templates.

3. Architectural evaluation: This activity intends to ensure that the architectural

solutions chosen during the previous process are the right ones. Hence, the

proposed architectural solutions are evaluated against the ASRs.

FIGURE 1.1

A model of software architecture process.

Based on [31].

51.2 Software Architecture

Figure 1.1

4. Realize architecture: This is a phase wherein a designed architecture is

deconstructed into a detailed design and implemented. During this phase,

software developers make several dozen decisions which need to be aligned with

the high-level architecture design decisions. That means software developers

need to ensure that their decisions are in conformance with the architecture

designed by an architect.

5. Maintenance of architecture: This involves making architectural changes as the

architecture evolves because of enhancement and maintenance requirements,

which place several new demands on the architecture underpinning a system. From

the knowledge management perspective, prior design decisions are reassessed for

the potential impact of the required changes and new decisions are made to

accommodate the required changes without damaging the architectural integrity.

It should be noted that the abovementioned activities do not follow a sequential

process like the waterfall model. Rather, these activities are undertaken in a quite

iterative/evolutionary manner and tasks related to one particular activity can be

performed and/or revisited while performing any other activity. In the following

sub-sections, we briefly discuss different methods and techniques that are designed

to support the SA process described in this section.

1.2.2 Architecturally significant requirements
Software requirements are mainly divided into functional requirements and NFRs.

Functional requirements correspond to desired features of a system; while NFRs spec-

ify the required properties of a system. There are various terms used for NFRs, such as

quality attributes, constraints, goals, and non-behavioral requirements [32]. Recently, it

is being recognized that all these terms can be used for ASRs, but ASRs may include

functional requirements as well. For this chapter, we specifically use the term architec-

turally significant requirements (ASR) [33]. Chen and colleagues have recently defined

ASRs as those requirements that have a measurable impact on a software system’s
architecture [33]. Some obvious examples of ASRs are reliability, modifiability, per-

formance, and usability. ASRs are usually subjective, relative, and interacting [32,33].

They are subjective, because they can be viewed, interpreted, and analyzed differently

by different people and in different contexts. ASRs are also relative, because the impor-

tance of each ASR is often determined relative to other ASRs in a given context. ASRs

are considered to interact in the sense that attempting to achieve a particular ASRmay

in turn positively or negatively affect other ASRs. ASRs are often specified by a sys-

tem’s main stakeholders, such as end users, developers, managers, and maintainers.

The ASRs are used to guide the SA design and analysis processes [7].

ASRs are less understood and managed than functional requirements [7,33–35].

This situation of ASRs not gaining sufficient attention upfront is quite common irre-

spective of the software development paradigm being used, whether Agile or non-

Agile. Chung et al. claim that quality requirements (or ASRs as we call them) are

generally stated informally during requirements analysis, are often contradictory,

6 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

can be difficult to enforce during software development, and are not easy to validate

when the software system is ready for delivery [32]. It is asserted that one of the main

reasons for this state is the number and definitions of quality attributes that can be

considered for a system. There are as many as 161 quality attributes listed in [32],

which are not claimed to be an exhaustive list. Moreover, the existence of numerous

classifications of quality attributes is another hurdle to fully comprehending the

meaning of quality attributes. Moreover, there is no universal definition of so-called

quality attributes (such as performance, availability, modifiability, and usability) that

usually form the core of any set of ASRs. However, a precise specification of ASRs is

important for facilitating rigorous analysis. In order to address this situation, SA

researchers have proposed several approaches, such as scenarios for characterizing

quality attributes [7,36], framework-based approach to characterizing ASRs [33],

and architecturally savvy personas [37]. All three of these approaches are not only

complementary to each other when it comes to eliciting and specifying ASRs for

architecture design and evaluation but can also be easily integrated in ASD methods

for treating the ASRs’ as first-class entities.

The approach based on architecturally savvy personas has been described in

Chapter 4 of this book. Chen and colleagues have provided an evidence-based frame-

work for systematically characterizing ASRs [33]. The framework is expected to cater

to different stakeholders’ needs for eliciting, specifying, and understanding ASRs for

designing and evaluating architectural design decisions. Scenarios have been used for a

long time in several areas of different disciplines (military and business strategy, deci-

sion making,). Scenarios are expected to be an effective means of specifying quality

attributes for SA processes because they are normally very concrete, enabling the user

to easily and precisely understand their detailed effect [38]. A scenario is a textual,

system-independent specification of a quality attribute [7]. A well-structured scenario

must clearly state an ASR in terms of stimulus and response. It is important that a sce-

nario have clearly identifiable response measures to successfully analyze SAs. Bass

et al. [7] provided a framework (shown in Table 1.1) to structure scenarios.

Table 1.1 Six Elements Scenario Generation Framework [7]

Elements Brief Description

Stimulus A condition that needs to be considered when it arrives at a system

Response The activity undertaken after the arrival of the stimulus

Source of
stimulus

An entity (human, system, or any actuator) that generates the stimulus

Environment A system’s condition when a stimulus occurs, e.g., overloaded,
running, etc.

Stimulated
artifact

Some artifact that is stimulated; may be the whole system or a part of it

Response
measure

The response to the stimulus should be measurable in some fashion so
that the requirement can be tested

71.2 Software Architecture

The scenario generation framework shown in Table 1.1 is considered quite effec-

tive for eliciting and structuring scenarios gathered from stakeholders. It is argued

that this framework provides a relatively rigorous and systematic approach to capture

and document quality-sensitive scenarios, which can be used to select an appropriate

reasoning framework for analyzing SA. Scenarios can be abstract or concrete.

Abstract scenarios are used to aid in the bottom-up elicitation of scenarios. The

abstract scenarios are system independent and focused on ASRs. Concrete scenario

is a textual specification of an ASR for a particular system.

1.2.3 Software architecture design methods
The software architecture community has developed several methods and techniques

to support the architecture design process. One of the key differentiating aspects of

the design methods developed by the SA researchers and practitioners is that they

elevate ASRs from being almost totally ignored to being an important consideration

during SA design. Each of architecture-centric design methods has its strengths and

weaknesses. One way of leveraging their strengths and overcoming weak points is to

select different approaches and techniques from different methods and apply them

based on contextual requirements.

Bosch [39] proposed a method that explicitly considers ASRs during the design

process. Hofmeister and colleagues proposed a framework—global analysis—to iden-

tify, accommodate, and describe ASRs early into the design phase [27]. However,

these methods have their critics for considering functional requirements ahead of

ASRs. The work of Chung et al. provides a framework to systematically deal with

NFRs during the design process [32]. TheNFR framework helps formally reason about

the relationship between a design decision and supported or inhibited quality attributes.

However, it does not provide support to explicitly perform trade-off analysis between

competing design decisions. Researchers from the Software Engineering Institute

(SEI) have developed several methods to support architecture design—for example,

ADD [7] and attribute-based architecture styles [40]. Al-Naeem et al. [41] have

proposed an architectural decision-making support framework for designing an archi-

tecture that is composed of design decisions already evaluated with respect to desired

quality attributes and organizational constraints.

From this brief analysis of the well-known architecture-centric design methods, it

is clear that an architecture design method should not only help identify suitable

design solutions with respect to ASRs but must also include an activity to determine

if the proposed architecture design has the potential to fulfill the required ASRs.

Most of the existing design methods attempt to leverage knowledge-based

approaches in terms of applying design patterns and architectural styles. However,

most of the existing architecture-centric methods are considered heavyweight

and ceremonial. Hence, they need to be appropriately tailored and contextualized

for ASD environments. Several research efforts are geared toward providing guid-

ance on how to tailor architecture design and evaluation methods for agile

methods [42,43].

8 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

1.2.4 Documenting software architecture
It is well recognized that architecture is a vehicle for communication among stake-

holders. Hence, it should be described unambiguously and in sufficient details, which

can provide relevant information to each type of stakeholder [44]. Architectural doc-

umentation is also a vital artifact for several key activities, such as architecture deci-

sions analysis, work breakdown, and post-deployment maintenance [7]. Architecture

documentation may consume a large amount of resources that need to be justifiably

allocated. That is why architecture documentation is not commonly practiced in gen-

eral and in agile and lean worlds in particular. An important issue in architecture doc-

umentation is to choose a suitable means of architecture description that can serve the

main goals (e.g., communication, analysis, implementation, and maintenance) of

documenting SAs.

The boxes and lines notation is probably the most commonly used technique for

explaining or documenting architectural decisions [21]. However, without having

sufficient contextual information, such architectural description can be interpreted

in several ways. Moreover, the boxes and lines notation does not capture several

other types of information (such as interfaces and behavioral aspects). Hence, this

notation is not considered expressive enough to communicate architectural decisions

in a manner that serves the abovementioned main objectives of architecture

documentation.

Recently, there has been an increasing emphasis on documenting SAs using dif-

ferent views suitable to different stakeholders [45]. An architectural view is a rep-

resentation of a system from a related set of concerns, which are important to

different stakeholders. Hence, each view addresses the concerns of one or more

of a system’s stakeholders. The term “view” is used to express a system’s architec-

ture with respect to a particular viewpoint. According to the IEEE standards for

describing SA [45], architectural description is organized into various views. One

of the most popular views-based approaches is called “4þ1” views [26]. The 4þ1

view model intends to describe an SA using five concurrent views. Each of them

addresses a specific set of concerns.

• Logical view denotes the partitions of the functional requirements onto the

logical entities in an architecture. This view illustrates a design’s object model in

an object-oriented design approach.

• Process view is used to represent some types of ASRs, such as concurrency and

performance. This view can be described at several levels of abstraction, each of

which addresses an individual issue.

• Development view illustrates the organization of the actual software modules in

the software development environment. This view also represents internal

properties, such as reusability, ease of development, testability, and

commonality. It is usually made up of subsystems, which are organized in a

hierarchy of layers. This view also supports allocation of requirements and work

division, cost assessment, planning, progress monitoring, and reasoning about

reuse, portability and security.

91.2 Software Architecture

• Physical view represents the mapping of the architectural elements captured in

the logical, process, and development views onto networks of computers. This

view takes into consideration the NFRs (e.g., availability, reliability (fault

tolerance), performance (throughput), and scalability).

• Scenarios are used to demonstrate that the elements of other views can work

together seamlessly. This fifth view is made up of a small subset of important

scenarios and has two main objectives: design driver, and validation/illustration.

Clements and colleagues have proposed another approach, called Views and

Beyond (V&B) [44], to documenting SA using views. Like the IEEE Std 1471, their

approach is based on the philosophy that instead of prescribing a fixed set of views like

Kruchten, SA should be documented using whatever views are useful for a system

being designed. The V&B approach’s main contribution is to map concrete architec-

tural styles to views and providing templates to capture relevant information. Apart

from architecture documentation approaches, the SA community has proposed several

ADLs (such as Rapide [46] and Unicon [47]), which are considered formal approaches

to describing SA. There have been two comparative studies of the Architectural

Description Languages (ADLs) reported in [48,49]. Unified Modeling Language

(UML) [50] has become a de facto standard notation for documenting a software

for any kinds of software development environment, agile or non-agile. Before a major

upgrade in the UML 2.0, the UML had nine diagrams: class diagram, object diagram,

use case diagram, sequence diagram, collaboration diagram, state chart diagram, activ-

ity diagram, component diagram, and deployment diagram. The UML 2.0 has

addressed a major weakness of UML by providing new diagrams for describing the

structure and behavior of a system.

1.2.5 Software architecture evaluation
Software architecture evaluation is an important activity in the software architecting

process. The fundamental goal of architecture evaluation is to assess the potential of

a proposed/chosen architecture to deliver a system capable of fulfilling required

quality requirements and to identify any potential risks [51,52]. Researchers and

practitioners have proposed a large number of architecture evaluation methods for

which a classification and comparison framework has also been proposed [53]. Most

widely used architecture evaluation methods are scenario-based. These methods are

called scenario-based because scenarios are used to characterize the quality attri-

butes required of a system. It is believed that scenario-based analysis is suitable

for development-time quality attributes (such as maintainability and usability) rather

than for run-time quality attributes (such as performance and scalability), which can

be assessed using quantitative techniques such as simulation or mathematical models

[39]. Among the well-known, scenario-based architecture evaluation methods are

the SA analysis method (SAAM) [54], the architecture tradeoff analysis method

(ATAM) [55], the architecture level maintainability analysis (ALMA) [56], and

the performance assessment of SA (PASA) [57].

10 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

SAAM is the earliest method proposed to analyze architecture using scenarios.

The analysis of multiple candidate architectures requires applying SAAM to each

of the proposed architectures and then comparing the results. This can be very costly

in terms of time and effort if the number of architectures to be compared is large.

SAAM has been further extended into a number of methods, such as SAAM for com-

plex scenarios [58], extending SAAMby integration in the domain-centric and reuse-

based development process [59], and SAAM for evolution and reusability [60].

ATAMgrew out of SAAM. The key advantages of ATAMare explicit ways of under-

standing how an architecture supports multiple competing quality attributes and of

performing trade-off analysis. ATAM uses both qualitative techniques, such as sce-

narios, and quantitative techniques for measuring the qualities of the architecture.

Benstsson and Bosch proposed several methods (such as SBAR [61], ALPSM [62],

and ALMA) [56]. All these methods use one or a combination of various analysis

techniques (i.e., scenarios, simulation, mathematical modeling, or experience-based

reasoning [39]). All of these methods use scenarios to characterize quality attributes.

The desired scenarios aremapped onto architectural components to assess the architec-

ture’s capability to support those scenarios or identify the changes required to handle

those scenarios. PASA is an architecture analysis method that combines scenarios

and quantitative techniques [57]. PASA uses scenarios to determine a system’s perfor-

mance objectives and applies principles and techniques from software performance

engineering (SPE) to determine whether an architecture is capable of supporting the

performance scenarios. PASA includes performance-sensitive architectural styles

and anti-patterns as analysis tools and formalizes the architecture analysis activity

of the performance engineering process reported in [63].

1.3 AGILE SOFTWARE DEVELOPMENT AND ARCHITECTURE
Agile software development methods promise to support continuous feedback and

accommodate changes in software requirements throughout the software develop-

ment life cycle, support close collaboration between customers and developers,

and enable early and frequent delivery of software features required for a system

[4]. The ASD methods are based on the Agile Manifesto that was published by a

group of software developers and consultants in 2001. According to the Agile

Manifesto:

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over process and tools,

• Working software over comprehensive documents,

• Customer collaboration over contract negotiation,

• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the

left more

111.3 Agile Software Development and Architecture

This manifesto describes the core values underpinning the agile community’s views

about different aspects of software development processes, people, practices, and arti-

facts. According to this manifesto, the ASDmethods are designed and implemented in

ways that are aligned with the core ASD values, such as individuals and interactions

over process and tools, working software over comprehensive documentation, cus-

tomer collaboration over contract negotiation, and responding to change over follow-

ing a plan [13]. Agile Alliance has also enlisted a number of common principles for

agile processes, including customer satisfaction through early and continuous software

delivery, co-located active customer participation, ability to handle change even late in

the software development lifecycle, simplicity of software development processes,

short feedback loops, mutual trust, and common code ownership [14].

Some of the well-known ASDmethods are extreme programming (XP) [3], Crys-

tal Clear [64] and Scrum [1]. There are a large number of books and research papers

for describing the details of each of the well-known and widely practiced ASD

methods. We can refer a reader of this chapter to two good sources [65,66] for intro-

ductory information about different ASD methods such as Scrum, feature driven

development, dynamic software development method, adaptive software develop-

ment, extreme programming, and crystal methodologies. Since there are a large vari-

ety of ASD and practices, it seems appropriate that we keep our views and

discussions focused on integrating architectural approaches into a few well-known

and widely adopted ASD methods. Hence, this chapter will briefly touch on two of

the well-known ASD methods—Scrum, an agile project management method, and

XP. By limiting the number of agile methods for discussion with respect to architec-

tural principles and practices, we expect to provide a precise but more coherent and

deep discussion of how to make ASD methods and architecture-centric practices

work in harmony to leverage the advantages of both disciplines for developing

high-quality and cost-effective software iteratively and incrementally without

unnecessary project delays and risks.

1.3.1 Scrum
Scrum has emerged as one of the leading (if not the leading) ASD method that has

been designed to manage software development projects. Scrum is a term used in the

game of rugby where it means “getting an out-of-play ball back into the game”

through team efforts [67]. In software development, Scrum is an iterative and incre-

mental project management approach that provides a simple inspect and adapt
framework rather than specific techniques. Scrum-based projects deliver software

in increments called sprints (usually 3-4 week iterations, or even 2 weeks in some

instances). Each sprint starts with planning, during which user stories are taken from

backlogs based on priorities, and ends with a sprint review. The planning activity is

expected to last for a few hours (e.g., 4 hours) and not too long. The sprint review

meeting can also last around 4 hours. All the key stakeholders are expected to par-

ticipate in the sprint planning and the sprint review meetings at the beginning and

completion of each sprint.

12 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

A Scrum team holds a short meeting (e.g., maximum 15 mininutes) at the begin-

ning of each day. This meeting is called the “daily Scrum meeting,” and is aimed at

enabling each team member to addresses only three questions: “What did I do yes-

terday, what will I do today, and what are the showstoppers in my work?” Each

Scrum project is expected to have at least three artifacts: product backlogs, sprint

backlogs, and burn-down charts. The software architecture community has also bor-

rowed the term “backlogs” and proposed that the architecting process should keep an

architectural backlog when architecture is being designed and evaluated iteratively.

The Scrum backlogs consist of requirements that need to be implemented during the

current or future sprint cycles. An iterative and incremental approach to architecting

also incorporates the concept of architectural backlogs [10]. A third artifact is the

daily burn-down chart that is aimed at providing a status report in terms of the cumu-

lative work yet to be done.

1.3.2 Extreme programming
Extreme programming is another popular agile approach that was developed based

on commonsense principles and practices taken to extreme levels. Like other ASD

methods, XP also advocates short iteration and frequent releases of working code

with the aim of increasing productivity but still accommodating requirements

changes. XP was designed for collocated teams of eight to ten developers working

with object-oriented programming language. The approach quickly became popular,

among software developers who were not satisfied with the traditional software

development approaches like waterfall. Following are some of the key XP practices.

• Planning game: A close interaction between customers and developers is

encouraged for estimating and prioritizing requirements for the next release.

The requirements are captured as users’ stories on story cards. The programmers

are expected to plan and deliver only the user stories agreed upon with

customers.

• Small releases: An initial version of a system is released for operation after a few

iterations. New features are delivered in subsequent releases on a daily or weekly

basis.

• Metaphor: The development team and customers develop a set of metaphors for

modeling the system to be developed.

• Simple design: XP encourages developers to keep the design of a system as

simple as possible. According to Beck say everything once and only once.
• Tests: The test-first principle means developers write acceptance tests for their

code before they write the code itself. Customers write functional tests for each

iteration, and at the end of each iteration, all tests are expected to run successfully.

• Refactoring: The design of a system evolved by transforming existing design of

the system in a way that all the test cases run successfully.

• Pair programming: The production code is written by two developers sitting next
to each other on a computer.

131.3 Agile Software Development and Architecture

• Continuous integration: All new code is integrated into the system as frequently

as possible. All functional tests must still pass after integration or the new code is

discarded.

• Collective ownership: All developers working on a system jointly own the code.

That means any developer can make changes anywhere in the code at any time it

is felt necessary.

• On-site customer: A customer sits with the development team all the time. The

onsite customer answers questions, performs acceptance tests, and ensures

progress on the development.

• Fourty-hour weeks: If someone from the development team has to work overtime

in two consecutive weeks, it is a sign of a big problem. The requirements should

be selected for each iteration in a way that developers do not need to put in

overtime.

• Open workspace: Developers have a common workspace set up with small

cubicles around the periphery and a common development machine in the center

for pair programmers.

• Just rules: A team’smembers subscribe to a set of rules. The rules can be changed at

any time as long as there is a consensus about how to assess the effects of the change.

1.4 MAKING ARCHITECTURAL AND AGILE
APPROACHES WORK
It has been stated throughout this chapter that there is a growing recognition of the

importance of paying more attention to architectural aspects in Agile approaches

[4–6,14]. Hence, there are an increasing number of efforts aimed at identifying

the technical and organizational challenges involved in integrating agile approaches

in traditional software development methods [14,15]. These efforts have resulted in

several proposals for combining the strengths of the core elements of agile and

architecture-centric approaches. For example, Refs. [68,69] combine the strengths

of the core elements of the risk-driven, architecture-centric rational unified process

(RUP) and the XP [3] process. The combinations were enabled by the fact that RUP

and XP share the cornerstones of iterative, incremental, and evolutionary develop-

ment [70]. Nord and Tomayko [4] propose an integration of specific SEI

architecture-centric methods into the XP framework [71]. Many others have empha-

sized the importance of finding a middle ground between two extreme views of

architecture-centric and agile approaches [9,13,12]. Beck has also emphasized the

importance of paying sufficient attention to quality attributes and the need of scaling

XP based on the context. For example, he states the following in the second edition of

his book, XP Explained: Embracing Change:

A system isn’t certifiably secure unless it has been built with a set of security prin-

ciples in mind and has been audited by a security expert. While compatible with

XP, these practices have to be incorporated into the team’s daily work.

14 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

With awareness and appropriate adaptations, XP does scale. Some problems can

be simplified to be easily handled by a small XP team. For others, XP must be

augmented. The basic value and principles apply at all scales. The practices

can be modified to suit your situation.

It can be argued that one of the important prerequisites for bridging the gap between

agile and architectural approaches is to build and disseminate an evidence-based

body of knowledge about the points of conflict and conciliation between agile

and architectural principles, practices, and their proponents’ views. Such a body

of knowledge should also include the challenges that software development teams

face when they attempt to follow architecturally savvy principles in an agile devel-

opment shop and the problems and risks that may have appeared in agile projects that

did not incorporate architecture-centric principles and practices. We have taken an

empirical approach to gain and disseminate an understanding of the challenges of

and solutions for combining agile and architecture-centric approaches [42,72,73].

We have reached several conclusions about combining agile and architectural

approaches, and some of those findings have been summarized in this chapter to pro-

vide a reader with an appropriate context fromwhich to read and benefit from the rest

of the chapters in this book. Table 1.2 represents our understanding of placing some

of the well-known agile practices along with architectural practices to show that

many of the agile practices have equivalent principles or practices in architecture

disciplines, and these can easily be tailored and applied in agile settings.

One key observation from our ongoing research on agile and architecture has

been reported in [73]. According to that observation, there is an increased emphasis

on the vital role of and responsibilities of software architects in successfully combin-

ing agile and architecture methodologies. Software architects are expected to act as

facilitators in whole software development projects and as the representatives of a

system’s overall quality attributes. From our other research [72], we have identified

some of the key types of tasks an architect in an agile environment is expected to

perform in order to successfully combine architecturally savvy principles and prac-

tices (outlined in previous sections) and ASD methods.

• An architect should have a good understanding of agile approaches.

• An architect should know how to sell a key design decision to product owners in

conflicting situations.

• Α project architect should know the overall architecture, required features, and

implementation status.

• An architect should document and communicate the architecture to all the

stakeholders.

• An architect should be willing to wear multiple architectural hats—solution

architect, software architect, and implementation architect—or should be able

convince his/her organization to have different architectural roles established

depending on the nature of a project.

• An architect should spearhead an effort to institutionalize the role of architects as

facilitators and service providers in projects.

151.4 Making Architectural and Agile Approaches Work

It is important to keep in mind that software architects usually design architec-

ture, but it is developers who materialize the designed architecture. Hence, software

developers should be equally responsible for treating SA as a first-class entity that

provides the blueprint of the whole system. That is why we have argued that the role

of software developers is equally important in successfully combining agile and

architecture approaches; a development team must decide how to use various archi-

tectural artifacts and documents. However, there is little knowledge about how ASD

teams perceive and use SA. This knowledge should be considered important because

if an ASD team considers SA relevant to their tasks, there would not be much effort

required to convince them to apply the architectural principles and practices that can

be relevant to their project and context.

Falessi et al. [74] reported that agile developers had positive views of SA

because Agile developers used architectural artifacts for communication among

team members, provided input on subsequent design decisions, documented design

assumptions, and evaluated design alternatives, to name a few. Falessi and col-

leagues’ findings were consistent to what we had found from the study reported

in [72]. Other recently proposed solutions for combining architecture-centric and

agile approaches include the Responsibility-Driven Architecture (RDA) approach

Table 1.2 Placing Agile and Architectural Practices with Each Other

Some of the ASD
Practices

Frequency of Use

Sprint Iterative nature of general model of software architecture (SA)
design with backlogs of architectural concerns to be addressed

Sprint planning Prioritizing architecturally significant requirements for each
iteration

Sprint review Architectural review

Daily meetings Sharing architecture rationale and knowledge in architecture
group meetings

Onsite customer Involvement of key stakeholder in asmany phases of architecting
lifecycle as possible

Continuous
integration

Architecture-level integration and interoperability—quality
attribute approaches

Refactoring Architecture-level refactoring using patterns and architectural
styles

Metaphor SA design and architecturally savvy personas

Simple design Pattern-based design to keep the design simple and well known

Collective code
ownership

Buy-in of stakeholders on key architectural design decisions

Coding standards Architectural templates and standards to support common goals
and standards

Test-driven
development

Architecture-based testing

16 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

presented by Blair and his colleague [75]. Their approach exploits the concepts of

real option theory using a spreadsheet-based simple tool. Faber presented an

approach to help architecture and software development teams focus on NFRs that

are usually ignored in most ASD methods [76]. According to his approach, an

architect takes ownership and responsibility for representing NFRs at all stages

of the software development lifecycle. Madison [77] has described the architect

as a linchpin who can tie up agile and architecture approaches, and he strongly

advocates the use of agile for getting to a good architecture by suitably combining

architectural functions (such as communication, quality attributes, and design pat-

terns) and architectural skills at four points (i.e., upfront planning, storyboarding,

sprint, and working software).

Several solutions for combining agile and architecture methods are detailed in

this book. The first part of this book, Fundamentals of Agile Architecting, has several

chapters that report approaches and techniques for combining some architectural

issues and approaches with ASD methods. The problems addressed in that part

include architecture level refactoring, design decision making in agile methods,

and leveraging personas to elicit, specify, and validate ASRs. For example, Michael

Stal has shown how to refactor at the architecture level by exploiting knowledge

about architectural styles and patterns and ASRs. Stal states that a systematic archi-

tectural refactoring can help prevent architectural erosion by evaluating the existing

software design before adding new artifacts or changing existing ones. Van der Ven

and Bosch have proposed an approach to improving architecture design decision

making in agile settings. The findings from their case study provide practical insights

for agile architecture design decision making. Cleland-Huang and her colleagues

present a persona-based approach to eliciting and addressing ASRs. They provide

several concrete examples to show how to use ASPs for deriving architecture design

and evaluation.

The second part of this book, Managing Architecture in Agile Projects, includes

chapters that provide methods, approaches, and tools for addressing important prob-

lems, such as variability management, knowledge management, and architecture

evaluation, in projects using ASD methods. Several of the architectural principles

and practices presented in the first part of this chapter have been leveraged in the

approaches presented in the second part of the book for support of agile architecting

(e.g., variability management in agile projects, architectural knowledgemanagement

in Scrum projects, and incremental architecture evaluation).

The third part of this book, Agile Architecting in Specific Domains, includes

solutions that combine agility and architecture for new and emerging technological

solutions, such as cloud computing. Testing cloud-based applications and designing

and deploying multi-tenancy applications are significantly complicated and onerous

activities and there is relatively little knowledge about how to effectively and effi-

ciently perform them in an agile and lean manner. These chapters propose agile ways

to design and analyze multi-tenancy applications and to test them by leveraging

architecture-centric principles and artifacts. The presented approaches are good

examples of agile architecting.

171.4 Making Architectural and Agile Approaches Work

Having read and understood the theoretical principles and approaches that should

underpin agile architecting and having seen their applications for different systems in

various domains, A reader of this book will likely enjoy reading some real-world

examples of agile architecting to learn from industrial efforts in this area. The fourth

part of this book includes four chapters that have been written based on several indus-

trial projects that make architecture and agile work together in their respective envi-

ronments. For example, Hopkins and Harcombe discuss the factors that need to be

considered when planning the delivery of large-scale agile projects; architecture

planning is a centerpiece of advice that they provide to combine agile approaches

and architecture for large-scale software development projects. Eeles’s work focuses

on sharing experiences of designing and evolving “change-ready” systems by

leveraging agile and architectural principles. Friedrichsen brings up the role of

well-defined architectural principles for supporting continuous refactoring as a

means of emergent software design championed by agile followers. The last set

of industrial insights comes from the tale of evolving a complex software platform

combining agile practices and architectural principles. The industrial chapter pro-

vides useful information and insights about drawing a compromise between the

purity of agile approaches and practical business concerns that need significant atten-

tion paid to architectural role and integrating.

It is argued that there is an important and urgent need to understand the impor-

tance, opportunities, and challenges involved in making architecture-centric and

agile approaches for developing software intensive systems and services work

together. One of our key goals is to build an evidence-based body of knowledge

by identifying and understanding the main points of clashes when combining agile

and architecture and how those clashes can be turned into advantages based on a pro-

ject’s needs and context. This book offers several views and approaches aimed at

helping companies and individuals learn and apply appropriate methods, strategies,

and tools to make architecture and agile approaches work together for agile architect-

ing. We hope readers (both researchers and practitioners) not only find the

approaches presented in this book useful and applicable but also share their experi-

ences of combining agile and architecture by publishing the failure and success

stories in order to contribute to the growing body of knowledge on this topic that

is hugely important to the software development community.

Acknowledgments
Some of the most significant contributions to my understanding and writings on this topic were

made by Professor Philippe Kruchten and Professor Pekka Abrahamsson through sharing their

writings, ideas, and experiences. Some of the ideas presented in this chapter came through my

collaboration with Minna Pikkarainen and Toumas Ihme of VTT, Finland. This chapter also

benefited from the knowledge that I gained from the articles submitted to our call to a special

issue of IEEE Software back in 2009/2010. Kieran Conboy also helped in collecting the data.

Some content is based on my research in the FLEXI ITEA2 project. I also acknowledge the

generosity of my co-editors of this book for allowing me to author this chapter.

18 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

References
[1] Schwaber K. Agile project management with scrum.Washington, USA:Microsoft Press;

2004.

[2] Palmer SR, Felsing JM. A practical guide to feature-driven development. USA: Prentice

Hall; 2002.

[3] Beck K. Extreme programming explained: embrace change. Reading, MA: Addison

Wesley Longman, Inc.; 2000.

[4] Nord RL, Tomayko JE. Software architecture-centric methods and agile development.

IEEE Softw 2006;23:47–53.

[5] Parsons R. Architecture and agile methodologies—how to get along. In: WICSA; 2008.

[6] Ihme T, Abrahamsson P. Agile architecting: the use of architectural patterns in mobile

java applications. Int J Agile Manufacturing 2005;8:1–16.

[7] Bass L, Clements P, Kazman R. Software architecture in practice. 2nd ed. Boston, MA:

Addison-Wesley; 2003.

[8] Kruchten P. Situated agility. In: 9th International conference on agile processes and

eXtreme programming in software engineering, Limerick, Ireland; 2008.

[9] Boehm B. Get ready for agile methods, with care. IEEE Computer 2002;35:64–9.

[10] Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America P. A general model of

software architecture design derived from five industrial approaches. J Sys Softw

2007;80:106–26.

[11] Thapparambil P. Agile architecture: pattern or oxymoron? Agile Times 2005;6:43–8.

[12] Ali Babar M, Abrahamsson P. Architecture-centric methods and agile approaches. In:

Proceedings of the 9th international conference on agile processes and eXtreme program-

ming in software engineering Limerick, Ireland; 2008. p. 242–3.

[13] Kruchten P. Voyage in the agile memeplex. ACM queue 2007; July/August:38–44.

[14] Lycett M, Macredie RD, Patel C, Paul RJ. Migrating agile methods to standardized

development practice. IEEE Comput 2003;36:79–85.

[15] Boehm B, Taylor R. Management challenges to implementing agile processes in tradi-

tional development organizations. IEEE Softw 2005;22:30–9.

[16] Parnas DL. On the criteria to be used in decomposing systems into modules. Commun

ACM 1972;15:1053–8.

[17] Stevens WP, Myers GJ, Constantine LL. Structured design. IBM Sys J 1974;13:115–39.

[18] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns-elements of reusable object-

oriented software. Reading, MA: Addison-Wesley; 1995.

[19] Garlan D, Shaw M. An introduction to software architecture. Pennsylvania: SEI,

Carnegie Mellon University; 1994.

[20] Kazman R, Barbacci M, Klein M, Carriere SJ. Experience with performing architecture

tradoff analysis. In: Proceedings of the 21th international conference on software

engineering. New York, USA: ACM Press; 1999. p. 54–63.

[21] Gorton I. Essential software architecture. Heidelberg: Springer; 2006.

[22] Perry DE, Wolf AL. Foundations for the study of software architecture. ACM SIGSOFT

1992;17:40–52.

[23] Ali Babar M, Dingsoyr T, Lago P, Van Vliet H. Software architecture knowledge man-

agement: theory and practice. Heidelberg: Springer-Verlag; 2009.

[24] Bass L, Clements P, Kazman R. Software architecture in practice. 3rd ed. Massachusetts:

Addison-Wesley; 2013.

19References

http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0125

[25] America P, Rommes E, Obbink H. Multi-view variation modeling for scenario analysis.

In: Proceedings of fifth international workshop on product family engineering. Siena,

Italy: Springer-Verlag; 2003.

[26] Kruchten P. Architectural blueprints—the “4þ1” view model of software architecture.

IEEE Softw 1995;12:42–50.

[27] Hofmeister C, Nord RL, Soni D. Applied software architecture. Reading, MA: Addison-

Wesley; 2000.

[28] Ran A. ARES conceptual framework for software architecture. In: Jazayeri M, Ran A,

Linden FVD, editors. Software architecture for product families: principles and practice.

Boston, MA: Addison-Wesley; 2000.

[29] Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America P. A general model of

software architecture design derived from five industrial approaches. J Sys Softw

2006;80:106–26.

[30] Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA. A comparative study of architec-

ture knowledge management tools. J Sys Softw 2010;83:352–70.

[31] Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA. A comparative study of architec-

ture knowledge management tools. J Sys Softw 2010;83(3):352–70.

[32] Chung L, Nixon BA, Yu E,Mylopoulos J. Non-functional requirements in software engi-

neering. Boston: Kluwer Academic Publishing; 1999.

[33] Chen L, Babar MA, Nuseibeh B. Characterizing architecturally significant requirements.

IEEE Softw 2013;30:38–45.

[34] Bass L, Klein M, Bachmann F. Quality attribute design primitives and the attribute

driven design method. In: The 4th international workshop on software product-family

engineering; 2002.

[35] Bruin HD, Vliet HV. Quality-driven software architecture composition. J Sys Softw

2003;66:269–84.

[36] Barbacci M, Klein MH, Longstaff TA, Weinstock CB. Quality attributes. Pennsylvania:

Software Engineering Institute, Carnegie Mellon University; 1995.

[37] Cleland-Huang J, Czauderna A, Keenan E. A persona-based approach for exploring

architecturally significant requirements in agile projects. In: 19th International working

conference requirements engineering: foundation for software quality (REFSQ). Essen,

Germany: Springer; 2013.

[38] Lassing N, Rijsenbrij D, Vliet HV. How well can we predict changes at architecture

design time? J Sys Softw 2003;65:141–53.

[39] Bosch J. Design and use of software architectures: adopting and evolving a product-line

approach. Boston, MA: Addison-Wesley; 2000.

[40] Klein M, Kazman R. Attribute-based architectural styles, Tech Report CMU/SEI-99-

TR-022. Software Engineering Institute, Carnegie Mellon University; 1999.

[41] Al-Naeem T, Gorton I, Ali Babar M, Rabhi F, Benatallah B. A quality-driven systematic

approach for architecting distributed software applications. In: Proceedings of the 27th

international conference on software engineering, ICSE, St. Louis, USA; 2005.

p. 244–53.

[42] Babar MA. An exploratory study of architectural practices and challenges in using agile

software development approaches. In: Joint working IEEE/IFIP conference on software

architecture 2009 and european conference on software architecture (WICSA/ECSA).

Cambridge, UK: IEEE Computer Society; 2009.

[43] Babar MA, Ihme T, Pikkarainen M. An industrial case of exploiting product line archi-

tectures in agile software development. In: 13th international conference on software

product lines (SPLC) San Francisco, California, USA; 2009.

20 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0215

[44] Clements P, Bachmann F, Bass L, Garlan D, Ivers j, Little R, et al. Documenting software

architectures: views and beyond. USA: Addison-Wesley; 2002.

[45] IEEE. IEEE recommended practices for architecture description of software-intensive

systems. In: IEEE Std 1471-2000; 2000.

[46] Luckham DC, Kenney JJ, Augustin LM, Vera J, Bryan D, Mann W. Specification

and analysis of software architecture using Rapide. IEEE Trans Softw Eng

1995;21:336–55.

[47] Shaw M, DeLine R, Klein D, Ross T, Young D, Zelesnik G. Abstractions for software

architecture and tools to support them. IEEE Trans Softw Eng 1995;21:314–35.

[48] Clements PC. A survey of architecture description languages. In: Proceedings of the 8th

international workshop on software specification and design. Germany; 1996.

[49] Medvidovic N, Taylor RN. A classification and comparison framework for software

architecture description languages. IEEE Trans Softw Eng 2000;26:70–93.

[50] Fowler M. UML distilled: A Brief Guide to the Standard Object Modelling Language.

3rd ed. Boston, MA: Addison-Wesley; 2004.

[51] Lassing N, Rijsenbrij D, Hv Vliet. The goal of software architecture analysis: confidence

building or risk assessment. In: Proceedings of first BeNeLux conference on software,

architecture; 1999.

[52] Maranzano JF, Rozsypal SA, Zimmerman GH, Warnken GW, Wirth PE, Weiss DM.

Architecture reviews: practice and experience. IEEE Softw 2005;22:34–43.

[53] BabarMA, Zhu L, Jeffery D. A framework for classifying and comparing software archi-

tecture evaluation methods. In: Australian software engineering conference (ASWEC).

Melbourne, Australian; 2004.

[54] Kazman R, Bass L, Abowd G,WebbM. SAAM: a method for analyzing the properties of

software architectures. In: Proceedings of the 16th international conference on software,

engineering; 1994. p. 81–90.

[55] Clements P, Kazman R, Klein M. Evaluating software architectures: methods and case

studies. Boston, MA: Addison-Wesley; 2002.

[56] Bengtsson P, Lassing N, Bosch J, van Vliet H. Architecture-level modifiability analysis

(ALMA). J Sys Softw 2004;69:129–47.

[57] Williams LG, Smith CU. PASA: an architectural approach to fixing software perfor-

mance problems. In: Proceedings of the international conference of the Computer Mea-

surement Group, Reno, USA; 2002.

[58] Lassing N, Rijsenbrij D, Hv Vliet. On software architecture analysis of flexibility, com-

plexity of changes: size isn’t everything. In: Second nordic software architecture work-

shop (NOSA ’99); 1999.

[59] Molter G. Integrating SAAM in domain-centric and reuse-based development processes.

In: Second nordic workshop software architecture (NOSA ’99); 1999.

[60] Lung C, Bot S, Kalaichelvan K, Kazman R. An approach to software architecture anal-

ysis for evolution and reusability. In: CASCON ’97, Toronto, Canada; 1997.

[61] Bengtsson PO, Bosch J. Scenario-based architecture reengineering. In: Fifth interna-

tional conference on software reuse (ICSR5), Victoria, Canada; 1998.

[62] Bengtsson PO, Bosch J. Architecture level prediction of software maintenance. In:

Third European conference on software maintenance and reengineering, Amsterdam,

Netherlands; 1999.

[63] Smith CU,Williams LG. Performance solutions: a practical guide to creating responsive,

scalable software. Boston, MA: Addison-Wesley; 2002.

[64] Cockburn A. Crystal clear: a human-powered methodology for small teams. Boston,

USA: Addison-Wesley; 2004.

21References

http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0220
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0225
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0230
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0235
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0235
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0240
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0240
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0245
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0245
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0250
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0250
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0250
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0255
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0255
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0260
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0260
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0260
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0265
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0265
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0265
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0270
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0270
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0275
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0275
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0280
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0280
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0280
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0290
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0290
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0295
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0295
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0300
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0300
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0305
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0305
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0305
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0310
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0310
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0315
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0315

[65] Abrahamsson P, Salo O, Ronkainen J, Warsta J. Agile software development methods:

review and analysis. Oulu, Finland: VTT Publications 478; 2002.

[66] Cohen D, Lindvall M, Costa P. An introduction to agile methods. Adv Comput

2004;61:1–66.

[67] Schwaber K, Beedle M. Agile software development with scrum. Upper Saddle River,

NJ: Prentice-Hall; 2002.

[68] Ambler SW. Agile modeling: effective practices for eXreme programming and the uni-

fied process. New York: John Wiley & Sons; 2002.

[69] IBM. RUP for extreme programming (xp) plug-ins. IBM; 2004.

[70] Larman C. Agile and iterative development: a manager’s guide. Boston, MA: Addison

Wesley Professional; 2003.

[71] Beck K, Andres C. Extreme programming explained: embrace change. 2nd ed. Reading,

MA.: Addison Wesley Longman; 2004.

[72] Ali Babar M, Iheme T, Pikkarainen M. An industrial case of exploiting product line

architectures in agile software development. In: Proceedings of the 13th international

software product line conference (SPLC), San Francisco, USA; 2009.

[73] Abrahamsson P, BabarMA, Kruchten P. Agility and architecture: can they coexist? IEEE

Softw 2010;27:16–22.

[74] Falessi D, Cantone G, Sarcià SA, Calavaro G, Subiaco P, D’Amore C. Peaceful coexis-

tence: agile developer perspectives on software architecture. IEEE Softw 2010;27:23–5.

[75] Blair S, Watt R, Cull T. Responsibility-driven architecture. IEEE Softw 2010;27:26–32.

[76] Faber R. Architects as service providers. IEEE Softw 2010;27:33–40.

[77] Madison J. Agile architecture interactions. IEEE Softw 2010;27:41–8.

22 CHAPTER 1 Making Software Architecture and Agile Approaches Work
Together: Foundations and Approaches

http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0320
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0320
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0325
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0325
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0330
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0330
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0335
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0335
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0340
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0345
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0345
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0350
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0350
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0355
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0355
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0355
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0360
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0360
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0365
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0365
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0370
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0375
http://refhub.elsevier.com/B978-0-12-407772-0.00001-0/rf0380

CHAPTER

The DCI Paradigm: Taking
Object Orientation into the
Architecture World

2
James O. Coplien* and Trygve Reenskaug

{

*Gertrud & Cope, Espergærde, Denmark
{University of Oslo, Oslo, Norway

CHAPTER CONTENTS

2.1 Introduction .. 26

2.1.1 Agile Apologia ...27

2.1.2 Architecture and DCI ...28

2.2 The Vision: What Is Architecture? .. 28

2.2.1 Why Do We Do Architecture? ..29

2.2.2 Into Software ...29

2.2.3 Why Software Architecture? ..30

2.2.4 Architecture and the Agile Agenda ..31

2.2.5 DCI as an Integrative View of the Architecture Metaphor32

2.3 Form and Function in Architectural History ... 32

2.3.1 Historic Movements and Ideologies ...34

2.3.2 Enter Postmodernism ...35

2.3.3 Architecture Finds an Object Foothold ...35

2.3.4 Software Engineering and Architecture Today36

2.3.5 Measures of the Vision ...36

2.4 What Is Object Orientation? Achieving the Vision .. 37

2.4.1 The Kay Model ..37

2.4.2 Mental System Models ...38

2.4.3 Model-View-Controller ..38

2.4.4 Patterns ..39

2.4.5 Use Cases ...39

2.4.6 Many Views of Objects and the Boundaries of MVC40

2.5 Shortcomings of the Models ... 42

2.5.1 The Network Paradigm ...42

2.5.2 Model-View-Controller ..43

2.5.3 Patterns ..43

2.5.4 Use Cases ...44

2.5.5 The Object Canon ..45

25

2.5.5.1 Object-Oriented Programming Isn’t About Classes45

2.5.5.2 Class Thinking Isn’t Limited to Class Systems46

2.5.5.3 Lack of Locality of Intentionality ..46

2.5.5.4 Summary of the Shortcomings ...47

2.5.5.5 Epicycles: Early Visions of Relief ...48

2.6 DCI as a New Paradigm ... 49

2.6.1 A DCI Overview ..49

2.6.1.1 Full OO ...50

2.6.1.2 Restricted OO ..50

2.6.1.3 Data, Context, and Interaction ..51

2.6.2 Relating DCI to the Original OO Vision ...52

2.6.2.1 How DCI Achieves the Vision of Restricted OO52

2.6.2.2 How DCI Overcomes the Shortcomings of Class-Oriented

Programming ...53

2.6.3 DCI and the Agile Agenda ...53

2.7 DCI and Architecture ... 54

2.7.1 DCI and the Postmodern View ...55

2.7.1.1 Ideas over Objects ..55

2.7.1.2 Compositional Strategies over Individual Parts55

2.7.1.3 A Human-Centric Agenda ..56

2.7.1.4 Focus on Change ...56

2.7.2 Patterns and DCI ...56

2.7.3 DCI and the Network Computation View ...58

2.7.4 Firmitas, Utilitas, and Venustas ..58

2.8 Conclusion .. 59

2.1 INTRODUCTION
Software architecture started as Fred Brooks’s vision of a good metaphor for how we

do software, in particular for the early work of the programming-in-the-large forms

of design. Somewhere along the line the metaphor took on a life of its own and lost

many of its original roots. The metaphor became a place for noncoders to hang their

hats, and architecture too often appears in the development process only as the source

of artifacts that are thrown over the wall.

In this chapter,we look at thehistoryof software architecturewith a focus on recent

history characterized by object-oriented design. Object-oriented design broadly char-

acterizes many historic and contemporary methods that go by many names. All of

them share the notion of encapsulation of state and behavior in a run-time unit with

a unique identity, and all of them separate the client of an object from the object itself

by deferring the binding of the name of an object operation until its invocation. But,

more fundamentally, they return to the basics of architecture foreseen by Vitruvius

embodying a balance of critical thought and practical application [1]:

26 CHAPTER 2 The DCI Paradigm

. . .[A]rchitects who have aimed at acquiring manual skill without scholarship

have never been able to reach a position of authority to correspond to their pains,

while those who relied only upon theories and scholarship were obviously hunting

the shadow, not the substance. But those who have a thorough knowledge of both,

like men armed at all points, have the sooner attained their object and carried

authority with them.

Or, as Richard Gabriel notes [2, p. 231]:

. . . Vitruvius, the classic Roman architect, characterized architecture as the join-

ing of Commodity, Firmness, and Delight . . . In software engineering—if there

really be such a thing—we have worked thoroughly on Firmness, some during

the last 10 years on Commodity, and none on Delight. To the world of computer

science, there can be no such thing as Delight because beauty and anything from

the arts or the so-called soft part of human activity has nothing to do with

science—it is mere contingency.

Perhaps it’s noteworthy that, with market cap as a measure of success, the best of the

best in contemporary computing for the mass consumer have the hallmark of being

driven by customer delight.

This chapter refocuses the discussion of software architecture on its historical

roots, in part by invoking the work of architects whose work has influenced the recent

history of software architecture—in particular, Christopher Alexander and other

postmodernists. This is not just for the sake of nostalgia, but also to drive beyond

the superficial trappings of contemporary methods to the fundamentals that make

us human. Most contemporary software architecture efforts remain mired in the

modern school, although they clumsily strive to apply agile vocabulary and princi-

ples. This leads to frequent breakdowns in the metaphor. Architecture is used equally

often to politically co-opt tangential areas, such as knowledge management and pro-

ject management reinterpreted in a modernist framework, or to provide a vehicle for

one organization to exercise political control over another. On the other hand, the

agile position on architecture articulated here not only borrows directly from

the postmodern school but can also be reconciled with its principles of balanced,

practical human focus on life activity over structure for its own sake.

This chapter places the relatively new DCI (Data, Context, and Interaction)

paradigm on a firm architectural footing. DCI can be viewed as a culmination of

many design goals over the years. In particular, this chapter illustrates how DCI

addresses the fundamental issues that have arisen when drawing human users into

code design. Such problems have manifested themselves as misfits in the worldview

of object orientation in the modern school, and we show how we address them with

the DCI paradigm.

2.1.1 Agile apologia
It should, but sadly cannot, go without saying that these perspectives on design

support what today is broadly called “agile” in software. At the highest level, DCI

is a celebration of the human in computing in the sense that the original goals of

272.1 Introduction

object orientation (OO) also put the enduser at center stage.Apostmodern perspective

is firmly ensconced in “[i]ndividuals and interactions over processes and tools” [3];

this facet shows through in DCI’s emphasis of interactive software and humanmental

models. DCI is a boon to code intentionality at the system level, which many hold to

be the vade mecum of software architecture, in obvious support of “working software

over comprehensive documentation” [3]. Embracing human mental models and

including architecture in the user interface, developed through the socialization

of domain models and use cases, recalls “customer collaboration over contract

negotiation” [3]. And a careful separation of the dominant shear layers of software

development—domain data and business use cases—is high-order evidence of

“responding to change over following a plan” [3].

2.1.2 Architecture and DCI
It is possible to present DCI as a programming technique that emphasizes object

models and interactions between objects rather than classes. At a higher level, how-

ever, DCI is more properly considered as a paradigm for system construction that

entails fundamentally different mental models than its predecessors. Just as the archi-

tecture of the built world progresses through paradigm shifts, such as the school of

the beaux-arts giving way to art nouveau and art deco in turn, so DCI introduces a

new paradigm of software design at the level of software system architecture.

2.2 THE VISION: WHAT IS ARCHITECTURE?
Architecture is a longstanding metaphor for software design and construction

and particularly for programming-in-the-large. Software engineering has largely

embraced this metaphor in many forms, ranging from the use of the software title

architect to the metaphors offered by the pattern discipline.

Architecture is the form of any system created through conscious design, and it

thus has strong human elements both in its process and its product. The term form
implies a deep mental model of the essence of some structure. A structure has form;

a given form awaits implementation in structure. For example, an image comes into

your mind when we invoke the word chair. For most people it’s not a wholly concrete

image: it may not even have a color until the question causes you to assign it one. We

might suggest that we meant to have you think of a five-legged chair and, although

you are likely to have envisioned only four legs, you likely will not protest that such a

structure violates the form of chair.
A software architecture may characterize many different systems with potentially

different features implemented in different programming languages. We are likely to

say that two different consumer banking systems have the same architecture even

though they offer accounts with many different parameters. Form is the deep essence

of what is common between these systems, just as Victorian architecture is the

essence of common elements across innumerable houses. Victorian architecture,

client-server architecture, and model-view-controller (MVC) architecture are about

28 CHAPTER 2 The DCI Paradigm

form. That they drive structure doesn’t mean that they can’t be conceptualized inde-

pendent of structure. In fact, the presence of structure obfuscates form with distract-

ing detail and nonessential elements. Architecture drives to the essence of a system.

The term architecture broadly touches a host of concerns in the built world,

which perhaps can best be summarized in the terms popularized by the late Roman

architect Vitruvius: utilitas, firmitas, and venustas. As captured by these terms, much

of the classic architectural vision speaks of quality of human life. While the link of

architecture to fashion and even to esthetics is controversial [4], commodity and util-

ity (utilitas) are fundamental; so is beauty. Architecture is not without an engineering

component that encompasses materials and techniques of construction, as good

construction must be durable (firmitas) and arguably timeless [5]. Last, but certainly

not least, architecture should inspire a human sense of delight (venustas). We can

distill “delight” as comfort, beauty, or awe.

Because form is a result of design, and not of analysis, architecture lives squarely

in the space of design. Architecture itself is therefore not principally about knowl-

edge management, although knowledge management activities such as domain

analysis and pattern mining often serve as powerful preludes to architecture. It is

exactly this confusion in software, however, that often distances architecture efforts

from the code and breeds skepticism among coders. Nowhere has this split become

more pronounced than in the transition of software to agile software development,

which is largely a movement among designers and coders.

2.2.1 Why do we do architecture?
It might be useful to revisit some of the key goals of architecture. As mentioned

above, Vitruvius reduced the purpose of architecture to utilitas (commodity or util-

ity), firmitas (firmness), and venustas (delight). These goals echo strongly in soft-

ware, which has adopted them with its own emphases. More broadly, architecture

is, and always has been, about form. Except among specialists, the English word form
is often confounded with structure, and software folks in particular often incorrectly

infer that a system’s architecture is the structure of its artifacts.
The proper architectural usage of the term form has historically been more pre-

cise. It is important to differentiate form from structure: Form is the essence of

structure. We can talk in detail about the form of gothic cathedrals even without

having a gothic cathedral at hand. Form is the conceptualization of structure in terms

of the relationship among parts and between the parts and their environment. Many

given structures can implement a given form, just as there are many (different) gothic

cathedrals, all of which implement the forms of gothic cathedrals.

2.2.2 Into software
These fundamental notions of the built world found parallels in the 1960s world of

software construction. The architecture metaphor for software development, and par-

ticularly for programming-in-the-large, originated with Fred Brooks in the 1960s.

292.2 The Vision: What is Architecture?

Brooks himself was a bit skeptical of his own brainchild but, after discussions with

JerryWeinberg, became convinced of its metaphoric value for the software world [6].

Software has strongly embraced this metaphor, both for its casual parallels to

programming-in-the-large on one hand and for some of its specific techniques on

the other. Software engineering tends to emphasize the former, with the strongest par-

allels relating to the concerns around the coarse or large structure of software and how

it relates to the prominent architectural features in the framing of an edifice in the built

world. The pattern discipline [5] is an example of the latter, whose philosophies of

local adaptation and piecemeal growth became an alternative to big-up-front-design

in the 1990s and flourished in the guise of the agile movement in the ensuing decade.

The architecture metaphor flourishes in software engineering literature today.

The engineering and architectural metaphors arose only a few years apart. It should

come as no surprise that the architectural metaphor stands out most strongly in the

software engineering community, which views software as an extension of the engi-

neering metaphor. Software engineering would expand rapidly as a metaphor in the

late 1960s because of its popularization by Peter Naur in conjunction with the

nascent software engineering community and its first conference in 1968 [7]. As with

all metaphors, this one isn’t perfect, but it tends to be more strongly flawed than most

other metaphors, including that for architecture [8].

Today, the architectural principles of the built world continue to be mirrored in its

software namesake in varying degrees. One can most often find the principles of fir-
mitas in software engineering’s exercising of the analogous English language terms

stability and, more indirectly,maintainability. Software engineering’s exploration of
utilitas is isolated largely to the area of requirements management and formalism,

touching the final built product largely through automated requirements translation

rather than any act of design. Venustas in software languishes in the branches of both
software architecture and software engineering, making only an occasional appear-

ance in the human–computer interaction (HCI) and user experience (UX) fields,

which have their own communities that are again often distanced from implementa-

tion or any human concern. In fact, the industry definition of software engineering

itself is rather devoid of any human properties such as venustas or even utilitas: “The
application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software” [8].

Architecture thrives in a more humane way in the pattern community, outside soft-

ware engineering,where beauty is still valued.However, the pattern community has paid

little heed to utility; it is still largely a community of architecture for the coders, whose

carpenter-like perspective is often indifferent to and sometimes antagonistic to end-user

venustas. There are noteworthy counterexamples, of course, particularly in the HCI

community (e.g., [9]), which struggles to bear the standard of venustas for the industry.

2.2.3 Why software architecture?
If building architecture is about utilitas, firmitas, and venustas, what is software

architecture about? Here, the parallel between the architecture of the built world

and software architecture works in good measure.

30 CHAPTER 2 The DCI Paradigm

Most software architecture literature emphasizes firmitas in the guise of main-
tainability. Software first must work when it is delivered, and then keep working

as requirements change. Even building architects emphasize the role of good archi-

tecture in supporting evolution through changing requirements, as Brandt describes

in his classic How Buildings Learn [10]. Good architecture also offers building

blocks, vocabulary, and world models necessary for worthy software.

Some software architecture schools (and the pattern discipline in particular)

emphasize the notion of venustas: the beauty of software. Most software literature

emphasizes the beauty of the code. We are exhorted to write clean codes [11] or,

taking the architectural metaphor more literally, habitable codes [2]. But there is

another aspect to venustas that too often goes unheeded in software, and particularly
among the software engineering crowd: the venustas of the interface. Good inter-

faces are attractive and usable. This deep kind of beauty goes beyond what just

graphic designers do, but touches deep mental models in the end user.

This perspective on venustas leads us directly into utilitas. Does architecture

relate to usability? In fact, the program structure and the end-user structure have

much to do with each other in an object-oriented system: that is much of the essence

of Kay’s Dynabook vision and of the MVC vision. It’s about matching machines to

people in much the same way that architecture matches a house to its inhabitants.

This fact is lost on most contemporary programmers. The interface is the product;

the code is just the stuff that has to go along to make it work [12, p. 5].

2.2.4 Architecture and the agile agenda
An agile approach is as much a sine qua non of contemporary development as archi-

tecture might have been in the 1980s. After the birth pangs of Agile dismissed the

value of up-front architecture, or at least marginalized it, the industry is coming

around to a more moderate position that accommodates a tenuous co-existence

between them. DCI is one of the leading comprehensive approaches that span this

territory, as well as spanning the range of concerns from domain analysis down to

coding concerns, and everything in between.

In this chapter, as we examine the relationships between agile, architecture, and

DCI, the question certainly arises about what boundaries to draw around agile. Agile
development as a titled movement is young, dating back to the Agile Manifesto in

2001 [3]. Nonetheless, like all manifestos, it standardized what at the time was

broadly established practice [13]. A look at history and publications suggests that

its popularity can be traced back to a turning in the industry that started gaining

momentum in the early 1990s. The 1990s became the decade of doubt, during which

many sacred cows fell or were at least wounded. Architecture was unfortunately one

of the casualties, but it has newfound legs and is regaining credibility as the industry

discovers that emergence alone doesn’t create good designs in time frames that the

market expects.

The original agile agenda took an anti-architecture turn in reaction to the top-

down, overly prescriptive architecture techniques of the 1980s. (Those in turn were

a reaction to the perceived lack of software discipline in the 1960s and 1970s.)

312.2 The Vision: What is Architecture?

Instead of looking to architecture (form), this new generation would look to pro-
cesses, in the sense of autopoietic (self-maintaining) systems. The hope was that

architecture would become emergent, thereby skirting the delay and cost of big

up-front architecture efforts. The Agile Manifesto [3] attempted to capture this per-

spective through its focus on people, communications, pragmatism, market connec-

tion, and flexibility over stipulated processes and technologies. Agile would echo

and amplify the pattern community’s early leanings away from modernism toward

postmodernism.

2.2.5 DCI as an integrative view of the architecture metaphor
One can view DCI as a way of integrating the positive contributions of diverse

communities such as HCI, software engineering, software architecture, and program-

ming language. DCI strives to embrace the end UX, the need for low-cost software

comprehension and extension, while still maintaining stable software artifacts with

long service lives and providing a practical and elegant expression of its practice in

accessible programming language technology. DCI didn’t come about as an engi-

neered solution to a wish list of such needs, but as a worldview rooted in the broad

concerns of the relationship between computers and their users.

What does that worldview look like? It’s about thinking of the computer as an

extension of self that is, as Raskin says, “responsive to human needs and considerate

of human frailty” [12, p. 6] and that serves human value. This means being attentive

to the mental models both of end users and of programmers. End users care most

about what the system does while expecting the system to support their mental

model. Programmers are also concerned about what the system is. In the same sense

that the architecture of a village, or a resort, or an individual house is an extension of

self—an ecosystem of forms that provide a framework for symbiosis between its

inhabitants—so should the computer be an extension of its human subjects. This

comes down to simple concepts like clear interaction metaphors, parallelism

between programming constructs and the mental constructs of the end users, and

clearly understandable program code. Most of these concepts relate to form, and that

puts us squarely in the center of architectural dialog.

2.3 FORM AND FUNCTION IN ARCHITECTURAL HISTORY
It’s instructive to locate DCI’s place in the march of programming history, extrap-

olating its trajectory from past practices that will be familiar to most readers here.We

find striking similarities in the progression of ideas in the arts and in the architecture

of the built world, particularly as regards the age-old discussion of form versus func-

tion, as well as the place of control versus harmonization, and of technology versus

human concern.

The built world and software would jointly consider these questions in the Design

Movement—a loose collection of workshops, essays, and books in the 1970s and

32 CHAPTER 2 The DCI Paradigm

1980s [14,15]. Peter Naur of computing fame was among them, and the building

architect Christopher Alexander—whose name would later become synonymous

with patterns—was a major contributor to this body of literature. The debates and

innovations of this era provide an interesting backdrop against which to discuss

the DCI paradigm.

The modernist school of design could be said to dominate most of software

history, and certainly its foundational years. Software gained its footing in a

1960s culture that firmly believed in the triumph of technology, including bold

visions of artificial intelligence (that seem to resurge every few years with much less

accompanying progress) and robots to automate our daily chores. In concert with this

shiny, robotic world we find very little venustas in software. And while the times

shaped our vision of software, it’s noteworthy that software also shaped the times.

Consider this man-bites-dog 1965 quote from Archer [16]:

The most fundamental challenge to conventional ideas on design, however, has

been the growing advocacy of systematic methods of problem solving, borrowed

from computer techniques and management theory, for the assessment of design

problems and the development of design solutions.

Software focused on construction, perhaps because it could: notions of coupling

and cohesion, apart from their roots in organizational concerns, were easy to under-

stand and to reduce to a number. With the echoes of 1960s modernism resonating

from a recent past, the programming community gravitated naturally to these

numbers that conveyed a sheen of science. It was all about technical goodness.
Christopher Alexander would take note of this trap in the software world as late

as the mid-1990s [17]:

Please forgive me; I’m going to be very direct and blunt for a horrible second. It

could be thought that the technical way in which you currently look at program-

ming is almost as if you were willing to be “guns for hire.” In other words, you are

the technicians. You know how to make the programs work. “Tell us what to do,

Daddy, and we’ll do it.”

This worldview is so strong in software that it is taken for granted. It’s important

at some point to emphasize that the software world adopted the architectural

metaphor selectively, and this would be a good time to raise this issue. Of deeper

importance here is that much of its use of metaphors is uninformed. A good example

is the cacophony of attempts to automate pattern detection in programs, with a con-

comitant flurry of publications. None of them cite Alexander’s own earlier forays

into this territory, their failure, and the fundamentals beneath the failure [18].

Another longstanding foible of the software community lies in the confusion of

form with structure. Early architects turned to platforms and modules first, and pro-

tocols and interfaces only second, in their realization of the architectural vision.

Architecture has always been closely coupled to the idea of reuse, and reuse almost

always played out at the level of masses of software. Though the underlying eco-

nomic motivations of this position were lost on few, there seemed to be few

332.3 Form and Function in Architectural History

alternatives. Libraries and platforms flourished. This approach would be tempered

somewhat with the rise of frameworks—partially filled-out architectures—only in

the 1990s, some 30 years after the rise of the architectural metaphor in software.

Form suffered more subtle slights at the hands of software practice. Form, in

architecture, starts either in the eye of the beholder or, as Alexander would have

it, in deep processes that transcend even human existence. This notion dominates

the conscience of the architectural profession in its use of the term. Software more

commonly adapts a more vulgar use of the term rooted in engineering and technique.

In the world of class-oriented programming, snippets of system behavior don’t exist

outside the form of classes. Even in prototype-based approaches (such as that

espoused by self [19]) behavior follows structure (of instances) rather than form.

Venustas suffers directly, and utilitas in a less direct way.

2.3.1 Historic movements and ideologies
There are strong parallels between L’École des Beaux-Arts and the primordial hacker

culture of programming in 1960s-era MIT. The metaphor continues on the side of the

built world into the mass-produced art of the Great Exhibition in the Crystal Palace in

London in 1851, and the Arts and Crafts movement; in the advent of Software

Engineering at the Garmisch conference in 1968 and the rapid rise of reuse and

structured design; and in the Arts and Crafts movement in England in 1861 and

the rise of “anthropomorphic” techniques of object orientation in the 1980s. Objects

were, in many ways, the art nouveau of the programming world.

Even as architecture would evolve through art nouveau and art deco into the

modernism of the twentieth century, so object orientation would become a diminish-

ingly human-centric concept in an increasingly technology-based community. The

same kind of linguistic focus one finds in James Joyce’s literature could be found

in the language wars of 1980s computer science. The technological focus of modern-

ism maps to the case tool craze of the 1980s. And the increasing focus on twentieth-

century objectivism found a natural home in the 1980s’ programming notion of

objects: manifestations of concrete, real-world things.

Software architecture took a strange turn in the 1990s as the object-oriented pro-

gramming community discovered patterns. The concept of patterns was refined in

the built world by architect Christopher Alexander, a postmodernist who detests

card-carrying postmodernists. In Alexander’s definition, patterns are incrementally

built elements of form necessary to the wholeness of, or a kind of quality that defies

delineation of, some built whole. Each one transforms the whole from a less-whole

state to a more-whole state. These patterns link together in a grammar that contex-

tualizes each one and that imposes constraints on their ordering of application.

Software practitioners adopted the pattern metaphor to describe what they knew

were essential forms of custom construction in specific domains. Because they are

customized to a domain or particular problem, they aren’t the general fodder of

academic literature. The pattern community in fact consciously distanced itself from

academic sponsorship and discarded academic mores of originality in favor of the

broad practices of communities in the wild [20].

34 CHAPTER 2 The DCI Paradigm

These foundations of patterns constituted a left turn because, first, they

were more of a conscious departure from the status quo than a complementary

framework to it. Good patterns didn’t describe how to do object-oriented

programming—that is, they did not take ordinary object-oriented staples such as

encapsulation, polymorphism, and inheritance as their building blocks. Rather,

they tended to describe how to create code when pure object ideals or directly

applied language constructs failed. Patterns became a way to describe how to

survive software development when saddled with the dire constraints of object

orientation, and they gave legitimacy to constructs that consciously violated sacred

principles, such as identity (most Gang of Four (GOF) patterns [21] break it), cohe-

sion (most GOF patterns achieve their goal by distributing computation into addi-

tionally created objects), subtyping through inheritance (patterns such as Façade

allow simulation of inheritance with cancelation), and so forth.

Beyond this technical redirection we find even deeper ideals. Patterns grew up out-

side the community of software architecture and largely outside the field of software

engineering; you find pattern literature in those fields only late in the maturity of the

community. Rather than adhering to the largely technical agenda of those communi-

ties, patterns were explicitly about people. Patterns clearly blossomed in part because

the early days of object orientation had laid the foundation for a human agenda of pro-

gramming through approaches such as anthropomorphic design, and through the link

that MVC created between objects and the human clients of computation. Elaboration

of any true human agenda within object orientation itself was largely muted in the

1980s by the louder voices of programming language (modernism and James Joyce

again) and automation (Computer-Aided Software Engineering (CASE) tools).

2.3.2 Enter postmodernism
Computing today is enmeshed in a long-running slog of transition into postmodern-

ism: the triumph of ideas over objects [15, p. 8]. These same terms that are used in the

arts apply equally as well to software, and will figure in our dissection of DCI. In

software, the pattern discipline of the 1990s published the first tomes of progress

in this area. Like its counterpart in the built world and in movements such as art deco,
the postmodern software world is focused on software for the masses, on composi-

tional strategies over individual parts, and a focus on change rather than static beauty:

“. . . to live in a perpetual present and in a perpetual change that obliterates tradition”
[22]. We find these notions in the rise of intentional programming, generative

programming, multi-paradigm design, and aspect-oriented programming (AOP).

2.3.3 Architecture finds an object foothold
As generations of programmers are born into settings that are increasingly removed

from Fred Brooks’ environs, year after year, so the mores of the software engineer’s

version of architecture diverge increasingly from the roots of architecture in the

built world.

352.3 Form and Function in Architectural History

Grady Booch arguably stood as the original doyen of object-oriented software

architecture. It was largely through his extensive work and leadership that the object

community came to embrace the architectural metaphor. Booch will best be remem-

bered for his contribution to system modeling and to his cloud-icon notation,

affectionately referred to as “Booch diagrams.” Along with Jacobsson’s use case

contributions [23], it would later modulate the largely Object Modeling Technique

(OMT)-based semantics of the Unified Modeling Language (UML).

Most practitioners from the past two decades of the last century will remember

class diagrams as the primary useful component of UML, certainly as regards archi-

tecture. Jacobsson’s use cases, in the meantime, were relegated an important position

alongside of, but not central to, architectural concerns. Architecture became synon-

ymous with structure; behavior was something else. Architecture and class diagrams

were for architects; use cases and message sequence charts were for analysts. And it

was the job of the programmers—software’s ersatz carpenters—to reconcile these

two perspectives. There were, of course, noteworthy exceptions. UML 2.0 would

compensate for UML 1.0’s paucity in this area, but did so at the expense of visual

verbosity. Service-Oriented Architecture (SOA) defined services, but at a level that

was usually far removed from the code; it is probably a better metaphor for urban

planning than for the architecture of a house.

Thus the object community stumbled into a dichotomy between form and func-

tion. Computer practitioners were perhaps predisposed to such a dichotomy anyhow:

the previous generations had seen a split of records versus functions; I-space versus

D-space; database versus process; entity-relationship versus data flow.

The architects of the built world were no strangers to this dichotomy of form and

function, either. Design has often been a question of utilitas versus form.

2.3.4 Software engineering and architecture today
The same term in software more often relates to engineering practices than to the

broader concerns of architecture. While architecture of the built world is indeed con-

cerned about both the form of the whole (and, to a degree, of its parts) and about the

engineering concerns of construction, software engineering tends to emphasize the

structural, methodical, and mechanical concerns. The software architectural land-

scape is littered with formalisms that speak more to construction than aesthetics.

Even when invoking the pattern metaphor, most software patterns are more about

engineering concerns than about any explicit nod to firmitas, utilitas, or venustas.
Alexander’s original notion of generativity (indirect emergence of form) became

confused with a notion of cleverness or obscurity, and patterns took more of a form

of “aha” puzzles and their solutions than with human comfort or quality of life.

2.3.5 Measures of the vision
Software adopted architecture with the hope (justifiable perhaps only through revi-

sionist thinking) that it would help teams create software structures that could be rea-

soned about in respective isolation. These units were informally called modules, and

36 CHAPTER 2 The DCI Paradigm

their degree of independence, modularity. Constantine proposed measures of good

modularity based on the internal connectivity of a module (cohesion) and lack of

connectivity between modules (de-coupling). Conway proposed that good modular-

ity leads to team autonomy [24], and given that small, autonomous teams were more

productive than monolithic groups, architecture would aid productivity.

More informally, architecture was seen as a discipline for the good of discipline.

There is a tendency to believe that good architecture leads to systems that perform

better and are more secure, but such claims relate less to any given architectural prin-

ciple than to the timing of big-picture deliberations in the design cycle and to the

proper engagement of suitable stakeholders. Architecture was an artifact that encour-

aged a front-loading of key activities that become awkward if pushed until too late.

In fact, the object paradigm was unwittingly created with noble architectural

ends: support the creation of built artifacts that could adapt to and better support

the quality of human life. Little of this rationale appears to owe to the architectural

metaphor or any roots in design theory, but the two roads would cross many times

after meandering independently for many years.

2.4 WHAT IS OBJECT ORIENTATION? ACHIEVING THE VISION
Computers were invented largely as mental aids. In inventing object-orientation,

Alan Kay envisioned objects as a recursion on the concept of a computer. His met-

aphor of objects was that of a large network of interacting objects, each one of which

was designed in-the-small to perform its own task well. From the perspective of the

system architect, one can view such objects as bricks whose individual contributions

to architectural semantics are low. Elements of human value would appear at larger

scales as emergent properties arising from the interaction of these large numbers of

individual objects with integrity.

2.4.1 The Kay model
As inferred above, Kay’s vision can be interpreted from an architectural perspective,

or system level, as a metaphor for self-maintaining ecosystems. A system’s structure

is a consequence of its local adaptations over time. The human’s place in this system

is as the translator of real-world nuggets into the language of the computer, at

the level of its organs or, perhaps more instructively, of its cells. In the purest

form of this system, the end user was removed from the burden of overall system

design. Starting with a platform like Smalltalk, an end user could ideally express

a few increments of interest where the computer could augment the end user’s needs,

and could make the system do their bidding by the incremental addition of a

few objects.

It’s crucial to note that the Kay model is highly distributed: It is in essence

a network paradigm of computation. The overlap of this model with parallelism

and concurrency is complex and difficult to delineate, and the industry is not yet

372.4 What is Object Orientation? Achieving the Vision

at a point of integrating these perspectives, though there have been numerous

research attempts to do so.

We can say that the Kay model expects order to arise as an emergent result from

the construction and interaction of individual objects of integrity. This early aspect of

object-oriented programming, amplified by the pattern discipline’s love affair with

emergence, can certainly be identified as one of the roots of the agile ideology.

In what too easily can be considered a side note, Kay was acutely aware of the

fundamental dynamic aspects of human mental models. Returning to the original

Dynabook paper [25], we find:

Two of Piaget’s fundamental notions are attractive from a computer scientist’s

point of view.

The first is that knowledge, particularly in the young child, is retained as a

series of operational models, each of which is somewhat ad hoc and need not

be logically consistent with the others. (They are essentially algorithms and strat-

egies rather than logical axioms, predicates, and theorems.)

2.4.2 Mental system models
Doug Englebart had earlier developed even deeper foundations for what later was to

become object-oriented programming. Rather than thinking of the computer as an

externalized tool or component, his vision incorporated the computer as an extension

of human capabilities. Englebart speaks of augmenting the human intellect (though

his work doesn’t focus on the internal structuring of programs).

Behind Englebart’s vision stand humanmental models and a hope to extend those

models into the computer. It became an early goal of object-oriented programming to

capture those models. Kay writes [25]:

We feel that a child is a “verb” rather than a “noun,” an actor rather than an

object; he is not a scaled-up pigeon or rat; he is trying to acquire a model of

his surrounding environment in order to deal with it; his theories are “practical”

notions of how to get from idea A to idea B rather than “consistent” branches of

formal logic, etc. We would like to hook into his current modes of thought in order

to influence him rather than just trying to replace his model with one of our own.

More prominently, MVC and Kay’s brainchild Smalltalk would use objects to

capture these mental models in the running program, in the “mind” of the machine.

2.4.3 Model-view-controller
MVC embraced Englebart’s vision of computers as extensions of the human mind,

and translated that vision into an object-oriented world in which an interactive

human interface played a central role. This interactivity was central to Englebart’s

notion of mental augmentation.

38 CHAPTER 2 The DCI Paradigm

Thecentral architectural paradigm, then,was tomaintain synchronizationbetween

the end-user worldview and its representation as computer data. As with most design

paradigms, themajor organizing principlewas partitioning.MVC’smain partitioning

structure is its views, each one ofwhich corresponds to some toolbywhich the enduser
interacts with the computer. At a lower level, each tool comprised a dynamically

assembled network of objects. Thus, the architecture had a large dynamic component

of changing object connections and changing views. For any given view, there was a

relatively stable configuration of objects that could be characterized by the same pat-

tern: the relationships between its models, the view itself, and the controller. The
models are the computer representation of the end-user mental model of some object,

and in fact are what programmers usually think of in association with the term object.
The view arranges the presentation of those objects to the end user, usually in a visual

form. The controller is responsible for creating and coordinating views and, together
with the views, handles operations such as selection.

It is important to understand that MVCwas not conceived as a library-on-the-side

to add interactivity to a working program, but rather as the nervous system of the

silicon part of the human–computer system. More broadly, MVC as an architectural

paradigm includes the end user as well, and we now use the nameMVC-U—where U

stands for the end user—to emphasize this aspect of its design.

2.4.4 Patterns
The software pattern discipline took major departures from the Alexandrian vision of

architecture, and these departures are no more apparent anywhere than in object-

oriented practice. The Design Patterns book [21] was selective in its application

of Alexandrian ideals. On one hand the GOF recognized that software has crosscut-

ting constructs that aren’t visible in the code, but are nonetheless part of the design

vision of the programmer. This notion of scaling beyond individual objects to rela-

tionships takes us firmly into the realm of architecture.

Patterns were arguably one of the strongest foundations of the agile agenda. The

ideas of piecemeal growth and local adaptation that are fundamental to pattern-based

developments would be taken up almost verbatim by the pattern community. Agilists

would embrace Alexander’s valuation of human concerns over method less than a

decade later.

2.4.5 Use cases
Human users usually approach a system with a concrete use case in mind. When you

go up to an ATM, you bring your withdraw-money script or transfer-money script

with you in your head. You have to learn it from scratch only the first time; the

MVC approach helps your right brain train your left brain as you gain repeated expe-

rience with the script, or use case. The use case eventually becomes part of your left-

brain mental model: this is long-term learning. This model has strong links to the

right brain and its conceptualization of the “things” of the user world.

392.4 What is Object Orientation? Achieving the Vision

These use cases are only complicated (short of being complex or chaotic) in the

Snowden taxonomy [26], which suggests that the emergence-based model of object

system behavior is overkill while paradoxically being impoverished in intentionality.

Class-oriented code is hard to write and harder to maintain. The programmer cannot

reason about how the end-user conceptualizes system functionality, which ends in a

modeling stalemate between the end user and the programmer [27]. An example of a

consequence of this mismatch is the frustration one experiences with a popular word

processor when trying to insert a graphic in the middle of a paragraph: the mental

models for the programmer and end user are clearly different.

Contrary to the Kay paradigm, the use case paradigm is a centralized view of

computation. Use cases aren’t really part of the “object canon.” (Jacobsson’s use

cases indeed have an object model, but it is a meta-model that structures related sce-

narios rather than the mental models within scenarios.)

UML was an attempt to bring use cases together with the more data-centric facil-

ities of the Booch method [28], drawing largely on Rumbaugh’s OMT notation. The

result is neither a paradigm nor a computational model, but a language for commu-

nicating such models or paradigms.

Usecaseshavea reputationofbeinganti-agilebecause theywerewidelyabused in the

1980s.However, they are curiously suitable to incrementally structuring requirements in

agile, and overcome many of the risks of the more popular concept of user stories [29].

2.4.6 Many views of objects and the boundaries of MVC
The MVC vision in many ways tried to reconcile the network paradigm of Kay with

the use case paradigm. It embraced the communication paradigm that one can extrap-

olate fromKay’s vision: that is, that at its foundation, a system is a collection of many

cooperating objects. On the other hand, MVC focused on the link between the objects

and human mental models in concert with Englebart’s vision of computers (and

objects by extension) as human mental adjuncts. The vision goes back to thing-

model-view-controller in 1978 [30], which evolved into MVC. By drawing the

human being into the world of interacting objects, MVC investigates the nature of

interactions between objects—interactions that have their roots in the end-user men-

tal model.

While Kay expressed his vision in terms of networks of communicating objects,

he relegated the intelligence of design—of programming—to the level of the indi-

vidual objects themselves, trusting the structure of their interworking to self-

organization. This perspective is much in line with Alexander’s vision of emergent

structure. This perspective tacitly supported the idea that objects could be designed

from the inside looking out instead of precipitating from a wider perspective of their

place in system behavior. Unfortunately, this viewpoint became institutionalized in

the class: a way of designing individual objects from their identity as individuals

rather than their roles in contextualized system operations.

MVC has only scratched the surface of Kay’s communication paradigm. MVC

captured the way that people view the “things” in the computer’s representation

40 CHAPTER 2 The DCI Paradigm

of their world. In the programmer’s world, this is the program-in-the-large or,

grossly, the form of the system data. The part of MVC that helps people understand

the whole of the data forms necessary to a given set of related tasks speaks largely to

the right brain. The brain takes in the screen information as a whole without specif-

ically analyzing each part or its functionality. At any given time we have a static

worldview and a static architecture, poised to transition into a successor static world-

view after some event (usually from the user) drove the computer through useful

business processing. This processing was opaquely relegated to the model part of

MVC, and it was easy to map MVC models onto Kay’s autonomous objects.

Once the user has established this connection with the computer—which typi-

cally takes 10 seconds [31]—the end user now sets about achieving a business goal.

That goal often entails multiple interactions between the user and the system follow-

ing a script in the user’s mind. This script is a gestalt, though it can be chunked along
the boundaries between the end users’ classifications of the “things” in their world

according to use. When in this operational mode, we conceive of real-world things

according to their use in the moment; in a rain shower, a newspaper becomes a hat;

for a motorcyclist, a garbage bag becomes rain gear. The left brain is dominant in

carrying out these interactions towards the business goal: a focused, analytical use

of the program-in-the-small.

This worldview isn’t so easy tomap into Kay’s model because the end-user details

of object behavior do cut across objects but are stable in the long term. Therewas noth-

ing in object architecture that provided a reasonable home for a (static) architectural

representation of these dynamics.By contrast, the proceduralworld ofFortran, Pascal,

and C gave a home to these models at the expense of the right brain.

MVC didn’t attack this right-brained aspect of user mental models. Other tool

metaphors arose for these activities, most of them falling outside the architectural

metaphor, and few of them led to concrete engineering practices. One powerful idea

that combined both these worlds was Laurel’s vision of the HCI through the meta-

phor of theater, where the objects in a system become reminiscent of actors in a play

and the user becomes a member of the audience [27]. But the most popularized

model of the interactions between people and computers came in Ivar Jacobsson’s

use cases [23].

Sadly, both the Fortran/Pascal model and the use case model viewed what-the-

system-is and what-the-system-does as separate concerns. That naturally led to

the creation of separate artifacts in design and programming. Multiparadigm design

[32] advised us to use procedures for algorithmic-shaped constructs and classes for

the more static elements of design; this led to terrible patterns of coupling between

the two worlds.

The idealistic Kay vision suggests that individual, small methods on small objects

would naturally interact to do the right thing. A good metaphor is to compare these

objects with people in a room who are asked to divide themselves into four groups of

approximately equal size. It seems to work even without any central control. Snowden

characterizes such systems as complex systems [4]. In summary, the original object vision

didn’t go far enough to capture the essence of the real world it was meant to model.

412.4 What is Object Orientation? Achieving the Vision

2.5 SHORTCOMINGS OF THE MODELS
Software’s dance with architecture was initially exploratory and playful, but the

years have hardened it either into law or habit. Many of the paradigms of the early

years became institutionalized in programming languages, methodologies, and stan-

dards. In retrospect, experimentation with the metaphor stopped too early, and today

it’s difficult to gain acceptance for any notion of “architecture” that lies outside the

hardened standards. Many of our previous attempts to describe DCI on an architec-

tural level have fallen on deaf ears because the self-titled architects can’t recognize it

as falling within their sphere of influence or exercise of power, and so they too easily

dismiss it.

Architects speak of shear layers in built artifacts. Different parts of a house

evolve more rapidly than others; a house needs a new roof every few years but rarely

needs a new exterior wall. Good architecture provides good interfaces that separate

the shear layers of its implementation: a necessity for evolution and maintenance.

Class-oriented programming puts both data evolution and method evolution in the

same shear layer: the class. Data tend to remain fairly stable over time, while

methods change regularly to support new services and system operations. The

tension in these rates of change stresses the design.

DCI is an attempt to overcome these elements of structural inertia by returning to

first principles and the deep elements of object foundations. Its premises seem to be

born out in early experimentation and application. The rest of this chapter will focus

on the dialog between the pre-DCI world and status quo to help readers hone their

understanding of the state of the art in object-oriented programming.

2.5.1 The network paradigm
Kay’s original formulation missed the what-the-system-does component of design. It

worked fine for simple programs where each unit of business functionality can be

encapsulated in an object, but it left no place to reason about system behavior across

objects. Further, Kay and Ingalls rolled out this vision in a language called Smalltalk,

which was widely adopted as a way to implement designs based on class thinking and

class models rather than object models.

The class model places the programmer inside of the object, cognizant of its inter-

nal workings and constructions, but insulated from the interactions between its own

objects and other objects in the system. This is a strange man-bites-dog reversal of

the normal sense of encapsulation. The same class boundary that protects the inter-

nals of a design from concerns outside the interface, so that the programmer can

reason about them locally, also insulates the programmer from the crucial design

concern of interactions between objects. Each class ignores other classes’ design

concerns—and since there is nothing but classes in a class-oriented language, there

is no locus of understanding relationships between classes.

Programming languages institutionalized this paradigm through encapsulation

techniques. Programming environments provide little aid for reasoning about any

42 CHAPTER 2 The DCI Paradigm

structure beyond the class. One can argue that good environments express inheri-

tance relationships between classes; however, inheritance is only a syntactic conve-

nience that leaves the computational model untouched. Further, it is a temporary

compile-time artifact that lies between human mental models in analysis and object

instances at run time. It doesn’t change the semantics of any object-oriented program

if we flatten all base classes into a single derived class composition.

Design methods also institutionalized this worldview. One of the best known is

responsibility-driven design, popularized through CRC (Classes, Responsibilities,

and Collaborators) cards. While responsibility-driven design has the strong advan-

tage of starting with scenarios or other use cases, the resulting artifacts ossify the

behavior elements into static relationships between classes, as the name “CRC”

exhibits. In fact, end users don’t conceptualize system behavior in terms of classes

(which are total classifications of form) but instead in terms of roles (which are par-

tial classifications of form). Experience proved this to be a problematic approach.

Rebecca Wirfs-Brock has since wanted to rename them to “RRC Cards” (Roles,

Responsibilities, and Collaborators). She has instead kept the original acronym

but has replaced “Class” with “Candidate”—like a role [33].

Good code conveys designer intent; great code captures end user intent. The abil-

ity of code to express intent is called intentionality. The embedding of the network

paradigm, the class paradigm, and other early architectural metaphors for objects has

caused intentionality of system behavior to dissolve. DCI restores this intentionality

to architecture by explicitly capturing use cases in a contextualized form.

2.5.2 Model-view-controller
MVCmissed the what-the-system-does component of design. It worked well for sim-

ple designs. MVC is better thought of as a virtual machine than as the architecture

built on top of it. It encouraged the atomic interaction style of HCI innate in the Kay

worldview: a paradigm that viewed each object as being able to handle the user

request atomically without much consideration for sequences of tasks between

objects and the end user. MVC has been institutionalized with varying degrees of

fidelity into many environments, such as Apple’s Cocoa framework.

MVC’s interests are largely orthogonal to DCI; the two are complementary.

Historically, MVC emphasized data over interaction. While most programmers

followed this paradigm and took it not only as the primarymetaphor but the exclusive

metaphor for their system design, it is not exclusive of the use case focus afforded

by DCI.

2.5.3 Patterns
Though the GOF patterns claim Alexander’s vision as their heritage, they are so

remote from Alexander’s vision of architecture as to be barely recognizable as pat-

terns. Alexander’s forms bore a clear tie to the patterns of events that they supported;

432.5 Shortcomings of the Models

there is little of this in the GOF patterns. Alexander’s patterns were rooted squarely in

the business domain and solved end-user problems; GOF patterns have no mapping

to or from the users of the system. Alexander’s patterns were fractal in scale; the GOF

patterns live largely in the programming-in-the-small world.

Last, while most GOF patterns live in a class world rather than an object world,

they hardly represent any uniform paradigm grounded either in objects or in classes.

The overview of FAÇADE invokes the word object only once; class appears seven
times [21, p. 185]. ITERATOR, however, mentions class six times and object nine times

[21, pp. 257–258].

Because of their Alexandrian heritage, many OO practitioners came to believe

that GOF patterns provided software architecture foundations. Software architecture

practice embraced patterns, and that usually meant GOF patterns. This perspective

reinforces the Kay programming-in-the-small model to this day.

2.5.4 Use cases
In the end, a program offers a service. Object-oriented design has poor intentionality

for a use-case world model. Most object systems express and organize concepts

closer to the program data model than to its process or behavior model. The data part

of software architecture is certainly a crucial perspective, but it’s only half the story.

What’s worse is that the data view fails to express most of the client value of a soft-

ware product. We sell use cases, not classes, and not even objects: end users don’t

usually conceptualize system behavior in terms of classes.

From an architectural perspective, this leads the designer—who works at the

source-code level—out of touch with the dynamics of the whole. The hope held

by the network model is that emergence will win out.

From a broader perspective, it’s noteworthy that OO became the technology of

choice for reusable libraries of containers, user interface components, and other APIs

where the programmer can reason within a single class about the consequences of a

business operation. While objects took off in these infrastructure areas, they rarely

thrived in applications with complex workflows.

DCI embraces the power of the emergence as in Alexandrian patterns but adds a

focus on the intent of the design. A collection of well-constructed objects will no

more generate meaningful system behavior on their own than a collection of building

materials will generate a structure suitable for human activity (Figure 2.1). As such,

DCI can be seen as a paradigm that builds on Kay’s original vision of socially respon-

sible objects working together to generate collective system behavior, but which

extends that model to explicitly articulate intended behavior. This inclusion of intent

leads us into the arena of system behavior, its form, and the articulation of this form.

One might ask: whose intent? The literature of contemporary software architec-

ture is littered with allusions to the architect’s intent. DCI holds the end user volition

over that of the architect. This is more in line with the agile agendas of “individuals

and interactions over processes and tools,” and the agendas of customer collabora-

tion, working software, and changes in the customer space [3].

44 CHAPTER 2 The DCI Paradigm

2.5.5 The object canon
Some object fundamentals are basic enough to transcend the schools of object ori-

entation: encapsulation, polymorphism, and friends. Each of these design techniques

brings its own problems: information hiding is good, but hidden things are hard to

find; polymorphism is a form of hyper-galactic GOTO. DCI strives to address many

of these problems.

2.5.5.1 Object-oriented programming isn’t about classes
Few programmers program objects or design objects. The class is most often the unit of

design. This is absurd from an architectural perspective. Architecture traditionally has

been about creating the artifice delivered to the end user. Carpenters use scaffolding

and tools to achieve the architect’s vision, and a great architect will be in there with the

carpenters swinging a hammer. Most contemporary architectural thinking, however,

seems to leave behind any thoughtful relationship between form and function but

focuses instead on the tools. This may well be because great architectural talent arises

from domain knowledge, and it’s difficult to treat architecture as a generic discipline

within the (generic) discipline of programming. In the end, architecture has arisen as a

generic discipline of tools rather than the result of a quest for beauty and utility.

The preponderance of class-thinking in software engineering likely arose from

two sources: programming language technology, and interactive computing. Pro-

gramming languages introduced types as a convenience that helped the compiler

generate efficient code, and types were later adopted as a way to communicate a

module’s intent to its user. Class relationships such as subtyping, commonly imple-

mented using inheritance, provided an attractive mechanism to link programmer

modeling to the compiler-type system. This led to programming-by-increment using

FIGURE 2.1

Design emergence. www.cartoonstock.com

452.5 Shortcomings of the Models

Figure 2.1
http://www.cartoonstock.com

subclassing, as well as arguments for code reuse based on inheritance, that caught the

imagination of software engineering. This was UML heaven.

Interactive computing inverted the traditional batch computational model. There

is no human presence in a batch program, so the sequencing of function executions

depends only on the data. Latency was not a core concern. Design becomes an issue

of sequencing function invocations. In an interactive program, the human presence

injects events into the program that result in unpredictable sequences of function

invocations, and a quick response is imperative. Function sequencing is unpredict-

able, and the data model dominates. Classes were viewed largely as “smart data” and

became the loci of design, with most of the functionality subordinate to the data

model. Early object orientation thrived on the noun–verb model of computation,

where the “verb” component was usually a simple, atomic operation that could be

localized to a class. Use cases were too easily forgotten in deference to the compu-

tational model arising from point-and-click.

2.5.5.2 Class thinking isn’t limited to class systems
The problem of single-object-think is aggravated by class orientation but is not unique

to class-oriented thinkers.Most object methods are curiously reminiscent of a Kantian

object world where individual objects act alone and programmers live inside of

objects looking out: there is rarely any sense of collective behavior in object-oriented

systems, and there is rarely any degree of behavioral (self-)organization. We are told

that objects are smart data, but a closer inspection of both data and system behavior

shows something profoundly amiss with that characterization.

2.5.5.3 Lack of locality of intentionality
Adele Goldberg used to say, “In object-oriented programming, it always happens

Somewhere Else.” Part of this owes to the innate thesis of object orientation itself:

that intelligence is collective rather than localized. This shows up in three ways:

polymorphism, deep object hierarchies, and deep class hierarchies.

Most object-oriented thinkers will linkAdele’s quote to polymorphism,which is a

kind of hyper-galactic shift in execution context that occurs with each method invo-

cation. Polymorphismhampersour ability tounderstandcode statically:wecan follow

the sequencing of method invocations only at run time. It’s perhaps no accident that

there has been an increased focus on testing and techniques like test-driven develop-

ment with the advent of object-oriented programming: If you can’t analyze, test.

Second, object hierarchies tend to be deep. More precisely, objects usually lack a

hierarchical structure but possess more of the structure of the network paradigm of

computation. To an architect who bases a system on units that interact via interpro-

cess communication, object orientation has the feeling of message passing and of

asynchrony. Objects in fact embraced the message metaphor explicitly; that it might

infer asynchrony or parallelism is perhaps unfortunate. That detail notwithstanding,

object orientation still has the feel of a pass-the-ball style of computation. This is a

serious obstacle to program comprehension and intentionality because the program

counter passes many abstraction layers on its way to accomplishing its goal.

46 CHAPTER 2 The DCI Paradigm

Object orientation is designed so we are not supposed to know where the program

counter will end up on a method call: object encapsulation and method selection

insulate us from that coupling. We gain syntactic decoupling; we lose system-level

comprehension. The supposed semantic decoupling of objects participating in a use

case is largely an illusion, because in the end, each method executes in the business

context both of the preceding and ensuing execution. It is difficult to reason soberly

about a method in isolation, with respect to business goals.

Third (and closely related to the second) is that class hierarchies are also deep.

Let’s borrow an example from our good friends in academia who seem wont to

employ zoo animals and shapes in their pedagogical examples. Here is the round-

RectPrototype method of Rectangle, from Squeak:

roundRectPrototype

∧ self authoringPrototype useRoundedCorners

color: ((Color

r: 1.0

g: 0.3

b: 0.6)

alpha: 0.5);

borderWidth: 1;

setNameTo: ’RoundRect’

How many classes do you need to understand to fully understand this code? Most

programmers will answer that we need just to understand Rectangle. In fact, objects

of the Rectangle class include seven other Rectangle methods, but also reflect a

flattening of a hierarchy including Morph (with 47 methods) and Object (with

30 methods). The illusion exists at compile time that I need to understand only this

method or perhaps only this class. Programming languages hide the rest.

Much of program design, and programming language design, is in fact about sep-

aration of concerns. The lines that separate concerns can be thought of as reasoning

boundaries whose goal is to delineate domains of comprehension. It’s fine if such

boundaries encapsulate the code relevant to a given “endeavor of understanding.”

But for non-trivial system behavior, class inheritance layering and object layering

of object-orientation cut across the fundamental unit of business delivery: the use

case. Further, the additional class boundaries along the inheritance hierarchy add

accidental complexity from the perspective of reasoning about system operations.

And polymorphism de-contextualizes method selectors enough to make it impossi-

ble to reason about the behavior of any contiguous chunk of static source code one

writes in a given language and programming environment.

2.5.5.4 Summary of the shortcomings
All of these shortcomings can be summarized as variants on one theme:

Traditional object orientation organizes concepts at the extremes either of a

rather free-form network structure or of a single, punitive hierarchy of forms.

472.5 Shortcomings of the Models

The DCI paradigm strives to express a network model rather than a hierarchy, but

provides disciplines for intentionality of form rather than leaving it to emergence.

2.5.5.5 Epicycles: early visions of relief
Researchers over the years have recognized this problem and have discussed it in

various guises, and a number of attempts have appeared to address it. Most of these

solutions somehow relate to removing the limitations of thinking in a single

Cartesian hierarchy by introducing richer forms of expression, all with the goal of

higher code intentionality.

Howard Cannon’s Flavors system [34] was an attempt to move beyond a strict

classification that forced every object to be of one class at a time, to one that permit-

ted the class itself to be a composition of multiple class-like things. Multiple dispatch

[4] was an attempt to stop classifying methods in terms of their method selector and

the single type of a single object, but instead to classify each method as potentially

belonging partly to several classes at once. The self language [19] tried to destroy the
very notion of classification as found in a traditional class, and to return to the object

foundations that drew objects from the end-user mental model. Dependency injec-

tion [35] strove to blend the functionality of two objects into one. Multi-paradigm

design [32,36] refused to view the world according to a single classification scheme,

making it possible to carve up different parts of the system in different ways.

The goal of AOP is similar to that ofmix-ins, except its crosscutting units aremore

invasive at a finer level of granularity. Aspects are reminiscent of multi-paradigm

design in that they allow a degree of separation of function and structure, but aspects’

functional structure is much richer. It is more like having multiple knives carving up

the same part of the system at the same time, whereas multi-paradigm design ensured

that the knives didn’t cross. Further, AOP again is about thinking in classes rather than

thinking in objects: it is a very static way to attach a kit of adjustments to a program at

compile time, even though it uses reflection to achieve its end.

While most of AOP is about a decorative rearranging of code, and while that rear-

rangement arguably makes it more difficult to reason about aspectualized code, it in

fact does provide a slightly enhanced computationalmodel because of its emphasis on

reflection. The original AOP vision is in fact rooted in reflection and a desire to apply

the kinds of reflection available in Lisp to non-Lisp languages like Java. Still, more

than 15 years after its conception, one of AOP’s inventors points out that it has failed

to live up to even one of the three propositions justifying its potential value [37].

Most of these architectural “advances” can be viewedmetaphorically as ornamen-

tation of a base architecture rather than new paradigms in their own right. Rather than

fixing the fundamental flaws in the vision of the paradigm, they tended to “patch” the

paradigm with respect to singular concerns of coupling, cohesion, or evolution.

These discourses wouldn’t be the only time in history that epicycle-like structures

would arise to rescue object orientation. Flavors in fact can be viewed as a precursor

to the DECORATOR pattern; multiple dispatch and dependency injection, to the VISITOR

pattern; multi-paradigm design, perhaps as a weak form of the STRATEGY pattern.

None of these approaches underscored the original principles of object orientation;

48 CHAPTER 2 The DCI Paradigm

rather, they offered localized repairs to the damage caused by applying the principles

of class-based programming.

There are two notable techniques that challenged the hierarchical structures of

class-based systems: a return to pure objects, and reflection.

The Actor paradigm [38] is typical of a pure object worldview. Its semantics are

expressed in terms of interactions between objects that provide services, and it is a

very good approximation to the network model. The self language challenged the

notion of classes themselves. The self language, of course, can be viewed as an

unabashed return to the fully network-based metaphor of computation in a way that

applied it so uniformly as to minimize the problems of a class-based system. It’s hard

(but not impossible) to find hierarchy in the self world.
In the realworld,many social interactions are in fact emergentwhile others (like the

course of a train along its track) are designed in advance. Sometimes a design problem

arises that is difficult to regularize in any architectural form. The software design-level

parallels to this adaptation are reflection and introspection. This is the realm of meta-

object protocols (MOPs).MOPs have failed to gain traction over the years for a number

of reasons. They require a mindset change that cannot be rooted in static, syntactic

program analysis alone; few programming languages have risen to the occasion to

express it; and methods that lead to the right reflection structures are elusive.

2.6 DCI AS A NEW PARADIGM
DCI is a new paradigm of software architecture that emphasizes human mental

models and improved system comprehension over class-oriented programming.

Why is DCI a new paradigm? Many of its rules and tools are reminiscent of the most

fundamental practices of class orientation: encapsulation, cohesion, objects with

identity and state that represent local areas of domain concern, and so forth.

Part of what makes DCI a new paradigm is that it provides a new, expressive way

to view some of the same semantics that lie latent in the network computational

model. Real-world objects in fact don’t interact randomly or with total blindness

to their environment, but form communities and chains of responsibility. DCI makes

these structures visible in ways that class-oriented design techniques do not.

Many of the resolutions to the single-hierarchy problem mentioned in

Section 2.5.5.5 did not fundamentally change the taxonomy of form, and only

AOP changed the computational model. DCI is less about decorating or augmenting

existing form than about carving a new form out of space itself: the form of function.

DCI is also progressive in how it uses carefully constrained reflection to provide

the flexibility necessary to express the kinds of re-associations between objects that

arise in dynamic human mental models.

2.6.1 A DCI overview
We here give a brief overview of DCI from an architectural perspective. Such an

overview cannot be complete in the space allotted. For more detailed information

on DCI, see [39] or [40].

492.6 DCI as a New Paradigm

In the previous section, we discussed the shortcomings of the class-oriented com-

putational models. The shortcomings were related to the free-form network structure

of objects and to a punitive hierarchy of forms. DCI employs intentional network

structures and restricted classes to overcome these shortcomings.

Figure 2.2 serves as a background for the discussion. The shapes symbolize

a universe of run-time objects. The system can be studied either from the inside

of a particular object or from outside the objects in the space between them.

2.6.1.1 Full OO
In full OO, we see the outsides of the objects and the messages that flow between

them. Each object appears as a service. Its inner construction is hidden by its encap-

sulation and does not concern us.

A DCI network has a bound form. It is intentional and is designed to achieve a

certain use case. A particular execution involves a sequence of objects where each is

responsible for fulfilling its part of the use case. Different executions of the same use

case may involve different objects, but the network topology will remain the same.

The nodes in the network are the roles that objects play, and the edges between them
are the communication paths. The roles are wrapped in a DCI context; there is one
such context for each use case. In Figure 2.2, the roles are marked R1, R2, and so on.

There is an ephemeral bond between the role and the object behind it.

Communication is now a first-class citizen of computer programming.

2.6.1.2 Restricted OO
We are here placed on the inside of an object. We can see everything that is defined

by the object’s class with its superclasses. The class comprises both data and

methods—state and behavior. The class won’t appear in the code at run time; the

Restricted OO

Full OO

R4

R3

R2

R1

FIGURE 2.2

Comparison of Restricted OO and DCI worldviews.

50 CHAPTER 2 The DCI Paradigm

Figure 2.2

intellectual concept called the class is absent. What exists is run-time objects. As we

sit inside our class coding, it is difficult to reason about other classes. We already

know this from the Kay model, or network model, of OO computation. We can envi-

sion those objects but we can’t know much about them. In fact, object orientation

explicitly prevents us from knowing anything about any other object in our program

because interactions between objects are polymorphic. Seeing an invocation of

method bar on object foo doesn’t help us find bar. There is an explicit abstraction

layer between objects that prevents us from reasoning about them in concert. For this

reason, we restrict our classes from sending messages to objects in the environment.

Such messages are blocked with red crosses in Figure 2.2. We call this style of pro-

gramming Restricted OO because instances appear as self-contained services that are

isolated from their environment.

While a restricted class says everything about the inside of an object and nothing

about the objects surrounding it, a DCI context says everything about a network of

communicating objects and nothing about their inner construction.

2.6.1.3 Data, Context, and Interaction
DCI is an acronym standing for Data, Context, and Interaction.

With DCI, we move all methods that relate to object interaction out of the classes,

attach them to the roles in the appropriate contexts, and call them role methods.What

remains are the data classes. They are Restricted OO because all interactions with

the environment have been moved out. The roles are wrapped in a DCI context
and their role methods collectively specify the interaction between objects that

achieves a use case.

In a role method, we see an invocation of method bar on role foo. We know the

method since it is attached to the role foo, and there is no polymorphism in a DCI

context. We can, therefore, reason about the chain of methods that realize a use case.

There are three fundamental advantages of DCI. First, the complexity of the class

is significantly reduced because it is Restricted OO and no longer contains any

interaction code. Second, role methods now appear adjacent to the methods in their

collaborator roles, thus keeping the code for the overall interaction algorithm in one

place where we can inspect it and reason about it. Third, the context is adaptive and

self-organizing because it binds the roles to objects afresh for each use-case

invocation.

Bank accounts serve as a frequent DCI example, with classes for different kinds

of accounts. We want to support a system operation to transfer money between those

accounts. As designers, we envision ourselves in the run-time system and ask what

objects we need and what responsibilities they must support to be able to transfer the

money. One possible mental model has three roles: Source Account, Destination
Account, and Transfer Amount. The role methods makes the Source Account decre-
ment its balance by the Transfer Amount, after which it asks theDestination Account
to increase its balance by the same amount.

Role names like Source Account, Destination Account, and Transfer Amount
come directly from the end user mental model. You can easily reconstruct them

512.6 DCI as a New Paradigm

by asking anyone around you to give a succinct, general description of how to trans-

fer funds between their accounts, and listen carefully to what they say. They will

refer to the objects involved in the transaction. More precisely, they invoke the

names of those objects according to their roles in the money-transfer transaction.

These are the new design entities, the roles, which form the locus of business logic.

The context encapsulates the roles, their logic, and the interactions between them.

After all, roles make sense only in a context: these roles make sense only in the

context of money transfer. We might call the class MoneyTransferContext.

Now we have a system of source code where the data, defined by the restricted

classes, is separated from the business sequencing, defined by the context. We sep-

arate the shear layers of what-the-system-is and what-the-system-does for indepen-

dent maintenance. System behavior and locally focused class methods evolve at

different rates. In traditional architectures, they are linked in a single administrative

unit that either can cause the stable parts to inadvertently become dependent on rap-

idly changing requirements, or make rapidly evolving code overly dependent on

code with high inertia.

We need to return once more to run time. DCI depends on a powerful run-time

environment that dynamically associates objects with the roles they play in a given

use case. A program instantiates the appropriate context object at the moment it is

asked to enact a use case. Each context in turn associates each role with an object that

plays that role for the duration of the use case.

This association between roles and objects makes each object appear to support

all of the corresponding role methods as part of its interface. While the DCI compu-

tational model doesn’t stipulate how the run-time system should do this, it can be

thought of as extending each object’s method dispatch table with the methods for

the roles it plays. This can be done by directly manipulating the dispatch table in

single-hierarchy languages (e.g., Python or Smalltalk), and can be done with traits

in languages that have a stronger dual-hierarchy tradition (Scala, Ruby, and

Cþþ). More advanced implementations affect a just-in-time binding between a role

method and its object at the point of invocation.

2.6.2 Relating DCI to the original OO vision
2.6.2.1 How DCI achieves the vision of Restricted OO
DCI draws heavily on the domain modeling that one finds in both Lean Architecture

[39] and in the original MVC framework [40]. MVC’s first foundation is integrated

domain services. The data classes in the DCI paradigm correspond almost exactly

with the model classes of MVC.

Furthermore, DCI’s primary computational model is based on objects rather than

classes. One understands program behavior in terms of the logic in its roles; those

roles are just behavior-annotated names for the objects involved in the use case. This

is reminiscent of the network model of computation inherent in the original object

vision.

52 CHAPTER 2 The DCI Paradigm

2.6.2.2 How DCI overcomes the shortcomings of class-oriented
programming
By capturing the system view of state and behavior, DCI and its grounding in mental

models go beyond the more nerd-centric vision of late-1980s object orientation to the

visions of mental augmentation and human-centeredness.

Though both DCI and the original object vision take networks as their model of

computation, DCI reveals the network structure with more intentionality. Think of a

train system as an analogy. Trains and train stations are objects. We can think of

train behavior in terms of its arrival at a station: stopping, letting off passengers,

closing the doors, and starting off again. We can think about stations in terms of

receiving and sending off passengers. DCI captures the regular patterns of trains

visiting successive stations by expressing the sequence of station stops. DCI makes

the tracks between stations explicit. That helps us understand local operations (such

as boarding or disembarking) in terms of the overall business purpose, which is to

transport people between the station where they board and that at which they

depart.

2.6.3 DCI and the agile agenda
The agile agenda discardedmany trappings of modernism: the triumph of technology

over nature, the notion of form being subservient to function (instead of function hav-

ing its own form), the notion of automation (automatically generated code) in def-

erence to human craftsmanship, and many more.

DCI is verymuch in line with these architectural shifts in agile. DCI is muchmore

about mental models than about technology—more about the end user’s intent than

the architect’s intent. Good software, like a good house, suits those who inhabit it. On

the technology side, the focus is on thinking and the creation of good separation of

form.While some technological underpinnings are of course necessary to support the

DCI model of computation, this issue has not risen to the level of language debate or

of a battle of technological prowess.

DCI leads the programmer and the user of the code (sometimes the same person)

into a dialog that helps capture mental models in the code. DCI offers a home for the

end user mental model directly in the code in contexts and domain classes. That obvi-

ates the need for an additional level of documentation, removing a level of handoff

and translation between the end user and the programmer.

DCI audits favorably against the Agile Manifesto [3]. The agenda of “individuals

and interactions over processes and tools” is evident in giving the human-computer

interface full first-class status in use cases. This “individual” may be the end user

whose use cases relate to the business, or the programmer whose use cases are likely

classic algorithms. Instead of depending on intermediate documentation to express

the requirements, we go quickly to the code where we express the mental model

directly; that means that we’re more likely to get working software than in the more

myopic class-centered design. We focus on customer collaboration—both between

532.6 DCI as a New Paradigm

the team and the client at the level of use cases, and between the product and the

client at the level of the mental models. We lubricate change by separating the shear

layers of data and function.

2.7 DCI AND ARCHITECTURE
DCI is in fact a radical break with the contemporary software architecture canon.

Most software architecture metaphors are based on the source code or static (often

class) structure. One darling of contemporary design is class hierarchy—a form that

is absent at run time. Most contemporary expositions of run-time architecture are

metaphors or computational models rather than models of form; actors [38] and

reflection come to mind. The DCI paradigm explicitly captures run-time models

in the architecture—the form of function.

We can viewDCI as an architectural school firmly ensconced in the postmodern

worldview. It breaks with the modernistic notion that the technology (e.g., coupling

and cohesion) is primary and instead adopts a more utilitarian, human posture. It is

less about language (most modern programming languages can express DCI

designs) or implementation technology (there are many stylistic variants of

DCI) than about the computational model shared across the mind of the end user

and the mind of the machine.

Today’s class-oriented architect can’t easily envision the form of the running arti-

fact because the associations between objects at run time are somehow too dynamic.

DCI constrains the run-time connections to a form prescribed by the context, giving

the architect the power to conceptualize and shape the run-time system (Figure 2.3).

Most important, DCI provides a home for the form of function. A context encap-

sulates the interaction of a set of roles. Each role describes how its corresponding

object interacts with other roles to carry out a system operation. The network of

interactions between roles (the I in DCI) is the form of that function.

Data
scaffolding
(classes)

Operations
scaffolding

(roles)

The architect’s toolbox
(source code)

Object Object

Object

The running system
(system architecture)

Object
Meta-blueprint

(context)

FIGURE 2.3

Designing a DCI application.

54 CHAPTER 2 The DCI Paradigm

Figure 2.3

2.7.1 DCI and the postmodern view
DCI is an approach to system architecture that is characterized by several postmod-

ern notions:

• Value ideas over objects, including the expression of the forms of both data and

function;

• Favoring compositional strategies over individual parts;

• A broad-based, human-centric agenda; and

• Focus on change.

DCI has been embedded in a design approach called Lean Architecture [39] that

has other aspects of the postmodern school, most notably the importance of process.

2.7.1.1 Ideas over objects
Architects of the built world have long been fascinated with form and function. The

phrase “form follows function” is a vernacular English language idiom that stood as a

truism for ages. Contemporary architects are wont to critique this posture and offer

alternatives such as: “Form follows failure” [41], which evokes the need for change

and dynamics in converging on a suitable architecture (Section 2.7.1.4).

Returning to object orientation’s roots in a worldview of emergent behavior, we

can view the form (think architecture) of a program as the result of accumulated

learning over generations of program evolution. The accumulated knowledge is

broadly called domain knowledge. Program form, then, has much of its roots in

human conceptualizations of work. In the vein of postmodernism, DCI is about ideas

over objects—more about the human side of systems than the system materials.

These ideas take the shape of algorithms, use cases, or the patterns of arrangement

of material beyond individual building blocks. DCI’s role interactions help us reason

about these ideas.

2.7.1.2 Compositional strategies over individual parts
The modernist school emphasized the primacy of structure. In the built world we find

buildings like the Pompidou Centre in Paris that let the structure “all hang out.”

Class-based programming forces functional designers to become structural designers

by thrusting them within a class framework. It is difficult to work at the level of pure

form (e.g., abstract base classes) because there is no architectural home for functional

concerns at the system level—only at the level of the data.

DCI is instead about compositional strategies: how to capture function and form

and to reintegrate them under a computational model at run time. That model also

integrates objects into a contextualization of their collective behavior. Programmers

can now reason about system behavior because all code for any given use case is

collocated in a single class. Execution hand-offs across objects (represented by roles)

are statically bound rather than polymorphic.

552.7 DCI and Architecture

2.7.1.3 A human-centric agenda
Team Autonomy: DCI data classes correspond to the domain organizational

structure, and contexts correspond to system-level deliverables. Recalling Conway’s

Law [24], this structuring supports team autonomy. Class-oriented architectures split

use-case code across the classes that form the major administrative units of object-

oriented programming. In DCI, the code for a given use case is in the roles encap-

sulated by the single context class for that use case.

End-User Focus: DCI moves programming closer to the end users by embracing

their mental models. It moves programming beyond the realm of a select few (called

programmers) into the realm of the many (called end users). It places programming

in an ecosystem of system behavior rather than a separate area of its own. This recalls

postmodernism’s shift from art for the elite to art for the masses.

2.7.1.4 Focus on change
Change is about the kind of human-centered context and relationships, larger than

objects, of the DCI paradigm. Consider this postmodern insight [42]:

Complex systems are shaped by all the people who use them, and in this new era of

collaborative innovation, designers are having to evolve from being the individual

authors of objects, or buildings, to being the facilitators of change among large

groups of people.

Sensitivity to context, to relationships, and to consequences are key aspects of

the transition from mindless development to design mindfulness.

DCI realizes the pattern ideals of piecemeal growth and local adaptation to the extent

that developers can add new use cases as stand-alone code modules independent of

the domain structure.

DCI is not only about “design mindfulness,” but more so about systems thinking.

Being able to reason about use cases makes it possible to reason about system state

and behavior instead of just object state and behavior. We can now reason about evo-

lution at the system operation level in the context of supporting knowledge about

market and end user-needs. This is architectural thinking; class-based programming

is limited to organizing kinds of software building materials in class hierarchies.

The evolution of the form takes place at the level of social awareness or progress

at the level of the ideas. This idea focus (discussed above in Section 2.3.2) is the first-
order focus of change: Necessity is the mother of invention. Structure emerges from

function during design. The functions of human endeavor arise from the supporting

forms in the environment. DCI supports this function-centered focus in design as

well as a structure-focused awareness in program use.

2.7.2 Patterns and DCI
Though patterns were broadly adopted for their power in describing geometric form

(classes and objects), they in fact have strong roots in temporal geometry. Alexander

56 CHAPTER 2 The DCI Paradigm

prefaces his discussion of emergent structure with geometric patterns, but the

geometric patterns are prefaced with a discussion of patterns of events. Indeed, Alex-

ander sees deeply into a time–space relationship that makes it difficult to separate the

two [5, pp. 65–66]:

It is the people around us, and the most common ways we have of meeting them, of

being with them, it is, in short, the ways of being which exist in our world, that

makes it possible for us to be alive.

We know, then, that what matters in a building or a town is not its outward

shape, its physical geometry alone, but the events that happen there.

. . .

A building or town is given its character, essentially, by those events which

keep on happening there most often.

This aspect of patterns is missing from almost all software practice. DCI is one of

the first software architecture approaches to embrace and build on this aspect of

Alexander’s work.

DCI also echoes the Alexandrian agenda in its end-user focus. Alexander put

house design in the hands of those who inhabit them. A house must relate to their

mental model, to which end the architect must step aside [43, p. 38]:

On the other hand, people need a chance to identify with the part of the environ-

ment in which they live and work; they want some sense of ownership, some sense

of territory. The most vital question about the various places in any community is

always this: Do the people who use them own them psychologically? Do they feel

that they can do with them as they wish; do they feel that the place is theirs; are

they free to make the place their own?

The architect should focus on fine craftsmanship and beauty that harmonizes the

human perspective with context of use in a fundamental way that transcends cul-

ture. DCI is such an architectural framework, and it defers the cultural (domain)

questions to the mental models of the occupiers of the code: the end users and

the programmers. Classic software architects are likely to find this agile perspective

disempowering.

It is possible to view DCI as a unification of two orthogonal architectures: the

data architecture ensconced in classes (Restricted OO), and the behavior architecture

ensconced in roles (the Full OO part). This view is particularly suitable to those who

take a software construction perspective on architecture instead of thinking ahead to

the run-time delivered system. A more subtle and deeper view of DCI notes that it in

fact combines these two forms into one at run time, albeit dynamically in a way that is

impossible to wholly capture in closed form. Yet the main rhythms and shapes of

both the dynamics and statics can be expressed respectively in the roles and classes

of DCI source code.

This view is very close to Japanese models of the relationship of space to time and

the way that space provides potential for some happening in time (e.g., 間 or “ma”,

572.7 DCI and Architecture

sometimes translated “space–time”). Such Japanese roots are at the core ofAlexander’s

worldview. Alexander himself reveals this perspective in his writing [5, p. x]:

These patterns of events are always interlocked with certain geometric patterns in

the space.

and [5, p. 70]:

The activity and its physical space are one. There is no separating them.

2.7.3 DCI and the network computation view
Perhaps one of the most telling distinctions of DCI is the place it relegates to the

human in the design process. If we think of the network model of computation in

the extreme, design and intelligence are local; system behavior is emergent.

Designers often put this network view on a par with patterns. Alexander’s works

feed this speculationwith references to emergence and to techniques suchas automatic

writing. However, a closer inspection of Alexander makes the human component of

his design world obvious. He speaks more often about the power of community in

sustaining a pattern language than he does about the role of the architect.

In some sense, the network computation view was based on well-intentioned

individuals, with the metaphor relating to localized design ownership and collective

execution. But this model lacked Alexander’s notion of patterns—both in time and in

space. Patterns, unlike Alexander’s more fundamental Theory of Centres [44], are a

human and social phenomenon.

DCI provides a vision of the role of human intellect, will, and design above the

networkmodel of computation. Humans design the contexts (social interpretations of

collected behaviors) and the interaction of their roles to reflect the recurring “patterns

of events” between objects.

We can revisit reflection in this context. The network model of computation is

rooted in emergent behavior. True emergence requires flexibility in software archi-

tecture that outstrips most architectural techniques, because it becomes difficult to

tease out the underlying patterns. You might drive to work via a different route every

day based on individual reflection that changes the path of interactions between your

car and the intersections it passes.

DCI supports a weak form of reflection whereby contexts can reason about the

binding of role behavior to objects at run time. This reflection supports a form of

emergence in which modules come and go dynamically according to system use.

Every use case enactment creates a dynamic module (a context object) as a config-

uration of interacting objects.

2.7.4 Firmitas, utilitas, and venustas
DCI contributes to stability in its data architecture in the same way as Restricted OO.

Most such approaches will still use classes for the data architecture. But these classes

58 CHAPTER 2 The DCI Paradigm

are now freed from the rapid changes in behavior driven by new business require-

ments. The architecture becomes more stable, and firmitas is served.
An important part of utilitas isn’t in the software itself but in the relationship

between the software and the end user. DCI gives the end-user mental model of

behavior a home in the code. That lessens the risk of a translation error as can occur

when splitting a use case across the widely separated domain classes implicated in a

system operation. The architectural focus turns from rudimentary technical merits to

first-class utilitas.
In the end, DCI is about integrating human experience with computer support.

Rather than separate man and machine through layers of translation and design,

DCI strives for the vision of integrating the machine seamlessly into end user expec-

tations. When used to manage the suitable selection of the computer as a tool of

humanmental augmentation, DCI can reduce work effort, rework, and the frustrating

surprises that make computer life hell. DCI makes the program understandable so the

coder can feel at home. It’s about making the code habitable, in the direction of

venustas.

2.8 CONCLUSION
DCI advances software into the human components of the architectural metaphor

more deeply than class-oriented programming and other preceding paradigms.

Further, DCI explicitly supports the agile agenda at the same level of the architec-

tural values that serve a broader human agenda, with support for:

• end users and programmers as human beings with rich mental models;

• readable code to more easily achieve working software;

• creating a home for the customer engagements of domain analysis and use cases;

and

• clean evolution along the dominant domains of change in software.

DCI is typical of the broader promises of a postmodern approach to architecture and

problem-solving. Elements of DCI reflect a broader change in the design climate

in software and the broader technical world, and the broader integration of comput-

ing systems that go far beyond the business applications of yesteryear to today’s

social networking infrastructure. Networks of interacting objects reflect the increas-

ing consciousness about networks of interacting human beings through computer

systems today and foresee the needs of architectural forms that can express these

complex forms. Articulations of such understanding, such as DCI, will enable

the leaps of functionality that this new world order will demand of their computing

systems.

The interesting aspect of this new world order is that, unlike many software

architecture approaches in this book, it is much less about technology than about

human mental models of their world. As the great architecture efforts of classic

592.8 Conclusion

civilizations have always strived to support the social functioning of the cultures in

which they arise, so DCI and its related postmodern techniques can lay groundwork

with the potential to raise the quality of life in all endeavors connected with com-

puting. In a world where over 20% of people are connected to the Internet, with

rapid growth, it goes without saying that a large fraction of human endeavor is

at stake.

References
[1] Pollio V. Vitruvius: the ten books of architecture. NewYork: Dover; 1960. Translated by

Morris Hickey Morgan.

[2] Gabriel R. Patterns of software: tales from the software community. New York: Oxford

University Press; 1996, p. 9–16.

[3] Beck K, Beedle M, van BennekumA, Cockburn A, CunninghamW, Fowler M, et al. The

agile manifesto, http://www.agilemanifesto.org; 2001 [accessed 13.07.2013].

[4] Rybczinski W. Home: a short history of an idea. New York: Penguin; 1987.

[5] Alexander C. The timeless way of building. New York: Oxford University Press; 1979.

[6] Weinberg G. Personal interview with Jerry Weinberg; 31 May 1999.

[7] Naur P, Randell B, editors. Proceedings of the NATO conference on software engineer-

ing. NATO Science Committee; 1968.

[8] Coplien J. It’s not engineering, Jim. IEEE Careers web log, http://www.computer.org/

portal/web/buildyourcareer/Agile-Careers/-/blogs/it-s-not-engineering-jim;2012[accessed

5.12.2012].

[9] Tidwell J. In: Designing interfaces. 2nd ed. Sebastopol, CA: O’Reilly Media; 2012.

[10] Brandt S. How buildings learn: what happens to them after they’re built. London: W&N;

1997.

[11] Martin RC. Clean code. Upper Saddle River, NJ: Prentice-Hall; 2008.

[12] Raskin J. The humane interface. Reading, MA: Addison-Wesley; 2000.

[13] Coplien J. Agile: 10 years on. InfoQ series on the 10th anniversary of the Agile

Manifesto, http://www.infoq.com/articles/agile-10-years-on; 2011 [13.07.2013].

[14] Cross N. Developments in design methodology. New York: John Wiley and Sons; 1984.

[15] Thackara J. Design after modernism. London: Thames and Hudson; 1988.

[16] Archer LB. Systematic method for designers. In: Cross N, editor. Developments in

design methodology. Chichester: John Wiley and Sons; 1984.

[17] Alexander C. The origins of pattern theory: the future of the theory, and the generation of

a living world. IEEE Software 1999;16(5):71–82.

[18] Coplien J. Coding patterns. Cþþ Report 1996;8(9):18–25.

[19] Ungar D, Randy S. Self: the power of simplicity, http://labs.oracle.com/self/papers/self-

power.html; 1987.

[20] Coplien J. The culture of patterns. In: Lazarevic B, editor. Computer Science and Infor-

mation Systems Journal 1, 2, Belgrade, Serbia and Montenegro; November 15, 2004.

p. 1–26.

[21] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns of reusable object-oriented

software. Reading, MA: Addison-Wesley; 2005.

60 CHAPTER 2 The DCI Paradigm

http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0015
http://www.agilemanifesto.org
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0030
http://www.computer.org/portal/web/buildyourcareer/Agile-Careers/-/blogs/it-s-not-engineering-jim
http://www.computer.org/portal/web/buildyourcareer/Agile-Careers/-/blogs/it-s-not-engineering-jim
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0050
http://www.infoq.com/articles/agile-10-years-on
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0075
http://labs.oracle.com/self/papers/self-power.html
http://labs.oracle.com/self/papers/self-power.html
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0080

[22] Jameson F. Postmodernism and consumer society. In: Foster H, editor. The anti-

aesthetic. Port Townsend, WA: Bay Press; 1983.

[23] Jacobson I. Object-oriented software engineering: a use case driven approach. Reading,

MA: Addison-Wesley; 1992.

[24] Conway M. How do committees invent? Datamation 1968;14(4):28–31.

[25] Kay A. A personal computer for children of all ages, http://history-computer.com/

Library/Kay72.pdf; 1972 [accessed 15.06.2012].

[26] Snowden DJ, Boone WE. A leader’s framework for decision making. Harv Bus Rev

2007;85:69–76.

[27] Laurel B. Computers as theatre. Reading, MA: Addison-Wesley; 1993.

[28] Booch G. Software engineering with Ada. Redwood City, CA: Benjamin-Cummings;

1987.

[29] Cockburn A. Why I still use use cases, http://alistair.cockburn.us/Whyþ Iþ stillþuseþ
useþ cases; 2008 [accessed 2.06.2012].

[30] Reenskaug T. Thing-model-view-controller, http://heim.ifi.uio.no/trygver/1979/mvc-1/

1979–05-MVC.pdf; 1978.

[31] Card SK, Moran TP, Newell A. The psychology of human–computer interaction. Hills-

dale, NJ: Lawrence Erlbaum; 1983, p. 390.

[32] Coplien J. Multi-paradigm design in Cþþ, http://793481125792299531-a-

gertrudandcope-com-s-sites.googlegroups.com/a/gertrudandcope.com/info/Publica

tions/Mpd/Thesis.pdf; 2000.

[33] Wirfs-Brock R. Personal E-mail of 14 October 2009.

[34] Cannon H. Flavors: a non-hierarchical approach to object-oriented programming, http://

www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf; 1979.

[35] Jenkov J. Dependency injection, http://tutorials.jenkov.com/dependency-injection/

index.html, n.d.

[36] Budd T. Multi-paradigm design in Leda. Reading, MA: Addison-Wesley; 1994.

[37] Lopes C. Speech at AOSD 2012, 29 March 2012.

[38] Hewitt C. Actor model of computation, http://arxiv.org/abs/1008.1459; 2010.

[39] Bj�rnvig G, Coplien J. Lean architecture for agile software production. Chichester:

Wiley; 2010.

[40] Reenskaug T. The common sense of object-oriented programming, http://folk.uio.no/

trygver/2009/commonsense.pdf; 2009 [accessed 8.06.2012].

[41] Petroski H. Form follows failure. Technol Mag 1992;8(2).

[42] Thackara J. In the bubble: designing in a complex world; n.d. p. 7.

[43] Alexander C. The Oregon experiment. New York: Oxford University Press; 1978.

[44] Alexander C. In: The nature of order. The luminous ground, vol. 1. New York: Oxford

University Press; 2004.

Further Reading
[1] IEEE Standard Glossary of Software Engineering Terminology, IEEEComputer Society,

1990.

[2] Archer LB. Whatever became of design methodology? In: Cross N, editor. Develop-

ments in design methodology. Chichester: John Wiley and Sons; 1984.

61Further Reading

http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0090
http://history-computer.com/Library/Kay72.pdf
http://history-computer.com/Library/Kay72.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0100
http://alistair.cockburn.us/
http://heim.ifi.uio.no/trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/trygver/1979/mvc-1/1979-05-MVC.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0105
http://793481125792299531-a-gertrudandcope-com-s-sites.googlegroups.com/a/gertrudandcope.com/info/Publications/Mpd/Thesis.pdf
http://793481125792299531-a-gertrudandcope-com-s-sites.googlegroups.com/a/gertrudandcope.com/info/Publications/Mpd/Thesis.pdf
http://793481125792299531-a-gertrudandcope-com-s-sites.googlegroups.com/a/gertrudandcope.com/info/Publications/Mpd/Thesis.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
http://www.softwarepreservation.org/projects/LISP/MIT/nnnfla1-20040122.pdf
http://tutorials.jenkov.com/dependency-injection/index.html
http://tutorials.jenkov.com/dependency-injection/index.html
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0110
http://arxiv.org/abs/1008.1459
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0115
http://folk.uio.no/trygver/2009/commonsense.pdf
http://folk.uio.no/trygver/2009/commonsense.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0135

[3] Evans E. Domain-driven design. Reading, MA: Addison-Wesley; 2003.

[4] Fowler M. Dependency injection, http://martinfowler.com/articles/injection.html; 2004.

[5] Kay A. The early history of Smalltalk, http://gagne.homedns.org/tgagne/contrib/

EarlyHistoryST.html; 2007.

[6] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An overview of

Aspect J. In: Proceedings of ECOOP; 2001.

[7] Neighbors JM. Software construction using components. Technical report 160, Depart-

ment of Information and Computer Science, University of California, Irvine, 1980.

[8] Reenskaug T. Model-view-controller: its past and its present, http://heim.ifi.uio.no/

trygver/2003/javazone-jaoo/MVC_pattern.pdf; 2003 [accessed 9.06.2012].

[9] Reenskaug T. Working with objects: the OORAM software engineering method.

Englewood Cliffs, NJ: Prentice-Hall; 1996.

[10] Steele GL. Common list: the language. Bedford, MA: Digital Press; 1990 [chapter 28].

62 CHAPTER 2 The DCI Paradigm

http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0140
http://martinfowler.com/articles/injection.html
http://gagne.homedns.org/tgagne/contrib/EarlyHistoryST.html
http://gagne.homedns.org/tgagne/contrib/EarlyHistoryST.html
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0145
http://heim.ifi.uio.no/trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://heim.ifi.uio.no/trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00002-2/rf0155

CHAPTER

Refactoring Software
Architectures 3

Michael Stal
Siemens AG, Corporate Research & Technology, Munich, Germany

CHAPTER CONTENTS

3.1 Introduction .. 63

3.2 Dealing with Design Flaws ... 64

3.3 Evolution and Styles of Refactoring—Code Refactoring 65

3.4 Evolution and Styles of Refactoring—Refactoring to Patterns 66

3.5 The Motivation for Software Architecture Refactoring .. 67

3.6 Architectural Smells .. 67

3.7 A Real-World Example ... 70

3.8 Quality Improvement .. 72

3.9 The Process of Continuous Architecture Improvement .. 73

3.10 Shallow and Deep Refactoring ... 75

3.11 Additional Examples of Architecture Refactoring Patterns 75

3.11.1 Breaking Dependency Cycles .. 75

3.11.2 Splitting Subsystems ... 75

3.12 Known Obstacles to Architecture Refactoring .. 78

3.13 Comparing Refactoring, Reengineering, and Rewriting 79

3.14 Summary .. 81

3.1 INTRODUCTION
Onone hand, uncontrolled growth of a software system leads to architectural issues that

are difficult and expensive to eliminate.On the other hand, change is the rule and not the

exception in software engineering, or, as the philosopher Heraclitus (535-475BC) once

put it, “panta rhei.” Changes come in different flavors, such as redefining or adding

requirements, changing infrastructure and technology, or causing changes by bugs

and wrong decisions. But no matter where these changes originate, they need special

attention from software architects. If software architects always focus on adding new

features, they will continuously extend and increase the existing system design until

eventually it becomes unmanageable and unable to be maintained. Some of the archi-

tecture extensions may even prove to be inadequate. Whenever wrong decisions are

63

carved in stone, it will become expensive, difficult, or almost impossible to avoid the

consequences of these wrong decisions.

Hence, to avoid design erosion, software architects need to embrace change by

systematically alternating design activities with iterative architecture assessment and

refactoring. Refactoring is a method of improving structure without changing the

external behavior of a system. Introducing a systematic refactoring approach and

refactoring patterns helps software engineers leverage proven solutions when deal-

ing with recurring refactoring necessities. Thus, they can avoid design erosion.

3.2 DEALING WITH DESIGN FLAWS
For the development of a telecommunications system, software architects initially

defined a sound architectural baseline (see Figure 3.1). Time pressure and additional

requirements forced software engineers to continuously modify and adapt the archi-

tecture. Unfortunately, they didn’t follow a systematic approach for this purpose,

instead using ad hoc patches and backpacks to evolve the system. After a while,

the resulting software architecture became overly complex and inexpressive and suf-

fered from decreased modifiability. Moreover, additional indirection layers led to

performance penalties.

FIGURE 3.1

Design erosion is caused by unsystematic architecture evolution and lack of architecture

improvement activities.

64 CHAPTER 3 Refactoring Software Architectures

Figure 3.1

How could software engineers avoid such design erosion? First, any software

architecture should not be built using a “Big Bang” approach, but rather in small iter-

ations where each iteration maps one requirement or a small set of requirements to

concrete architectural decisions. Using a piecemeal growth approach helps control

risks through early detection of architecture issues. Second, instead of carving archi-

tecture decisions in stone, architects should reassess their design in all iterations,

identify potential design issues, and resolve them by refactoring. This approach helps

cure the problem instead of dealing with symptoms. Moreover, it prevents expensive

reengineering activities after system delivery.

3.3 EVOLUTION AND STYLES OF REFACTORING—CODE
REFACTORING
Martin Fowler defined code refactoring to be the process of changing a computer

program’s source code without modifying its external functional behavior [1]. For

example, the extract method supports extracting commonly repeated code fragments,

moving them to their own methods instead. This improves both maintainability and

modifiability (see Figure 3.2).

The example illustrates that code refactoring helps reduce complexity without

changing the external behavior. Code refactoring should be applied whenever devel-

opers add new functionality, fix bugs, or improve their code according to design or

code reviews.

FIGURE 3.2

The extract method extracts code fragments to own methods.

653.3 Evolution and Styles of Refactoring—Code Refactoring

Figure 3.2

But how can engineers recognize that they should improve the structure of an

implementation? For this purpose, various hints exist (also known as code smells)

that indicate the potential necessity of code refactoring, for example in instances of:

• code that is duplicated,

• methods that span dozens of lines, or,

• frequent use of switch statements.

Whenever developers encounter such bad smells, they should improve and

stabilize the existing solution. In the ideal case, proven solutions already exist for

the refactoring problem at hand.

3.4 EVOLUTION AND STYLES OF REFACTORING—
REFACTORING TO PATTERNS
Joshua Kerievsky evolved this idea one step further by introducing refactoring to pat-

terns [2]. Its general idea is to substitute “proprietary” solutions with design patterns.

The argument is that if there is a design pattern for a particular problem, it is very

likely that the pattern can offer a better solution than any home-grown design.

Instead of hardwiring links to observers of event notifications, the Observer
design pattern [3] introduces flexible and dynamic wiring with interested observers

(see Figure 3.3). This kind of refactoring is basically shifting the focus from coding

to designing. The architecture might change, or it might stay the same. The question

is whether we could consequently follow the path and provide refactoring to other

layers of abstractions or other disciplines.

FIGURE 3.3

It is often a better choice to apply the observer pattern than to provide a proprietary solution for

the same problem.

66 CHAPTER 3 Refactoring Software Architectures

Figure 3.3

It is important to mention in this context that, due to its nature, a refactoring tactic

can be understood and applied in both directions without changing semantics. In the

example above, developers could remove the Observer design pattern and use hard-

wiring instead. A good reason for this might be the support for embedded or real-time

devices that need to avoid any kind of dynamic wiring. This example also shows that

the desired requirements and qualities should influence all refactoring decisions.

Refactoring should never be applied for its own sake or that of a software architect.

3.5 THE MOTIVATION FOR SOFTWARE ARCHITECTURE
REFACTORING
If refactoring can be applied to code, why shouldn’t it be applicable to other software

engineering artifacts as well (e.g., to database schemas, Unified Modeling Language

(UML) design diagrams, or state machines)? In fact, software architecture denotes

a potential area for refactoring activities due to its continuous growth and evolution

(also known as piecemeal growth). Hence, software architecture assessment [12, 13]

and refactoring should happen regularly, in all iterations (see Figure 3.4).

3.6 ARCHITECTURAL SMELLS
The challenge of refactoring comprises identifying areas that architects potentially

should improve. For code refactoring, the authors of [1] introduced “code smells” to

name such potential improvement areas. In the samemanner, architecture smells rep-

resent indicators for architectural problems. Some common examples are illustrated

in the following list without providing complete coverage or completeness:

FIGURE 3.4

Architecture assessment and improvement (refactoring) happens in each iteration.

673.6 Architectural Smells

Figure 3.4

• Duplicate design artifacts: If the same responsibilities are assigned to different

architecture components, the DRY (don’t repeat yourself) principle might be vio-

lated. As aspect-oriented software development demonstrates, common tasks

should be modularized. The difficulty is to decide what amount of replication

is acceptable or beneficial, and what kind of repetition should be considered

an architecture issue. There is no straight answer for this question. It depends

on the problem context whether the DRY principle should be applied or not.

• Unclear roles of entities: In a telecommunications project, the development team

introduced both a conference organizer and a conference manager. Project man-

agers were confused about the differentiation between these components. The

names of components should explain their responsibilities so that stakeholders

can easily understand the design. In addition, responsibilities should be assigned

to individual components and not spread across multiple components. Otherwise,

proven principles like separation of concerns will inevitably suffer. Likewise, a

component should only have one single responsibility. In other words, it should

do one thing and do this one thing well.

• Inexpressive or complexarchitecture:Accidental complexity leads to unnecessary

abstractions. These abstractions lead to complex and inexpressive software sys-

tems. For example, architecture entities might have unclear or misleading names,

superfluous components or dependencies, or too fine or too coarse a granularity,

all of which make the architecture difficult to understand. Software architecture

should be as simple as possible without becoming simplistic.

• Everything centralized: Software engineers may be biased to centralized

approaches, even when self organization and decentralization would be more

appropriate. One example is the application of the mediator pattern resulting

in a hub and spoke architecture where the communication patterns and dependen-

cies are hidden behind a single component. This approach introduces a single

point of failure—the mediator or hub—and possibly reduces scalability because

all traffic is routed through the mediator. If the problem is inherently decentra-

lized, then a decentralized architecture approach is more appropriate.

• Home-grown solutions instead of best practices: Software engineers might rein-

vent the wheel instead of using proven solutions. However, there is often a high

probability thatwell-known solutions or patterns are superior to home-grown solu-

tions. For example, the observer pattern offers a smart solution for many event

notification problems.However, home-grown solutions sometimes are preferable.

For example, the observer pattern is not applicable in real-time environments due

to its dynamism. In that case, engineers might come up with their own solution

using predefined and hard-coded references to observers.

• Over-generic design: Patterns such as the strategy design pattern allow deferring

variability to later binding times. However, if they are overused, maintainability

and expressiveness suffer. An example is the overuse of the open-closed principle
applying patterns like strategy, observer, or interceptor. When engineers open

their system for change and modification in many—even unsuitable—places,

the software architecture will become difficult to configure, evolve, and

68 CHAPTER 3 Refactoring Software Architectures

maintain. An architecture design should be as specific as possible and only as

generic and configurable as necessary.

• Asymmetric structure or behavior: Symmetry is often an indicator for high inter-

nal architectural quality, while asymmetry may indicate potential architectural

issues. There are two kinds of symmetry: behavioral symmetry, and structural

symmetry. Behavioral symmetry mainly deals with functionality for beginning

and starting activities, such as an open-method that also requires a close method,

a begin transaction which also requires a commit or rollback method, or a fork

that requires a join. In other words, every opening bracket also requires a closing

bracket. Structural symmetry implies that identical problems are always solved

using identical patterns, such as applying the observer pattern when event noti-

fication is required. While symmetry is often an indicator of high architectural

quality, asymmetry—respectively, the breaking of symmetry—may be prefera-

ble or even necessary in some cases (e.g., when allocation and deallocation of

resources needs to be conducted by different components). Thus (a)symmetry

is not necessarily proof of good or bad architecture.

• Dependency cycles: Dependency cycles among architectural components indi-

cate a problem because they might cause negative impact on testability, modifi-

ability, or expressiveness. For example, an architect cannot simply modify or test

a component in a dependency cycle without analyzing all other components in the

cycle.

• Design violations: Violation of design policies, such as using relaxed layering

instead of strict layering, should be avoided; otherwise, different engineers in

a project might resolve the same kind of problem with different solutions in

an uncontrolled way, which reduces visibility and expressiveness.

• Inadequate partitioning of functionality: Inadequate mapping of responsibilities

to subsystems is another cause of accidental complexity. In general, constituents

of a subsystem should reveal high cohesion, while the coupling between subsys-

tems should be low. Otherwise, this might indicate a wrong partitioning of func-

tionality into subsystems. The existence of a very large or a very small number of

subsystems can be indicative for such a smell. Software engineers may leverage

coupling or cohesion metrics to identify such problems.

• Unnecessary dependencies: To reduce complexity, the number of dependencies

should beminimized.All additional and unnecessary (i.e., accidental) dependencies

might affect performance and modifiability. For example, whenever the McCabe

Cyclomatic Complexitymetrics rise significantly between two iterations, this could

indicate that some dependencies or abstractions should be removed.

• Implicit dependencies: When the implementation of a software system contains

dependencies that are not available in the architectural models, this may cause

many liabilities. Developers could create a drift between desired and implemen-

ted architecture when they add implicit dependencies in the implementation with-

out informing anyone else about these new dependencies. Some changes will

break the implementation because software engineers might not be aware of those

implicit dependencies. An example of such implicit dependencies is the frequent

693.6 Architectural Smells

use of global variables, such as those introduced by the singleton pattern. Another
example is the breaking of “higher” layers within architectures that apply a strict

layering approach. If the higher user interface layer breaks whenever the lower

level persistence layer is changed, then this might be caused by implicit

dependencies.

There is one caveat, though: as seen in the descriptions of various smells, archi-

tecture smells do not represent proofs of architectural problems. They are just indi-

cators that such problems might exist. A design might use asymmetry due to the kind

of required behavior, as mentioned earlier. Over-generic design, such as instantiating

the strategy pattern frequently, could be necessary when developing a product-line

platform [11]. It depends on the concrete problem context whether an architecture

smell represents an architectural issue. The same holds for software.

3.7 A REAL-WORLD EXAMPLE
In a warehouse management system(see Figure 3.5) with rectangular shapes model-

ing architecture components, software architects came up with the abstraction called

abstract storage that represents all kinds of storages where items can be added or

FIGURE 3.5

Adding a new abstraction in a warehouse management system resulted in higher complexity,

which could be reduced by applying a refactoring pattern.

70 CHAPTER 3 Refactoring Software Architectures

Figure 3.5

retrieved using a specific algorithm (strategy). For dealing with the transportation of

items between different locations, architects introduced a new abstraction: transport
way. Obviously, the addition of transport way led to a more complex software design

with additional components and relationships. After rethinking the problem and con-

sidering the problem domain more deeply, it became obvious that transport ways also

resemble abstract storages with the associated strategy defining their concrete kind of

transport. Thus, the transport way abstraction could be eliminated by considering

transport equipment as a special kind of storage. Through this strategy, the ware-

house architecture improved significantly in terms of configurability (e.g., configur-

ing concrete storages) and changeability (e.g., exchanging a concrete storage or

strategy).

If the architects had not applied the refactoring early, then abstractions such as

transport way would have been extended and refined in succeeding design phases,

leading to increasing proliferation of additional artifacts (a.k.a. big ball of mud).
Trying to get rid of the problem in a later phase will get more and more expensive

as a consequence. The main reason for this design erosion is the introduction of new

dependencies in subsequent iterations. New artifacts might depend upon or refine the

transport way abstraction, and the transport way abstraction might add additional

dependencies. Like quality assurance (QA) by testing, there is no viable alternative

to systematic and early refactoring.

This refactoring tactic can be generalized to a common solution for a whole

family of similar problems. Whenever new abstractions are introduced by subsys-

tems, components, or interfaces, software architects should check whether these

abstractions are necessary or could be avoided by restructuring the design.

The refactoring tactic is applicable in a specific context (whenever a design is

extended with a new abstraction), solves a recurring problem with the solution bal-

ancing various forces, and suggests a concrete solution. In other words, a refactoring

solution that represents a proven solution for a specific problem family should be

considered a structural transformation pattern (see Figure 3.6), or refactoring pattern,

as we will call it hereafter.

This chapter illustrates why architecture refactoring should be considered an

application of architecture transformation patterns that help improve the quality

of a system in a specific problem context. The problem may be specified using archi-

tecture smells, quality attributes, and forces. In addition, pattern descriptions make it

easier to organize refactoring in catalogs and identify the right refactoring patterns

for a particular problem.

The patleta in the example only illustrates some of the constituents of a pattern. Of

course, we would need to add sections like Consequences, Implementation, or Var-

iants to a complete pattern description (see Ref. [4]).

aA patlet denotes a distilled description of a pattern (e.g., using only a single page). Patlets are often

used within pattern catalogs or pattern almanacs.

713.7 A Real-World Example

3.8 QUALITY IMPROVEMENT
It is important to understand that there are two kinds of architecture quality. On one

hand, internal architecture quality measures structural aspects, such as symmetry,

coupling, and cohesion; software metrics and architecture assessment tools help dis-

close internal quality. On the other hand, external quality refers to quality attributes,

such as those defined by ISO/IEC 25010. Architecture quality indicators primarily

address internal quality. However, they are also capable of improving external

qualities, such as performance. An example would be when architects remove unnec-

essary indirection layers from their architecture design.

The application of refactoring must always serve one specific goal: to improve

the qualities of the software system under construction. As mentioned, software

architects need to address two distinct areas in this context: architectural quality indi-

cators (internal quality), and quality attributes (external quality) [5]. Internal quality

improvements require thorough analysis regarding their impact on external quality.

Refactoring and refactoring patterns help increase different internal architecture

qualities:

• Economy: Following the Keep it simple, stupid! (KiSS) principle, a software

architecture should contain those artifacts that are required to achieve the devel-

opment goals. That is, the architecture should be simple but not simplistic.

• Visibility: All parts of the architecture should be easily comprehensible, which

also implies that all architectural components and dependencies must not be

implicit.

FIGURE 3.6

Common refactoring tactics represent transformation patterns.

72 CHAPTER 3 Refactoring Software Architectures

Figure 3.6

• Spacing: Good separation of concerns is important to map responsibilities effi-

ciently and effectively to architectural entities.

• Symmetry: There are two variations of symmetry: Behavioral symmetry means

that for each “open,” there needs to be a “close” statement, and for each “begin

transaction,” there needs to be a “rollback” or “commit.” Structural Symmetry

requires that for the same problem, architects always provide the same solution

in software system. Lack of symmetry indicates that there might be problems in

the design.

• Emergence: The whole is more than the sum of its parts. It is more effective to

rely on simple constituents from which complex functionality can emerge than to

centralize the same functionality in complex, heavyweight artifacts.

As with architecture smells, architecture quality indicators point to possible prob-

lems. However, an indicator is not a proof of bad internal quality. Architects should

keep that in mind when they discover these indicators.

A refactoring can improve both developmental qualities, such as modifiability,

and operational qualities, such as performance. For example, unnecessary abstrac-

tions or dependencies will inevitably decrease modifiability. Applying refactoring

patterns to get rid of these unnecessary artifacts will help improve modifiability.

Unnecessary indirection layers might also cause performance penalties. If a refactor-

ing pattern can make the indirection layer obsolete, its application will increase

performance. Architects should explicitly keep track of sensitivity points and trade-

off points, because these are potential risk areas. Applying refactoring patterns that

affect tradeoff points especially requires thorough considerations.

3.9 THE PROCESS OF CONTINUOUS ARCHITECTURE
IMPROVEMENT
All refactoring activities should be conducted iteratively in a systematic way (see

also Figure 3.4). Note that for the sake of brevity, we are introducing only a rough

outline of such a process:

1. Architecture assessment: Identify architecture smells and design problems—for

instance, the architecture’s ability to meet its quality attributes. A design issue is

architectural when it addresses strategic design, or the fundamental framework

used for tactical design, such as variability. As a result, create a list of identified

architectural issues. For this purpose, code quality management and architecture

assessment tools, as well as architecture review methods, are useful.

2. Prioritization: Prioritize all identified architectural issues by determining the pri-

ority of the affected requirements. For example, all problems related to strategic

design should be solved before addressing tactical areas, and all artifacts associ-

ated with high-priority requirements should be covered before those with lower

priorities. As a result, order the architecture issues with respect to their priorities

and scope. If prioritization is not considered, architects might end up focusing on

733.9 The Process of Continuous Architecture Improvement

local optimizations instead of focusing on strategic parts first. As the old saying

goes, unsystematic optimization is the root of all evil.

3. Selection: For each problem in the list (starting with higher priorities), conduct

the following activities (note: some of the problems might be resolved by higher-

prioritized refactoring activities):

a. Select appropriate refactoring patterns. In this context, “appropriate” means

that the refactoring patterns solve the problem at hand considering both inter-

nal and external quality.

b. If more than one refactoring pattern exists, choose the one which reveals con-

sequences appropriate for the system under design. For this purpose, also con-

sider its impact on external qualities.

c. If no such patterns exist, fall back to conventional architectural (re-)design.

4. Quality assurance: For each refactoring application, check whether it changes the
semantics of the system by accident. There are three possible ways for QA:

a. Formal approach: Prove with formal methods that the structure transforma-

tion did not change the behavior. Formal methods are particularly useful

for safety-critical systems.

b. Architecture Assessment: Perform architecture or design reviews to check the

quality. Code reviews might be valuable if an implementation already exists.

c. Testing: If the software architecture is already implemented, existing test

strategies and test levels will help with QA. Also apply software-quality met-

rics to measure internal architecture quality. For example, a big jump in cou-

pling could be indicative of a problem.

Despite the current lack of tools that directly support architecture refactoring, we

can at least use existing tools for some of the phases of the refactoring process. For

instance, architecture assessment applications and metrics help with identifying

architecture smells in the analysis phase.

While the refactoring process is applicable to all kinds of development process

models, it is particularly useful in the context of agile development. For example, in a

Scrum process, architecture refactoring can be integrated by adding refactoring

activities in the sprints (iterations). Architects need to (re)check their architecture,

testers and product owners need to validate that the system still meets its specifica-

tions after refactoring activities. After the implementation of user stories in a partic-

ular sprint, software architects conduct an architecture assessment to identify

architecture smells and other quality issues during the rest of the sprint.

In contrast to code refactoring, which developers need to consider their daily job,

architecture refactoring should only be conducted once per iteration. If done more

often, the architecture might be subject to uncontrolled and frequent change. If done

less often, eliminating architecture problems involves more time and complexity.

Refactoring of uncritical architecture issues should not be applied immediately

before release date. However, if a specific refactoring is not applied in the iteration

for that reason, it becomes subject to design debt [6] and needs to be resolved in the

next iteration. In a Scrum setting, architecture problems that are not dealt with in the

current sprint should be stored and maintained in the backlog.

74 CHAPTER 3 Refactoring Software Architectures

3.10 SHALLOW AND DEEP REFACTORING
Applying a software architecture refactoring (pattern) always requires the same

approach—at least in theory. In practice, its application depends on whether the

affected part of the architecture is already implemented or not.

• If the architecture is available only as a set of models (i.e., views), architecture

refactoring only implies model refinement and modification. In this case, soft-

ware architects check the correctness of such shallow architecture refactoring

by architecture assessment methods (e.g., using architecture assessment tools

and software metrics).

• Otherwise, it is necessary to apply deep architecture refactoring, which will not be

constrained to architectural models but also address the implementation itself (i.e.,

applying a software architecture refactoring pattern will also require code refactor-

ing). Consequently, the writer of an architecture refactoring pattern should recom-

mend appropriate code refactoring patterns the sameway architecture patterns refer

to design patterns. Note that refactoring might also have an impact on further arti-

facts, such as documentation, database schemas, and reference architectures.

For deep architecture refactoring, additional QA can be achieved by testing.

3.11 ADDITIONAL EXAMPLES OF ARCHITECTURE
REFACTORING PATTERNS
3.11.1 Breaking dependency cycles
In a telecommunication management network, centralized monitors allow operators

to retrieve the current state of hardware and software equipment. On each observed

network node, agent components monitor and control the underlying equipment.

Agents report problemsusing event-based communication.One important constituent

of these eventmessages is a time stamp.But howcan agents assign unique time stamps

to their events, considering the asynchrony of clocks in a distributed environment?

Unfortunately, the project architects decided to move the responsibility of generating

time stamps to the monitors (see Figure 3.7), introducing a dependency cycle.

This problem can be solved in various ways. For instance, architects could try to

invert one (or more) of the dependencies. They could also introduce dependency injec-

tionmechanisms.Another provensolution is to reassign responsibilities byaddingaddi-

tional architecture components, like the dedicated date component in the example.

A patlet is introduced in Figure 3.8.

3.11.2 Splitting subsystems
Coupling and cohesion are examples of architectural metrics. Within an architectural

subsystem, the coupling between its constituents should be rather tight, thus leading

to high cohesion. On the contrary, the coupling between subsystems should be loose.

753.11 Additional Examples of Architecture Refactoring Patterns

If this is not the case, it might indicate that some components are bound tightly

together which shouldn’t be—and vice versa—as the following example illustrates.

In the development of a proprietary container infrastructure subsystem for a unified

communication system, almost all components revealed a high degree of cohesion—

with one notable exception. The communication middleware itself was only loosely

FIGURE 3.7

A dependency cycle as illustrated on the left side, which must be removed as it reduces

manageability, testability, and modifiability.

FIGURE 3.8

Patlet for the architecture refactoring pattern break dependency cycle.

76 CHAPTER 3 Refactoring Software Architectures

Figure 3.7
Figure 3.8

coupled with the rest of the container. Thus, architects decided to split the subsystem

into two subsystems: one for the actual container, and another one for the distribution

middleware (see Figure 3.9). By separating container responsibilities and communi-

cation responsibilities, the architects could even exchange and extend the commu-

nication infrastructure later on without further impact on business and container

logic.

In general, the degree of coupling and cohesion can be used as an indication of

when to split or merge subsystems. A patlet for the architecture refactoring pattern

split subsystem is shown in Figure 3.10.

FIGURE 3.9

If components within an architectural subsystem are only loosely coupled with the other

components, this indicates a potential split into multiple subsystems.

FIGURE 3.10

Patlet for the architecture refactoring pattern split subsystems.

773.11 Additional Examples of Architecture Refactoring Patterns

Figure 3.9
Figure 3.10

3.12 KNOWN OBSTACLES TO ARCHITECTURE REFACTORING
The need for software architecture refactoring seems obvious, but nonetheless soft-

ware architects have to cope with different obstacles as soon as they try to introduce

refactoring to their organization. Of course, they could just do it for their own sake,

but then they typically lose a lot of the benefits. There are four different areas where

objections or obstacles might appear: management and organization, development

process, technology and tools, and applicability.

• Management and organization: Stakeholders in the organization, such as

product or project management, often consider new features the most important

software engineering assets. Considerations such as “the software architecture

design should be done correctly in the first place so that no problems might

ever appear” ignore the fact of continuous change in all but trivial projects.

Firstly, software architects do not initially know all requirements—at least not

in full detail. Thus, their decisions can only take existing knowledge into

account. As soon as the knowledge deepens, previous decisions need to be

checked and refined. Secondly, big design up front does not work—which leads

to piecemeal growth as the only viable alternative. However, piecemeal growth

requires constant QA of all design artifacts and thus also needs architecture refac-

toring. A common problem in this context is that architecture refactoring, like

testing, can typically prove its value only after project completion. There might

not be any immediate return on investment, but experience has shown that

neglecting QA is much more expensive than introducing regular quality checks

and improvements. Test-driven design (TDD) is a common answer to this prob-

lem, because it enables early detection of quality problems. Another known chal-

lenge is the inappropriateness of organizations. According to Conway’s law,

organization often drives architecture. Hence, bad organization may lead to

bad architecture. If the responsibilities are spread inappropriately across organi-

zational units, almost all architecture refactoring activities might force the orga-

nizational units to cooperate in a tight fashion—which might not be feasible, for

instance, when organizational units are geographically distributed or follow dif-

ferent goals.

• Development process: The refactoring process needs to be explicitly integrated

into the overall development process. Otherwise, project management will not

plan sufficient resources for refactoring purposes. In addition, it is necessary

to explicitly assign responsibilities for refactoring to different stakeholders, such

as testers or software architects. For instance, test managers should be aware of

architecture refactoring so that they can check the correctness of refactoring and

the quality of the software system.

• Technology and tools: On one hand, due to lack of tools directly supporting

software architecture refactoring, the refactoring process must be done manu-

ally—which is often tedious and error-prone. On the other hand, finding

and coping with architectural problems in later phases is even more tedious

78 CHAPTER 3 Refactoring Software Architectures

and error-prone. If a catalog or system of refactoring patterns is available, soft-

ware architects can improve the software architecture much more efficiently. If

such a collection is not available, the organization might spend some efforts to

build their own one.

• Applicability: If design erosion of a software system has progressed in such a way

that tactical refactoring activities can only cure the symptoms, not the causes,

reengineering or even rewriting might be more appropriate and efficient. An indi-

cation for such a scenario could be whenever refactoring activities cannot

improve the quality to a larger extent (such as measured by bug rates or architec-

ture metrics). Contexts where it is mainly the behavior of a system that must be

modified also indicate that refactoring would not be the right choice. As illus-

trated in the refactoring process, it is important that refactoring activities be pri-

oritized. If, for instance, refactoring of tactical design is applied before

refactoring of strategic design, architects might optimize tactical parts that are

eliminated anyway as soon as the strategic parts are addressed. A further chal-

lenge is the integration of third party components. Refactoring patterns that

require the modification of such components might not be applicable if the orga-

nization is not in control of these components.

Proof of concept—that is, collecting, documenting, and applying established

architecture refactoring patterns—is an issue the software architects should focus

on to extend and improve current refactoring practices. The software architecture

refactoring concepts described in this chapter have already been applied in real pro-

jects at Siemens. They are not carved in stone, but subject to continuous improve-

ment like all patterns should be. For example, architecture refactoring patterns

have been applied in a project for industry automation, in the design of a VoIP client,

in a warehouse management system, and in a software application for spectrometers.

In most cases, the software architects involved leveraged the refactoring process and

the catalog of refactoring patterns [7]. Many of these projects helped in extending the

refactoring catalog. In fact, the availability of such a catalog was considered essential

by project participants. The application of architecture refactoring could actually

increase the architectural quality and reduce costs.

3.13 COMPARING REFACTORING, REENGINEERING,
AND REWRITING
Software architecture refactoring helps improve architecture design in a local

scope—that is, on the tactical level. If software systems have already suffered from

significant and untreated design erosion, they might bear so many design challenges

that addressing them with refactoring would only cure the symptoms—not the root

problems. Software engineers can recognize such situations, when even intensive

refactoring does not lead to substantial improvement. In such cases, refactoring

793.13 Comparing Refactoring, Reengineering, and Rewriting

should not serve as the main tool for architecture recovery. Software architects might

apply reengineering or rewriting instead (see Table 3.1).

In contrast to refactoring, a reengineering project (see [8]) always implies systemic

effects on the underlying software system. In the first phase, the complete system is

reverse-engineered and its components are evaluated using a SWOT (Strengths,

Weaknesses, Opportunities, and Threats) analysis. Software engineers will adapt

components they consider valuable and thus reusable. In the subsequent phase of reen-

gineering, these components will become part of a freshly designed and built software

system. In this scenario, refactoring is often applied for component adaptation.

If the effort of refactoring a system or component exceeds that of rebuilding it,

rewriting often is the only choice left. It should be considered a last resort if refactor-

ing and reengineering would not work.

Table 3.1 Comparing Refactoring, Reengineering, and Rewriting

Refactoring Reengineering Rewriting

Scope n Many local effects n Systemic effects n Systemic or local effects

Process n Structure
transformation

n Behavior/semantics
preservation

n Possible change of
architecture qualities

n Disassembly/
reassembly

n Expensive replacement of
whole system with new
implementation

Results n Improved structure
n Mostly Identical

behavior

n New system n New system or new
component

Improved
qualities

n Developmental n Functional
n Operational
n Developmental

n Functional
n Operational
n Developmental

Drivers n Complicated design/
code evolution

n When fixing bugs
n Upon design and

code smells

n Refactoring is
insufficient

n Bug fixes cause
rippling effect

n New functional
and operational
requirements

n Changed
business case

n Refactoring and
reengineering are
insufficient or
inappropriate

n Unstable code and design
n New functional and

operational requirements
n Changed business case

When n Part of daily work
n At the end of each

iteration
n Dedicated

refactoring iterations
in response to
reviews

n It is the third step
of TDD

n Requires a
dedicated
project

n Requires dedicated effort
or a dedicated project,
depending on scope

80 CHAPTER 3 Refactoring Software Architectures

3.14 SUMMARY
Systematically extending and evolving a software system is only one side of the coin.

Software architects are also responsible for keeping the complexity of the existing

software architecture small by avoiding accidental complexity. For this purpose, they

should leverage architecture assessment and testing. Software architecture refactor-

ing is an additional activity, which improves the architectural structure of a system

without changing its intended semantics. It is generally applicable when architecture

smells are found in an architecture assessment. Consequently, architecture refactor-

ing should become a mandatory process, conducted before or after adding new

(major) architecture artifacts to a software system, or when architects identify critical

problems. This way, wrong or inappropriate design decisions can be detected and

eliminated early, thus assuring high quality in the software architecture. In an agile

or iterative/incremental development process, architecture refactoring is an activity

that should be conducted at least once per iteration. Refactoring in general is consid-

ered mandatory in TDD.

Unfortunately, unsystematic refactoring activities can cause more harm than good.

Some examples of this were introduced in Section 3.12 (e.g., applying an inadequate

refactoringpattern that doesnot consider architecturally relevantquality attributes, such

as real-time aspects). Consequently, refactoring itself requires a systematic process.

Refactoring patterns offer proven solutions to recurring refactoring problems.

Using these patterns increases the productivity of software architects, because they

can rely on proven practice instead of reinventing the wheel.

Although code refactoring has already become a commodity for software devel-

opment (in contrast to software architecture refactoring), there are still many areas

for future research in software architecture refactoring, such as:

• The availability of substantial catalogs or even systems of refactoring patterns

wouldprovide a sound foundation for architecture refactoring.Currently, suchpat-

tern catalogs are not sufficiently available in literature—at least not publicly. As a

first approach, software architects and developers might leverage the refactoring

books by Martin Fowler [1], Joshua Kerievsky [2], and Scott Ambler [9]. Martin

Lippert and Stefan Roock provide further refactoring examples in their book on

refactoring large systems [10]. The author of this chapter provides a document that

includes a catalog of such architecture refactoring patterns [7]. In addition, inter-

ested software engineers could establish a public or company-local catalog.

• It is necessary to better investigate the combination and relation between archi-

tecture and code refactoring. Some tactics for code refactoring also address archi-

tecture design. Architecture refactoring can also have an impact on

implementation, which implies that architecture refactoring and code refactoring

are interleaved activities.

• Detecting architecture smells is already part of existing architecture assessment

tools that use software metrics for this purpose, but so far no tool support is avail-

able for actually refactoring the architecture of a software system.

813.14 Summary

• Refactoring platforms of software product lines leads to additional issues. For

example, refactoring core assets of a product-line architecture potentially influ-

ences all applications, not just one.

Research in software engineering should also investigate refactoring for further

disciplines, such as refactoring of test plans, documents or development processes,

and their interdependencies, to name just a few.

As the size and complexity of software systems are still increasing, software

architecture refactoring is an important tool to manage this complexity. If applied

regularly and systematically, it can provide a kind of safety net for software archi-

tects by keeping their software systems in good shape.

References
[1] Fowler M, Beck K, Brent J, Opdyke W, Roberts D. Refactoring: improving the design of

existing code. Reading, MA: Addison-Wesley; 1993.

[2] Kerievsky J. Refactoring to patterns. Reading, MA: Addison-Wesley; 2004.

[3] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns: elements of reusable object-

oriented software. Reading, MA: Addison-Wesley; 1995.

[4] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-oriented software

architecture: a system of patterns. New York: Wiley; 1996.

[5] Bass L, Clements P, Kazman R. Software architecture in practice. 2nd ed. New York:

Addison-Wesley; 2004.

[6] For more details on design debt and technical debt read http://en.wikipedia.org/wiki/

Design_debt.

[7] Stal M. Architecture refactoring foundation incl. a refactoring pattern catalog: https://dl.

dropbox.com/u/2228034/ArchitectureRefactoringCatalog.pdf.

[8] Demeyer S, Ducasse S, Nierstrasz O. Object-oriented reengineering patterns. San

Francisco, CA: Morgan Kaufmann; 2002.

[9] Ambler SW, Sadalage PJ. Refactoring databases: evolutionary database design. Reading,

MA: Addison-Wesley; 2006.

[10] Lippert M, Roock S. Refactoring in large software projects: performing complex restruc-

turings successfully. New York: Wiley; 2006.

[11] Bosch. Design and use of software architectures: adapting and evolving a product-line

approach. New York: Addison-Wesley; 2000.

[12] Clemens P, Kazman R, Klein M. Evaluating software architectures: methods and case

studies. New York: Addison Wesley; 2002.

[13] Maranzano J, Rozsypal S, Zimmermann G, Warnken G, Wirth P, Weiss D. Architecture

reviews: practice and experience. Washington, DC: IEEE Software; 2005.

82 CHAPTER 3 Refactoring Software Architectures

http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0030
http://en.wikipedia.org/wiki/Design_debt
http://en.wikipedia.org/wiki/Design_debt
https://dl.dropbox.com/u/2228034/ArchitectureRefactoringCatalog.pdf
https://dl.dropbox.com/u/2228034/ArchitectureRefactoringCatalog.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00003-4/rf0060

CHAPTER

Driving Architectural Design
and Preservation from a
Persona Perspective in Agile
Projects

4
Jane Cleland-Huang, Adam Czauderna and Mehdi Mirakhorli

DePaul University, Chicago, IL, USA

CHAPTER CONTENTS

4.1 Introduction .. 83

4.2 Personas in the Design Space .. 86

4.3 Discovering ASRs .. 87

4.3.1 From Features to Architectural Concerns ..87

4.3.2 Embedding Architectural Concerns into Personas90

4.4 Personas for Driving Architectural Design ... 93

4.4.1 Goal Analysis ..94

4.4.2 Generating and Evaluating Architectural Solutions95

4.4.3 Examples ..95

4.5 Personas and Architectural Preservation .. 101

4.5.1 Trace by Subscription ..103

4.5.2 Generating Persona-Centric Perspectives ...103

4.5.3 Examples ..103

4.6 ASPs in Other Project Domains ... 105

4.6.1 Mechatronics Traceability ...106

4.6.2 Online Trading ...108

4.6.3 Bond, James Bond ...108

4.7 Conclusions .. 109

Acknowledgments .. 110

4.1 INTRODUCTION
A software-intensive system must deliver the functionality needed by its stake-

holders while also satisfying their quality concerns. Such concerns come in many

different shapes and sizes [1–3]. A safety-critical avionics system must guarantee

levels of safety through performance and dependability requirements, while a mobile

phone service must provide reliable hand-over as a subscriber moves across various

83

towers, must deliver high-quality voice and data service, and must provide fast

response times for placing calls and sending text messages [4]. These kinds of con-

cerns are considered “architecturally significant.” They exhibit very diverse impacts

upon the system andmust therefore be specified in quite different ways. For example,

performance requirements are often specified in terms of response time or through-

put, availability requirements are specified in terms of allowed downtime, while

accessibility requirements can be specified in terms of standards or specific features.

Architects must understand stakeholders’ quality concerns and design a solution

that balances their potentially complex interdependencies and tradeoffs. Unfortu-

nately, some evidence suggests that project stakeholders, whether in agile or non-agile

projects, are not very good at eliciting and understanding quality concerns. Franch

et al. conducted a survey of elicitation techniques for architecturally significant

requirements (ASRs) in 13 different software projects [5] and found that in many cases

they were not documented at all. This led to misunderstandings between architects and

developers. For example, in one case, a customer assumed that a web page would load

in less than 2 s but never explicitly expressed this requirement. The customer was not

happy when the page loaded more slowly and the unspoken requirement was unmet.

While many techniques exist for capturing and documenting ASRs [6–8],

these are typically perceived as too heavyweight for an agile project. For example,

Robertson and Robertson’s Volere approach describes how to capture and specify a

broad range of quality requirements [8]. Gilb’s Planguage method goes a step further

by providing a template for rigorously quantifying measures to be achieved for each of

the qualities [6]. On the other hand, there has been very little discussion focused on

quality concerns in agile projects. An exception to this is the work by Cohen, who

describes an approach for specifying constraints in the form of user stories [9].

In a point-counterpoint article that appeared in IEEE Software [10], Alistair

Cockburn articulately countered Tom Gilb’s argument for concretely specifying

quality concerns and argued that qualities should be allowed to emerge as the project

progresses. Similarly, in an interview conducted for IEEE Software’s special edition

on the Twin Peaks of Requirements and Architecture [11], Jan Bosch outlined the

growing acceptance of designing and constructing a system incrementally and allow-

ing both functional and non-functional requirements to emerge. He acknowledged

that this practice assumes that refactoring the architecture to accommodate newly

discovered requirements is an acceptable cost of doing business in an agile project.

On the other hand, industrial architects attending the Twin Peaks workshop

hosted at the IEEE International Requirements Engineering Conference stressed that

even though architectural design may not be an official upfront activity in an agile

project, a good architect will have a clear architectural vision for the solution in his or

her head before embarking on actual development. Nevertheless, it is important for

this architectural vision to be based on stakeholders’ actual needs.

Unfortunately, the agile mantra of “no big upfront design” is often used to justify

a less-than-effective exploration of quality requirements during early phases of the

software development lifecycle, thereby increasing the likelihood of later costly

refactoring efforts. In this chapter, we introduce the notion of architecturally savvy

84 CHAPTER 4 Persona Perspective in Agile Projects

personas (ASPs) [12,13] as a means of exploring and documenting stakeholders’

quality concerns in a lightweight manner well suited to the agile project environment.

The approach we describe in this chapter emerged from our own experiences

in the TraceLab project [14], a US$2 Million endeavor funded by the US National

Science Foundation and developed by researchers at DePaul university, the College

of William and Mary, Kent State University, and the University of Kentucky. The

core part of the project involved developing an experimental environment in which

researchers can design experiments using a library of pre-existing and user-defined

components, execute their experiments, and then comparatively evaluate results

against existing benchmarks.

Early in the project, it became apparent that there were some challenging and

conflicting quality goals that would impact both the time to market and the long-term

adoption of the system. To fully explore and understand the impact of early archi-

tectural decisions, we developed a set of personas, such as the one shown in

Figure 4.1. Each persona represented distinct sets of users’ needs, especially those

needs which impacted major architectural decisions. The personas were initially

developed through a series of brainstorming activities by the core project team. They

were then presented to collaborators from all participating universities as part of the

Tom:
Age: 59, Professor

Tom is a long-time traceability researcher. He has published
numerous papers that have focused on tracing from source code to
design and requirements. He has focused on using LDA, LSI, and
various probabilistic approaches. He has also developed algorithms
for visualizing the results of his traces.

Tom prefers coding in C++ on Linux. He plans to contribute
components to the TRACY project; however, he already has an
established traceability research environment and therefore may not
use all the TRACY features himself.
My user stories:
1. I need to be able to write components in C++ and integrate them easily

into TraceLab experiments.
2. Experiments that I run using TraceLab must not take about the same

amount of time to run as my existing experiments.
3. I need to be able to run TraceLab on Linux.
4. I need accessibility to benchmarks so I can compare new algorithms and

techniques against previous results.
5. I need access to datasets with existing trace matrices.

My anti-stories:
1. I won’t use TraceLab if it is buggy and keeps breaking.

Fast trace retrieval
Platform selection
Language selection
Reliability
Extensibility
Ease of component
upload
Ease of installation
Highly intuitive
interface
Extensive document
compatibility
Data confidentiality
Broad adoption

Personalized background
details

Persona picture,
name tag, and role.

Persona-related
user stories i.e.
win scenarios

Persona-
related loss-
scenarios

List of quality
concerns
extracted from
all personas.

Each concern is
marked to show
relevance to this
persona.

FIGURE 4.1

Lightweight personas used as part of the agile development process to highlight quality

concerns (i.e., nonfunctional requirements). Personas are used to drive architectural design

and to evaluate and validate candidate design solutions.

854.1 Introduction

Figure 4.1

initial project launch, and iteratively refined until all meeting participants were sat-

isfied that the personas provided a realistic and relatively complete representation of

TraceLab users’ quality concerns. The personas were then used throughout the

remainder of the project to guide and critically evaluate architectural design deci-

sions. More recently, we have applied the approach as part of an industrial research

project to develop a prototype for a Mechatronics Traceability system that supports

systems-level traceability at the enterprise level [12].

In this chapter, we describe our use of personas for capturing ASRs, driving and

evaluating candidate architectural designs, and finally, establishing on-demand

traceability between real stakeholders, architectural decisions, and the implementa-

tion of those decisions in the code. Several elements of our approach have appeared

in previous publications. The concept of ASPs has been described in two earlier

publications [12,13], and an example of using them to create traceability from stake-

holders to code was also described in a previous workshop paper [15]. However, in

this chapter we focus on the integration of our approach into agile projects for pur-

poses of requirements discovery, architectural design, and long-term architectural

preservation. Furthermore, we extend our previously published ideas by providing

a more extensive set of personas from a broader set of projects.

4.2 PERSONAS IN THE DESIGN SPACE
The notion of a persona first emerged in the field of human-computer interaction.

Initially introduced by Cooper as a means of integrating user goals and perspectives

into the design process [16], a persona is a realistic, life-like, archetypical person,

designed to represent an important group of users. A persona description often

includes personal details related to the pysche, background, emotions and attitudes,

and personal traits of a fictitious person [17,18]. In most of the literature and practice,

a persona is created following a fairly rigorous set of user analysis activities includ-

ing surveys and interviews, slicing of users into categories, data collection and anal-

ysis to determine whether candidate slices create distinguishable user groups,

analysis of potential usage patterns within the groups, persona design, and ultimately

the writing of scenarios that describe how the identified scenario might interact with

the system. The created personas are then used to evaluate the design of the system.

As a rule of thumb, most systems are represented by only about 5-8 personas. The

goal is therefore not to create different personas for each and every user group, but to

find an ideal way of slicing users into cohesive and unique categories that capture key

ways in which actual users might interact with the system.

The use of personas has also been explored for supporting requirements elicita-

tion. Dotan et al. evaluated the idea of using personas to communicate users’ goals

and preferences to project members as part of a 2-day design workshop for the

APOSDLE project [19]. Similarly, Robertson et al. discussed using personas to

discover requirements when actual stakeholders were not available [8]. In both cases,

the focus was on eliciting a general set of requirements and/or goals.

86 CHAPTER 4 Persona Perspective in Agile Projects

However, to the best of our knowledge, there has been no prior application of

personas to architectural design. While both user-interaction design and architectural

design are inherently creative activities there are obvious differences between them.

In particular, a user interface can easily be modified to reflect ongoing user feedback,

whereas inadequate or even incorrect architectural solutions can be difficult and

costly to refactor. Using personas in the architectural design space can reduce these

missteps simply by focusing attention on issues that should be considered in the

project’s early stages.

In the following sections, we describe our approach for engaging personas in the

tasks of discovering ASRs, sketching out the architectural design, and the long-term

preservation of architectural knowledge and system qualities. Our approach is

illustrated with examples drawn from our TraceLab project. In later sections of this

chapter, we provide additional examples in which ASPs are used across a broader

swathe of projects.

4.3 DISCOVERING ASRs
Requirements discovery is best accomplished by including a broad and representa-

tive group of stakeholders. Feature requests can be collected using online forums or

through engaging stakeholders in brainstorming activities and/or interviews.

Our ASP process takes feature requests as a starting point for creatively identifying

a set of personas, each of which represents a distinct perspective on the architectur-

ally significant concerns of the system. Each persona is personalized with a name and

other descriptive characteristics, and also by a set of architecturally significant user

stories. The idea is that the persona must become “real” to the team members so that

they can relate to his or her needs during ongoing design and development. Feature

requests are matched to personas, and the personas are then evaluated for coverage

and distinctness.

The process can be summarized by the four activities of feature collection,

persona creation, persona enrichment, and documentation, all of which are depicted

in Figure 4.2. In the following sections, we describe the main activities of extracting

architectural concerns from feature requests, transforming them into user stories, and

then creating architecturally significant personas.

4.3.1 From features to architectural concerns
Most projects are driven by a collection of feature requests. While there is a tendency

for project stakeholders to focus on systems’ functionality, feature requests provide a

good starting point for eliciting critical architectural concerns. Questions such as

“how fast?,” “how secure?,” or “how available?” are a helpful starting point.

We illustrate our approach by presenting a subset of feature requests, and the

subsequent quality concerns that were identified for our TraceLab project. The

874.3 Discovering ASRs

requirements discovery process for TraceLab initially focused on eliciting feature

requests, of which a small selection is shown in Table 4.1. This table uses a number-

ing scheme that reflects the contributing stakeholder (i.e. JD¼ John Doe) and then

the feature request itself. A feature such as “JC1: Runtime Plug and play of compo-

nents” is clearly architecturally significant. Similarly, a feature such as “JM1: Run

fast” represents a high-level quality concern that is likely to exhibit a major impact

upon the architectural design once it is more succinctly elaborated.

By examining the set of feature requests, we can identify and extract a set of

architectural concerns. For example, the following concerns were identified for

TraceLab.

FIGURE 4.2

The process for exploring architecturally significant user stories and creating meaningful

personas. (a) Collect feature requests, organize them into groups, identify architecturally

significant ones. (b) Select pictures for candidate personas. (c) Assign user stories to each

persona and add detailed, personalized information to bring the persona to life. (d) If desired,

create a project-wide repository of personas. This will aid communication throughout the

remainder of the project.

88 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.2

Table 4.1 A Representative Sample of Initial Feature Requests Showing the Initials

of the Contributing Stakeholder (SH)

SH Feature Request SH Feature Request

JC1 Runtime plug and play of
components

JC2 Write components in C#,
Java, Python

JC3 Users create their own components AS1 Drag and drop components
into an experiment

AC1 Save and retrieve experiments DP1 Share experiments

DP2 Share datasets JH1 Provide standard datasets

DP2 Reuse data DP3 Run experiments against
the same data

JM1 Run fast JM2 Execute on linux

JH2 Run on Windows UP1 I need this to work on
Windows

PM1 My lab uses Linux AZ1 I want to run this onmyMac

UP2 There should be a basic library of
components available

DP3 Researchers should be able
to share algorithms

DP4 I would like to reproduce
experiments from previous papers

JC4 Baseline results from
experiments

JM2 Needs to run as fast as my own
experiments

SA1 Experiments may be
complex

JC5 Cut and paste parts of experiments EK1 Exchange data between
components

AC2 Components written by one
researcher and used in one
experiment should be easily reused

AC3 Creating new components
should be very simple

UP3 New researchers should be able to
get started quickly

SG1 Must be downloadable
onto my own desktop

UP4 Needs to be secure BB1 Proprietary data must be
protected

EK2 Must scale to work on large datasets MH1 Experiments should
support hundreds of
different components

JH4 Installation must be simple SG2 I would like to share
components

SG3 I would like to be able to reuse other
peoples’ components

GL1 Must provide a visual
interface

AC5 Must tell me if there are mistakes in
the design of an experiment

AC6 Must provide runtime
debugging information

JC6 The interface must be professional
looking

EK3 Razzle dazzle of the user
interface

EM1 Must be fast EK3 Must protect my
environment when I run
other people’s components

894.3 Discovering ASRs

Plug and Play:

– Visual interface to support plug and play

– Interchangeable components

– Experiments comprised of multiple components (perhaps created using

different languages)

Multiplatform:

– Must run on Linux, Windows, Mac

Multi-Language and Integration:

– Must support creation of components in a variety of languages, including

C#, Cþþ, Java, Python

– Must integrate with 3rd party tools, such as Stanford Parser, Weka, GATE,

MatLab, etc.

Security:

– Confidentiality of proprietary data

– Protection from malicious components

Performance:

– Scalability (large datasets, many components)

– Fast experiment runtime (should have only a minor performance penalty

over non-TraceLab experiments)

User Interface/Appearance:

– Razzle-Dazzle

– Professional

Debugging Support:

– Runtime debugging of plug-and-play components

4.3.2 Embedding architectural concerns into personas
Our persona-centric approach assigns the responsibility of representing quality

concerns to a carefully defined set of personas. While persona design is a creative pro-

cess and there is no single “right” or “wrong” way to allocate quality concerns to each

persona, we adopted a greedy approach in which we first identified important types of

users and/or other stakeholders, merged similar ones together, and then represented

each of these groups as a persona. Meaningful, architecturally significant user stories

were then assigned to each of the personas. Finally, the complete set of user stories

were evaluated to ensure complete coverage of the most important quality concerns.

In the TraceLab project, requirements were gathered in an initial joint application

design session and augmented through a series of subsequent brainstorming

meetings. Given the competing nature of user requirements and their architectural

significance, the principle investigator (PI) of the project developed a set of personas

and wrote a series of architecturally significant user stories for each one. The

user stories were primarily architectural in nature and addressed issues related to

performance, security, reliability, and so on.

Six personas were created for the TraceLab project. The first persona, “Tom,” is

depicted in Figure 4.1. Tom is a seasoned traceability researcher who has already

established an effective research environment on the Linux/Cþþ platform. His

90 CHAPTER 4 Persona Perspective in Agile Projects

particular concerns include (1) the ability to create components in Cþþ, which is the

language of choice in his research group, and then to integrate them easily into

TraceLab experiments, (2) the need for TraceLab experiments to run as fast as his

current experiments, (3) the need to run TraceLab on Linux, (4) the need to be able

to easily compare results from existing experiments against benchmarks, and finally

(5) the need for publicly available data sets. Tom represents quality concerns related

to language selection, platform selection, and ease of sharing experiments and com-

ponents across research group boundaries. We also created five additional personas.

Jack and Karly are shown in Figure 4.3. For space purposes, we provide only a

summarized form of the remaining personas—Glen,Wayne, andMary—in Figure 4.4.

Karly
Age: 26, PhD Student

Karly is a new PhD student. She is interested in tracing requirements to
software architecture.

She has contacts with a local company who will allow her to access their data
for her experiments; however, this data is proprietary (i.e. protected by an
NDA) and so she cannot share it with anyone else.

She predicts that it will take her about 6 months to set up her traceability
environment, but then she discovers TraceLab. Karly is quite a good
programmer, but is much more interested in the process side of her research.

Fast trace retrieval
Platform selection
Language selection
Reliability
Extensibility
Ease of component upload
Ease of installation
Highly intuitive interface
Extensive document
compatibility
Data confidentiality
Broad adoption

Jack, 34
Architect

Jack is married and has two young children. He has recently been hired by
the TRACY project into the role of software architect/developer. He has 6
years of experience as a software developer and 2 years as a lead architect in
a successful gaming company. He has taken a job on the TRACY project
because he is excited by the challenge of working in a research-oriented
project.

Jack is very motivated to build a high-quality product. Jack has never worked
in an academic research setting before. He is very collaborative and is looking
forward to working with the other developers, academics, and students on
the project.

Fast trace retrieval
Platform selection
Language selection
Reliability
Extensibility
Ease of component upload
Ease of installation
Highly intuitive interface
Extensive document
compatibility
Data confidentiality
Broad adoption

My user stories:
1. I need to be able to maintain confidentiality of my data.
2. I need to be able to create my own components and integrate them with

existing experiments.
3. I need to be able to set up new benchmarks for comparative purposes.
4. I need to be able to program my new components in C#.
5. I need TraceLab to run on Windows.
6. I need visual components to display quickly to the users.

My user stories:
1. I need to develop the TraceLab framework in a language which supports

rapid prototyping.
2. I need the framework language to easily interface with, and call,

components written in other languages.
3. I need the platform to provide natural support for the separation of

model and view components.
4. I need libraries to be available for supporting GUI development.

FIGURE 4.3

Two additional personas identified for the TraceLab project.

914.3 Discovering ASRs

Figure 4.3

The six personas were presented to TraceLab teammembers at our project launch

in the fall of 2010 and used to confirm, modify, and prioritize the quality concerns for

the system. Team members came from five different universities and also included

two industrial consultants.

Once ASR-related user stories were identified for each persona in the project,

they were compiled into a project-wide list containing quality concerns from all

the personas and then summarized in a succinct format as shown on the left-hand

side of Figure 4.1. A simple classification process was then used to mark each quality

concern as high (black), medium (gray), or low (white) importance for each of the

personas.

Our approach takes steps to ensure that the created personas provide full coverage

of important architectural concerns, but does not guarantee this. As depicted in

Table 4.2, a quick analysis of the user stories assigned to each persona versus the

quality concerns extracted from the feature requests shows that the personas are

distinct and provide reasonable coverage of the quality concerns. However, personas

do not need to be entirely static. As initial versions of the software are released, the

feedback elicited from real stakeholders can be used to expand or modify the

personas’ goals and their user stories, or even to add entirely new personas.

From our initial experiences using personas, we found that they provided an

effective way to communicate our current understanding of stakeholder needs and

Tom

Karly

Jack

Glen
Age: 23
MS Student

Glen is an MS student who will
help his advisor build TraceLab
components. This is his first
experience of working on an
open source project. Glen is
looking forward to working with
the other researchers on the
project.

User Stories:
1. I need it to be simple to get

started with my first TraceLab
experiment.

2. I want my experiments to run
on both Windows (at work)
and Mac (at home).

3. I need to be able to create new
components in C# and
integrate them easily into
existing experiments.

4. I need to be able to make calls
to external products, such as
MatLab.

Wayne
Age: 46
Project Mgr
ABC Corp

Wayne is the technical manager
for a very large systems
engineering project. He prides
himself in keeping an eye out for
good ideas that could help his
organization. Wayne wants to
improve the efficiency of
traceability practices in his
organization and is interested in
using TraceLab.

User Stories:
1. I need to be able to install

TraceLab behind my firewall.
2. I need TraceLab to run on

Windows.
3. I need the GUI to be industry-

ready and professional.
4. TraceLab must be almost

entirely bug free.
5. TraceLab must provide fast

processing of very large
datasets.

Mary
Age: 51
Funding
Officer

Mary is the funding officer for
the grant. She is concerned that
the project delivers on time and
ultimately meets all major goals
in terms of adoption, research
advancements, and technology
transfer.

User Stories:
1. I would like to see broad buy-

in of TraceLab from the
traceability community.

2. TraceLab must provide
reduced investment costs for
new traceability research,
enabling productivity much
earlier in the research cycle.

3. As we cannot see into the
future of traceability research,
TraceLab must be able to
evolve to support new ideas so
that it doesn’t become
irrelevant after a few years.

FIGURE 4.4

Complete set of personas identified for the TraceLab project.

92 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.4

served as a starting point for discovering additional constraints, determining

priorities, analyzing tradeoffs, and exploring architectural design solutions. In the

following section, we discuss the role of personas in these design activities.

4.4 PERSONAS FOR DRIVING ARCHITECTURAL DESIGN
Architectural design activities can be conducted individually by project developers

and/or an architect or could be performed collaboratively. In either scenario, the per-

sonas are useful for helping drive the design process. Our approach involves four

primary activities, all of which can be executed concurrently and iteratively as part

of an agile process. The first activity includes transforming quality concerns—as

depicted by the personas’ user stories—into soft goals [2], and then reasoning about

their tradeoffs (see Figure 4.5a). The second activity involves brainstorming, sketch-

ing, and evaluating candidate architectural solutions (see Figure 4.5b). Candidate

solutions are transformed back into candidate operationalizations (i.e. possible

solutions) in the goal graphs. The third activity, conducted concurrently with the first

two, involves evaluating the selected architectural solution against each of the

personas (see Figure 4.5c).

Finally, as depicted in Figure 4.5d, the architectural sketches, goal graphs, and

architectural design decisions can be documented either by taking photographs

to capture the output of the design session or through the use of case tools.

Documenting these models in case tools establishes the infrastructure needed to

allow actual stakeholders to register their interests in specific personas and/or

architectural concerns.

Table 4.2 Informal Coverage Analysis Shows That the Personas’ User Stories Provide

Basic Coverage of all Architecturally Significant Concerns Expressed by the Project

Stakeholders

Tom Karly Jack Glen Wayne Mary

Plug and Play • •

Multiplatform •

Multi-Language &
Integration

• • • •

Sharing •

Security • •

Performance • • •

User Interface/
Appearance

•

Fast Development

Getting Started • • •

Framework •

Extensibility •

934.4 Personas for Driving Architectural Design

As a side note, while we include goal analysis under the general umbrella of

design activities, there is no real division between requirements and architectural

design in agile projects. Requirements must be understood and analyzed within

the context of potential and existing architectural solutions. This synergy between

requirements and architecture is discussed in various papers including Nuseibeh’s

Twin Peaks model [20].

4.4.1 Goal analysis
There are many different approaches for analyzing quality concerns and their trade-

offs. These range from informal techniques, such as the thought process that goes on

inside the head of a single architect, to a more deliberate process in which goals are

modeled and tradeoffs are analyzed with respect to specific architectural solutions.

 Transform quality concerns (captured as
architecturally significant user stories) into
softgoals, and model them and their tradeoffs.

 Sketch out and analyze candidate architectural
solutions.

 Evaluate satisfaction of personas against
architectural design decisions.

 Document architectural decisions and
supporting rationales (either informally through
photos, or more formally using case tools).

a

b d

c

FIGURE 4.5

Personas and their role in architectural design and analysis. (a) Transform quality concerns

(captured as architecturally significant user stories) into softgoals, and model them and their

tradeoffs. (b) Sketch out and analyze candidate architectural solutions. (c) Evaluate satisfaction

of personas against architectural design decisions. (d) Document architectural decisions

and supporting rationales (either informally through photos or more formally using case tools).

94 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.5

In the TraceLab project, we modeled quality goals, tradeoffs, and subsequent

architectural decisions using a Softgoal Interdependency Graph (SIG) [2]. In keeping

with the agile nature of our project, these SIGs were sketched informally on a white-

board. An SIG includes two primary kinds of nodes. Quality goals and sub-goals are

represented as softgoals, while candidate design solutions are represented as opera-

tionalizations (shown with bolded borders). Design decisions are depicted by mark-

ing the selected operationalizations with checkmarks. An SIG supports four different

contribution structures between nodes, depicting the extent to which a lower-level

node contributes towards “satisficing” (i.e. sufficiently satisfying) its parent node.

These contribution structures are depicted qualitatively asþ helps, þþ makes,

� hurts, �� breaks, or ? unknown. Traditionally, SIGS do not show contributions

between operationalizations; however, we included these arcs to show how various

design solutions support each other.

The SIGs depicted in Figures. 4.5a, 4.6, and 4.8 were all sketched on a whiteboard

and used to analyze tradeoffs and potential solutions for the TraceLab project.

4.4.2 Generating and evaluating architectural solutions
Our approach loosely follows SEI’s Attribute-Driven Design process [21], which is

an incremental, scenario-driven design technique that involves identifying quality

attribute scenarios and then proposing and evaluating candidate architectural

solutions.

Each candidate architecture is evaluated to determine the extent to which it sat-

isfies (or satisfices) persona concerns.We adopt a template for each primary concern.

The template lists all relevant persona user stories, evaluates the extent to which each

user story is addressed in the solution, and lists pertinent architectural risks and

planned mitigations. Instances of templates are provided in Figures 4.7 and 4.9.

4.4.3 Examples
As it is difficult to separate out goal analysis from architectural design and evalu-

ation, we illustrate our approach with two all-inclusive examples taken from the

TraceLab project.

Example 1: Achieving Multi-Language Compatibility and Portability. Several
TraceLab personas expressed the need to achieve multi-language compatibility
and platform portability. The SIG in Figure 4.6 shows three primary languages that

were considered for developing the TraceLab framework. Among other responsibil-

ities, the TraceLab framework loads components at runtime, executes experiments,

and displays results. Candidate framework languages included C# with Cþþ / CLI

(to support integration of components written in other languages), Java with JNI, and

an SOA solution. A Cþþ solution was also considered, although not shown, in the

SIG. The SOA solution was rejected because we believed that TraceLab experiments

would include numerous fine-grained components, and that SOA would introduce

too much overhead. Following extensive prototyping of other potential solutions,

954.4 Personas for Driving Architectural Design

the C# option was selected as the leading contender. Unfortunately, this solution was

not immediately conducive to supporting cross-platform portability.

Additional factors were therefore taken into consideration for the language

choice, such as the skill set of the development team (WPF and C#), and the desire

to rapidly produce appealing GUIs. Ultimately, a decision was made to focus on cur-

rent needs first by delivering an initial Windows-based solution using C# and WPF.

However, to support the planned port to Linux and Mac environments, we adopted

the Model View ViewModel (MVVM) architecture and actually split the code in the

view layer into code that could be recompiled onMono for porting purposes and code

that would need to be reprogrammed using either GTK# or Windows Forms.

Integration with
external
libraries

Plug-and-
Play

Compatibility

Adapters for
Matlab, SPSS,..

Framework
support for
components in
multiple
languages

Platform
Portability

WPF

Java (JNI)

C# (IKVM
CLI/C++)

SOA

Time to
market

Use languages
and tools
according to
current skillset of
team

MVVM

Framework portability

Mono

+-+

Razzle
dazzle

+

X X

+

+

-

GUI
portability

+

+

+

+

--

+

+
+

+
Runtime
addition
/removal of
components
from
experiment

+

+
++

Later
Later�

�

+

+ Helps,
++ Makes
- Hurts
- - Breaks

Goal

Subgoal

Operationalization

Key:

+

Design by
Contract

+

+

-

GTK#

�

++

+

FIGURE 4.6

SoftGoal interdependency graph showing major tradeoffs and decisions for achieving

compatibility, portability, time to market, and other project goals. Note that this SIG was

initially sketched informally on a whiteboard and only transformed into a more formal model

for purposes of this chapter.

96 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.6

Team members met over a period of 2-3 weeks to brainstorm and prototype

potential architectural solutions for addressing these quality concerns. Serious con-

sideration was given to three different framework languages: Cþþ (as this was the

preferred language of at least one of our developers), Java (which would be intrin-

sically portable), and C# (which from the perspective and experience of the overall

Decision: Platform/Language

Tom Janet Karly Jack Mary Wayne
Pertinent
user stories:

US 1. The system must run on multiple
platforms � � � �

US 2. Users must be able to write and
integrate components from multiple
languages

� � � �

US 3. The source language of each
component must be invisible at
runtime

�

US 4. The selected language/platform must
support rapid framework prototyping �

US 5. The selected GUI must deliver “razzle
dazzle” � � �

Architectural
Decisions

AD 1. Build framework using VisualStudio.net
and C#.

½ � � � ½ �

AD 2. Develop the initial Windows-specific
GUI in WPF.

AD 3. Utilize MVVM (model view view model)
architectural pattern, so that (a) the GUI
view is loosely coupled and can be later
implemented using GTK or Windows
forms and compiled for multiple
platforms, and (b)
the TraceLab engine can be compiled
using Mono for porting to Linux and
Mac environments.

Risks R 1. The Mono library may not support
latest features of C#. Better support
for Linux than Mac.

Long-running OS project. Initial tests
showed adequate support. Mitigate risk
through frequent Mono compiles
throughout the project.

R 2. Build first for Windows solution may
lead to multiple GUIs to maintain in the
long run.

Decision is deferred as to whether the WPF
version will be maintained or discarded in
favor of a multi-platform GUI over the long
term.

Personal
Impacts

PI 1. Tom & Mary's needs are partially met through this solution. In the long-term,
researchers will be able to use TraceLab in Linux, but early releases will run on
Windows only.

PI 2. All other personas impacted directly by platform/language decisions are positively
impacted by this decision.

FIGURE 4.7

Architecturally significant user stories related to the platform/language issue. Subsequent

architectural decisions and their impact upon the personas are shown.

974.4 Personas for Driving Architectural Design

Figure 4.7

development team was the easiest language for development). Cþþ was discarded

due to the learning curve needed by most of the developers and its anticipated lower

productivity.

A series of architectural spikes were created to test the benefits of using a C#

framework versus a java framework to support the integration of components from

multiple source languages. The results from this phase showed that it was far simpler

to make calls from C# to components written in other languages than vice versa,

which suggested developing the TraceLab framework in C# and then later compiling

it toMono so it could run on other platforms. Future portability issues were addressed

through a series of architectural decisions. For example, the VisualStudio.net en-

vironment provides intrinsic support for the MVVM architectural pattern and

integrates closely with WPF. WPF supports rapid prototyping of professional GUIs,

while the use of MVVM provides a clear separation between view and model and

facilitates future reimplementation in GTK# or Windows Forms for porting to Linux

and Mac platforms. Our design also separated out the WPF code in the views layer

Ease of
constructing
new
components

Concurrent
execution of
components

Blackboard
Architecture

Plug and
Play

Pipeline
architecture

Data passed using
serialization

Usability

Ease of
designing
experiment

Use standard
datatypes

Reliability

Structure
experiments as
precedence graphs
with implicit
opportunities for
concurrent execution.

Multi-
threadingAll data

structures
developed to
be thread-safe

Copy of data passed
to component

Run each
experiment
within its own
AppDomain

X

+ +

-
+

- +

+

+

+
+

+

Performance

-
+ +

-

Dynamic load of
components
+

+

+

Usability

+ +

Data passed
using cloning

X

TraceLab
SDK

Wizard
support

X

�

�

�

�

+ +

+
+

-

X
Service
Oriented
Architecture

�

-

FIGURE 4.8

A second architecturally significant issue related to the way in which components should be

built into an experimental workflow.

98 CHAPTER 4 Persona Perspective in Agile Projects

http://VisualStudio.net
Figure 4.8

(which would need to be rewritten for porting purposes) from the non-WPF code,

which could be compiled using Mono.

Example 2: Achieving a plug and play workflow. Because TraceLab was planned
as a plug-and-play environment, the second iteration focused on exploring the archi-

tectural solutions for achieving a plug-and-play experimental workflow. The quality

goals, subgoals, and candidate architectural decisions were modeled in the SIG,

depicted in Figure 4.8. In this SIG, the usability goal of ease of designing an exper-

iment is explored in more depth.

TraceLab experiments are composed from a series of pre-defined and/or user-

defined components, and therefore the TraceLab architecture needs to support com-

munication between components and to control their execution. Relevant user stories

extracted from the personas included the following:

1. “The TraceLab environment must incorporate plug and play.” (Tom, Janet,
Karly, Wayne)

2. “The performance penalty of using TraceLab must be low (i.e., close to runtime

of non-TraceLab experiments).” (Tom, Janet, Karly, Wayne)

Decision: Workflow Architecture

Tom Janet Karly Jack Mary Wayne
Pertinent
user stories:

US 1. The TraceLab environment must support plug and play.
� � � �

US 2. The performance penalty of using TraceLab must be low (i.e.,
close to runtime of non-TraceLab experiments). � � � �

US 3. Components should be reusable across research groups and
experiments. � �

US 4. Components should run concurrently whenever feasible.
�

Architectural
Decisions

AD 1. Utilize a blackboard architecture.

½ � � �

AD 2. Create standard data types for exchanging data between
components.

AD 3. Construct the experiment around the concept of a
workflow.

AD 4. Support concurrent execution of components.

AD 5. Trust the TraceLab users to create a viable workflow.
Provide basic type checking only.

Risks R 1. Performance may suffer as data is exchanged between
components via shared memory.

Keep the data cache in the same app space
as the experiment to avoid excessive data
marshalling. Stream only critical data, not
entire data structure class.

R 2. If TraceLab users proliferate the creation of data types, then
plug-and-play ability will be lost.

Use community governance to increase the
likelihood of shared use of data types.

Personal
Impacts

PI 1. All personas are satisfied with the plug-and-play solution.

PI 2. The performance penalty will be felt more by Tom, as he already has a functioning tracing environment.
For other researchers, the benefits of the plug-and-play environment and the use of previously defined
tracing components far outweighs the slight performance penalty.

FIGURE 4.9

Architecturally significant user stories and architectural decisions, risks, and impacts related

to the design of the workflow.

994.4 Personas for Driving Architectural Design

Figure 4.9

3. “Components should be reusable across experiments and research groups.” (Tom,
Mary)

4. “Components should run concurrently whenever feasible.” (Tom)

To achieve high performance (i.e. fast execution times), one of the strategies

explored was the use of concurrency through multithreading. One solution for

achieving thread-safety is for all individual data structures to be thread-safe; how-

ever, this is a risky assumption given that individual users can create their own data

structures. It also assigns a significant programming burden onto the users. Instead,

the architectural decision was made for each executing component to be given a copy

of the data and for access to the data to be coordinated through designing the exper-

iment as a precedence graph. Two alternate options were considered for achieving

this goal. Cloning was ruled out because it had a negative impact upon a previous

decision to enable dynamic loading of components by running each experiment

in its own AppDomain. As clones cannot be passed across AppDomains without

serializing them, the basic data serialization option was chosen.

Although this discussion only briefly describes the rationales for the architectural

decisions, it provides a second example that illustrates how personas were taken into

consideration throughout the architectural design process. These user stories and

associated architectural decisions are documented in Figure 4.9. Three different

high-level architectural patterns were considered for connecting components in an

experiment. An early consultant on the project proposed a service-oriented approach

based on his industrial experience as an SOA architect. However, this option was

ruled out because we anticipated that some individual experiments might include

over 50 fine-grained components (a supposition that has since proven to be correct).

The overhead of calling so many services in a SOA environment was deemed to be

prohibitively expensive. The second somewhat intuitive candidate architecture was

the pipe-and-filter architectural pattern [21]. However, while this approach seemed

to initially fit the concept of data flowing through the experiment, an initial analysis

demonstrated that many filters (i.e. components) would in fact be assigned respon-

sibility for the task of transferring data that they did not actually use. While this prob-

lem could be partially mitigated by having all components accept a composite

message (containing self-describing datasets), this approach has the known flaw

of creating ambiguous interfaces that cannot be understood without looking at the

inner workings of the code. Furthermore, this approach would pass on the complexity

of handling data typing to the component builders and could result in relatively large

amounts of data being passed from one component to another. For these reasons, the

pipe-and-filter approach was rejected.

The final architectural pattern we considered, and adopted, was the blackboard

architecture. In this approach, all data is transferred in standard datatypes representing

domain-specific concepts such as tracematrices, artifact collections, and /ormetric con-

tainers. Each component retrieves a copy of the data from a shared memory space (i.e.

the blackboard), processes the data, and then returns the results in standard data formats

back to the blackboard for use by other components. The TraceLab experimental graph

100 CHAPTER 4 Persona Perspective in Agile Projects

represents a precedence graph, and the blackboard controller is responsible for dis-

patching components once the components preceding them in the graph have com-

pleted execution. This design supports parallel computation and therefore also

addresses performance concerns. In fact, once deployed, we found that performance

was still below expectations, but we were able to modify the data-marshaling functions

to achieve Tom’s performance goals. Some of the architectural decisions that contrib-

uted to satisfying the workflow requirements are shown in Figure 4.9.

The Architectural Issues Template shown in Figure 4.9 also documents specific

risks and their mitigations. For example, the decision to defer porting to the Linux

and Mac environments is potentially impacted by Mono’s ability to compile frame-

work code correctly. This risk was partially mitigated through testing Mono on a

variety of projects and through frequent compiles of the growing TraceLab frame-

work into Mono.

Finally, the proposed architectural decisions were evaluated against the ability of

the delivered architecture to meet each of the persona goals. In this case, four of the

personas would be fully satisfied with the solution, while Tom andMary would need

to wait until later in the project for the port to Linux and Mac environments.

However, this solution was determined to be an acceptable trade-off in light of the

tight delivery constraints of the project, the need to build rapid prototypes to address

the difficulty of potentially changing requirements in such a novel research instru-

mentation project, and the ease by which C# code was able to invoke components

written in other languages.

As a follow-up to this decision, it is interesting to note that the solution has now

been successfully ported to the Linux and Mac environments.

4.5 PERSONAS AND ARCHITECTURAL PRESERVATION
Agile development projects are highly iterative. Even though an architecture may

be planned in advance, it is subject to refactoring and change and is therefore likely

to be implemented and delivered incrementally. One of the primary challenges in a

constantly evolving agile environment is to ensure that architectural decisions, and

subsequently the quality of the design, are preserved.

While just-enough design is an underlying principle of agile development, there is a

tendency in all software systems for the design to degrade over time. Engaging relevant

stakeholders in ongoing discussions can therefore be very beneficial during the change

process—especially if new conflicts or potential tradeoffs emerge, or if existing archi-

tectural decisions need to be revisited or new decisions need to be made.

Facilitating round-trip traceability between quality concerns, architectural deci-

sions, rationales, and relevant areas of the code provides critical support for several

aspects of the software engineering process, including change impact analysis, require-

ments validation, safety-case construction, and long-term system maintenance. For

example, practice has shown that architectural erosion often occurs when developers

make changes to the code without fully understanding the underlying architectural

1014.5 Personas and Architectural Preservation

decisions and their associated quality concerns [22]; however, if trace links are avail-

able, they can be used to keep developers informed of underlying architectural deci-

sions in order to reduce the likelihood of undermining previous strategic design

decisions [23,24]. It is particularly important to trace architectural decisions in

safety-critical systems because these decisions often help mitigate potential risks

and ensure that the system will operate safely [25].

To be most effective, architectural preservation needs effective tool support. We

present two different tools here. As depicted in Figure 4.10, we first instrument the

agile environment to provide support for event-based traceability (EBT) [26], and

second we introduce our tool Archie, which establishes traceability between code

and architectural decisions and is used to keep developers informed of underlying

architectural concerns during the change maintenance process. Together, these

Instrument the environment. Here, our Archie c

d

a

b

tool is used to monitor architecturally critical areas
of the code.

Use trace links to support development tasks,
such as change impact analysis.

Create lightweight and flexible trace links using
Event Based Traceability (EBT) subscriptions.

Maintain lightweight strategic documentation of
personas, concerns, and goals as changes occur.

fast, secure,
safe, portable

Actual
stakeholders

Architecture
and Design

Personas

EBT
Code

safety

+

Goals

FIGURE 4.10

Personas and their role in architectural preservation. (a) Create lightweight and flexible trace

links using Event Based Traceability (EBT) subscriptions. (b) Use trace links to support

development tasks, such as change impact analysis. (c) Instrument the environment. Here,

our Archie tool is used to monitor architecturally critical areas of the code. (d) Maintain

lightweight strategic documentation of personas, concerns, and goals as changes occur.

102 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.10

two techniques provide lightweight round-trip traceability between stakeholders,

personas, key architectural decisions, design, and code, which can effectively be

used to preserve architectural knowledge and to maintain the underlying qualities

of a software-intensive system.

4.5.1 Trace by subscription
EBT enables a stakeholder, or even an object, to subscribe to any registered artifact

to receive notifications when a change event occurs. EBT provides a very light-

weight and flexible approach for establishing strategic trace links. While traditional

traceability methods tend to introduce unwanted overheads into agile projects, a

registration-based scheme such as EBT enables the strategic creation of useful links.

For example, if a stakeholder feels a particular connection with any of the personas,

he/she can subscribe to that persona and change notifications will be sent to the stake-

holder if the persona or its interests are impacted by a change. In turn, the persona or

its individual user stories could subscribe to an architectural decision, and an archi-

tectural decision could subscribe to specific sections of code. Using this approach,

there is no attempt at full trace coverage; instead, useful trace links are established

using a lightweight approach. Our Archie tool [15,27] is implemented as an Eclipse

plugin and provides full lifecycle traceability between stakeholders, goals, and code.

If used strategically, Archie can send alerts to developers if they start to implement

changes in architecturally sensitive areas of the code.

4.5.2 Generating persona-centric perspectives
By instrumenting the project environment, it is possible to use EBT links to generate

interesting and useful views of the system. For example, Figure 4.11 shows a top-

down view of parts of the system (including goals and implementation) that are

of interest to Tom. Similarly, Figure 4.12 (discussed shortly), provides a bottom-

up perspective that originates with a proposed change to a specific area of code

and that bubbles up to show the personas’ quality concerns that are potentially

impacted by the change. Furthermore, the subscriptions of real stakeholders to per-

sonas means that actual stakeholders can be identified and, if necessary, engaged in

the discussions.

4.5.3 Examples
To illustrate these points, we present two concrete examples of changes which were

considered and/or ultimately implemented in TraceLab, and then describe how the

change impact analysis was supported through our use of personas.

Change Proposal 1: Eliminating an Architecturally Significant Requirement.
Given our initial decision to build for Windows first, and based on our observation

that almost all of our early adopters had managed to work effectively in theWindows

environment, one of the lead developers asked us to consider abandoning the

1034.5 Personas and Architectural Preservation

requirement to port to Linux and Mac platforms. The EBT system allowed us to

quickly and simply identify all stakeholders who had registered an interest in the

decision “Windows first, port later,” and garner their feedback. The fact that five dif-

ferent personas (i.e. Tom,Karly,Glen, Jack, andWayne) had user stories related to the

choice of platform suggested that this was an impactful issue. By tracing the contri-

bution structures back to the originating stakeholders (JH, JM, PM, etc.) and asking

these stakeholders for their opinions, we determined that porting to Mac and Linux

was still of the highest priority. In fact, we found that Linux andMac users were feel-

ing slightly disenfranchised with the Windows-only version. The multiplatform port

was therefore reprioritized and in fact became the focus of the final phases of the

project.

Issue 2: Creating a cross-platform GUI. To support the cross-platform port, we

needed to re-implement the WPF code in either WinForms or GTK#. Our existing

architectural design had already separated the View code into two distinct layers

(i.e., code that could be compiled in Mono, and code that needed to be repro-

grammed). We ran several tests (i.e., architectural spikes) to ascertain the degree

of compatibility both candidate solutions would have with various platforms and

found that only GTK# worked seamlessly in our application. WinForms had some

Performance

Language
compatibility

IKVM
(C#)

+

+ +

�

Wizards for
supporting
component
writing in
multiple
tools

Concurrent
execution of
components

Structure
experiments as
precedence graphs
with implicit
opportunities for
concurrent execution

Thread-
safe Multi-
threading

++

+
Copy of data
passed to
component
using
serialization

Platform
Portability

GTK# Mono

GUI
portability

LaterLater

Framework
portability

Tom

+

+ + + +

FIGURE 4.11

Utilizing trace links to demonstrate how the system addresses stakeholder /persona

concerns.

104 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.11

problems running on the Mac that were related to our use of dynamic loading, the

separation of the framework, and the running experiment into two AppDomains.

On the other hand, it was much harder to achieve our “razzle dazzle” goal using

GTK#.We traced this concern back to a single stakeholder (EK), who happened to be

a developer and not an actual user. It turned out that our actual users were far more

interested in functionality than in “razzle dazzle,” and that the GTK# GUI fully met

our users’ needs.

4.6 ASPs IN OTHER PROJECT DOMAINS
To date, we have used ASPs in the TraceLab project and in a Mechatronics Trace-

ability Project [28]. We have also introduced the concept into our requirements engi-

neering and software architecture classrooms where our students have developed

personas for a broad range of application domains. In this section, we therefore present

Ease of
constructing
new
components

Concurrent
execution of
components

Blackboard
Architecture

Plug and
Play

Pipeline
architecture

Data passed using
Serialization

Usability

Ease of
designing
experiment

Use standard
datatypes

Reliability

Structure
experiments as
precedence graphs
with implicit
opportunities for
concurrent execution

Multi-
threading

All data
structures
developed to
be thread-safe

Copy of data passed
to component

Run each experiment within
its own AppDomain

X

+ +

-
+

- +

+

++
+

+

Performance

-
+ +

-
Dynamic load of
components+

+

+

Usability

+

+

Data passed
using cloning

X

TraceLab
SDK

Wizard
support

X

�

�

�

�
+

+

-

X
Service-
Oriented
Architecture

�

-

EBT

EBT
EBT

EBT

Individual
stakeholders
registered to
Karly persona
via EBT

Tom

Karly

FIGURE 4.12

A traceability view which utilizes goal sketches, personas, and EBT to retrieve the rationale

behind the separate “AppDomain” decision. This information enables architects and/or

developers to make informed decisions during the maintenance process.

1054.6 ASPs in Other Project Domains

Figure 4.12

the personas that were created for three additional projects in order to demonstrate the

broader applicability of our approach.

4.6.1 Mechatronics traceability
The Mechatronics Traceability project was conducted by a team at DePaul in

conjunction with our industrial collaborators [28]. In mechatronics systems, core

concepts and designs are often documented across multiple systems engineering

models, each of which might depict a single viewpoint or perspective of the system.

Models include requirements, software components (e.g., design, code, and test

cases), electrical components, thermodynamics, and mechanical components.

Furthermore, although each of these perspectives is modeled in isolation from one

another, they often interact to produce the final behavior of the mechatronics system.

For example, electronic sensors might monitor temperatures or fluid movements in

a thermodynamic model and generate digitized messages that are processed by a

software component to produce signals that control the behavior of mechanical

components. In this type of complex mechatronics environment, changes in one part

of the system can have significant and sometimes adverse impacts in other parts of

the system.

By capturing dependencies and associations across various models as traceabil-

ity links, it is possible to support engineers as they evaluate the potential impact

of proposed changes in requirements or in one of the design or simulation models.

Although it is quite possible to achieve this through creating and maintaining trace-

ability matrices, this task can add significant overhead to the project and is there-

fore unlikely to be a viable option on the scale needed for effective mechatronics

systems.

Furthermore, in mechatronics systems the traceable documents are likely to be

distributed across multiple tools. Each tool may store the model in its own proprie-

tary format, using domain specific notations, and may be located on separate, and

perhaps remotely located, servers. These realities create challenges related to coor-

dination, data access, and query formulation. First, trace links need to be coordinated

across multiple, potentially dispersed models. Second, data stored in proprietary for-

mats needs to be accessed and shared in either a centralized or distributed model.

Finally, trace queries need to be formulated and then interpreted by individual case

tools so correct results can be retrieved.

To better understand the quality concerns and to ensure that the architectural

solution would meet stakeholders’ needs, we created the four personas depicted in

Figure 4.13. Elaine is a mechanical engineer who frequently uses Pro/e to create

physical models. She plans to use the mechatronics traceability system to help ensure

that her models are in compliance with numerous regulatory codes. She is particu-

larly concerned with performance because she knows that the requirements for her

system are stored in a remote repository, and she doesn’t want to slow down her

modeling activities waiting for search results to be returned. She is also concerned

106 CHAPTER 4 Persona Perspective in Agile Projects

with access control. While she needs to access the baselined version of the require-

ments specification, she wants to maintain strict control over who accesses her cur-

rent models. John is a compliance officer whose interests include gathering and

collating up-to-date, correct information into a variety of reports. Les is the lead

architect for the project and has concerns related to performance, security, and adapt-

ability. In particular, he realizes that the system must grow with the changing enter-

prise and must support new case tools as they are adopted by various engineers.

Finally, Mary is a requirements engineer responsible for eliciting, specifying, and

managing requirements. These requirements are central to the mechatronics trace-

ability system. Together, these four personas brought a rich overview of quality con-

cerns to the design process.

Figure 4.14 explores one of the key decisions in building a centralized solution in

which traceable data is regularly pushed by its owners to the trace engine server. A

set of architecturally significant user stories raised performance issues related to data

retrieval, processing of data, and visualization of the results. The analysis showed

that the proposed architectural solution satisfies all four personas’ quality concerns.

One interesting observation is that the quality concerns that emerged for the

mechatronics traceability system are quite different from those that emerged for

the TraceLab project. While TraceLab concerns focused around platform portability

and programming language support, the mechatronics system concerns focused on

confidentiality of data, extensibility, and trace query response time.

FIGURE 4.13

Four personas from the mechatronics traceability project. This project involved building a

prototype enterprise-wide tracing tool that provided trace retrieval services across

heterogeneous systems engineering modeling environments. Primary concerns were

extensibility (to integrate with new case tools), performance, and security.

1074.6 ASPs in Other Project Domains

Figure 4.13

4.6.2 Online trading
The second example covers the domain of online trading (Figure 4.15). For this pro-

ject, we created personas but did not design or develop the corresponding system. It

was created as part of a class exercise and is based on a real case study of the Mitsuho

trading company in Japan [29]. Four personas were created representing quality

concerns of transaction control, ability to undo an incorrect transaction, rigorous

UI controls to prevent bad transactions, real-time monitoring, confidentiality, and

non-repudiation.

4.6.3 Bond, James Bond
Our last example, shown in Figure 4.16 and created as part of a class exercise,

presents a set of personas for an imaginary communication device for Spies R Us.

Quality concerns include look-and-feel, accuracy of GPS, accuracy of speech recog-

nition, and platform issues. Again, the system was neither designed nor developed,

but the personas demonstrate the viability of applying our approach across yet

another domain.

Goal Achieve fast trace query response time
Elaine John Les Mary

Pertinent user
stories:

US 1. Results from trace queries must be returned within 30
seconds. · · · ·

US 2. The trace engine must process queries against very large
datasets (see assumptions for size). ·

US 3. The trace query engine must allow a single query to access
multiple datasets and collate the results. ·

US 4. The trace engine will be integrated with globally distributed
3rd party case tools. ·

US 5. Trace results must be displayed in a visual way using forms and
graphs. · ·

US 6. Trace data must be exchanged across heterogeneous tools
which store their data in a variety of ways (such as
heterogeneous databases) and have individual APIs.

·

US 7. Access to trace data must be controlled at the model level. · · ·
Architectural
Decisions
impacting this
goal

AD 1. The system will be built around a single centralized trace
engine with a supporting data repository.

� � � �

AD 2. Data will be pushed to a centralized trace repository as new
model versions become base-lined.

AD 3. Indexed data will be updated as new traceable data is received
by the trace engine.

AD 4. Access to trace data will be controlled by the central Trace
server.

Risks R 1. The data may become stale. Engineers may need to trace
against the current model (even if not yet base-lined).

More frequent updates for
certain models. Feature for
refresh request.

R 2. Bottleneck, single point of failure. Expected query load is not
excessive. Downtime is tolerable.

FIGURE 4.14

Architectural solutions for achieving fast response time in the mechatronics traceability

system are evaluated with respect to the created personas.

108 CHAPTER 4 Persona Perspective in Agile Projects

Figure 4.14

4.7 CONCLUSIONS
In this chapter, we have introduced the notion of using ASPs as an integral part of the

architectural design process within a highly iterative agile development process.

ASPs were used to prioritize ASRs, and then to drive and evaluate the architectural

Mark
Investment Banking
Professor

Marta
Developer

Tim
Trader
Enter buy/sell orders on
Fidessa, GUI control to
prevent sell/buy errors,
fast transaction
cancellations.

Alerts when sell/buy <
30% market price,
real -time monitor trans.
on brokers screens.

Exchange analytics engine.
Security. Non-repudiation
of trades.
Fast response time when
trade is placed.

Nielson is married and has four children. After three years of working
for the Australian Embassy in Japan, Neilson joined the Tokyo Stock
Exchange as Manager of Operations. He has been working with TSE for
seven years now. Nielson monitors the interactions of investment
banks and brokerage firms with TSE to ensure that transactions are
completed correctly.

Nielson is a highly educated individual with two master’s degrees in
economics and business administration, as well as a PhD in finance. He
thrives on hard work and executes it with great precision. He believes
that there is no room for mistakes in his line of work.

My user stories:
1. I need the TSE system to deliver on-time transactions from

investment banks.
2. I need the TSE system to inform me of any transactions

(selling/buying) at 30% or less of market prices.
3. I need the TSE system to display broker information and contact

numbers for any investment bank selling/buying at less than 30% of
the market value.

4. I need to be able to immediately stop the sale of stocks when an
error is discovered.

My anti-stories:
1. I will not use a system that is unable to cancel erroneous

transactions.

-+30% transaction alert.
Confirmation screen
Cancel transaction
-+30% transaction clearance
Auto outgoing calls
Monitor broker screens
Halt error sales
System demo
On-time transaction
“what if” exchange

Nielson
Stock Market Manager
of Operations

FIGURE 4.15

Personas for a financial trading application created by Niza Alahmadi as part of requirements

engineering coursework at DePaul University.

Hugh

Mindy Penny

James
Look-and-feel (like
ordinary watch),
accurate response to
voice commands,
accurate GPS,
physically robust.

Fast data delivery,
accurate speech
recognition, compatible
with OSX, iOS, and
Android, <5 sec recovery
from failure, run on
quantum HW.

Run on GOOGLE Nexus
10 tablet, earpiece must
be clear, accuracy of
maps, real-time GPS
location, reliability.

Mel is the head of the Spies R Us Secret Service. Her job requires that
she have the very latest intelligence data possible to help her make
informed decisions. She also has a deep desire to keep track of her
greatest asset, James, by being able to locate him anywhere in the
world. She is counting on the HMR-TOE* System to provide this, as
well as the ability to communicate with James in real-time when
necessary.
Mel is not always at the office, so her piece of the HMR-TOE system
must be accessible from her mobile device.

My users stories:
1. I need the system to be able to track James’ location with ultra-

high precision.
2. I don’t want to have to type commands. Barking orders is what I

do, so that’s what the system bloody well should understand.
3. I need the system to provide real-time communication.
4. While I need to be able to use from anywhere, I would prefer

using it on my MacBrook Pro or from my iPad.

My anti-stories:
1. I will never approve of this system if it is not secure. I cannot

afford to have the enemy listening in on my conversations with
James.

2. I want to be able to either have the data made easier to read, or
have it read to me. My eyes aren’t what they used to be.

Fast data retrieval
Highly intuitive interface
Secure communications
Data security
Reliability
Ruggedness
Ease of use
Real-time location data
Watch-like appearance
Voice Recognition
Extensive map data
OS X Compatible
IOS Compatible
Android OS Compatible

Mel
Head of Spies R Us

FIGURE 4.16

Personas for an imaginary spyware communication device created by Eric Benedict as part of

requirements engineering coursework at DePaul University.

1094.7 Conclusions

Figure 4.15
Figure 4.16

design. ASPs originated from practices we adopted in our own agile project where

they proved useful for exploring quality concerns, tradeoffs, and for proposing and

evaluating architectural design solutions.

Like all design techniques, our ASPs are more applicable to some projects than

others. ASPs are most useful in projects with clearly defined stakeholders, poten-

tially conflicting quality concerns and tradeoffs, and where the best architectural

solution is not entirely obvious at the start of the project. We suspect that our

approach would have far less value in domains for which architectural solutions

and their tradeoffs are well understood. On the other hand, our approach is ideally

suited to agile development processes because it provides a lightweight technique

for “just enough,” “just in time” exploration of architectural concerns while allowing

the architecture to be constructed and delivered incrementally throughout the life-

time of the project.

Acknowledgments
The ideas discussed in this chapter were developed in part by work conducted under National

Science Foundation grants CCF-1265178 and CCF-0959924.

References
[1] Chen L, Babar MA, Nuseibeh B. Characterizing architecturally significant requirements.

IEEE Softw 2013;30(2):38–45.

[2] Chung L. Non-functional requirements in software engineering. Norwell, MA: Kluwer

Academic Publishers; 2000.

[3] Glinz M. A risk-based, value-oriented approach to quality requirements. IEEE Softw

2008;25(2):34–41.

[4] Mirakhorli M, Cleland-Huang J. Tracing non-functional requirements. In:

Cleland-Huang J, Gotel O, and Zisman A, editors. Software and systems traceability.

London: Springer-Verlag; 2011.

[5] Ameller D, Ayala CP, Cabot J, Franch X. How do software architects consider

non-functional requirements: an exploratory study. In: RE; 2012. p. 41–50.

[6] Boehm BW, Egyed A, Port D, Shah A, Kwan J, Madachy RJ. A stakeholder win-win

approach to software engineering education. Ann Software Eng 1998;6:295–321.

[7] Gilb T. How to quantify quality: finding scales of measure. ICSOFT, vol. 1; 2006.

[8] Robertson S, Robertson J. Mastering the requirements process. Boston: AddisonWesley;

2006.

[9] Cohen M. Non-functional requirements as user stories. Mountain Goat Software, http://

www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories.

[10] Gilb T, Cockburn A. Point/counterpoint. IEEE Softw 2008;25(2):64–7.

[11] Mirakhorli M, Cleland-Huang J. Traversing the twin peaks. IEEE Softw 2013;30(2):

30–6.

[12] Cleland-Huang J. Meet Elaine: a persona-driven approach to exploring architecturally

significant requirements. IEEE Softw 2013;30(4):18–21.

110 CHAPTER 4 Persona Perspective in Agile Projects

http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0045
http://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
http://www.mountaingoatsoftware.com/blog/non-functional-requirements-as-user-stories
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0060

[13] Cleland-Huang J, Czauderna A, Keenan E. A persona-based approach for exploring

architecturally significant requirements in agile projects. In: REFSQ; 2013. p. 18–33.

[14] Keenan E, Czauderna A, Leach G, Cleland-Huang J, Shin Y, Moritz E, et al. Tracelab: an

experimental workbench for equipping researchers to innovate, synthesize, and compar-

atively evaluate traceability solutions. In: ICSE; 2012. p. 1375–8.

[15] Cleland-Huang J, Mirakhorli M, Czauderna A, Wieloch M. Decision-centric traceability

of architectural concerns. In: Traceability in emerging forms of software engineering;

2013.

[16] Cooper A. The inmates are running the asylum. In: Software-Ergonomie; 1999. p. 17.

[17] Nielsen L. Personas—user focused design. Human-computer interaction series, vol. 15.

London: Springer; 2013.

[18] Putnam C, Kolko BE, Wood S. Communicating about users in ictd: leveraging hci

personas. In: ICTD; 2012. p. 338–49.

[19] Dotan A, Maiden NAM, Lichtner V, Germanovich L. Designing with only four people in

mind?—a case study of using personas to redesign a work-integrated learning support

system. INTERACT, vol. 2; 2009. p. 497–509.

[20] Nuseibeh B. Weaving together requirements and architectures. IEEE Computer 2001;34

(3):115–7.

[21] Bass L, Clements P, Kazman R. Software architecture in practice. Upper Saddle River,

NJ: Addison Wesley; 2003.

[22] Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. Does code decay? Assessing the

evidence from change management data. IEEE Trans Softw Eng 2001;27(1):1–12.

[23] Cleland-Huang J. Towards improved traceability of non-functional requirements. In:

Traceability in emerging forms of software engineering; 2005.

[24] Mirakhorli M, Shin Y, Cleland-Huang J, Çinar M. A tactic-centric approach for automat-

ing traceability of quality concerns. In: ICSE; 2012. p. 639–49.

[25] Cleland-Huang J, Heimdahl M, Huffman Hayes J, Lutz R, Maeder P. Trace queries for

safety requirements in high assurance systems. In: International working conf. on

requirements eng.: foundation for software quality; 2012.

[26] Cleland-Huang J, Chang CK, Christensen MJ. Event-based traceability for managing

evolutionary change. IEEE Trans Softw Eng 2003;29(9):796–810.

[27] Mirakhorli M, Cleland-Huang J. Using tactic traceability information models to reduce

the risk of architectural degradation during system maintenance. In: Proceedings of

the 2011 27th IEEE international conference on software maintenance, ICSM’11.

Washington, DC: IEEE Computer Society; 2011. p. 123–32.

[28] Czauderna A, Cleland-Huang J, Berenbach B. Just-in-time mechatronics traceability.

Siemens White Paper 2010;1–56.

[29] Tamai T. Social impact of information system failures. IEEE Computer 2009;42

(6):58–65.

111References

http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00028-9/rf0145

CHAPTER

Architecture Decisions:
Who, How, and When? 5

Jan Salvador van der Ven* and Jan Bosch
{

*Factlink, Groningen, The Netherlands
{Chalmers University of Technology, Gothenburg, Sweden

CHAPTER CONTENTS

5.1 Introduction .. 114

5.2 Research Methodology .. 115

5.3 The Agile Architecture Axes Framework .. 116

5.3.1 Who Makes the Architectural Decisions? ..117

5.3.2 What Artifacts Are Used to Document the Decision?118

5.3.3 What is the Feedback Loop of an Architectural Decision?119

5.3.4 Summary of the Axes ...120

5.4 Industrial Cases .. 121

5.4.1 Case Alpha ..121

5.4.1.1 Phase One ..121

5.4.1.2 Phase Two ..122

5.4.1.3 Shifts ..122

5.4.2 Case Beta ...122

5.4.2.1 Phase One ..123

5.4.2.2 Phase Two ..123

5.4.2.3 Shifts ..123

5.4.3 Case Gamma ...124

5.4.3.1 Phase One ..124

5.4.3.2 Phase Two ..124

5.4.3.3 Shifts ..124

5.4.4 Case Delta ..125

5.4.4.1 Phase One ..125

5.4.4.2 Phase Two ..126

5.4.4.3 Shifts ..126

5.4.5 Case Epsilon ...126

5.4.5.1 Phase One ..126

5.4.5.2 Phase Two ..127

5.4.5.3 Shifts ..127

5.4.6 Overview ...127

113

5.5 Analysis ... 128

5.5.1 Mapping the Cases to the Triple-A Framework128

5.5.2 Identified Problems ...129

5.5.3 Summary ..130

5.6 Reflection ... 130

5.6.1 Findings ...131

5.6.2 Questions of Validity ..131

5.7 Related and Future Work ... 132

5.8 Conclusions .. 133

Appendix A Visual Representation of the Case Studies Mapped on the

Triple-A Framework .. 133

5.1 INTRODUCTION
In the past decade, the creation of software systems has changed rapidly. Traditionally,

long-lasting waterfall projects (>2 years) were standard, whereas now rapid develop-

ment (<3 months) with fast-changing requirements is becoming the norm for creating

software products. In both cases, the architecture of the system has to be taken into

account, although when, how, and who is responsible differs significantly. Formerly,

experienced architects created models and documentation for the system beforehand,

so the development team had a solid base of decisions on which to build. Nowadays,

in more agile projects, the architectural decisions are made just in time by the develop-

ment team itself, often assisted by a participating architect. Alternatives for heavy

template-based documentation, likewikis or photos, are used to document the decisions.

This leads to a change in responsibilities, and in the role, of the architect. The

responsibilities for the architectural decision process shift from the formal architect

on one hand to the development team on the other hand. The architect takes on more

of an advisory servant role within the project, often participating in the development

team as a designer or developer. This difference, and thereby the newly needed align-

ment between agile and architecture is the topic of this chapter.

In recent research, architecture in agile software development has been a topic of

hot debate [1,2]. While some authors emphasize the importance of architecture with

Agile [3], others have described their experiences with Agile in product lines [4,5].

This chapter contributes to the debate by presenting a framework that helps in iden-

tifying alignment problems in agile and architecture. Our framework is validated by

case studies.

We have conducted a literature search on architectural decisions, the role of the

architect, and how these decisions are documented. On the basis of this search,

together with our own experiences, we constructed our Triple-A (Agile, Architec-

ture, Axes) Framework. This framework identifies three different axes. The first

axis describes the person making the decision (often called the architect). The sec-

ond axis shows the way in which the architectural decisions are communicated

(e.g., the artifacts used). The third axis describes the length of the decision feedback

loop, the periodicity of a decision. We show that these axes can be used to profile a

114 CHAPTER 5 Architecture Decisions: Who, How, and When?

project or case study and that positions on these axes can be indicators for the

success of a project.

The contribution of this chapter is twofold. First, we present a framework that

helps project teams and software development organizations understand how they

handle architecture. Second, we provide case study material that shows the effects

when changing the architecture decision process. This helps organizations that are

gaining agility identify what points of their architecture process need improvement.

The next section describes the research methodology used, followed by a descrip-

tion of our Triple-A Framework. Then our industrial cases are described. On the basis

of our evaluation of the shifts in these cases and their resulting effects on business,

the Tripe-A Framework is validated in Section 5.5. This chapter ends with related

work, reflections on further research, and conclusions.

5.2 RESEARCH METHODOLOGY
We took the following steps to create the theory presented in this chapter. (1) During

our participation in the industrial cases, we iteratively discovered changes in our case

studies (for the good or the bad). (2) To emphasize the changes (described as shifts in

Section 5.4), we have taken two points in time per case study and described the

differences at each. We made the discovered changes explicit and categorized them.

(3) Triggered by our experience while working on our cases, we conducted a thorough

literature search of related projects andmodels. By generalizing our research and expe-

riences, we created the axes that are the core of our Triple-A Framework. (4) We val-

idated our framework with our case study material. (5) Finally, we identified several

problems that occurred in our case studies and related them to changes in our model.

In our case studies, we used comparative multicase analysis methodology [6].

Our initial theory building and measurement is done as an iterative process during

the full period of all the case studies. We used longitudinal case studies for a period

of time ranging from 9 to 48 months, where the qualitative data obtained by the par-

ticipant observer complemented, in some cases, interviews with key participants in

the project or product development team. In other cases the qualitative data was dis-

cussed with participants of the projects to validate the findings.

For each case, the research started with a discussion about what happened during

the case, resulting in the descriptions in Section 5.4. Two phases were identified,

resulting in shifts that were rated according to business impact. While some of

the cases involved positive shift, other cases showed a negative shift between the

phases. These shifts were used to validate our research-based Triple-A Framework.

To determine the business impact of the shifts in the case studies, three success

factors were used:

• The return on investment (profit minus investment cost)

• The speed of the project (whether the project progressed as scheduled and

finished on time)

• The quality of the delivered project (whether the customer and the team were

satisfied with the quality)

1155.2 Research Methodology

The return on investment is measured by the success of the projects: Did the pro-

ject actually deliver? What were the investments and the cost? This evaluation was

done after the fact and based on estimations of the researchers who participated in the

project because first-hand financial data was not available to them. The speed of the

project was measured by the speed of delivery of functionality (or changes in case of

bugs) as perceived by the participant observer. The researchers based their quality

assessment on discussions with customers and project team members.

The cases we use as a basis of our theory are not selected at random. From our

experience, other cases could have been chosen. However, as stated in Ref. [6], in

case study research it is “neither necessary nor preferable to randomly select cases.”

We have selected the cases that contained the clearest shifts, as described in

Section 5.4. The cases are similar in that they all involved relatively small, collocated

teams facing complex, real-life problems, but they involve a variety of situations—

from a small product company (case Epsilon), to small projects at large companies

(case Beta), to moderate-size projects at large customer sites (cases Alpha and

Gamma), to a large company changing its way of working (case Delta). Three of

the cases primarily involved the development of new products (Alpha, Beta,

Gamma), whereas two involved evolution and maintenance of the running system

(Delta, Epsilon) in addition to the creation of new functionality.

5.3 THE AGILE ARCHITECTURE AXES FRAMEWORK
In software architecture literature, many models are used to describe the software

architectural decision process. For example, different models [7], templates [8],

or ontologies [9] are used to describe architectural knowledge. Several authors have

compared the ability of available models to process architectural design decisions.

For example, De Boer et al. [7] describe a “core model” for architectural knowledge.

They present a model and validate it through interviews and by testing it against

existing models in the literature. Bu et al. [10] analyzed nine different approaches

for describing design decisions. Such topics are beyond the scope of this chapter;

however, we have seen that there are three essential aspects of the architecture cre-

ation process that are rarely thoroughly described

• The Architect. In architectural knowledge literature, the architect is referred to as
the person responsible for the architecture, or the person who makes the architec-

tural decisions. However, who this person is and what his or her skills are, are

rarely discussed. And the effects of these skills on the results of the project

are also seldom written about.

• Artifacts. This term is often used as an abstraction of all things that are

created during the architecture development process. Examples of artifacts

that are mentioned are documents, models, or source code. However, the

effects of the types of artifacts used on the outcome of a project are rarely

researched.

116 CHAPTER 5 Architecture Decisions: Who, How, and When?

• Periodicity. The “decision loop” [7] describes how decisions lead to new deci-

sions based on the alternatives chosen. However, the periodicity of the decisions

is rarely described. What is the length of time between the actual decision and the

resulting validation of that decision in the quality attributes that the system needs

to comply to?

The Triple-A Framework consists of three axes for describing where the decision

process can differ in projects or companies. Each axis focuses on a different aspect of

the architecture decision process as described above. In the following subsections,

each axis is discussed by first describing relevant literature, followed by the points

that we identified on the axis.

5.3.1 Who makes the architectural decisions?
Although there has been some debate about the role of the architect [11], in most

literature concerning architectural design decisions or architectural knowledge the

term architect is used but not well defined. For example, in the survey about archi-

tectural knowledge [7], the term architect(s) is used 11 times, without defining who

this person is or mentioning this person in the described core model. In another sur-

vey [10], the term is only used three times, again without a definition or explanation.

In [12], the work of architects is described, based on a survey conducted with a large

group of architects. The authors mention that they included architects of different

types in their research (“. . .including software, IT, solution, enterprise, and infra-

structure architects”), but do not mention what the exact skills are or what effect

a certain architect could have on the project. Kruchten [11] emphasizes that the archi-

tect has a broader role than just making the architectural decisions. In this chapter, we

focus on the actual decision-making, not on the other things architects do.

Often, we have seen that people other than the formally assigned architects make

architectural decisions. For example, the product owner (customer or domain-related

decisions) and the development team (technical decisions) are heavily involved in,

and sometimes responsible for, the architecture decision process. We have extended

the scopes for architects described in [13] (Enterprise, Domain, Application) with

two additional roles we encountered in our industrial cases (Management, Develop-

ment Team). Note that the described roles are not one-to-one mappings to position

names. They should be interpreted more as baskets for skills that a person with this

role possesses.

• Management: Management can consist of company or project managers. Man-

agers can have significant influence on the architecture decision process. How-

ever, the main focus of management is on project properties (on-time, in-scope).

Typically, management lacks knowledge of the actual technical background of

the system or the customer’s specific functional demands. Because management

often has a high position in the hierarchy of the organization, its decisions are

hard to debate.

1175.3 The Agile Architecture Axes Framework

• Enterprise Architect: Enterprise or solution architects are typically responsible

for the decisions at enterprise scope [13]. They often have a thorough background

in theory and sometimes in practice.

• Domain Architect: Domain architects [13] are often customer-employed people

who have thorough understanding of what the customer actually needs. The role

of product owner is typically existent in Scrum [14] projects. This person func-

tions like a domain expert, but is not necessarily part of the customer organization,

and is often close to the team. Domain experts or product owners are often respon-

sible for architectural decisions that have a high functional impact.

• Application Architect: The application architect [13] is typically an architect that
also writes code as a team member. To make the right technical architectural

decisions, he or she must have up-to-date knowledge. Typical role names that

we encountered for these people are senior developer or technical architect.

• Development Team: The development team consists of the people involved in the

actual designing, coding, testing, and deploying of the system. This includes peo-

ple with architecting skills. The responsibility of the decisions lies with the whole

team, in contrast to the previous roles.

Although often more than one role is involved in the decision process, in our

experience there usually is one (sometimes assigned) role that has the formal or

informal responsibility for making the decisions. The “who” axis describes who

the main responsible person (or persons) is (are) for the architecture decision process.

5.3.2 What artifacts are used to document the decision?
Architectural design decisions are often traceable to, or represented in, artifacts.

Many authors use the term artifact [7,9] to describe that the decisions have a repre-

sentation somewhere. Some authors emphasize that the decisions themselves should

be first-class entities or artifacts in the design [15], or provide templates to make the

artifacts for design decisions [8]. As described in [16], knowledge can be shared per-

sonally (remembering, talking, etc.), or more formally (documenting, modeling).We

have identified the following points, ordered from heavy to lightweight documenta-

tion approaches:

• Mandatory Template-based Documentation: These artifacts are architecture doc-
uments that have to be created because they are part of an offer, agreement, or

project plan. Examples of these documents are the functional and technical

design documents.

• Facultative Template-based Documentation: The Rational unified Process

(RuP) [17] has a very extended set of document templates that can be used in

software projects. An example of an architectural deliverable is the software archi-

tecture document. Because they are not mandatory, it is easier to decide not to use

one of the documents. The templates add to the unnecessary complexity

of writing down architectural decisions. On the other hand, templates can

help to make sure certain aspects of a design are not forgotten.

118 CHAPTER 5 Architecture Decisions: Who, How, and When?

• Ad hoc Documentation: This documentation type consists of all the random doc-

umentation that is present in almost every software development project that does

not comply with a template. It can be structured on a common share or (semantic)

wiki [18], or unstructured by e-mail or ad hoc sharing. Because they don’t have to
follow a template, they are typically quicker to write—but with the risk of for-

getting important aspects.

• Meeting Notes (sketches, photos, etc.): Meeting notes, in written or visual form,

can be used to create very lightweight documentation of design meetings or open

spaces. This method has the advantages of being very quick and the fact that

the details of a meeting are easier to remember when seeing the drawings from

the meeting. However, it can be difficult for people who were not involved in the

meeting to understand the decisions.

• Direct Communication: Direct communication is the tacit “documentation” that

takes place every day. This can be in a chat, on the phone, or face-to-face. Direct

communication is the richest form of communication because it is bidirectional

(it is possible to ask for explanation) and multiple senses can be used.

Projects usually do not use just one of these communication approaches. How-

ever, there is usually one medium for reading and writing architectural decisions that

tends to be preferred by the team.We use the items mentioned above as points on our

“how” axis.

5.3.3 What is the feedback loop of an architectural decision?
During both the initial development and the evolution of the system, architectural

decisions are made with a goal in mind. Often, these decisions are made to confirm

nonfunctional requirements or the quality attributes to a certain level. However,

sometimes the confirmation of the suitability of the decision takes a long time.

Kruchten [11] describes antipatterns where architects are disconnected from the

actual team. In our opinion, these patterns show what happens if the feedback loop

from the decision to the actual validation of the decision becomes too long. Some

authors have suggested the use of templates with “states” [9] or “status” information

[8] to be able to document where the decision is in the feedback loop. However, nei-

ther of these representations of the state of the decision describes when a decision is

actually implemented and validated.

To get a better idea of the validity of a decision, assessment methods like Archi-

tecture Tradeoff Analysis Method (ATAM) [19] are used to increase the confidence

level for the decision. However, final validation occurs when the decision is imple-

mented in the system and is being measured by the usage. Typically three points in

time are relevant for an architectural decision: the time the decision was made

(“Decided” in [9] and [8]), the realization of the decision, and the validation that

it was a correct decision (the latter two are nonexistent in the described literature).

We take the time between the initial decision and the validation as elements for the

periodicity of the decision.

1195.3 The Agile Architecture Axes Framework

• Long (>6 months): In long-running projects or offers, sometimes architectural

decisions are made before the project starts. It can take several years before

the decision is implemented and validated.

• Medium (1-6 months): Often, a proof of technology or proof of concept (POC) is
used to validate whether an architectural design decision has the desired result.

These decisions are typically validated quicker than the long-running project

decisions.

• Short (<1 month): In more agile settings, the validation of decisions can be much

quicker. Especially when the technical infrastructure for continuous delivery is in

place, the time between decision-making and validation can be decreased.

The shortest cycle can be achieved during refactoring, where the decision is chan-

ged on the existing code base.

Of course, some decisions cannot be validated in the short term. Also, a typical

project has more than one decision point. However, projects tend to lean more

towards one point on this axis, characterized by the organization style of the project.

We use these three points in our framework as the “when” axis.

5.3.4 Summary of the axes
To summarize, we have identified three axes that can be used to describe the

architecture decision process in projects. In Figure 5.1, we visualize our Triple-A

Framework in a radar plot.

FIGURE 5.1

The Triple-A Framework.

120 CHAPTER 5 Architecture Decisions: Who, How, and When?

Figure 5.1

In the following section, five industrial cases are introduced. All of the cases have

a representation on the Triple-A Framework, which is evaluated in Section 5.5.

5.4 INDUSTRIAL CASES
This section describes the industrial cases that are used in this chapter. In all of the

cases, one of the researchers was involved as a teammember within the studied com-

pany. As authors, at least one of us was involved in all the described industrial cases

over an extended period of time. This allowed us to study the response of the case

organizations to the changes that we saw. This chapter focuses on issues related to the

work of software architects, although we studied the cases more broadly including

other software development aspects. The cases are anonymized to protect the com-

panies and customers involved. The roles that the researchers had in the cases varied

from developer, architect, and team lead, to being part of the management of the

organization.

For every case, the description starts with an introduction of the context, the

customer, and the domain of the case. This is followed by a summary of project

characteristics: the technology used, the type of architectural challenges that were

tackled, the number of people involved, the duration of the project, and the pro-

cess(es) used. Then a separate description of the two different phases is given. Every

case description finishes by noting the shifts that occurred, and the business impact

on these shifts. After the description of the shifts, the differences between the phases

are summarized.

5.4.1 Case Alpha
Case Alpha involved the construction of a software system that had to replace a leg-

acy geographic information system. The new system had to be coupled with several

legacy back-office systems. The customer, a large harbor company in the Nether-

lands, initiated the project. The solution was service oriented, and consisted of sev-

eral systems communicating with each other through an enterprise service bus

(ESB). Most of the software was written in (Oracle) Java. This coupling was one

of the most challenging issues in the project. This case consisted of a POC and a

realization phase, 3 and 6 months, respectively. Ten to twenty people were involved

during the various phases of the project. In the POC phase, a lightweight, iterative

approach was used, whereas RuP [17] was adopted in the realization phase.

5.4.1.1 Phase one
During the first phase of case Alpha, an iterative approach was followed. The first

deliverable of the project was a POC that had to be ready on a predefined time-line.

During this period, functionality was delivered every 2 weeks. In every iteration, new

architectural challenges were tackled (e.g., how to process the data of the legacy sys-

tem via the chosen ESB to the user interface, or how to correctly merge the real-time

data from the ships’ locations to the static cargo data provided in one of the legacy

systems). The customer was very happy with the result—a running technological

1215.4 Industrial Cases

POC—and the supplier company was invited to participate in the execution of the

next phase of the project.

5.4.1.2 Phase two
In the second phase, the organization of the project radically changed. This was done

because there was the potential that the project would need to be scaled up in team

size. The result was that a group of eight architects from different companies was

formed, assisted by a team of five project managers. They conducted thorough work

in documenting all the possible situations, interfaces with other systems, etc. The

development team that was involved in the initial POC was rarely consulted, and

was colocated on the other side of the Netherlands. The main results of this phase

were the documents that were created: use case descriptions, architectural documen-

tation, project plans, and more.

5.4.1.3 Shifts
The following were the most striking shifts that took place in case Alpha:

• Because of fear of making the wrong decisions, the focus was more on documen-

tation and less on making working software.

• The iterations were longer (from 2-week iterations to half-year release).

• Because the system had to be connected to the deprecated systems that were run-

ning, there was a tendency to over-think the architecture to prevent making

mistakes.

• There was no longer a structural feedback loop from the development team to the

architects and customers and vice versa.

By making the decision process more heavyweight and focusing on documenta-

tion, the project was slowing down so much that it became paralyzed. After 6 months

during the second phase, almost no working software was produced (one use case

was realized). The project was discontinued because the customer no longer had con-

fidence in it.

5.4.2 Case Beta
The product developed in case Beta was an administrative case management system

for a department of the Dutch national government. This system had to handle

(changing) regulations, and was to be used by various departments who had different

demands for it. There was a multidisciplinary team of five to ten people involved for

two periods of 6 months. The system was based on the Oracle Collaboration Suite,

and the UI was developed with Java technology. The main architectural challenge in

this project was the mapping of the desired functionality onto the technical infra-

structure that was already in place at the customer site. The tradeoff between the spe-

cific solution and the generic components was also considered a major architectural

challenge. The customer organization assisted the team with their operations and

architecture teams. During the first phase of the project, an agile approach was

122 CHAPTER 5 Architecture Decisions: Who, How, and When?

used: high customer involvement, iterative delivery, and constant adaption of the

product. In the second phase of the project, a more traditional approach was chosen,

based on the Prince II [20] project management technique.

5.4.2.1 Phase one
Case Beta is split up in two phases that differed mainly in organization of the project.

Phase one was facilitated by a very light RuP approach. The main goal of the project

was to prove that case-based working, on an extendable technical solution, was appli-

cable for the organization. There was a practical attitude towards documentation, and

a focus on working software. Biweekly iterations were used to get the customer

involved and to get feedback quickly. The results of this phase were a proof of tech-

nological validity of the solution and a first working version of the case management

system. The customer was enthusiastic about the results and decided that a second

phase should be initialized to complete the case management system for a specific

department.

5.4.2.2 Phase two
In the second phase, the team remained mostly the same, but the project management

methodology changed because a new project manager was assigned. This phase was

managed strictly in Prince II, by a project manager and a steering committee formed

mostly of higher management from the customer and supplier organizations. The

goal of this phase was to extend, customize, and implement the techniques from

the first phase for a very small department in the organization. As prescribed

by the development methodology used, the first aim of the project was to get the

functionality and the architecture of the proposed system written down completely

(functional design, technical design).

5.4.2.3 Shifts
The following shifts occurred in case Beta:

• In phase two, more emphasis was on (mandatory) documentation instead of

working software.

• There was increased complexity of the organization around the development

team.

• The architectural decisions needed to be made earlier in the design process, and

the decisions were never validated.

Because the customer was afraid of missing something in the description and

design, it took about half a year to complete the documentation. The results were

so detailed and complex that the architect board that had to monitor the design

was unable to determine if the resulting documentation guaranteed that the resulting

software could be created. The project became paralyzed because of the amount of

documentation generated. Therefore, no value was delivered to the customer in the

second phase.

1235.4 Industrial Cases

5.4.3 Case Gamma
Case Gamma was conducted at a medium-sized product company in the Netherlands.

The project involved a new administrative software system for specific departments in

Dutch hospitals. Changing regulations and different working environments needed to

be taken into account from the beginning. The project was executed by amultidisciplin-

ary team of seven people, assisted by the architect of the company. A Java stack (JSF,

Spring, Eclipselink) was used to create this product from scratch, while a different team

of approximately seven people developed a part of the back end separately. This sep-

arate development was one of the most challenging architectural parts of the project.

Product development took place over 12 months. The team used Scrum [14] with

biweekly iterations to show resultswhile being able to adopt to changes in functionality.

5.4.3.1 Phase one
The company involved in case Gamma had the vision to create a reusable architec-

ture for its products. This generic, reusable architecture was implemented in parallel

to the development of the system. This generic software was also used by another

product at the same time. Architects in cooperation with the company’s management

made these architectural decisions (and the resulting interrelationship of the projects)

before the project started. The development team was notified about the decisions,

but the concerns they had were never seriously heard. During the first phase of the

development of the system, the team felt that they had no influence on the decision

process. Therefore, the atmosphere in the development team became less construc-

tive. The reusable architecture was blamed for every defect in the system, as well as

causing the system’s slow development.

5.4.3.2 Phase two
The shift in this case came when the project team decided to take over responsibility

and make the product independent of the decisions made before the project started.

This included stubbing certain parts of the application, and sometimes even building

functionality that was to be replaced by the generic software in the (near) future. New

decisions were made within the development team, and the company architect was

kept informed but was not held responsible anymore. Because the connection with

the other projects stayed, the validation of the decisions was still delayed, but the

decision loop was shortened significantly.

5.4.3.3 Shifts
The following shifts were identified for case Gamma:

• The responsibility for the architectural decision-making shifted from the manage-

ment and architect to the development team.

• There was a quicker architecture decision process because the responsible per-

sons were always present.

• There was less dependency on other projects within the company.

• There was less architectural documentation, and the documentation used was

more lightweight.

124 CHAPTER 5 Architecture Decisions: Who, How, and When?

Although the change caused the project to take more time in creating function-

ality (some functionality had to be made twice—once by the project team and once

by the platform team), the overall speed of the project enhanced (more functionality

was produced), and the teamwas much more committed to the result and the product,

which increased its quality.

5.4.4 Case Delta
Case Delta is a Fortune 500 company developing software products and services

operating primarily on personal computers. The company’s products address both

consumer and business markets and the company releases several products per year,

including new releases of existing products and completely new products. The prod-

ucts developed by the company range in multi- to tens of millions of lines of code and

tend to contain very complex components that implement national and international

regulations. Although significant opportunities for sharing between different busi-

ness units (BUs) exist, the company has organized its development based on a

BU-centric approach. The products developed by each BU are typically based on

a software product line. The company employs agile teams. It has new product devel-

opment teams (who have no interdependency with other teams) and component

teams for large established products in both North America and Asia.

The management and evolution of product architectures have been organized

through architect teams that mentor and coach agile development teams. The orga-

nization arrived on this structure after falling into several traps around architecture

and development efficiency. These traps included an overly complex software archi-

tecture for certain products, and software architects who had stopped coding and

consequently had lost connection with the reality of software development that

the team faced. The latter caused teams to be unvested in the architectural design

decisions; the software architecture documentation and the system deviated rapidly.

Finally, there were some signs of architecture work that was done for the architects,

rather than for the benefit of the team or customer.

5.4.4.1 Phase one
In the situation of case Delta, the company used software architects as liaisons

between general management, product management, and the development teams.

The architects’ role was to translate business needs into top-level architecture deci-

sions before development of new products or the next (yearly) release of existing

products started. Because of their role, architects spent very little time actually build-

ing systems and would often make decisions based on outdated understanding of

technology and the implemented product architecture. This resulted in architectures

that were more complex than necessary, due to the need to bring the designed and

real, implemented software architectures together in one system. A second conse-

quence was that teams were not committed to the designed architecture, because

it had limited bearing on reality and the architecture work was viewed as being done

for the architects’ sake.

1255.4 Industrial Cases

5.4.4.2 Phase two
The organization realized the challenges and made four main changes. First, archi-

tects returned to coding and spent a significant part of their time developing software

together with the teams. Second, the teams got more autonomy and interacted much

more with customers, and system-level architects started to act more in a coaching

and mentoring role. Third, the organization accepted that “life happens” and that it

often is better to refactor the architecture of products when the need arrives than to try

to predict everything beforehand. Finally, the latter also changed the perception

around the importance of documentation and the organization focused much more

on maintaining a stable product team that collectively holds the architectural knowl-

edge in their heads.

5.4.4.3 Shifts
To summarize, the following shifts took place in case Delta:

• The architecture team got more connected to the development team.

• Customers were explicitly heard during the development.

• Architectural decisions were made more quickly, and were checked against the

working software.

• Documentation was used less and more emphasis was put on the tacit knowledge

of team members.

The shift in case Delta resulted in features that were better suited to the needs of

customers, which was a significant benefit. In addition, because of agile develop-

ment practices, customers could get access to features much earlier than in the tra-

ditional development model. Finally, the significantly shortened feedback cycles

resulted in higher quality of the overall system, because customers reported issues

quickly and the team had the mechanisms to address their issues promptly.

5.4.5 Case Epsilon
A small startup company that creates a web-based product for the consumer market

was the scene for case Epsilon. The project contained high-risk technological chal-

lenges; the architecture needed to be flexible in the beginning, to be able to handle the

expected high number of users. The application was created in Ruby/Rails with a

NoSQL back end based on MongoDB and Redis. The main architectural challenges

were to be able to potentially scale up the application when lots of consumers are

using the system, and being able to adapt the system to changing requirements from

the customer. There was one development team of seven people that conducting (bi)

weekly iterations (using Scrum) over a period of 12 months.

5.4.5.1 Phase one
In case Epsilon, the architecture was not fixed from the beginning, the main architect

was an experienced developer, and the product owner had significant influence on

the decision process. Architecture decisions were made before the implementation

phase of any iterative development methods. The architect also helped the team with

126 CHAPTER 5 Architecture Decisions: Who, How, and When?

the coding of the software. After 3 months, the architect moved and was unable to

participate in the project anymore, while the product owner got less involved in the

actual development.

5.4.5.2 Phase two
This started the second phase of the project, where no formal architect was with the

team. All of the team members felt responsible for the architecture. No large archi-

tecture documentation was written—architectural decisions were made when needed

and summarized in the wiki, or photos of meetings were shared in the internal chat.

Important architectural issues were formulated as functionality and put on the back-

log as user stories, often after debating them with everyone interested. Simplicity

guided the architecture. The result of the project was a working closed Beta version

of the product.

5.4.5.3 Shifts
The following shifts occurred in case Epsilon:

• Responsibility for the architectural decisions process changed from one architect

to a team responsibility.

• There was a quicker decision process because the right people were always

on-site.

• There was extremely lightweight documentation of architectural decisions and a

focus on direct communication.

Although the changewas not as severe as in the other cases, a definite change in the

flexibility of the team was noticed. This resulted in quicker responses to bug or feed-

back reports and more predictable delivery of functionality (both quality aspects).

5.4.6 Overview
As an overview of the case studies used, Table 5.1 describes the characteristics of

them all: the period, the team sizes, and the team experience.

Table 5.1 Overview of Case Studies

Case Domain Period Team Size Experience of Team

Alpha Harbor 9 months 10-20 FTE Experienced team and
architects

Beta Government 12 months 5-10 FTE Moderate team and
architects

Gamma Hospital 12 months 7-14 FTE Moderate team,
experienced architects

Delta Product
company

12 months >50 FTE Experienced teams
and architects

Epsilon Consumer
product

12 months 5-8 FTE Moderate team,
experienced architect

1275.4 Industrial Cases

In the following section, the case studies are mapped against the Triple-A Frame-

work, followed by an analysis of the problems that can be generalized from the case

studies.

5.5 ANALYSIS
In this section, we will provide an analysis of the results by correlating them to prob-

lems that occur in software development. First, we will show how the cases can be

mapped to the Triple-A Framework. From this, we will analyze what problems have

been addressed in our work.

5.5.1 Mapping the cases to the Triple-A Framework
To illustrate the value of the Triple-A Framework, we show that the changes in the

cases from Section 5.4 can be seen as shifts among the axes of the Triple-A Frame-

work. In this section, we identify what effects shifting along the axes have on the

efficiency of the whole case.

All five cases have been mapped on the Triple-A Framework. In the Appendix, a

visual representation of the mapping is given. The results of the cases are summa-

rized in Table 5.2. In this table, the cases are described and the shifts on the axes

are visualized by: “�” shift toward the center, “þ” shift away from the center,

and “þþ” a radical shift away from the center. The results are split into the three

parts that were discussed above: Return on Investment (RoI), Speed, and Quality.

In the result columns, the “�” means that the result was worse in the second phase,

and the “þ” means the results were better in the second phase. Empty fields indicate

no difference has been found.

Generally, we saw that the shifts towards the center of the Triple-A Framework

(cases Alpha and Beta) increased complexity and tended to decrease productivity and

speed. In the other cases (Gamma, Delta, and Epsilon), the shift to the edges of the

axis resulted in increased quality and development speed.

Table 5.2 Mapping the Cases on the Triple-A Framework

Case

Axes Result

Who How When RoI Speed Quality

Alpha � � � � �
Beta � � � �
Gamma þþ þ þ þ þ
Delta þþ þþ þ þ þ þ
Epsilon þ þ þ þ þ

128 CHAPTER 5 Architecture Decisions: Who, How, and When?

5.5.2 Identified problems
As we have seen in our cases, organizations seek to improve agility because of real

business benefits that can be achieved. Companies invest in software architecture

and software architects for the same reasons. Unfortunately, as we discussed in

the introduction, these areas are occasionally combined in ways that cause the orga-

nization to fail in its ambitions. From the experience of the described cases, we have

identified six main problems. They are discussed below. With every problem, we

indicate which cases involved the specific problem, what axes are affected and a

short description of the identified problem.

Architects as single point of failure
Cases involved: Alpha, Gamma

Axis affected: Who

The architect(s) often represent a single point of failure. The architect has to be

the one that (a) talks to the customer to understand the vision and the most significant

requirements, (b) creates the main structure of the system, (c) makes sure the solution

is future-proof—especially concerning the nonfunctional requirements—and (d)

makes sure the development team creates software conforming to the architectural

decisions made. These tasks are hard for one person to do, especially in larger pro-

jects. A project being dependent on one person presents a high risk.

Complexity instead of simplicity
Cases involved: Alpha, Beta, Gamma, Delta

Axes affected: Who and When

Architects are assumed to be the cleverest people in the team; therefore, they often

create smart solutions that aremore complex than they need to be to solve the problem

at hand. The pressure from management and customers on the architect to create a

“future-proof” architecture often enhances this effect. When groups of architects

get too large compared to the rest of the team, the results look nice—but sometimes

they are hard to implement. This is a typical example of the “create a perfect archi-

tecture, but too hard to implement” antipattern described by Kruchten [11].

Outdated software architects
Cases involved: Alpha, Gamma, Delta

Axis affected: Who

Often, the architectural decision-makers are not involved in developing the soft-

ware anymore. This creates a lack of hands-on experience in the technology they are

designing for. Because of this, their decisions are based on outdated assumptions and

experiences, and because the decision-makers have no direct experience with any

important design flaws, there is no incentive to change the design when necessary.

Uncommitted teams
Cases involved: Gamma, Delta, Epsilon

Axis affected: Who

1295.5 Analysis

If many important decisions are made solely by the architect(s), the development

team does not feel primarily committed to the decisions made. If this happens, there

is a lack of support for the decisions. In the worst case, the team opposes the decisions

made and undermines the actual development of the system. This is a typical con-

sequence of what Kruchten calls the “architects in their ivory tower” [11].

Static architectural decisions
Cases involved: Beta, Epsilon

Axis affected: When

As customer demands, technology, and organizations change, architectural deci-

sions also need to change. Therefore, architectural decisions do not last forever. Dur-

ing the development and evolution of a system, architectural decisions are made and

revised constantly. As architects in traditional settings are involved primarily in the

earlier stages of development, the tendency is tomake decisions earlier on and to keep

to them for a long time. This makes it hard to adapt the system to new challenges.

Illusion of documentation
Cases involved: Alpha, Beta, Delta

Axis affected: How

It is very tough to have good documentation when it is used as a communication

medium. Often, documentation is out of date and is badly read. Since architecture

documentation especially needs to be created manually, it is typically outdated

within weeks—if not days or hours. In addition, very few people, even architects,

actually read architecture documentation. This is both because of its obsoleteness

and because it fails to help the reader build a relevant understanding of the system.

However, these symptoms are rarely acknowledged—and when things don’t go as

planned, often more documentation is mandated.

5.5.3 Summary
The description of the problems above can help teams identify problems and under-

stand which change (shift on a axis) could help improve the project. Based on this set

of problems, we can conclude that the who axis affected four problems, the how axis

affected only one problem, and the when axis affected two problems. This is an indi-

cation that the who axis could be the most influential one.

5.6 REFLECTION
This section reflects on the findings from the previous section and discusses ques-

tions on the validity of this research.

130 CHAPTER 5 Architecture Decisions: Who, How, and When?

5.6.1 Findings
As with many solutions in software engineering research, the Triple-A Framework

proposed in this chapter is no silver bullet. Often, the situation greatly influences the

possibilities of companies, projects, teams, and individuals. However, the described

axes can be used to see how responsibilities, timing, and communication methods

can influence the results of a project. And, if a project or organization needs to

change, the Triple-A Framework can help in identifying where the change can be

made, by analyzing the current decision process and focusing on one of the axes

where change can be achieved.

Some of the changes that derive from the Triple-A Framework have a big influ-

ence on how a project is run. When a project stops using certain templates, makes

other people responsible for the decision process, or waits for design issues to occur,

there is always the concern of trust involved. We have experienced that trusting peo-

ple to do the right things is often very tough, especially within large organizations or

large contract structures (as seen in cases Alpha, Beta, and Delta).

In traditional organizational setups, architects come in three archetypes that,

although overlapping in some cases, have different responsibilities. The first type

of architect acts as the bridge between the business strategy and customers on one

side and the software development team on the other side. Secondly, with highly

complex systems, architects often have the responsibility for the end-to-end quality

requirements of the system and coach individual engineers to make sure that new

features and functionality do not violate system properties. Finally, some organiza-

tions share responsibility for the team between a project manager focusing on mile-

stones and people management and an architect who acts as the technical lead for

the team. In our experience, and this is the position that we take in this chapter,

there is a fourth archetype. In this type, the architect becomes the coach for the

development team responsible for facilitating architectural decision-making. In

an age where teams become increasingly self-selected, -directed, and -managed

[21], it is important that architects move away from traditional hierarchical, formal

leadership roles and adopt meritocracy-based leadership styles. This can be done

in an iterative way by accurately shifting along the axes of the Triple-A

Framework.

5.6.2 Questions of validity
Several matters raise questions on the validity of our research.. First of all, the par-

ticipant/observer method does imply some subjectivity. The results are qualitative

(not quantitative), and based on the experience of the researchers participating in

the project. However, this is one of the accepted ways to gather case study material

in software engineering research, and all of our cases involved real-life industrial

software projects that could not have been studied in any other way.

1315.6 Reflection

Although we have identified three axes that influence the results of the case study

projects, it is possible that these are not the only parameters affecting the results of

the cases studied. Due to the nature of our research, and the fact that it was conducted

in real industrial settings, it is likely that there were other factors involved. However,

we have seen that in all of the cases the shifts did occur in the same direction along

the defined axis.

We have used only five cases, which involved mainly small project teams. As

such, the degree to which this research can be generalized is restricted to projects

of this type. However, as seen in the context of case Delta, the axes also show impact

in larger organizations.

5.7 RELATED AND FUTURE WORK
In the research community, there is currently a debate on the usefulness of agile soft-

ware development. The trend is to say that there are enough stories of successful and

failed projects done with various methodologies, but insufficient (empirical) evi-

dence to found a conclusion [2,22]. This chapter contributes in this debate by

describing additional case study results.

There has been much attention given to documenting software architectures

[23,24], as well as documentation templates [17] and computational modeling

[25] for documenting relevant architectural knowledge. Recently, there has been a

trend toward using semantic wikis [18], and some research experiments show prom-

ising results [26].

Another topic that is being discussed is the role of the architect [12]. Here, often

the architect is responsible for creating and maintaining the architecture documen-

tation. In this chapter, we have shown the importance to collaborative multidisciplin-

ary decision-making of identifying who makes the decisions in projects.

In the architecture design decision research hierarchical structures are used to

model architectural knowledge [3] or design decisions [15,27]. This research often

emphasizes the recording of decisions and the extraction of decisions later in the

development process. This chapter focuses on the decision process itself.

The agile community often doesn’t explicitly describe the role of architects’

architectural documentation or architectural decisions when explaining what they

do [14,28]. Although there have been brave initiatives for merging the two [3], most

of the agile community still has an aversion against architects and architecture doc-

umentation. Some authors emphasize the importance of architecture even in agile

settings [29]. In this chapter, we have shown changes for software architecture in

agile software development.

In future research, we would like to extend our validation of the Triple-A Frame-

work to other industrial cases, specifically to larger-sized projects and distributed

settings where direct communication is more complicated. Second, we will conduct

more research on other possible axes that influence the architecture decision process.

Third, we would like the Triple-A Framework to be based on a more discrete scale, to

be able to score teams or companies.

132 CHAPTER 5 Architecture Decisions: Who, How, and When?

5.8 CONCLUSIONS
From our industrial cases, we have seen a trend take shape. First, we have seen that

leaning heavily on architects as the persons that should solve the architectural prob-

lems leads to unproductive teams, or even no working software at all. Second, we

have experienced that when the focus is too much on large (architectural) documen-

tation, the speed and quality of the project decreases. Third, we have seen that mak-

ing important architectural decisions early on in the project leads to architectural

problems during development. Although the agile community makes these claims,

this is rarely backed up by case material. We contribute to this debate by presenting

initial case study material.

In this chapter, we have followed two steps toward a better understanding of what

happens around architectural decision-making. First, based on our experience and

existing literature, we have generalized the Triple-A Framework for assessing

how the architecture is handled in projects or organizations. Second, we have

described five industrial cases, and we have identified shifts in these cases. We have

shown that these changes can be mapped to the three axes that we created within the

Triple-A Framework. We have seen that the successes and failures of the cases were

influenced by the shifts that were made. These axes can be used to help teams that are

becoming more agile to align their architecture practices.

Fromour research conducted at the five case studies presented in this chapter,we can

conclude thatmoving on the axes of the Triple-A Framework influences the success of a

project. This means that by moving away from the center (development team, direct

communication and short feedback loop), the projects became more successful

(Gamma,Delta, Epsilon),while bymoving towards the center (management,mandatory

templates, long feedback loop), the cases became less successful (Alpha, Beta). We are

planning to use our framework on additional cases to further validate our findings.

APPENDIX A VISUAL REPRESENTATION OF THE CASE
STUDIES MAPPED ON THE TRIPLE-A FRAMEWORK

Continued

133Appendix A Visual Representation of the Case Studies

134 CHAPTER 5 Architecture Decisions: Who, How, and When?

References
[1] Abrahamsson P, BabarMA, Kruchten P. Agility and architecture: can they coexist? IEEE

Softw 2010;27(2):16–22.

[2] Breivold HP, Sundmark D, Wallin P, Larsson S. What does research say about agile and

architecture? In: Proceedings of the 2010 fifth international conference on software engi-

neering advances; 2010.

[3] Coplien J, Bj�rnvig G. Lean architecture: for agile software development. Chichester:

Wiley; 2010.

[4] Ali Babar M, Ihme T, Pikkarainen M. An industrial case of exploiting product line archi-

tectures in agile software development. In: Proceedings of the 13th international software

product line conference; 2009.

[5] Bosch J, Bosch-Sijtsema PM. Introducing agile customer-centered development in a leg-

acy software product line. Softw Pract Exper 2011;41(8):871–82.

[6] Eisenhardt KM. Building theories from case study research. Acad Manage Rev 1989;14

(4):532–50.

[7] de Boer RC, Farenhorst R, Lago P, van Vliet H, Clerc V, Jansen A. Architectural knowl-

edge: getting to the core. In: Proceedings of the quality of software architectures 3rd

international conference on software architectures, components, and applications; 2007.

[8] Tyree J, Akerman A. Architecture decisions: demystifying architecture. IEEE Softw

2005;22(2):19–27.

[9] Kruchten P. An ontology of architectural design decisions in software intensive systems.

In: 2nd Groningen workshop software variability; 2004.

[10] Bu W, Tang A, Han J. An analysis of decision-centric architectural design approaches.

In: Proceedings of the 2009 ICSE workshop on sharing and reusing architectural knowl-

edge; 2009.

[11] Kruchten P. What do software architects really do? J Syst Softw 2008;81(12):2413–6.

[12] Farenhorst R, Hoorn JF, Lago P, van Vliet H. The lonesome architect. J Syst Softw

2011;84(9):1424–35.

135References

http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0065

[13] Malan R, Bredemeyer D. Less is more with minimalist architecture. IT Professional

2002;4(5):46–7, pp. 48.

[14] Kniberg H. Scrum and XP from the trenches: enterprise software development.

C4Media; 2007. www.Lulu.com. ISBN: 9781430322641.

[15] Jansen AGJ, Bosch J. Software architecture as a set of architectural design decisions. In:

Proceedings of the 5th IEEE/IFIP working conference on software architecture (WICSA

2005); 2005.

[16] Hansen MT, Nohria N, Tierney T. What’s your strategy for managing knowledge? Harv

Bus Rev 1999;77(2):106–16.

[17] Kruchten P. The rational unified process: an introduction. Reading, MA: Addison-

Wesley; 2003.

[18] Happel H-J, Seedorf S. Ontobrowse: a semantic wiki for sharing knowledge about soft-

ware architectures. Boston, MA: SEKE; 2007.

[19] Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere J. The architecture

tradeoff analysis method. In: Proceedings of the fourth IEEE international conference

on engineering of complex computer systems (ICECCS); 1998.

[20] Hedeman HB, Vis van Heemst G, Fredriksz H. Project management: based on Prince2

2009: Best Practice Series. Zaltbommel, Netherlands: Van Haren Publishing, 2010.

254 pp. ISBN: 9087534965, 9789087534967.

[21] Appelo J. Management 3.0: leading agile developers, developing agile leaders. Reading,

MA: Addison Wesley; 2010.

[22] Petersen K, Wohlin C. A comparison of issues and advantages in agile and incremental

development between state of the art and an industrial case. J Syst Softw 2009;82

(9):1479–90.

[23] Clements P, Garlan D, Bass L, Stafford J, Nord R, Ivers J, et al. Documenting software

architectures: views and beyond. Boston, MA: Pearson Education; 2002.

[24] Hofmeister C, Nord R, Soni D. Applied software architecture. Reading, MA: Addison-

Wesley; 2000.

[25] Group OMG. UML specification, version 2.0. Online at: http://www.omg.org/spec/

UML/; 2012.

[26] de Graaf KA, Tang A, Liang P, van Vliet H. Ontology-based software architecture doc-

umentation. In: WICSA/ECSA; 2012.

[27] van der Ven JS, Jansen A, Nijhuis J, Bosch J. Design decisions: the bridge between ratio-

nale and architecture. In: Rationale management in software engineering. Berlin:

Springer; 2006. p. 329–48.

[28] Rasmusson J. The agile samurai: how agile masters deliver great software. 1st ed.

Pragmatic Bookshelf; 2010 ISBN-10: 1934356581; ISBN-13: 978-1934356586.

[29] Kruchten P. Software architecture and agile software development: a clash of two cul-

tures? In: Proceedings of the 32nd ACM/IEEE international conference on software

engineering—volume 2, ICSE 2010; 2010.

136 CHAPTER 5 Architecture Decisions: Who, How, and When?

http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0070
http://www.Lulu.com
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0120
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00004-6/rf0140

CHAPTER

Supporting Variability
Through Agility to Achieve
Adaptable Architectures

6
Matthias Galster* and Paris Avgeriou

{

*University of Canterbury, Christchurch, New Zealand
{University of Groningen, Groningen, The Netherlands

CHAPTER CONTENTS

6.1 Introduction .. 139

6.2 Background .. 141

6.2.1 Variability ...141

6.2.2 Agility ...142

6.3 Related Work .. 143

6.4 Challenges When Combining Variability and Agility ... 144

6.5 Arguments for Combining Variability and Agility .. 145

6.6 Agile-Inspired Variability Handling ... 146

6.6.1 Industrial Context: Dutch e-Government ..148

6.6.2 Step 1: Conduct Initial Variability Analysis149

6.6.3 Step 2: Create Initial Architecture Variability Profile149

6.6.4 Step 3: Create Architecture ..150

6.6.5 Steps 4a and 4b: Evaluate Architecture ...151

6.6.6 Step 5: Implement Initial Architecture ..154

6.6.7 Step 6: Elicit New Variability Requirements154

6.6.8 Step 7: Revise Architecture Variability Profile154

6.6.9 Step 8: Refactor Architecture ...155

6.7 Summary and Conclusions ... 155

Acknowledgments .. 157

6.1 INTRODUCTION
Variability plays an important role in defining and managing parts of a software

architecture that may vary. Variability is needed when a number of similar but

not identical systems from different usage or deployment scenarios are developed

[1]. Traditionally, variability is interpreted as “anticipated and preplanned change.”

139

Many of today’s software systems are designed with variability in mind. Examples

include software product lines or families, self-adapting systems, open platforms, or

service-based systems that support the dynamic composition of web services.

Variability is reflected in and enabled through the software architecture.

Therefore, handling variability during software architecture design is important.

Here, handling variability refers to all activities related to identifying, constraining,

implementing, and managing variability. In software architecture, variability is

described in terms of variation points (i.e., locations in the architecture where change

might occur) and variants (i.e., options to resolve variation points). Depending on the

architectural representation, variation points and variants can occur in the form of

components, connectors, decisions, and so on. Consequently, variability handling

requires up-front planning of what variability will exist and how it will affect the

software architecture.

Another paradigm that embraces change and adaptation is the agile paradigm.
The agile paradigm is an umbrella concept for methods that are based on the Agile

Manifesto [2]. Agile methods are defined in terms of values (or ideals), principles

(i.e., the application of ideals to industry), and practices (i.e., principles applied to

a specific type of project) [2]. All agile methods implement iterative, incremental

life cycles and share similar values and principles. The agile paradigm accepts the

reality of change instead of aiming for complete and rigid software requirements

and software architectures. For most projects, accepting the existence of frequent

changes can cost less than aiming for requirements or architectures that will never

change. Furthermore, agile methods usually focus on delivering value to customers

through early and continuous delivery [2]. Besides these common principles of agile

methods, each agile method (e.g., XP, Scrum) defines its own practices (e.g., sprints

in Scrum, pair-programming in XP).

Variability facilitates the design of software systems for contexts or for

customers’ needs, which are not fully known during early design. Similarly, agile

development starts with building software solutions before the desired product is

fully understood. The goal of this chapter is to combine the agile paradigm and han-

dling variability; we leverage the agile paradigm in the context of architecture-

centric variability handling to propose an approach for handling variability at

the software architecture level. The benefit of combining agility and variability is

threefold:

1. It helps achieve less heavyweight variability handling because the agile paradigm

claims to reduce the overhead introduced by many software development

processes.

2. It allows quick feedback about required variability in the software product and

the architecture to be obtained from customers.

3. It helps incorporate changing variability requirements in the architecture (e.g.,

new variation points or variants or a new deployment context that a system must

support). Thus, facilitating variability through agility can improve the evolution

of variability.

140 CHAPTER 6 Supporting Variability Through Agility

By integrating the agile paradigm and variability at the architectural level (i.e., as

part of the architecting process), adaptable and flexible software architectures are

achieved. Variability described in the architecture then makes variability-related

information available at other development stages, such as implementation or test-

ing. We believe that the proposed approach is suitable for production-focused pro-

jects and therefore is useful for projects with short schedules, tight deadlines, and

frequently changing requirements. This approach focuses on working software, with

other activities (such as up-front planning) being of lower importance. Therefore, our

approach offers a way to handle variability with less time and effort and with little

architecture design when a heavyweight process cannot be used.

In Section 6.2 of this chapter, we discuss background related to variability and

agility. In Section 6.3, we present related work on combining variability and agility.

In Section 6.4, we discuss challenges that occur when combining variability and

agility, before we elaborate on arguments for combining variability and agility in

Section 6.5. In Section 6.6, we present an approach for variability handling that uses

concepts from agile development. In Section 6.7, we introduce an industrial example

that is used to illustrate the individual steps of our approach in Sections 6.8–6.15.

We conclude this chapter with Section 6.16.

6.2 BACKGROUND
6.2.1 Variability
Variability is understood as the ability of a software artifact to be adapted (e.g.,

configured, extended) for a specific context in a preplanned manner [3]. Thus, we

interpret variability as planned change rather than change due to errors, maintenance,

or unanticipated customer needs. Variability specifies parts of the system and its

architecture that remain variable or are not fully defined during design time. Vari-

ability allows the development of different versions of an architecture or system.

Variability in the architecture is usually introduced through variation points (i.e.,

locations in the architecture where change might occur). Variants describe options

to resolve variability at these variation points. Variability occurs in different phases

of the software life cycle [4]. Design time variability resolves variability at the time

the architecture is designed. Runtime variability resolves variability while the system

is running (e.g., after design, implementation, and so on).

Handling variability requires explicitly representing variability in software

artifacts throughout the life cycle of a software product. Please note that we use the

term handling variability rather than managing variability. As argued by Svahnberg
et al. [5], managing variability is only one of several activities in the context of han-

dling variability. Managing variability comprises managing dependencies between

variables, maintenance and continuous population of variant features with new vari-

ants, removing features, the distribution of newvariants to the installed customer base,

and more. Additional activities involved in handling variability include identifying

1416.2 Background

variability (i.e., determiningwhere variability is needed), reasoning, representing, and

implementing variability (i.e., using a variability realization technique to resolve var-

iability at variation points and to implement a certain variant) [5].

Variability has mainly been addressed in the software product line domain and

in product line architectures. However, most product line approaches are rather

heavyweight. A product line architecture assumes the existence of a product line

infrastructure, including related processes (e.g., core asset development, product

development, management) [6]. This is rarely the case for many software architec-

tures that should support variability.

6.2.2 Agility
The agile paradigm is an umbrella concept for methods that are based on the Agile

Manifesto [2]. The Agile Manifesto (www.agilemanifesto.org) values “individuals

and interactions over processes and tools,” “working software over comprehensive

documentation,” “customer collaboration over contract negotiation,” and “respon-

ding to change over following a plan.” The Agile Manifesto defines 12 principles,

which are listed in Table 6.1.

Table 6.1 Principles in the Agile Manifesto (www.agilemanifesto.org)

Principle Description

1 The highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2 Changing requirements are welcomed, even late in the development (agile
processes harness change for the customer’s advantage).

3 Working software should be delivered frequently, with a preference to shorter
timescale delivery.

4 Business people and developers must work together daily throughout the
project.

5 Projects should be built around motivated individuals and in an environment
that supports their needs and facilitates trust to get the job done.

6 The most efficient and effective method of conveying information within/
across development teams is face-to-face communication.

7 Progress is measured based on working software.

8 Agile processes promote sustainable development. Sponsors, developers,
and users should maintain a constant pace indefinitely.

9 Agility is enhanced through continuous attention to technical excellence.

10 Maximizing the amount of work not done is essential.

11 The best architectures, requirements, and designs emerge from self-
organizing teams.

12 Software development teams should reflect on how to become more
effective, and adjust their behavior accordingly.

142 CHAPTER 6 Supporting Variability Through Agility

http://www.agilemanifesto.org
http://www.agilemanifesto.org

6.3 RELATED WORK
Work on combining the agile paradigm with variability handling is quite limited.

Most work has been conducted in the context of agile product line engineering. In

product line engineering, variability is treated as a key concept. In 2006, the First

International Workshop on Agile Product Line Engineering [7] was held, which con-

cluded that it is feasible to combine agility and product line engineering. More

recently, literature reviews on agile product line engineering have been published

[2,8]. These reviews discuss reasons for combining agility and product line engineer-

ing (e.g., to reduce costs during domain engineering, to deal with volatile business

situations, or to handle situations in which a domain is not well understood up-front),

what agile methods are used in product line engineering, and present open research

challenges (e.g., provide more support for evolving variability). Most proposed

approaches for agile product line engineering introduce agility in existing software

product lines [1]. Other works suggest that the competing philosophies of agile soft-

ware development (little up-front planning) and software product line engineering

(heavy up-front planning) make their integration difficult [9]. Instead, agile devel-

opment and product line engineering should be tailored so that both can “retain their

basic characteristics” [1].

In contrast to these literature reviews, an industrial study on agile product line

engineering has been presented by Hansen and Faegri [10]. This study concluded that

introducing agile product lines involves multiple disciplines (e.g., product planning,

knowledge management, organizational aspects, and innovation), and is thus a long-

term effort. Similarly, Pohjalainen describes experiences in agile modeling of a prod-

uct line [11], including a lightweight method for feature modeling. Additional exam-

ples of combining agility and product line engineering include agile product line

planning that focuses on product line engineering as a highly collaborative process

[12], or an agile process for building product lines using a lightweight feature model

[13], similar to Pohjalainen. Furthermore, Ghanam et al. proposed reactive variabil-

ity management in agile development [1] and used acceptance tests from test-driven

development to elicit variability in requirements [14]. All these efforts show that

combining agile development and product line engineering is feasible. However,

thorough up-front planning is traded against faster development and more flexibility

throughout the development process.

Even though product lines are only one type of variability-intensive systems, not

much work on combining variability and agility can be found outside the domain

of product lines. Furthermore, software architecture has not been the focus when

studying the impact of combining agility and variability.

Although our work can be related to dynamic architectures and adaptive archi-

tectures, these two concepts are beyond the scope of this chapter. We do not focus

on systems that are self-adaptive during runtime, but investigate how variability can

be enabled to develop different product versions more easily. Dynamic architectures,

on the other hand, are architectures that provide adaptability of systems during

runtime. Many approaches utilize service-based computing to dynamically adapt

1436.3 Related Work

systems, such as Shokry and Ali Babar [15] or Hallsteinsen who explored dynamic

product lines [16], Fiadeiro and Lopes who proposed dynamic reconfiguration

of service-oriented architectures [17], or Parra et al. who explored dynamic

service-based product lines that are context-aware. Oreizy et al. proposed an

architecture-based approach for self-adaptive software [18].

6.4 CHALLENGES WHEN COMBINING VARIABILITY
AND AGILITY
We identified several challenges when integrating variability and the agile paradigm

in the context of software architecture design:

• To identify variability (i.e., commonalities and variations) between software

products and the variability needed in the architecture, a comprehensive analysis

is conducted up-front. We determine what requirements in a product may vary,

including the sources of variation and the allowed options to resolve this varia-

tion. This also includes investigating how the architecture can facilitate the

required variability. In agile development, however, the focus is on developing

software systems that satisfy customers by minimizing up-front investment and

process overhead [1]. This is in fact a direct conflict with handling variability,

because it requires up-front analysis to anticipate change.

• Documentation of variability is essential to communicate architecture knowledge

between stakeholders. Thus, the architecture must properly represent variability.

When handling variability, designers usually plan and document extensively, and

each designer has a specific responsibility [19]. In contrast, agile development

tries to reduce overhead caused by excessive documentation but relies on implicit

or light-weight documentation (e.g., through documentation in source code or

story cards). As a result, in agile development, designers use a lot of tacit knowl-

edge and share responsibilities.

• In agile development, fast and frequent delivery is a key for quick customer

satisfaction and feedback. This is difficult to achieve in variability-intensive sys-

tems: variability is analyzed before delivering any product to provide a flexible

infrastructure, which is later configured and deployed [13]. The agile principle

of “simplicity” and implementing functionality that satisfies current instead of

future requirements could contradict the need to support different variation points

in the architecture. In agile development, not a lot of effort is put into designing

the architecture beyond the current iteration [19].

• Agile methods focus on quick response to requirement changes with short iter-

ations and small increments. This requires direct customer collaboration and par-

ticipation in the whole software project lifecycle [19]. When handling variability

at the software architecture level, communication between stakeholders is impor-

tant. However, collaboration takes place not as extensively as in a typical agile

development setting, and customers are rarely on site.

144 CHAPTER 6 Supporting Variability Through Agility

• One assumption of variability is that target application domains in which a system

is deployed are stable and do not change much. In contrast, in agile environments,

application domains are unstable and domain boundaries change. However,

stable domains would reduce risks when pre-developing software assets for later

(re-)use. Consequently, while there is no emphasis on reuse in agile development,

variabilityputs special emphasis onmaturity and reliabilityof reused artifacts [19].

• Agile methods emphasize simple and efficient tools (e.g., paper-based or virtual

story cards, web-based tools for test-driven development) where technology

only affects the current project [19]. To handle variability, robust, heavyweight,

and powerful tools (e.g., Gearsa or Pure::variantsb) are used.

6.5 ARGUMENTS FOR COMBINING VARIABILITY AND AGILITY
Despite the different natures of variability and the agile paradigm, there are some

common principles between these two concepts that justify their combination, as

proposed in this chapter. Such principles include the following:

• Agile methods and handling variability are about vague or changing (or adapting)

requirements. Agility even encourages change and handles it when it happens,

whereas variability is about anticipating change (or adaptations) during the

design phase. Consequently, the architecture is “enriched” with variation points

in its design. This not only allows handling anticipated change, but also allows

handling unanticipated change better than approaches which do not consider var-

iability. This is because some of the unanticipated changes will coincide with var-

iation points [9]. It is easier to make changes to the architecture and add new

variants than it is to introduce changes in the architecture for which no provision

for change has been made.

• Agile development and variability handling require collaboration. Agile methods

are based on collaboration between stakeholders (e.g., customer, product users,

and developers) [9]. Similarly, to handle variability, there is a need for various

stakeholder groups (e.g., architects, product users) to be involved in scoping var-

iability. During both agile development and variability handling, collaborations

serve the purpose of a feedback circuit [9].

• Agile development and variability handling are assumed to operate within a

scope. The scope of variability defines what the range of adaptation can be [9].

• Agility and variability handling aim at minimizing work to be done. Agility is

about postponing work until it is needed, while variability is about systematically

anticipating what will be needed in the future and then creating reusable common

artifacts for specific purposes within the specific scope.

awww.biglever.com
bwww.pure-systems.com

1456.5 Arguments for Combining Variability and Agility

http://www.biglever.com
http://www.pure-systems.com

6.6 AGILE-INSPIRED VARIABILITY HANDLING
In this section we outline an approach for agile-inspired variability handling

(Figure 6.1). The approach is proactive, rather than reactive. “Proactive” means that

we prepare the architecture for adaptation and anticipate change during up-front

analysis, rather than only dealing with change when change (or the need for adap-

tation) occurs. This up-front analysis (Phase 1 of our approach, see Figure 6.1) pre-

pares the architecture for variability and makes variability handling at a later stage

more lightweight, because less rework will be required (Phase 2 of our approach).

Our approach maps to generic architecture design activities proposed by Hofmeister

et al. [20] and extended by Tang et al. [21]:

Architectural implementation

Architectural analysis
Step 1
Conduct initial variability analysis

Architectural synthesis

Step 3
Create architecture

Architectural evaluation

Step 4b
Evaluate architecture (checklist-based)

Architectural maintenance

Step 5
Implement initial architecture

Step 6
Elicit new variability requirements

Step 7
Revise architecture variability profile

Step 8
Refactor architecture

No revisions required

P
ha

se
 1

P
ha

se
 2

Evaluation criteria
satisfied

Architectural evaluation

Step 4a
Evaluate architecture (scenario-based)

Evaluation criteria
not satisfied

Revisions required

Step 2
Create initial architec variability profile

FIGURE 6.1

Overview of the approach.

146 CHAPTER 6 Supporting Variability Through Agility

Figure 6.1

• Architectural analysis defines the problem that a system architecture must solve.

During this activity, architectural concerns and the context of the system are

examined to define a set of architecturally significant requirements.

• Architectural synthesis proposes architecture solutions (i.e., architecture candi-

dates) for the architecturally significant requirements identified during architec-

tural analysis. Synthesis can result in several architecture candidates or candidate

decisions for one architecturally significant requirement.

• Architectural evaluation examines candidate architectural decisions against the

architecturally significant requirements. Based on the outcome of the evaluation,

the architecture can be revised by going back to architectural analysis/synthesis.

• Architectural implementation realizes the architecture—by passing it on to

designers to proceed with the detailed design, and further on to implementers

for writing the code.

• Architectural maintenance accommodates changes once the initial system is

deployed.

As mentioned before, the proposed approach comprises two phases (see

Figure 6.1). Each phase requires a number of steps that take place within the afore-

mentioned five generic architecture design activities. The first phase is about creat-

ing an initial architecture that is “prepared” for accommodating adaptations. As can

be seen in Figure 6.1, Phase 1 usually requires some iterations to properly understand

the problem domain and to define a sound variability profile and architecture. Steps

in Phase 2 are repeated every time new requirements are established and make it

necessary to evolve variability. Consequently, Phase 1—the up-front analysis—is

performed once, whereas Phase 2 is a continuous activity along the life cycle of a

product. Phase 2 also utilizes agile principles and ensures an adaptable architecture

(hence the highly iterative nature), whereas Phase 1 prepares the architecture with

variability to facilitate easier adaptation. Phase 2 utilizes ideas from Kanban [22],

which argues for continuous incremental and evolutionary changes to a current sys-

tem (architecture in our case) to achieve improvements. Instead of going back to

analysis and synthesis, our approach only revises the architecture variability profile

and refactors the architecture. An overview of the proposed approach and how it

relates to software architecture design activities is shown in Figure 6.1. Please note

that in our approach, the architecture does not fully emerge during development (as

claimed in agile development). Instead, our approach creates an architecture that

supports variability. This architecture then evolves throughout development (just

like in agile development).

The approach is not prescriptive about when and how to apply certain techniques

within the different steps. A technique is used when it seems appropriate, and it is not

used when it does not help anymore. Thus, the approach can be considered a frame-

work because it defines what is important to achieve, but does not specify when and

how to use a technique. Furthermore, the proposed approach focuses on variability

handling at the software architecture level. Thus, it addresses four architecture-

related activities for handling variability [5,23]:

1476.6 Agile-Inspired Variability Handling

• Identify variability: When variability is identified, decisions are made about what

variability is needed and where. This requires the definition of what architecture

elements are variable. Depending on the architecture’s representation and granula-

rity, architecture elements could be components, connectors, decisions, and so on.

• Constrain variability: Constraining variability is about making sure that just

enough flexibility is provided in the architecture to meet current and future needs.

• Implement variability: When implementing variability, suitable realization tech-

niques to implement variability are selected. Examples include architectural

refactoring, the inclusion of optional architecture components, or the specializa-

tion of variant components.

• Manage variability: Managing variability includes evolution, maintenance, and

continuous addition of features and variants. For example, new components

could be added, components could be replaced, decisions could be changed,

and so on.

Table 6.1 shows how the steps of the approach relate to the architecture-related

variability-handling activities introduced above. Details on the mapping will be dis-

cussed when introducing the individual steps in the following subsections. Note that

Steps 4a and 4b (evaluation) are not related to any architecture-related variability-

handling activity.

Although the process includes many steps, we have kept individual steps light-

weight. Furthermore, Phase 1—which includes up-front analysis and may be consid-

ered heavyweight in agile methodologies—is only conducted once to prepare the

architecture for easier variability handling later on. Consequently, Phase 1 is more

similar to traditional variability handling, whereas Phase 2 integrates agile mecha-

nisms (such as refactoring). In the following, we detail each step and illustrate them

using the example of variability in a Dutch e-government system. This system and its

context are described in the next section.

6.6.1 Industrial context: Dutch e-government
The Dutch e-government system in our example supports municipalities in perform-

ing their business processes (e.g., processing social services or requests for building

permits). The software is based on a service-oriented architecture (SOA). In local

Dutch e-government, variability occurs because of the differences between munic-

ipalities. Dutch municipalities are autonomous when implementing laws that have

been approved by the national government. In the Netherlands, there are more than

400 municipalities. These municipalities implement different business processes to

support the same law. For example, let us look at the Dutch law for social support (so-

called WMO law): One municipality might require a dedicated assessment from an

approved health care practitioner to determine whether or not a citizen is eligible for

a subsidized home modification to improve accessibility. On the other hand, another

municipality might simply rely on the self-assessment of a citizen. Another example

is that some municipalities charge citizens for certain services (e.g., a taxi pass for

148 CHAPTER 6 Supporting Variability Through Agility

senior citizens), while some municipalities do not. Please note that this example is

merely used to show how our approach could be applied in a realistic case; the real

system was developed without using our approach.

6.6.2 Step 1: conduct initial variability analysis
Similar to [12], variability analysis requires the identification of and the agreement

upon the relevant scope of an application and the required variability. To determine

the scope of an application and required variability, we have to gain access to domain

and business knowledge and interact with customers to define short- and long-term

requirements. Thus, initial variability analysis is related to identifying variability to
find out what variability is needed and where. The outcome of variability analysis is

an agreed-upon list of initial functionality and variability to be implemented in an

architecture. Furthermore, during variability analysis, special attention has to be paid

to identifying architectural variability [24]. Here, architectural variability is under-

stood as variability in the architecture that is required due to variability in function-

ality. Understanding the business of an organization, the problem domain being

addressed, common and variable features, and so on, are in line with agile methods.

For example, in feature-driven development [25], a project starts with a high-level

walkthrough of the scope of a system and its context and the gathering of a list of

mandatory features.

The initial variability analysis for the Dutch e-government system leads to an

agreed-upon list of initial functionalities to be implemented in the architecture.

However, instead of defining a complete architecture, a preliminary architecture

blueprint is created. The domains in the case of the e-government system are

different municipalities. The functionality is prescribed by the WMO law. Further-

more, variability is identified in business processes or in the IT infrastructure of

municipalities. This variability would be specified in the architectural variability

profile created in Step 2.

6.6.3 Step 2: create initial architecture variability profile
An architectural variability profile describes all variation points, their variants, the type

(s) of variability, and resolution time (see Table 6.2). By defining variants, we con-
strain variability. The variability profile ensures that just enough flexibility is provided
in the architecture to meet current and future needs based on the initial variability anal-

ysis. This type of profile is different from known variability models—such as feature

models, which focus on the description of commonalities and differences in systems. It

is introduced to ensure that the right changes can be made easier, as recommended by

some agile methods, such as Kanban [22]. The format of the variability profile is a

generalized version of the business process variation point model introduced in our

previous work [26]. Consequently, the variability profile can be integrated into

1496.6 Agile-Inspired Variability Handling

an architectural viewpoint for describing variability in software architecture [26]. Var-

iability profiles can be used as part of the story cards frequently used in agile devel-

opment. Furthermore, in contrast to known variability models’ (e.g., feature models)

variability profiles can be extended more easily with new concepts.

For the example of Dutch e-government, Table 6.2 shows the initial architectural

variability profile. It shows five variation points in the business architecture of the

e-government system, their variants, the types, and when the variability in the

architecture would be resolved. “Yes/no” as variants for the variation point “Quick

procedure” mean that “Quick procedure” is a binary variation point (i.e., a quick

procedure to provide WMO services is either implemented in a software system

or not). Furthermore, variability types (as defined in the e-government case) are

sub-processes, or activities within a process/sub-process. In the context of imple-

menting the WMO law, we do not deal with dynamic or runtime adaptation. Thus,

all variation points are resolved at design time (Table 6.3).

6.6.4 Step 3: create architecture
The creation of the architecture is the first step towards implementing variability.
As mentioned earlier, architectural synthesis would consider several candidates

for architecturally significant requirements. The selection of candidates is driven

by assessing them against architecturally significant requirements. Our goal is to

create highly adaptable architectures and to prepare the architecture for variability.

Thus, we define the capability of the architecture to be adapted for different

environments—without applying actions or means “other than those provided for

this purpose for the architecture considered” [27]—as the key driver when selecting

candidates for addressing architecturally significant requirements. Besides this

key driver, there can be additional key drivers in a project (e.g., performance,

availability, etc.).

Table 6.2 Mapping of Steps to Variability Handling Activities

Step
Identify
Variability

Constrain
Variability

Implement
Variability

Manage
Variability

1 ✓ – – –

2 – ✓ – –

3 – – ✓ –

4aþ4b – – – –

5 – – ✓ –

6 ✓ – – ✓

7 – ✓ – –

8 – – ✓ –

150 CHAPTER 6 Supporting Variability Through Agility

To avoid the architectural approach becoming too heavyweight, and to keep the

architectural description up-to-date more easily, the architecture is expressed with

simple component-connector diagrams. However, the architects are free to use any

language, notation, or tool of their own taste, based on their preference and experience.

Furthermore, for the same reason we do not differentiate application-independent

models (such as models used in product line architectures) and application-specific

models (such as models used in the architecture of product instances of a product line).

The architectural description then evolves throughout the development project.

Figure 6.2 shows a partial architectural candidate for a real multi-tenant solution

from a software vendor in Dutch e-government that is intended to implement vari-

ability according to the variability profile shown in Table 6.2. Cornered boxes indi-

cate architectural components, whereas rounded boxes indicate architectural

variation points and variants. The dotted arrow indicates the connection to the rest

of the architecture, which is not shown in this figure. Please note that multi-tenancy is

a solution chosen only for this particular project. Here, multi-tenancy refers to a prin-

ciple in software architecture where one instance of the system runs on a server, serv-

ing multiple client organizations (so-called “tenants”) [28].

6.6.5 Steps 4a and 4b: evaluate architecture
Thorough architecture evaluation and testing are usually not part of agile development

practices. However, we include explicit architecture evaluation in our approach. Here,

we split the evaluation into two parts. One evaluation is conducted during Phase 1, and

Table 6.3 Initial Architectural Variability Profile in the Dutch E-Government

Example

Variation Point Variant Type Resolution

Quick procedure Yes Sub-process Design

No Sub-process Design

Clarification of request Request advice Sub-process Design

Home visit Sub-process Design

Phone conversation Sub-process Design

Personal meeting Sub-process Design

Investigation of claims Home visit Sub-process Design

Dossier research Activity Design

Personal meeting Sub-process Design

External advice Sub-process Design

Budget phase In-house Sub-process Design

Outsourced Activity Design

Payment phase In-house Sub-process Design

External provider Activity Design

1516.6 Agile-Inspired Variability Handling

another (continuouslyperformed) evaluation is conductedduringPhase2.Thearchitec-

ture evaluation during Phase 1 is more conventional and can use scenario-based eval-

uation (e.g., PBAR, a pattern-based architecture review method that targets agile and

lightweight projects [29]) but focuses on adaptation scenarios. Based on the outcome

of this evaluation, the architecture can either be revised, or, if evaluation criteria are

met, accept this architecture as input for Phase 2 of our approach. It is then considered

as “prepared” for accommodating variability. Evaluation criteria are subjective. This

means that as soon as the architect is satisfied with the outcome of the scenario-based

evaluation, the architecture is accepted. In addition to the scenario-based evaluation,

mechanisms for evaluating architecture evolvability [30] can be used.

As variability introduces additional complexity into software architectures, we

integrate lightweight architecture evaluation into Phase 2 of our approach. As this

evaluation is conducted continuously and therefore may incur significant effort,

we suggest the use of a checklist as in other architecture review methods [31]. This

checklist is structured based on potential stakeholders with an interest in variability

in the architecture. Compared to conventional architecture evaluation as done in

Phase 1, a checklist is more lightweight. Furthermore, the checklist provides ques-

tions that can be reused throughout different reviews. The questions could even be

used to evaluate the architecture as part of every design iteration (e.g., a sprint when

using Scrum). However, they may not replace a full-fledged architecture evaluation.

Some questions overlap to obtain more complete evaluation results. The checklist

can be adjusted for specific projects. Aspects covered by the checklist relate to

the form of the description of the architecture and to its content. To answer questions

in the checklist, any of the architectural artifacts (variability profile, etc.) may be

used. The checklist is as follows:

Mother installation

Municipality tenant

Hosts

VP
Budget phase

Referenced in

In-house Outsourced

FIGURE 6.2

Partial architecture candidate.

152 CHAPTER 6 Supporting Variability Through Agility

Figure 6.2

All stakeholders:

• Does the architecture clearly state its stakeholders and concerns?

• Does the architecture clearly state stakeholders of instantiated systems, and their

concerns?

• Does the selected architecture representation frame the concerns of the stake-

holder of the architecture?

• Does the selected architecture representation frame the concerns of the stake-

holders of the instantiated architecture?

• Does the selected architecture representation include concerns that are not con-

cerns of domain stakeholders?

• Is the architecture consistent with domain practices and standards?

• Is it feasible for the architecture to be instantiated in concrete product architec-

tures within the time and budget available?

Architect:

• Has the binding time of each variation point been clearly defined?

• Are variability dependencies and product constraints clearly defined and traceable?

• Are common and specific requirements separated and easily identifiable?

• Is there a description of potential contexts in which architectures are instantiated?

• Are there guidelines for architects and developers for how to resolve variability?

Domain expert:

• Are domain goals that the system must satisfy clearly prioritized?

• Is it clear how domain goals determine the requirements?

• Is there traceability between domain goals and technical solutions (i.e., is it pos-

sible to navigate from domain goals, to architecturally significant requirements,

to technical decisions)?

• Are there criteria to determine of the architecture supports domain goals?

Software manager:

• Is the architectural description sufficient to make an estimate of the effort to

implement it?

• Is it possible to determine development dependencies between different parts of

the architecture?

• What resources are required to instantiate the architecture?

• Is there a schedule for implementation and integration?

Designers and integrators:

• Do you understand the variation points and variants in the architecture?

• Can you determine approaches for implementing variability?

• Can you determine success criteria for testing?

• Is it possible to identify “representative” challenges that occur for testing the

architecture?

1536.6 Agile-Inspired Variability Handling

Using this checklist, we can ask questions not only about the architecture, but

also about the architectural variability profile. For example, the binding time for

each variation point is clearly defined in the variability profile.

In the e-government example, domain experts and software managers come from

municipalities. Architects, designers, and integrators come from software vendors.

Questions related to all stakeholders usually require a discussion amongst

stakeholders.

6.6.6 Step 5: implement initial architecture
The initial architecture undergoes detailed design and is implemented based on the

initial architecture. After architecture evaluation, the architectural cycle continues

with architectural implementation. During this step, the architecture is realized by

designers who create a detailed design. This step goes beyond software architecture,

and is therefore not discussed further in this chapter.

6.6.7 Step 6: elicit new variability requirements
New variability requirements (see Section 6.1) are elicited and documented when-

ever requests from customers arrive. This step is about evolution, maintenance,

and continuous addition of variation points and variants. Similar to initial variability

analysis, this step involves identifying variability. This step is also part of managing
variability. New variability requirements are passed on to Step 7 to revise the archi-

tectural variability profile. This step fits into requirements management in agile

approaches. For example, in agile approaches, such new variability requirements

can be added to a backlog (Scrum) or be defined as user stories (XP) for another iter-

ation of Phase 2 of our approach.

New requirements in the Dutch e-government example mean that different

municipalities have different requirements and adapt these requirements. For exam-

ple, a new variation point can be added to determine the age requirement for certain

social services.

6.6.8 Step 7: revise architecture variability profile
After each iteration, the variability profile has to be revised with regard to new var-

iability requirements (see Step 6) and changes in variation points and variants caused

by new variability requirements. Similar to the initial variability profile, revising the

profile and variants constrains variability. A revised variability profile is important

for facilitating communication between all stakeholders through the development

process and for tracing variability to the architecture. Traceability to the architecture

is ensured by using the revised variability profile as input for architectural refactor-

ing. Revising the architecture variability profile is part of constraining variability to

accommodate flexibility in the architecture to meet current and future needs. Change

154 CHAPTER 6 Supporting Variability Through Agility

to existing variability is handled by revising the variability profile of a variation point

or variant that is changed, or by adding new variation points or variants.

For example, the new variation point “Age requirement” could be added to the

variability profile in the Dutch e-government example, with variability type “Activ-

ity,” resolution time “Design,” and open variants. This is because age requirements

for social support are determined by municipalities.

6.6.9 Step 8: refactor architecture
To implement the new variability profile, the architecture might need to be refac-

tored. For example, new architecture layers might be introduced to further abstract

common aspects, or to handle variable aspects. Refactoring the architecture is an iter-

ative step to implementing variability.
Based on the revised variability profile, the architecture is refactored. The refac-

tored architecture for our Dutch e-government example and the revised variability

profile is shown in Figure 6.3. We added the variation point “Age requirement,”

which has no predefined variants (i.e., it is “open”).

6.7 SUMMARY AND CONCLUSIONS
We presented an agile-inspired lightweight approach for handling variability in soft-

ware architectures. This approach combines ideas from the agile paradigm and var-

iability. Referring to the 12 principles from the Agile Manifesto presented in the

introduction of this chapter, our approach addresses these principles as follows:

Mother installation

Municipality tenant

Hosts

VP
Budget phase

Referenced in

In-house Outsourced

VP
Age requirement

Open

FIGURE 6.3

Refactored architecture.

1556.7 Summary and Conclusions

Figure 6.3

• Principle 1 (the highest priority is to satisfy the customer through early and con-

tinuous delivery of valuable software): Our approach facilitates continuous deliv-

ery through iterative development.

• Principle 2 (changing requirements are welcomed, even late in the development):

Our approach harnesses change for the customer’s competitive advantage. We

systematically elicit and process newly arriving requirements to be implemented

in the architecture.

• Principle 3 (working software should be delivered frequently, with a preference

to shorter timescale delivery): Similar to principle 1, frequent delivery is ensured

though iterative development in Phase 2 of our approach.

• Principle 4 (business people and developers must work together daily through the

project): This principle is met mainly in Phase 2 of our approach. New require-

ments are analyzed by business people and discussed with developers to clarify if

it is feasible to implement them. Furthermore, the checklist to evaluate the archi-

tecture requires communication between different stakeholders.

• Principle 5 (projects should be built around motivated individuals and in an envi-

ronment that supports their needs and facilitates trust to get the job done): This

principle is not explicitly facilitated by our approach, but would depend on the

organization in which our approach is applied.

• Principle 6 (the most efficient and effective method of conveying information

within and across development teams is face-to-face communication): Similar

to principle 5, this principle is not explicitly facilitated by our approach but would

depend on the organization in which our approach is applied.

• Principle 7 (progress is measured based on working software): With each itera-

tion of Phase 2, our approach produces the architecture for the implementation of

a working software product.

• Principle 9 (agility is enhanced through continuous attention to technical excel-

lence): This principle is supported by having continuous evaluation of the archi-

tecture with regard to its support for variability.

• Principle 10 (maximizing the amount of work not done is essential): This prin-

ciple is partially supported. By preparing the architecture for variability in Phase

1, less work is required to implement variability in Phase 2.

Principles 8, 11, and 12 are of an organizational nature and thus not directly

affected by our approach.

Although we discussed some benefits of this approach, we acknowledge that it is

not applicable in all situations. There are basically three criteria to decide if an envi-

ronment is suitable for combining agility and variability. First, there should

be enough commonalities and differences between products that systematic handling

of variability would be justified. Otherwise, we should rather implement separate,

custom-built products. Second, the more rapidly a domain changes, the more an

agile, variability-handling approach becomes useful. This is because the frequency

of newly arriving variability requirements increases. The third criterion is magnitude

[9]. Magnitude includes the size of products, involved teams, the organization which

156 CHAPTER 6 Supporting Variability Through Agility

develops a software system, and the organization that will be using the system.

Small-scale product development usually benefits from lightweight processes,

because they do not require the discipline and rigor prescribed by heavyweight

processes. This is particularly true because variability already increases complexity

and communication efforts in a software development project.

Future work to expand the proposed methodology is related to detailed architec-

ture evaluation in the context of agile projects. This includes the definition of a more

detailed checklist for architecture evaluation with regard to variability. The checklist

would be applied at different steps of the presented methodology to ensure that the

architecture supports variability in a continuous manner, rather than only as part of

Steps 4a and 4b of our approach.

Acknowledgments
This research has been partially sponsored by NWO SaS-LeG, contract no.

638.000.000.07N07.

References
[1] GhanamY, Andreychuk D,Maurer F. Reactive variability management in agile software

development. In: AGILE conference. Orlando, FL: IEEE Computer Society; 2010.

p. 27–34.

[2] Diaz J, Perez J, Alarcon PP, Garbajosa J. Agile product line engineering—a systematic

literature review. Softw Pract Exper 2011;41:921–41.

[3] Bachmann F, Clements PC. Variability in software product lines. Technical report, SEI

CMU; 2005.

[4] Aiello M, Bulanov P, Groefsema H. Requirements and tools for variability management.

In: 4th IEEE workshop on requirement engineering for services (REFS 2010). Seoul,

South Korea: IEEE Computer Society; 2010. p. 245–50.

[5] Svahnberg M, van Grup J, Bosch J. A taxonomy of variability realization techniques.

Softw Pract Exper 2005;35:705–54.

[6] Clements P, Northrop L. Software product lines—practices and patterns. Boston, MA:

Addison-Wesley; 2001.

[7] Cooper K, Franch X. APLE—1st international workshop on agile product line engineer-

ing. In: 10th international conference on software product lines. Baltimore, MD: IEEE

Computer Society; 2006. p. 205–6.

[8] de Silva IF, da Mota Silveira Neto PA, O’Leary P, de Almeida ES, de Lemos Meira SR.

Agile software product lines: a systematic mapping study. Softw Pract Exper

2011;41:899–920.

[9] McGregor JD. Agile software product lines, deconstructed. J Object Technol

2008;7:7–19.

[10] Hanssen G, Faegri TE. Process fusion: an industrial case study on agile software product

line engineering. J Syst Softw 2008;81:843–54.

157References

http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0050

[11] Pohjalainen P. Bottom-up modeling for a software product line: an experience report on

agile modeling of governmental mobile networks. In: 15th international software product

line conference. Munich, Germany: IEEE Computer Society; 2011. p. 323–32.

[12] Noor MA, Rabiser R, Gruenbacher P. Agile product line planning: a collaborative

approach and a case study. J Syst Softw 2008;81:868–82.

[13] Paige RF,Wang X, Stephenson Z, Brooke PJ. Towards an agile process for building soft-

ware product lines. In: 7th international conference on eXtreme programming and agile

processes in software engineering (XP). Oulu, Finland: Springer Verlag; 2006. p. 198–9.

[14] Ghanam Y, Maurer F. Using acceptance tests for incremental elicitation of variability in

requirements: an observational study. In: AGILE conference. Salt Lake City, UT: IEEE

Computer Society; 2011. p. 139–42.

[15] Shokry H, Ali Babar M. Dynamic software product line architectures using service-based

computing for automotive systems. In: 2nd international workshop on dynamic software

product lines. Limerick, Ireland: Lero International Science Centre; 2008. p. 53–8.

[16] Hallsteinsen S, Jiang S, Sanders R. Dynamic software product lines in service-oriented

computing. In: 3rd international workshop on dynamic software product lines,

San Francisco, CA; 2009. p. 28–34.

[17] Fiadeiro JL, Lopes A. A model for dynamic reconfiguration in service-oriented architec-

tures. In: 4th European conference on software architecture. Copenhagen, Denmark:

Springer Verlag; 2010.

[18] Oreizy P, Gorlick MM, Taylor RN, Heimbigner D, Johnson G, Medvidovic N, et al.

An architecture-based approach to self-adaptive software. IEEE Intell Syst 1999;14:

54–62.

[19] Tian K, Cooper K. Agile and software product line methods: are they so different? In:

First international workshop on agile software product line engineering, Baltimore,

MD; 2006. p. 1–8.

[20] Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America P. Generalizing a model

of software architecture design from five industrial approaches. In: 5th working IEEE/

IFIP conference on software architecture. Pittsburgh, PA: IEEE Computer Society; 2005.

p. 77–88.

[21] Tang A, Avgeriou P, Jansen A, Capilla R, Ali Babar M. A comparative study of archi-

tecture knowledge management tools. J Syst Softw 2010;83:352–70.

[22] Anderson DJ. Kanban: successful evolutionary change for your technology business.

Sequim, WA: Blue Hole Press; 2010.

[23] Capilla R, Ali Babar M. On the role of architectural design decisions in software product

line engineering. In: Second European conference on software architecture. Paphos,

Cyprus: Springer Verlag; 2008. p. 241–55.

[24] Santos AL, Koskimies K, Lopes A. A model-driven approach to variability management

in product-line engineering. Nordic J Comput 2006;13:196–213.

[25] Palmer SR, Felsing JM. A practical guide to feature-driven development. Upper Saddle

River, NJ: Prentice Hall; 2002.

[26] Galster M, Avgeriou P. A variability viewpoint for enterprise software systems. In: Joint

10th working IEEE/IFIP conference on software architecture (WICSA) and 6th European

conference on software architecture (ECSA). Helsinki, Finland: IEEEComputer Society;

2012. p. 267–71.

[27] ISO/IEC: software engineering—product quality—part 1: quality model, vol. ISO/IEC

9126-1, Geneva, Switzerland; 2001.

158 CHAPTER 6 Supporting Variability Through Agility

http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0130

[28] Pathirage M, Perera S, Kumara I, Weerawarana S. A multi-tenant architecture for business

process executions. In: IEEE international conference on web services. Washington, DC:

IEEE Computer Society; 2011. p. 121–8.

[29] Harrison N, Avgeriou P. Pattern-based architecture reviews. IEEE softw 2011;28:66–71.

[30] Breivold HP, Crnkovic I, Eriksson P. Analyzing software evolvability. In: 32nd IEEE

international computer software and applications conference (COMPSAC). Turku,

Finland: IEEE Computer Society; 2008. p. 327–30.

[31] Nord R, Clements P, Emery D, Hilliard R. A structured approach for reviewing architec-

ture documentation. Technical report, SEI CMU; 2009.

159References

http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00005-8/rf0145

CHAPTER

Continuous Software
Architecture Analysis 7

Georg Buchgeher* and Rainer Weinreich
{

*Software Competence Center Hagenberg (SCCH), Hagenberg, Austria
{Johannes Kepler University Linz, Linz, Austria

CHAPTER CONTENTS

7.1 Introduction .. 161

7.2 Software Architecture Analysis .. 162

7.3 Approaches to Software Architecture Analysis .. 164

7.3.1 Architecture Reviews ...164

7.3.2 Scenario-Based Evaluation Methods ..165

7.3.3 Architecture Description Languages ..165

7.3.4 Dependency Analysis Approaches and Architecture Metrics166

7.3.5 Architecture Prototyping ...166

7.3.6 Ad Hoc Analysis ..167

7.4 Continuous Software Architecture Analysis ... 167

7.4.1 CSAA and Different Kinds of Architecture Analysis168

7.4.2 Approaches for Continuous Quality Control (CQC)169

7.4.3 Characteristics of CQC Approaches ..169

7.4.4 CSAA Process ..170

7.5 CSAA in Existing Approaches ... 171

7.6 CSAA and Analysis Goals ... 173

7.7 Experiences with an Approach to CSAA .. 176

7.7.1 Validation ...179

7.8 Findings and Research Challenges ... 182

7.9 Conclusion .. 183

7.1 INTRODUCTION
There is no one specific activity termed software architecture analysis. Instead, soft-

ware architecture analysis covers a wide range of activities and aims, which are sup-

ported by different methods and tools. Examples are scenario-based evaluation

methods like the Software Architecture Analysis Method (SAAM) [1] and the

Architecture Tradeoff Analysis Method (ATAM) [2], different kinds of reviews,

dependency analysis with architecture management tools (AMTs), architecture
161

prototyping, and model-based analysis approaches using formalized architecture

description languages (ADLs). Most of these approaches have been developed for

rather traditional, plan-driven, and nonagile development processes with dedicated

points in the development process where specific process results, such as a finished

architecture design, are available for analysis.

In agile processes, however, architecture design is typically performed incremen-

tally and continuously. This means that the architecture design is inherently incom-

plete and continuously evolving. Architecture analysis methods not only have to deal

with incomplete architecture design, but must themselves be performed incremen-

tally and continuously to align with the development process. Existing methods

for architecture analysis need to be adapted to support these new requirements,

and new approaches to architecture analysis need to be developed.

In this chapter, we take a closer look at continuous software architecture analysis

(CSAA). We start by defining software architecture analysis and discussing related

terms such as architecture evaluation, validation, verification, and architecture assess-
ment. We then give an overview of existing and well-known architecture analysis

methods and tools. After discussing important terms and approaches, we look at CSAA

as a means for software architecture analysis in agile development processes.We iden-

tify the core requirements of CSAAby looking at agile principles and at approaches for

continuous quality control (CQC) in agile processes. The identified requirements serve

as the basis for discussing the suitability of existing approaches to CSAA and for dis-

cussing specific architecture analysis goals in the context of CSAA. This general dis-

cussion of the topic is then followed by the presentation of experiences with an

approach to CSAA. The approach currently mainly supports continuous structural

and conformance analysis, though we will argue that these kinds of analysis also pro-

vide the basis for other forms of architecture analysis, particularly for architecture eval-

uation. On the basis of these experiences, we discuss what has worked andwhat has not

worked so far and identify challenges and potential topics for future research.

7.2 SOFTWARE ARCHITECTURE ANALYSIS
Software architecture analysis activities are the counterparts of the constructive

activities of architecture design and implementation [3,4]. Taylor et al. [5] define

architecture analysisa as “as the activity of discovering important system properties

using the system’s architectural models.” Kazman et al. [8] state that “in software

architecture analysis, the software architecture is evaluated against some criteria.”

In most cases, software architecture analysis is used as means of quality control

and risk reduction [9]. However, economic considerations like cost/benefit relations

are also among the drivers of architecture analysis [10].

aTaylor et al. [5] use the term “architectural analysis.” Since this term also describes a phase of the

architecture life cycle (see Hofmeister et al. [6] and Tang et al. [7]), we use the term “architecture

analysis.”

162 CHAPTER 7 Continuous Software Architecture Analysis

The software architecture analysis process is depicted in Figure 7.1. It can be

roughly partitioned into four phases/activities: goal definition, preparation, analysis,

and problem resolution. First, the analysis goals need to be defined. Next, architec-

tural models and documentation required for performing analysis need to be pre-

pared, and organizational activities—like the selection of reviewers, the review

schedule, and the selection of analysis techniques—need to be performed. After hav-

ing defined the analysis goals, and finished all preparation activities, the actual anal-

ysis can be performed. If the analysis is performed as a means for quality control,

each step of the analysis is followed by activities for problem resolution. After

resolving detected problems, the architecture typically has to be reanalyzed to check

whether the problems have been resolved correctly.

Terms that are closely related and often used synonymously with architecture

analysis are architecture validation and verification, architecture evaluation, and
architecture assessment.

Validation and verification is “is the process for demonstrating that a program

meets its specifications (verification) and the real needs of its stakeholders (valida-

tion)” [11]. The central difference between validation and verification is that valida-

tion checks if a created artifact “conforms to the needs of its users” [12], whereas

verification checks if “a created artifact corresponds to some other artifacts created

earlier or being used as source data” [12]. As noted by Sommerville [11], the users’

needs are not always specified in the form of documents. Therefore, validation is a

less formal and more general activity than verification. Validation and verification

are often performed in parallel.

The aim of architecture evaluation is “to analyze the software architecture

to identify potential risks and verify that the quality requirements have been

addressed in the design” [13]. This means that architecture evaluation is architecture

analysis with a specific analysis goal, which is to determine whether the architecture

design satisfies the requirements that are defined as architecturally significant

requirements [6,14].

Architecture assessment is the process of analyzing an architecture against spec-

ified criteria like standards, guidelines, and certain quality attributes to determine the

quality of a system’s architecture with regard to the specified criteria [15].

Architecture analysis can be performed manually, automatically, and semiauto-

matically [5]. Manual analysis means that stakeholders perform architecture analysis

without the use of dedicated tools. Automatic analysis means that architecture

Preparation
Define analysis

goal(s)
Analysis Problem resolution

FIGURE 7.1

Software architecture analysis process.

1637.2 Software Architecture Analysis

Figure 7.1

analysis is performed without human interaction. Semiautomatic analysis means that

the analysis is performed partially manually and partially automatically.

The definition of one or more analysis goals is the starting point of each analysis.

Often the analysis goal is implicitly defined by the analysis method used. An over-

view of different analysis goals in the context of software architecture analysis is

provided by Taylor et al. [5]. They classify analysis goals into four categories: com-

pleteness, consistency, compatibility and correctness.

Completeness analysis comprises external completeness (whether all system

requirements have been addressed in architectural design) and internal completeness

(whether all necessary architectural elements have been defined and whether all

design decisions have been made). An example of a particular kind of internal com-

pleteness analysis is determining whether all necessary elements have been defined

with respect to a particular modeling notation.

Consistency analysis means checking whether the defined architecture contains

contradicting information or not. Examples of inconsistencies are inconsistent

names, interfaces, and refinements of architectural elements.

Compatibility analysis is used for checking whether an architecture adheres to

design guidelines and constraints defined by architectural styles, reference architec-

tures, and standards.

Correctness analysis is always performed with respect to some artifact of refer-

ence. Important kinds of correctness analysis are the determination of whether the

architecture is correct with regard to the specified system requirements (architecture

evaluation), and whether the system implementation conforms to its defined archi-

tecture (architecture/implementation conformance).

Aside from analysis goals, Taylor et al. [5] list additional important properties of

different kinds of architecture analysis, including analysis scope (e.g., local vs.

global), analysis concerns, the formality of architecture models, the type of analysis

(static vs. dynamic), the degree of automation, and the kind of stakeholders involved.

7.3 APPROACHES TO SOFTWARE ARCHITECTURE ANALYSIS
Approaches to architectural analysis range from manual approaches like architecture

reviews, scenario-based evaluation methods, and ad hoc analysis, to automated anal-

ysis using ADLs and AMTs. In the following, we give an overview of the main char-

acteristics of these methods. Later in this chapter, we will discuss them again in the

context of CSAA.

7.3.1 Architecture reviews
Architecture reviews are a static analysis technique. They are typically performed

manually, based on informal or semiformal architecture documentation and on the

experience and expertise of the reviewers.

164 CHAPTER 7 Continuous Software Architecture Analysis

Architecture reviews can be separated into heavyweight and lightweight reviews

[16]. Heavyweight reviews, like technical reviews [17] and inspections [17], are based

on rigorously defined, long-running processes and on comprehensive documentation.

Lightweight reviews, like walkthroughs [17], active design reviews [18], and the Tiny

Architectural Review Approach (TARA) [19], are associated with simple and short-

running processes and can be performedwith no or only a small amount of architecture

documentation.

In terms of analysis aims, architecture reviews are primarily used for architecture

evaluation (correctness) and for checking architecture/implementation conformance.

Aside from correctness, analysis aims may be consistency, completeness, and

compatibility.

Walkthroughs are typically performed by internal technical stakeholders while

technical reviews and inspections are intended to be performed by external technical

stakeholders. External reviewers provide an independent perspective [20,21]; this is

known as independent quality control [22].

7.3.2 Scenario-based evaluation methods
Scenario-based architecture evaluation is a specific kind of architecture review,

which is based on the notion of a scenario. A scenario is a “short statement describing

an interaction of one of the stakeholders with the system” [23]. Each identified sce-

nario is then checked to determine whether it is supported by a system’s architecture

or not. Well-known examples of scenario-based evaluation methods are ATAM [2]

and SAAM [1]. An overview of other existing scenario-based analysis methods can

be found in Refs. [24] and [25].

Scenario-based architecture analysis is typically performed as a one- or two-day

workshop, where ideally all system stakeholders participate in the review. The work-

shopincludes theexplanationof thearchitecture, the identificationof themost important

scenarios, the analysis of the identified scenarios, and the presentation of the results.

Like other review-based methods, scenario-based evaluation methods are a static

and manual analysis approach.

7.3.3 Architecture description languages
ADLs are formal languages for describing the architecture of a software system

[26,27]. Each ADL defines a notation with precise syntax and semantics in which

architecture models can be expressed, and provides a corresponding toolkit for work-

ing with the language.

ADLs include general purpose languages like xADL [28] and ACME [29], and

domain-specific languages (DSLs) [30] like Koala [31], the Architecture Analysis
and Design Language [32], and AUTOSAR [33]. A survey of available ADLs

can be found in [30]. Many ADLs are academic research projects.

ADLs support the description of structural and selected behavioral aspects. An

ADL describes a system at the component and connector abstraction level. A system

1657.3 Approaches to Software Architecture Analysis

is a configuration of components and connectors. Components are units of compu-

tation and data stores. Connectors describe interactions between components and

the rules that govern these interactions [30]. The supported behavioral aspects are

different for each ADL. For example, Wright [34] can be used for identifying inter-

face incompatibilities and deadlocks.

ADLs primarily support architecture evaluation of selected quality attributes.

In addition, architecture models can be analyzed for completeness with respect to

a modeling notation, and for consistency. Some ADLs, like ACME, also support

compatibility analysis [35].

ADL-based architecture analysis is performed automatically using dedicated

analysis tools. ADL-based architecture descriptions can also be used to simulate

system behavior [5].

The creation of ADL-based architecture models is sometimes difficult and

requires technical stakeholders with specific expertise [5]. This may be one reason

why ADLs have not yet found their way into mainstream software development.

Additional reasons are listed by Woods and Hilliard [36] and include the restrictive

nature of ADLs, the lack of multiple views, lack of good tool support, their generic

nature, and the lack of domain concepts.

In addition to ADLs, DSLs can be used to describe software architectures.

Architecture-centric DSLs are typically developed for a particular domain or even

a particular system and support the automatic generation of the system implementa-

tion and specific kinds of automatic analysis [37].

7.3.4 Dependency analysis approaches and architecture metrics
Dependency analysis approaches can be used for extracting and analyzing static

dependencies from code and for comparing the actually implemented architecture

with the intended architecture. Early dependency analysis approaches have been

developed by Murphy et al. [38] (software reflection models) and by Tran et al.

[39]. Today, dependency analysis can be performed with software architecture man-

agement tools (AMTs) like Lattix [40], Sotograph [41], and Structure 101 [42].

Architecture models of the actually implemented system are automatically

extracted from the system implementation, while models of the intended architecture

need to be defined manually. Dependency analysis approaches target technical stake-

holders. Analysis can be performed by members of the development organization

and by external consultants.

Many AMTs also integrate code quality management (CQM) functionality. CQM

tools support the calculation of architecture metrics from the system implementation

and support metric-based analysis [43]. Metrics can be used for detecting bad smells

like cyclic dependencies and tight coupling.

7.3.5 Architecture prototyping
An architecture prototype is a functional subset of a system created to get early feed-

back from the stakeholders [44,45]. Prototypes are used for performing dynamic

166 CHAPTER 7 Continuous Software Architecture Analysis

(but also static) analysis [46] based on an executable (but incomplete) system imple-

mentation. The strength of prototypes is that they permit architecture analysis under

close-to-real conditions. Prototypes are used for answering questions that cannot be

sufficiently answered by other analysis approaches like architecture reviews.

The prototyping process includes the selection of functionality to be analyzed, the

construction (implementation) of the prototype, the analysis of the prototype, and,

optionally, the further use of the prototype. Prototypes are typically used for analyz-

ing performance, modifiability, and buildability [47]. They are created and analyzed

by technical stakeholders, like developers and architects [47].

7.3.6 Ad hoc analysis
Ad hoc analysis means that architecture analysis is performed implicitly as part of

architecture design and implementation activities based on experience, expertise,

and argumentation [15]. Experience-based, informal architecture analysis is one

of the most often-used analysis techniques [48,49]. Ad hoc analysis supports all kinds
of architecture analysis goals and can be performed with both formal and informal

architecture documentation, or without any documentation at all. The analysis is per-

formed manually by technical stakeholders, like software architects and developers.

7.4 CONTINUOUS SOFTWARE ARCHITECTURE ANALYSIS
The discussed approaches for software architecture analysis have mostly been devel-

oped for plan-driven processes. This is mainly because architecture is the primary

means for planning [50] and risk reduction [23] in such processes. An architecture

is usually defined, fully documented, and evaluated before the implementation phase

[5,23]. Architecture evaluation is thus a critical and thorough activity in plan-driven

processes, which requires a significant amount of time and human resources [51]. For

example, an ATAM review may require up to 30 person-days [9].

In agile processes, however, typically no complete up-front architectures are

defined. Either a core architecture is created in early iterations of an agile software

development process, or the architecture emerges as part of subsequent iterations.

Risk reduction is inherent to the process itself [52]: software is developed in itera-

tions and planning can be adjusted at the beginning of each new iteration to anticipate

changes late in development. The focus of agile processes is on early and continuous

delivery of customer value in the form of working software. This is achieved, for

example, through valuing working software over documentation and communication

over processes and tools [53].

Whether plan-driven methods with an up-front architecture or agile methods with

little or no up-front architecture are the appropriate means for development depends

on the kind of project [54,55]. But there is no doubt that the role and means for archi-

tecture analysis are different in agile and lean processes than in plan-driven processes

with big up-front design. This leads us to the question of the potential role, the

1677.4 Continuous Software Architecture Analysis

suitability, and the requirements of architecture analysis and architecture analysis

methods in agile and lean processes.

Since in agile processes architecture design is also a continuous activity that

spreads across the entire development process, architecture analysis needs to be per-

formed continuously, too. The concept of analyzing the complete architecture design

at a dedicated time in the development process does not hold for agile processes.

Also, other assumptions of existing analysis methods—like comprehensive architec-

ture documentation, external stakeholders, and long-running, resource-intensive

processes—do not align with agile principles. This raises the questions, “Which

kinds of analysis and analysis approaches are useful in agile processes?” and,

“How do existing analysis approaches need to be adapted?”

7.4.1 CSAA and different kinds of architecture analysis
Different kinds of analysis, in terms of analysis goals, were discussed in Section 7.2.

Continuous releases in agile processes require means for continuous quality control

(CQC) to ensure that a system possesses the required quality for each release.

In terms of architecture analysis, continuous compatibility analysis ensures that

the (implemented) architecture conforms to company-wide standards, reference

architectures, and guidelines.

Continuous analysis of architecture/implementation conformance can be used to

prevent architectural drift. In agile processes, it can be used to ensure that the imple-

mentation conforms to architectural core decisions and structures defined in previous

iterations.

Consistency analysis is important if architectural models are used for capturing

these core architectural decisions in agile processes. In this case, continuous consis-

tency analysis ensures that the consistency of such models is preserved over time.

Completeness analysis plays a minor role in agile processes, since the architecture

design evolves continuously. It is thus reduced to completeness analysis of potentially

used architectural models, since thesemodels need to be complete if they are to be used

for other kinds of analysis or for the generation of implementation artifacts.

We assume that the role of architecture evaluation will also change significantly

in agile processes, though we lack reports on the role and importance of this kind of

analysis in this context. In plan-driven processes, evaluation is an important means of

risk reduction, while in agile processes, risk reduction is inherent to the process itself.

In plan-driven processes architecture, evaluation is based on a complete architecture

design, but in agile processes, architecture evaluation will be rather incremental and

selective, focusing on specific parts of an architecture. Our assumption is that archi-

tecture evaluation will still play a role, though we assume that it is less important in

agile processes than in plan-driven ones. We also assume that evaluation will require

more lightweight methods to support the principles of agile software development.

In the following, we take a look at other approaches to CQC in agile processes to

derive requirements for CSAA and to discuss the suitability of current approaches for

CSAA in the following sections.

168 CHAPTER 7 Continuous Software Architecture Analysis

7.4.2 Approaches for continuous quality control (CQC)
Approaches for CQC in agile processes include continuous testing [56], continuous

code analysis [57], continuous integration (CI) [57], continuous refactoring [52,58],

and pair-programming [52].

Continuous testing is a combination of techniques and tools like test-driven
development (TDD) and regression testing [56]. TDD [59] is essentially a method

for continuously developing test-cases as part of software design. It is thus also seen

as a design approach, because it ensures that the system is testable by applying good

design principles [60]. Regression testing, on the other hand, is the process of retest-

ing software after modifications to ensure that the new version of the software has

retained the capabilities of the old version and that no new defects have been intro-

duced [61]. Both TDD and regression testing are well integrated into the develop-

ment process. Tools for creating and executing test cases are integrated with

development tools and environments and provide test automation, which is impor-

tant due to the principle of constant change in agile processes.

Continuous code analysis as provided by static code analysis tools like PMD,b

Checkstyle,c and FindBugs™d are either directly integrated in an Integrated Devel-

opment Environment (IDE) or in the build infrastructure and can thus be applied

automatically and on a regular basis.

CI [57,62] also provides automation using a dedicated build infrastructure (build

server). It promotes the principle of early build and delivery. Builds are typically

performed on a daily basis. Building a system usually incorporates the execution

of test cases and of static code analysis.

Continuous refactoring [52], on the other hand, focuses on problem resolution

rather than analysis, though analysis activities need to precede refactoring activities.

In the ideal case, refactoring is also performed continuously [58], because it is easier

to make several smaller changes throughout the development process than to make

larger changes later in development. However, large refactorings cannot always be

avoided [43]. Refactoring support is often part of modern IDEs.

Finally, pair programming [52] is an example for continuous ad hoc analysis dur-
ing development. Code is developed collaboratively by two developers sitting in front

of one machine. Analysis during development is ad hoc and thus not easily repeatable.

7.4.3 Characteristics of CQC approaches
If we look at the main characteristics of the above approaches, we see integration and

continuous application as prominent properties, which are typically not present in

approaches for quality control in plan-driven processes.

bhttp://pmd.sourceforge.net/
chttp://checkstyle.sourceforge.net/
dhttp://findbugs.sourceforge.net/

1697.4 Continuous Software Architecture Analysis

http://pmd.sourceforge.net/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/

Integration takes place not only at the level of the development process, but also

at the level of the development tools and the development team. Process integration
makes it possible to assess a system’s quality as part of the daily development work,

which is necessary to detect and resolve problems early. Tool integration permits

seamless switching between constructive and quality control activities, and it also

permits performing quality control in response to changes in the implementation.

This results in fast feedback of analysis results. Finally, quality control is typically

performed by members of the development team—either by developers themselves,

or by integrating other stakeholders, like testers, with other team members.

Continuous application of quality control activities means their frequent and

repeated application during development. The actual meaning of “frequently”

depends on the CQC approach used and can vary between instantly (on each mod-

ification), multiple times a day, on a daily or weekly basis, or in each iteration.
Repeatability, on the other hand, is important because in agile development

processes a system—including requirements, design, and implementation—is

continuously extended and modified. Continuous modifications require reanalysis

of already-analyzed system parts after system modifications.

In addition, we should note that an important aspect of continuous application is

support for problem resolution. In agile processes, it is not only important to detect

problems as early as possible, but also to resolve the detected problems as part of the

CQC activities used. Therefore, problem resolution is typically, and often implicitly,

part of CQC activities.

To summarize, integration and continuous application are main characteristics

of approaches for CQC. It can be observed that continuous application in many

CQC approaches is facilitated through automation and tool support. For example,

continuous testing, continuous code analysis, and CI would not be possible without

automation because these approaches encompass activities that would be tedious,

time-intensive, and error-prone if performed manually. However some approaches,

like refactoring and pair programming, do not rely on automation but rather on

process and team integration.

7.4.4 CSAA process
The main activities of a CSAA process align with the typical activities of the soft-

ware architecture analysis meta-process outlined in Section 7.2: goal definition,

preparation, actual analysis, and problem resolution. The main extension is the con-

tinuous application of these activities. This is illustrated in Figure 7.2.

The figure shows that the original architecture analysis process from Section 7.2

is now a cyclic process. It also starts with the definition of analysis goals—a step that

is optional—because once defined, the goals need not be defined anew in subsequent

iterations. This is followed by a step for creating and maintaining architectural infor-

mation as a basis for performing the actual analysis. Preparing architectural informa-

tion is a major activity in plan-driven analysis approaches, and thus it consumes

significant resources. In a CSAA process, it is important that this activity can also

170 CHAPTER 7 Continuous Software Architecture Analysis

be performed with as little effort and resources as possible and as an integrated activ-

ity of the development process. This means that it is not possible to create complete

and extensive documentation, which has to be maintained in subsequent iterations.

Instead, this effort needs to be reduced by restricting the created information selec-

tively to the analysis task at hand and by automatically generating architectural infor-

mation from other artifacts (e.g., by extracting architecture from code). In subsequent

iterations, the available architecture documentation (e.g., architecture models) need

to be incrementally updated as part of the development process. This means the prep-

aration phase of the original architecture analysis process is not mainly concerned

with creating architectural information, but with updating and maintaining the exist-

ing documentation. Finally, problem resolution is an integrated activity of continu-

ous analysis to support the principle of continuous delivery in agile processes.

7.5 CSAA IN EXISTING APPROACHES
Having identified central characteristics of approaches for CQC, and thus for CSAA,

we now examine how well CSAA is supported in existing approaches for software

architecture analysis. Specifically, we examine the aspects of integration, frequency,

and repeatability as discussed in the previous section.

Heavyweight architecture reviews, like inspections and technical reviews, are

long-running processes that span multiple weeks [20] and require a significant

amount of human resources. This makes it impossible to use heavyweight architec-

ture reviews as a frequent and integral part the development process. Also, heavy-

weight architecture reviews are typically intended to be performed by personnel

outside the development organization [20,21], not by the development team.

Lightweight architecture reviews, like walkthroughs, are performed by the devel-

opment team and can be integrated into the development process at regular intervals.

Days

Minutes

Weeks

D
ef

in
e

an
al

ys
is

goals Preparation/
A

rchitecture analysisProblem re
so

lu
tio

n
(o

pt
ion

al) update
FIGURE 7.2

Continuous software architecture analysis process.

1717.5 CSAA in Existing Approaches

Figure 7.2

They can be performed frequently (i.e., weekly or in each iteration) by, for example,

only analyzing new and modified system parts.

Scenario-based architecture evaluation methods, like SAAM [1] and ATAM [2],

define long-running processes covering multiple weeks, which are intended to be

performed isolated from development. Analysis is performed by external consultants

[63] together with all stakeholders of the system [23]. Because of the required

resources, scenario-based evaluation methods are not easily repeatable and cannot

be performed frequently. Dedicated tool support for scenario-based architecture

evaluation is considered important [64], but most scenario-based methods lack ade-

quate tool support [25].

Architecture prototyping approaches can be partially integrated in the daily

development process, depending on the kind of prototype and on the resources

required for prototype creation and analysis. Architecture prototyping is typically

performed by members of the development team [47]. Because of the effort involved

in prototype creation, architecture prototyping cannot be performed frequently and it

is not easily repeatable.

Dependency analysis and metric-based analysis can be integrated in the daily

development process, and dependency analysis tools are usually integrated well with

IDEs and the build infrastructure. Because of the high degree of automation, analysis

can be performed at a high frequency and is easily repeatable. Analysis can be per-

formed by members of the development team [41]. Some dependency analysis tools

also provide support for problem resolution, such as support for virtual refactoring [65].

ADLs are not well integrated into processes and teams. This is attributed to the

formal and sophisticated nature of ADLs [66], the resulting complexity in using

ADLs [67], and the lack of support of various stakeholder concerns through different

viewpoints [67]. Some ADL toolkits, like ArchStudio 4e and AcmeStudio,f are inte-

grated with development tools, but a tight integration between ADL the toolkit and

IDE functionality is typically missing. Because analysis is performed automatically,

analysis is repeatable. However, performing ADL-based analysis at a high frequency

is difficult because of the required resources for creating and maintaining the

required architecture models. Architecture-centric DSLs are better integrated with

the development process and team. Such languages can even be developed by the

development team itself according to their specific needs.

Ad hoc analysis can be seamlessly integrated into architecture design and

implementation activities because it is an implicit activity. Ad hoc analysis is usually
performed by members of the development team. Since analysis is performed

implicitly, it can be performed at a high frequency and as part of architecture design

activities. However, since it is performed as part of other activities, it is not easily

repeatable. Ad hoc analysis does not build upon any specific tool support other than

available design and implementation tools.

ehttp://www.isr.uci.edu/projects/archstudio/
fhttp://www.cs.cmu.edu/�acme/AcmeStudio/

172 CHAPTER 7 Continuous Software Architecture Analysis

http://www.isr.uci.edu/projects/archstudio/
http://www.cs.cmu.edu/~acme/AcmeStudio/
http://www.cs.cmu.edu/~acme/AcmeStudio/

Support for CSAA in existing architecture analysis approaches is summarized in

Table 7.1. Heavyweight review-based approaches and scenario-based methods are

intended to be performed by external stakeholders at specific points in the develop-

ment process and have not been designed for tight integration as required in agile

processes. Lightweight reviews, dependency analysis approaches, ad hoc analysis,

and architecture prototyping can be performed by internal stakeholders and can

be integrated in the development process. Integration of ADL-based analysis remains

rather unclear due to the lack of experiences of using ADLs in practice. ADL tools

also lack integration with other development tools. Currently, only dependency anal-

ysis approaches provide tight tool integration.

Heavyweight review-based approaches and scenario-based evaluation methods

cannot be applied continuously. They suffer from high demand for resources in terms

of the time needed for review and required stakeholders, which makes frequent appli-

cation and repeatability infeasible. Lightweight reviews require fewer resources and

can thus be performed more frequently (e.g., on a weekly basis, or in each iteration).

The resource demand is lower because lightweight reviews typically only analyze

selected parts of a system’s architecture.

ADLs seem like perfect candidates for continuous application because of their

support for automatic analysis. ADL-based analysis is easily repeatable because

of automation, but it cannot be performed at a high frequency due to the effort

required to create and maintain architecture descriptions, and because of the need

for the stakeholders involved to possess specific, formal skills (or because of the high

learning curve for acquiring those skills; see Ref. [5], p. 220).

The best support for continuous application is currently provided by dependency

analysis approaches. They provide a high degree of automation and tool support,

which permits short-running analysis processes that can be integrated in the daily

development process. Further, analyses can be performed frequently and are easily

repeatable. They also typically provide support for problem resolution.

To summarize, approaches with a high resource demand in preparation, analysis,

and resolution are not well suited for CSAA. This includes heavyweight reviews and

scenario-based analysis, but also ADLs.

7.6 CSAA AND ANALYSIS GOALS
There is also a relation between the suitability of an analysis method for continuous

architecture analysis and the supported kind of analysis. Many analysis goals are sup-

ported by multiple analysis methods. The efforts required for analysis differ between

these methods. In general, analysis methods that require few resources are desirable

for CSAA because they can be applied more frequently. Required resources can be

reduced if analysis methods provide automation and tool support in all phases of the

analysis process. In this section, we discuss which analysis goals can benefit from

automation and tool support being used to help keep required resource demands low.

Table 7.2 gives an overview of analysis methods and typically supported analysis

goals (we use the classification of analysis goals as presented in Section 7.2).

1737.6 CSAA and Analysis Goals

Table 7.1 Architecture Analysis Approaches and CQC Requirements

Heavyweight
Reviews

Lightweight
Reviews Scenarios

Dependency
Analysis ADLs

Architecture
Prototyping

Ad hoc
Analysis

Integration Process -- þ -- þþ ? o þþ
Tool -- -- -- þþ - o na

Team o þþ - þþ ? þþ þþ
Continuous
Application

High
Frequency

-- o -- þþ -- - o/þ

Repeatability -- o -- þþ þþ o/- --

Problem
Resolution

-- -- -- o - -- --

þþ, excellent; þ, good; o, partially; -, poor; --, none; ?, don’t know; na, not applicable.

1
7
4

C
H
A
P
T
E
R
7

C
o
n
tin

u
o
u
s
S
o
ftw

a
re

A
rc
h
ite
c
tu
re

A
n
a
lysis

Table 7.2 Analysis Approaches and Analysis Goals

Analysis Goals
Heavyweight
Reviews

Lightweight
Reviews Scenarios

Dependency
Analysis ADLs

Architecture
Prototyping

Ad hoc
Analysis

Completeness Requirements � � � �
Architecture
Design

� � � �

Model (Notation) � � � �
Correctness Requirements/

Architecture
� � � � � �

Architecture/
Implementation

� � � � � �

Compatibility � � � � �
Consistency � � � �

1
7
5

7
.6

C
S
A
A
a
n
d
A
n
a
lysis

G
o
a
ls

Completeness analysis refers to completeness with regard to the defined

requirements (external completeness) and to the completeness of the design (internal

completeness). As shown in the table, these kinds of analysis are typically part of

review-based architecture evaluation approaches and ad hoc analyses. Since they

are based on the experience and expertise of the software architect, they are hard

to automate and therefore must be analyzed manually.

Internal completeness with regard to a modeling notation, consistency, and the

compatibility of architecture models (like the compatibility to reference architec-

tures) can be analyzed manually as part of review-based approaches, but also auto-

matically by formalizing the models and rules for completeness, consistency, and

compatibility. Provided that the effort for creating and maintaining the architecture

models is kept at a minimum, these kinds of analysis goals are suitable for continuous

architecture analysis.

Correctness with regard to defined requirements also cannot easily be automated,

since this requires formal specifications, which are expensive both to create and to

maintain. Correctness analysis is currently either part of architecture evaluations

using review-based methods, or part of ADL approaches. The former require manual

effort and resources; the latter suffer from the effort involved in creating and main-

taining the necessary formal models.

Finally, the conformance of architecture models to external artifacts, like the

architecture implementation, can also be automated—at least for architectural infor-

mation that can be extracted from an implementation. In this case, two formalized

artifacts—the architectural model and the system implementation—are available.

In summary, automation facilitates continuous architecture analysis. However,

automation requires formalization, and the feasibility of automating architecture

analysis goals depends on the effort required to create and maintain such models dur-

ing the development process. Analysis goals that perform some kind of structural

analysis based on formally defined architecture models (i.e., analysis of the com-

pleteness of an architecture model with respect to a modeling notation, analysis

of consistency and compatibility, conformance between architecture models and

the system implementation) can be automated more easily than semantic analyses

that typically require manual interpretation based on experience and expertise.While

some of the structural analyses can be considered rather fine-grained and low-level,

these kinds of analyses can be seen as foundational and prerequisite for more seman-

tic kinds of analysis, like architecture evaluation. Structural analyses and confor-

mance analyses ensure that architecture descriptions required for analysis are

complete and consistent. Without complete and consistent architecture descriptions,

architecture analysis may be difficult or even impossible [68].

7.7 EXPERIENCES WITH AN APPROACH TO CSAA
In the previous section, we argued that architecture analysis goals that support some

kind of structural analysis are candidates for automatic, continuous architecture

176 CHAPTER 7 Continuous Software Architecture Analysis

analysis. In the following, we report on experiences with automatic architecture anal-

ysis as supported by the LISA (Language for Integrated Software Architecture)

approach. The approach supports the continuous analysis of model completeness
and consistency, and of architecture/implementation conformance.

In general, LISA is a model-based approach for managing and analyzing the

architecture of heterogeneous, component-based software systems [69]. It supports

activities like architecture design, architecture extraction, architecture documenta-

tion, architecture knowledge management, and architecture analysis. The approach

is based on a single formalized architecture model, which is used for architecture

representation throughout the whole software architecture life cycle. This central

model, which we call the LISA model, integrates and connects requirements, design

decisions, architectural abstractions, and implementation artifacts [70], and informa-

tion needed for both manual and automatic architecture analysis [71]. The nature of

architectural abstractions and implementation artifacts in the LISA model can be

compared to UML structure diagrams (e.g., class diagram and component diagram).

Requirements and design decisions are described informally, but can be linked other

requirements, design decisions, and architectural structures to support tracing and

impact analysis.

The LISA Toolkit (see Figure 7.4) provides a set of integrated tools for working

with LISA-based architecture models. The toolkit provides support for defining,

editing, and visualizing LISA-based architecture models via multiple views, for

extracting architectural information from a system implementation [69], and for

automatic tracing of decisions to architecture and implementation [72].

CSAA support in LISA is provided by a framework for continuously analyzing

LISA-based architecture models, which is part of the LISA Toolkit (see Figure 7.3).

The framework performs architecture analysis after each modification of a system to

support immediate problem detection. Analysis is performed automatically via an

extensible set of rules that check architecture description and system implementation

Developer

Modify

System

ImplementationArchitecture
description

Rule 1 Rule 2 Rule 3 Rule ...

Analysis framework

Completeness
consistency

Confor-
mance

FIGURE 7.3

CSAA approach overview.

1777.7 Experiences with an Approach to CSAA

Figure 7.3

for problems. Rules are evaluated incrementally; this means that only those parts of

an architecture model that have actually been modified are analyzed, and that only

rules that are effected by a certain modification are evaluated. If problems are

detected, they are immediately reported to the developers by annotating the architec-

ture diagrams and the system implementation with problem markers, in a manner

similar to how IDEs report compile errors (see Figure 7.4).

The resolution of problems is partially supported via automatically suggested res-

olution actions, which are called “quick fixes.” A quick fix either automatically

resolves a problem by making changes to architecture and/or implementation, or

it guides the user through the problem resolution process. For example, a quick

fix may prompt the user for missing information and automatically add this informa-

tion to both architecture and implementation. Quick fixes can also be used for auto-

matically creating component definitions, ports, and component instances in the

architecture model, based on information found in the system implementation.

Currently, the LISA Toolkit mainly provides rules for analyzing the complete-

ness and consistency of architecture models and for analyzing the conformance of

the architecture model and system implementation (see Figure 7.3).

Completeness rules check whether the architecture model contains all required

elements and whether these elements possess all required properties. Examples

include rules for checking whether a component possesses one or more ports,

FIGURE 7.4

CSAA with LISA.

178 CHAPTER 7 Continuous Software Architecture Analysis

Figure 7.4

whether a port has a name, and whether a component is linked to an implementation

artifact. The completeness of the architecture model is a prerequisite for other kinds

of architecture analysis. For example, architecture/implementation conformance can

only be analyzed if a component provides a link to an implementation artifact.

Consistency rules check whether architecture elements and their properties are

consistently defined. For example, the system checks whether a component contains

a valid reference to its definition and whether a connection is defined from a refer-

ence port to a service port (in case of a request-response style). In agile development

processes, inconsistencies may easily arise as architecture and implementation

evolve continuously.

Architecture/implementation conformance rules check whether architecture ele-

ments defined in the architecture model are also part of the system implementation,

and vice versa. This includes checks like whether classes found in the system imple-

mentation are part of the architecture model and whether components found in the

architecture model are implemented as components in the system implementation,

and vice versa. Architecture/implementation conformance analysis aids not only

in avoiding problems like architectural drift and erosion, but also in keeping archi-

tecture models up to date throughout the development process.

Architecture/implementation conformance analysis is provided for architectural

information that is contained in both architecture description and system implemen-

tation. We provide conformance rules for code structures (classes, packages, depen-

dencies), for component definitions, and for configuration structures. Components

are identified in the system implementation based on heuristics using either provided

metadata (annotations), extended and/or implemented classes and interfaces, and

information available from configuration files and deployment descriptors.

7.7.1 Validation
Wemonitored the application of our approach in an industrial software development

project (P1) and in several student projects (P2-P6). The developers of project P1 had

multiple years of development experience. The project was medium-sized with about

350,000 lines of code, and was based on Eclipse. Developers in projects P2-P6 were

students in computer science and business informatics classes. Projects P2-P6 varied

between 5000 and 13,000 lines of code and included web applications based on the

Google Web Toolkit and mobile applications based on Android. Developers were

asked to use the LISA Toolkit to document their architectures and to keep this

documentation up to date during the development process by using architecture/

implementation conformance analysis. In each project, the architecture descriptions

consisted of implementation structures, higher-level component structures, require-

ments, and design decisions.

All projects used an agile development process with iterations of 3-4 weeks. Dur-

ing the development process, we supported the developers by answering questions

and discussing the usage of the LISA Toolkit at the end of each iteration.

1797.7 Experiences with an Approach to CSAA

We wanted to know whether the approach was applied continuously and whether

it was integrated in the daily development process as outlined in Section 7.4. Rele-

vant data was collected over a period of 3-8 months with a logging component that

transparently recorded analysis-related data like detected and resolved analysis prob-

lems over time.

For making statements regarding continuous application, we first investigated the

frequency of analysis during development. Usually, analysis is performed on each

change in the system under investigation. However, analysis rules can be deacti-

vated, which may lead to larger analysis intervals, or may deactivate analyses

completely. We derived the analysis frequency from the logged analysis problems.

As a frequency measure, we aggregated all detected problems within 1 h intervals

and counted the average number of intervals with new problems per day. This

resulted in a problem detection rate (number of intervals with new problems) of

2.3 in project P1. In the student projects the average problem detection rates were

1.7 (P2), 1.6 (P3), 1.9 (P4), 1.3 (P5), and 2.0 (P6), respectively (see Table 7.3). These

results indicate that in all projects, architecture analysis has at least been performed

on a daily basis. Further, in all projects there have been days with a detection rate of

3-5 times per day. All in all, this is a clear indication of high analysis frequency in all

examined projects.

As described in Section 7.4, continuous application also requires the continuous

resolution of problems to assess that a system retains its required quality. For this rea-

son, we further analyzed the lifespan of problems to find out when detected problems

were resolved—that is, whether they were resolved immediately, whether they were

resolved later in the development process, or whether they were not resolved at all. For

calculating the lifespan of a problem, we subtracted the time of first problem detection

from the time of (last) problem resolution.g We classified the lifespan of problems into

six categories: problems that were resolved within 5 min, within 1 h, within 1 day,

within 1 week, within 1 month, and problems that existed for over 1 month.

Figure 7.5 provides an overview of the average lifespan of the detected problems

in the analyzed projects. As shown in the figure, in all projects at least 49% of all

detected problems were resolved within 5 min, and more than 62% of all problems

were resolved within 1 h. Finally, between 68.2% and 96.9% of all problems were

Table 7.3 Overview of Problem Detection

P1 P2 P3 P4 P5 P6

Avg. Detection Times per Day
(1 h Interval)

2.3 1.7 1.6 1.9 1.3 2

Maximal Detections per Day 5 4 4 5 3 5

gSince analysis is performed on each modification of a system in our approach, problems are detected

multiple times.

180 CHAPTER 7 Continuous Software Architecture Analysis

resolved within 1 day. We should also note that in all projects a small number of

problems had a lifespan of over 1 month. This shows that the majority of problems

were resolved continuously, with about 50% even being resolved within 5 min and

about 70% within 1 day (see Table 7.4).

The high frequency of the performed analyses (at least 1.4 times per day) and the

short lifespan of most problems already indicate that analysis has been performed

continuously and as an integral part of the development process in all projects.

We further analyzed the aspect of process integration by taking a closer look at

the problem resolution process. In particular we investigated the role of quick fixes

for problem resolution. Quick fixes are (semi)automated resolution actions that are

provided in architecture diagrams and source code editors and support the direct and

immediate resolution of problems during architecture design and implementation

activities. There is not always a one-to-one relationship between the execution of

a quick fix and the resolution of a problem, which makes drawing conclusions from

the analyzed data more difficult. The execution of a single quick fix might resolve

multiple problems at once. Contrarily, not every execution of a quick fix necessarily

resolves a problem. Therefore, we divided quick fixes into two categories: quick

fixes that eventually resolved a problem and quick fixes that only assisted in problem

resolution.

Table 7.5 shows the number of quick fixes that were executed in each project.

Between 58% and 90% of all executed quick fixes definitely resolved a problem,

while the other executed quick fixes assisted in problem resolution but did not

directly resolve a problem. The data shows that in all projects, quick fixes have been

used for problem resolution. Given the overall number of detected problems in each

0%

25%

50%

75%

100%

< 5 min < 1 h < 24 h < 1 week < 1 month > 1 month

2%5%7%8%10%

69%

0%1%2%0%
4%

93%

8%
15%

6%
10%13%

49%

9%
4%8%4%

21%

55%

14%
8%10%

3%

13%

52%

5%
3%2%5%

10%

74%

P1 P2 P3 P4 P5 P6

FIGURE 7.5

Average lifespan of problems.

Table 7.4 Problems That Have Been Resolved Within One Day

P1
(%)

P2
(%)

P3
(%)

P4
(%)

P5
(%)

P6
(%)

Problems Resolved
Within One Day

89.1 68.2 79.9 71.3 96.9 86.9

1817.7 Experiences with an Approach to CSAA

Figure 7.5

project, between 17.4% and 53.4% of all problems have at least been resolved via

quick fixes. The actual number of problems resolved via quick fixes might be higher

because the execution of a single quick fix may resolve multiple problems at once. It

should also be noted that we have not developed quick fixes for all kinds of problems.

Therefore the number of problems that can be resolved via quick fixes could be

improved by providing additional quick fixes in the future. This shows that while

quick fixes have been used in all projects for problem resolution, we cannot conclude

that they are a prerequisite for continuous problem resolution.

7.8 FINDINGS AND RESEARCH CHALLENGES
Our experiences with the LISA approach are currently restricted to continuous anal-

ysis of the structural aspects of an architecture description and to conformance anal-

ysis. The data collected from the case studies presented in the previous section shows

that this kind of analysis can be applied continuously in an agile setting, which means

that developers were able to keep the architecture model up to date during develop-

ment through conformance analysis. The analyzed data also shows a high number of

detected conformance problems, even for the smaller projects. This indicates that

even for smaller systems the architecture documentation (i.e., the architecture

model) may easily become out of date in an agile process. We further found that

many problems have been resolved within 5 min. This shows that conformance

and inconsistency problems can be fixed rather quickly if analysis is performed con-

tinuously. Despite these findings, it is still too early to draw general conclusions for

even these restrictive kinds of analysis. Further validation in additional projects—

especially larger industrial ones—is needed.

Continuous model completeness and consistency analyses as provided in the

LISA approach are useful during architecture design for indicating where architec-

ture elements and required properties are still missing and/or inconsistent. This is

especially valuable for the creation of formalized models with precise syntax and

Table 7.5 Quick Fix Execution Overview

P1 P2 P3 P4 P5 P6

Executed Quick Fixes 604 156 123 406 239 171

Number of Quick Fixes
That Resolved
Problems

543 92 76 295 140 100

Number of Quick Fixes
That Resolved
Problems (%)

89.9 59.0 61.8 72.7 58.6 58.5

Problems 1682 528 390 552 280 203

Problems Resolved via
Quick Fixes (%)

32.3 17.4 19.5 53.4 50.0 49.3

182 CHAPTER 7 Continuous Software Architecture Analysis

semantics. The provided benefits are similar to what is provided by compilers for

programming languages and architecture-centric DSLs. Continuous conformance

analysis not only aids in the creation and maintenance of a valid architecture descrip-

tion over time, but is also an important means for preventing architectural drift and

erosion.

While CSAA seemed to work for the discussed kinds of analysis in the presented

approach, we assume that less structural and more semantic kinds of analysis, like

architecture evaluation, require a different approach for CSAA. Such kinds of anal-

ysis cannot easily be automated. Automatic evaluation requires formalization of both

requirements and architecture—which is still too costly, at least for general use.

Many well-known manual evaluation methods are too resource- and time-intensive

and have so far not been adapted for use in agile settings. The resource demand can

be reduced either by limiting the scope of analysis by analyzing only selected parts of

a system’s architecture, or by automating single steps/activities of the analysis pro-

cess, like the creation and maintenance of architecture documentation. Lightweight

reviews might be a possible approach for continuous architecture evaluation, but we

lack documented experiences with lightweight reviews in agile processes.

Still we see the structural and conformance analysis as provided in the LISA

approach as a possible foundation and as a first step for continuous architecture eval-

uation support. A strength of the LISA approach is its support for extracting archi-

tecture information from a system implementation and keeping this documentation

up to date during the development process. The possibility of linking requirements

and design decisions with solution structures further aids in using the resulting archi-

tecture model for manual and ad hoc architecture evaluation. Further, we can image

that the formalized nature of the LISA model can help to identify modified parts of

the architecture that need to be reevaluated.

Finally, we still need to clarify the role and the degree of architecture evaluation

in agile processes. While architecture evaluation is an important means for risk

reduction in plan-driven processes, this role may be less important in projects at

the agile side of the spectrum because risk reduction is implemented as part of

the process itself. Projects are often somewhere between strictly agile and strictly

plan driven, so we assume that architecture evaluation will still have its place in

many agile projects. We still need data on the actual use and the benefits of archi-

tecture evaluation in agile projects.

7.9 CONCLUSION
Architecture analysis is a broad topic, which is addressed by a large number of dif-

ferent analysis methods and techniques. Available analysis approaches differ consid-

erably in various aspects, including process, stakeholders, and in the supported

analysis goals. Many of the existing approaches for architecture analysis are cur-

rently not well suited for being applied continuously in an agile setting. This is

mainly because they have been developed for rather plan-driven processes, with

1837.9 Conclusion

dedicated points of analysis in the process and external analysis processes. Approaches

for quality control in agile processes show that integration, low resource demand, and/or

automation are main requirements for CSAA. If we look at existing approaches for

architecture analysis, we see that very few provide sufficient support for these require-

ments throughout all analysis activities, including preparation, analysis, and resolution.

Our own experiences with an approach for CSAA showed that automated CSAA

works well in structural and conformance analyses. Automation-based approaches

for other kinds of analysis, specifically for architecture evaluation, remain a chal-

lenge because of the effort involved in creating and maintaining the required for-

mally defined models. Also, architecture evaluation includes not only checking

whether an architecture design addresses the requirements correctly, but also com-

paring different alternatives and selecting the most suitable one by weighing the ben-

efits and drawbacks of different solutions. This means that large parts of architecture

evaluation are based on experience and cannot be automated. Lightweight architec-

ture reviews might be a possible approach, but we still lack experiences with light-

weight reviews in agile processes.

We conclude that continuous architecture evaluation in agile processes remains

an open research question. Continuous analysis of semantic analysis goals based on

experience can be performed using lightweight architecture reviews, which reduce

resource demand by analyzing only selected parts of an architecture and do not

require explicit architecture documentation. Further, structural analysis as provided

by the approach presented in this chapter can be used for automating single activities of

the analysis process like the creation and maintenance of architecture documentation.

Providing an architecture description that is always up to date and support for light-

weight capturing of architectural documentation (e.g., through architectural knowledge)

might help to make architectural evaluation more explicit and manageable in such pro-

cesses. To answer these questions, we need studies of the state of practice of architecture

evaluation in agile processes, new approaches for automating specific tasks of architec-

ture evaluationwith reasonable effort, and suggestions for improvingmanual reviews in

environments with constraints on time and other resources.

References
[1] Kazman R, Bass L, Abowd G,WebbM. SAAM: a method for analyzing the properties of

software architectures. In: Proceedings. 16th international conference on software engi-

neering (ICSE-16); 1994. p. 81–90.

[2] Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere J. The architecture

tradeoff analysis method. In: Proceedings. Fourth IEEE international conference on engi-

neering of complex computer systems (ICECCS ‘98); 1998. p. 68–78.

[3] Bass L, Clements P, Kazman R, Klein J, Klein M, Siviy J. A workshop on architecture

competence. tech. note CMU/SEI-2009-TN-005, Software Engineering Institute, Carne-

gie Mellon University; 2009.

[4] Endres A, Rombach D. Illustrated edition: a handbook of software and systems engineer-

ing: empirical observations, laws and theories. Reading, MA: Addison Wesley; 2003.

184 CHAPTER 7 Continuous Software Architecture Analysis

http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0020

[5] Taylor RN, Medvidovic N, Dashofy EM. Software architecture: foundations, theory, and

practice. New Jersey: Wiley; 2009.

[6] Hofmeister C, Kruchten P, Nord R, Obbink H, Ran A, America P. A general model of

software architecture design derived from five industrial approaches. J Syst Softw

2007;80:106–26.

[7] Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA. A comparative study of architec-

ture knowledge management tools. J Syst Softw 2010;83:352–70.

[8] Kazman R, Bass L, Klein M, Lattanze T, Northrop L. A basis for analyzing software archi-

tecture analysis methods. Software Qual J 2005;13:329–55, Kluwer Academic Publishers.

[9] Bass L, Clements P, Kazman R. 2nd ed. Software architecture in practice. Boston, MA:

Addison-Wesley Professional; 2003.

[10] Kazman R, Asundi J, Klein M. Quantifying the costs and benefits of architectural deci-

sions. In: International conference on software engineering. Colorado: IEEE Computer

Society; 2001. p. 297þ.

[11] Sommerville I. 8th ed. Software engineering: update, Boston, MA: Addison Wesley; 2006.

[12] Karpov A. Verification and validation, Intel® Software Network Software Blogs; 2010.

[13] Kazman R, Bass L, Abowd G, Webb M. Analyzing the properties of user interface soft-

ware. Pittsburgh, PA: Carnegie Mellon University; 1993.

[14] Obbink H, Kruchten P, Kozaczynski W, Hilliard R, Ran A, Postema H, et al. Report on

software architecture review and assessment (SARA); 2002.

[15] Bosch J. Design and use of software architectures: adopting and evolving a product-line

approach. Boston, MA: Addison-Wesley Professional; 2000.

[16] Harrison N, Avgeriou P. Pattern-based architecture reviews. IEEE Softw 2011;

28:66–71, IEEE Computer Society Press.

[17] IEEE 1028-2008 IEEE standard for software reviews and audits. Institute of Electrical

and Electronics Engineers, 2008.

[18] Parnas DL, Weiss DM. Active design reviews: principles and practices. In: ICSE ‘85:

proceedings of the 8th international conference on software engineering. Washington,

DC: IEEE Computer Society Press; 1985. p. 132–6.

[19] Woods E. Industrial architectural assessment using TARA. In: Proceedings of the 2011

ninth working IEEE/IFIP conference on software architecture. Boulder, CO: IEEE Com-

puter Society; 2011. p. 56–65.

[20] Maranzano JF, Rozsypal SA, Zimmerman GH, Warnken GW, Wirth PE, Weiss DM.

Architecture reviews: practice and experience. IEEE Softw 2005;22:34–43, IEEE Com-

puter Society.

[21] Abowd G, Bass L, Clements P, Kazman R, Northrop L, Zaremski A. Recommended

best industrial practice for software architecture evaluation. tech. note CMU/SEI-96-

TR-025, Software Engineering Institute, Carnegie Mellon University; 1997.

[22] Balzert H. Lehrbuch der Softwaretechnik: Softwaremanagement (German Edition). 2nd

Aufl. Heidelberg: Spektrum Akademischer Verlag; 2008.

[23] Clements P, Kazman R, Klein M. Evaluating software architectures: methods and case

studies. Reading, MA: Addison-Wesley Professional; 2001.

[24] Dobrica L, Niemela E. A survey on software architecture analysis methods. IEEE Trans

Softw Eng 2002;28:638–53, IEEE Computer Society.

[25] Babar MA, Zhu L, Jeffery R. A framework for classifying and comparing software archi-

tecture evaluation methods. In: ASWEC ‘04: proceedings of the 2004 Australian soft-

ware engineering conference. Washington, DC: IEEE Computer Society; 2004. p. 309þ.

185References

http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9500
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9500
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9500
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0105

[26] Clements P. Formal methods in describing architectures. In: Monterey workshop on for-

mal methods and architecture; 1995.

[27] Clements PC. A survey of architecture description languages. In: IWSSD ‘96: proceed-

ings of the 8th international workshop on software specification and design.Washington,

DC: IEEE Computer Society; 1996.

[28] Dashofy EM, van der Hoek A, Taylor RN. A comprehensive approach for the develop-

ment of modular software architecture description languages. ACM Trans Softw Eng

Methodol 2005;14:199–245, ACM Press.

[29] Garlan D, Monroe R, Wile D. Acme: an architecture description interchange language.

In: CASCON ‘97: proceedings of the 1997 conference of the centre for advanced studies

on collaborative research. Toronto, Ontario: IBM Press; 1997.

[30] Medvidovic N, Taylor RN. A classification and comparison framework for software

architecture description languages. IEEE Trans Softw Eng 2000;26:70–93, IEEE Press.

[31] van Ommering R, van der Linden F, Kramer J, Magee J. The koala component model for

consumer electronics software. Computer 2000;33:78–85, IEEE Computer Society

Press.

[32] Feiler PH, Gluch DP, Hudak JJ. The Architecture Analysis &Design Language (AADL):

an introduction. tech. note CMU/SEI-2006-TN-011, Software Engineering Institute,

Carnegie Mellon University; 2006.

[33] Heinecke H, Schnelle K-P, Fennel H, Bortolazzi J, Lundh L, Leflour J, et al. Automotive

open system architecture—an industry-wide initiative to manage the complexity of

emerging automotive E/E architectures. In: Convergence international congress & expo-

sition on transportation electronics; 2004. p. 325–32.

[34] Allen RJ. A formal approach to software architecture. Pittsburgh, PA: Carnegie Mellon

University; 1997.

[35] Schmerl B, Garlan D. AcmeStudio: supporting style-centered architecture develop-

ment. In: Proceedings of the 26th international conference on software engineering.

Washington, DC: IEEE Computer Society; 2004. p. 704–5.

[36] Woods E, Hilliard R. Architecture description languages in practice session report. In:

WICSA ‘05: proceedings of the 5th working IEEE/IFIP conference on software archi-

tecture. Washington, DC: IEEE Computer Society; 2005. p. 243–6.

[37] Völter M. Architecture as language. IEEE Softw 2010;27:56–64, IEEE Computer Soci-

ety Press.

[38] Murphy GC, Notkin D, Sullivan KJ. Software reflexion models: bridging the

gap between design and implementation. IEEE Trans Softw Eng 2001;27:364–80, IEEE

Press.

[39] Tran JB, Godfrey MW, Lee EHS, Holt RC. Architectural repair of open source software.

In: IWPC ‘00: proceedings of the 8th international workshop on program comprehen-

sion. Washington, DC: IEEE Computer Society; 2000. p. 48.

[40] Sangal N, Jordan E, Sinha V, Jackson D. Using dependency models to manage complex

software architecture. SIGPLAN Not 2005;40:167–76.

[41] Bischofberger W, Kühl J, Löffler S. Sotograph – A pragmatic approach to source

code architecture conformance checking. In: Oquendo F, Warboys BC, Morrison R,

editors. Software Architecture. Lecture notes in Computer Science, vol. 3047. Berlin:

Springer; 2004. p. 1–9. ISBN: 978-3-540-22000-8, http://dx.doi.org/10.1007/978-3-

540-24769-2_1.

[42] Sangwan RS, Vercellone-Smith P, Laplante PA. Structural epochs in the complexity of

software over time. IEEE Softw 2008;25:66–73.

186 CHAPTER 7 Continuous Software Architecture Analysis

http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9510
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9510
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf9510
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0175
http://dx.doi.org/10.1007/978-3-540-24769-2_1
http://dx.doi.org/10.1007/978-3-540-24769-2_1
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0185

[43] Lippert M, Roock S. 1st ed. Refactoring in large software projects: performing complex

restructurings successfully, New York: Wiley; 2006.

[44] Floyd C. A systematic look at prototyping. Approaches to prototyping, Berlin: Springer;

1984. p. 1–18.

[45] Rozanski N, Woods E. Software systems architecture: working with stakeholders using

viewpoints and perspectives. Boston, MA: Addison-Wesley Professional; 2005.

[46] BeregiWE. Architecture prototyping in the software engineering environment. IBM Syst

J 1984;23:4–18, IBM Corp.

[47] Christensen HB, Hansen KM. An empirical investigation of architectural prototyping.

J Syst Softw 2010;83:133–42.

[48] Babar MA, Gorton I. Software architecture review: the state of practice. Computer 2009;

42:26–32, IEEE Computer Society.

[49] Garland J, Anthony R. Large-scale software architecture: a practical guide using UML,

Chichester, NY: Wiley; 2003.

[50] Paulish DJ. Architecture-centric software project management: a practical guide. Boston,

MA: Addison-Wesley Professional; 2002.

[51] Rozanski N, Woods E. Software systems architecture: working with stakeholders using

viewpoints and perspectives. Upper Saddle River, NJ: Addison-Wesley; 2012.

[52] Beck K. Extreme programming explained: embrace change, Reading, MA: Addison-

Wesley; 2000.

[53] BeckK, BeedleM, van BennekumA, Cockburn A, CunninghamW, FowlerM, et al. Man-

ifesto for agile software development; 2001. Website: http://agilemanifesto.org/.

[54] Boehm B, Turner R. Using risk to balance agile and plan-driven methods. Computer

2003;36:57–66, IEEE Computer Society.

[55] Boehm B. Get ready for agile methods, with care. Computer 2002;35:64–9, IEEE

Computer Society Press.

[56] Rady B, Coffin R. Continuous testing with ruby, rails, and JavaScript. Dallas, TX:

Pragmatic Bookshelf; 2011.

[57] Duvall PM,Matyas S, Glover A. Continuous integration: improving software quality and

reducing risk. Boston, MA: Addison-Wesley Professional; 2007.

[58] Stamelos IG, Sfetsos P. Agile software development quality assurance. Hershey, PA:

Idea Group Inc; 2007.

[59] Beck K. Test-driven development: by example. Boston, MA: Addison-Wesley; 2003.

[60] Hibbs C, Jewett S, Sullivan M. The art of lean software development: a practical and

incremental approach. Sebastopol, CA: O’Reilly Media; 2009.

[61] Burnstein I. Practical software testing : a process-oriented approach. New York:

Springer; 2003.

[62] Fowler M. Continuous integration, http://martinfowler.com; 2006.

[63] Kazman R, Nord R, Klein MH. A life-cycle view of architecture analysis and

design methods. tech. note CMU/SEI-2003-TN-026, Software Engineering Institute,

Carnegie Mellon University; 2003.

[64] Kazman R, Carrière SJ, Woods SG. Toward a discipline of scenario-based architectural

engineering. Ann Softw Eng 2000;9:5–33J. C. Baltzer AG, Science Publishers.

[65] Merkle B. Stop the software architecture erosion. In: Proceedings of the ACM interna-

tional conference companion on object oriented programming systems languages and

applications companion. New York: ACM; 2010. p. 295–7.

[66] Inverardi P, Muccini H, Pelliccione P. DUALLY: putting in synergy UML 2.0 and

ADLs. In: WICSA ‘05: proceedings of the 5th working IEEE/IFIP conference on

software architecture. IEEE Computer Society; 2005. p. 251–2.

187References

http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0220
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0220
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0225
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0225
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0230
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0235
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0235
http://agilemanifesto.org/
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0240
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0245
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0245
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0250
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0250
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0255
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0260
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0260
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0265
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0270
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0275
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0275
http://martinfowler.com
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0280
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0285
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0290
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0290

[67] Kandé MM, Crettaz V, Strohmeier A, Sendall S. Bridging the gap between IEEE 1471,

an architecture description language, and UML. Softw Syst Model 2002;1:113–29.

[68] Albin S. The art of software architecture: design methods and techniques. John Wiley &

Sons, Inc.; 2003.

[69] Weinreich R, Buchgeher G. Towards supporting the software architecture life cycle.

J Syst Softw 2012;85:546–61.

[70] Weinreich R, Buchgeher G. Integrating requirements and design decisions in architec-

ture representation. In: Proceedings of the 4th European conference on software archi-

tecture. Springer-Verlag; 2010. p. 86–101.

[71] Buchgeher G,Weinreich R. An approach for combiningmodel-based and scenario-based

software architecture analysis. In: Fifth international conference on software engineering

advances (ICSEA 2010); 2010. p. 141–8. http://dx.doi.org/10.1109/ICSEA.2010.29.

[72] Buchgeher G, Weinreich R. Automatic tracing of decisions to architecture and imple-

mentation. In: 9th working IEEE/IFIP conference on software architecture (WICSA

2011); 2011. p. 46–55. http://dx.doi.org/10.1109/WICSA.2011.16.

188 CHAPTER 7 Continuous Software Architecture Analysis

http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0295
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0300
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0305
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0310
http://refhub.elsevier.com/B978-0-12-407772-0.00006-X/rf0310
http://dx.doi.org/10.1109/ICSEA.2010.29
http://dx.doi.org/10.1109/WICSA.2011.16

CHAPTER

Lightweight Architecture
Knowledge Management for
Agile Software Development

8
Veli-Pekka Eloranta and Kai Koskimies

Tampere University of Technology, Tampere, Finland

CHAPTER CONTENTS

8.1. Introduction ... 189

8.2. Challenges of Agile Architecture Documentation .. 191

8.3. Supporting Techniques for AKM in Agile Software Development 193

8.3.1. Architecture Evaluation Methods, Agility, and AKM194

8.3.2. Advanced Techniques for Managing Architectural Repositories196

8.4. Architecture Practices in Agile Projects .. 198

8.4.1. Scrum Framework ..198

8.4.2. Architecting While Using Scrum ..199

8.5. Architectural Information Flow in Industry .. 201

8.5.1. Interview Setup ...201

8.5.2. Results ...202

8.5.3. General Comments from Interviewees ..204

8.5.4. Limitations ..205

8.6. AKM in Scrum .. 205

8.6.1. Big-up-Front-Architecture and Sprint-Zero Architecting Approaches .205

8.6.2. In-Sprints Architecting Approach ..207

8.6.3. Separated-Architecture-Team Architecting Approach207

8.7. Related Work ... 208

8.8. Conclusions ... 209

Acknowledgments .. 210

8.1 INTRODUCTION
The tension between agile software development and software architecture (see

Refs. [1–3]) is reflected and even emphasized in architecture knowledge manage-

ment (AKM). We define AKM as methods to support sharing, distributing, creating,

capturing, and understanding a company’s knowledge of software architecture [4,5].

The Agile Manifesto [6] downplays the significance of activities aimed at

comprehensive knowledge codification, including architectural knowledge. Still, it

189

is generally agreed (see [7,8]) that systematic codification of architectural knowledge

is required for many kinds of systems (e.g., for systems that are used and maintained

for decades or have legislative viewpoints). If agile approaches are used in the context

of such systems, AKM must be integrated with agile development.

On the other hand, we strongly believe that AKM is not necessarily a burden for

agile development in general, but rather a practice that can support agile methods in

the long run by improving communication between stakeholders—especially in

large-scale and possibly distributed agile projects—and by helping to maintain

the systems developed. In particular, we argue that by integrating a carefully tuned,

lightweight AKM as part of the process, the agile development paradigm can largely

avoid the maintenance problems originating from scarce documentation.

To fit with agile approaches, AKM itself must be lightweight. The central prop-

erty of lightweight AKM is minimal additional cost in terms of human work; neither

producing nor consuming architectural knowledge should introduce significant

activities that are related to AKM itself, rather than to the direct support of product

development. We aim for AKM that is next to invisible for the stakeholders, thus

affecting the agile characteristics of the work as little as possible. In this chapter,

we propose possible ways to make both producing and consuming architectural

knowledge lightweight while preserving the main benefits of AKM.

From the viewpoint of architectural knowledge codification, an attractive

approach would be to populate the architectural information repository (AIR) as a

side effect of some activity that creates new architectural information or makes archi-

tectural knowledge explicit. This can be accomplished by integrating the tools used

in those activities with the AIR. Examples of such tools are requirement engineering

tools (creating architecturally significant requirements (ASRs)), architecture model-

ing tools and Integrated Development Environments (IDEs), architectural evaluation

tools, and reverse engineering tools. In particular, we advocate the use of lightweight

architectural evaluations for codifying architectural knowledge; during architectural

evaluations, a significant amount of architectural knowledge emerges and becomes

explicit, such as architectural decisions, high-level designs, ASRs, and business

drivers. If a bookkeeping tool used in the evaluations is integrated with the AIR,

a large body of valuable architectural knowledge can be codified virtually effort-

lessly. In particular, tacit architectural knowledge [9] is not captured in documents

during the development process, but it does typically emerge during the discussions

of architecture evaluation. Thus, architecture evaluation is a natural context in which

to make tacit architectural knowledge explicit.

From the viewpoint of consuming architectural knowledge effortlessly, the main

problem is that the information in the AIR is typically structured according to a con-

ceptual metamodel rather than the needs of the stakeholders [10–12]. Consequently,

without more high-level, need-oriented support, stakeholders have to express their

needs using general query and navigation mechanisms, which can be tedious in many

cases. In this chapter, we propose augmenting the AIR with a need-oriented interface

that is able to generate information packages that satisfy particular anticipated needs

of stakeholders. In this way, the stakeholders do not have to use time and energy

190 CHAPTER 8 Lightweight AKM for Agile Software Development

screening the relevant information from a mass of architectural knowledge. An ear-

lier description of this kind of tool support is given by Eloranta et al. [13].

There are many ways to develop software in an agile way. We explore the real-

ization of the above proposals in the context of Scrum [14], which is by far the most

popular agile approach applied in today’s industrial software development projects

[3]. According to a recent survey [15], Scrum and Scrum hybrids have a 69%market

share of agile methods in the software industry. Scrum combines agile principles [6]

with a lean manufacturing philosophy [16]. Essentially, Scrum defines how the work

is broken down into tasks; how the tasks are ordered, managed, and carried out; what

the roles of the project members are; and how persons in these roles interact during

the development process. A central concept of Scrum is a sprint—a working period

during which the team produces a potentially shippable product increment.

On the other hand, there are also many ways to do architecture-related work in

Scrum. Eloranta and Koskimies [17] investigated software architecture work practices

used with Scrum in the software industry. While some of these practices are more in

line with Scrum than others, they are all motivated by reasons that emerge in real life,

and they all have their merits. The main contribution of this chapter is a proposal for

integrating existing architecture evaluation and documentation techniques with these

practices to establish lightweight AKM in Scrum. Since the proposal is based on obser-

vations of agile projects in industry concerning software architecting practices, we

expect that the proposal is feasible in practice. In addition, to understand in more detail

the flow of architectural information in real-life agile projects, we carried out a study in

which we interviewed practitioners in industry to identify the artifacts carrying archi-

tectural information and the ways they are produced and consumed. The approach

draws on the first author’s experiences with software architecture documentation

challenges in agile projects, which are summarized in the next section.

In Section 8.3, we briefly introduce techniques that serve as constituent parts of

our proposal for lightweight AKM for agile software development, architectural eval-

uation methods, and automated document generation. In Section 8.4, we give a short

summary of Scrum and discuss the findings of an earlier study on architectural prac-

tices in Scrum in industry. In Section 8.5, we discuss the results of an interview carried

out in industry to identify the architectural information flow in real-life agile projects.

In Section 8.6, we propose models to integrate Scrum with lightweight AKM, based

on the observed architectural practices and architectural information flow in Scrum.

Finally, we conclude with a formulation of lightweight AKM principles for agile

software development as we now see them, and with some remarks on future work.

8.2 CHALLENGES OF AGILE ARCHITECTURE DOCUMENTATION
The Agile Manifesto [6] guides the reader to value working software over comprehen-

sive documentation, but it also explicitly states that documentation can be valuable as

well. Unfortunately, the Agile Manifesto is often misread as a permission to overlook

documentation. In small, short projects, documentation may be less important.

1918.2 Challenges of Agile Architecture Documentation

However, in large projects, the need for communication exceeds the limits of face-

to-face communication—both spatially and temporally. When hundreds or even

thousands of developers and other stakeholders are involved in the project, some doc-

umentation practices must be established to distribute the information efficiently

throughout the organization. Similarly, if the life span of a software system is several

decades, then documentation is needed to bridge the communication gap between sev-

eral generations of architects and developers. On the other hand, there may even be

compelling legal reasons that dictate documentation. In particular, safety-critical sys-

tems must often pass certifications that are largely based on reviewing documents.

It should be emphasized that documentation should not replace face-to-face com-

munication when the latter is more appropriate. According to Coplien and Bj�rnvig
[18], all documentation (including architectural) is written for two reasons: to

remember things, and to communicate them. However, documentation is one-

directional communication and, as stated by Cockburn in Ref. [19], it is not a very

efficient way of communicating between two persons. The most efficient way of

communicating is two persons talking face to face at the whiteboard. The main moti-

vation to produce architectural documentation is to record the design and its rationale

as a kind of collective memory.

To better understand the problems of architectural documentation in agile indus-

trial project contexts, the first author participated actively in an industrial project for

about 18 months with the responsibility of developing the project’s software archi-

tecture documentation practices. The company was a global manufacturer of work

machines with embedded control systems. From this experience, we recognized

three major challenges related to software architecture documentation:

• Size. One of the main concerns was that the amount of required documentation

is rather large. The architecture document soon became unreadable and non-

maintainable as its size grew. To solve the problem, the document was

split into smaller chunks. However, this led to the problem that it was hard

to find the right document. Furthermore, the splitting of the document resulted

in synchronization problems (how to ensure that the different documents

constitute a consistent and complete description of the architecture).

• Fragmentation. In general, fragmentation of architectural information was

found to be a major problem. A lot of existing architectural information was frag-

mented in different places (e.g., presentation slides, e-mails, meeting memos,

etc.). The reason for this was that people had to make notes in the meetings, give

presentations, send e-mails, and so on, but no one was responsible for com-

piling all of this information and updating the documents on any critical path

towards the completion of backlog items. This resulted in an unpleasant situation:

architectural information existed but nobody was sure where it was, or whether it

was the most current information.

• Separated architecture documentation. Architectural information was produced

throughout the development, but architecture documentation took place only

at certain major milestones. This caused a delay in the recording of architectural

information, and led to loss of information. Architectural information was mostly

192 CHAPTER 8 Lightweight AKM for Agile Software Development

produced in the beginning of the project in the form of rough designs and deci-

sions, but during Scrum sprints more detailed design information was produced

and more architectural and design decisions were made. To make the codifying of

architectural knowledge more efficient and precise, the codifying should take

place immediately when the knowledge is available.

The conclusions drawn from the experience were the following:

• Architectural information should be presented in small information packages that

address stakeholders’ specific needs, rather than in conventional all-purpose,

comprehensive architecture documents. The consistency of such information

packages should be guaranteed by the underlying infrastructure rather than rely-

ing on manual updating.

• The storing of architectural information should be centralized in a common

architectural repository to be sure where the current version of the information

resides.

• The codifying of architectural knowledge should be seamlessly integrated with

the agile process so that architectural knowledge is largely codified as a side effect

of those activities that create the knowledge, without notable additional effort.

These conclusions can be viewed as (fairly ambitious) high-level requirements

for lightweight AKM for agile software development. In this chapter, we propose

approaches which constitute a partial solution for these requirements, but also leave

many issues open. In particular, the integration of the AKM practices with an agile

process is a challenging problem for which we offer a specific solution, namely

exploiting (lightweight) architectural evaluation as a means to codify architectural

knowledge without extra effort.

8.3 SUPPORTING TECHNIQUES FOR AKM IN AGILE SOFTWARE
DEVELOPMENT
In this section, we discuss existing techniques that can be used to support lightweight

AKM in agile software development, which we will explore in the next section. First,

we discuss the role of architecture evaluation from the viewpoint of AKM and briefly

introduce two architecture evaluation methods—the architecture trade-off analysis

method (ATAM) [20], and the decision-centric architecture review method (DCAR)

[21]. The former is the most widely used architecture evaluation method, while the

latter is a new method especially aiming at lightweight and incremental evaluation.

Both can be used to produce core architectural information in a repository as a side

effect of the evaluation. We use ATAM as an example of a holistic evaluation

method; several other architecture evaluation methods, such as Software Architec-

ture Analysis Method (SAAM) [22], Pattern-Based Architecture Review (PBAR)

[23], or Cost Benefit Analysis Method (CBAM) [24] could replace ATAM in the

discussion of this chapter. As the second topic, we outline existing techniques to

1938.3 Supporting Techniques for AKM in Agile Software Development

expose the architectural information in the form of focused information packages and

to populate the AIR [13].

8.3.1 Architecture evaluation methods, agility, and AKM
Software architecture is typically one of the first descriptions of the system to be

built. It forms a basis for the design and dictates whether the most important qualities

and functionalities of the system can be achieved. Architecture evaluation is a sys-

tematic method to expose problems and risks in the architectural design, preferably

before the system is implemented.

ATAM is a well-known, scenario-based architecture evaluation method used in

industry [20]. The basic idea of a scenario-based architecture evaluation method is to

refine quality attributes into concrete scenarios phrased by the stakeholders (devel-

opers, architects, managers, marketing, testing, etc.). In this way, the stakeholders

can present their concerns related to the quality requirements. The scenarios are pri-

oritized according to their importance and expected difficulty, and highly prioritized

scenarios are eventually used in the architectural analysis. The analysis is preceded

by presentations of the business drivers and of the software architecture.

Architectural evaluations not only reveal risks in the system design, but also bring

up a lot of central information about software architecture. The authors have carried

out approximately 20 full-scale scenario-based evaluations in the industry, and in

most cases the industrial participants have expressed their need for uncovering archi-

tectural knowledge as a major motivation for the evaluation. A typical feedback com-

ment has been that a significant benefit of the evaluation was communication about

software architecture between different stakeholders, which otherwise would not

have taken place. Thus, software architecture evaluation has an important facet

related to AKM that is not often recognized.

Essential architectural information emerging in ATAM evaluations include

ASRs (and scenarios refining them), architectural decisions, relationships between

requirements and decisions, analysis and rationale for the decisions, and identified

risks of the architecture. Since the issues discussed in the evaluation are based on

probable and important scenarios from the viewpoint of several kinds of stake-

holders, it is reasonable to argue that the information emerging in ATAM (and other

evaluation methods) is actually the most relevant information about the software

architecture. Furthermore, this information is likely to actually be used later on

and is therefore important to document.

From the viewpoint of agile development, the main drawback of ATAM (and

scenario-based architecture evaluation methods in general) is heavyweightness;

scenario-based methods are considered to be rather complicated and expensive to

use [25–27]. A medium-sized ATAM evaluation can take up to 40 person-days cov-

ering the work of different stakeholders ([28], p. 41). In our experience, even getting

all the required stakeholders in the same room for 2 or 3 days is next to impossible in

an agile context. Furthermore, a lot of time in the evaluation is spent on refining qual-

ity requirements into scenarios and on discussing the requirements and even the form

of the scenarios. Most of the scenarios are actually not used (as they don’t get

194 CHAPTER 8 Lightweight AKM for Agile Software Development

sufficient votes in the prioritization), implying notable waste in the lean sense [16].

On the other hand, although communication about requirements is beneficial, it is

often time-consuming as it comes back to the question of the system’s purpose. In

an agile context, the question about building the right product is a central concern that

is taken care of by fast development cycles and incremental development, allowing the

customers to participate actively in the process. Thus, a more lightweight evaluation

method that concentrates on the soundness of the current architectural decisions,

rather than on the requirement analysis, would better serve an agile project setup.

Techniques to boost architecture evaluation using domain knowledge have been

proposed by several authors. So-called “general scenarios” [29] can be utilized in

ATAM evaluation to express patterns of scenarios that tend to reoccur in different

systems in the same domain. Furthermore, if multiple ATAM evaluations are carried

out in the same domain, the domainmodel can be utilized to find the concrete scenarios

for the system [30]. In this way, some of the scenarios can be found offline before

the evaluation sessions. This will speed up the elicitation process in the evaluation ses-

sions and create significant cost savings because less time is required for the scenario

elicitation. However, even with these improvements, our experience and a recent sur-

vey [47] suggest that scenario-based architecture evaluation methods are not widely

used in the industry because they are too heavyweight—especially for agile projects.

Another problem with integrating ATAM with agile processes is that ATAM is

designed for one-off evaluation rather than for the continuous evaluation that would

be required in Agile. ATAM is based on a holistic view of the system, starting with

top-level quality requirements that are refined into concrete scenarios, and architec-

tural approaches are analyzed only against these scenarios. This works well in a

one-off evaluation, but poses problems in an agile context where the architecture

is developed incrementally. The unit of architectural development is an architec-

tural decision, and an agile evaluation method should be incremental with respect

to this unit, in the sense that the evaluation can be carried out by considering a

subset of the decisions at a time.

The lack of incrementality in ATAM is reflected in the difficulty to decide on the

proper time for architectural evaluation in an agile project. If the architecture is

designed up-front, as in traditional waterfall development, the proper moment for

evaluation is naturally when the design is mostly done. However, when using agile

methods, such as Scrum, the architecture is often created in sprints. Performing an

ATAM-like evaluation in every sprint that creates architecture would be too time-

consuming. On the other hand, if the evaluation is carried out as a post-Scrum activ-

ity, the system is already implemented and the changes become costly.

A recent survey shows that architects seldom revisit the decisions made [25]. This

might be because the implementation is ready and changing the architectural deci-

sions would be costly. Therefore, it would be advisable to do evaluation of the deci-

sions right after they are made. This approach can be extended to agile practices. If

the architecture and architectural decisions are made in sprints, it would be advisable

to revisit and review these decisions immediately after the sprint.

Partly motivated by this reasoning, a new software architecture evaluation

method called DCAR was proposed in [21]. DCAR uses architectural decisions as

1958.3 Supporting Techniques for AKM in Agile Software Development

the basic concept in the architecture evaluation. Another central concept in DCAR is a

decision force—that is, any fact or viewpoint that has pushed the decision in a certain

direction [31]. Forces can be requirements, or existing decisions (e.g., technology

choices, previous experiences, political or economical considerations, etc.). A force

is a basic unit of the rationale of a decision; essentially, a decision is made to balance

the forces. In DCAR, a set of architectural decisions is analyzed by identifying the

forces that have affected the decisions and by examining whether the decision is still

justified in the presence of the current forces. Besides the evaluation team, only archi-

tects and chief developers are assumed to participate in the evaluation.

DCAR is expected to be more suitable for agile projects than scenario-based

methods because of its lightweightness: a typical system-wide DCAR evaluation

session can be carried out in half a day, with roughly 15-20 person-hours of proj-

ect resources [21]. Thus, performing a DCAR evaluation during a sprint is quite

feasible—especially when developing systems with long life spans or with special

emphasis on risks (e.g., safety-critical systems). On the other hand, since DCAR

is structured according to decisions rather than scenarios, it can be carried out incre-

mentally by considering a certain subset of decisions at a time. If the forces of deci-

sions do not change between successive DCAR evaluations, the conclusions drawn

in previous evaluation sessions are not invalidated by later evaluations. Thus, in

Scrum, decisions can be evaluated right after the sprint they are made in. If the num-

ber of decisions is relatively small (say, <10 decisions), such a partial evaluation

requires less than 2 h and can be done as part of the sprint retrospect in Scrum.

If new information emerges in the sprints, the old decisions can be revisited and

reevaluated. DCAR makes this possible by documenting the relationships between

decisions. If a decision needs to be changed in a sprint, it is easy to see which earlier

decisions might be affected as well and (re-)evaluate them. Additionally, as the deci-

sion drivers (i.e., forces) are documented in each decision, it is rather easy to see if the

emergent information is going to affect the decision and if the decision should be

reevaluated.

From the AKM viewpoint, a particularly beneficial feature of DCAR is that the

decisions are documented as part of the DCAR process, during the evaluation. This

decision documentation can be reused in software architecture documentation as

such. If a tool is used in DCAR to keep track of the evaluation and to record the deci-

sion documentation, this information can be immediately stored in the AIR without

extra effort.

8.3.2 Advanced techniques for managing architectural repositories
Even for a medium-sized system, the AIR can grow large, containing several hun-

dreds or even thousands of information elements. This can easily lead to an informa-

tion bloat problem: a stakeholder that has specific information needs faces a mass of

information with complicated structure, not directly addressing his or her needs.

Typical AKM tools (e.g., [32]) provide search and navigation mechanisms to find

the relevant information, but their utilization requires understanding of the AIR

196 CHAPTER 8 Lightweight AKM for Agile Software Development

structure and experience in its usage. Introducing such a tool concept in an agile

development process is difficult, as the agile philosophy explicitly tries to avoid

heavy tools.

In Ref. [13], this problem is addressed by providing a need-oriented high-level

interface for consuming the information in the AIR, essentially hiding the AIR from

the consumer. This could be seen analogical to an informaticist who has knowledge

about the kinds of specialized documents that are probably needed and who is able to

produce the desired type of document on the basis of the contents of the AIR. If such

a document is not sufficient, the stakeholder may use the conventional search and

navigation mechanisms of the AIR, but since new document types can be introduced

when needed, it is expected that eventually the predefined document types cover

most of the needs of stakeholders. The tool, called TopDocs, has been implemented

on top of Polarion [33], a commercial life cycle management system.

Currently, TopDocs supports the generation of specialized architectural docu-

ments on the basis of a certain quality aspect, a certain part of the system, or a certain

maintenance scenario. For example, a developer can ask for a component-oriented

architectural document, showing everything he or she needs to know about the com-

ponent when developing it (e.g., interfaces, dependencies, internal design, architec-

tural contexts, related decisions, etc.). In addition, the tool can generate a

conventional, comprehensive software architecture document or an architecture

evaluation document. The tool can also generate documents on different granularity

levels—allowing, for example, the generation of very high-level architectural doc-

uments for managers. TopDocs differs from other repository-based AKM tools such

as EAGLE [34] or ArchiMind [10] in that it has the capability to generate special-

ized, focused architectural documents for a particular requirement in our approach.

These documents correspond closely to the view concept in ISO/IEC 42010 [35],

defining a view as a work product expressing the architecture of a system from the

perspective of specific system concerns. Architecture viewpoint [35], in turn, estab-

lishes the conventions for the construction, interpretation, and use of architecture

views to frame specific system concerns. Thus, a viewpoint is realized in TopDocs

by defining and implementing a new document type for a new concern. In principle,

any AKM tool that provides the capability to define new viewpoints and generate

views according to viewpoints could be used in our approach.

It is also important to provide automated support for populating the AIR. Cen-

tralized AIR offers a common place where all architectural information can be

recorded immediately when it emerges. For example, instead of writing separate

memos in meetings and hoping that this information eventually finds its way to

the architecture document, a stakeholder can directly write the memo into the

AIR where its information immediately contributes to the reports produced from

the AIR contents. Similarly, a bookkeeping tool for ATAM and other evaluation

methods should be integrated with the AIR so that the tool automatically populates

the AIR immediately when architecturally relevant information emerges. TopDocs

provides such a tool interface for ATAM and DCAR evaluations, making it possible

to store all architectural information appearing in an evaluation session directly

1978.3 Supporting Techniques for AKM in Agile Software Development

to the AIR without extra effort. Assuming that this captures the relevant information

about the software architecture that is probably used in the future, automated

evaluation-based feeding offers an attractive solution to the problem of populating

the AIR.

From the agile viewpoint, hiding the complexity of the AIR from both the pro-

ducing side and the consuming side is of crucial importance. Ideally, the stakeholders

should not be aware of the underlying AKM infrastructure, and just use tools that are

targeted to the activities related to the actual development work. Under the surface,

these tools should then populate the AIR with the new architectural information.

TopDocs is a step in that direction, demonstrating that especially architectural eval-

uation tools, which are integrated with the AIR, can greatly assist in the feeding of the

AIR. In a truly lightweight AKM, the architectural information is collected automat-

ically, and the information needs of stakeholders are satisfied with automated gen-

eration of targeted information packages.

8.4 ARCHITECTURE PRACTICES IN AGILE PROJECTS
In this section, we lay groundwork for later discussion on how to align lightweight

AKM with Scrum. We start by briefly describing the main elements of the Scrum

framework. In Section 8.4.2, we will summarize the results of a recent survey on

how organizations build architectures while using Scrum.

8.4.1 Scrum framework
Scrum is an iterative and incremental framework for agile project management

[14,36]. Figure 8.1 illustrates the structure of the Scrum process. The process is

divided into three central parts: analysis phase (sometimes called pregame), devel-

opment phase, and review phase.

In the analysis phase, the requirements are collected and analyzed. This analysis

leads to product backlog, which is a collection of all features and properties that the

software to-be-built may have. For example, an item in the product backlog could say,

“Rework the component so that it has better scalability.” The product backlog is

ordered so that the most valuable items are on top of the list while taking dependen-

cies into account. Items at the top of the list will be implemented in the next sprint.

The original Scrum paper [14] states that high-level architecture design is part of

the pregame. However, descriptions about software architecture and Scrum are left

open in [14]. Many later descriptions of the Scrum framework do not describe the

analysis phase in detail at all.

After the analysis phase, the actual implementation of the system starts. Imple-

mentation is time-boxed into periods of 2-4 weeks called sprints. In the beginning of

the sprint, development teams take items from the top of the product backlog and

split them into tasks that they commit to finish within the sprint.

198 CHAPTER 8 Lightweight AKM for Agile Software Development

After the sprint, there are review sessions where the customer accepts the results

of the sprint. There is also an assessment of whether the goals set for the sprint were

met. At this stage, the software should be tested and ready to be shipped to the cus-

tomer. In the review phase, the team also has a lessons-learned session where they

discuss how they could improve their work practices.

8.4.2 Architecting while using Scrum
Software architecture can be seen as the result of a set of complex system of archi-

tectural design decisions depending on each other [37,38]. These decisions are typ-

ically made during an iterative and incremental process. The process of architecture

design has been divided into three common, recurring activities by Hofmeister et al.

[39]: architectural analysis, synthesis, and evaluation. Architectural analysis consists
of identifying and analyzing concerns and business contexts to produce ASRs. Archi-
tectural synthesis is an activity where solutions satisfying ASRs are found. Finally,

architectural evaluation ensures that the architectural decisions are solid. This is

done by evaluating candidate solutions from the synthesis phase against ASRs.

Aligning these activities with an agile software development process has raised a

lot of concerns [1–3]—it has even been said that agile and architecture is a clash of

two cultures [2]. Architecture has traditionally been perceived as a plan for how the

system will be built. However, in agile methods, change should be embraced and

Sprint
Backlog

Product
Backlog

Sprint
Backlog

Potentially
shippable
product

increment

Pregame

Sprint
Backlog

Delivered
product

Sprint

Sprint

Sprint

Sprint retrospective
& review

2-4 weeks

2-4 weeks

Analysis phase

Potentially
shippable
product

increment

Development phase

Review phase

FIGURE 8.1

Scrum framework.

1998.4 Architecture Practices in Agile Projects

Figure 8.1

there is no separate planning phase. Still, organizations have architects and they do

architecture design, also in agile contexts. The authors have conducted an interview

study in the industry to find out how organizations align architecture work and agile

development (in this case, Scrum) [17]. The results revealed that there are four main

software architecture practices that organizations use: big-up-front design, sprint-

zero, in-sprints, and separate-architecture-team.

Big-up-front-design practice constitutes analysis, synthesis, and evaluation of

the architecture before the system is implemented in the sprints. During the

implementation phase, only small changes are made to the architecture design.

In a sense, this is close to the waterfall approach; however, the implementation

phase is carried out in sprints by the development team. The architecture is typ-

ically designed by dedicated architects and not by the development team itself.

The original Scrum paper [14] actually states that the architecture design should

be done up-front. Later descriptions of Scrum have omitted this up-front analysis

and design (e.g., [40]).

In sprint-zero practice, the architecture design is carried out in the first sprint:

sprint-zero. This sprint is from 2 to 4 weeks in length, whereas the big-up-front-

design phase might last 6 months. Sprint-zero’s difference from other sprints is that

a potentially shippable product increment is not created in the sprint-zero. This sprint

is dedicated to design and setting up the development environment. In other words,

analysis and synthesis are done in sprint-zero. Sometimes, evaluation is also carried

out within the sprint or right after it. The main differences from big-up-front-design

approach are that the length of the design phase is radically shorter, and the design is

carried out by the development team itself.

In-sprints practice builds the architecture within the sprints. The architecture

work is carried out by the development team. Architecture is designed and refactored

within the sprints whenever the need arises. This requires very a skillful development

team with good domain knowledge. As stated in [17], without an experienced team

with good domain knowledge, this approach is doomed to fail. In this approach, anal-

ysis is partially made by the product owner outside sprints and partially by the team

within the sprints. Architectural synthesis takes place in the sprints. This approach

does not offer a natural place for architectural evaluation, because the architecture is

evolving all the time. Of course, at some point the architecture design stabilizes and

the sprints focus on finishing the functionality of the system. At this point, it might be

possible to carry out architectural evaluation—especially in a lightweight form.

However, changes to the architecture at this stage of the development can already

be expensive to make.

In separate-architecture-team approach, there is a separate team that designs

the architecture. The members of this team might be from different development

teams. Additionally, there might be an architect who acts as a part of this team.

Typically, a separate-architecture-team gathers up whenever necessary and ana-

lyses the next release ASRs and designs the architecture (synthesis). The actual

implementation of the system is then carried out by development teams. Architec-

tural evaluation can be carried out when the architecture team releases a new ver-

sion of the design.

200 CHAPTER 8 Lightweight AKM for Agile Software Development

8.5 ARCHITECTURAL INFORMATION FLOW IN INDUSTRY
In this section, we present the results of an interview survey concerning architecture

knowledge flow in the industry. The first section briefly describes the interview

setup. In Section 8.5.2, the main results of this survey are presented. Additional gen-

eral remarks of interviewees are presented and discussed in Section 8.5.3. Finally,

Section 8.5.4 describes the limitations of this survey.

8.5.1 Interview setup
To study the actual flow of architectural information in industry using Scrum, we

interviewed three teams (represented by six persons) in two companies that are

global manufacturers of large machines and automation systems exploiting Scrum

in their projects. The goal was to find out what kind of architectural knowledge is

produced, why and for whom it is produced, and at what stages of the project the

information is produced and consumed. In this way, we expected that we could

explore architectural information flow in a realistic industrial context and ensure that

our proposal for lightweight AKM was consistent with the actual architectural infor-

mation flow in the company. Although the number of teams interviewed was small,

this study was expected to provide at least a rough picture of architectural informa-

tion flow followed in real-life Scrum work.

The following is a breakdown of the interview questions:

• What is meant by software architecture in your company?

• How is software architecting carried out while using Scrum?

These questions revealed the architectural approach used by the teams, which

were assumed to fall into one of the four types discussed in the previous section.

The next question,

• What kind of architecture information is utilized in your company?

resulted in a list of artifacts (or types of architectural information), such as ASRs,

designs, design patterns, component descriptions, and so on. For each of these arti-

facts mentioned by an interviewee, the following set of questions was presented:

• Who is the producer of this architectural information?

• In which stage of the project is this kind of architectural information produced?

• Why is this information produced?

• Who uses this information?

• In which stage of the project is this architectural information utilized?

• How does the producer communicate this information to the consumer?

• How often does this communication take place?

Interviewers utilized the architectural knowledge metamodel presented in [13] to

make sure that interviewees did not forget some relevant type of architectural infor-

mation. The interviewers did not mention any specific stakeholder groups, but just

collected the stakeholders the interviewees brought up.

2018.5 Architectural Information Flow in Industry

8.5.2 Results
The three interviewed teams each used a different approach to carry out architec-

ture work: big-up-front-design, sprint-zero, and in-sprints approach. The separate-

architecture-team approach was not used by these teams. The results are presented

in Figures 8.2 and 8.3. The figures are structured according to the main three phases

of Scrum: analysis phase, development phase, and review phase [14]. Figure 8.2

summarizes the architectural information flow in teams using big-up-front-design

and sprint-zero approaches; these approaches coincide from the viewpoint of archi-

tectural information flow, viewing the first sprint in the sprint-zero approach as part

of the analysis phase. Figure 8.3 shows the architectural information flow in the in-

sprints approach in the same way. Arrows in the figures show what information a

stakeholder produces (exiting arrow) and consumes (entering arrow) in a certain

phase. Arrows to both directions mean that the architectural information is both pro-

duced and consumed by the participating stakeholders.

The figures exhibit fairly expected information flow. The differences in the infor-

mation flow between big-up-front-design/sprint-zero and in-sprints are clearly vis-

ible: in the former, architectural decisions are produced in the analysis phase by

several stakeholders andmostly consumed in sprints, while in the in-sprints approach

only an initial architecture design is produced by the architect in the analysis phase,

Sprint review / Evaluation phaseDevelopment sprintsAnalysis phase

Customer

Project
manager

Product
Owner

Architect

Service
Personnel

Dev. team

Architect

Subcontractor

Requirements

Requirements

Decisions

Requirements

Architecture design,
service descriptions

Architecture design

Architecture
design

Decisions

Decisions

Patterns

Requirements

Architecture
design,
decisions

Detailed design,
interface
descriptions

Architecture
design,
decisions

Architect

Decisions

ScenariosGeneral
AK

Decisions

Decisions

Decisions

FIGURE 8.2

Architectural information flow in big-up-front-design and sprint-zero approaches.

202 CHAPTER 8 Lightweight AKM for Agile Software Development

Figure 8.2

and most of the architectural decisions and designs are produced during the sprints.

A noteworthy observation is that ASRs are produced in the analysis phase, but not

consumed explicitly in the development phase, as one could expect (the arrows going

nowhere). An explanation could be that the ASRs are reflected in the architectural

decisions and designs and consumed in this form during the development. Another

possible explanation is that while using Scrum, the requirements are reflected in

product backlog items (in user stories, in use cases, etc.), so no one is explicitly using

requirements and the stakeholders have a feeling that they are using product backlog

items rather than requirements.

Patterns were used by the architect in the analysis phase (big-up-front-design)

and by the development team in the development phase (in-sprints). The inter-

viewees also reported that they have their own in-house patterns, but they are rarely

documented. Sometimes patterns were discussed during the review to find out which

pattern really worked and which ones caused problems. So, the team was refining the

general architectural knowledge in this phase. However, this information was not

written down, either. In all approaches, architects mentioned that they use decisions

and scenarios in the architecture evaluations and also exploit them in the sprint

review phase. Decisions are typically discussed in the sprint review during the

lessons-learned sessions. One observation was that architectural designs are not used

Development sprints Sprint review / Evaluation phaseAnalysis phase

Customer

Project
manager

Product
Owner

Architect

Service
Personnel

Dev. team

Subcontractor

Requirements

Requirements

Requirements

Initial architecture
design

Architecture
design,
Test cases

Patterns

Requirements

Detailed design,
interface
descriptions

Architect

Scenarios

General
AK

Patterns

Dev. team

General
AK

Patterns

Decisions

Initial architecture
design

Decisions

Decisions

Architecture
design

Decisions

FIGURE 8.3

Architectural information flow in in-sprints approach.

2038.5 Architectural Information Flow in Industry

Figure 8.3

in sprint reviews as such, but the discussion focuses on the decisions. Scenarios were

produced and consumed by the architect in the architecture evaluation.

Even in big-up-front-design/sprint-zero approaches, interfaces were only speci-

fied in the development phase. In the interviews, an architect mentioned that it is not

reasonable to specify interfaces up-front, but instead one should just describe what

services the interface should provide, because the exact interface design will always

change during the implementation.

In the in-sprints approach, architecture designs were produced by subcontractors

and development teams but not consumed by any stakeholder. The explanation is that

the products the interviewed teams were working on were not released yet. The archi-

tecture design was produced and documented for later use (i.e., for the maintenance

phase of the product). However, normally this information would probably be used

by the teams themselves.

8.5.3 General comments from interviewees
The interviewees confirmed the difficulty to align architecture and agile develop-

ment. In Scrum, for instance, there is no explicit architect role and still many orga-

nizations do up-front design and have architects. This creates the need to

communicate the design to the development team, which is hard. Architectural

design cannot be completely communicated using traditional architecture documents

because it is, in many cases, lacking why something is designed as it is. For example,

the implementation might be in line with the design and function properly when the

system has order of 100 parameters. But when the number of used parameters grows

significantly during the life cycle of the product, the same implementation does not

scale anymore. So it is crucially important to provide the development team with a

rationale for the design and explicitly mention the main concerns in the design. (E.g.,

in the aforementioned example, it is important to have efficient parameter handling,

but it is even more important that the implementation is scalable and the efficiency is

not lost when the amount of parameters increases.)

In general, if the design is carried out without simultaneous implementation,

there is a high possibility that the design needs to be changed. New information

emerges during the implementation, making the design invalid. Often a customer

may also change his or her mind, and the current design cannot handle those changes.

In interviews, the architects also mentioned that there is a lot of architectural

knowledge that should be communicated. In many cases, the development teams

are experienced with the domain and with similar systems, so all the knowledge does

not need to be communicated from the architect to the team. However, if there is a lot

of subcontracting involved or the development teams change once in a while, the

architectural knowledge needs to be communicated. In this process, architectural

documentation can help but not completely replace face-to-face communication.

Furthermore, if the development team is implementing just one component of a large

system, they may lose touch with the architectural context and may not be able to

take into account all information that concerns the component.

204 CHAPTER 8 Lightweight AKM for Agile Software Development

The interviewees reported that the communication of architectural information is

most prevalent in the beginning of the sprints (e.g., in-sprint planning sessions). The

interviewed teams had used architecture evaluation methods like ATAM to evaluate

the architecture. The experience was that evaluations are beneficial when the project

size is large. If the project is small, the workload caused by the evaluation was con-

sidered to be too heavy.

8.5.4 Limitations
The number of interviewed teams and persons was small, limiting the reliability and

generalizability of the results. On the other hand, an interview allowed for clarifica-

tion of the work practices and more detailed answers than, for example, a

questionnaire-based study would allow. Further, one of the architectural practices

in Scrum, separate-architecture-team, was not addressed at all in the interview. Still,

since the interviewed teams already had years of experience in using Scrum for soft-

ware development projects, we believe that the results give a representative snapshot

of the architectural information flow in industry, to be used as a guideline for pro-

posing lightweight AKM practices.

8.6 AKM IN SCRUM
In this section we present a model to produce and consume architectural information

in Scrum, exploiting the existing techniques for software architecture evaluation

(ATAM, DCAR), architectural information repositories, and architectural document

generation, as reviewed in Section 8.3. We discuss the architectural practices pre-

sented in Section 8.4 separately; however, we discuss separate-architecture-team

case only briefly as we don’t have empirical data about the architectural information

flow in that case. We also merge big-up-front-design and sprint-zero approaches,

since they are similar from the AKM viewpoint. We make use of the types of archi-

tectural information identified in the study of Section 8.5, showing the Scrum phases

when a particular type of information can be fed to the AIR and when a particular

information package should be generated from the AIR to support the stakeholders.

8.6.1 Big-up-front-architecture and sprint-zero architecting
approaches
In the big-up-front-architecture approach, most of the architectural decisions are

made and a comprehensive architecture design is produced in the analysis phase

(or, in the case of sprint-zero, in the first sprint), before the development sprints. Still,

it is realistic to assume that during the development sprints, architecture has to be

modified, and some new decisions are made by the Scrum team or by the architect.

The AKM process for the big-up-front-architecture (and sprint-zero) case is depicted

in Figure 8.4. For the sprint-zero case, the only essential difference is that the analysis

2058.6 AKM in Scrum

phase extends to the first sprint, so that most of the architectural designs and deci-

sions are produced in that sprint.

Since a major concern in the big-up-front-architecture and sprint-zero approaches

is to ensuring that the architecture satisfies all the essential quality requirements

coming from different viewpoints, a natural evaluation method for this case is a

scenario-based one (e.g., ATAM [20], possibly in a lightened form). With a suitable

scribe tool (e.g., [13]), the information emerging in ATAM can be immediately

stored in the AIR without additional effort. Since ATAM is based on the idea of dis-

cussing the most relevant architectural aspects of the system from the viewpoint of

various stakeholders, it is reasonable to assume that the architectural information

emerging in ATAM actually captures the most useful portion of architectural knowl-

edge. On the other hand, an example of an information type not appearing in ATAM

is service descriptions, reported in the interview in Section 8.5. Service descriptions

have to be manually inserted into the AIR.

For evaluating the decisions made during the development sprints, ATAM or

similar evaluation methods would be inappropriate. Instead, DCAR can be used

for lightweight evaluation of the individual decisions possibly made during a

sprint—for example, in the context of the retrospective. A suitable DCAR bookkeep-

ing tool, built on top of AIR, allows for the completion of the AIR contents with the

new architectural information emerging in DCAR. DCAR does not directly support

the documentation of design, and introducing heavy design tools would not be appro-

priate in Scrum. However, lightweight practices for capturing design information

Sprint
Backlog

Product
BacklogPregame

Sprint
Backlog

Delivered
product

Potentially
shippable
product

increment

Sprint

Sprint

Analysis phase

AIR

ATAM

Requirements
Decisions
Designs

Service descr

Architecture
evaluation report

Architecture
document

DCAR

Architecture
sprint guide

Architecture
sprint guide

Designs
Decisions

Review

Review

Development phase

FIGURE 8.4

AKM for big-up-front-architecture (sprint-zero) case.

206 CHAPTER 8 Lightweight AKM for Agile Software Development

Figure 8.4

during teammeetings (e.g., taking photos of whiteboard drawings) and attaching this

information to the decisions in DCARwould make it possible to add this information

to the AIR without notable extra effort.

As discussed in [13], it is possible to exploit the AIR to generate a (possibly on-

line) software architecture document, showing the current architectural design to the

stakeholders in a conventional form. This will presumably be used in the composi-

tion of the product backlog, and also used as a guideline throughout the project,

always reflecting up-to-date architectural information. In addition, the information

related to the ATAM evaluation can be extracted from AIR and shown in the form

of an evaluation report, possibly affecting some of the decisions.

The usage of the AIR enables the generation of focused architecture guides to be

consumed during a sprint, collecting architectural information that is supposed to be

relevant for the backlog items under work in the sprint. Assuming that backlog items

(or requirements) are linked to decisions and designs, the required architectural

information (“architecture sprint guide”) can be filtered and compiled automatically

from AIR, in the style of the customized documents in [13].

8.6.2 In-sprints architecting approach
If the architecture work follows the in-sprints architecting practice, architectural

decisions are made primarily during the development sprints as part of the elabora-

tion of the sprint backlog items. In this case there will presumably be more

architecture-related sprints in the beginning of the project. Regardless of the charac-

ter of the sprint, all architectural decisions made during a sprint can be evaluated with

DCAR in the retrospective phase of the sprint. If a DCAR scribe tool has been built

on top of the AIR, the decisions can be again recorded in the AIR as a side effect of

DCAR, possibly augmented with design drawing photos from whiteboards. An eval-

uation report (“Sprint architecture evaluation report”) can be generated from the

AIR, to be reviewed in the sprint review meetings and possibly affecting the product

backlog and the next sprint backlog. At any time, the contents of the AIR can be used

to generate a comprehensive architecture document (e.g., to be used in communica-

tion with customers or off-shore teams). The AKM flow in the in-sprints architecting

case is depicted in Figure 8.5.

As observed in the interview in Section 8.5, some initial design and basic archi-

tectural decisions can be produced already in the analysis phase. A natural way to

both validate these decisions and store them to the AIR would be again to use DCAR,

in principle in the same way as during the sprints. Note that ASRs are associated with

decisions as forces in DCAR, and will be stored in the AIR along with the decisions.

8.6.3 Separated-architecture-team architecting approach
In the case of a separated-architecture-team, architectural decisions are made outside

of the Scrum loop by an architecture team consisting of members of the Scrum teams

or external architects (or both). In this approach, the AIR can serve as an architectural

communication interface between the architecture team and the Scrum team.

2078.6 AKM in Scrum

Architectural decisions are recorded by the architecture team, and these decisions

can be evaluated by DCAR in suitable intervals, generating evaluation reports that

may affect product backlog and sprint backlog. The evaluation may also lead to

reconsideration of some of the decisions.

In the separated-architecture-team case, a major issue is the communication

between the architecture team and the Scrum team. For each sprint, the Scrum team

should get the architectural information relevant for the sprint in a condensed form.

Similarly to the big-up-front-architecture case, this can be accomplished by gener-

ating a customized sprint architecture guide containing the information in the AIR

related to the backlog items under work in the sprint.

8.7 RELATED WORK
Even though the clash between agile software development and software architecture

(e.g., [1–3]) has been recognizedbymultiple authors, there is surprisingly littlewritten

about aligning the software architecture process with agile development processes,

and practically nothing about adjusting AKM for agile software development, to

the best of our knowledge. For example, in a recently edited book on AKM [4], the

agile viewpoint is completely missing. There are few proposals from agilists on

Product
Backlog

Sprint
Backlog

Potentially
shippable
product

increment

Pregame

Sprint
Backlog

Delivered
product

Sprint

Sprint

Analysis phase Development phase

Requirements
Decisions
Initial designs

AIR

DCAR

DCAR

Designs
Decisions

Designs
Decisions

Sprint architecture
evaluation report

Sprint architecture
evaluation report

Architecture
document

DCAR

Review

Review

FIGURE 8.5

AKM for in-sprints architecting case.

208 CHAPTER 8 Lightweight AKM for Agile Software Development

Figure 8.5

how to scale up Scrum and agility, e.g., [41]. However, typically these proposals

focus only on big-up-front-design architecture, neglecting other types of practices.

Babar [42] describes the software architecture process as a set of activities pro-

ducing the architecture: architecture analysis, synthesis, evaluation, implementation,

and architectural maintenance. Basically, the same set of activities is presented by

Tang et al. [32]. Although this model applies as such for agile architecting as well,

the faster cycles of the development essentially change the nature of architecture

work. If the big-up-front-design approach is used, architecture design can be much

like in traditional waterfall development [43]. However, if architecture design is car-

ried out in sprints, ASRs need to be analyzed, design has to be finished and docu-

mented, and the architecture needs to be evaluated within a sprint. Using

traditional tools and techniques, this might be next to impossible to carry out.

Two strategies of how organizations can manage their (architectural) knowledge

have been identified: codification and personalization [7,44]. In addition, a third

approach combining these two has been proposed [45]. In the codification strategy,

as much information as possible is made explicit, for example, by writing it down to

the documents. In the personalization strategy, the majority of the information is tacit

knowledge in persons’ minds. There might also be some advice concerning who is

the right person to ask from, when the need for the knowledge emerges.

Although agile approaches in many cases overlook the importance of documenta-

tion, we believe that the key to successful AKMwhile using Scrum is to find the sweet

spot between codification and personalization. Agile approaches tend to favor person-

alization, but in large projects it might not work. Especially if the development is dis-

tributed or there are subcontractors involved, the software process becomes highly

knowledge-intensive [45] and requires efficientmeans of communication.Codification

is too laborious and time-consuming in many cases, especially without proper tools.

We suggested exploiting an existing technique to generate targeted informa-

tion packages to satisfy the information needs of agile stakeholders [13]. Some-

what similar ontology-based documentation approach has been proposed by de

Graaf et al. [10].

General requirements for AKM infrastructure have been proposed by Liang et al.

[46] in the form of a covering set of possible use cases for AKM tools, many of them

applying to agile contexts as well. Furthermore, Farenhorst et al. [34] present seven

desired properties of architectural knowledge-sharing tools. Some of these properties

are particularly important in agile contexts, like easy manipulation of content and

sticky in nature.

8.8 CONCLUSIONS
We have demonstrated that by exploiting state-of-the-art techniques related to soft-

ware architecture evaluation and automated document generation, Scrum can be aug-

mented with lightweight AKM with reasonable cost. The most significant additional

activity is architectural evaluation. When architecture evaluation is required in

2098.8 Conclusions

sprints, a decision-based, lightweight evaluation technique can be used. If a simple

bookkeeping tool is used to assist the evaluation, the architectural information can be

stored in a repository with virtually no extra effort.

The proposed AKM approach, despite of its lightweightness, may not be suitable

for all projects. For small projects it might still be too laborious, and the benefits of

the approach do not necessarily outweigh the amount of work that has to be put into

codifying the architecture knowledge, unless there is a definite need for covering

technical documentation. However, for large and mid-sized projects in which the

information sharing needs exceed the limits of personal communication, a systematic

AKM approach aligned with Scrum is justified, even though there are no explicit

requirements to produce technical documentation.

Research onAKMhas produced a lot of advanced tools for codifying and present-

ing architectural knowledge. However, in our view, many of these approaches have

been developed with the mindset that the software development process is expected

to be adjusted for these tools, rather than the other way around. We are afraid that

this may be a critical hindrance to the adoption of AKM in the industry in large scale.

To be successful, an AKM approach should be possible to be introduced in a project

with close to zero cost, and with clearly visible and significant benefits.

To make things more explicit, we postulate the essence of lightweight AKM for

agile software development as the following manifesto.

1. The producing and consuming of architectural information in AKM should
not require extra effort. There should be no activities that are related only to

AKM itself during the software system life cycle.

2. AKM should be invisible from the viewpoint of information producers and con-
sumers. The producers and consumers should not need to be aware of AKM.

AKM should be seamlessly integrated with usual knowledge-sharing activities

like documentation, reviews, and project meetings.

3. Only potentially useful architectural information should be stored in AKM.

All stored information is expected to be used in the context of a probable devel-

opment or evolution scenario. The burden of useless information surpasses the

possible benefit of coincidental usage.

In this chapter, we have taken steps in the direction of the above principles,

although many open questions still remain. In particular, although the proposed inte-

grated collection of lightweight AKM practices are founded on findings in industrial

studies, the actual application of the combination of AKM practices in Scrum calls

for extensive empirical research that falls beyond the scope of this chapter.

Acknowledgments
The authors would like to thank the industrial participants of Sulava project: Metso Automa-

tion, Sandvik Mining and Construction, Cybercom, Wapice, Vincit, and John Deere Forestry.

This work has been funded by the Finnish Funding Agency for Technology and Innovation

(TEKES), under project Sulava.

210 CHAPTER 8 Lightweight AKM for Agile Software Development

References
[1] Abrahamsson P, Ali Babar M, Kruchten P. Agility and architecture: can they coexist?

IEEE Softw 2010;27(2):16–22.

[2] Kruchten P. Software architecture and agile software development: a clash of two cul-

tures? In: Proceedings of the 32rd international conference on software engineering

(ICSE). IEEE CS; 2010. p. 497–8.

[3] Nord RL, Tomayko JE. Software architecture-centric methods and agile development.

IEEE Softw 2006;23(2):47–53.

[4] Ali Babar M, Dings�yr T, Lago P, van Vliet H, editors. Software architecture knowledge
management—theory and practice. Berlin: Springer; 2009.

[5] Avgeriou P, Lago P, Kruchten P. Towards using architectural knowledge. ACM SIG-

SOFT Software Eng Notes 2009;34(2):27–30.

[6] Agile alliance: manifesto for agile software development. Available at: http://

agilemanifesto.org [retrieved 10.01.2012].

[7] Ali Babar M, de Boer RC, Dings�yr T, Farenhorst R. Architectural knowledge manage-

ment strategies: approaches in research and industry. In: 2nd workshop on sharing and

reusing architectural knowledge—architecture, rationale, and design intent (SHARK/

ADI ‘07). Minneapolis, USA: ACM; 2007.

[8] Weyns D, Michalik B. Codifying architecture knowledge to support online evolution

of software product lines. In: Proceedings of the 6th international workshop on sharing

and reusing architectural knowledge (SHARK ‘11). NewYork, NY: ACM; 2011. p. 37–44.

[9] Farenhorst R, Boer RC. Knowledge management in software architecture: state of the art.

In: Ali Babar M, Dings�yr T, Lago P, van Vliet H, editors. Software architecture knowl-
edge management—theory and practice. Berlin: Springer; 2009. p. 21–38.

[10] de Graaf KA, Tang A, Liang P, van Vliet H. Ontology-based software architecture doc-

umentation. In: Proceedings of joint working conference on software architecture &

European conference on software architecture (WICSA/ECSA). Helsinki: IEEE CS;

2012. p. 191–5.

[11] Jansen A, Avgeriou P, Ven J. Enriching software architecture documentation. J Syst

Softw 2009;82(8):1232–48.

[12] VlietH,AvgeriouP,BoerRC,ClercV, FarenhorstR, JansenA, et al. TheGRIFFINproject:

lessons learned. In: Ali BabarM, Dings�yr T, Lago P, van Vliet H, editors. Software archi-
tecture knowledge management—theory and practice. Berlin: Springer; 2009. p. 137–54.

[13] Eloranta V-P, Hylli O, Vepsäläinen T, Koskimies K. TopDocs: using software architec-

ture knowledge base for generating topical documents. In: Proceedings of the joint work-

ing conference on software architecture and European conference on software

architecture (WICSA/ECSA). Helsinki: IEEE CS; 2012. p. 191–5.

[14] Schwaber K. Scrum development process. In: Proceedings of the 10th annual ACM

conference on object oriented programming systems, languages and applications (OOP-

SLA); 1995. p. 117–34.

[15] Versionone:6thannual stateofagile survey.Availableat:http://www.versionone.com/pdf/

2011_State_of_Agile_Development_Survey_Results.pdf; 2011 [retrieved 29.08.2012].

[16] Poppendieck M, Poppendieck T. Lean software development: an agile toolkit. Boston:

Addison-Wesley Professional; 2003.

[17] Eloranta V-P, Koskimies K. Software architecture practices in agile enterprises. In:

Mistrik I, Tang A, Bahsoon R, Stafford JA, editors. Aligning enterprise, system, and soft-

ware architectures. Hershey, PA: IGI Global; 2012. p. 230–49.

211References

http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0030
http://agilemanifesto.org
http://agilemanifesto.org
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0070
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0080

[18] Coplien J, Bj�rnvig G. Lean architecture for agile software development. Chichester:

Wiley; 2010.

[19] Cockburn A. Agile software development: the cooperative game. 2nd ed. Reading, MA:

Addison-Wesley; 2007.

[20] Kazman R, Klein M, Clements P. ATAM: method for architecture evaluation. Report,

Software Engineering Institute, Carnegie Mellon University. Available at: http://

www.sei.cmu.edu/publications/documents/00.reports/00tr004.html; 2000.

[21] van Heesch U, Eloranta V-P, Avgeriou P, Koskimies K, Harrison N. DCAR—decision-

centric architecture reviews. IEEE Soft 2013; to appear.

[22] Kazman R, Bass L,WebbM, Abowd G. SAAM: a method for analyzing the properties of

software architectures. In: Proceedings of the 16th international conference on software

engineering (ICSE). IEEE CS; 1994. p. 81–90.

[23] Harrison N, Avgeriou P. Pattern-based architecture reviews. IEEE Softw 2010;99:1.

[24] Kazman R, Asundi J, Klein M. Quantifying the costs and benefits of architectural deci-

sions. In: Proceedings of the 23rd international conference on software engineering

(ICSE). IEEE CS; 2001. p. 297–306.

[25] van Heesch U, Avgeriou P. Mature architecting - A survey about the reasoning process of

professional architects. In: Proceedings of the working IEEE/IFIP conference on soft-

ware architecture (WICSA). IEEE CS; 2011. p. 260–9.

[26] Maranzano J, Rozsypal S, Zimmerman G, Warnken G, Wirth P, Weiss D. Architecture

reviews: practice and experience. IEEE Softw 2005;22(2):34–43.

[27] Woods E. Industrial architectural assessment using TARA. In: Proceedings of the 9th

working IEEE/IFIP conference on software architecture (WICSA). IEEE CS; 2011.

p. 56–65.

[28] Clements P,KazmanR,KleinM. Evaluating software architectures. Boston,MA:Addison-

Wesley; 2002.

[29] Bass L, Klein M, Moreno G. Applicability of general scenarios to the architecture

tradeoff analysis method software engineering institute. Carnegie Mellon University,

Pittsburgh, Pennsylvania, CMU/SEI-2001-TR-014. Available at: http://www.sei.cmu.

edu/library/abstracts/reports/01tr014.cfm.

[30] Eloranta V-P, Koskimies K. Using domain knowledge to boost software architecture

evaluation. In: Proceedings of European conference on software architecture (ECSA’10).

Heidelberg: Springer; 2010. p. 319–26.

[31] van Heesch U, Avgeriou P, Hilliard R. Forces on architecture decisions—a viewpoint. In:

Proceedings of joint working IEEE/IFIP conference on software architecture and European

conference on software architecture (WICSA/ECSA). Helsinki: IEEE CS; 2012.

p. 101–10.

[32] Tang A, Avgeriou P, Jansen A, Capilla R, Ali Babar M. A comparative study of archi-

tecture knowledge management tools. J Syst Softw 2010;83(3):352–70.

[33] Polarion software: application lifecycle management, requirements & quality assurance

software solutions. Available at: http://www.polarion.com [retrieved 28.08.2012].

[34] Farenhorst R, Lago P, van Vliet H. Effective tool support for architectural knowledge

sharing. In: Oquendo F, editor. LNCS. Software architecture, vol. 4758. . Berlin:

Springer; 2007. p. 123–38.

[35] ISO/IEC WD4 42010, IEEE P42010/D9 Standard draft. Available at: http://www.iso-

architecture.org/ieee-1471/docs/ISO-IEC-IEEE-latestdraft-42010.pdf; 2011 [retrieved

12.12.2012].

212 CHAPTER 8 Lightweight AKM for Agile Software Development

http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0090
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0130
http://www.sei.cmu.edu/library/abstracts/reports/01tr014.cfm
http://www.sei.cmu.edu/library/abstracts/reports/01tr014.cfm
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0145
http://www.polarion.com
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0150
http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-IEEE-latestdraft-42010.pdf
http://www.iso-architecture.org/ieee-1471/docs/ISO-IEC-IEEE-latestdraft-42010.pdf

[36] Schwaber K, Beedle M. Agile software development with scrum. Upper Saddle River,

NJ: Prentice-Hall; 2001.

[37] Jansen A, Bosch J. Software architecture as a set of architectural design decisions. In:

Proceedings of working IEEE/IFIP conference on software architecture (WICSA).

Los Alamitos, CA: IEEE CS; 2005. p. 109–20.

[38] Ven J, Jansen A, Nijhuis J, Bosch J. Design decisions: the bridge between rationale and

architecture. In: Dutoit AH, McCall R, Mistrı́k I, Paech B, editors. Rationale manage-

ment in software engineering. Berlin: Springer; 2006. p. 329–48.

[39] Hofmeister C, Kruchten P, Nord R, Obbink H, Ran A, America P. A general model of

software architecture design derived from five industrial approaches. J Syst Softw

2007;80(1):106–26.

[40] Sutherland J, Schwaber K. The Scrum guide—the definitive guide to Scrum: the rules of

the game. Available at: http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf;

2011 [retrieved 7.06.2012].

[41] Leffingwell D. Scaling software agility: best practices for large enterprises. Upper

Saddle River, NJ: Addison-Wesley Professional; 2007.

[42] Ali Babar M. Supporting the software architecture process with knowledge management.

In: Ali Babar M, Dings�yr T, Lago P, van Vliet H, editors. Software architecture knowl-
edge management—theory and practice. Heidelberg: Springer; 2009. p. 69–86.

[43] RoyceW.Managing the development of large software systems. Proc of IEEEWESCON

1970;26:1–9.

[44] Hansen MT, Nohria N, Tierney T. What is your strategy for managing knowledge? Harv

Bus Rev 1999;77(2):106–16.

[45] Desouza K, Awazu Y, Baloh P. Managing knowledge in global software development

efforts: issues and practices. IEEE Softw 2006;23(5):30–7.

[46] Liang P, Avgeriou P. Tools and technologies for architecture knowledge management.

In: Ali Babar M, Dings�yr T, Lago P, van Vliet H, editors. Software architecture knowl-
edge management—theory and practice. Berlin: Springer; 2009. p. 91–111.

[47] Dobrica L, Niemelä E. A survey on software architecture analysis methods. IEEE Trans

Softw Eng 2002;28(7):638–53.

213References

http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0170
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00007-1/rf0205

CHAPTER

Bridging User Stories and
Software Architecture:
A Tailored Scrum for
Agile Architecting

9
Jennifer Pérez, Jessica Dı́az, Juan Garbajosa, and Agustı́n Yagüe
Universidad Politécnica de Madrid (Technical U. of Madrid), Madrid, Spain

CHAPTER CONTENTS

9.1 Introduction .. 215

9.2 Agile Architecting ... 217

9.3 Case Study: Metering Management System in Electrical Power Networks 218

9.4 Agile Architecting Mechanisms .. 221

9.4.1 Feature Pool and Feature Tree of User Stories221

9.4.2 Flexibility in Software Architecture Design225

9.4.2.1 Plastic Partial Components ..227

9.4.2.2 Working Architecture ..229

9.4.3 Agile Design Decisions: CIA Support ...230

9.5 A Tailored Scrum for Agile Architecting .. 232

9.6 Agile Architecting in Practice .. 234

9.7 Findings About Agile Architecting ... 237

Acknowledgments .. 238

9.1 INTRODUCTION
The role of software architecture in agile software development (ASD) has been

extensively discussed over the past few years [1,2]. The tension between architecture

and agility is a controversial issue, with many advocates for and opponents against

giving architecture the importance in ASD that it has in other development

approaches.

Among others, the Agile Manifesto [3] establishes the following principles:

“Working software is the primary measure of progress,” and, “Deliver working soft-

ware frequently, from a couple of weeks to a couple of months, with a preference to

the shorter timescale.” These two agile principles imply that the time it takes devel-

opers to construct a working product should be limited and it should be mainly

invested in coding to satisfy the delivery deadline. Therefore, agile practitioners

215

often consider the upfront design and definition of software architecture an invest-

ment in time and effort that may not pay off. In fact, hard opponents perceive effort

devoted to architecture as wasted effort, “equating it with big design up-front

(BDUF)—a bad thing—leading to massive documentation and implementation of

YAGNI (you ain’t gonna need it) features” [1]. In fact, the literature is full of refer-

ences that advocate against architecture in ASD, because customers rarely appreciate

the value that architecture delivers. A common belief is that if you are sufficiently

agile, you do not need architecture; you can always refactor it on the fly. Hence, agile

projects pay as much attention as possible to user needs and requirements at hand,

which are often represented as user stories [4,5]. Agile project planning is based on

prioritized product backlogs and sprint backlogs composed of user stories and does

not take software architecture into account.

Dyba and Dingsoyr [6] illustrated that the lack of focus on architecture is bound

to engender suboptimal design decisions; Bowers et al. [7] argued that inaccurate

architectural design leads to the failure of large software systems, and a significant

amount of refactoring might create significant defects. Therefore, it is possible to

conclude that “refactoring on the fly” is not sufficient to meet the agile principle

“Continuous attention to technical excellence and good design enhances agility”

[3], and software architecture is necessary.

These arguments, along with the fact that software architecture enables commu-

nication and accountability for design decisions [8], stress the pivotal role of soft-

ware architecture in the development process. In fact, it is even more crucial

when agile methodologies are applied to the development of large and complex

software systems [9]. The work of Cockburn [10] revealed that agile methods

may be infeasible in large projects and life-critical systems, and Babar and

Abrahamsson [2] stated that software architecture may also be essential to scale

up ASD in large software-intensive systems—especially to achieve quality goals

[1]. Therefore, agile scalability has become the key point that has forced the agile

community to consider the need to architect in an agile way. As a consequence,

the agile community is making an effort to adopt agile methodologies for large-scale

software development projects. Agile practitioners realize that the iteration planning

works for small projects, whereas multiple teams on large projects usually lose sight

of the entire system and the real implications of their decisions in planning each iter-

ation [11]. Therefore, when ASD is applied to large-scale products, many authors

propose an analysis of the product vision and product requirements at a higher

abstraction level than user stories [4,11–13], and the construction of the product soft-

ware architecture [4,12,13], because it is risky to assume that a large architecture will

naturally emerge as a result of continuous refactoring [4]. In addition, Cockburn [10]

stated that it should be assumed that architectural practices can be valuable to cus-

tomers, and Kruchten [14] concluded that despite the fact that software architecture

means cost, it also means value for Agile. Finally, large-scale ASD also requires trac-

ing how the analysis of requirements is related to the software architecture to not to

lose sight of the entire system. As Leffingwell [4] set out, it is critical to understand

the effect of new agile requirements on architecture.

216 CHAPTER 9 A Tailored Scrum for Agile Architecting

Therefore, the obstacles that hinder agile practitioners from designing software

products using software architecture must be avoided, and mechanisms for designing

software architecture in Agile without renouncing its values and principles should be

defined. Bosch [15] mentioned the need to increase the speed in designing software

architecture to approximate agile methodologies, stating, “The way software is

developed has changed as well, especially focusing on short development cycles

and frequent, or even continuous, deployment.” To do that, these design mechanisms

should also be integrated into the agile process and should provide value for guiding

the design decision process in each agile iteration. One of the most extended agile

methodologies to support the agile process is Scrum [16].

In this chapter, a tailored Scrum for agile architecting in large-scale development

projects is described. This tailored Scrum for agile architecting is based on a set of

mechanisms that smoothly bridge user stories and software architecture through the

features product vision. These mechanisms consist of: (1) highly flexible architec-

ture that allows agile practitioners to design their corresponding working architecture

[17,18] together with working products, (2) feature pools and feature trees to identify

the working product features that the working architecture must cope with, (3) trace-

ability mechanisms for bridging user stories and software architecture through fea-

tures and design, and (4) change impact analysis (CIA) [19] of each feature on the

working architecture to assist agile practitioners in the prioritization of features and

their user stories, as well as in the effort estimation of user stories. All of these mech-

anisms are described in detail in this chapter, followed by a description of how they

should be applied to this tailored Scrum for agile architecting and how they should be

smoothly integrated.

Finally, the usage of the tailored Scrum for agile architecting is demonstrated

in this chapter. Details are given of our experience on putting its mechanisms into

practice in a case study that has been deployed in a software factory set up in col-

laboration between the Technical University of Madrid (UPM) and the company

Indra [20].

9.2 AGILE ARCHITECTING
Recently, there has been a growing recognition of the importance of paying more

attention to effective architecture design in ASD [2]. Cockburn [10] claimed that

the issue between architecture and Agile is not whether architecture should be used;

rather, the issue is how much effort should be invested in architecture, assuming that

the architecture can be valuable to the customer. In their survey of 72 IBM software

developers, Falessi et al. [8] found that agile practitioners perceive software archi-

tecture as relevant.

Advocates of a balance between architecture and agility propose that the archi-

tecture emerges gradually, iteration after iteration, as a result of successive, small

refactoring [9,21]. The initial insights on how to align software architecture and

Agile are provided by Kruchten [14] and Booch [22], among others, who propose

2179.2 Agile Architecting

the iterative and incremental evolution of the architecture to reduce the big up-front

design and keep the system in sync with changing conditions. Several approaches

present successful cases of agile architecture [23] or iterative architecture [24] in spe-

cific domains, such as mobile and security-based applications, respectively. An iter-

ative architecture is defined as “one that develops with the system, and includes only

features that are necessary for the current iteration or delivery. The architecture is a

working vision for developers, which encapsulates important features of the existing

design” [24]. However, how this incremental architectural design should be per-

formed and which general-purpose architectural mechanisms support it is, in fact,

one of the main challenges already identified by Abrahamsson et al. [1].

The work of Falessi et al. [8] presents the most relevant qualities of software

architecture for agile practitioners, including (1) communication and understanding

of software systems, (2) the rationalization of previous design decisions, (3) the doc-

umentation of rationale, assumptions, constraints, and other dependencies, (4) the

scaling of agile practices to large projects, (5) the documentation of flexibility,

and (6) system planning and budgeting. To deal with this general-purpose agile

architecting, and to leverage these qualities of software architecture in ASD, it is nec-

essary to provide agile practitioners with mechanisms to incrementally design archi-

tecture (i.e., agile architecting). This incremental design implies that software

architecture will be flexible and open to changes in such a way that they will be con-

structed by means of small increments in each agile iteration.

However, an incremental design is not enough to support agile architecting in

large-scale projects. Agile architecting must be completely integrated with the rest

of the agile process, and the trace of requirements and architecture should be sup-

ported in an agile way. Leffingwell [4] pointed out the relationship between a prod-

uct’s vision and its architecture, involving both in the portfolio. The portfolio

consists of the main big blocks to connecting product requirements and architecture.

There are three big blocks: (1) the definition of a product’s vision through the port-

folio vision in terms of large-scale initiatives that realize the product’s value, (2) the

architectural runway, which is “an architecture with the infrastructure to allow the

incorporation of current and anticipated requirements without excessive refactoring”

[13], and (3) the portfolio backlog, which is later refined as the well-known product

backlog. Leffingwell proposed an agile process to make agile architecting feasible.

However, the mechanisms for agile architecting, tracing the artifacts (e.g., features,

releases, user stories, architecture), and suitably integrating them are not detailed.

9.3 CASE STUDY: METERING MANAGEMENT SYSTEM
IN ELECTRICAL POWER NETWORKS
This chapter uses a case study to introduce and illustrate, step by step, how to apply

the described tailored Scrum for agile architecting. The case study involves the

development of a metering management system in electric power networks. It is part

218 CHAPTER 9 A Tailored Scrum for Agile Architecting

of a development project called OPTIMETER, in which various proofs of concept of

large data storing technologies for a metering management system were developed.

OPTIMETER is part of a larger project called the intelligent monitoring of power

networks (IMPONET) [25]. IMPONET focuses on supporting complex and

advanced requirements in energy management, specifically electric power networks

that are envisioned as Smart Grids [26].

Smart Grids are composed of an aggregation of a broad range of energy

resources, from large generating systems (traditional sources like nuclear power

plants and hydro power plants) to smaller generating systems (called microsources,

like small solar farms and distributed wind generators), operating as a single system

providing both power and heat [26,27]. They promote the integration of renewable

energy resources and their distributed, open, and self-controlled nature. Therefore,

IMPONET aims for the following: (1) continuous monitoring and bidirectional com-

munication with customers to promote sustainability, and (2) facilities and opera-

tional systems to prevent congestions, faults, and peak loads in real time. The

main result of IMPONET is a flexible and innovative platform that facilitates the

continuous monitoring of the network with real-time data processing and automation

capabilities, supporting a wide range of devices, protocols, and technologies. Hence,

this platform includes features and services that will enable consumers to configure

their consumption profile, to monitor its evolution, and to make decisions based

on this information. One of the main parts of this platform is the metering manage-

ment system, which efficiently captures andmanages meter data from a large number

of distributed energy resources.

The metering management system developed in the project OPTIMETER (see

metering management system, Figure 9.1) has the main goal of providing metering

management with real-time data processing. To select the data-storing technology, it

is necessary to account for performance when loading the large amounts of energy

data coming from the meter capturing processes, as well as performance when que-

rying these data. The project has been divided into four releases; each one consists of

one proof of concept to select the most suitable data storage technology. Specifically,

FIGURE 9.1

Metering management system.

2199.3 Case Study: Metering Management System

Figure 9.1

the presented case study focuses on the first release, called OPTIMETER I—which

was started with Oracle Big Data, the large object-oriented NoSQL data storing tech-

nology (see Release 1, Figure 9.2).

OPTIMETER I implements the following three processes of the metering man-

agement system—meter capturing, meter processing, and meter providing—using

the Oracle Big Data Database Manager:

1. Meter Capturing. This involves integrating all meter capturing processes that are

currently being supported by telemetering systems and batch processes that

collect measurements at substations (see meter capturer, Figure 9.1). This entails-

reading metering data from different energy resources, periods of time (quarterly,

hourly, daily, andmonthly), and intervals. The obtainedmeteringdata are text files

with a specific date that must be stored. This storage involves the data loading of

historical metering data associated with 1 month and the storage of these metered

data. Oracle BigData uses Berkeley DB for storing data andHadoopMap-Reduce

for supporting the execution of queries, insertions, deletions, and updates through-

out the database with high performance (see Release 1, Figure 9.2). Therefore,

these text files are stored in the Berkeley DB.

2. Meter Processing. This consists of handling raw data to obtain optimal data

by performing three operations: (1) the validation of meter data according to

an established validation formula, (2) the calculation of the optimal vector for

a measuring point for a type and period of energy data, and (3) the estimation

of energy data according to an established estimation formula (see meter proces-

sor, Figure 9.1).

FIGURE 9.2

OPTIMETER releases.

220 CHAPTER 9 A Tailored Scrum for Agile Architecting

Figure 9.2

3. Meter Providing. This involves defining the interface with information

client systems, such as billing and settlements, energy demand forecast, and

energy purchases, to exchange data with them (see meter provider,

Figure 9.1). It is a graphical user interface (GUI) that facilitates these data and

interacts with the database in an intuitive way.

9.4 AGILE ARCHITECTING MECHANISMS
Agile architecting must be supported during the agile process through the systematic

application of a set of concrete mechanisms. They should be part of the agile process,

and their systematic application should help agile practitioners to see them as anoth-

er agile technique, such as pregame, product backlog construction, estimation, or pri-

oritization. This section describes those mechanisms that can help us to make agile

architecting feasible and how they can be integrated into the entire agile process.

9.4.1 Feature pool and feature tree of user stories
Scaling Agile requires the product to be analyzed as a whole to ensure that it has

long-term implications [11]. It is necessary to identify the needs of the customer

at the highest level of expression in terms of functionality and delivered value

[4]. When identifying and analyzing users’ requirements, a big up-front design must

be avoided. It should work similarly to what Leffingwell [4,13] or Smits [11] among

others, proposed—a multilevel approach to planning activities that incorporates the

current holistic view. The feature pool and feature tree are two levels of planning

above user stories that this multilevel approach follows.

A feature is a product’s characteristic—either a key value or a key differentiator

of the product in regard to the rest of the market. As Leffingwell set out in [28], fea-

tures are above requirements and bridge the gap between users’ needs and the spe-

cific requirements that represent these needs.

A feature description consists of an identifier, a title, and a statement that

describes the feature in terms of the desired product. For example, the featureMeter
Reading of the OPTIMETER I case study is described in Figure 9.3a. In this project,

the identifier is defined by the letter F and a unique number, so the identifier of the

feature is F1, the title isMeter Reading, and the description is Reading metering data
from different energy resources, periods of time, and intervals. Each project can use a
different identification mechanism that will be convenient and suitable.

The characteristic of the product that a feature defines can be functional or non-

functional. Most features are expressed in terms of functional requirements, because

the customer easily appreciates functional needs. However, there are non-functional

requirements, such as performance, reliability, security, and industry standards that

are critical for the quality of the product [13] and its success in the market [11].

Therefore, it is important to work with customers to identify those nonfunctional

needs that are relevant for them that they usually assume and do not verbalize.

2219.4 Agile Architecting Mechanisms

FIGURE 9.3

Feature pools: (a) Feature pool and (b) Feature olympic pool.

222 CHAPTER 9 A Tailored Scrum for Agile Architecting

Figure 9.3A
Figure 9.3B

These needs are also features that are critical for the product and have to be

described in the same way as the functional features. For example, the feature

F6_HighPerformanceDataAccessing (see Figure 9.4) is a nonfunctional feature

that is critical for OPTIMETER and, in the case of OPTIMETER I, deals with using

the clustering technique.

Features are identified through brainstorming between the people involved in a

product’s development. The description is immediately created through a brief state-

ment without considering any issues regarding timing, dependencies, or priorities

among them. Features are entered into the feature pool as soon as their description

is finished (see Figure 9.3a). The feature pool is a repository where the features of a

product are stored, and the people involved in a particular project can access and

view it at any moment. The feature pool constitutes the portfolio of the project at

a high level of abstraction [4,11,13] and represents the product vision.

Once the pool has been constructed, it is time to analyze the possible relationships

between the different features in the pool. Some features can be a refinement of

others, and some can be dependent on others. Making these dependencies visible

facilitates the definition of priority and the estimation of timing or complexity that

the features’ development may imply. These dependencies can easily be described

graphically through a simple hierarchical tree-like structure as other approaches pro-

pose [29]. Figure 9.4 shows the feature tree of OPTIMETER.

A feature tree is constructed as a tree hooking the features to a root feature, which
represents the product that is going to be developed. For example, in the case study,

the root feature is called OPTIMETER (see Figure 9.4). The features can be hooked

to each other through relationships to denote their dependency. For example, the fea-

ture F3_MeterDataAccess depends on the complete development of the features

F4_DataLoading, F5_DataQuerying, and F6_HighPerformanceDataAccessing.
In addition to the feature pool or the feature tree, large-scale projects need to

define the releases and the value that is going to be delivered in each release

[11,30]. They constitute a project’s roadmap, which is crucial in large-scale projects

because it is required for the project’s development. This roadmap must establish the

releases, when they are going to be provided, and which value is going to be deliv-

ered in each one of them. Therefore, it is necessary to refine the features when

planning a project. Hence, the pool of features is extended and structured following

the analogy of an Olympic pool. The pool is horizontally divided into lanes, each

representing a different priority level. The features are grouped into these lanes

following the customer’s priorities as a criterion. Those features with higher priority

are launched in lane 1, and those with less priority are launched in lane 6 in the case

of OPTIMETER I (see Figure 9.3b). The number of lanes varies depending on the

identified levels of priority for the project. The feature tree may help with this pri-

oritization. The visualization of dependencies among features, which the feature tree

provides, helps to time and prioritize the features. It indicates that the features that

depend on others must be previously developed. For example, the features F9_Ener-
gyDataValidating and F12_IntegratedProcessing depend on the features F10_Raw-
Data and F11_OptimalData to be completely developed (see Figure 9.4). Releases

2239.4 Agile Architecting Mechanisms

FIGURE 9.4

Feature tree.

2
2
4

C
H
A
P
T
E
R
9

A
T
a
ilo
re
d
S
c
ru
m

fo
r
A
g
ile

A
rc
h
ite
c
tin

g

Figure 9.4

are delimited by vertical dashed lines and identified by a name and the date when the

release will be delivered. For example, in the case of OPTIMETER, OPTIMETER I

and all of its features constituted the first release of OPTIMETER. Figure 9.3b illus-

trates only the features of OPTIMETER I, prioritized into lanes and grouped into its

release. As a result, it can be concluded that the feature pool is a simple mechanism to

identify features (what), whereas the feature Olympic pool is based on the feature

pool to prioritize features and define releases (when). Finally, the feature tree is also

based on the feature pool to identify feature dependencies (how).

This high-level description of features must be refined into user stories [4] to

be included in the product backlog [4,16,31]. These user stories can be too big

(known as “epics”) at first if they are cross-grained, or they can be user stories by

definition [5]. A user story is fine-grained when it is described following the

INVEST model (Independent, Negotiable, Valuable, Estimable, Small, and Test-

able) and verifying the 5 Ws (Who, What, When, Where, and Why) [31], and any

epic must be broken down into user stories when it is introduced into the sprint

backlog for its implementation.

The feature Olympic pool and the original product backlog of Agile provide the

basis for easily constructing a tailored product backlog based on releases and fea-

tures, as Leffingwell indicated in [13] and later refined into user stories. This product

backlog represents the fact that features are realized by user stories that agile teams

use to implement the functionality of the first ones [4]. The product backlog of OPTI-

METER I is illustrated in Figure 9.5 by showing the title of each user story, its esti-

mation in story points, and the release and feature to which the user story belongs.

9.4.2 Flexibility in software architecture design
One of the four agile values is “Responding to change over following a plan” [3].

Changeability makes it possible to respond to change and is therefore critical for

ASD. Changeability is defined as “the ability of a software system to, throughout

its lifespan, accommodate to changes and enhancements in requirements and tech-

nologies that influence the system’s architectural structure, with the least possible

cost while maintaining the architectural integrity” [32]. Agile architecting can be

feasible if software architecture design supports changeability. Changeability

includes flexibility (i.e., the ability to deal with changes that can be either anticipated

or planned), and adaptability (i.e., the ability to deal with changes that can neither be

anticipated nor foreseen) [33]. This chapter focuses on flexibility, which is directly

related to the variability definition at a given point of time [34]. Taking this into con-

sideration, agile methodologies can take advantage of variability mechanisms to

flexibly adapt software architecture and to incrementally develop it together with

a working product [17]. Although variability has primarily been addressed in the

domain of software product line engineering [34], variability is also a relevant

characteristic of the architecture enabling the last responsible moment for a decision,
the planned evolutionary software development, or quality attributes such as change-

ability [35]. In fact, several authors distinguish product-line variability from

2259.4 Agile Architecting Mechanisms

software variability (i.e., mass customization versus “the ability of a software system

or artifact to be efficiently extended, changed, customized, or configured for use in a

particular context”) [36]. Therefore, Agile can take advantage of variability to effi-

ciently change software architecture in each iteration to fit requirement changes.

Reinertsen [37] defined eight key themes that provide guidance for Lean; one of

FIGURE 9.5

Feature-user story product backlog (Some of the user stories defined here are epics and were

therefore decomposed. We use this abstraction level to focus on relevant details.).

226 CHAPTER 9 A Tailored Scrum for Agile Architecting

Figure 9.5

them states, “Understand and exploit variability,” by promoting the addressing

and exploitation of variability instead of avoiding it. As Leffingwell set out in

[4], “it is easy to view XP, Scrum, and others as software instances of Lean.” There-

fore, XP, Scrum, and others also should exploit and address variability. Plastic partial

components (PPCs) and working architecture mechanisms have been constructed

based on variability support to make flexibility feasible during the agile development

of software architecture. These two mechanisms are presented in the following

subsections.

9.4.2.1 Plastic partial components
The notion of PPC [18] was defined not only to specify variability in software archi-

tecture configuration, but also to define variations inside components. PPCs can

effectively support the internal variation of architectural components. A PPC is a

specialization of a component and inherits all of its properties and behavior. PPCs’

variability mechanisms are based on invasive software composition principles [38].

The variability of a PPC is specified using variability points, which hook fragments

of code to the PPC known as variants, and weavings, which specify where and when

extending the PPCs using the variants. Two examples of PPCs are the components

DataLoader and DataQuery of the software architecture OPTIMETER (see

Figure 9.6).

Variants implement specific features of a software product, and it is desirable that

variants can be easily reused by different PPCs. The variant hadoop/MAPREDUCE
implements the operations for clustering and distributing work around a cluster using

Hadoop to improve data accessing performance (see Figure 9.6). To that end, vari-

ants are unaware of the linking context because of how the weavings between the

PPC and the variants are defined. The weaving is defined in the variability point,

not in the variant. The specification of a variability point must include the definition

of the weavings between the PPC and the variants. Therefore, the PPCs DataLoader
and DataQuery have a variability point called clustering that hooks these two PPCs

with the variant hadoop/MAPREDUCE (see Figure 9.6).

PPCs’ variability mechanisms are used in Agile to flexibly add, remove, and

modify variants throughout the iterations of an Agile life cycle. Variability mecha-

nisms behave as extensibility mechanisms to flexibly compose pieces (variants,

components) of software as if software architects were building a puzzle. As a result,

PPCs get closer and closer to meeting customers’ needs by means of specifying var-

iants only when they are strictly required by a working product. In this way, PPCs are

presented as the mechanism that make architectural runway feasible (i.e., “the abil-
ity to implement new features without excessive refactoring”) [13]. The two charac-

teristics of PPCs, partial and plastic, enable them to meet agile principles and values:

• Partial: PPCs are partial because they can be incompletely specified. They can

be working components delivered and refined in each iteration as part of the

working product. Therefore, PPCs allow the incremental development of

2279.4 Agile Architecting Mechanisms

FIGURE 9.6

Working architecture of OPTIMETER-Sprint III.

2
2
8

C
H
A
P
T
E
R
9

A
T
a
ilo
re
d
S
c
ru
m

fo
r
A
g
ile

A
rc
h
ite
c
tin

g

Figure 9.6

architectural components by only taking the required functionality for each iter-

ation into account and to construct them on time for the working product.

• Plastic: PPCs are plastic because they are highlymalleable. This is a result of their

extensibility mechanisms, which allow the flexible adaptation of software com-

ponents by easily adding or removing fragments of code. As a consequence, they

are ready to be extended or modified at any moment.

Therefore, the DataLoader and DataQuery components of the OPTIMETER

software architecture are PPCs; they are incrementally developed, iteration after iter-

ation, in a flexible way.

9.4.2.2 Working architecture
PPCs allow the iterative and incremental development of architectural design in each

iteration, and by extension, the software architecture that theymake up. This architec-

ture is incrementally and iteratively designed in each iteration by adding/removing

(1) variants to/from its PPCs and (2) components and connections to/from the archi-

tecture. From this proposal, a new concept in software architecture emerges, called

working architecture.
Working architecture is iteratively and incrementally designed together with a

working product. This idea was also proposed in [21,39] as continuous architecting,
and in [4] as an architectural runway. Continuous architecting permits the tackling of

architecture degradation and keeps the system in sync with changing conditions. All

of the architecture’s components are PPCs because they are incrementally developed

on time for the working product. The PPCs of the architecture constitute the new

concept of working architecture.

During the construction of a working architecture, a distinction is made between

the findings in the first iteration and the others. This is because in the first iteration

there is no previous architecture, whereas in the rest of the iterations, there is a work-

ing architecture resulting from previous iterations.

In each iteration, user stories are selected following the priority and effort esti-

mation of the backlog. Selection can also be guided and supported by the working

architecture obtained from the previous iteration—except for the case of the first iter-

ation, in which there is no previous architecture. This architecture guidance is avail-

able because software architecture not only helps to determine the feasibility of the

software systems’ development, but it can also help to determine which requirements

are reasonable and viable [40], and by extension, which user stories could be

selected. Different selection criteria can be assisted by architecture knowledge, such

as scalability, reusability, and the impact of changes. Therefore, the knowledge of a

working architecture can enrich the agile process. Once the user stories have been

selected for each iteration, their architecture design and implementation can be

started by analyzing the user stories and features to identify the following:

1. PPCs/Components: Units of basic functionality, also known as major software

components [41]. They are candidate components of a working product’s

software architecture. They make up the working architecture.

2299.4 Agile Architecting Mechanisms

2. Variants: Features that are not relevant enough to be major software compo-

nents, that constitute additional functionality for the final product, and that

are susceptible to being removed over time. Thus, they are part of the function-

ality that a PPC provides.

3. Architectural Connections: Connections to coordinate PPCs that configure a

working architecture.

As a result, a new version of the working architecture is obtained from each iter-

ation. After completing the last iteration, the final software architecture is obtained as

part of the final product.

9.4.3 Agile design decisions: CIA support
Continuous improvement is one of the two pillars of Lean, and also a key issue of XP,

Scrum, and other agile methodologies [4]. One guide to achieving continuous

improvement is to “make decisions slowly by consensus, thoroughly considering

all options; implement decisions rapidly” [4]. Therefore, techniques to analyze dif-

ferent options and make the most suitable decision are required in Agile.

CIA [42] determines the potential effects that a proposed change can have on a

system, possibly estimating the effort/cost to implement the change [43] and the

potential risks involved [44]. This analysis can then be used to make better evolu-

tionary decisions, such as whether or not a change should be carried out based on

the economic viability of software evolution or other risks, such as software system

degradation. CIA also allows trade-offs between a group of candidate/alternative

solutions and can be used to select the most beneficial solution among them [45].

In fact, extensive work has been done on CIA to support software evolution

[46,47], and Mens et al. [44] identified change impact as one of the future challenges

(timeframe of 2015 and beyond). As a result, we defined a CIA technique to support

agile architecting and to introduce changes in the architecture iteration by iteration,

paying special attention to continuous improvement [19].

This CIA technique considers architectural knowledge to aid CIA. This architec-

tural knowledge consists of the design decisions, the dependencies between these

design decisions, and the rationale driving the architecture solution. Agile architects

can take advantage of this technique to support the change decision-making process.

Four kinds of design decisions [48] have been defined to capture the knowledge

of adding feature increments or changing features in each agile iteration. The CIA

technique is based on these four kinds of design decisions:

• Closed Design Decisions (Closed DDs): These DDs are completely closed

(or bound) in a given iteration and support the realization of those features that

can be completed in one iteration and that architects considered unchanging

over time. The decision to use Oracle Big Data in OPTIMETER I and its Berkeley

Database is an example of a closed DD, DD001BigDataOracle/BerkeleyDB
(see Figure 9.6).

230 CHAPTER 9 A Tailored Scrum for Agile Architecting

• Open Design Decisions (Open DDs): These DDs are intentionally left open

(or delayed) and support the realization of those features that cannot be com-

pleted in one iteration and that architects plan to complete iteration after iteration.

Open DDs consist of a set of optional design decisions. The decision to use the

clustering technique of Hadoop in OPTIMETER I is an example of an open DD,

DD005ClusteringHadoop (see Figure 9.6).

• Optional Design Decisions (Optional DDs): These DDs support each of the incre-
ments in each agile iteration of an open DD.

• Alternative Design Decisions (Alternative DDs): These DDs support the alterna-
tives of open and closed DDs.

These four types of DDs offer complete support for the documentation of knowl-

edge derived from the agile architecting process. They store rationale, assumptions,

constraints, and design items. For example, DD001BigDataOracle/BerkeleyDB
stores its rationale: (1) why it was selected, (2) the risk involved in using this

DD, and (3) the cost of its deployment (see DD001, Figure 9.6). DDs completely

or partially realize features effecting multiple architectural components and connec-

tors, and they often become intertwined with other DDs [49]. As a result, DDs are

traceability links between the features they realize and the architectural components/

connectors they effect. For example,DD001BigDataOracle/BerkeleyDB establishes

a traceability link between the feature F2_MeterStoring and the component DBMa-
nager by means of two arrows that connect them (see DD001, Figure 9.6). In this

way, the architectural knowledge is stored as DDs associated with the traceability

links between features and architecture [19].

The CIA technique is based on this architectural knowledge representation to

obtain the maximum amount of knowledge to incorporate changes iteration after iter-

ation. It consists of a traceability-based algorithm and a rule-based inference engine,

which traverse features, DDs, and architectural elements through the traceability

links and a set of propagation rules. The process that this CIA technique [19] imple-

ments consists of two main steps described below:

1. Given a change in features (adding, deleting, or updating), the traceability-based

algorithm determines (1) the first-order DDs that are involved with the

feature to be changed, (2) the n-order DDs that depend on the first-order DDs,

and (3) the first-order architectural elements (PPCs, components, and connectors)

that are involved in each (first- and n-order) DD. The algorithm traverses the trace-

ability links that bridge features and architectural elements, as well as the

dependency relationships between design decisions.

2. Given a change in the working architecture that realizes the change in features, the

rule-based inference engine fires propagation rules. The execution of these rules

returns the change propagation in the working architecture. Namely, when a mod-

ification over the working architecture is applied, propagation rules are executed to

simulate the effects on the rest of the working architecture. Thereby, the n-order
architectural elements that are impacted by the change are obtained.

2319.4 Agile Architecting Mechanisms

For example, OPTIMETER selected the feature F6_HighPerformanceData-
Accessing (see Figure 9.4) for their implementation using clustering. The CIA algo-

rithm retrieves the design decisions and components that could be impacted as a

consequence of adding the new feature on the current working architecture delivered

from the previous sprint (see Figure 9.6). The feature F6_HighPerformanceData-
Accessing is a subfeature of feature F3_MeterDataAccess (see Figure 9.4), and F3

has the subfeatures F4_DataLoading and F5_DataQuerying (see Figure 9.4), which
are implemented by the PPCs DataQuery and DataLoader, respectively (see the

traceability links 003DataQuery and 004DataLoad that connect the two features

with the two PPCs, Figure 9.6). As a result of applying the CIA algorithm, the PPCs

DataQuery andDataLoaderwere retrieved as potential candidates to be impacted by

the high-performance feature increment. The more updates the working architec-

ture undergoes and the higher its complexity, the more vital CIA is for determining

the impact of changes. In subsequent OPTIMETER releases, the CIA algorithm will

propagate the database change and find the ripple-effects that may cause the depen-

dences between design decisions DD002 and DD001, and DD005 and DD001 (see

Figure 9.6).

In addition, the CIA algoritm also supports design decisions when user stories are

eliminated, updated, or added from/to the product backlog. Since the tailored

Feature-User Story Product Backlog (see Figure 9.5) stores which feature realizes

each user story, it is possible to determine which architectural elements could be

impacted by changes in user stories through features.

9.5 A TAILORED SCRUM FOR AGILE ARCHITECTING
In this chapter, we describe a tailored Scrum development process in which agile

architecting is considered a key activity in preparing the iteration (a.k.a. sprint). This

tailored Scrum takes advantage of the mechanisms described in this chapter to sys-

tematically apply agile architecting to both small- and large-scale products.

Successful agile architecting requires the role of the architect in the agile team

to be defined. Therefore, the agile team has a group of members that play the role of

architects in this defined tailored Scrum for agile architecting (see Figure 9.7). This

group of members is in charge of being aware of the architecture. They interact

with the rest of the members of the agile team during the decision-making process

by tracking architectural concerns and balancing them with business priorities.

Thereby, architects can also improve communication (one of the agile values),

and increase the knowledge shared between the members of the agile team. It is

important to emphasize that those members of the agile team that play the role

of architects can perform part-time architectural activities and part-time develop-

ing activities in the agile team.

The first step of this tailored Scrum for agile architecting entails capturing the

product owner’s requirements from the product vision (features) and packaging them

into releases with an established date. The aim of this tailored Scrum pregame phase

232 CHAPTER 9 A Tailored Scrum for Agile Architecting

is to define the portfolio and the roadmap of the project, which are fundamental for

scaling agile [13]. The portfolio is obtained by defining the feature pool and the fea-
ture tree, which serve as the input to construct the roadmap through the feature Olym-
pic pool (see Section 9.4.1) (see Figure 9.7).

The featureOlympic pool provides the basis for easily constructing a tailored prod-

uct backlog based on releases and features and refined into user stories (see

Section 9.4.1). The result is the product backlog, a list of user stories that describes
the product features using scenarios written by customers, without techno-syntax,

and includes the acceptance criteria that validate them. Then, user stories are priori-

tized and divided into sprints, which consist of 2-4-week periods of development time.

Each sprint has two preparation meetings—a backlog grooming and sprint agile
architecting meeting, and a sprint planning meeting—in which the product owner

and team plan what to do for the sprint (see Figure 9.7).

The traditional Scrum life cycle has been tailored in the past few years to include

the backlog grooming sessions [4,16] due to the need to focus on what is coming up

in the next sprint. Backlog grooming sessions give agile teams the opportunity to

look further into the future of their product(s), alerting them to technical challenges.

The purpose of these sessions is to make improvements in the product backlog

through the following activities: breaking down epics, estimating backlog items,

looking deeper into the backlog to do longer-range technical planning, and prioritiz-

ing the backlog [16]. Prioritization entails making decisions about the technologies,

architecture, and design options to deliver requirements. These decisions may aim to

(1) implement functionally complete features early, (2) implement the requirements

FIGURE 9.7

Agile architecting in Scrum.

2339.5 A Tailored Scrum for Agile Architecting

Figure 9.7

exhibiting uncertainty or risk (fail as early as possible) early, or (3) delay decisions

until the last responsible moment. Delaying decisions provides agile teams with

more time to evaluate options and gather feedback from customers. In backlog

grooming sessions, the role of software architecture is vital to understand a working

product, to look further into the future, to engage in technical planning, and to pri-

oritize the backlog items. It rationalizes the increments and changing features while

trying to maintain the integrity of the architecture, taking into account the risks,

dependencies, and tradeoffs with earlier architectural decisions. Grooming sessions

are the perfect setting for analyzing working architecture (see Section 9.4.2.2) by

using the presented CIA technique (see Section 9.4.3) to determine the impact of

various decisions that can be made in the next sprints. The conclusions extracted

from the analysis performed in the grooming session will be the pivotal criteria

for the sprint planning meeting, where the features and user stories to be developed

are selected to comprise the sprint backlog. The decision of which user stories are

selected is also critical in the agile architecting performed in this backlog grooming

and sprint agile architecting meeting. Agile architecting is addressed by identifying

new components, PPCs, variants, and/or connections of the selected features/user

stories, or updates of the existing working architecture.

The result of the sprint planning meeting is the sprint backlog (see Figure 9.7).

The sprint backlog is the list of user stories and tasks that must be performed to

achieve the sprint goal. During the sprint, daily meetings are conducted to track work
progress in terms of the working product and its working architecture. At the end of

each sprint, a working product is delivered together with its working architecture

(see Figure 9.7). The construction of the architecture and its implementation take

advantage of the flexibility of PPCs to easily adapt the working architecture, iteration

after iteration (see Section 9.4.2.1). In the sprint review meeting, the product owner
assesses the working product to either validate that user stories were met, or intro-

duce changes into the user stories. A retrospective meeting is held to put continuous
improvement into practice and to address what went well and what could be im-

proved for the next sprint (see Figure 9.7).

9.6 AGILE ARCHITECTING IN PRACTICE
OPTIMETER has been developed in an i-smart software factory (iSSF) [20], which

is deployed at the Technical University of Madrid (UPMa) and Indra Software Labs.b

The iSSF is a software engineering research and education setting in close cooper-

ation with the top industrial and research collaborators in Europe. The iSSF com-

prises laboratories in two different geographical locations in Madrid equipped

with sophisticated computer and monitoring equipment.

ahttp://www.upm.es/internacional
bhttp://www.indracompany.com/en

234 CHAPTER 9 A Tailored Scrum for Agile Architecting

http://www.upm.es/internacional
http://www.indracompany.com/en

The OPTIMETER I has been iteratively and incrementally developed in the iSSF

in a tailored Scrum for agile architecting of eight sprints (one sprint¼2 weeks). In

total, 10 people participated in the OPTIMETER I project: four developers, one prod-

uct owner, one deputy product owner, one Scrum master (who performs the tasks of

both the Scrum master and a part-time architect), one full-time architect, and two

observers. The observers had access to all project information and collaborated

directly with product owners and fellow team members to collect data and informa-

tion for evaluating the results obtained from the application of the tailored Scrum for

agile architecting.

Before starting the sprints, the project requirements were defined in terms of fea-

tures using the feature pool and the feature tree (see Figures 9.3a and 9.4). From this

analysis, 18 features were defined (see Figure 9.4) and prioritized in the feature

Olympic pool (see Figure 9.3b). The product backlog was defined by breaking down

the 18 features into 31 user stories (see Figure 9.5). At this point, the sprints started.

Sprint 1 focused on implementing feature F2_MeterStoring. The user stories

planned for the sprint were US1, US2, and US3. The resulting working architecture

was composed of the componentDBManager, which implemented the configuration

of the Berkeley DB; the component Proof, which implemented access to the data-

base; and finally the design decisionDD001BigDataOracle/BerkeleyDB,which con-
tained the rationale for using Berkeley DB (see Section 9.4.3).

Sprint 2 focused on implementing feature F1_MeterReading and partially imple-

menting F3_MeterDataAccess, specifically F4_DataLoading and F5_DataQuering.
The user stories planned for this sprint were US2-US10. During the grooming ses-

sion, the CIA was carried out by architects to analyze the impact of adding the new

features or user stories to the working architecture of Sprint 1 (see Figure 9.8a). At

this time, the working architecture was in too early a stage for the CIA algorithm to

provide any impact that could be relevant for architects in the decision-making pro-

cess of adding these features or user stories. Therefore, the resulting working archi-

tecture was designed following the guidelines presented in Section 9.4.2.2 (see

Figure 9.8b). It was composed of the componentMeterCapturer, which read the text
files of metering data and processed the previously read data to form key/value pairs,

and the PPCs DataLoader and DataQuery, which implement data loading and data

querying, respectively. As the functionalities for data loading and data querying

could not be fully implemented in this sprint, and increments in following sprints

could refine these components, the architects decided to implement these function-

alities using PPCs. Finally, the design decision DD002 contained the rationale for

reading metering data in key/value pairs. Finally, between DD002 and DD001, there
was a dependency relationship between the need to read data in key/value pairs and

the use of the database manager BerkeleyDB.

Sprint 3 focused on completing feature F3_MeterDataAccess, specifically

F6_HighPerformanceDataAccessing. The user stories planned for the sprint ranged

from US11 to US17. The CIA retrieved the design decisions and components that

could have been impacted as a consequence of adding these user stories in the work-

ing architecture of Sprint 2 (see Figure 9.8b). As explained in Section 1.4.3, the CIA

2359.6 Agile Architecting in Practice

FIGURE 9.8

Working architecture of OPTIMETER in action: (a) Sprint 1, (b) Sprint 2, and (c) Sprints

4 and 5.

236 CHAPTER 9 A Tailored Scrum for Agile Architecting

Figure 9.8

retrieved the PPCs DataQuery and DataLoader as the potential candidates to be

impacted by the high-performance feature increment. Therefore, the resulting work-

ing architecture was refined by adding and modifying the following elements: First,

the variant HadoopMap/Reduce implemented the operations for clustering and dis-

tributing work around a cluster to improve the data accessing performance (data

loading and data querying). The PPCs DataLoader and DataQuery were extended

with this functionality through the variability point clustering (see Figure 9.6).

Design decision DD005 maintained the rationale for clustering, as well as a depen-

dency on the design decision DD001 (see Figure 9.6).

Sprint 4 focused on implementing feature F4_MeterDataProcess. The user

stories planned for the sprint were US18-US21. This feature had no prior dependen-

cies on others, so the CIA algorithm did not retrieve any impact on the working archi-

tecture. In the working architecture of this sprint, the PPC MeterProcessor was

created and extended by the algorithms to validate metering data and to calculate

optimal vectors through the variability points RawValidation, Optimal-Validation,
RawIntegrated, and OptimalIntegrated. These algorithms were implemented in

the variants shown in Figure 9.8c, such as RawEnergyDataValidation.
Sprints 5-8 focused on implementing features F13_GUI and F16_MeterProvider

and their user stories (see Figure 9.5). These features had no prior dependencies on

others, so the CIA algorithm did not retrieve any impact on the working architecture

and their components were added. For an example, see the component Presentation
of Figure 9.8c representing F13.

The adoption of the new tailored Scrum for agile architecting for the OPTI-

METER project was challenging because before starting, the agile team preferred

to use conventional agile methods. Specifically, this initial refusal was due to the fact

that its adoption implied learning newmechanisms and modifying the working meth-

odology, which clearly highlight the need to invest time in training the team. The

team was certain of the need to invest more time; in particular, the learning and usage

of PPCs required extra effort. However, later, and particularly when the product

became more complex, the team began to react positively. This shift happened once

the architecting mechanisms and the architects helped the rest of the team to manage

the project’s complexity by prioritizing features and user stories, refactoring and

restructuring the architecture, taking into account design decisions, rationale, con-

straints, and tradeoffs with other design decisions.

9.7 FINDINGS ABOUT AGILE ARCHITECTING
To scale ASD for the development of large and complex software in which several

agile teams can be involved, software architecture is fundamental. However, it is crit-

ical to have an understanding of how architecting can be integrated into the agile

process. Previous studies defined two important premises: (1) software architecture

should be a value for agile projects’ development, and (2) agile practitioners tend to

2379.7 Findings About Agile Architecting

avoid software architecture, because they conceive of architecture as a heavy and

complicated task. From these two main premises and through our experience, we

have defined a baseline to achieve a mutual understanding between software archi-

tecture and Agile, based on the following principles: (1) the design of the architecture

should be adapted to the incremental and iterative life cycle; (2) software architecture

must deliver value to the agile process; (3) the design of the architecture should be a

guided task with the purpose of being lightweight and easy for agile practitioners,

and (4) the design of the software architecture should be integrated with the rest

of the agile processes and their results.

This baseline serves as the foundation for all of the mechanisms that have been

presented in this chapter for agile architecting. The use of these mechanisms permits

the smooth integration of software architecture and Agile. The mechanisms that con-

stitute this tailored Scrum for agile architecting help to meet the agile values and

perform some of the agile practices. In addition, they are aligned with the four agile

values, namely [3]: (1) Individuals and interactions over processes and tools: The

architecture team is part of the agile team and backlog grooming and sprint agile

architecting meetings increase the interaction and the shared knowledge among team

members; (2) Working software over comprehensive documentation: PPCs and their

working architecture is software that is delivered in each working product; (3) Cus-

tomer collaboration over contract negotiation: Feature pools, feature trees, and fea-

ture-user story product backlogs provide the vision of a product that customers desire

without overloading the documentation of a project; and (4) Responding to change

over following a plan: Changes are welcome for all mechanisms by adding, updating,

or removing features, user stories, components, PPCs, variants, or design decisions

guiding the change design decision using CIA.

Our experience of (1) constructing working architectures using PPCs in several

products in the context of the i-smart software factory, (2) integrating working archi-

tectures with the Scrum process through user stories and features, and (3) exploiting

this integration to store design decisions and to systematically support agile archi-

tecting decisions based on change impact, has been successful by dealing with most

of the required needs in the software products that we have developed.

Acknowledgments
This work has been partially supported by: (1) The SpanishMinistry of Science and Innovation

(MICINN) through the R&Dþi projects INNOSEP (TIN2009-13849) and i-Smart Software

Factory (IPT-430000-2010-038); (2) The Spanish Ministry of Industry (MITYC) through

the R&D project IMPONET (ITEA2 09030—TSI-02400-2010-103); and (3) The Centre

for Industrial Technological Development (CDTI) through R&D projects NEMO&CODED

(ITEA2 08022 IDI-20110864) and Energos (CEN-20091048).

238 CHAPTER 9 A Tailored Scrum for Agile Architecting

References
[1] Abrahamsson P, Babar M, Kruchten P. Agility and architecture: can they coexist? IEEE

Softw 2010;27(2):16–22.

[2] Babar MA, Abrahamsson P. Architecture-centric methods and agile approaches. In:

Agile processes in software engineering and extreme programming (XP); 2008.

[3] Beck K, Beedle M, Bennekum A, Cockburn A, Cunninham W, Fowler M, et al. Mani-

festo for agile software development; 2001. http://agilemanifesto.org.

[4] Leffingwell D. Agile software requirements lean requirements practices for teams,

programs, and the enterprise. Upper Saddle River, NJ: Addison-Wesley; 2011.

[5] Rasmusson J. The agile samurai: how agile masters deliver great software, pragmatic

bookshelf series. Raleigh, NC: Pragmatic Bookshelf; 2010.

[6] Dyba T, Dingsoyr T. Empirical studies of agile software development: a systematic

review. Inform Softw Tech 2008;50(9–10):833–59.

[7] Bowers J, et al. Tailoring XP for large system mission critical software development. In:

2nd XP universe and first agile universe conference on extreme programming and agile

methods XP/agile universe. Berlin: Springer-Verlag; 2002.

[8] Falessi D, et al. Peaceful coexistence: agile developer perspectives on software architec-

ture. IEEE Softw 2010;27(2):23–5.

[9] Booch G. An architectural oxymoron. IEEE Softw 2010;27(5):95–6.

[10] Cockburn A. Agile software development: the cooperative game. 2nd ed. Boston, MA:

Addison-Wesley Professional; 2006.

[11] Smits H. Levels of agile planning: from enterprise product vision to team stand-up, white

paper. Rally Software Development Corporation; 2006.

[12] Larman C, Vodde B. Scaling lean& agile development: thinking and organizational tools

for large-scale scrum. Boston, MA: Addison-Wesley; 2009.

[13] Leffingwell D. Scaling software agility: best practices for large enterprises, the agile soft-

ware development series. Boston, MA: Addison-Wesley; 2007.

[14] KruchtenP.Onsoftware architecture, agile development, value&cost. Pittsburgh:Keynote

SATURN; 2008.

[15] Bosch J. Architecture in the age of compositionality. In: European conference on soft-

ware architecture (ECSA). LNCS, vol. 6285. Berlin: Springer-Verlag; 2010.

[16] Pichler R. Agile product management with scrum: creating products that customers love.

Amsterdam: Addison-Wesley Professional; 2010.

[17] Pérez J, Dı́az J, Garbajosa J, Alarcón PP. Flexible working architectures: agile architecting

using PPCs. In: 4th European conference on software architecture (ECSA). LNCS, vol.

6285; 2010.

[18] Pérez J, Diaz J, Costa-Soria C, Garbajosa J. Plastic partial components: a solution to sup-

port variability in architectural components. In: The joint working IEEE/IFIP conference

on software architecture & european conference on software architecture (WICSA/

ECSA). Los Alamitos, CA: IEEE Computer Society; 2009.

[19] Dı́az J, et al. Change impact analysis in product-line architectures. In: 5th European con-

ference on software architecture (ECSA). LNCS, vol. 6903; 2011.

[20] Gonzalez Ortega E, Luis Martı́n Ruiz J, Garbajosa J, Yagüe A. Making software factory

truly global: the smart software factory project. Software Factory Magazine 2010;1(1):19.

[21] Madison J. Agile architecture interactions. IEEE Softw 2010;27(2):41–8.

239References

http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0015
http://agilemanifesto.org
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0100

[22] Booch G. The defenestration of superfluous architectural accoutrements. Keynote

software architecture challenges, the 21st century, USC; 2009.

[23] Ihme T, Abrahamsson P. Agile architecting: the use of architectural patterns in mobile

java applications. IJAM 2005;8(2):97–112.

[24] Chivers H, Paige RF, Ge X. Agile security using an incremental security architecture. In:

The 6th international conference on extreme programming and agile processes in soft-

ware engineering; 2005, LNCS.

[25] Intelligent monitoring of power NETworks (IMPONET), ITEA 2 project, http://

innovationenergy.org/imponet/.

[26] Massoud S, Wollenberg BF. Toward a smart grid: power delivery for the 21st century.

IEEE P&E Magazine 2005;3(5):34–41.

[27] Lasseter R, et al. Integration of distributed energy resources. The CERTS microgrid con-

cept. Berkeley, CA: Lawrence Berkeley National Laboratory; 2002, LBNL-50829.

[28] Leffingwell D, Widrig D. Managing software requirements: a use case approach. 3rd ed.

Boston, MA: Pearson Education; 2003.

[29] Nord RL, et al. In search of a metric for managing architectural technical debt. In: Work-

ing IEEE/IFIP conference on software architecture (WICSA); 2012.

[30] Bachmann F, Nord RL, Ozkaya I. Architectural tactics to support rapid and agile stabil-

ity. CrossTalk: J Defense Softw Eng pp. 20–25 May/June 2012.

[31] Pham A. Scrum in action agile software project management and development. Boston,

MA: Course Technology PTR; 2011.

[32] Bode S, Riebisch M. Impact evaluation for quality-oriented architectural decisions

regarding evolvability. In: 4th European conference on software architecture (ECSA);

2010.

[33] Highsmith J. Agile project management: creating innovative products. 2nd ed. Boston,

MA: Addison-Wesley Professional, 2009.

[34] Pohl K, Bckle G, Linden F. Software product line engineering: foundations principles

and techniques. Berlin, Heidelberg: Springer; 2005.

[35] Galster M, Avgeriou P. Handling variability in software architecture: problems and

implications. In: 9th Working IEEE/IFIP conference on software architecture WICSA;

2011.

[36] Svahnberg M, van Gurp J, Bosch J. A taxonomy of variability realization techniques:

research articles. Softw Pract Exper 2005;35(8):705–54.

[37] Reinertsen DG. The principles of product development flow: second generation lean

product development. Redondo Beach, CA: Celeritas Publishing; 2009.

[38] Assmann U. Invasive software composition. Secaucus, NJ: Springer; 2003.

[39] Kruchten P. Software architecture and agile software development an oxymoron? Key-

note software architecture challenges in the 21st century, workshop. Los Angeles, USA:

University of Southern California (USC); June 8, 2009.

[40] Fowler M, et al. Refactoring: improving the design of existing code. Reading, MA:

Addison-Wesley; 1999.

[41] McMahon P. Extending agile methods: a distributed project and organizational improve-

ment perspective. CrossTalk: J Defense Softw Eng 2005;18(5):16–9.

[42] Arnold RS. Software change impact analysis. Los Alamitos, CA: IEEE Computer Soci-

ety; 1996.

[43] Ramil J, Lehman M. Metrics of software evolution as effort predictors—a case study. In:

International conference on software maintenance; 2000.

[44] Mens T, Demeyer S, Mens T. Introduction and roadmap: history and challenges of soft-

ware evolution. In: Software evolution. Berlin: Springer; 2008.

240 CHAPTER 9 A Tailored Scrum for Agile Architecting

http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0110
http://innovationenergy.org/imponet/
http://innovationenergy.org/imponet/
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0200
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0200

[45] Pfleeger S, Bohner S. A framework for software maintenance metrics. In: Conference on

software maintenance; 1990.

[46] Chen C-Y, Chen P-C. A holistic approach to managing software change impact. J Syst

Softw 2009;82(12):2051–67.

[47] Cho H, et al. Model-driven domain analysis and software development: architectures and

functions. In: Model-driven impact analysis of software product lines. Hershey, PA: IGI

Global; 2011.

[48] Dı́az J, et al. Change-impact driven agile architecting. In: HICSS ’13: Hawaii international

conference on system sciences. IEEE Computer Society; January 2013. p. 4780–9

[49] Bosch J. Software architecture: the next step. In: Software architecture. LNCS, vol. 3047.

Berlin: Springer; 2004.

241References

http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0205
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0210
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0215
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0220
http://refhub.elsevier.com/B978-0-12-407772-0.00008-3/rf0220

CHAPTER

Architecture-Centric
Testing for Security:
An Agile Perspective

10
Sarah Al-Azzani, Ahmad Al-Natour, and Rami Bahsoon

University of Birmingham, Birmingham, UK

CHAPTER CONTENTS

10.1 Introduction .. 245

10.2 Research Motivation .. 246

10.3 Overview of Limitations in Current Post-Implementation Methods 248

10.3.1 Functional Testing of Security Apparatuses 248

10.3.2 Penetration Testing .. 248

10.3.3 Threat Modeling .. 249

10.3.4 Discussion .. 250

10.4 Introducing Implied Scenarios .. 251

10.4.1 Detecting Implied Scenarios ... 251

10.5 Approach .. 253

10.5.1 Stage 1: Implied Scenario Detection ... 253

10.5.2 Stage 2: Review of Detected Implied Scenarios 253

10.5.3 Stage 3: Performing Live Security Testing 254

10.6 The Agility of the Approach .. 254

10.7 Identity Management Case Study .. 255

10.7.1 Case Study Background .. 256

10.7.2 Approach and Results .. 256

10.8 Further Discussion ... 260

10.9 Agile Development, Architecture, and Security Testing 263

10.10 Related Work .. 264

10.11 Conclusion .. 265

10.1 INTRODUCTION
The use of software system architecture in security testing can play a vital role in

developing secure systems [1]. Its abstraction unnecessarily hides details about

the implementation, allowing testers to focus their attention on design choices to

reveal design vulnerabilities. As for compositional security, executable architectures

allows developers to exercise the integration of system components before they are

245

built to iteratively refine ambiguous requirements, search for hidden behavior caused

by composing functional requirements, and generate test cases at early stages. Unfor-

tunately, the importance of architecture-level testing for security to defend against

design vulnerabilities that are believed to be the hardest type to find and correct

and are the most critical to address has been recognized only recently [2]. On the same

level, there is an increasing interest in recognizing the role of architecture in agile

development [3,4] and the possibilities of merging both approaches to achieve adap-

tation and anticipation of requirements without losing the speed of delivery.

In this chapter, we discuss the importance of architecture in agile development sys-

tems and present the application of incremental architecture-level testing for securing

systems developed using agile principles [5]. This approach uses the concept of

implied scenarios [6] that arise from the composition of requirement scenarios to

search for hidden vulnerabilities in the system. We show how the architecture can

be test-driven, incremental, and adaptive to new and incomplete requirements. We

stand by the argument that the architecture can be used to allow for co-processing

of design and testing and that it does not require detailed design but merely relies

on the functionality. Drawing on a nontrivial case study of identity management sys-

tems, we demonstrate how the integration of architecture and agile processes enables

software developers to focus on security as a nonfunctional requirement while strongly

calling for the participation of stakeholders to verify the correctness of requirements.

In the following sections, we discuss the motivation of the work by briefly

reviewing existing security testing methods, their drawbacks, and the need for

design-specific testing methods. We introduce the concept of the implied scenario

and its role in our approach. We then discuss the agility of the approach and its appli-

cation in a case study. Finally, we summarize the chapter by recalling the coexistence

of architecture and agile development.

10.2 RESEARCH MOTIVATION
Security testing is fundamentally different from traditional testing because it empha-

sizes what an application should not do rather than what it should do. Therefore we

distinguish between positive requirements, such as disabling user accounts after

three unsuccessful login attempts, and negative requirements, such as the system pre-

vents unauthorized users from accessing system resources [7]. Unlike functional

testing, security testing focuses more on negative behavior (i.e., any undesirable

behavior that affects the security of the system, such as breaching confidentiality

of data). To apply the standard testing approach to negative requirements, one would

need to create every possible set of negative conditions that tests the requirement,

which is infeasible because one cannot reliably enumerate all the possible ways in

which a negative requirement can be tested. It is also challenging because it is

not always possible to map a requirement to a specific software artifact when the

requirement is not implemented in a specific place. Since negative requirement

testing creates a challenge for traditional testing, one needs to explore new testing

246 CHAPTER 10 Agile Architecture for Security Testing

methodologies that highlight the presence of negative behavior and how it manifests

in the system to guard against its occurrence.

The challenge in achieving compositional security is that security is a global

property, yet many big systems are built using smaller components; thus, most vul-

nerabilities arise from unexpected interactions between different system components

[8]. When components are put together, predicting the consequences of their com-

position is difficult [9]. These compositional consequences are referred to as implied

scenarios [10]; they occur when different functionalities are composed together.

Implied scenarios can model positive consequences or a design vulnerability that

combines several legitimate behaviors to produce emergent abusive behavior.

In general, a vulnerability is a weakness in the security system that might be exploited

to cause loss or harm [11]. Often, vulnerabilities are characterized by the result of

their exploitation with respect to security properties [12], such as breach of confiden-

tiality, loss of availability, and data tempering. Design vulnerabilities are a subtype

of vulnerabilities that are associated with design defects causing security violations;

avoiding design-level vulnerabilities is among the most important challenges faced

today by software developers [13]. Their fundamental importance lies in the fact that

even the most secure implementation cannot defend against defective design. In a

recent case study, a design vulnerability allowed ciphered text to be accessible to

the user to provide a sense of data security. This was identified as a major design

vulnerability because it allowed the user to cryptanalyze the ciphered text to identify

the cryptographic key used during encryption. These design vulnerabilities cannot be

easily identified using implementation-level testing methods; they require a design-

specific testing methodology to be detected. Thus, the role of architecture manifests

itself such that as requirements are elicited, one can execute their composition to pre-

dict the consequences of the composition and search for incompatibilities between

requirements. We define architecture as “the selection of the structural elements and

their interfaces by which the system is composed together with their behavior as

specified in the collaboration among those elements, and the composition of these

elements into progressively larger subsystems” [14]. And since agile systemsa are

built incrementally, applying iterative testing based on these requirements can speed

up deliveries by addressing compositional faults before the system is built. These

requirements can be documented in the agile development lifecycle to enhance

communication between team members and to verify the requirements with stake-

holders [3].

In this chapter, we try to answer the following questions:

• Why can’t current testing methodologies fulfill the role of security testing?

• Can we combine architecture with agile development such that both support each

other to reduce conflicts?

• How can implied scenarios be aligned with agile practices to architect secure

software systems?

aWe refer to systems that are built using an agile methodology as “agile systems.”

24710.2 Research Motivation

10.3 OVERVIEW OF LIMITATIONS IN CURRENT
POST-IMPLEMENTATION METHODS
The overall goal of security testing is to reduce vulnerabilities within a software

system [15]. A vulnerability allows an attacker to violate the integrity of the system.

When an attack is successful, the security of a system is said to be compromised.

In past years, there was much focus on implementation vulnerabilities, such as

buffer-overflows, invalid inputs, and general code-level testing, while very little

attention was paid to design vulnerabilities [9]. We summarize the current state of

security testing to motivate the need for further research to address its limitations.

Current security testing approaches can be summarized under three main headings.

10.3.1 Functional testing of security apparatuses
The most basic premise behind traditional functional testing is that it is meant to

validate that the software fulfills its requirements and it functions as intended. Func-

tional security testing tests the security mechanisms implemented in the system (such

as authorization check-points) to verify that it behaves as expected. This is largely

based on security software requirements. For example, testing for a requirement that

states “a login page must only verify correct passwords” may be tested with an incor-

rect password to increase confidence that the authorization mechanism behaves as

expected; however, this testing does not guarantee that an attacker cannot brute force

the system and succeed at logging in. Verifying the correct behavior of the system

does not guarantee the absence of undocumented behaviors; it only verifies that the

system behaves according to the specification.

Requirements-based testing is an example of functional testing [16], where test

cases are associated with requirements to ensure that all requirements are covered.

In security testing, the requirements are associated with the security properties of the

system, such as confidentiality and integrity of data. Functional testing is also done

via specification-based testing [17,18] where test cases are derived automatically

from specifications, such as interfaces. There is also code-based testing [19] that

aims to uncover code-based vulnerabilities, such as buffer-overflows.

A general problem associated with functional testing is that it addresses what the

program should do; in other words, it does not aim to investigate what the application

may still do beyond the requirements or specifications. In security testing, it is impor-

tant to test for situations that are not covered in the specifications. We believe that

testing functionality is significantly different from testing for security. This is

because security, unlike functionality, is not an externally observable property,

and hence, one cannot easily predict its results or consequences.

10.3.2 Penetration testing
Penetration testing takes the form of black-box testing of the system using a prede-

fined set of test cases that represent known exploits. It is performed using either

248 CHAPTER 10 Agile Architecture for Security Testing

existing tools [20,21] or by hiring security experts that try to attack the system and

exploit any potential weaknesses in the system. Although this approach is attractive,

its main problem with respect to agile development is that it is not design-specific

testing; testers run the same set of test cases on different systems and rely on the fact

that developers often make similar mistakes and repeat them. In addition, penetration

testing—whether done by hiring a red-team or by using vulnerability-scanning

tools—addresses known attacks, but determined attackers often look for novel ways

of attacking a system. The system’s response to such attacks is observed and any

inappropriate behavior is noted. This process requires knowledge of both the desired

behavior and certain implementation details that are the source of vulnerabilities

[22]. Although redesigning a feature in agile development might not be expensive

to perform, patching a system is cheaper and is likely to be considered before rede-

sign. This step attempts to hide the symptoms of the problem as opposed to fixing it,

which may bring many issues into the system such as writing a vulnerable patch or

discovering new symptoms of the problem.

Security tools used in penetration testing, such ISS Scanner [23] and Cybercop

[24], are generally limited in scope. They mainly address network security attacks,

and are not flexible enough to allow testers to write custom attacks. Another problem

with existing tools is that they can only be used after the system is built. In addition,

most tools address IP networks; thus, a company wishing to test a different type of

networks is required to purchase different tools as required. Although these “bad-

ness-ometers” [25] are useful in displaying the negative state of the system, espe-

cially when the system configuration is well understood, they are not useful in

nonstandard applications, and hence should not be the only way of testing an appli-

cation. Other forms of security tools are static analysis tools that address code

vulnerabilities, such as buffer-overflow. Both are very limited in scope since

dynamic testing is also important, and both have high false-positive error rates.

10.3.3 Threat modeling
Threat modeling [26–29] is a methodical review of a system design or architecture to

discover and correct design-level security problems. The review process determines

an adversary’s most likely courses of action in order to develop appropriate

responses. It requires a clear understanding of the assets to be protected, the threat’s

objectives, and any factors in the environment that could influence the threat’s capa-

bility or decisions. Such information might not be present during the initial design of

the agile system. This process results in a threat model that describes the potential

attacks on the system to be used to understand how attacks can manifest themselves,

and to evaluate critical decisions that will affect the security posture of the system

[28]. Its difficulty lies in the fact that a change made to the design requires reanalysis

of the system’s security status. Thus, in development cycles where requirements

might not be fully stated initially, constant changes might leave the models redun-

dant. Threat modeling addresses designing a secure system—not quite for the testing

phase, although the list of potential vulnerabilities may still be used as test cases.

24910.3 Overview of Limitations in Current Post-Implementation Methods

10.3.4 Discussion
To summarize the common problems with respect to agile development is agile

development advocates testing first with a focus on implementation. Such tests

are likely to only reveal implementation vulnerabilities, and overlook design vulner-

abilities. Thus, one needs a testing methodology that tests the architecture design

while adapting to changes in the requirements iteratively. In addition, testing for

security cannot be fully automated; such attempts have failed, except in a few cases

[30]. One cannot replace human expertise, because hacking is a creative process, and

creativity cannot be easily automated. Moreover, each application has its own

design, and each design has its own weaknesses and needs to be tested individually,

while current methods use predetermined vulnerability databases to discover known

vulnerabilities in the system. However, security testing is motivated by addressing

undocumented assumptions and areas of particular complexity to determine how

software can be compromised [31]. Existing techniques fail to address implicit

assumptions, mainly because testers rely on the system specifications and code

[15]. Developers build a certain mental view of the software, which is limited

because the software is too complex for a human to carry a complete, detailed mental

picture of it. It is then the tester’s responsibility to violate these assumptions, and

thereby try to uncover vulnerabilities. Security testers must consider actions that are

outside the range of normal activity and might not even be regarded as legitimate tests

under other circumstances. Furthermore, all existing approaches rely on the tester’s

expertise to craft security test cases. This is often problematic because testers are

required to think like attackers, and because security test cases don’t often cause direct

security exploits, which presents an observability problem. Important test cases might

bemissed because the application appeared to behave as it should, with disregard to the

additional behaviors that appears from the composition of the correct behavior.

Achieving security requires a tester to test like a detective, following clues to

insecure behavior and then exploring potential vulnerabilities [32]. This is because

attackers intentionally probe unspecified behaviors in the system. They attempt to

make the application behave in an unanticipated manner, and then determine the

attacks associated with that behavior. It is important to observe that detecting inse-

cure behavior will speed up the process of detecting vulnerabilities in a systematic

fashion. The remaining question to be addressed is, “How do we determine insecure

behavior in the system, while still maintaining observability of the problems asso-

ciated with the behavior, and also target implicit assumptions related to the design

of the system?” In this chapter, we try to move toward this goal using architecture-

level testing. We define vulnerability testing in our context as testing the system for

harmful additional behavior not directly specified in the system model.

The inherent characteristics of agile software development serve testing for secu-

rity well in that agility promotes flexibility through its support of decomposition and

incremental requirements. This is believed to assist testing for security in two ways:

1. It allows security testers to focus on emergent compositional behavior; it is crit-

ical to gather understanding of all possible behaviors that can be triggered by

attackers.

250 CHAPTER 10 Agile Architecture for Security Testing

2. Testing partial design supports focusing on more problematic areas in the code,

such as the meeting points of areas with high and low security status. Areas of

high security often require higher privileges, where an authorization point or

other security feature might be installed; a vulnerability might occur if confiden-

tial information flows into nonsecured areas. Thus, the process eases the detec-

tion of vulnerabilities through continuous inspection of partially-related code to

reveal potential threats in critical areas.

10.4 INTRODUCING IMPLIED SCENARIOS
Since security testers are required to consider actions that are outside the range of

normal activity and specification, we discuss our vision of how testers can use

existing methods to look beyond the specifications. In this section, we introduce

the concept of implied scenarios and their role in detecting compositional security

flaws.

Scenarios define an ordered sequence of events; in software architecture, scenar-

ios have been employed in modeling architectural properties [33,34] and in identi-

fying component interactions [35]. Each scenario models a partial behavior between

components, and thus, the composition of all scenarios is likely to exhibit more

behaviors than described by the specified scenarios. These undocumented behaviors,

known as “implied scenarios,” may arise as a result of components having only local

views of the execution [10]. An implied scenario may be an acceptable scenario that

has been overlooked, indicating incomplete specifications. Alternatively, implied

scenarios may represent an unacceptable behavior that may present attackers with

the opportunity for a potential exploit. The notion of implied scenarios was first

introduced in [10] for a restricted scenario language. The work is limited to a set

of message sequence charts (MSCs) that specify a finite set of system behaviors. This

work has been extended in Ref. [36] to provide a more expressive scenario language

that allows for an infinite number of system behaviors. But then, how are implied

scenarios detected?

10.4.1 Detecting implied scenarios
The extension provided in Ref. [36] introduced an algorithm that analyzes scenarios

modeled on MSC specifications. These scenarios consist of message events sent and

received between components, which are linked together according to a directed

graph (high-level MSC (hMSC)) that defines possible continuations/loops between

scenarios. With these two inputs, the algorithm performs the following steps:

1. Breaks down the continuation/loops of scenarios into several individual label

transition systems (LTSs); one component model is synthesized at a time, repre-

senting its behavior across all scenarios. This is accomplished by (a) collecting

the component behavior in all MSCs, and (b) linking all its behavior according to

the hMSC.

25110.4 Introducing Implied Scenarios

2. Uses the collection of component LTS models, to compose an architecture LTS

model in parallel by (a) mapping nodes to behavior and to their adjacent nodes,

and (b) then connecting nodes according to the hMSC. This architecture model

takes into account the behavior described by the MSC scenarios (thus preserving

the components structures and interfaces) and the global behavior described by

the hMSC. The joint behavior is the result of all LTSs executing asynchronously

while synchronizing on all shared messages. Thus, any of the LTSs can perform a

transition independently of the other LTSs, as long as the transition label is not

shared with the other LTSs [36]. Because non-shared transitions can be performed

independently across different LTSs, the notion of the architecture is weak

such that it allows for additional unspecified behaviors to emerge that are valid

paths in the hMSC along with exhibiting all traces specified by the MSCs.

3. Builds a new trace model that captures exactly the set of traces defined by the

MSC semantics to compare how close the architecture model is to the global

behavior required. Then, any trace that is not specified in the trace model would

correspond to an implied scenario. This trace model is built using a coordinator

component that is responsible for allowing/disallowing components to move

from oneMSC to another. This way, components can be guaranteed not to follow

different sequences of MSCs.

4. Compares whether the architecture model exhibits more traces than the trace

model, given the traces of both models. This is done by (a) defining the trace

model as a safe property that accepts traces that behave correctly according to

the MSCs and hMSC specifications, and (b) checking whether the architecture

violates the property. Violations are then reported as implied scenario MSCs.

Implied scenarios arisebecause the scenario-basedmodelingof the systemdescribes

the desired global behavior, whereas in reality each component in concurrent state

models acts locally based on local information. These counter-example tracesmay cor-

respond directly to attack scenarios,where a security property is violated andwhich can

be discovered using automated verification techniques to identify scenarios where

security-related properties are violated. In contrast to previous approaches that mainly

address well-known vulnerabilities, our approach benefits from existing model-based

techniques to automatically seek out and identify vulnerabilities in the design itself.

For formal definition of implied scenarios, please see Ref. [36].

We introduced the application of implied scenario detection to determine

unspecified behavior in the architecture because implied scenarios can address the

following issues:

1. Relying on the architecture of the system allows us to address implicit assumptions

made by designers regarding the behavior of system components. In the real

world, a designer might explicitly specify that an application performs scenarios

X, Y, and Z. As these scenarios are composed together, a fourth scenario,

W, might arise. Such unspecified scenarios, namely W, might result in a security

failure if exploited by an attacker. Thus, it is important to discover all possible

behaviors of the system and decide whether the behavior is legitimate or not.

252 CHAPTER 10 Agile Architecture for Security Testing

2. Existing tools for detecting implied scenarios allow us to observe the side effects of

the implied scenario on the system, and determine how these scenarios can be trig-

gered by attackers (vulnerabilities), and more importantly how the execution of

these scenarios can affect the security of the system before building the system.

3. The detected implied scenarios can then be used as test cases to aid security testers

in determining important test cases. Since implied scenarios allow us to explore

unspecified behaviors based on the assumptions made in the system architecture,

we believe such application in security testingwill improve the process of detecting

threats and violations of security assumptions within the architecture.

10.5 APPROACH
It is essential to acquire full knowledge of possible behaviors of a system to ensure

that the system behaves as securely as required, and that any additional behaviors do

not violate the desired global security behavior. Briefly, our notion of architecture

consists of the following:

• The component structure: which consists of a list of all components that appear in

the modeled scenarios and their composed behavior

• The component interface: where, given a component c of some scenario, the

interface of c is determined by the set of messages that are sent and received

by this component

Our proposal for using implied scenarios consists of three main stages.

10.5.1 Stage 1: implied scenario detection
A prerequisite for detecting implied scenarios is modeling the high-level design of the

system in MSC specification language. These scenarios reflect the high-level desired

functionality/requirements. Once the requirement scenarios are determined, they are

fed into the Labelled Transition System Analyser - Message Sequence Chart

(LTSA-MSC) tool with a roadmap for continuation (hMSC). When the scenarios

are composed together to create the architecture model, we start collecting all detected

implied scenarios without regard to which of these scenarios are security threats. By

using this information, which is generated based on the system design, we provide

assurance on the security status of the system itself and the design choices, rather than

the security mechanisms implemented. At this stage, new requirements can be added

and removed, and only the hMSC needs to be changed; thus, adding and removing

requirements is a straight-forward task. The system then builds incrementally as

new requirements are added. In addition, models of new requirements and detected

implied scenarios can be used to verify behavior with the stakeholders.

10.5.2 Stage 2: review of detected implied scenarios
The focus is on investigating the security breaches of the detected implied scenarios

against all categories of attacks. This is because an implied scenario may fall into

25310.5 Approach

several categories of attacks, and hence, may be exploited in different ways. We do

not impose restrictions on which classification scheme is used; however, we base our

classification scheme on Howard and Longstaff’s published scheme [37]. The aim of

their taxonomy is to define a common language for computer security incidents. This

taxonomy is also beneficial because it classifies a range of types of people who may

launch an attack or invoke a particular malicious behavior. It should be noted that

the purpose of categorizing vulnerabilities is to provide a checklist-based approach

whereby the tester can have reasonable confidence that all potential attack methods/

results have been considered. This in turn provides confidence in the completeness of

the vulnerability analysis process. It also helps us identify the types of attacks detect-

able using implied scenarios, and which architectures are more prone to certain

attacks. Ultimately, the result of the review is to ensure that all detected behaviors

are studied for any potential malicious use. At this stage, detected vulnerabilities

can be communicated across testers and developers in a readable scenario form as

generated by the tool in step 1.

Human involvement is needed primarily to evaluate the security of the detected

implied behaviors and to create test cases to exercise the system. Although it may be

possible to define security properties to fully automate the approach, we believe that

such a step is likely to neglect important implied scenarios that do not violate the

defined security properties.

10.5.3 Stage 3: performing live security testing
Any malicious behaviors found in the review process are then used as test cases to

exercise the system’s resistance to these attacks. Because implied scenarios are in the

form of scenarios, performing a security test is relatively straight forward, and is no

different practically from common functional testing. Some calibration might be

needed to perform some of the tests. For example, in order to test whether a race

condition can take place on the system, we might need to perform an extra wait oper-

ation on one of components to allow an event to take place in a certain order; this

does not affect how the system behaves/resists the attack, but is required because race

conditions happen in extremely short time intervals. Testing can begin as soon as

vulnerable implied scenarios are detected, and as the architecture is refined, more

tested cases can be created.

10.6 THE AGILITY OF THE APPROACH
For an approach to be consistent with agile principles, it must meet certain criteria to

be integrated in the agile development system. Contrary to what some believe,

requirements do not need to be gathered all up front in one phase; our approach

responds to changes by:

1. Supporting incremental elaboration of requirements by automatically searching

for potential requirements; this supports customer collaboration to verify the

validity of detected behavior, as well as prediction of behavior to avoid costly

correction of integration problems.

254 CHAPTER 10 Agile Architecture for Security Testing

2. Reconstruction of architecture as new information becomes available to address

requirement ambiguities, and to allow stakeholders to periodically see the

progress and make adjustments to the requirements as needed.

With respect to testing, our approach supports test-driven development where the

focus is on reusing and testing the integration of components built iteratively and

ensuring that when components are composed, a correct overall behavior can be

maintained. Figure 10.1 illustrates how the iterative process of our approach maps

to Scrum to produce a working increment of the developed software. The process

starts by first collecting related requirements to be implemented, then prioritizing

these requirements, then composing them incrementally while adding or removing

requirements as the system evolves to produce a working increment of the software.

Test cases can be derived from requirements regardless of the programming lan-

guage or technology utilized, which allows it to be used to test existing systems.

In addition, relying on requirement functionality and behavior helps in achieving

tractability between the code and the architecture, as well as ensuring consistent

understanding between team members.

Finally, the type of documentation required is lightweight, and is essential to

enumerate the requirements in scaled projects.

10.7 IDENTITY MANAGEMENT CASE STUDY
In this section, we look at the practical application of implied-scenario-detection

algorithms on two identity-management models designed by a project funded by

Vodafone. The evaluation of the models was conducted as part of masters projects

in security, involving two students over a period of 2 months. During the 2 months,

the students were briefed for 1 h about the use of the LTSA-MSC tool used to detect

FIGURE 10.1

Mapping between the implied scenario detection approach and Scrum.

25510.7 Identity Management Case Study

Figure 10.1

implied scenarios, and how to create MSCs; they were not required to understand what

implied scenarios are, or how they are detected. The students modeled the system in

MSC using the LTSA-MSC tools and all generated implied scenarios were recorded

and evaluated. The use of sequence charts is believed to be one of themost widely used

models in the software industry [38], thus using such models does not introduce an

overhead on the industry to adopt the approach. Another prerequisite for the approach

is basic understanding about security properties, and how they are violated.

10.7.1 Case study background
The case study aimed at evaluating two identity management models (device-based

and service-based) [39] implemented in an online bargain shop (OBS) for security

vulnerabilities. Retailers and wholesalers can subscribe to the OBS system in order

to advertise their online products, while buyers can sign up to OBS to browse offer-

ings and search for and buy products. The architecture uses temporary sessions

assigned for every user. The user will access the portal by providing a username

and password, which in turn will provide access to a third party web service (e.g.,

Amazon). Once the user enters the credentials, the portal will forward the request

for authentication to the session generator, which in turn will determine whether

the username and password are valid by comparing them with the values stored in

the user credential database. The desired communication is illustrated in Figure 10.2.

Device-based identity utilizes security credentials on the device to authenticate

with services and uses the identity provider (IdP) to distribute the public key for the

identity and maintains a list of attributes. It introduces a security token, which is sent

to the users’ device for authentication. Security credentials are stored in the device

and are used to identify the service and authenticate the device requesting the service;

thus, “each device maintains its own credentials for the user identity” [39]. The

desired behavior is illustrated in Figure 10.3.

10.7.2 Approach and results
Each model contained four legitimate scenarios generated from the code with its

hMSC. We have applied our approach to both models and compared our results with

respect to the following security properties [12]: confidentiality, integrity, authenti-

cation, and availability. As new behaviors were detected using the LTSA-MSC tool,

the developers were involved to decide whether the behavior was positive or not (i.e.,

“Is it a design defect with potential security implications, or is it an undesirable infer-

ence?”). In cases where additional behaviors were positive, they were added to the

model supporting continuous refinement and addition of new requirements. Further

investigation was performed incrementally and iteratively to ensure that additional

behaviors do not cause integration errors.

The device-based model proved to be more vulnerable to security vulnerability

exploitation, since it had a total of three negative implied scenarios and violated the

confidentiality, integrity, and availability requirements. On the other hand, the

256 CHAPTER 10 Agile Architecture for Security Testing

User Portal

login

reqAuthentication

authenticate

returnSession

authenticationSuccessful

createSession

authenSession

authenSuccessful

redirect

forwardReq

reqSessionlnfo

sendSessionlnfo

verifySessionlnfo

veriSuccessful

reqUserPolicy

sendUserPolicyForVerification

reqUserCredentials

sendUserCredentials

allowAccess

SessionGe... UserCrede... SessionSt... WebService Policyand... PolicyRep...

FIGURE 10.2

Service-based identity management model for an online shopping system.

2
5
7

1
0
.7

Id
e
n
tity

M
a
n
a
g
e
m
e
n
t
C
a
se

S
tu
d
y

Figure 10.2

User Device OBS Idp DataRepos... TrustRoot

use

access

reqAuthentication

accessWithToken

respond

provideToken

storelDofDevice

verifyRequest

verificationSuccessful

reqldentity

FIGURE 10.3

Device-based identity management model for a shopping system.

2
5
8

C
H
A
P
T
E
R
1
0

A
g
ile

A
rc
h
ite
c
tu
re

fo
r
S
e
c
u
rity

T
e
stin

g

Figure 10.3

service-based model shows only one negative implied scenario which violated the

authentication requirement as presented in Table 10.1.

The implied scenarios found are as follows:

• Implied scenarios 1 and 2: Ambiguous behavior is exhibited when multiple login

attempts are carried out instantly. This happens in both models. It indicates pos-

sibilities of brute force attack on the server until a successful login attempt is

made. The architecture does not guard against flooded requests of login attempts.

This could disrupt the availability of the service leading to a denial of service

attack, since no firewall is implemented to block such behavior. This can also

raise an alarm for how the system disposes credentials when the server fails to

respond. A common improper handling of exceptions can leave the credentials

floating in the memory.

• Implied scenario 3: Another possibility is masquerading attack, in which a user

attempts to login, and once a successful confirmation is returned, the confirma-

tion is intercepted by an attacker that attempts to replay the confirmation to gain

access to the user’s account. This is modeled in Figure 10.3, where the first part of

the diagram models the legitimate behavior and the second part models the

attempt to access the server using replayed confirmation. Since the models do

not present encryption mechanisms, modification of the credentials may occur,

thus violating the integrity requirement of the model.

• Implied scenario 4: An application with an improper threading mechanism in

concurrent applications may face problematic interleavings that return wrong

sessions to the wrong person, granting the user more privileges than they own.

• Implied scenarios 5 and 6: These model positive behaviors; one models a valid

request of service after authentication is successful, and one models a login

attempt after authentication is successful (allowing for concurrent access from

different features, and re-verification of authorization).

The amount of effort required to accomplish the study involved learning to use

the tool and modeling the system, which the students reported no difficulty in learn-

ing; by the end of the 1 hour introduction to the tool, the students were able to use it

on their own. The process of modeling the actual identity management models was

Table 10.1 Comparison of Implied Scenario Detection in Service- and Device-Based

Models

Total
Implied
Scenarios

Negative
Implied
Scenarios

Confidentiality
Violation

Integrity
Violation

Availability
Violation

Authen-
tication
Violation

Device-
based

4 3 Yes Yes Yes No

Service-
based

2 1 No No No Yes

25910.7 Identity Management Case Study

also straightforward because the developer of the models was present to confirm that

the students’ models were correct before the evaluation took place. Finally, the num-

ber of acceptable implied scenarios were minimal (�2), so the effort required to eval-

uate their potential security implication paid off in comparison with the negative

implied scenarios detected (�4) and acknowledged by the developer. It is also worth

mentioning that implied scenarios are difficult to detect manually, and thus the time

required to detect them is significantly reduced using automated tools.

Now that we have an overview of potential design vulnerabilities, one can either

refine the code to reflect the architecture to make it more secure and to prevent prob-

lems from occurring (where possible), or one can create concrete test cases that test

the possible consequences of the execution, or increase/decrease the number of

requirements and reevaluate the outcome. This can take place concurrently with

the implementation process. We have looked into refining the service-based model,

for which we have proposed a hybrid model with two-factor authentication. In addi-

tion to securing the model, it aims to decentralize the task of identity management in

general and to distribute the burden of identity management by using both the trust

root (for device identity authentication), and the IdP (for user identity authentica-

tion). Moreover, the use of one-time password (OTP) will provide additional authen-

tication, and its use as an authentication configuration enables our model to support

single sign-on, which in itself reduces phishing attacks and password fatigue. As

Figure 10.5 shows, the IdP will verify the identity of the user and send an acknowl-

edgment back to the session generator. Once the OBS receives the redirect from the

portal, it will forward the request to access the service to the policy and access control

module, which will request the identity of the device from the IdP. The IdP then

sends the identity to the trust root for verification, which in turn will request an

OTP from the server. The server will compute the OTP (using either time-

synchronized functions or mathematical hash functions) and will send it to the device

so the user can log in using the OTP. When the user logs in to the service, the OTP

will be verified by the server and access will be granted.

10.8 FURTHER DISCUSSION
We now report on the following criteria:

• Agility of the approach: The approach proved to be flexible in responding to

changes involved in the requirements. Its benefits include (1) its support for con-

tinuous evolvement, (2) its ability to improve productivity, since it reduces staff
effort and time required to perform integration checks as new requirements are

added, (3) its ability to produce better quality of product, since it targets inspect-
ing hidden, potentially dangerous behaviors, and (4) its support for systematic

review of the system. However, once the scenarios are detected, human judgment

is required to determine how the insecure behavior might affect the security of the

system. This guided testing helps identify vulnerable areas for testers to examine.

260 CHAPTER 10 Agile Architecture for Security Testing

User

use

reqidentity

verifyRequest

verificationSuccessful

verifyRequest

verificationSuccessful

reqAuthentication

access

use

access

Device OBS Idp DataRepos... TrustRoot

FIGURE 10.4

Potential masquerading attack on the service-based identity management model.

2
6
1

1
0
.8

F
u
rth

e
r
D
isc

u
ssio

n

Figure 10.4

User

use

login

authenReq

authenticate

authenReply

redirect

loginUsingOTP

sendOTP

forwardReq

reqidentity

verifyDeviceIdentity

verifyOTP

reqOTP

allowAccess

returnSession

Device Portal SessionGe.. Idp OBS TrustRoot ServerPolicy & Ac...

FIGURE 10.5

A hybrid model with two-factor authentication proposed to secure the service-based model.

2
6
2

C
H
A
P
T
E
R
1
0

A
g
ile

A
rc
h
ite
c
tu
re

fo
r
S
e
c
u
rity

T
e
stin

g

Figure 10.5

We sped up this process by determining categories of attack results that might

occur if insecure behaviors are executed.

• Phases of application: Because we are working at the architectural level to

address security testing, our approach can be integrated into the analysis, design,

implementation, or testing phase of the development cycle, as long as the global

and individual behaviors of components are identified. Because agile develop-

ment is test-driven, testing can begin as early as some of the requirements are

available. Our approach to security testing supports a highly iterative process;

for example, in cases of adaptation to new requirements, these requirements

can be added to the LTSA-MSC in the form of new behavioral scenarios. As these

new scenarios are added, the approach can be automatically reiterated to detect

new implied scenarios. The testers will only need to review new sets of detected

implied scenarios, which reduces the necessary time because reviews are not

repeated for implied scenarios that have already been detected.

• Generality and applicability of approach: We have specifically chosen to work

on the architecture of the system because it offers an adequate level of generality.

Almost every system can be modeled in terms of components and interactions, and

every system has an architecture, whether it ismodeled or not.We have also chosen

scenario-based specification because it is popular for modeling behaviors. Unified

Modelling Language (UML) 2.0 and MSC are among the most commonly used

scenario-based specifications, and many software engineers are familiar with these

modeling languages. Thus, we are not requiring additional training for testers. Fur-

thermore, the detection of implied scenarios has been applied to different types of

applications, including component-based systems [40], Java systems [41], and in

this example we have applied it successfully to an identity management system.

• Scalability: This approach supports breaking down the system into groups of

requirements, either to perform detailed dynamic analysis for certain groups of

requirements (e.g., problematic areas) or for evolving the requirements for spe-

cific functionality or subsystems. Once a group of functionalities is determined,

our approach supports composing these functionalities incrementally to reach a

larger subsystem.

10.9 AGILE DEVELOPMENT, ARCHITECTURE, AND SECURITY
TESTING
Moving from implementation testing to architecture-level testing offers several

advantages, which we summarize as follows:

1. Identifying developer’s assumptions based on the code can be a difficult task for

testers, since the assumptions are not abstracted from the code. Identifying

assumptions as discussed in Section 10.3.2 is critical for security testing.

2. Supports high-level view the system to address scalability and complexity of

systems. For example, the use of code to test an object-oriented system, is

26310.9 Agile Development, Architecture, and Security Testing

complex and tedious task [42] especially for large applications. On an average

sized system, architecture can help scale its size especially on situations where

there is a large, distributed team.

3. Abstraction allows us to omit parts that are not necessarily important for security

testing. This helps focus attention on components that are more vulnerable than

others. Abstraction is also useful for capturing attack patterns in the system, with-

out the need for an in-depth description of the attack.

4. Traditional software testing techniques consider only a static view of code, which

is not sufficient for testing dynamic behavior of the system [43]. Testing the

live system is very expensive. Thus, using an executable architecture is a

cost-effective approach that allows us to experiment with the behavior of the

system.

5. Applications often contain third-party components. Since it may not be viable to

modify the source of such components (either because the code was shipped in

binary form or because the license agreement is prohibitive), it is not obvious

how security vulnerabilities could be detected at coding level. Our approach

relies on the interfaces of components, and the safety of their integration.

6. Applications may be written in a variety of languages. In cases of code testing,

there is no easy way to abstract security-related code behind a clean Application

programming interface (API) [44]. As a consequence, security-related code will

be scattered throughout the application, increasing the difficulty of detecting

vulnerabilities.

7. Architecture-level testing facilitates better communication between testers,

developers, and stakeholders, since abstracted models are easier to read and

understand than large amounts of code.

8. The test process and test case generation can be planned at an early stage of the

software development life cycle, allowing coding and testing to be carried out in

parallel, which fulfills the requirement of test-driven development.

These points highlight a promising use of the architecture for agile development.

Its use does not conflict with the principles of agile development as demonstrated by

our case study; iteration can be achieved, adapting to changing requirements, con-

tinuous integration, and test-driven.

10.10 RELATED WORK
The closest work to ours is that produced by Ramakrishnan and Sekar [8]. In their

work, they create a model for each system component and then compose them to

show different interactions between these components. Then they verify this com-

posite model by searching for a scenario where a formally defined security property

is violated. The major difference in our approach is that we do not model each com-

ponent independently; instead, we model all interaction scenarios between these

components. We also do not formally define security properties, and instead study

all unspecified behaviors for potentially dangerous behaviors. Defining a security

264 CHAPTER 10 Agile Architecture for Security Testing

property for automationmight restrict the results of the approach because automation

may lead to false positives and negatives, and thus overlook scenarios.

Another related work is that of Salas et al. [45]. In their work, they build three

models: (1) a specification model that reflects the desired behavior, (2) an implemen-

tation model that reflects low-level details of the system, with a particular focus on

security concerns, and (3) an attacker model that represents the intentions of an

attacker. The purpose of the first two models is to show nonconformance between

the specification and its implementation, and then the attacker’s model is compared

to the implementation model. The major difference between our work and theirs is

that we only use a single model that reflects the implementation model. We also do

not aim to verify the presence of previously identified threats (through other means

of threat-detection), but instead, we aim to provide the detect mechanism itself to

identify potential threats.

10.11 CONCLUSION
We aim in this research to continue to push against the limitations of the state of the art

in securing our systems.We have presented the application of test-driven, architecture-

level security testing for agile development. The application is motivated to comple-

ment limitations in existing security testing techniques. We hypothesized that the

application of implied scenario detection [46] at the architecture level does not conflict

with the principles of agile development. We have demonstrated that the architecture

can be adaptive, iterative, and test-driven.We have also demonstrated that testing indi-

vidual functionalities does not help to identify compositional security violations, and

that the use of implied scenarios reveals inconsistencies in the composition of func-

tional scenarios. Using a case study, our results validated our hypothesis, and the

use of implied scenarios detected several threats that are likely to have been missed

using implementation-testing methods. We conclude that the use of architecture for

agile development is highly effective for guiding testers to evaluate security vulnera-

bilities. We have discussed the usefulness of incorporating the system architecture

along with the code. We have presented a real-world example in which our approach

detected four threats. In our future work, we intend to generate test cases and perform

live testing on a distributed system.

References
[1] Shreyas D, Software Engineering and Security: Towards Architecting Secure

Software. Term paper for ICS 221-Seminar in Software Engineering, Irvine:

University of California; 2001. http://www.dsc.ufcg.edu.br/�jacques/cursos/map/

recursos/SoftwareEngineeringandSecurity.pdf

[2] McGraw G, Potter B. Software security testing. IEEE Secur Priv 2004;2(5):81–5.

[3] Falessi D, Cantone G, Sarcia’ SA, Calavaro G, Subiaco P, D’Amore C. Peaceful

coexistence: agile developer perspectives on software architecture. IEEE Softw

2010;27(2):23–5.

265References

http://www.dsc.ufcg.edu.br/∼jacques/cursos/map/recursos/SoftwareEngineeringandSecurity.pdf
http://www.dsc.ufcg.edu.br/∼jacques/cursos/map/recursos/SoftwareEngineeringandSecurity.pdf
http://www.dsc.ufcg.edu.br/∼jacques/cursos/map/recursos/SoftwareEngineeringandSecurity.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0015

[4] Abrahamsson P, Ali Babar M, Kruchten P. Agility and architecture: can they coexist?

IEEE Softw 2010;27(2):16–22.

[5] Ambler S. Agile modeling: effective practices for extreme programming and the unified

process. New York: Wiley; 2002.

[6] Uchitel S, Chatley R, Kramer J, Magee J. LTSA-MSC: tool support for behaviour model

elaboration using implied scenarios. In: Joint European conference on theory and prac-

tice of software (ETAPS 2003), Warsaw, Poland; 2003.

[7] Fink G, BishopM. Property-based testing: a new approach to testing for assurance. ACM

SIGSOFT Softw Eng Notes 1997;22(4):74–80.

[8] Ramakrishnan C, Sekar R. Model-based vulnerability analysis of computer systems. In:

Second international workshop on verification, model checking, and abstract interpreta-

tion (VMCAI), Pisa, Italy; 1998.

[9] Wing J. A call to action look beyond the horizon. IEEE Secur Priv 2003;1(6):62–7.

[10] Alur R, Etessami K, Yannakakis M. Inference of message sequence charts. In: ICSE ’00:

proceedings of the 22nd international conference on software engineering. New York,

NY: ACM; 2000. p. 304–13.

[11] Pfleeger CP. Security in computing. Upper Saddle River, NJ: Prentice-Hall; 1997.

[12] Avizienis A, Randell B, Landwehr C. Basic concepts and taxonomy of dependable and

secure computing. IEEE Trans Dependable Secure Comput 2004;1(1):11–33.

[13] Rehman S, Mustafa K. Research on software design level security vulnerabilities. ACM

SIGSOFT Softw Eng Notes 2009;34(6):1–5.

[14] IBM. Rational unified process. URL: http://www-306.ibm.com/software/awdtools/rup/?

S_TACT¼105AGY59&S_CMP¼WIKI&ca¼dtl-08rupsite; 2007.

[15] Michael CC, Radosevich W. Risk-based and functional security testing. Technical

report, Build security; 2005.

[16] Mogyorodi G. Requirements-based testing: an overview. In: TOOLS ’01: Proceedings of

the 39th international conference and exhibition on technology of object-oriented lan-

guages and systems (TOOLS39). Washington, DC: IEEE Computer Society; 2001.

[17] Stocks P, Carrington D. A framework for specification-based testing. IEEE Trans Softw

Eng 1996;22(11):777–93.

[18] WimmelG, Jürjens J. Specification-based test generation for security-critical systems using

mutations. In: International conference on formal engineering methods (ICFEM); 2002.

[19] Antoniol G. Keynote paper: search based software testing for software security: breaking

code to make it safer. In: ICSTW ’09: proceedings of the IEEE international conference

on software testing, verification, and validation workshops. Washington, DC: IEEE

Computer Society; 2009.

[20] Lodderstedt T, Basin DA, Doser J. SecureUML: a UML-based modeling language for

model-driven security. In: UML ’02: proceedings of the 5th international conference

on the unified modeling language. London: Springer; 2002.

[21] Ahn G-J, Shin ME. Role-based authorization constraints specification using object con-

straint language. In:WETICE ’01: proceedings of the 10th IEEE international workshops

on enabling technologies. Washington, DC: IEEE Computer Society; 2001.

[22] Jacobson I, Booch G, Rumbaugh J. The unified software development process. Boston,

MA: Addison-Wesley Longman Publishing Co., Inc.; 1999.

[23] Internet security systems, internet scanner (ISS). Web. URL: http://www.iss.net/; 2003.

[24] Network associates, cybercop scanner. Web. URL: http://www.nss.co.uk/grouptests/va/

edition2/nai_cybercop_scanner/nai_cybercop_scanner.htm.

[25] McGraw G. Software security: building security. Boston, MA: Addison-Wesley Profes-

sional; 2006.

266 CHAPTER 10 Agile Architecture for Security Testing

http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0065
http://www-306.ibm.com/software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
http://www-306.ibm.com/software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
http://www-306.ibm.com/software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
http://www-306.ibm.com/software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
http://www-306.ibm.com/software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIKI&ca=dtl-08rupsite
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0100
http://www.iss.net/
http://www.nss.co.uk/grouptests/va/edition2/nai_cybercop_scanner/nai_cybercop_scanner.htm
http://www.nss.co.uk/grouptests/va/edition2/nai_cybercop_scanner/nai_cybercop_scanner.htm
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0105

[26] Whittle J, Wijesekera D, HartongM. Executable misuse cases for modeling security con-

cerns. In: ICSE ’08: proceedings of the 30th international conference on software engi-

neering. New York, NY: ACM; 2008.

[27] Hernan S, Lambert S, Ostwald T, Shostack A. Threat modeling: uncover security design

flaws using the stride approach, MSDN Magazine 2006. http://msdn.microsoft.com/en-

us/magazine/cc163519.aspx.

[28] Swiderski F, Snyder W. Threat modeling. Redmond, WA: Microsoft Press; 2004.

[29] Schneier B. Attack Trees. Dr. Dobb’s Journal Dec 1999;24(12):21–9.

[30] Turpe S. Security testing: Turning practice into theory. In: IEEE international conference

on software testing verification and validation workshop, ICSTW ’08; 2008. p. 1–10.

[31] Howard M, LeBlanc DC. Writing secure code. Redmond, WA: Microsoft Press; 2002.

[32] Thompson HH. Why security testing is hard. IEEE Secur Priv 2003;1(4):83–6.

[33] Kazman R, Abowd G, Bass L, Clements P. Scenario-based analysis of software archi-

tecture. IEEE Softw 1996;13(6):47–55.

[34] Babar MA, Gorton I. Comparison of scenario-based software architecture evaluation

methods. In: Asia-Pacific software engineering conference; 2004. p. 600–7.

[35] OMG Unified Modeling Language™ (OMG UML), Infrastructure. Version 2.4.1, for-

mal/2011-08-05, August 2011. Object Management Group. http://www.omg.org/spec/

UML/2.4.1/Infrastructure.

[36] Uchitel S, Kramer J, Magee J. Detecting implied scenarios in message sequence chart

specifications. ACM SIGSOFT Softw Eng Notes 2001;26(5):74–82.

[37] Howard JD, Longstaff TA. A Common Language for Computer Security Incidents.

Sandia National Laboratories; October 1998 [Sandia Report: SAND98-8667]. http://

infoserve.sandia.gov/sand_doc/1998/988667.pdf.

[38] Samuel P, Joseph AT. Test sequence generation from UML sequence diagrams. In: Soft-

ware engineering, artificial intelligence, networking, and parallel/distributed computing.

SNPD ’08. Ninth ACIS international conference; 2008.

[39] Staite C. Device based identity management. URL: http://www.cs.bham.ac.uk/cxs548/

papers/device-based.pdf; 2010.

[40] Rodrigues GN, Rosenblum DS, Uchitel S. Using scenarios to predict the reliability of

concurrent component-based software systems. In: FASE; 2005.

[41] de Sousa FC, Mendon N, Uchitel S, Kramer J. Detecting implied scenarios from execu-

tion traces. In: Reverse engineering, working conference; 2007.

[42] Kundu D, Samanta D. A novel approach to generate test cases from UML activity

diagrams. JOT 2009;8(3):65–83.

[43] Binder RV. Testing object-oriented systems: models, patterns, and tools. Boston, MA:

Addison-Wesley Longman Publishing Co., Inc.; 1999.

[44] Scott D, Sharp R. Abstracting application-level web security. In: WWW ’02: proceed-

ings of the 11th international conference on world wide web. New York, NY: ACM;

2002. p. 396–407.

[45] Salas PAP, Krishnan P, Ross KJ. Model-based security vulnerability testing. In:

ASWEC ’07: proceedings of the 2007 Australian software engineering conference.

Washington, DC: IEEE Computer Society; 2007. p. 284–96.

[46] Al-Azzani S, Bahsoon R. Semi-automated detection of architectural threats for security

testing. In: ESEC/FSE doctoral symposium ’09: proceedings of the doctoral symposium

for ESEC/FSE on doctoral symposium. New York, NY: ACM; 2009. p. 25–6.

267References

http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0110
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0110
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0120
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0125
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0130
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0135
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0140
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0145
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0150
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0150
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0155
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0155
http://infoserve.sandia.gov/sand_doc/1998/988667.pdf
http://infoserve.sandia.gov/sand_doc/1998/988667.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0160
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0160
http://www.cs.bham.ac.uk/cxs548/papers/device-based.pdf
http://www.cs.bham.ac.uk/cxs548/papers/device-based.pdf
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0165
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0170
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0175
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0180
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0185
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0190
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0195
http://refhub.elsevier.com/B978-0-12-407772-0.00009-5/rf0195

CHAPTER

Supporting Agile Software
Development and
Deployment in the Cloud:
A Multitenant, Multitarget
Architecture

11

Antonio Rico*, Manuel Noguera*, José Luis Garrido*,
Kawtar Benghazi*, Lawrence Chung

{

*Universidad de Granada, Granada, Spain
{University of Texas at Dallas, Richardson, TX, USA

CHAPTER CONTENTS

11.1 Introduction .. 269

11.2 Cloud Computing ... 271

11.3 Multitenancy Architectures .. 272

11.4 Agility and Multitenancy Architectures ... 274

11.5 Multitenancy Monotarget: Agility Challenges .. 275

11.6 Supporting Agility: Multitenancy Multitarget ... 276

11.6.1 Functional Portfolio Management ..278

11.6.2 Multitarget Metadata (MT2 Metadata) ..278

11.6.3 Business Process Reutilization ..279

11.6.4 Multitarget Security ...281

11.7 Globalgest: A Real MT2 System .. 281

11.8 Related Work .. 284

11.9 Conclusions and Future Work ... 285

11.1 INTRODUCTION
Cloud computing is enabling everyone to have access to high computational capa-

bilities. Computation is served as a commodity by cloud providers [1], whereas cloud

clients (Information Technology (IT) companies) are able to access these IT

269

resources on demand. This new paradigm, also known as Software as a Service

(SaaS), has changed the way in which software is distributed. In SaaS, applications

are no longer purchased (unlike its predecessor, software on premises) but con-

sumed; small- and medium-sized companies afford top-end applications, paying

software vendors (SaaS providers) for the use.

In this context, another paradigm—multitenancy (MT)—has become a key tech-

nology for the success of SaaS [2–4]. In MT, clients reduce the cost of software use

by sharing expenditures, whereas software vendors maximize sales profits by reach-

ing larger markets. MT architectures (MTAs) allow multiple customers (i.e., tenants)

to be aggregated into the same application. Tenants share not only the application,

but also capital and operational expenses [5].

Agility has been widely advocated in the past few years as a development phi-

losophy that improves efficiency in software construction [6]. Most agility methods

and techniques focus on the organization of the members in software teams and the

extensive adoption of demonstrated software engineering best practices, such as code

refactoring. Agilists consider software architecture something “evil” from the past, a

bad habit that only carries tons of documentation, big up-front design, and you ain’t

gonna need it (YAGNI) [7].

However, in the cloud multitenant situation, where easy scalability is key, archi-

tectures supporting agility and rapid provisioning become critical. In SaaS, MT appli-

cations demand has to be supported by architectural styles that allow rapid subscription

configuration. MTAs need to provide an “administrative framework that improves

management efficiency for administering the system” [5]. Cloud SaaS architectures

should not be considered evil but as helpful tools and assets for agile teams.

According to Liu [8], “the adoption of SaaS is growing and evolving in the enter-

prise application markets.” SaaS includes all kinds of software applications: cus-

tomer relationship management (CRM), enterprise resource planning (ERP),

content management systems (CMSs), and document management systems (DMSs),

among others. In traditional SaaS MT systems, each MT application usually deploys

a single functionality and is shared among tenants with similar functional needs. In

this regard, we could call actual MT applications monotarget because they target a

single area in the spectrum of potential clients.

We previously introduced a proposal for improving MTAs, called multitenancy

multitarget (MT2) [9]. This novel architecture adds new components to an underlying

MT foundation to support multiple functionalities. In this chapter, we illustrate how

MT2 fosters deployment (since just one system is needed to support multiple

services) and aim to support agility in development by avoiding unnecessary repli-

cations; customers in turn reduce learning effort because one application is needed to

cover all services. The applicability and benefits of the proposal are illustrated

through a real MT2 system called Globalgest [10,11], which is currently in service.

This chapter is organized as follows. First, a definition of cloud computing and

its services is provided. Second, we go deeper intoMT and explain the general model

of this architectural pattern. Third, we discuss agility in SaaS MT applications

and the recent discussion to combine traditional agile software development with

270 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

architecture. Fourth, the proposal is introduced and is followed by the presentation of

a real MT2 implementation (Globalgest). Finally, conclusions and future work are

summarized.

11.2 CLOUD COMPUTING
The National Institute of Standards and Technology defines cloud computing as “a

model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applica-

tions, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction” [12].

In other words, cloud computing means the use of computer resources at different

levels over a cloud. A cloud is a datacenter providing computing infrastructure (hard-

ware and software) and accessed over the Internet. This way, companies are able to

migrate their IT infrastructure, reducing capital and operational expenses. Depend-

ing on the organizations operating on the infrastructure, clouds can be classified into

private, community, public, or hybrid [12]. Services consumed by customers over a

cloud are called cloud services, and can be organized in three levels [4,12,13]:

– Software as a Service (SaaS): Consumption of software applications deployed in

the cloud. Platform and infrastructure are transparent to users.

– Platform as a Service (PaaS): Capacity to deploy applications into the cloud. Cus-
tomers do not control lower-level computing resources, such as operating systems

or network.

– Infrastructure as a Service (IaaS): Provision of storage, computing, network,

and other primary computing resources.

Though this classification of cloud services seems to be agreed in literature, there is

still no common understanding on the definition of cloud computing. In Berkeley’s

definition [1,14], cloud computing is considered the sum of utility computing and SaaS,
and does not include private clouds.Utility computing [15] refers to the use of computer

resources on demand. This way, Berkeley considers IaaS a utility computing service,

whereas PaaS is halfway between cloud computing and utility computing.

In SaaS, companies are no longer owners of the applications, but subscribers to

them. According to Ref. [16], “The basic long-term vision of SaaS is centered around

separating software possession and ownership from its use.” Unlike its predecessor,

Software on Premises, applications are now installed in a cloud and accessed over the

Internet; users are not owners of the software any more, but consumers of web

applications.

Previous attempts to migrate application provisioning to the cloud have failed. In

ASP (application service provider), applications were also deployed over a network

instead of being executed on local servers. However, in this model, clients would not

benefit from cost reduction since servers where private and used only by their owner

companies. SaaS, on the other hand, is focused on exploiting economies of scale by

27111.2 Cloud Computing

consolidating several customers onto the same operational system. Companies afford

top-quality enterprise applications, while providers maximize sales profits targeting

the market of small- and medium-sized companies. Among other reasons, ASP failed

because it did not even contemplate the possibility of serving different companies using

the same software instance [17] or the ability to provide customized applications [18].

11.3 MULTITENANCY ARCHITECTURES
MT is an architectural pattern for SaaS applications that permits several customers

(tenants) to share the same instance of the software [19]. A tenant is an organizational

unit that pays for the use of the SaaS application on a regular basis (according to the

subscription contract). One tenant might consist of many end-users, therefore MT

applications might also be multi-users; we will call tenancy the set of users of one
tenant that run the same customized version of the application instance. The number

of instances running in amultitenant environmentmight bemore than one, resulting in

a MT farm. This situation could occur not only because of performance issues (some

tenants might get greedy on computer resources), but also because of country

legislations stating the obligation to store data within country borders [20].

The multitenant model is considered an essential characteristic for cloud comput-

ing and its software delivery model [4,12]. Salesforce.com, one of the most popular

cloud providers, states [3]: “hosting models that do not offer the leverage of MT do

not belong in the same discussion as the value proposition implied by the term SaaS.”

Chong, in his article Architecture Strategies for Catching the Long Tail [2], believes
three attributes are to be considered in a good SaaS application architecture: scalabil-

ity, configurability, and multitenant efficiency.

The use of metadata in multitenant applications lets tenants customize the system

within the tenancy in three different levels: database model, user interface, and busi-

ness logic. This way, MT seems to be transparent for customers giving the impres-

sion that they are running a dedicated instance of the application. Customization and

security rely on the model chosen to store data. Several authors have proposed

different approaches [5,21–23]. Though using different terminology, they all agree

that the distinction is given by the level of isolation on tenant’s data.

Basically, MTA models have two tiers: administrative and instance. The admin-

istrative tier [5] provides the functionalities responsible for rapid account manage-

ment, while the instance tier hosts the applications that tenants execute according to

subscription contracts defined at the administrative level. In Figure 11.1, the multi-

tenant master panel (MTMP) represents the administrative level to control a farm

with four application instances.

In a MT farm, the MTMP must ensure system performance is balanced and have

the capability to move or scale out tenants to (new) servers of the farm. This

component stores data in the administrative database.

Figure 11.2 details the instance level of the architecture. The lower level tiers

perform changes dictated by the business layer in both the multitenant database

272 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Application
instance 2

Application
instance 1

Administrative tier

Instance tier

Application
instance 3

Multitenant master panel (MTMP)

Application
instance 4

T3T42T41T33T32T31T23T22T21T13T12T11

Multitenant
database(s)

Administrative
database

FIGURE 11.1

Administrative and instance tiers in an MT environment.

L
o

w
er level tiers

FIGURE 11.2

Multitenant architecture detailed: instance tier.

27311.3 Multitenancy Architectures

Figure 11.1
Figure 11.2

and file system. Intermediate layers, such as presentation or Service-Oriented Archi-

tecture (SOA) services, communicate with browsers and smart devices respectively

to produce end-users’ output. Metadata are responsible for system customization so

that tenants can get a specific user experience. This customization includes data

model extension, adaptation of the presentation layer to corporative image, and busi-

ness workflow personalization. Security services must be present in all multiuser sys-

tems. In multitenant environments, the complexity of this component increases;

systems must maintain privacy not only among end users, but also among different

tenants.

11.4 AGILITY AND MULTITENANT ARCHITECTURES
The term agile has been long used in software development to refer to a set of

methods following the guidelines established in The Agile Manifesto [24]. This man-

ifesto states four basic values:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

Agile software development is a philosophy that separates radically from tradi-

tional methods of development, like the waterfall model. Focused more on team

organizations, agile methodologies like Scrum [25] or Xtreme Programming [26]

have a reputation of paying little attention to software architecture [27]. Support

of teams through certain validated software assets, from development frameworks

to architectural designs that foster reuse and make development easier, seems to have

been disregarded so far.

The concept of architecture, involving big up-front design and YAGNI, has terror-

ized agile teams that fear to end up sunken under a massive pile of documentation.

Proponents of agility think that that architecture should emerge gradually in every

sprint; they embrace the change and prefer adaptive systems instead of the use of pre-

defined architectures that limit the system evolution. However, as well as these claims,

agile methods strive to deliver working and valuable software early and often to clients.

If so, it would be worthy to start from a proven and supportive architecture rather than

starting from scratch. In cloudMT systems, other issues, such as rapid deployment, may

be complementary to agile philosophy; there should be a fast change to the system so as

to accommodate potential tenants in as short a period of time as possible. In this regard,

architecture should not be doomed as a forbidden non-agile malpractice.

Recently, prominent authors from the system and software engineering commu-

nities have claimed and advocated in favor of coexistence between agile and archi-

tecture [28–30]. According to Ref. [7], “certain classes of system, ignoring

architectural issues too long, ‘hit a wall’ and collapse by lack of an architectural

focus.” In Ref. [30], Madison talks about agile architecture as a combination of these

274 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

two streams; this work gives the architect an essential role and indicates that this new

architectural direction should include a wide range of options instead of a closed

solution.

SaaS MTAs seek to leverage economies of scale due to software instance sharing

among tenants, whatever the kind of application deployed. Literature has not yet

covered how this architecture may support or even be Agile-compatible.

MTAs and other technologies, like software product line engineering (SPLE)

[31], may support agility with complementary issues (e.g., rapid deployment,

quality, and time-to-market). As seen in Figure 11.1, the MTMP component is

responsible for accounts creation; clients can be registered in the system and ready

to access the application within minutes. These two sides are not incompatible; they

just are different, and can be combined together.

According to Ref. [32], “Agility is the ability to rapidly and cost-effectively adapt

to market and environmental aspects.” This affirmation, originally applied to SPLE,

can be perfectly extended to SaaS MT applications. In SPLE, new modifications are

made to artifacts to cope with new requirements of the market; these artifacts are

used in the platform so that new versions of the products satisfy them. In MT, with

just one application instance (except in cases of aMT farm), propagation of change is

almost instantaneous. Moreover, changes are carried out over existing working

development projects rather than from scratch.

To sum up, MT not only tries to provide cost reduction for clients and maximi-

zation of provider profits, but also aims to support agility claims in different ways by:

• Deployment because clients are rapidly registered into the system.

• Maintenance and scalability when new requirements are needed.

• Development since changes are not made from scratch.

Architectures that aim to support agility are key in this new SaaS paradigm; with-

out the rapid and effective management or ease of upgrade that MTAs provide, SaaS

would be doomed to failure like ASP.

11.5 MULTITENANCY MONOTARGET: AGILITY CHALLENGES
The market that SaaS applications serve on demand is vast. Companies willing to

change their traditional on-premises software will find their corresponding applica-

tion in the cloud. CRMs, ERPs, CMSs, DMSs or even vertical specialized [33] sys-

tems, like a real estate CRM [34], are served on demand by SaaS providers and can be

subscribed to within minutes.

Traditionally, current multitenant applications deploy a single functionality or

are aimed to serve a specific line-of-business (LOB). A company needing a CRM

will compare among those providers in the market serving CRM applications and

subscribe to the one that best fits its needs. If this same company would need a

CMS or ERP, it would probably end up subscribing to another SaaS vendor offering

those services on demand (see Figure 11.3a).

27511.5 Multitenancy Monotarget: Agility Challenges

With this model, where the market has different applications for different func-

tionalities, companies have to subscribe to as many applications as the services they

need. In traditional MT, tenants share not only application instances, but also the

functionality deployed. We could say that actual multitenancy is monotarget; ven-
dors will have to develop new software applications if they want to target potential

clients from other LOBs or with different functional needs.

Many of these multitenant applications could share common lower development

components in their architecture. Database connectors, user authentication, or gen-

eral user interface components (graphics, style sheets, etc.) among others, might be

the same in any SaaS application whether it is for a CRM, CMS, or ERP. However, as

shown in Figure 11.3b, all these common components are to be replicated over all

these different implementations.

In terms of agility, replication means losing valuable time. During the develop-

ment process, programmers will have to duplicate and adapt/reconnect components

over implementations; vendors serving different applications will have to manage

different MTMPs with duplicated records of the same multisubscribed customers;

moreover, customers in turn will have bigger learning effort required as different

applications need to be learned and used.

11.6 SUPPORTING AGILITY: MULTITENANCY MULTITARGET
MT2 is a proposal to extend MTAs that allows multiple functionalities to be offered

in the same operational system. The main idea behind MT2 is reusability of common

MT components. Several MT applications are grouped into a single MT2 system

and used as assets to meta-generate customized service applications for clients. In

MT2, just one application instance is needed to manage different functionalities.

a b

FIGURE 11.3

(a) Subscriptions depend on functional needs. (b) Replication of common development

components.

276 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Figure 11.3

Subscription determines the service(s) and therefore the functionalities to be

deployed during execution time.

MT2 achieves reusability (and thus supports agility) by removing useless repli-

cation of common features. In multitenancy monotarget, functionalities are deployed

in different applications; hence components are replicated. In multitarget, shared

components are reutilized among all functionalities; cloud agile teams could boost

deployment, since just one application is needed to host many functionalities.

This way, applications are distributed among tenants with different functional

needs and vendors can host tenants from heterogeneous market sectors. This multi-

functional situation seeks several benefits as follows:

– Companies are able to subscribe to only one SaaS MT2 application, speeding

up the learning process (Figure 11.4a, Tenant 2).

– Vendors have a multitarget market (Figure 11.4a, Vendor 1), broadening the spec-

trum of potential customers and making subscriber’s management faster thanks to

the multitarget master panel (MTMP).

– Developers in turn avoid unnecessary replications, and therefore reduce time-to-

market (see Figure 11.4b).

To this end, new components are added to the traditional MTA (Figure 11.2).

Figure 11.5 represents the model of MT2Awith those new components with a thicker

edge. These components enhance traditional MTAs, giving the ability to execute dif-

ferent functionalities depending on a tenant’s contract. Applications therefore could

be completely different among tenants; this meta-application profile ofMT2 involves

changes in both administrative and instance tiers.

In addition to traditional MT duties, this multiservice profile implies new com-

mitments. These novel features try to support agility and are described in the next

subsections.

a b

MT2 system
MT2 system

FIGURE 11.4

(a) MT2 systems allow tenants to subscribe to multiple functionalities while providers manage

one MT2MP. (b) Reusability of common resources in MT2.

27711.6 Supporting Agility: Multitenancy Multitarget

Figure 11.4

11.6.1 Functional portfolio management
The set of functionalities deployed in an MT2 system is called the functional port-
folio. The number of functionalities in the portfolio may differ depending on vendor.

MT2 systems seek scalability not only at the tenant level, but also at the functional

level. New MT2 systems may deploy just a few features, but can increase the

portfolio over time. Previous MT2 systems are supposed to have larger functional

portfolios, since new functionalities are added on customers’ demands and remain

on the portfolio, unless outdated. The MT2MP must support the creation, addition,

or deletion of functionalities in the portfolio.

11.6.2 Multitarget metadata (MT2 metadata)
Multitarget metadata links tenants’ accounts not to only functionalities subscribed to

by tenants, but also to contractual features of this relationship. For instance, if a ten-

ant wants to subscribe to SMS functionality, we should at least set the number of text

Administrative tier

Instance tier

Smart device

Individual business processing (IBP)

Common business processing (CBP)

Query processor

File system Multitenant database

L
o

w
er level tiers

MT2 master panel

FIGURE 11.5

MT2 architecture model.

278 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Figure 11.5

messages contracted; setting this parameter in other functionalities, such as client
management, does not make sense. Every subscription to functionalities has its

own conditions, and these are reflected in the multitarget metadata of each tenant.

Subscriptions to functionalities are defined by multitarget metadata. Figure 11.6

shows an example of anMT2 systemwith four functionalities in the portfolio and two

tenants. In this case, Tenant 1 is subscribed to CMS and SMS, whereas Tenant 2 has

contracted CRM and SMS; as we see, relationship to SMS is present in both tenan-

cies using MT2 metadata, but the number of text messages to be sent differs.

With this extension, vendors can have all their SaaS applications unified. To this

end, they need to configure an MT2 system with a functional portfolio including all

previously deployed functionalities. Clients from different applications are to be

registered in the MT2MP, setting up a subscription linking the functionality from

the previous monotarget SaaS application. This centralization improves agility in

deployment; just one multitarget master panel is needed to control all clients and

applications (now as functionalities in the MT2 system). MT2 systems can be scaled

with tenants with changing functional needs; resource optimization is easier to

achieve with the consequent reduction of costs. Vendors and customers can leverage

this unification not only for an evenmore attractive price, but also because the new set

of functionalities offered could be deployed within minutes by means of theMT2MP.

11.6.3 Business process reutilization
Reusability of common features along all functionalities is the main cause of this

MT2 extension. In a multitarget environment, business layers are divided into:

– Common Business Processing (CBP): It includes those elements that are business-

independent and reusable across all functionalities.

MT2 functional portfolio

Multitarget metadata

FIGURE 11.6

Multitarget metadata contains subscription details and contractual features for each tenant.

27911.6 Supporting Agility: Multitenancy Multitarget

Figure 11.6

– Individual Business Processing (IBP): It includes those elements that are

business-dependent and which are specifically designed to support one

functionality.

During the execution timeline of their application instances, all tenants will

import CBP elements statically; however, IBP elements will be imported dynami-

cally depending on tenants’ subscriptions. In Figure 11.7, a tenant has a subscription

to functionalities F2 and F4. In this case, all CBP components are imported statically.

However, in the dynamic IBP selection for importation, just F2 and F4 components

will be included. Security services will check subscription and will confirm that only

these two functionalities are to be deployed during execution.

As mentioned above, CBP represents all those components reused in different

functionalities; agility in development is reached due to reusability. Features such

as privacy or system authentication are no longer to be developed in future function-

alities; they are already in the CBP layer. Furthermore, development effort is reduced

not only because of reutilization of CBP elements, but also for their extension. For

instance (see Figure 11.8), if a programmer needs to develop a specific feature and

MT2

instance
execution

CBP import

CBP
item Metadata security

Multitarget
metadata

IBP import

FIGURE 11.7

Static and dynamic import in MT2.

FIGURE 11.8

Agility in development for extension of CBP classes.

280 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Figure 11.7
Figure 11.8

encapsulate it within a class; that class does not need to be developed from the begin-

ning; it can be coded by extending one existing class from the CBP layer.

11.6.4 Multitarget security
MT2 environments deploy different functionalities depending on tenants’ subscrip-

tions; tenants share applications, but functional deployment may differ. In this situ-

ation, security components becomemore complex in architecture, since end users are

allowed to execute those functionalities present in the subscription and not others.

Multitarget involves new guarantees for the security layer at two levels:

– Tenant level: Tenants should not deploy functionalities that are not included in

subscription. Security must ensure that forbidden functionalities are not deployed.

– End-user level: MT applications are multiuser environments at instance level.

Tenants end-users have different roles that determine their capabilities in the sys-

tem. In MT2, tenants may have a subscription to a certain functionality, but not all

the tenancy should have access to it. Admin users of the tenancy must have the

capability to decide for each user what functionalities to deploy from the tenant

portfolio. For instance, a company could have a subscription to accounting and

agenda functionalities; however, leaking of important financial data is not desir-

able, so accounting functionality could be hidden from certain users of the tenancy

for security reasons.

11.7 GLOBALGEST: A REAL MT2 SYSTEM
Globalgest [10,11] is an example of a business-oriented application based on MT2

architecture. It has been implemented by 21 companies and deploys more than

100 functionalities. Combinations of this portfolio allow Globalgest to serve busi-

nesses from different industries, such as a medical clinic or an IT company, by choos-

ing different functional subscriptions for them [35].

Globalgest is a single application that serves companies from different industries

without duplicating development efforts. MT2 architecture allows Globalgest to deploy

andhost several functionalities configuring a client’s functional subscriptionondemand.

Rapid provisioning is key in Globalgest; customers require a fast response that is

reached thanks to the administrative level of the architecture—theMT2master panel.

Setting up a new client account in Globalgest is easy and entails only a few steps.

Once logged into the system as anMT2 administrator, a user will be able to access the

administrative level. As seen in Figures 11.9 and 11.10, this process is quite simple:

1. Open the MT2MP

2. Click on Insert new account
3. Fill in tenant details: Contact, billing, shipping

28111.7 Globalgest: A Real MT2 System

4. Set subscription details:

4.1 Expiration and method of payment

4.2 Create admin user for the tenancy

4.3 Set functionalities desired by the customer by just clicking on the

check fields

The agility with which this operation can be performed is very noticeable; tenants

can be registered within minutes. Steps 1-4.3 might be common to other monotarget

applications, but the main difference and benefit that MT2 provides to Globalgest is

in Step 4.3. In this phase, clients are registered with a personalized service by choos-

ing the functionalities desired (Figure 11.10). In traditional MT, this possibility is not

FIGURE 11.9

MT2MP: inserting new account.

FIGURE 11.10

Functional selection in the MT2MP.

282 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Figure 11.9
Figure 11.10

present, because it is monofunctional; therefore, customers with different functional

requirements might be registered in as many MT applications as functional needs.

The major advantage of Globalgest against their MT competitors is multiservice,

and therefore the agility, in providing different services with just one software

instance. Subscribing to an ERP or a CRM can be a difficult decision. However, that

might not be the case for other, less important functionalities (CMS, for instance).

Clients can be registered with a set of these simpler functionalities and once they

get used to the interface and have passed the learning curve, they will more likely

step forward and upgrade their subscription to more complex functionalities. In con-

trast, for the Globalgest vendor this upgrade operation is just a click away thanks to

the MT2MP.

Furthermore, Globalgest has a functional portfolio that can increase its number of

functionalities with time. As these new features are incorporated into the system, ten-

ants can upgrade their subscription—either because these new functionalities com-

plement others already contracted, or because they are newly interested. In any case,

the Globalgest vendor is one step ahead of its competitors again.

As explained before, in Globalgest, functionalities do not need to be developed

from scratch. The MT2 architecture allows developers to achieve agility in develop-

ment because common components over functionalities are reused and not repli-

cated. Programmed with PHP as its server language and MySQL as its database

engine, the CBP layer includes these main classes:

– SQLConnector.php: Database processing and query management

– HTMLCreator.php: Creation of HTML data (tables, inputs, forms, dialogs, etc.)

– Controller.php: Security and the tenant’s privacy

– FileConnector.php: File system access

– WSConnector.php: Responsible for SOA

During execution time in all functionalities, these classes are instantiated and

developers can make use of them instead of reprogramming. If new specific pro-

gramming is needed for the functionality, new IBP classes can be encoded; unlike

MT applications, these new classes can be encoded extending existing CBP classes.

Figure 11.11 shows a real example of how a CPB class (HTMLCreator) is

extended for specific purposes in SMS functionality. In this example, a new popup

FIGURE 11.11

CBP class extension.

28311.7 Globalgest: A Real MT2 System

Figure 11.11

(Figure 11.12) will appear to the user when trying to text a person with no numbers on

its record.

Agility becomes especially critical when the company that owns the software

lacks human resources. For very small IT companies, MT’s support for agility is

not enough. MT2 provides not only rapid deployment, but also agility for develop-

ment and eases the general management of the system. Multitarget applications like

Globalgest can serve dozens of tenants with just one system administrator.

11.8 RELATED WORK
Some similarities can be seen to SPLE [31,36] due to reusability of common com-

ponents. However, SPLE involves obtaining personalized software products from

the platform, whereas MT2 just uses the same components running in the same soft-

ware instance. In MT2,reusability takes place during execution time, whereas SPLE

reuses the artifacts during development. Moreover, with MT2, services deployed for

a customer could change by just modifying the functional contract; in SPLE, a prod-

uct cannot be changed once it has been released from the platform.

Salesforce.com [37] is another SaaS platform offering different functionalities

that can be subscribed to piecewise. However, to the best of our knowledge, no

underlying architectural models of this multifunctional architecture or evidence of

their existence have been provided (i.e., it is not clear if Salesforce.com has a core

FIGURE 11.12

Popup generated when trying to use SMS functionality in Globalgest.

284 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

Figure 11.12

architecture and, if so, how it evolves). The novelty of this approach is the extension

from traditional MTA to MT2A where the CBP elements are key for software reuse.

Fink and Markovich [33] explain three different verticalization strategies for IT

development companies. Horizontal strategies are general solutions suitable for

many sectors that potentially appeal to most or all market users. Vertical strategies

are tailored products designed specifically for one sector. Small and medium busi-

ness (SMB) companies choose this strategy due to its capacity limitations, whereas

large, specialized companies may develop many vertical solutions to different mar-

kets, adopting a multivertical strategy. MT2 breaks this limitation to SMB compa-

nies, since with just one application instance they are able to manage not only

multiple customers, but also multiple targets. Contribution is for a cloud multitenant

environment, where sharing is key. A vertical solution could be better for just one

client and one project, but not for the SaaS model. MT2 tries to go a step further

and use the same application for clients with different needs.

Zaidman [20] proposes an architecture model for MT SaaS applications to avoid

maintenance problems. It defines the key characteristics in MT and explains

opportunities in SaaS MT applications, like zero-downtime or security, but does

not consider coexistence of different business logics for the same system, which

MT2 does.

Kr et al. [38] presented a backend customization approach for MT SaaS applica-

tions. Extensibility and customization of database models is well understood, and

there are many approaches. In contrast, personalization of user interfaces and espe-

cially business logic models is still a challenge. This approach is related to custom-

ization of the business logic, but within the same functionality for all tenants. It does

not consider multifunctionality.

Banks et al. [39] introduced a conceptual prototype, called Fractal, which is an

application for collaboration among tenants within an MT environment. It explores

the key requirements for creating a collaborating platform. In subsequent versions of

MT2, we will try to study possible controlled collaborations among tenants.

In Ref. [40], a framework for reengineering applications to support MT is

explained. It does not consider multiservice provisioning.

11.9 CONCLUSIONS AND FUTURE WORK
Cloud computing and its new software delivery model (SaaS) are increasingly being

adopted for current software vendors. SaaS has become a common software distri-

bution formula for users [41]; according to Ref. [42], SaaS revenue is expected to

reach nearly 5 billion dollars. The adoption of SaaS is just a matter of time, if it

has not been already done.

MT is a key feature and an essential characteristic in cloud computing. MT archi-

tectures allow SaaS applications to aggregate users into the system on demand, ven-

dors leverage scalability to reduce the general cost of applications, and users afford

top-quality implementations: everybody wins.

28511.9 Conclusions and Future Work

There is a recent debate on the coexistence between agility and architecture, claim-

ing that these two cultures should not be considered opposite. In cloud environments,

architectures supporting claims such as the quick delivery of working software to cli-

ents should not be left separate from the agile movement.

Traditionally, applications aim to serve one single purpose, and therefore differ-

ent purposes involve different applications. MT applications are thereby monotarget,

because they target one line of business.

In this chapter, we have presented multitarget as an extension toMTAs. Thanks to

the reuse of common features, MT2 allows traditional monotarget applications to

support multiple functionalities and deploy them selectively depending on subscrip-

tion contract. MT2A is an example of the fruitful combination of agility and archi-

tecture, in the sense that it makes possible a rapid delivery of working,

multifunctional software to clients by taking advantage of a consolidated and proven

(working) software architecture.MT2 aims to support agility not only for deployment

due to unification, but also for development.

AlthoughMT2 is already implemented in Globalgest, the novelty of this approach

opens a big field for further study of this architecture. New challenges are to be over-

come and new benefits are to be found. The complexity of the architectural model

needs further study and detail—especially in the administrative tier. There are many

aspects to be considered when providing a multifunctional service; functionalities,

for instance, may be dependent on each other (appointments and agenda may be

dependent to the entities involved, like clients or human resources). This dependency
control should be reflected in the MT2 architecture.

Benefits in terms of agility should be demonstrated with some empirical/

estimated data about development and deployment times and costs and more detailed

examples of code and specific pictures are also needed. Besides the benefits, the short-

comings of MT2, such as application centralization, need to be explained and solved.

TheMT2MP can be considered in the range of meta-applications; new tenants can

be set up by means of this master panel giving out service-customized applications

on demand. We will further study the relationship between MT2 and the world of

meta-applications.

The next step in MT2 will be called MT2.0. The multitarget profile of MT2

involves providing service to clients from different sectors and lines of business.

If these companies from different industries already cooperate daily in the real world,

why not do it via networking using multitarget systems? We will deepen the study of

networking among tenants; a collaboration that will be reflected by controlled data

sharing and interaction among users from different tenancies.

References
[1] Ambrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, et al. Above the

clouds: A Berkeley view of cloud computing. Berkeley: Dept. Electrical Eng. and

Comput. Sciences, University of California; 2009, Rep. UCB/EECS. 28; 2009.

286 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf9000
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf9000
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf9000

[2] Chong F, Carraro G. Architecture strategies for catching the long tail: what is software as

a service? Most. 479069; 2006. p. 1–22.

[3] Coffee P. Busting Myths of On-Demand: Why Multi-Tenancy Matters; 2007. Salesforce.

com White Paper, http://wiki.apexdevnet.com/images/0/04/MythbustMultiT.PDF.

[4] Qaisar EJ. Introduction to cloud computing for developers: key concepts, the players and

their offerings. In: 2012 IEEE TCF information technology professional conference;

2012. p. 1–6.

[5] Jacobs D, Aulbach S. Ruminations on multi-tenant databases. Fachtagung fur

Datenbanksysteme in Business, Technologie und Web (BTW), Aachen, Germany, March

5–9, 2007.

[6] Block M. Evolving to agile: a story of agile adoption at a small SaaS company. In:

AGILE conference; 2011. p. 234–9.

[7] Kruchten P. Software architecture and agile software development: a clash of two cul-

tures? In: 2010 ACM/IEEE 32nd international conference on software engineering, Cape

Town, South Africa; 2010. p. 497–8.

[8] Liu S, Zhang Y, Meng X. Towards High Maturity in SaaS Applications Based on Vir-

tualization. Int. J. Inform. Syst. Service Sector 2011;3:39–53.

[9] Rico A, Noguera M, Garrido JL, Benghazi K, Chung L. Multi-Tenancy Multi-Target

(MT2): A SaaS Architecture for the Cloud. In: Advanced Information Systems Engineer-

ing Workshops; 2012. p. 214–27.

[10] RicoA.DesarrolloTIC.SEO,web, and software development, http://www.desarrollotic.com/.

[11] Rico, A. Software de Gestión ERP y CRM en la Nube - Globalgest ERP. (n.d.). Retrieved

July 14, 2013, from http://globalgest-saas.com/.

[12] Mell P, Grance T. The NIST definition of cloud computing (draft). NIST special publi-

cation 2011;800(145):7.

[13] Vaquero L, Rodero-Merino L. A break in the clouds: towards a cloud definition. ACM

SIGCOMM 2008;39(1):50–5.

[14] Armbrust M, Stoica I, Zaharia M, Fox A, Griffith R, Joseph AD, et al. A view of cloud

computing. Communications of the ACM 2010;53(4):50. http://dx.doi.org/10.1145/

1721654.1721672.

[15] Parkhill DF. Challenge of the computer utility. Reading, MA: Addison-Wesley Educa-

tional Publishers; 1966.

[16] Turner M, et al. Turning software into a service. Computer 2003;36(10):38–44.

[17] Liu G, et al. Software design on a SaaS platform. In: 2010 2nd International conference

on computer engineering and technology; 2010. p. V4-355–8.

[18] Papazoglou M. Service-oriented computing: concepts, characteristics and directions. In

Proceedings of the 7th International Conference on Properties and Applications of

Dielectric Materials (Cat. No.03CH37417). IEEE Comput. Soc; p. 3–12. http://dx.doi.

org/10.1109/WISE.2003.1254461

[19] Bezemer C, Zaidman A. Challenges of reengineering into multi-tenant SaaS applications:

challenges; 2010.

[20] Zaidman A. Multi-tenant SaaS applications: maintenance dream or nightmare? Position

paper.

[21] Aulbach S, et al. A comparison of flexible schemas for software as a service. ACME

2009;881–8.

[22] Aulbach S, Grust T, Jacobs D, Kemper A, Rittinger J. Multi-tenant databases for software

as a service: In: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data - SIGMOD ‘08. New York, USA: ACM Press; 2008. p. 1195.

287References

http://wiki.apexdevnet.com/images/0/04/MythbustMultiT.PDF
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0025
http://www.desarrollotic.com/
http://globalgest-saas.com/
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0035
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0050

[23] Chong F, et al. Multi-tenant data architecture three approaches to managing multi-tenant

data architecture. 479086; June 2006. p. 1–18.

[24] Beck K, et al. Manifesto for agile software development, http://agilemanifesto.org/.

[25] Schwaber K, Beedle M. Agile software development with scrum. Englewood Cliffs, NJ:

Prentice Hall; 2001.

[26] Beck K. Embracing change with extreme programming. Computer 1999;32(10):70–7.

http://dx.doi.org/10.1109/2.796139.

[27] Hanssen GK, Fægri TE. Process fusion: an industrial case study on agile software product

line engineering. J Syst Softw 2008;81(6):843–54.

[28] Abrahamsson P, et al. Agility and architecture: can they coexist? IEEE Softw 2010;27

(2):16–22.

[29] Booch G. An architectural oxymoron. IEEE Softw 2010;27(5):96.

[30] Madison J. Agile architecture interactions. IEEE Softw 2010;27(2):41–8.

[31] Pohl K, et al. Software product line engineering: foundations, principles, and techniques.

Secaucus, NJ: Springer-Verlag New York Inc; 2005.

[32] Clements P, McGregor J. Better, faster, cheaper: pick any three. Bus Horiz 2012;55

(2):201–8.

[33] Fink L, Markovich S. Generic verticalization strategies in enterprise system markets: an

exploratory framework. J Inform Tech 2008;23(4):281–96.

[34] TIC D. NetPropertyAgent—SaaS real estate CRM, http://www.netpropertyagent.com/.

[35] Ortega AR, et al. Multi-tenancy multi-target (MT2): a SaaS architecture for the cloud. In:

CAiSE workshops; 2012. p. 214–27.

[36] Clements P, Northrop L. Software product lines. Boston: Addison-Wesley; 2002.

[37] SalesForce.com, http://www.salesforce.com/.

[38] Kr J, et al. Customizing enterprise software as a service applications: back-end extension

in a multi-tenancy environment. Work 2009;24(I):66–77.

[39] Banks D, Erickson J, Rhodes M. Multi-tenancy in cloud-based collaboration services.

Hewlett-Packard Development Company, LP; 2009. Retrieved from http://www.hpl.

hp.com/techreports/2009/HPL-2009-17.pdf.

[40] Almorsy M, Grundy J, Ibrahim AS. SMURF: Supporting Multi-tenancy Using Re-

aspects Framework. In: 2012 17th International Conference on Engineering of Complex

Computer Systems (ICECCS); 2012. p. 361–70.

[41] Benefield R. Agile deployment: lean service management and deployment strategies for

the SaaS enterprise; 2009. p. 1–5.

[42] Aworlwide review of SaaS growth, http://www.vi.net/blog/2012/01/a-worlwide-review-

of-software-as-a-service-saas-growth/.

288 CHAPTER 11 MT2: A Multitenant Multitarget Architecture

http://agilemanifesto.org/
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0060
http://dx.doi.org/10.1109/2.796139
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0085
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0100
http://www.netpropertyagent.com/
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0110
http://www.salesforce.com/
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0115
http://refhub.elsevier.com/B978-0-12-407772-0.00010-1/rf0115
http://www.hpl.hp.com/techreports/2009/HPL-2009-17.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-17.pdf
http://www.vi.net/blog/2012/01/a-worlwide-review-of-software-as-a-service-saas-growth/
http://www.vi.net/blog/2012/01/a-worlwide-review-of-software-as-a-service-saas-growth/

CHAPTER

Agile Architecting:
Enabling the Delivery of
Complex Agile Systems
Development Projects

12
Richard Hopkins* and Stephen Harcombe

{

*IBM, Cleveland, UK
{Northwich, Cheshire, UK

12.1 Agile and Complex Systems Development Approaches Need to Merge

and Adapt ... 292

12.1.1 Why Do Complex System Development Best Practices

Need to Incorporate Agile Best Practices?293

12.1.2 Why Do Complex System Development Projects Need

Architecture? ...294

12.2 Identifying the Right Amount of Architecture ... 295

12.3 Cost Reduction Through Architecture .. 297

12.3.1 Reduce Costs by Enabling the Use of Off-Shore

Development ...297

12.3.2 Reduce Costs by Considering Total Cost of Ownership (TCO)298

12.4 Minimize Rework Through Architecture .. 299

12.4.1 Minimize Rework Through Reasonable Foresight299

12.4.2 Minimize Rework via Prototypes ..300

12.5 Accelerate Delivery Through Architecture ... 302

12.5.1 Accelerate the Delivery Pipeline by Incorporating Multiple

Perspectives ..302

12.5.2 Accelerate Delivery by Maximizing Capacity303

12.5.3 Accelerate Delivery Through Early Integration306

12.5.4 Accelerate Delivery via Early and Continuous Testing308

12.5.5 Accelerate Delivery via an Automated Deployment

Pipeline ..311

12.6 Conclusion .. 313

291

12.1 AGILE AND COMPLEX SYSTEMS DEVELOPMENT
APPROACHES NEED TO MERGE AND ADAPT
Architecture is often seen as the antithesis of agile. It constrains choices; it enables a

levelofcomplexityand rigor.Thedesigneranddeveloper can’thavea free reign tosolve

a problem in the way that might suit them at the time. It might even spoil their fun.

Today’s projects that have a strong architectural focus also tend to implement strong

software engineering processes, such as Capability Maturity Model Integration

(CMMI), and rely on detailed project plans [1].

We believe strongly that this conflict between agile and architecture is a fallacy

that has arisen because of an unfortunate and unnecessary polarization of perception

in the information technology (IT) industry between agile and plan-driven projects.

Agile projects are characterized by a small bubble of fleet-of-foot, savant-led devel-

opers interacting directly with end users, whereas plan-driven projects are character-

ized as a waterfall, heavyweight plans burdened with over-complex architecture.

Agile delivers early; plan-driven delivers late, if at all.

The authors have experienced both approaches on large-scale complex IT system

development projects and they both have the capability to be unsuccessful.

• To accelerate their progress, the complex agile projects often develop an obsti-

nate myopia to the real world they are deploying into. This can be a deliberate

choice to keep things simple and avoid big requirements and design work up

front, or it can result from a lack of expensive representative test environments

early in the development life cycle. Either way, they then go expensively awry

late in their life cycle when catastrophes involving integration or operational

requirements manifest themselves (an anti-pattern we call the Agile Bubble).

• In contrast, plan-based projects with exhaustively documented architectures are

often so hidebound by process that they take so much time and cash before ben-

efits can be realized that real-world events often overtake them.

In either case, the end result is wasted time and money. This conflation of archi-

tecture with heavyweight process is an unnecessary one. So is the myopia of the Agile

Bubble. Indeed, we will argue in this chapter that a strong architecture is a prerequisite

for using agile on complex systems development projects for the following reasons:

• it reduces costs by providing a necessary guiding vision and structure that obvi-

ates the need for heavyweight processes and enables the use of low-cost resources

and a lower total cost of ownership (TCO);

• it minimizes rework by solving difficult problems early; and

• it accelerates delivery by widening the full delivery pipeline (not just the devel-

opment process).

Creating and conforming to architecture to enable these benefits does not neces-

sitate heavyweight process or constraining project plans; a strong architecture

will actually obviate the need for such things. This chapter provides guidance on

292 CHAPTER 12 Agile Architecting

successfully combining agile and architecture to result in the desired speed to market

while at the same time ensuring that the broad considerations of any complex IT sys-

tem delivery are successfully taken into account.

Achieving a necessary balance between process, architecture, and speed to mar-

ket is critically important. At a time when budgets are squeezed and results are

required immediately, it is no surprise that businesses are currently trying to simul-

taneously apply agile practices and low-cost resources to situations where previously
only large-scale systems engineering approaches have been tried. Not all are suc-

ceeding. This chapter looks at a set of proven mechanisms that can be used to archi-

tect a complex agile project in a cost effective manner.

12.1.1 Why do complex system development best practices
need to incorporate agile best practices?
The world has changed—we are now part of a global civilization—and the econom-

ics of IT projects have changed along with it; the combined accepted wisdom of agile

development and complex systems development need to be reevaluated in light of

these economically driven changes.

The bar chart in Figure 12.1 shows how the IT industry’s almost universal adop-

tion of low-cost, off-shore delivery locations for much of its design, coding, and unit

testing needs has resulted in a significant reduction of IT project costs. In general,

dramatic savings already have been realized without adapting project life cycles,

but the eagle-eyed reader will note that the proportion of the project cost being spent

on the coding and unit testing of the solution is a diminished proportion of the whole.

To continue reducing the costs of complex system development projects, the focus

will naturally switch to requirements, design, governance (including project manage-

ment), late-stage testing, and deployment; there is little to be gained by further

streamlining development itself.

Efficient projects should not assume a comprehensive requirement or design

phase up front; this will be seen as prohibitively expensive, and such effort must

be focused on and targeted to areas of risk. Nor is there the budget to fund large num-

bers of duration-based roles over an extended period to govern and apply complex

governance or processes. Standard complex systems development approaches need

to adapt to become more agile. Agile provides a way to achieve many of these cost

reduction elements, but strong architecture is needed to provide the necessary control

and direction that is otherwise sacrificed.

By focusing on a strong architecture and effective technical governance and

exploiting the latest collaborative technologies (Rational Team Concert being one

such example), we can make these expensive “overhead” elements as small as pos-

sible without jeopardizing delivery. As this chapter shows, this requires:

• a shift in emphasis to consider the whole delivery life cycle, not just agile

development;

• new levels of cooperation between technicians at all stages of the delivery life cycle.

29312.1 Agile and Complex Systems Development Approaches

In today’s economic climate, delivering value as quickly as possible is far more

valuable than delivering an optimal or gold-plated solution later than it is needed.

The old adage of “Better 80% on time and budget than 100% late” has never been

more relevant.

Agile delivery, where business-case–led increments can be delivered in stages, is

therefore hugely important to meet the business need of faster delivery. However, to

also meet the economic imperative of being low cost, this approach will also need to:

• maximize off-shoring;

• reduce the reliance on artisan developers;

• reduce project management costs;

• optimize for testing rather than build (testing is now by far the more expensive

aspect of the complex project).

12.1.2 Why do complex system development projects need
architecture?
Agile is all too often seen and portrayed as a mechanism for accelerating the delivery

of a system, but clearly agile development practices only address part of that journey.

For large-scale developments, however, it is difficult to maintain the acceleration

Deploy

Test

CUT

Design

Requirements

Governance

New costOld cost

FIGURE 12.1

Comparison of overall costs between two complex agile development projects of the same size

before and after the introduction of off-shore development capability; the code and unit

testing elements (CUT) of the cost are significantly reduced.

294 CHAPTER 12 Agile Architecting

Figure 12.1

that agile promises without introducing architecture as a necessary prerequisite to the

project. This is because agile on its own is limited by the nature of its core processes.

The client workshops and multi-skilled teams must be kept small, and adding more

people into the teams simply slows them down; this means that it is nigh-on impos-

sible to include all the perspectives and skills that need to be represented in a com-

plex environment within a relatively self-contained team without causing

stakeholder overload or a surfeit of people with specialist capabilities.

This chapter considers why architecture is a vital part of enabling large scale,

complex, agile delivery and provides what practical steps need to be taken to ensure

success without burdening a project with heavyweight deliverables or laborious

procedures.

Establishing the right mindset is important; there needs to be just enough archi-

tecture, and no more.

12.2 IDENTIFYING THE RIGHT AMOUNT OF ARCHITECTURE
The authors are not great fans of the TOGAF/Visio/hand-waving school of IT archi-

tects who depart from projects long before fingers touch keyboards to write code.

Such architects often create beautiful architectures with so many layers of abstrac-

tion that they make filo pastry look like suet. These are the fluffy, ivory tower bri-

gade. Their desire to document every perspective and rigorously follow process is

one of the reasons why architecture is often identified as anti-agile and suggests that

any attempt to establish a useful architecture is bad practice. Architecture becomes

condemned by the term “big design up front.”

It is important to realize, however, that lead architects on a large agile project

need to bring something vital to the system that a senior developer often cannot. That

is the trained ability to look at the problem being addressed from a number of

different perspectives.

Each business problem is different and will require multiple viewpoints to capture

its unique aspects. It is the architect’s job to work out which perspectives are architec-

turally significant for this particular problem and incrementally document them. The

traditional eight perspectives are data, function, infrastructure, and integrationwith sep-

arate diagrammatic standards for the dynamic (behavior) and static (structural) aspects.

Butwithin each of these eight core areas, there are diagrams that deliberately span these

viewpoints (e.g., theUnifiedModellingLanguage (UML) deployment diagram) or doc-

ument them at different levels of abstraction (e.g., UML class, component and compos-

ite structure diagrams). Selecting the right communications vehicle to incrementally

describe the essential concepts of the problemand its solution to all of the relevant stake-

holders is the key skill of the architect. Agilely inclined architects will ask hard (some-

times seemingly dumb) questions and only document those perspectives that are

required for an essential understanding; they will steadfastly resist the non-Agile tradi-

tion of lengthily documenting all viewpoints because most will be uninteresting.

Taking inspiration from Barry Boehm’s iterative spiral method [2] from the late

1980s, we would recommend that any large project starts with a risk-based analysis

29512.2 Identifying the Right Amount of Architecture

up front to identify and isolate areas of known complexity and perform some proactive

engineering and coding to form a harness for an agile development to iterate on top of.

For each of the selected important perspectives, it is vital for the architect to decide

how the most risky aspects of each important perspective will be tested as early as

possible in the project life cycle. Initially, that is done by describing at a conceptual

level (ideally diagrammatically) the problem and proposed solution for that area.

Sometimes a problem/solution pair will be arrived at via harvesting ideas or

aspects from existing systems or even selecting commercial-off-the-shelf (COTS)

software for particular areas. Sometimes it will be by identifying the architecturally

significant stories or use cases and ensuring they are implemented early. In some

cases, specific effort will need to be expended to create technical prototypes (see

later in this chapter).

Once this is conceptually described, the architect can decide with the agile team

leads how it will be tested. Testing does not necessarily need to be dynamic execu-

tion of final code; static testing or simulations are equally valid methods. However,

the aim should be to reduce risk by testing as realistically as possible or affordable.

Once this process of early proving is mapped out (and a simple dependency pic-

ture will do nicely) the agile architect must stick around. The architect’s vision must

become a shared vision, so it will need to morph as unexpected problems arise or

unforeseen changes become necessary.

We often see the view espoused that on agile projects the architect is part of the

team rather than an isolated and remote figure, and with this we wholeheartedly agree

[3]. Lead architects should walk the floors of the delivery and attend as many of the

detailed design discussions as they plausibly can. Their job is to ask and answer awk-

ward and difficult questions about their architecture.

Above all else, short stand-up “Hill Street Blues” meetings first thing every

morning (“Let’s be careful out there”) are vital to ensure communication is flowing

and priorities are set correctly.

However, an architect who wants to please everyone is no use to anyone (good

architecture and design is always a successful example of usually unpopular but

occasionally serendipitous tradeoffs). They must achieve a strong and benevolent

dictatorship where they are prepared to delegate lower-level decisions with the faith

that their overarching guidance will not be ignored. Without a strong lead architect

and architecture, processwill flow into thegaps formed by uncertainty, slowingprogress

and increasing the likelihood of either decision paralysis or the formation of islands of

secession. The agile architect must also be prepared to change their mind in the light of

overwhelming evidence (though not necessarily opinion) that they are wrong.

Having established this lightweight, agile architecture definition, the complex,

agile, architected development project can now realize a number of benefits when

compared to more conventional agile projects, including:

• Reduce costs by:

• Enabling the use of off-shore design and development;

• Considering TCO from the start.

296 CHAPTER 12 Agile Architecting

• Minimize rework by:

• Exercising reasonable foresight;

• Commissioning prototypes.

• Widen the full delivery pipeline to accelerate delivery by:

• Maximizing capacity;

• Enabling early integration;

• Enabling continuous “all phase” integration and testing;

• Automating deployment.

12.3 COST REDUCTION THROUGH ARCHITECTURE
On our complex, agile, system development projects, we use the minimal architec-

tural elements identified above to reduce the overall costs of the system; this includes

the following:

• Enabling the use of off-shore development;

• Considering the TCO of the solution.

12.3.1 Reduce costs by enabling the use of off-shore development
We have found that the traditional “us and them” approach to off-shoring, where a

specification is passed from one agile requirements and design team in one geo-

graphic location (usually colocated with the end users) to a different development

team (usually in a low-cost development location), does not work for complex agile

software developments. In such circumstances, organizational boundaries and differ-

ent time zones often ensure that communication is too weak to deliver effectively.

For complex agile system development projects, we have identified that the most

successful approach is a single team where the organizational structure for all stages

of the life cycle is managed by one organization (whether on-shore or off-shore).

This is a cultural and organizational change from most prior implementations of

development off-shoring, but has proven to be hugely successful. It requires the

following:

• A single organization whose structure is functionally driven and is entirely

location independent;

• The same functional elements to be present in all locations (though different

proportions may occur at each location);

• The same standards, processes and tools at each location;

• A single management team that is location independent with a single global

leader (ideally someone from the off-shore location based on-shore, or vice

versa);

• Willingness by senior executives to tour all locations equally and provide

business context and vision to the work that is being performed;

29712.3 Cost Reduction Through Architecture

• A single mechanism to break down, distribute, and track work across the orga-

nization that is also transparent to location (a set of collaborative application life

cycle management tools, such as Rational Team Concert, Requirements Com-

poser, or Quality Manager).

This approach can lead to some interesting anomalies—for example, security-based

testing traditionally used for repatriation of code is applied equally to all code irrespec-

tive of who wrote it or in which location. The costs of such overheads, however, are

minor compared to the overall benefit of a low-cost delivery organization that does

not suffer from themany pitfalls of an “us and them” or “throw it over thewall” culture.

To make use of such an organization to exploit agile best practices, we have

found that a strongly architected, coherent, loosely coupled solution is a necessary

prerequisite. In the next section, we discuss the strengths that such architectures bring

to a large-scale, complex, agile project.

12.3.2 Reduce costs by considering Total Cost of Ownership (TCO)
The lead architect on a major agile development does not have the luxury of archi-

tecting in a bubble; they must put themselves in place as the custodian of the system

over its lifetime. The lifetimes of systems vary, but it is fair to say that the complexity

of a system is generally proportionate to its ultimate longevity.

Even for systems that are designed to be tactical, if they are successful and suf-

ficiently challenging to replace, it is quite typical for them to last longer than the

technologies that underpin them are in widespread use.

One “tactical” system I delivered was based on Cþþ and a thick Java client. It has lasted
more than decade after that style of system was regarded as old hat, and the products
used to create it have long since passed out of mainstream support. RH

It is therefore important from a cost-reduction perspective that architecture is

established that is easy to understand and supports a low TCO.

As we have already seen, the total cost of acquisition of a project today as a func-

tion of the whole is constantly reducing. More and more design, application devel-

opment and testing are being moved to lower-cost, often off-shore locations. It is not

quite so straightforward to move application maintenance tasks off-shore, however.

Application maintenance often needs to look at the context and data of a problem—

and that data might just be personal or sensitive data that cannot, under law, be

exported from the originating region or country. Therefore, when looking at software

costs, the equation between total cost of acquisition and TCOmeans that TCO should

be regarded as increasingly important. Architecture is a key way of keeping appli-

cation maintenance costs down; it does so by the following means:

• reducing duplication between systems;

• promoting reuse of existing services;

298 CHAPTER 12 Agile Architecting

• standardizing skill sets and tools;

• where possible, reducing the skills required to perform frequent application

changes (e.g., enabling the end user to make changes).

The agile architect needs to carefully think through the implications of the devel-

opment and run-time software that they select: Is it supportable in the longer term?

Can I implement that component via an existing service? Am I unnecessarily intro-

ducing a specialist skill set?

12.4 MINIMIZE REWORK THROUGH ARCHITECTURE
Rework is a necessary and expected part of the agile life cycle, and the removal of

detailed plans and reams of documentation means that such rework costs less. How-

ever the degree of rework experienced will tend to increase with the complexity and

longevity of the project, so complex agile projects have been known to die under the

weight of their own refactoring with each iteration becoming less productive than the

previous one. Again, this is one area where the agile architect should focus, heading

off problems before they arise.

12.4.1 Minimize rework through reasonable foresight
Agile methods are deliberately silent when it comes to predicting the future; it is gen-

erally regarded as a futile activity. The rule is to start simple in terms of both require-

ment and solution, and to engineer in the necessary levels of complexity as they are

discovered. In general this is a good rule; it reduces the ability of the team to over-

engineer the solution and make it unnecessarily flexible.

There is an assumption in this approach that software is relatively inexpensive to

change, and therefore rework can be easily tolerated. Whilst software is indeed

abstract in many senses of the word, fast and cheap change is not always the case.

Refactoring a data model that is at the heart of a system can impact tens of thousands

of lines of code if the data model is tightly linked to the components that use it. Even

in systems where there is loose coupling between layers and components, radical

change to a shared component can cause havoc.

One project I was involved in was performing major reengineering of a number of core business
systems. The task was known to be difficult and complex and the existing systems had
accumulated tens of thousands of function points worth of complexity over the years. Following
a pure agile approachwouldmean that the new systemswould be built from the ground up using
only asmuch complexity as was strictly necessary to solve the problem. Occam’s razor in action!
The project started out well enough by following the simple, happy path scenarios that were
relatively trivial in nature. These paths got gradually more complex in terms of the situation
beingmodeled, but a whole dimension of the necessary problem space was held back. This was
the need for the system to cope with complex change in the past and then process the forward

Continued

29912.4 Minimize Rework Through Architecture

Cont’d
consequences of this change. This was known to be a difficult problem—which is precisely why
it was kept to the end of the process.

Unfortunately when the time came to address these new scenarios, right at the end of the
development process, it was clear that a wholesale change would be needed to the data model
and the way the system worked for it to be able to cope with these more difficult elements.
Refactoring is a way of life in agile projects, but even today’s deliberately layered
architectures find it difficult to adapt to a necessary wholesale change to the underpinning
datamodel of the solution. Huge amounts of rework is required to get the system to cope with its
full requirement; unfortunately, by holding off the complex scenarios in this area to the
end of the project, a huge amount of risk and unexpected expense was injected right at the
end, undermining the good work that had been done to date.

Should a good architecture and well-architected data model have been able to cope
with such a problem? Absolutely, it would have done so; at least three good examples of existing
data models that could do that were available to the project team right from the start; any
of these would have been able to cope with all of the scenarios. In addition, it was not as if this
complex requirement was not known from the start; all previous systems had to cope with
this requirement and clearly the new one would have to. RH

Building in additional design and build effort for areas of known variability is deeply

important; even if traditional agile techniques would suggest leaving the area until last.

As mentioned in the previous section; this decision to deliberately engineer in

some variability is one of those viewpoint-based decisions that the architect must

make for themselves. The requirement may not yet be defined by an end user story

(or may not even be definable by an end user story), but should be based on the bal-

ance of probability of need and the cost of the potential over-engineering.

Nearly all aspects of a software development are cheap to change at the beginning

of a large project. As code accumulates, some things remain inexpensive to change,

whilst others become very expensive. Some examples are given in Table 12.1.

If the architect has identified that the areas that become increasingly expensive

are poorly defined at the start of the project, then there is a clear need to extend the

design activity to include one or more of:

• technology that will permit later variability;

• the design of an abstraction layer that can help insulate the system from late

change;

• the commissioning of a prototype to help refine the requirement.

Making such preparations early in the life cycle avoids costly mistakes and more

than justifies the additional time spent in design or development.

12.4.2 Minimize rework via prototypes
One of the key activities that good architects perform to move a project forward is to

make reasoned, formal and documented decisions. The design authority of any pro-

ject should be regarded as the place to make any far-reaching decision on the solution

300 CHAPTER 12 Agile Architecting

and should be the preferred route to any external escalation. Of course, on agile

projects the lead architect is often asked to make critical decisions when require-

ments are poorly understood or the cost/benefits of a decision cannot easily be

determined.

As already identified, these early decisions are often arranged around the key

viewpoints relevant to the problem at hand. For those elements that are identified

as the key areas of risk, early mitigations should involve identifying focused solu-

tions and then exploring them via a testable hypothesis.

Some testing is quick and low-cost; static testing of architecture, for example,

can be performed via walkthroughs or CRC sessions (recording “Class Name,

Responsibilities, Collaborators” for each service defined; see later in this

chapter for a very brief overview of the CRC technique), or through more formal

evaluations of the architecture, such as the architecture tradeoff analysis method

(ATAM) [4].

However, to investigate the most critical of these hypotheses, it is often wise to

build prototypes to fully understand the requirement, its implications and, especially

in the case of nonfunctional requirements, any necessary tradeoffs. All prototypes

should be created with a set of tests and acceptance criteria in mind.

Prototypes do not necessarily involve executable code; CRC sessions can, for

example, be used to create low-fidelity prototypes of service operations (and are gen-

uinely disposable!).

Prototypes can be used in almost every situation (user interfaces, system inter-

faces, technical prototypes, code generators) and at varying levels of fidelity.

Higher-fidelity prototypes should be designed in such a way that some reuse is plau-

sible; low-fidelity prototypes should be discarded as the rework to bring them to pro-

duction strength is likely to be significant.

Table 12.1 Varying Development Costs by System Type

System
Type

Ability to Change at Any Point
in Development at Roughly the
Same Cost

Increasingly Expensive
to Change as Project
Development Proceeds

On-line
transaction
processing

User interface
Reports

Data model
Data access layer
Underlying frameworks
(e.g., J2EE to.NET)
Auditing

Data
warehouse

Reports
Dashboards
Data sources

Removing data
Response time requirements
Changing dimensions
Security

Integration
gateway

Message payload structures
Data model
Routing rules

Message header structures
Message patterns

30112.4 Minimize Rework Through Architecture

12.5 ACCELERATE DELIVERY THROUGH ARCHITECTURE
12.5.1 Accelerate the delivery pipeline by incorporating multiple
perspectives
One of the frequent issues seen in the implementation of standard agile practices is

the Agile Bubble anti-pattern. An anti-pattern is a pattern of behavior that initially

appears to be good or best practice, but later turns out to be flawed. The Agile Bubble

anti-pattern trades off fast initial progress (that only succeeds by ignoring the real

world) for later and much more expensive rework when the outside world impinges

on the development project.

As is well known, the cost of fixing a defect rises by a factor of at least ten and

sometimes one hundred times between requirements and deployment [5]. Defects

discovered late due to the Agile Bubble myopia, usually in integration or operational

testing, are therefore very expensive to correct.

As already discussed, one of the best ways to combat such myopia is to identify

the key viewpoints that the architecture should be concerned with (for complex prob-

lems, a number of linked viewpoints are sometimes required, forming concentric

onion rings at different levels of abstraction).

Closely aligned to this idea is the need to capture the context of the solution from

varying perspectives and scales. The architect should draw up at least one business

and system context for the system under consideration.

The business context should show all the stakeholders that the architect needs to

consider. These are not just the run-time business people involved in using the sys-

tem, but also the operators and its testers. Multiple business contexts may be

required, but ensuring complete coverage is important. It is also important to note

that the business context should necessarily extend beyond the boundaries of the sys-

tem context.

For example, in providing a new banking system, it will be necessary to conduct

testing of existing business processes where the endpoints are well outside the scope

of the new system. Equating the testing scope with the scope of the system is a major

mistake and could prevent a speedy go-live until after extensive business-wide

regression testing has been completed.

Working on such a business context early will result in two critical enablers for

such testing to be identified and commissioned. This is wise, as they are typically

costly and time-consuming to produce or source:

• The test environments themselves may well have a wider context than originally

envisaged and require access to legacy components and legacy knowledge.

Legacy knowledge may be hard to acquire if it is held by people who perceive

the introduction of a new solution as a threat to their established skill sets or

employment prospects.

• A business process model against which the new regression tests may be prepared

and conducted.

302 CHAPTER 12 Agile Architecting

It is vitally important that as the project progresses the use case model or user

stories also reflect and provide coverage of the key architecturally significant scenar-

ios for these additional stakeholders.

The failure to adequately model testers and operators will lead to omissions in

environment specifications and can present a risk to the ability to test or operate

aspects of a system or solution at all. Our experience is that incompleteness of

the actor model and incomplete architecture in regard to testing and operations have

contributed to schedule delay and cost overrun in many agile projects. If, however,

the test infrastructure, test system, operational procedures and programs (such as

batch and housekeeping) are designed at the same time as the solution components,

then the risk of such overruns can be considerably mitigated.

The focus of agile projects on their interface with the business often means

that the perspective of the hosting organization is an afterthought. The requirements

of the hosting company must be captured and tested as nonfunctional requirements.

The Agile Bubble often means this is a blind spot. It is crucial before the start of any

agile project that the key target characteristics and constraints of the target system are

reasonably well described. Some nonfunctional characteristics need to be part of a

design from the start, because retrofitting them to a project is immensely more

expensive than having built them in from scratch.

12.5.2 Accelerate delivery by maximizing capacity
In more ways than one, architecture is all about avoiding bottlenecks. In architecture,

the term bottleneck typically refers to a design problem that is preventing processing

from occurring at full speed. In this section, we consider bottlenecks in the delivery

life cycle rather than in operations. A good architecture will avoid bottlenecks in

both.

Indeed, one of the quickest ways to diagnose the health of a complex agile IT

project is to take a look at the architecture, the development team organization

and the structure of its iterations. If you can’t easily perceive a link between all three

that is driven by the architecture, then delivery is unlikely to be smooth. It’s not

enough for the architect to design the system itself; the organizational structure of

development and the development iterations also need to be clearly aligned via

the architecture to maximize the chance of successful delivery.

Architecture is all too often seen as a set of documents to be produced for a target

system or a way of documenting the desired “to be” state of a set of IT systems. Quite

often, such architectures are “ivory tower” architectures that are somewhat removed

from the task of building and maintaining a complex system. Those IT system per-

spectives are not wrong in themselves, but very good architectures are actually about

organizing work.

In these days where design, code, and unit testing costs have significantly reduced

due to the widespread use of packages, global delivery, powerful frameworks, and

productive languages, it is rare to find a situation where a business case cannot be

30312.5 Accelerate Delivery Through Architecture

made for automation using IT. The only thing that keeps projects mercifully con-

strained in terms of size is the need for overall deliverability and a desire to reduce

the time to market for IT-driven innovations. Projects that are too large take too long

to deliver and are more likely to fail.

As a result, the environment in which we increasingly find ourselves is one where

complex agile deliveries are constrained primarily by the development capacity that
can be reliably applied to any given problem and the amount of time available for the

delivery. For greater competitive advantage, increasing the development capacity of

a system will generally be a good thing, because you can either choose to deliver

function to the end user earlier; or provide more function in the same timescales.

That is where architecture steps nobly into the spotlight. Good architecture, espe-

cially in complex IT landscapes, allows you to get more heads around the problem—

at the expense of additional integration, of course, but this is no bad thing if handled

correctly.

Good architecture is all about splitting stuff reliably into self-contained parcels

that allow work on them to continue relatively independently in parallel (often these

days in different locations). Whilst we find it hard to believe there is an easy “opti-

mal” balance between partitioning and complexity, Roger Sessions argues very con-

vincingly in Simple Architectures for Complex Enterprises [6] that strong synergistic
partitioning is a necessary mechanism for containing high levels of complexity. His

formulas prove that simple iterative partitions that give rise to autonomous business

components provide the right kind of partitioning. This suggests strongly that a holis-

tic view of the business in its context (as previously indicated) is a necessary precur-

sor to achieving a good solution.

For those more comfortable with a heuristic rather than mathematical way to

increase capacity and reduce complexity, splitting systems into services is a good

way of enabling successful partitioning via a few governing principles and the inher-

ent technical standards. The three simple criteria we’ve deployed for services are that

they should be comprehensible, composable, and characterizable:

• Comprehensible—services should make sense.

• Theymust be understandable from a business perspective using clearly under-

stood nouns to describe them and verbs for their actions.

• They must have a reasonable number of operations (see the CRC technique

below as one way of containing this).

• The service must make sense in that it is functionally complete (e.g., supports

a full set of create, read, update, and delete operations, or equivalent).

• The service must have a sensible set of closely related responsibilities.

• The service should be capable of independent unit testing and release.

• Composable—services should be reusable in a wide variety of contexts.

• The services must fit together in an overall structure that has no gaps or

overlaps.

• The interfaces should be stateless and not rely on the service maintaining any

memory of previous interactions between calls.

304 CHAPTER 12 Agile Architecting

• To compensate for this, the service interface names should explicitly expose

any life cycle or order that is inherent in the design of the service.

• The services must be reusable in a variety of contexts.

• Any internal complexity should be hidden behind a simple façade.

• Characterizable—just as the functional characteristics of a service should be

coherent, the nonfunctional characteristics of the service should also be

consistent.

• If a service has time-critical and non–time-critical elements, it probably needs

to be two separate services.

• If a service is mostly stable, but has one frequently changing element it would

probably make more sense for it to be split into two.

Creating the initial breakdown of a system into services is not something that the

lead architect should do in isolation. On IT projects it often appears to us that all the

really expensive mistakes are made at the start of the project, so on this occasion

multiple heads are usually better than one (though design by committee needs to

be avoided too, so the lead architects must not abdicate their judgment to the

multitude!).

A really good technique that benefits from the involvement of multiple people is

to dynamically create a service model using the CRC card technique. This technique

uses index cards (you can even get Post-it versions of them these days to stick on the

wall) to represent services. On the card is written the name, responsibilities, and col-

laboration partners of the service. Architecturally significant scenarios are played

through interactively with participants role-playing their services. As a result,

new responsibilities and collaborations are added as needed. If a service gets too

complex, then the workshop participants attempt to break it down into smaller ser-

vices. It is usually best for the lead architect to distribute ownership of the cards to the

team leaders so that they can identify with the services.

Once the shape of the services is determined, architectural layering can be used to

create additional capacity. Using proven architectural layering patterns like model-

view-controller (usually implemented via a preexisting framework), or J2EE/.Net

standards, and broader standards like SOA, will encourage the separation of different

concerns into different areas of the architecture. Each of those layers is likely to a

have a subtly different skill set associated with them and are designed to be largely

independent of the other layers surrounding them. Such partitioning and layering

therefore:

• Assists with scaling the team

• Provides convenient points for in driving tests and exercising the architecture

• Helps isolate the risk of change.

A strong architecture that provides a self-evident way of breaking downwork into

small, relatively independent chunks goes a long way to both increase development

capacity and obviate the need for a detailed project plan, replacing it instead with

sensible work items that can be allocated to iterations and ultimately to releases.

30512.5 Accelerate Delivery Through Architecture

12.5.3 Accelerate delivery through early integration
We would hypothesize that small- and medium-scale agile deliveries are primarily

concerned with the functionality and end user experience of the new system that is

being built. There is, unfortunately, mounting evidence that the same is also true of

many large-scale agile deliveries.

Traditional agile is helpfully tactile; it produces early tangible and visible results; it

is therefore hugely attractive and seductive. Unfortunately the early intangibles tend to

become highly observable later in the project (mismatched interfaces, hidden logic,

poor data cleanliness, lack of a full business context, etc.) The Agile Bubble anti-

pattern enshrines the idea that the new system is revolutionary and can effectively

ignore the legacy business or IT landscape around it. It is a highly attractive idea that

initially speeds up delivery and ensures that the agile workshops can think freely about

the user paradigm they are going to use and relinquish the shackles of old-style think-

ing. Such optimism often comes at a price later in the project, however, when the con-

straints of the existing environment come into sharp focus during integration testing.

I was once asked to review an agile project that had been resolutely stuck at 80% complete for a
few months; could I come in and unstick it? The project had been a paragon of agile virtue. The
user was at the very center of the design and sophisticated end user experience had been
demonstrated on a regular basis to all stakeholders. The user interface provided an entirely new
conceptual model that was intuitive and was being found to be highly attractive to customers.
As each feature had been completed, the project’s dashboard had turned increasingly green;
over 80% of the function had now been delivered and tested, well ahead of time and budget.
Then progress began to slow and eventually stopped; the management called in an external
review to find out what was going wrong. Was it a fault of the new technology, the project
organization or the approach being followed?

The technology was indeed new, but didn’t appear to be the problem—though the lack of
progress was focused strongly around the integration of the new systemwith the existing IT that
the new technology supported. The project itself was well organized and had sophisticated
tooling and tracking mechanisms. The approach and method was exemplary and was regarded
as best practice by agile industry luminaries.

The fundamental problemwas that the constraints of the existing IT landscape had not been
taken into account right from the start of the agile process. The new paradigmwas powerful and
intuitive, but simply could not be supported by the core systems of the organization.

The project ended up with a number of equally unpalatable options:

• Start again, this time injecting the key limitations of the legacy into the system as design
constraints;

• Design and build an additional, reasonably complex system to act as middleman between
the new and old systems (a cache, an operational data store, or a data replication solution);

• Undergo a massive reengineering of the core systems to accommodate the new paradigm.

Ultimately the decision had to be made to start again, balancing and tempering the more
extreme aspects of the new paradigm with the known limitations of the existing systems.
Considerable time and effort had been wasted. RH

The Agile Bubble anti-pattern is something we’ve come across time and time again

where insufficient time and effort has been spent in harvesting the constraints that the

system will be subject to and finding a way to play these into the agile sessions.

306 CHAPTER 12 Agile Architecting

All designers find it hard to create an effective design when there are a myriad of

constraints. Constraints impose a straightjacket, and in complex environments there

are likely to be many forms of constraints. These include the following:

• the need to meet regulatory compliance;

• self-imposed constraints, such as enterprise architecture;

• external project constraints, such as budget or time pressures;

• internal constraints, such as a limited choice of platforms or development

languages due to organizational or commercial constraints;

• existing systems and their interfaces.

With such a wide range, it is worth trying to characterize them along with

some suggestions on how an agile project might handle them, as summarized in

Table 12.2.

Certainly, where the constraints are immovable, numerous and detailed, we have

found techniques that provide a fast, iterative development capability to be most

Table 12.2 Dealing with Different Types of Constraints on Large Agile Projects

Low Ability to Influence
Constraints

High Ability to Influence
Constraints

Constraints
with high
impact to
project

Constraint examples:
• Regulatory
• Existing systems
• Project budget
• Project timescales

Suggested mitigations:
Ensure compliance via initial
planning and analysis phase.
For complex constraints (such
as existing systems), ensure that
information is collated to allow it to
be played into agile workshops as
it is needed

In highly complex situations, use
brownfield development
techniques (see below)

Constraint examples:
• Project scope
• Project nonfunctional
requirements

Suggested mitigations:
Prioritize according to the
business value; ensure that the
nonfunctional requirements are
considered holistically in an
early architecture design stage

Iteratively and incrementally
engineer the supporting
application framework and the
application, refining the two in
parallel, iteratively addition
support for nonfunctional
requirements

Constraints
with low
impact to
project

Constraint example:
• Enterprise architecture

Suggested mitigations:
Assure or demonstrate
compliance at end of each phase

Constraint examples:
• Conflicting requirements
• Orphaned requirements
without business goal or user
justification

Suggested mitigations:
Engineer these constraints out of
the project via negotiation

30712.5 Accelerate Delivery Through Architecture

suitable. Once such technique, called brownfield development, has been described in

detail in the book Eating the IT Elephant [7]. This approach is used to iteratively

create and refine complex system components by harvesting information about

the existing IT landscape and then using that information to generate the compo-

nents. It is an extension of model-driven development and architecture where the

models are at least partially derived from existing assets. We have used this tech-

nique highly successfully to create interfaces to poorly understood legacy systems

and to accelerate the reengineering of complex system landscapes.

Such an approach is inherently agile, as often the only way to iteratively build up

knowledge about whether a component will work in the environment is to deploy it

into that environment and test it.

Agoodexampleof this approach iswith respect to interfacegeneration. If youhave

a semantically strongdescription of an interface (as described in thebookEating the IT
Elephant), it is possible to do two complementary things: you can generate the code

that implements the interface, but you can also generate a representative sample of test

data that corresponds to the interface definition. You can guarantee your data will

work through your use of the interface, minimizing downstream issues—unless, of

course, you have an error in your interface or data generation libraries.However,when

you test the interface (with all those possible combinations of generated data) against

the system that you’re trying to interface to, real lessons can be learned. If you get an

error in your automated run of tests, then you simply need to refine your definition of

the interface to allow for this unforeseen circumstance. The tighter interface definition

(along with the automatically similarly improved generated test data) can then be run

again and again until no errors are detected. At that point, it is highly likely you have

iteratively “discovered” the true behavior of the interface, irrespective of how obscure

its documentation or implementation is.

On one project, we automated this process such that the entire build and test cycle

could be conducted for all the interfaces in the system twice a day. By doing so, rather

than finding out in late stage testing that the interfaceswould notwork,we had themall

fully tested and working before some more traditional elements of the system had

finished development. This is an agile approach, but one that requires significant

discipline to execute and some up-front investment. As with all code generation

approaches, the business case for building the necessary code and data generation

and test harnesses has to be justified based on the scale and complexity of the problem.

In the case of this particular integration, two systems integrators had previously

failed to get similar interfaces to work with the same systems, so the investment was

well worth it; indeed, those interfaces were one of the high-risk viewpoint elements

that we identified early in the project.

12.5.4 Accelerate delivery via early and continuous testing
As we saw at the beginning of this chapter, the late-stage testing elements of a project

(typically system, integration, and acceptance testing) are an increasingly large pro-

portion of the cost for large-scale complex system development projects. While

308 CHAPTER 12 Agile Architecting

smaller agile projects can typically perform all stages of testing simultaneously, this

is not always possible for large-scale agile projects.

This is primarily because they typically involve a large number of major compo-

nents or services that need to be brought together, often involving multiple external

stakeholders with non-agile practices. Security can also place limitations on where

and how late stage testing can take place.

As a result, while the iteration and release cycle of the core agile elements may be

fast, the heartbeat of external systems may be much slower. Consequently, on very

large agile projects, some emergence of plan-driven, late-stage testing is likely.

Clearly, what is required is a mechanism to minimize this impact.

Our recommended way to deal with this conundrum is to identify points of sta-

bility within or at the boundaries of the system—especially those that impose a high

level of constraint—and then work in an ordered fashion outwards from those points

of stability (as per the interface generation example above). The technique is akin to

seeding a nucleus in a supersaturated salt solution. Those initial, small points of sta-

bility grow, coalesce, and meet and over time form a single, stable, orderly crystal.

This assembling of a complete solution from its component parts should com-

mence as soon as two components that are connected by an interface are available

following completion of their lower-level tests. It ends when the whole solution has

been tested, in its appropriate business context. In the same way that architectures

have several levels of design hierarchy, so the integration sequence of components

may be complex and has to be supported by the test systems and data previously

planned. The consequence of this for complex agile projects is clear: beyond “point

to point” testing of paired components, integration testing activities should be

planned in advance, deliberately creating islands of stability and allowing for the

timely construction of test systems and data (see Figure 12.2).

A large complex agile systems-integration project has a structure similar to that

of the Earth. At its heart are the fast-moving, agile projects that provide early demon-

strable value. As you move further away from the agile core, however, the speed and

energy slows; in the mantle are slower-moving projects, and at the surface are the

slower-moving components that must be integrated with. These components might

be legacy systems or the hardware elements of embedded systems. When a release is

required for deployment, the outer layers cool and solidify first with each layer in

turn freezing as paired testing of components fixes layers in place. Eventually this

cooling process reaches the core and the release is ready for deployment.

To accelerate this “cooling,” each component should have a test system con-

structed first, using fakes, mocks, stubs, harnesses, or simulators as appropriate.

The completed component under test can then be subject to testing within its test

harness. This means that before a developer commits their changes back to the

library, it should be possible to build a release and perform a series of these auto-

mated tests. Each component is therefore not subject to a single pass through each

phase of testing, but repeatedly (preferably streamlined and automated) retested in

response to design change and defect correction. These should include all unit tests,

component integration tests and a limited number of automated acceptance tests.

30912.5 Accelerate Delivery Through Architecture

These tests should be run in virtualized representative sandbox environments (inex-

pensive cloud or highly virtualized platforms are superb for this). It is vitally impor-

tant to perform deep testing down to acceptance (including nonfunctional

acceptance) levels as part of this development process; early feedback is highly use-

ful, because it reduces overall development and testing risk.

The lead architect should also have determined a series of nonfunctional static

tests for new code that can be checked via automated routines. This would include

checks for the duplicated code, maximum levels of cyclomatic complexity and style

checking. Code should not get checked back in until it meets all these tests.

Post commit of code, there should be a regular “smoke test” of the system as a

whole to exercise its major areas of component integration and expected user behav-

ior. This should be performed on a daily basis and ideally should also look at key

areas of performance and capacity testing.

At each stage of design, the test system and test data approach should be designed

at the same time as the component. In the same way that components may be assem-

bled in several stages of decomposition from the overall solution to the lowest level

of design (the “unit” level), the definition, and order, of test systems and components

under test should be defined. For each test system (at whatever level), the test data

approach should ensure that the data will support the proposed test cases, including

referential integrity across the test system. At the highest levels of the hierarchy, the

span of control is at its widest and consequently the supply of test data is more

challenging.

Throughout this chapter, we have stressed that architectural documents should be

kept to a very minimal, context-sensitive subset, and that models are vastly preferred

to documents. However, central to the ability to define such a test solution in a com-

plex environment is the availability of the logical and physical data models (LDM

and PDM respectively) across the breadth of the solution. This aspect may not be

FIGURE 12.2

A complex agile systems integration project represented as a cross-section of the Earth.

310 CHAPTER 12 Agile Architecting

Figure 12.2

popular with those brought up on objects and services, but to date we have identified

no successful substitute. The creation of LDMs and PDMs should, therefore, be a

specific area sponsored by the lead architect.

I was asked to assist in the construction of a funds switch, and run it as a managed service. The
task was to effectively create an ATM network hub and connect it to existing client systems and
financial institutions for the generation of payments, balance requests, and other ATM-like
services.

I had to implement this on mainframe technology, architecting for resilience (Sysplexed
Logical Partitions (LPARs)), security (Triple-Data Encryption Standard (DES) encrypted
network) and very demanding performance and volumes, as well as for functional correctness
and auditability. This was the largest government IT project in that year. The consequences of
system failure were dire and could easily lead to hardship and civil unrest.

I encouraged architecting for testing from the outset. The overall network architecture was a
hub and spoke. Because we were building the hub and had to test it in isolation prior to overall
System of Systems integration, we had to simulate every other party in the network. These
simulators were designed and built iteratively as part of the project development.

I always knew that we had a challenging timescale to meet. I therefore tested deeply (from
unit to acceptance) at the earliest meaningful point; with multiple overlapping test phases. The
hub had virtually no defects in integration, or in the subsequent live operation, which started
precisely on time. After some years, the client passed the service over to a cheaper provider who
was unwilling to invest in the required test-driven approach—with the consequence that system
failures occurred, leading to dissatisfaction with the system and negative publicity. SH

The lead architect must take into account the mechanisms by which testing can be

automated. Standard test-driven development (where a test is engineered first to

ensure that the code that is then developed will meet it) is not enough. The architect

also needs to ensure that there is clear, consistent abstraction around the key layers of

the architecture (especially user interface, data access and database) to enable the

cost-effective automation of a much wider range of tests.

12.5.5 Accelerate delivery via an automated deployment pipeline
Performing such automated testing requires that that deployment is also a repeatable

and fast process. We need to ensure that, as far as possible, the same deployment tool

that is used in production is used in all stages of non-development testing. This may

require us to adopt operator’s tools that may be different from our own (it is unusual

for a complex client environment hosting not to be outsourced in some way, and

cloud deployment tools will increasingly be the norm).

Adopting these tools is a very small price to pay to avoid having environments

built by different teams in different ways using imprecise specifications or having to

invest in overly elaborate and detailed environment specifications.

The development deployment scripts should be capable of deploying production
environments including necessary resilience or scaling aspects; for the earlier, less-

representative test environments, the scripts could be written in such a way that they

missed out certain aspects of the deployment. This allows a single script to be

31112.5 Accelerate Delivery Through Architecture

maintained whilst still enabling multiple small, low-cost testing environments or

sandboxes to be set up to speed up the continuous integration and testing cycle.

This technique is vital because if the deployment tools and scripts are exercised

on an almost daily basis, then the final deployment into production is a process that

has been performed many times before. It becomes as tested and reliable as the other

elements of the development process. This technique is described in highly effective

detail in the book Continuous Deployment [8].
Standardization and machine virtualization are our friends here. It is becoming

ever easier and faster to create exact copies of machines that can then be minimally

customized and configured using automated scripts. In addition, it is becoming easier

and cheaper to create two-sided configurations for live environments for candidate

deployments (e.g., one side of the system is deployed so the world can see it, with the

other side deployed so only internal users can see it). In such circumstances, having

common deployment scripts that are frequently exercised gives the business (and

the hosting company) much greater freedom to perform frequent updates to highly

visible systems.

However, this does mean that everything must be carefully version controlled,

including server images, source files, configuration scripts, configuration informa-

tion, and of course the tests themselves. This, again, is where today’s sophisticated,

collaborative application life cycle management tools are invaluable.

As we described earlier, the lead architects’ job is not just to design the produc-

tion system and its environments; early care should be taken around the tool chain

and the mechanisms by which systems and the code they run is configured, deployed,

and tested. This is just as important an area of scalability and project performance as

the nonfunctional elements of the live system mentioned earlier.

However, in today’s multi-supplier environments, where hosting is often per-

formed by a different company from the one that is performing the application devel-

opment, there can be a lack of trust or a need to prove the fitness (or otherwise) of a

software release before it can be deployed. The technical and commercial effort of

architecting a formal deployment process between two parties and then optimizing it

should not be underestimated, but it is a necessary prerequisite to a successful agile

strategy.

We have seen two highly successful strategies for this process. Interestingly, they

are mutually exclusive. The first is the aggressive approach, where no release is ever

backed out. Any new release is restrictively deployed, into an area where family and

friends can use it, for example. This deployment is performed during the normal work-

ing week when the full strength development, delivery, and hosting teams are all on

hand. If the deployment does not work, then it gets fixed—and it continues to get fixed

until it works. Nothing is ever backed out; deployment is a one-way street. Once the

release is stable, it is rolled out over the whole of the estate. Some packages are so com-

plex, or data changes in a release are so significant, that this is often the only option.

This approach might seem a little radical for some organizations, and therefore

the alternative approach is one where the ability to back out a release is given the

same focus and level of automation as the mechanism to deploy it. The ability to

312 CHAPTER 12 Agile Architecting

reliably roll back a release means that the company (which is probably more risk

averse than the other example above) can be reassured that it is not taking too much

of a chance when rolling out a release rather quicker than it once might have done.

Whichever approach suits the business, the need for careful control over version-

ing and deployment technologies is imperative. In complex environments, such facil-

ities will take longer to set up than a base agile capability and so should be an early

focus of activity.

Following the testing and deployment strategies above means that testing ulti-

mately becomes a process that is controlled by the testers themselves. This may

sound a little strange and it may be hard to believe that this is not normally the case,

but generally speaking testers have little such control. Traditionally testers have been

hugely constrained by the availability of environments and working deployed code;

to a degree, they must dance to the development team’s tune. Especially in large

complex projects, testing duration is always squeezed—even when it is highly effi-

cient and risk focused. However, if the lead architect takes a test-driven, full life

cycle perspective right from the start of the project, then this approach provides

for accelerated delivery even in the most complex of environments.

12.6 CONCLUSION
Ensuring that agility is maintained throughout the life cycle of a large complex sys-

tems development program is not just a matter of following standard agile develop-

ment patterns; it also requires a strong architecture and architectural approach.

Placing the architecture at the heart of the program and focusing on key viewpoints

and risks means that lightweight processes can be used even in the most complex of

circumstances without jeopardizing delivery.

To achieve this, the lead architect must encourage the adoption of sophisticated

life cycle management tooling and guide the incremental optimization of the entire

delivery pipeline from user requirement to operator deployment and application

maintenance.

The resulting approach:

• Reduces costs by providing a necessary guiding vision and a structure that

obviates the need for heavyweight processes and enables the use of low-cost

resources and reduced TCO;

• Minimizes rework by solving difficult problems early;

• Accelerates delivery by widening the full delivery pipeline (not just the develop-

ment process).

In this chapter, we have addressed the myth that a strong architecture implies

heavyweight process. Indeed, we hope that we have shown that our approach for

the delivery of complex agile systems development projects is predicated on the

combined application of strong architecture and agile practices, and that these prac-

tices are mutually reinforcing.

31312.6 Conclusion

References
[1] Bohem B, Turner R. Balancing agility with discipline: a guide for the perplexed. London:

Pearson Education; 2004.

[2] Boehm B. A spiral model of software development and enhancement. ACM SIGSOFT

Software Engineering Notes. ACM 1986;11(4):14–24.

[3] Coplien JO, Harrison NB. Organisational patterns of agile software development. Upper

Saddle River, NJ: Pearson Prentice Hall; 2005.

[4] Bass L, Clements P, Kazman R. 2nd ed. Software architecture in practice. Boston, MA:

Addison Wesley Professional; 2003.

[5] McConnell S. Code complete. 2nd ed. Redmond, WA: Microsoft Press; 2004.

[6] Sessions R. Simple architectures for complex enterprises. Redmond, WA: Microsoft

Press; 2008.

[7] Hopkins R, Jenkins K. Eating the IT elephant: moving from greenfield development to

brownfield. Upper Saddle River, NJ: Pearson; 2008.

[8] Humble J, Farley D. Continuous deployment. Boston, MA: Pearson Education; 2011.

314 CHAPTER 12 Agile Architecting

http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00011-3/rf0045

CHAPTER

Building a Platform for
Innovation: Architecture
and Agile as Key Enablers

13
Peter Eeles

IBM, London, UK

CHAPTER CONTENTS

13.1 Introduction .. 315

13.2 Worlds Collide .. 316

13.3 An Architecture Heritage ... 317

13.4 Iterative Development .. 319

13.5 Along Came Agile .. 321

13.6 Agile with Discipline ... 323

13.7 Beyond Architecture and Agile ... 326

13.7.1 Define a Project Lifecycle Selection Framework326

13.7.2 Tailor the Method ..328

13.7.3 Consider All Elements of a Development Environment329

13.7.4 Adopt Change Incrementally ...330

13.7.5 Implement a Center of Excellence ...331

13.8 Summary .. 332

13.1 INTRODUCTION
As Charles Darwin taught us, the evolution of a species (and its ongoing survival) is

driven by an ability to adapt to a changing environment [1]. Information technology

(IT) organizations are no different; for example, a financial services or pharmaceu-

tical organization may need to adapt to new regulations that represent a change to

their environment (or face impending fines from their respective regulatory body).

Similarly, an organization cannot simply stand still because its competition is con-

tinually changing the market environment with the introduction of new products.

This latter case requires an organization to proactively consider change in the form

of innovation.

In all cases, from the perspective of an IT department, the ability to adapt and

innovate is driven by two key enablers. The first enabler is directly related to the

makeup of their IT systems—their architecture. Systems that are architecturally

elegant are, by definition, easier to change than those whose architectures are

315

perceived as big balls of spaghetti containing many intertwined and hard-to-under-

stand elements. The second enabler is the approach taken to create and change IT

systems and, in particular, the adoption of agile practices.

In summary, building a platform for innovation is driven by the two key enablers

of architecture and agile, and it should be noted that this chapter focuses largely on

agile with architecture rather than agile versus architecture. In addition, after several
years of introducing both architecture and agile practices into many organizations,

both large and small, my view is that there are technology-independent factors

that also need to be considered (especially those related to organizational change),

and overlooking any one of these factors can be a real impediment to a successful

outcome. In essence, bringing architecture and agile together is fundamentally

difficult.

The purpose of this chapter is to consider both technical and nontechnical factors

in building a platform for innovation and is organized accordingly. The chapter first

examines the apparent conflicts between architecture-centric and agile-centric

approaches. A summary of proven architecture practices follows before considering

those practices introduced by iterative development, agile, and disciplined agile. The

chapter concludes by introducing several practical lessons learned that go beyond the

introduction of architecture and agile practices but are key considerations in building

a platform for innovation.

On a side note, although widely used, the phrase agile architecture is ambiguous

and I do not use it because it is not clear if it refers to the architecture itself (which

exhibits agility or flexibility) or to the process that was used to create the solution. In
this chapter, I focus on the latter. Grady Booch [2] provides a nice distinction

between the two meanings.

13.2 WORLDS COLLIDE
If there is a single factor that makes the alignment of architecture and agile difficult,

it is this: those with an architecture bent would prefer to lock down key decisions,

those that are most difficult to change, as early as possible in a project, whereas agile

purists, on the other hand, would prefer to leave such decisions to the last possible

moment.

The tension seems to lie on the axis of adaptation versus anticipation. Agile

methods want to be resolutely adaptive: deciding at the “last responsible

moment” for when changes occur. Agile methods perceive software architecture

as pushing too hard on the anticipation side: planning too much in advance [3,4].

Such widely differing views are worrying and real, with agile purists being

critical of big design up front (BDUF) and preferring to embrace principles such

as “you ain’t gonna need it” (YAGNI), and seasoned architects being critical of a

lack of forethought and a tendency to increase technical debt as a result. The clash

of cultures is nicely expressed by Kruchten:

316 CHAPTER 13 Architecture and Agile as Key Enablers

I see two parties not really understanding the real issues at hand, stopping at a

very shallow, caricatural view of the “other culture”, not understanding enough

of the surroundings, beliefs, values of the other one, and stopping very quickly at

judging behaviors [4].

Known authorities in the agile space alerted us to the dangers of taking an

extreme view, one way or the other, over a decade ago:

Current modeling approaches can often prove dysfunctional. In the one extreme,

modeling is nonexistent, often resulting in significant rework when the software

proves to be poorly thought through. The other extreme is when excessive models

and documents are produced, which slows your development efforts down to a

snail’s pace [5].

And now, a decade later, the tensions seem to be alive and well:

Another fear is that an over-focus on early results in large systems can lead to

major rework when the initial architecture does not scale up [6].

Although agile strategies appear to work better than traditional strategies, it

has become clear to us that the pendulum has swung too far the other way. We

have gone from overly bureaucratic and document-centric processes to almost

nothing but code [7].

This chapter considers a balance between the two extremes and does so by focus-

ing on the essential practices that are the foundation of both architecture and agile.

The analysis of essential practices is expressed in terms of different software devel-

opment lifecycles, because each has provided a valuable contribution to effective

software development. The complementary nature of this heritage when applied

to more recent thinking is expressed in Scrum:

Scrum is a management and control process that cuts through complexity to focus

on building software to meet business needs. Scrum is superimposed on top of

and wraps existing engineering practices, development methodologies, and

standards [8].

13.3 AN ARCHITECTURE HERITAGE
One of the reasons that architecture gets bad press in the agile world is that it is often

linked to plan-centric methods—methods that try to impose artificial (and often

detailed) plans in situations where much is unknown. Such methods are often char-

acterized as traditional or waterfall. Agile methods, on the other hand, acknowledge

such situations by embracing one of the values expressed in the Agile Manifesto:

“Responding to change over following a plan” [9].

There is also a perception that architecture-centric methods are overly focused on

the production of detailed models and associated design documentation when one of

31713.3 An Architecture Heritage

the tenets of agile, also expressed in the agile manifesto, is “Working software over

comprehensive documentation.”

Software architecture has a history of excesses that in part spurred the reaction

called Agile. Software architecture of the 1980s was famous for producing reams

of documentation that no one read [10].

But surely it can’t all be bad? Of course not; the criticisms outlined above are the

result of the poor application of either method or architecture practices. So what

are those architecture practices that should be considered on any project? In 2008,

I coauthoredTheProcess of SoftwareArchitectingwithmycolleague PeterCripps [11].

In it, we explored those practices embraced by successful architects by trawling

through many different methods and interviewing many successful architects. The

core architecture-centric practices that we repeatedly encountered were as follows:

• Multiple Views: When communicating the architecture, ensure that all relevant

views of the architecture are considered. For example, you might have a view

to show the key components of the system, and another to show the hardware

on which those components are deployed. Kruchten’s “4þ1 view model of soft-

ware architecture” is one example of an architecture description framework based

on multiple views [12].

• Quality Attribute-Driven Development: The architecture of a system is not only

focused on realizing the functional requirements, but also the nonfunctional

requirements. Nonfunctional requirements include quality attributes, such as

scalability and availability, and constraints, such as the mandatory use of partic-

ular technologies. A focus on quality attributes and the associated tactics that can

help address them has been well documented [13].

• Component-Based Development: This practice defines a system’s functional

architecture by breaking the system up into a number of collaborating compo-

nents. It focuses on identifying the major abstractions of the system and making

decisions on how the system will be built.

• Asset Reuse: There is almost always an opportunity to reuse assets when devel-

oping a solution, but there is often an inconsistent understanding of the different

types of assets at the disposal of the architect. Asset types include reference archi-

tectures, patterns, and component libraries.

• Decision Capture: When it comes to architecture, we often need to explore dif-

ferent options (based on appropriate rationale) before selecting a preference.

Capturing decisions in an appropriate form can help the architects recall

why they made a decision, and also help others whomay need to evolve the archi-

tecture. Architecture decisions are a key input when communicating

the architecture.

• Architecture Proving: Several approaches can be applied to prove that an archi-

tecture is fit-for-purpose. This includes the creation of an architecture proof-of-

concept (which may be on paper, or in executable code), as well as appropriate

verification, validation, and review activities.

318 CHAPTER 13 Architecture and Agile as Key Enablers

These practices apply irrespective of method or lifecycle and apply equally to

waterfall, iterative, and agile methods.

Software architecture is part of product quality and isn’t tied to a particular

process, technology, culture, or tool [14].

13.4 ITERATIVE DEVELOPMENT
An improvement on waterfall methods, and a precursor to agile methods, is

iterative development. This practice is at the heart of many methods, including

the Rational Unified Process (RUP), a representation of which is shown in

Figure 13.1 [15].

This representation has two dimensions—content (the vertical axis, showing

various disciplines) and time (the horizontal access, showing iterations and

phases). Although an architecture discipline is shown, it is of course the time

dimension that is of most interest when it comes to understanding the mechanics

of iterative development and its influence on architecture. The key concepts of

iterations and phases (explained below) underpin two key practices that result

from this approach:

FIGURE 13.1

Rational Unified Process.

31913.4 Iterative Development

Figure 13.1

• Iterative Development: As the project progresses, releases provide incremental

improvements in capability until the final system is complete. An iterative devel-

opment process is similar to “growing” software, where the end product matures

over time. Each iteration results in a better understanding of the requirements,

a more robust architecture, a more experienced development organization, and a

more complete implementation.

Establish an iterative life-cycle process that confronts risk early. With today’s

sophisticated software systems, it is not possible to define the entire problem, design

the entire solution, build the software, then test the end product in sequence.

Instead, an iterative process that refines the problem understanding, an effective

solution, and an effective plan over several iterations encourages a balanced treat-

ment of all stakeholder objectives. Major risks must be addressed early to increase

predictability and avoid expensive downstream scrap and rework [16].

• Risk-Value Lifecycle: There is more to an iterative development process than

a stream of iterations; there must be an overall framework in which the

iterations are performed, representing the strategic plan for the project and driving

the goals and objectives of each of the iterations. Such a framework is provided

in the RUP, whose phases are labeled inception, elaboration, construction, and
transition. Each phase concludes with a major milestone and an assessment to

determine whether the objectives of the phase have beenmet. A satisfactory assess-

ment allows the project to move to the next phase.

Phases also answer the question “what should an iteration focus on?” RUP

phases support a risk-value approach that results in risk being removed from the

solution early in the lifecycle. This is particularly manifest in the elaboration

phase, whose key measure is a stable architecture and which is focused on

removing technical risk, ensuring that those elements of the solution that are

costly to change are considered sooner rather than later. The change of empha-

sis over time is implied by the “humps” in Figure 13.1, where the relative

emphasis of each discipline changes over the life of the project to meet the

goals of each phase. A phase-based approach therefore supports the conver-

gence of a number of elements as the project progresses. For example, risks

reduce over the project lifecycle, and any cost and schedule estimates become

more accurate.

Of course, such an iterative approach based on phases (and associatedmilestones)

isn’t confined to RUP:

When reviewing projects using the risk-driven spiral model, I find that to keep

from losing their way, such projects—particularly larger ones—need to have at

least three major anchor-point milestones to serve as project progress indicators

and stakeholder commitment points [17].

The RUP (and other iterative methods) introduce other practices that are also

relevant to the work of the architect. Although these practices apply equally to

320 CHAPTER 13 Architecture and Agile as Key Enablers

plan-centric methods, they have been given a particular emphasis when applied in

conjunction with an iterative approach and so are included here.

• Shared Vision: This practice ensures that all stakeholders, both consumers and

producers of the solution, share a common view of the problems being solved

and the key characteristics of the solution (albeit at a high level). In essence, this

practice is focused on aligning expectations and ensuring market acceptance.

This practice ensures that there is an alignment between product strategy and

the output from the development team.

• Use Case-Driven Development: The practice of describing primarily functional

requirements with use cases is well-documented. Aside from the technique itself,

use cases (and flows through each use case) make natural units of implementation

in an iterative development approach, because use cases influence planning,

architecture, development, and testing.

• Release Planning: This practice is focused on the just-in-time project planning

needed to scope the release of executable software within an iteration. This

iteration-specific planning complements any high-level planning that considers

the project as a whole.

13.5 ALONG CAME AGILE
Although the foundations of the agile movement are well known [9], my own reac-

tion was somewhat mixed once mainstream agile methods appeared—especially

since they seemed to reinvent the wheel (and terminology) in parts. Why did Scrum

use the word “sprint” when “iteration” would do? I guess it was all part of the story.

Let’s face it, rugby players sprint when going for the line. I can’t imagine for one

minute a rugby player receiving the ball and then iterating as fast as they could.

We now have the agile method wars – branded methods based on metaphors,

unique terminology, and sometimes questionable certification programs [7].

Over time, of course, agile methods have proven to add incredible value. In par-

ticular, I believe they ground us in what matters most in building software in a timely,

cost-efficient, and quality manner. Whether we’re talking Extreme Programming

(XP), Scrum, or some other agile method, they each live and breathe certain princi-

ples and each draw upon practices that have stood the test of time.

So what’s so different about agile? Specifically, how does it differ from iterative

development? The fact is, agile approaches introduce new practices—and for good

reason. Schwaber tells us of his experiences in working with the process theory

experts at the DuPont Experimental Station:

They were amazed and appalled that my industry, systems development, was try-

ing to do its work using a completely inappropriate process control model. They

said systems development had so much complexity and unpredictability that it had

to be managed by a process control model they referred to as ‘empirical’ . . . I

32113.5 Along Came Agile

realized why the industry was in such trouble and had such a poor reputation. We

were wasting our time trying to control our work by thinking we had an assembly

line when the only proper control was frequent and first-hand inspection, followed

by immediate adjustments [8].

Of course, we could say that iterative development addresses this finding. How-

ever, agile methods take the notions of continuous delivery, team development, and
stakeholder interaction to a new level. In keeping with the previous sections of this

chapter, I’d like to summarize what I see as the key practices that distinguish an agile

method from other methods and, in particular, iterative development. Of course,

there are other practices too, some that are method specific and others that are

not, but they are not as core as those listed below.

• Test-Driven Development (TDD): The test approach advocated by TDD is

primarily targeted at programmers, but is a cornerstone of any agile method.

Creating tests that, essentially, define the specification of what the code should

do first, helps focus programmers on meeting this specification. “This develops

into a natural and efficient rhythm—test, code, refactor, test, code, refactor” [18].

• Continuous Integration: This practice encourages frequent integration and testing
of programming changes. “Team programming isn’t a divide and conquer prob-

lem. It is a divide, conquer, and integrate problem” [18].

• Refactoring: This practice is focused on changing an existing body of code in order
to improve its internal structure. In a sense, this practice is focused on addressing

technical debt, albeit at a local level (because it is typically applied to isolatedbodies

of code, rather than the system as a whole). In practice, teams that also perform

a level of design (and create models) also update these designs where relevant.

• Whole Team: Agile methods focus on the value of highly collaborative teams as

exemplified by Scrum’s daily standup meeting. It is also the team that decides

how the project goals will be met and will self-organize accordingly. This means

that team composition may change over time because the team, as a whole, should

always have the right skills at any point in time to complete the tasks at hand. This

practice also instills a sense of collective ownership and responsibility.

• User Story-Driven Development: This practice describes the capture of both func-

tional andnonfunctional requirements ina lightweightmanner (more lightweight than

use cases) and encourages collaboration with the relevant stakeholders throughout a

project. User stories influence planning, development, and testing.

• Team Change Management: This practice supports the logging of defects or new
requirements, by any member of the team, that are within the scope of the current

iteration. Such requests are captured as work items and placed on a product back-

log (as exemplified by Scrum), which is ultimately reviewed by the team as part

of their planning.

And what of architecture in an agile world? One of the great myths of agile is that

the design somehow emerges from a soup of code. This is simply not true or sensible,

as observed by Martin Fowler way back in 2000:

322 CHAPTER 13 Architecture and Agile as Key Enablers

Essentially evolutionary design means that the design of the system grows as the

system is implemented. Design is part of the programming processes and as the

program evolves the design changes. In its common usage, evolutionary design is

a disaster. The design ends up being the aggregation of a bunch of ad-hoc tactical

decisions, each of which makes the code harder to alter [19].

Unsurprisingly, agile teams do embrace certain architecture practices in their work:

There seems tobea fear in theagile community that ifwe use terms suchas“model”

or “document” that suddenly the “evil bureaucrats” will dig their claws into our

projects and force us to write detailed, big requirements specifications or to take a

big-design-up-front approach. . . the strange thing is that agilists are, in fact,

modeling on a regular basis, even though they’re not directly talking about it [20].

And the case for architecture is well-understood:

Not all change is equal. There are a few basic architectural decisions that you

need to get right at the beginning of development, because they fix the constraints

of the system for its life. Examples of these may be choice of language, architec-

tural layering decisions, or the choice to interact with an existing database also

used by other applications [21].

Look at a large successful software system and beneath it you’ll find an

architecture that’s kept its evolution on track [22].

13.6 AGILE WITH DISCIPLINE
In an ideal world, processors would be infinitely fast and disk drives would have

infinite capacity. Teams would also be colocated. The point is, there are real-world

considerations that limit the art of the possible in an agile world. For example, when

a high degree of complexity is involved in large-scale efforts, some have noted

the need to introduce new techniques and, in particular, the importance of

architecture:

When developing complex, large-scale applications, many have reported that

agile methods must be adapted to include more kinds of architectural information.

We see evidence of this in the zero-feature release, the architectural spike, and

agile practices that recognize the architect role [14].

Architecture is an important topic, especially when development is distributed

over several sites, and/or when the development is based on legacy systems [6].

Scaling factors, such as team distribution and solution complexity, apply to both

small and large organizations, and a consideration of these factors can be found in the

disciplined agile delivery approach—a hybrid of agile and traditional methods as

documented in [7]. This approach introduces an agile scaling model, which considers

the factors summarized in Table 13.1.

32313.6 Agile with Discipline

These factors force adjustments in important areas to the practical realizations of

agility at scale. They encourage a disciplined approach to the scaling of agile

techniques. My experience with several large enterprise software delivery orga-

nizations suggests that agile approaches can be successful in almost every kind

of development team and in almost all organizations. Each situation has its

own specific needs and variations, yet the basic core agile principles can provide

significant results when applied with care, and with realistic expectations [23].

A consideration of these scaling factors has resulted in the introduction of

additional practices. In several cases, these are not new practices at all but recog-

nition that large, complex, enterprise-wide distributed development and the like

require us to embrace certain approaches even though they take us away from an

idealized view of agile. Some examples are:

• Measured Performance: This practice allows project- and portfolio-level mea-

surements to inform key business decisions. For example, knowing that the burn-
down of a project’s product backlog is not on a downward trajectory may indicate

that more (or better-skilled) resources are required on the project. Similarly,

observing a lot of requirements churn (changes to already-defined requirements)

may indicate that the project’s business representative may not have the domain

knowledge required. Measured performance is good for both the project team and

the business.

• Formal Change Management: This practice provides a controlled approach for

managing changes and is (as the name suggests) more formal than the team

change management practice. This practice is often applied when approval is

required from stakeholders outside of the project team, or when a deliverable

has been baselined as part of a contract and the deliverable needs to be modified.

• Concurrent Testing: While a project team may embrace TDD, there is often an

independent test team present (especially in larger organizations) that typically

provides a level of user-acceptance testing before the solution is put into produc-

tion. The purpose of this practice is to bring this “external” team in sync with the

Table 13.1 Disciplined Agile Scaling Factors

Scaling Factor Agile Disciplined Agile

Team Size Under 10 developers 1000 s of developers

Geographic Distribution Co-located teams Distributed teams

Regulatory Compliance Low-risk Critical and audited

Domain Complexity Straightforward Complex

Organization
Distribution

One group, same
company

Many groups, many
companies

Technical Complexity Homogenous Heterogeneous, legacy

Organizational
Complexity

Flexible Rigid

Enterprise Discipline Project focus Enterprise focus

324 CHAPTER 13 Architecture and Agile as Key Enablers

project team and have them work in step with the project so that their work isn’t

compressed into a separate activity at the end of an iteration or release.

Concluding a whirlwind tour of the heritage of certain practices, a summary of

waterfall, iterative, agile, and disciplined agile practices that have been mentioned is

given in Table 13.2, which I use for two key purposes:

• Enablement: Considering this set of practices can help practitioners in their agile
journey. Conveying the principles and practices of agile to a practitioner who has

used an iterative approach, such as RUP, is a very different affair from someone

who’s only ever followed a waterfall approach. This then translates into a differ-

ent focus of any enablement activities.

• Practice selection: It should have become clear by now that there is no one-size-

fits-all method that caters to all situations. Furthermore, the set of practices dis-

cussed in this chapter can be seen as a list from which to choose for any given

situation. In particular, we can see that, rather than viewing waterfall, iterative,

agile, and disciplined agile as competing approaches, they are—at least from a

practice perspective—highly complementary in that the practices they espouse

can be combined as required.

In fact, standard configurations of the alignment of architecture practices and

agile practices are emerging. . .Nord and Tomayko show an alignment of the

Software Engineering Institute’s approaches (such as attribute-driven design

within XP [14]), and Madison discusses the application of architecture practices

within a “hybrid of Scrum, XP, and sequential project management” [24].

Our experience is that “core” agile methods such as Scrum work wonderfully for

small project teams addressing straightforward problems in which there is little risk

or consequence of failure. However, “out of the box”, these methods do not give

adequate consideration to the risks associated with delivering solutions on larger

enterprise projects, and as a result we’re seeing organizations investing a lot of

effort creating hybrid methodologies combining techniques from many sources [7].

Table 13.2 Practice Summary

Waterfall Iterative Agile
Disciplined
Agile

Multiple views

Quality attribute-
driven development

Component-based
development

Asset reuse

Decision capture

Architecture proving

Iterative
development

Risk-value
Lifecycle

Shared vision

Use case-driven
Development

Release planning

Test-driven
development

Continuous
integration

Refactoring

Whole team

User story-driven
development

Team change
management

Measured
performance

Formal change
management

Concurrent
testing

32513.6 Agile with Discipline

Although each approach has a home ground of project characteristics within

which it performs very well, and much better than the other, outside each

approach’s home ground, a combined approach is feasible and preferable [17].

13.7 BEYOND ARCHITECTURE AND AGILE
The application of these practices isn’t as straightforward as youmight think. Despite

all of the provisos outlined above, successfully integrating these practices into

the day-to-day working of practitioners requires us to embrace lessons learned, as

discussed in this section.

13.7.1 Define a project lifecycle selection framework
Should every project follow an agile approach? In short, an appropriate balance

between many different factors needs to be achieved.

There are definite home grounds for pure agile and pure plan-driven methods,

although there are very few methods at the extremes. There is a relationship with

a method’s position between the home grounds and the type of project and envi-

ronment where it will most likely succeed [25].

A summary of relevant factors, which I’ve applied as part of a “project lifecycle

selection framework,” is given in Table 13.3 (all elements are phrased such that a

positive response favors an agile approach).

Why wouldn’t you always use agile methods? Well, shock-horror, maybe they are

not always the best approach for the circumstances! So how do we decide? It is

tempting to thinking that all projects should be handled in an agile way. Indeed, I

am convinced that all projects would benefit from the improved collaboration and

communications encouraged on agile projects. However, collaboration and com-

munications are just two attributes of agile projects and we must consider wider

parameters that influence project success or failure [26].

When applying the framework, each factor is also given a weighting, and after

receiving appropriate input, a first-pass assessment can be made of any points of sen-

sitivity if we were to take an agile approach. For example, if (as the first character-

istic of business flexibility implies) management is notwilling to accept that business
parameters (e.g., cost, schedule, and intermediate milestones) are flexible, then we

might have a problem implementing iterative development—one of the cornerstones

of an agile approach.

I’ve learned from experience that in practice it is essential to limit the scaling of

agile approaches to projects with properties that are well matched to the charac-

teristics of agility, at least when establishing new practices in a complex organi-

zation undergoing significant change [23].

326 CHAPTER 13 Architecture and Agile as Key Enablers

Table 13.3 Lifecycle Selection Criteria

Management Influences

Business Flexibility Management are willing to accept that business parameters,
such as cost, schedule, and intermediate milestones, are flexible

Empowered Teams Management is willing to allow the team (including the product
owner) to make key project decisions

Stakeholder Influences

Acceptance of Agile Stakeholders understand and accept agile practices and the
consequences of following these

Number of
Stakeholders

The number and diversity of stakeholder relationships to be
managed is limited

Stakeholder
Responsiveness

The business representative, end users, and testers are
committed to spending a good deal of time working with the team
in an iterative fashion

Project Team Influences

Team Skills Individuals on the team are team players, good communicators,
and are familiar with agile practices

Embracing Change Team members expect and embrace frequent changes and
iterative refinement of the solution

Colocated Teams The project team will be co-located

Team Stability Individuals will be assigned to the team for the duration of the
project

Team Roles Team members are able (and willing) to take on multiple roles
during the project and to take on new roles if/when needed

Agile Disciplines Team members have proven ability in performing disciplines that
are critical for agile development with short iterations (design,
testing and configuration management)

Technology Influences

Development
Environment

The development environment (method, tools, training) will
support an agile way of working (such as automated regression
test, continuous integration, and real-time dashboards) and is
sufficiently mature

Execution
Environment

The execution environment can support regular releases

Solution Influences

Requirements Churn There is a strong likelihood that there will be significant changes to
requirements (and the solution) during the project

Solution Complexity The required solution is relatively complex (e.g., requires the use
of unfamiliar technologies) and/or there are many different
solution options

Time-to-market The deadline (time) is the most important factor for the solution,
while the scope of the solution is flexible

Continued

32713.7 Beyond Architecture and Agile

13.7.2 Tailor the method
Aside from the selection of an appropriate project lifecycle and the selection of

appropriate practices, it is sometimes necessary to also look at additional method

tailoring. In particular, the key elements of any method—roles, tasks, and work

products—should be examined to ensure that they are minimal but sufficient for

the job at hand. Differences between rather abstract small and large projects are

given in Table 13.4.

One mistake that I’ve seen made in organizations adopting agile is to measure

successful tailoring by the reduction in the number of work products defined. This

is, in my opinion, a completely bogus measure. If I take the 20 work products I might

create on a project and mandate that, to keep things simple, we’re only going to have

two work products, have I really improved anything? Given that the same informa-

tion needs to be captured, surely this only makes things worse as different practi-

tioners compete to work on the same work products.

Table 13.3 Lifecycle Selection Criteria—cont’d

Management Influences

Dependencies There are no (or only a few) dependencies on internal or external
suppliers

Release Frequency The solution can be subdivided into viable and meaningful
business releases that can be delivered within 3-4 months

Demonstrability The solution can be easily demonstrated on an incremental basis
(through a user interface, for example)

Table 13.4 Method-Tailoring Considerations

Element Small Project Large Project

Role No specific architect role is required
(architecture-related considerations
will be handled by the team)

Different individuals are assigned to
the following architecture-centric
roles: Application Architect,
Infrastructure Architect, Data
Architect, and Security Architect

Task An Architecture Overview is created
as a sketch on a whiteboard and
then photographed (it is not kept up
to date)

An Architecture Overview is
created as a UML model that is
maintained

Work
Product

Functional and Deployment
viewpoints are used to
communicate the architecture

Requirements, Functional,
Deployment, Validation,
Performance, and Security
viewpoints are used to
communicate the architecture

328 CHAPTER 13 Architecture and Agile as Key Enablers

13.7.3 Consider all elements of a development environment
In adopting agile (or any other method, for that matter) in an organization of any

reasonable size, it quickly becomes clear that a focus purely on method is insuffi-

cient. In addition to other technology-related elements, such as software develop-

ment tools, we also need to focus on the people aspect since, as a colleague once

told me, “Tools don’t write software; people do.”

In order to put some structure into the key items that must be considered in a suc-

cessful “transformation,” I defined a comprehensive definition of all elements of a

development environment that should be considered, as shown in Figure 13.2 [27].

The key elements of this framework are as follows:

• Method: A key element of any development environment is the method that

is followed, formally or informally, by practitioners. Key method-related elements

are roles, work products, tasks, and processes. Supplementary method elements are

standards, guidelines, checklists, templates, and examples.

• Tools: Development tooling automates aspects of the method being followed.

For example, we may use a tool for storing and managing requirements on a

development project, use a tool for visually modeling our architectures and

designs, use tools for testing our software, and so on. Tool integrations are

another important element. Tools are particularly relevant in an agile world,

FIGURE 13.2

Elements of a development environment.

32913.7 Beyond Architecture and Agile

Figure 13.2

since practices such as continuous integration are only effective if fit-for-purpose

tools are used.

• Infrastructure: A development environment considers infrastructure in terms of

both hardware and software. As well as the obvious infrastructure required to

host any development tools, we may require supporting hardware and software,

such as operating system software, a database management system, or board-

level controls and test harnesses if developing for real-time or embedded devices.

• Enablement: Enablement (training and mentoring) of practitioners in the use of

the development environment contributes to its successful adoption. An aspect of

a development environment is therefore the definition and creation of training

and mentoring materials that can be applied. Mature organizations also pay par-

ticular attention to the professionalization of their staff and any alignment with

external standards, certifications, and professional bodies.

• Organization:Another consideration of a development environment is ensuring that

an appropriate organization is in place to define, deploy, and manage it. This may

include specialists in certain aspects of the development environment (such as

method experts, tool specialists, trainers, and mentors), personnel to administer

and support the environment, personnel with appropriate skills on the company

helpdesk, and appropriate communities of practice.

• Adoption: In addition to the elements listed above, we should also be concerned

with the adoption of the environment within an organization, a business unit, or a

development project. Key adoption-related elements are an adoption plan,

techniques for driving the organizational changes required to introduce and

embed the development environment into the day-to-day working practices of

the affected organizational areas, and a definition of environment metrics that

are used to gauge the effectiveness of the environment.

• Cross Cutting Concerns: Also shown in Figure 13.2 are crosscutting concerns

that represent the requirements on the development environment (and the devel-

opment environment must realize that fact), and can be considered in terms of

functionality, qualities, and constraints.

13.7.4 Adopt change incrementally
Knowing what needs to change is only half the picture; we also need to know how to

go about making a change. There are several frameworks that focus on how to go

about organizational change, an oft-cited work being Leading Change by John

Kotter, which provides an eight-step approach [28]. One specific success pattern,

when it comes to improving an IT organization’s development capability, is to adopt

change incrementally.

In essence, this practice suggests that we shouldn’t change everything at once, for

the simple reason that people (and departments and organizations) can only absorb so

much change at once. When it comes to the adoption of agile, for example, we may

choose to introduce certain practices before others so that practitioners become

familiar with these beforemoving on to further practices. This is exactly the approach

330 CHAPTER 13 Architecture and Agile as Key Enablers

I took with a large European bank, and it worked well. Of course, some practices

are dependent on others—with certain core practices, such as iterative development,

typically being tackled early on.

There are also different routes to the end goal of changing the way an entire orga-

nization works. Two dimensions to be considered are the organizational scope (the

number of users impacted) and the technical scope (the number of practices to be

introduced, along with other elements of a development environment, such as tools).

This is shown in Figure 13.3, where we see two possible paths to a goal of introducing

a set of practices across an entire organization. One path is to introduce a small num-

ber of practices to a team before they are extended further to several projects and

eventually to the entire organization. Once this is successful (and an understanding

of how change can be effectively achieved in the organization has been established),

then additional practices can be applied across the organization. An alternative route

is to introduce practices in a piecemeal fashion to a small group of individuals until

they are completely up to speed. These individuals would then act as champions on

different projects and enable others who would themselves become champions.

Eventually, the entire organization is enabled. Other (hybrid) approaches are also

possible, of course.

13.7.5 Implement a center of excellence
In many organizations, the various elements that comprise a development environ-

ment are considered the responsibility of different departments. Responsibility for

process improvement lies in one department, the provisioning of infrastructure

and tools in another, enablement within a training department, and so on. In practice,

FIGURE 13.3

Incremental adoption patterns.

33113.7 Beyond Architecture and Agile

Figure 13.3

it makes a lot of sense to coordinate all of these elements (even if it is a “virtual”

organization with only one or two full-time staff) within a single body, referred to

as a center of excellence (CoE). The CoE is responsible for provisioning a develop-

ment environment as a service to projects, where consideration of the InformationTech-

nology Infrastructure Library (ITIL) in terms of service management is wholly

appropriate, especially in very large organizations. Specifically, before (or as) a project

starts, the project may request certain tools to be made available and infrastructure pro-

visioned, teammembers to receive certain training, andmentors to bemade available—

and having a single “port of call” is an efficient means of making this happen.

One way of looking at a CoE is that its primary purpose is to reduce the inevitable

productivity dip that arises when teams are introduced to new practices, as shown in

Figure 13.4.

13.8 SUMMARY
In summary, there are some very real challenges (as well as several myths) concern-

ing architecture and agile that must be addressed when embracing architecture prac-

tices in an agile world. While the heritage of practices from architecture-centric

methods and iterative development are complementary to those that are the basis

of agile development, several scaling factors also require us to consider a more dis-

ciplined approach to agile. In addition, a successful transition to agile within an orga-

nization requires a focus on people and appropriate techniques for managing

organizational change.

In particular, a platform for innovation that embraces architecture and agile prac-

tices can benefit from several lessons learned. These include the implementation of a

project lifecycle selection framework, an approach for tailoring any defined method,

a consideration of all elements of a development environment, incremental adoption

of change, and the implementation of a CoE.

FIGURE 13.4

Minimizing the productivity dip.

332 CHAPTER 13 Architecture and Agile as Key Enablers

Figure 13.4

References
[1] Darwin C. On the origin of species by means of natural selection. London: John Murray;

1859.

[2] Booch G. An architectural oxymoron. IEEE Softw 2010;27(5):95–6.

[3] Abrahamsson P, BabarMA, Kruchten P. Agility and architecture: can they coexist? IEEE

Softw 2010;27(2):16–22.

[4] Kruchten P. Software architecture and agile software development: a clash of two

cultures? In: 2010 ACM/IEEE 32nd international conference on software engineering.

Cape Town: IEEE; 2010. p. 497–8.

[5] Ambler S. Agile modeling. New York: Wiley; 2002.

[6] Pei Breivold H, Sundmark D, Wallin P, Larsson S. What does research say about agile

and architecture? In: 2010 Fifth international conference on software engineering

advances (ICSEA). Los Alamitos, California: IEEE; 2010. p. 32–7.

[7] Ambler S, Lines M. Disciplined agile delivery. Boston: IBM Press; 2012.

[8] Schwaber K, Beedle M. Agile software development with scrum. Upper Saddle River,

NJ: Prentice Hall; 2002.

[9] Manifesto for agile software development. Retrieved 2001, from agile manifesto: http://

agilemanifesto.org/; 2001.

[10] Coplien JO, Bj�rnvig G. Lean architecture. West Sussex: Wiley; 2010.

[11] Eeles P, Cripps P. The process of software architecting. Upper Saddle River, NJ:

Addison-Wesley; 2009.

[12] Kruchten P. The “4þ1” view model of architecture. IEEE Softw 1995;12(6):42–50.

[13] Bass L, Clements P, Kazman R. Software architecture in practice. Boston: Addison-

Wesley; 2003.

[14] Nord RL, Tomayko JE. Software architecture-centric methods and agile development.

IEEE Softw 2006;23(2):47–53.

[15] Rational Unified Process version 7.5.1. IBM; 2010.

[16] Royce W. Software project management—a unified framework. Boston, MA: Addison-

Wesley; 1998.

[17] Boehm B. Get ready for agile methods, with care. IEEE Computer 2002;35(1):64–9.

[18] Beck K. Extreme programming explained. Boston: Addison-Wesley; 2005.

[19] Fowler M. Is design dead? Retrieved 2012, from martinfowler.com: http://martinfowler.

com/articles/designDead.html; 2000.

[20] Ambler S, Gonzalez C. Agile model-driven development. Retrieved 2008, from sticky

minds: www.stickyminds.com/BetterSoftware/magazine.asp?fn¼cifea&ac¼367.

[21] Poppendieck M, Poppendieck T. Lean software development. Boston: Addison-Wesley;

2003.

[22] Spinellis D. Software tracks. IEEE Softw 2010;27(2):10–1.

[23] Brown AW. Enterprise software delivery. Boston: Addison-Wesley; 2012.

[24] Madison J. Agile-architecture interactions. IEEE Softw 2010;27(2):41–8.

[25] Boehm B, Turner R. Balancing agility and discipline. Boston: Addison-Wesley; 2003.

[26] Griffiths M. Agile suitability filters. Retrieved 2009, from leading answers: http://

leadinganswers.typepad.com/leading_answers/files/agile_suitability_filters.pdf; 2007.

[27] Eeles P. Define the scope of your development environment. Retrieved 2011, from IBM

developer works: www.ibm.com/developerworks/rational/library/define-scope-develop

ment-environment/index.html; 2011.

[28] Kotter JP. Leading change. Boston, MA: Harvard Business Review Press; 1996.

333References

http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0020
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0025
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0030
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0035
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0040
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0045
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0045
http://agilemanifesto.org/
http://agilemanifesto.org/
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0050
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0055
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0060
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0065
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0070
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0075
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0080
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0085
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html
http://www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&ac=367
http://www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&ac=367
http://www.stickyminds.com/BetterSoftware/magazine.asp?fn=cifea&ac=367
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0090
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0095
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0100
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0105
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0110
http://leadinganswers.typepad.com/leading_answers/files/agile_suitability_filters.pdf
http://leadinganswers.typepad.com/leading_answers/files/agile_suitability_filters.pdf
http://www.ibm.com/developerworks/rational/library/define-scope-development-environment/index.html
http://www.ibm.com/developerworks/rational/library/define-scope-development-environment/index.html
http://refhub.elsevier.com/B978-0-12-407772-0.00012-5/rf0115

CHAPTER

Opportunities, Threats,
and Limitations of
Emergent Architecture

14
Uwe Friedrichsen

Codecentric AG, Solingen, Germany

CHAPTER CONTENTS

14.1 Introduction .. 335

14.1.1 A Brief Definition of Emergence ..336

14.1.2 The Idea of Emergent Architecture ..336

14.2 Purpose, Activities, and Objectives of Architecture .. 338

14.2.1 Purpose—The Why of Architecture ..339

14.2.2 Activities—The How of Architecture ..340

14.2.3 Objectives—The What of Architecture ...341

14.3 Analysis of Emergent Architecture .. 342

14.3.1 Alignment ...343

14.3.2 Structuring ..345

14.3.3 Implementation of Nonfunctional Requirements346

14.3.4 Design for Understandability ...346

14.3.5 Design for Change ...347

14.4 Discussion .. 349

14.4.1 Comparison of Explicit and Emergent Architecture349

14.4.2 A Joint Approach ...352

14.5 Conclusion .. 354

14.1 INTRODUCTION
One of the most discussed topics in the area of architecture in an agile context is

emergent architecture. It is closely related to the discussion of whether an architect

is still needed in agile projects or whether all of the architectural work can be done by

the development team. Before analyzing this claim, it is necessary to clarify what the

term emergent architecture exactly means. To do this, a definition of emergence is
required.

335

14.1.1 A brief definition of emergence
Jerry Goldstein uses the following definition for emergence: “[Emergence is] the

arising of novel and coherent structures, patterns, and properties during the process

of self-organization in complex systems” [1];Wikipediaa notes that “. . .emergence is

the way complex systems and patterns arise out of a multiplicity of relatively simple

interactions” [2].

Many more (similar) definitions exist, but those two are sufficient to identify the

core characteristics that are relevant in the context of emergent architecture:

• Complex systems—Emergence happens within complex environments.

• Structures, patterns, and properties—Emergence creates new structures,

patterns, and properties (usually to solve a complex task).

• Arise—This is the most important characteristic of emergence. The creation

of novel structures and patterns is not an explicit act but happens as a side effect

of executing a seemingly unrelated task over and over again.

• Relatively simple interactions—The seemingly unrelated tasks are at least an

order of magnitude simpler than the emerging result.

• Self-organization—Coming from systems theory, self-organization always has

a goal (a task to be solved or a desired end state to be reached) and is

limited by a set of constraints.

In a less formal way, people often refer to emergence if they say something like,

“The result is more than the sum of its parts” or “One plus one is more than two.”

14.1.2 The idea of emergent architecture
After clarifying the term emergence and its characteristics, it can be used to define

emergent architecture. The goal of emergent architecture is to create the architecture

for a (nontrivial) system—its fundamental structures, patterns, and properties. The

interactions used to achieve this goal are activities developers usually execute all

the time:

• (Business) features are implemented in a continuous cycle of implementation and

refactoring. Often, this cycle is extended to a full test-driven development cycle:

Write a test that fails; write some code so the test succeeds; refactor the code

without breaking the test; continue with the next test.

In addition, a few guiding principles are used to provide the direction of the

refactoring:

• Often, the SOLID principles [3] are used—a few principles that help you create

better object-oriented designs. These principles often are complemented by some

aThe use of Wikipedia as a reference is heavily discussed, especially in the academic community. It is

used in this situation because it is sufficient with respect to the intention.

336 CHAPTER 14 Opportunities and Threats of Emergent Architecture

more principles (see also Ref. [3]). It is important to note that the SOLID prin-

ciples are not architectural principles but design principles. They address a much

more detailed level of software than architecture usually does.

The claim of emergent architecture is that executing the implement-and-refactor

cycle over and over again, using some design principles like the SOLID principles

for guiding the refactoring, will result in a complete architecture—without doing any

explicit architectural work (see Figure 14.1).

Advocates of emergent architecture also claim that the resulting architecture is

not only sufficient, but optimal, using the following reasoning: A refactoring always

aims to create the simplest and smallest solution that works and fulfills the guiding

principles. Because the simplest and smallest solution is also the solution that can be

maintained and changed best, an emergent architecture is also an optimal architec-

ture. Many agile advocates derive from this idea that architects are not needed any-

more because the development team alone can create the architecture by doing their

normal development work.

However, the author’s observations in concrete commercial projects did not

prove the claim described before. After a while, projects working with a purely emer-

gent architecture approach suffered from problems that are usually addressed by

architectural work. Often, good high-level abstractions were missing, which resulted

in decreased understandability of the overall system and in reduced changeability.

Also, distinct responsibilities were not separated properly, also resulting in reduced

changeability. In one project, this became so extreme that the development team

did not dare implement a change to the business logic in a system they had just started

implementing from scratch 5 months earlier.

The remainder of this chapter will examine if and to what extent the claim of

emergent architecture holds true. Therefore, first the purpose, activities, and objec-

tives of architectural work will be examined. Afterwards it will be analyzed if emer-

gent architecture is suitable to replace the different activities and objectives of

Implement

Refactor

Guiding

principles

S O L I D
+ = Architecture

Working
architecture

emerges

No explicit architectural design
(Ordinary software development only)

FIGURE 14.1

The claim of emergent architecture.

33714.1 Introduction

Figure 14.1

architectural work with respect to its purpose. In the discussion, the strengths and

weaknesses of explicit and emergent architectural work will be contrasted with each

other, and a joint approach will be recommended.

14.2 PURPOSE, ACTIVITIES, AND OBJECTIVES
OF ARCHITECTURE
To analyze whether emergent architecture can replace explicit architectural work,

it is first necessary to have a solid understanding of the purpose, activities, and

objectives of architectural work. The problem with most existing definitions

is that they are either incomplete—usually only focusing on the objectives—or

blurry. This makes it impossible to challenge emergent architecture if it suits the

definition.

Therefore, this chapter uses a different approach. It tries to answer the following

questions (see also Figure 14.2):

• Why?—Why is architectural work done at all? What is its purpose? What is it

good for?

• How?—How is architectural work done? What are the activities of solid archi-

tectural work?

• What?—What are the objectives of architecture? What are the important pieces?

The answers to these questions are based on the experience of the author of this chap-

ter. They are the result of years of observations in commercial projects, discussions

Architectural work

What?

Maximize stakeholder
satisfaction
• Across all stakeholder
 parties
• Across the lifecycle
 of the system

Minimize total costs
• Across all types
 of costs
• Across the lifecycle
 of the system

Alignment
• Fit to mission
• Build the right system

Structuring
• Fit to solution
• Build the system right

Communication
• Share the concepts
• Explain, discuss, convince, …

Assessment
• Test solution against mission
• Realign and restructure

Achieve required
quality attributes

Implement NFRs
• Security, stability,
 scalability, …

Manage complexity
• Across the lifecycle
 of the system

Manage change
• Across the lifecycle
 of the system

Why? How?

FIGURE 14.2

Architecture—Purpose, activities, and objectives.

338 CHAPTER 14 Opportunities and Threats of Emergent Architecture

Figure 14.2

with many other IT people—especially architects—and testing the answers against

various descriptions in the literature.b

14.2.1 Purpose—the Why of architecture
Almost all definitions of architecture only address the What question. Therefore, an
empirical approach is used to answer the Why of architecture: If the “Why?” question

is askedoftenenough in a commercial software project, itwill boil down to the following

two motivations, almost regardless of the concrete activity the question is asked about:

• Maximize the satisfaction of someone

• Minimize of the cost of something

For architecture, both motivations need to be considered. What makes architecture

special with respect to many other activities is the fact that the two purposes

described before have more than one dimension:

• Architecture aims to maximize the satisfaction of all involved stakeholder parties.
It is not enough to satisfy a single party—for example, the developers. The oper-

ations department also needs to be considered, as well as the project managers, the

support team, and so on. Typical stakeholder parties are developers, users, cus-

tomers, management, project managers, deployment managers, operations, infra-

structure management, security officers, support, hotline staff, and more. Of

course, it is not possible to maximize the satisfaction of each party individually,

but a balanced compromise needs to be found that maximizes the overall satisfac-

tion of all involved parties.

• Architecture aims to minimize the overall costs. As with the satisfaction of the

stakeholder parties, it is necessary to look at all types of costs and not to focus on

only one type of cost. Typical cost types are development, hardware, license,

deployment, operations, power, support, maintenance, usage, and more. Again,

it is not possible to minimize each cost type individually, but the overall costs

(i.e., the sum of the different cost types) have to be optimized.

• Time is the second dimension architecture has to take into account: It is not suf-

ficient to maximize satisfaction and minimize costs for a limited time frame (usu-

ally a project). Instead, the whole (remaining) lifecycle of the affected system

needs to be considered. For example: It is relatively easy to minimize develop-

ment costs for a project, but usually the upcoming projects and the maintenance

teamwill have to pay a high interest if they are not taken into account beforehand.

On the other hand, it does not make sense to create a highly adaptable solution for

a system that is close to the end of its lifecycle.

bThis way, the definition of architecture given in this chapter is not a formal, academic one. It is an

empirical one based on experience. It is up to the reader to decide if he or she is willing to accept a

definition of this kind.

33914.2 Purpose, Activities, and Objectives of Architecture

In summary, the purpose of architecture is to maximize the satisfaction of the

involved stakeholders and to minimize the overall costs across the lifecycle of the

affected system(s).c

14.2.2 Activities—the How of architecture
Since most definitions of architecture only revolve around theWhat of architecture, a
mixed approach is used to answer the How question: First, the author observed the

activities of several experienced architects over time and categorized them into dis-

tinct activity types. To test the completeness of the activities identified this way,

existing architecture process models like the one for arc42 [4] were used to check

if any of the activities were not covered by the activity types discovered before.

Using this approach, the following four types of activities were identified:

• Alignment—all activities are related to making sure the solution will fit its mis-

sion. This consists of talking to the stakeholders, figuring out their needs, drivers,

and requirements, negotiating compromises, resolving contradictions in require-

ments, and more. In a less formal way, alignment is about doing the right thing.

Based on the author’s observations, activities of this type are often neglected by

less experienced architects.

• Structuring—all activities are related to creating a solution design. This consists of

takingthe informationgathered inalignmentand turning it intoasolutiondesign.The

solution design should reflect the requirements and be as easy to understand as pos-

sible. In a less formal way, structuring is about doing the thing right. Based on the

author’sobservations, lessexperiencedarchitectsonlyfocusonactivitiesof this type.

• Communication—“Selling” a solution design is an important—yet often under-

estimated—part of architectural work. This consists of explaining the concepts

and ideas in the design, which decisions were made and why they were made,

convincing people to ensure the design is implemented, and more.

• Assessment—Architectural designs need to be validated to see if they still fit their

mission. Requirements change over time, new drivers and needs emerge, and the

existing architecture might not support them properly anymore. Also, solution

designs often degenerate over time as a result of varying teams working on the soft-

ware while not having the original concepts and ideas in their minds. Thus, it is

necessary to assess the architecture of a system for its fittingness on a regular base

and to derive necessary actions to refit the solution with its missions.

It is possible to split up the activity types further, but this granularity is sufficient with

respect to the question of whether emergent architecture can replace explicit archi-

tectural work. Two additional observations allow us to ignore two out of the four

activity types for the rest of the chapter:

cThis is an important reason why architecture is so hard to understand for many people and many def-

initions are so vague: The rationale of an architectural decision often remains unclear if one looks at

only one stakeholder party or one cost type, and the fact that cause and effect are often separated by

months or years makes it even harder.

340 CHAPTER 14 Opportunities and Threats of Emergent Architecture

• Communication is always required: A structure that seems to be evident for one

person can be perceived very differently by a second person, and often design

decisions are not obvious. Therefore, architecture always needs to be communi-

cated—no matter if it was designed explicitly or was emergent.

• Assessment can be treated as a subset of alignment in the given context: The activ-

ities related to assessments are similar to the ones related to alignment, but an

assessment usually has a much more limited scope. Therefore, it is sufficient

to challenge emergent architecture with the alignment activities.

14.2.3 Objectives—the What of architecture
Dozens—if not hundreds—of definitions exist that describe theWhat of architecture
(see Ref. [5] for a collection of definitions the Software Engineering Institute of the

Carnegie Mellon University gathered over the years). The perfect definition does not

exist; creating unification or intersection of all definitions is not possible.d In this

chapter, the following definition is used:

The objective of architecture is to achieve the required software quality attributes.
This definition is used because it is better actionable than many other definitions.

It is possible to list the software quality attributes and to check if they can be achieved

using emergent architecture. To list the software quality attributes, the ISO/IEC 9126

standard [6] is used. It defines the following software quality attributes:

• Functionality—A set of attributes that bear on the existence of a set of functions

and their specified properties. The functions satisfy stated or implied needs.

– Suitability

– Accuracy

– Interoperability

– Security

– Functionality Compliance

• Reliability—A set of attributes that bear on the capability of software to maintain

its level of performance under stated conditions for a stated period of time.

– Maturity

– Fault Tolerance

– Recoverability

– Reliability Compliance

• Usability—A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.

– Understandability

– Learnability

– Operability

dAll definitions are more or less correct, but each one has a different focus. Therefore, most people

usually pick an arbitrary definition depending on the key aspect they want to stress in their current

context.

34114.2 Purpose, Activities, and Objectives of Architecture

– Attractiveness

– Usability Compliance

• Efficiency—A set of attributes that bear on the relationship between the level of

performance of the software and the amount of resources used under stated

conditions.

– Time Behavior

– Resource Utilization

– Efficiency Compliance

• Maintainability—A set of attributes that bear on the effort needed to make spec-

ified modifications.

– Analyzability

– Changeability

– Stability

– Testability

– Maintainability Compliance

• Portability—A set of attributes that bear on the ability of software to be trans-

ferred from one environment to another.

– Adaptability

– Installability

– Coexistence

– Replaceability

– Portability Compliance

The quality attributes in the areas of functionality, reliability, usability, efficiency,
and portability address system properties that can be implemented like normal func-

tional requirements: The requirement needs to be understood: a solution is designed,

implemented (or configured), and delivered—with or without feedback and refine-

ment cycles. In an agile approach, the requirements can even be written down as user

stories. The only difference from functional requirements is that expertise in a dif-

ferent domain (for example, the security domain) is required.

The attributes in the area ofmaintainability, on the other hand, need a fundamen-

tally different approach. They address the management of complexity and change,

which matches the definition of architecture that John Zachman came up with:

“The reasons you need architecture: complexity and change” [7]. Mapping these

quality attributes to design actions leads to design for understandability (manages

complexity) and design for change (manages change). Figure 14.3 summarizes

the different objectives that can be derived from the software quality attributes.

14.3 ANALYSIS OF EMERGENT ARCHITECTURE
Having examined the purpose, activities, and objectives of architecture, the next step

is to analyze whether the described activities can be replaced by emergent architec-

ture with respect to the purpose of architecture.

342 CHAPTER 14 Opportunities and Threats of Emergent Architecture

14.3.1 Alignment
Alignment is the part of architectural work where an architect makes sure that the

solution fits its mission (does the right thing). This basically consists of many dis-

cussions with stakeholders, trying to understand their needs and drivers to make sure

that the requirements are understood correctly, that no important requirements are

missing, that conflicts and contradicting requirements are resolved, and that the

knowledge is spread in the implementation team. This kind of work requires at least

the following skill set (see Refs. [8,9] for more details):

• Interacting with the involved parties through (pro-)active communication, nego-

tiation, mediation, teamwork, conflict resolution, finding compromises, listening,

talking, convincing, and more.

• Understanding the stakeholders’ ‘languages’ to be able to understand their

drivers, needs, and requirements.

• Speaking in the stakeholders’ ‘languages’ to become accepted as professional

peers. Stakeholders often do not accept people who do not “talk their

language.”—making communication a lot harder and reducing the willingness

of the stakeholders to discuss their problems and requirements.

• Understanding the surrounding organization and politics, so as to not get caught

in the crossfire.

Alignment is a crucial success factor with regard to the purposes of architectural

work.e Two observations can be made with respect to emergent architecture:

• Alignment is not emergent, but explicit work. It does not emerge from the repeat-

ing cycle of implementation and refactorings.

Architectural work

Implement
NFRs

Manage
complexity

Manage
change

Achieve required quality attributes

ChangeabilityAnalyzability

Implement like
functional requirements

Design for
understandability

Design for
change

FIGURE 14.3

Objectives of architectural work.

eYet, surprisingly often it is neglected in discussions and articles about architecture.

34314.3 Analysis of Emergent Architecture

Figure 14.3

• The skill set required for alignment is not a developer skill set. The alignment

skill set is very different from a skill set required to implement software, and

it takes a lot of time and experience to build it up. Also, this skill set cannot

be acquired only by implementing software.

Figure 14.4 explains the latter observation in more detail. It shows a simplified

knowledge distribution for different roles. On the X-axis the breadth of knowledge

is shown, and on the Y-axis the depth of knowledge is shown. As a software devel-

oper, a very deep understanding in a quite limited domain is needed: programming

language, frameworks, libraries, design patterns, coding techniques, and so on.

On the other hand, architectural work (and especially alignment) requires a very

broad knowledge: knowing the domains of the involved stakeholders well enough to

understand their needs and requirements and to be able to communicate on a peer

level. A lot of soft skills are also required.

This observation leads to the following conclusion: the concept that an agile

developer team can replace an architect completely is questionable because it cannot

be assumed in general that a developer team has the required skill set to do the align-

ment work.

This still leaves the alternative to not do alignment work at all and to rely on pure

emergent architecture to produce the required results without explicit alignment

work. Two observations can be made with regard to this approach:

• Without talking to stakeholders intensely and resolving conflicts actively,

the risk is very high that architectural requirements are not correctly understood

Breadth of knowledge

Shallow

Deep

Depth of
knowledge Developer

Architect

FIGURE 14.4

Different skill sets for architects and developers.

Source: Stefan Zörner.

344 CHAPTER 14 Opportunities and Threats of Emergent Architecture

Figure 14.4

and implemented. Even if this might become visible in a later feedback

cycle, it would violate the purpose of architectural work: to maximize

stakeholder satisfaction and to minimize overall costs. Additionally, the conse-

quences of wrong architectural decisions might not become visible for a long

time—especially if they affect understandability or changeability (i.e., the

immediate feedback cycles of agile approaches might not help).

• Without alignment, there is a high risk that the needs of developers are overem-

phasized while the requirements of all other stakeholder parties are neglected.

This would also violate the purpose of architecture.

In summary: Alignment is a crucial part of architectural work; it needs to be done
explicitly and cannot be omitted or replaced by an emergent approach without vio-

lating the purpose of architectural work.

14.3.2 Structuring
Structuring as an architectural activity is needed for orientation and communication.
The orientation aspect refers to the fact that human brains are not capable of dealing

with lots of information on the same level. To overcome this limitation, information

is put into structures that help people to find a specific piece of information easily and

to communicate efficiently about information pieces and relations amongst them.

Typical software systems consist of thousands or millions of information details

which make an organizing structure indispensable.

As a means of orientation, a structure always supports a specific use case. It is

important to note that a structure that supports one use case very well might not sup-

port a second use case at all. As an example, structuring a lot of e-mails by date helps

to efficiently find e-mails that were received in a specific timeframe. But this struc-

ture does not help at all if all e-mails related to a specific topic should be found. In

general, it is not possible to create a structure that supports all possible use cases

equally well.

The use cases that architectural structure needs to support are the objectives of

architecture: implementation of nonfunctional requirements, design for understand-

ability, and design for change. The next sections will analyze whether emergent

architecture helps to support these use cases.

One additional observation can be made with respect to emergent architecture:

the architectural structure needs to be communicated and is used as a means of

communication. For all stakeholder groups who are not developers, this means

that some architectural documentation that is not a code, must be created because

a code is only understood by developers. The creation of this documentation is

always explicit work. It is not a result of the emergent coding and refactoring

cycle. Therefore, structuring always involves some documentation that is not
emergent.

34514.3 Analysis of Emergent Architecture

14.3.3 Implementation of nonfunctional requirements
This activity consists of the implementation of the requirements derived from the

quality attributes in the sections functionality, reliability, usability, efficiency, and
portability as described in the section about architecture objectives.

The implementation of these requirements does not necessarily require an archi-

tect, but does require a domain expert with respect to the particular nonfunctional

domain (e.g., security). In non-agile project settings, it is the responsibility of an

architect to make sure these requirements are taken into account, but it is also pos-

sible to impose this responsibility on the whole team.

These nonfunctional requirements are implemented as functional requirements.

This also consists of the architectural activities of alignment, structuring, design for

understandability, and design for change. The rest of the implementation requires a

domain expert with respect to the requirements, not an architect. Therefore, this

activity does not need to be analyzed in more detail. It is sufficient to analyze the

architectural parts of it, which is done in the other four sections.

14.3.4 Design for understandability
Design for understandability is closely correlated to the structuring of the solution

domain. Structure is required to keep track of the vast quantity of information,

but there are also limitations to structure. Too much structure is also confusing

because in this case the human brain is not capable of keeping track of the details

of the structure. Therefore, it is important to keep the architectural structure as simple

as possible to meet the design for understandability objective.

To meet this objective, two concepts need to be combined:

• The initial architectural structure needs to be as small as possible. Only the struc-

ture that is necessary to start the implementation should be designed up front.

• The architectural structure needs to be simplified whenever possible throughout

the whole lifecycle of the system. It takes effort to keep the structure of a system

simple. Without explicit counteraction, the structure will become more compli-

cated with every change of the system.

Jim Coplien and Gertrud Bj�rnvig provide an approach to decide what belongs in

the initial architectural structure [10]: they suggest separatingwhat they call the “form”

and the “structure”f of the system. The “form” is basically the essence of the system—

the mind model behind it, the invariants of the participating domains. The “structure”

is everything else. The “structure” is subject to change across the lifecycle of the sys-

tem; therefore, it does not add value to include it in the initial architectural design.

Explicitly modeling the essence of the system helps to create an initial structure

that has very stable interfaces. Since the initial structure reflects core concepts of the

involved domains, the system becomes easier to understand. The stability of the

fPlease note that Coplien and Bj�rnvig use the term “structure” with a different meaning than this chap-

ter does. Therefore, for better distinction the term is quoted whenever used in the way Coplien and

Bj�rnvig are using it.

346 CHAPTER 14 Opportunities and Threats of Emergent Architecture

interfaces also improves the changeability, because changes are kept local without

compromising interfaces.

Distilling such an initial structure is explicit work. It does not emerge from a
repeating cycle of implementation and refactorings. Also, finding adequate abstrac-
tions requires a specific skill set and a lot of experience because even if it is well

understood what separation of concerns means, it is still not well explored how to

design separations best. A few heuristics—like separation by responsibility, by dif-

ferent change rate, by organizational structure, or by skill distribution—are known

(see Ref. [10] for a collection), but yet creating an initial structure is a challenging

task that requires a lot of experience.

Basically, it is possible to use the emergent architecture cycle to let the domain

essence evolve, but this usually takes more time and resources than an explicit

approach. It usually takes several attempts and redrawn designs before an emergently

developed architecture converges towards the domain essence, and there is a risk that

the essence will never be reached. This would violate the purpose of architectural

work: to minimize overall costs and to maximize overall satisfaction.

The second concept required for design for understandability is the continuous

simplification of the architectural structure. This is the core objective of refactorings,

which are part of the emergent architecture cycle. This primarily affects the “struc-

ture” of the system, not the “form.” The latter comprises the invariants of the system

and therefore normally should not change much after initial design. The “structure”

on the other hand is subject to frequent changes and therefore should be designed
using the emergent architecture approach instead of doing it explicitly.

Based on the experience of the author of this chapter, this approach still bears the

risk of a lack of coordination. Development teams who are new to emergent archi-

tecture often forget to share their design decisions with each other. As a result, the

same requirement is solved in several different ways and usually it requires a large

effort to unify the solutions later to enhance understandability.

A common technique to address this risk is to communicate and discuss design

decisions in the development team to share the knowledge. Alternatively, architectural

constraints can be used. To avoid later unification work, the required architectural

constraints are defined and discussed up front and the whole team adheres to them.

Architectural constraints help to avoid duplicate solutions without specifying the archi-

tecture in detail, thus leaving enough room for the solution to evolve.

14.3.5 Design for change
Design for change is about future change request. Formally a system only needs to be

open for the change requests that affect the system throughout its lifecycle to provide

a perfect design for change.

The obvious problem is that future change requests cannot be anticipated. This

often leads to the following types of reaction:

• Analysis paralysis—architects do not dare to make decisions because they are

afraid to miss a design decision that might become important in the future

34714.3 Analysis of Emergent Architecture

• Extremely generic and flexible architectures—decisions are delayed by keeping

the structure unspecific and open to as many kinds of future change requests as

possible

• Ignorance—potential future change requests are ignored. Instead, the system is

designed only to reflect the known requirements.

All reactions are suboptimal and violate the purpose of architecture. The first one

prevents implementation because decisions are required to start coding effectively.

The standard reaction is that the developers start coding without any base architec-

tural structure, which usually is suboptimal, too (see the previous subsection about

design for understandability for details).

The second reaction compromises understandability. Every flexibility point in a

system increases its complexity, which makes it harder to understand, but under-

standability is the prerequisite for changeability. It is not possible to change a system

dependably without understanding it. Thus, too much flexibility compromises under-

standability and in turn changeability. It is a crucial part of architectural work to find

a reasonable balance between understandability and flexibility.

The third reaction ignores information that is usually available at design time,

which could help to make better decisions, violating the purpose of architectural

work. Even though it is not possible to predict upcoming change requests exactly,

it is possible to identify likelihoods for certain types of change requests. These

can be used to make better decisions about where to put a flexibility point.

To identify the likelihoods of upcoming change requests, the following tools can

be used:

• The business domain needs to be understood well. Most of the future change

requests are rooted in the business domain. Understanding the concept of this

domain makes it easier to create changeable designs.

• The business strategy should be examined. By gaining an understanding of where

the company is heading and what their top objectives are, a lot of upcoming

change requests can be anticipated.

• The needs and drivers of the stakeholders should be understood as well as pos-

sible. Both create a desire for change, which results in change requests.

• The business and IT market trends need to be analyzed (including competitor

analysis). Understanding where the market is going to move to helps in under-

standing upcoming external pressure on the company, which usually results in

change requests.

• Scenario-based architecture assessment workshop formats like the Architecture

Tradeoff Analysis Method (ATAM) [11] or the Cost Benefit Analysis Method

(CBAM) [12] can be used to identify and prioritize potential change requests

in a very efficient manner.g

gIdentifying and prioritizing future change requests that are going to affect the architecture are not actu-

ally the core objectives of those workshop formats, but they also deliver this information effectively.

348 CHAPTER 14 Opportunities and Threats of Emergent Architecture

Using these tools helps to distill the direction of change—the most likely types of

upcoming change requests. Flexibility points should be provided for the most likely

change requests. This does not necessarily mean to provide for something configur-

able. Often, it is sufficient to separate responsibilities by introducing an adequate

interface to keep upcoming changes local. Since increased flexibility compromises

understandability, it is important to not introduce too many flexibility points.

This approach does not help predict future change requests across the whole life-

cycle of a system. Depending on the business and IT environment of the system, this

approach usually helps predict future change requests for several months or up to a

year, sometimes a bit longer than a year. Still, the architectural decisions made on

this basis age because the drivers of change requests change over time, and eventu-

ally some decisions will become invalid.

Therefore, architecture and architectural decisions need to be reevaluated on a

regular basis. This means the new direction of change needs to be distilled to figure

out which flexibility points might have become obsolete and which new ones are

needed. Using this approach, architecture can be kept lean and changeable across

the whole lifecycle of the system.

Distilling the direction of change is explicit work. It does not emerge from a
repeating cycle of implementation and refactorings. It is also possible to use the

emergent architecture cycle to adapt the architecture to changing requirements,

but this would usually take a lot more time and resources than the explicit approach.

This in turn would violate the purpose of architectural work: to minimize overall

costs and to maximize overall satisfaction.

14.4 DISCUSSION
In this discussion, the strength and weaknesses of explicit and emergent architectural

work will be contrasted with each other and a joint approach will be recommended.

14.4.1 Comparison of explicit and emergent architecture
The previous section shows the following results for the question of whether archi-

tectural activities can be replaced by emergent architecture:

• Alignment cannot be replaced by emergent architecture.

• Structuring must support the objectives of architectural work: implementation

of nonfunctional requirements, design for understandability, and design for

change. Therefore, emergent architecture is challenged against the objectives,

not against the structuring. If a structure is documented for communication with

stakeholders who are not developers, this documentation must not be a code,

which means it does not result from the emergent implement and refactor cycle.

• The implementation of nonfunctional requirements does not require an

architect, but an expert for the particular domain. Therefore, this activity is

34914.4 Discussion

not treated as core architectural activity. It can be done by an architect, but it does
not need to be done by an architect.

• Design for understandability can be done purely emergently, but that would

usually violate the purpose of architectural work (maximizing overall

stakeholder satisfaction, minimizing overall costs across the lifecycle of the sys-

tem). A better approach is to design the essence of the system explicitly and let

the rest evolve using emergent architecture—potentially guided by some archi-

tectural constraints to avoid duplicate solution designs.

• Design for change can be neglected using a purely emergent approach, but

this would violate the purpose of architectural work. A better approach is to

distill the direction of change from time to time (depending on the change rate

of the system environment) to optimize the design decisions.

This summary leads to the comparison of explicit and emergent architectural work

shown in Figure 14.5. In addition to the comparison itself, the figure also shows the

relative effort of the distinct architectural activities if compared to each other (based

on the experience of the author of the chapter):

• Alignment is a relatively big effort—especially in early system implementation

phases. Lots of missing information needs to be gathered, vague requirements

need to be clarified to make them implementable, conflicting requirements need

to be resolved, and muchmore. At a given point in time, only the amount of align-

ment work necessary for the next iteration to be started safely should be done.

This is comparable to the work a Scrum product owner needs to do to make sure

the product backlog is ready for the next sprint.

• Creating design for changeability is a relatively small effort. Most of the required

information can be gathered while doing alignment work, and any missing infor-

mation usually can be gathered quite quickly. Distilling the direction of change

and deciding about additional flexibility points is a straightforward activity if the

required information is available.

Alignment
Architectural

activity
Design for

changeability

Design for understandability

Domain essence
(“Form”)

Detailled structure
(“Structure”)

Explicit
approach (++)

Emergent
approach (−−) (o)

Relative
effort

Small HugeBig Small

(+) (+) (−−)

(−) (++)

FIGURE 14.5

Comparison of explicit and emergent architectural work.

350 CHAPTER 14 Opportunities and Threats of Emergent Architecture

Figure 14.5

• Designing the essence of the system (“form”) is usually a relatively small effort.

Most of the required knowledge is gathered in alignment. The challenge is to find

adequate abstractions. This requires a specific skill set and a lot of experience.

• Creating the detailed structure (“structure”) is by far the biggest effort. All other
activities require a lot less effort than this activity.

When looking at explicit and emergent architectural work, it can be observed that the

two approaches complement one another. While explicit architectural work can

cover all activities, it provides the highest value in alignment and design for change.

It is also suitable to distill the essence of the system, with the limitation that it is not

very well understood how to best create separations. Doing the whole detailed design

explicitly is usually a waste of time and has little value. The architect becomes a bot-

tleneck, doing work that often can be delegated to developers, and does not have suf-

ficient time to do the activities of higher value. Often, a few architectural constraints

are enough explicit work in this area.

On the other hand, emergent architecture is a good approach to create an

understandable, detailed structure. The amount of work can be distributed well

across the whole development team. A few architectural constraints can help to avoid

unnecessary duplicate solutions. The domain essence can also be distilled over time

using emergent architecture, but this usually costs extra time and effort, violating the

purpose of architectural work. Emergent architecture does not provide support for

design for change or alignment (i.e., there is a high risk that the purpose of architec-

tural work is violated by dissatisfying stakeholders or increasing overall costs if the

emergent approach is not supported by additional activities to provide for alignment

and design for change).

One question often raised in this context is, “Why cannot a product owner in

Scrum (or the customer on site in Extreme Programming) take care of alignment

and distilling the direction of change?” This way, there would not be the need for

an architect and the development team could use a pure emergent approach. The little

penalty for creating the domain essence in an emergent fashion is accepted.

In principle there is nothing wrong with a product owner taking care of some

aspects of architectural work, but based on the experience of the author of this chap-

ter, there are some issues associated with this approach:

• Most product owners only take care of functional requirements. Their reasoning

is that they are responsible for the product backlog, which only consists of entries

bearing business value. Since nonfunctional requirements of any kind do not bear

business value, they do not feel responsible for nonfunctional requirements. Even

if this reasoning is wrong (security, availability or performance definitively have

business value), it is common practice that product owners do not take care of

architectural needs.

• Product owners adopt some responsibilities of the traditional project manager

role. They are especially responsible for achieving the goals of the associated

project. If they were not only responsible for the success of the project, but also

35114.4 Discussion

for the success of the systems, they might suffer from contradictory goals. There-

fore, it makes sense to separate the responsibilities for a project and a system.h

• Architectural work requires software development knowledge, whichmany prod-

uct owners do not have. Product owners are often employees of a business depart-

ment or a different non-IT department. If a person does not have the required

skills for a specific task, the person tends to neglect it and focus on different tasks

which she is more capable of executing.

• Architectural work should come from the team—either the whole team, or at least

some specifically skilled team members—to share the knowledge across the

team. Product owners, driving the projects, are often not considered part of the

team; product owners request, teams deliver. This often imposes a boundary

on the knowledge flow.

In summary, it is sometimes possible to let a product owner take care of align-

ment and distilling the direction of change, but for the reasons described above in

most projects it does not work well.

14.4.2 A joint approach
Given the knowledge of the last section, a joint approach for agile architectural work

can be framed using the particular strengths of the explicit and the emergent

approaches.

This leads to the overall joint approach for agile architectural work shown in

Figure 14.6. From a development process point of view, the following architectural

activities are needed to transform the stakeholder’s requirements and needs into a

solution and working code:

• Alignment needs to be done to align the solution to its mission. Stakeholders need

to be understood, requirements need to be clarified, and conflicts need to be

resolved. This also means learning the stakeholders’ “languages,” and requires

a lot of soft skills.

• Design for change consists of distilling the direction of change once in a while

(the required frequency depends on the speed of change of the problem and the

solution domain). The design of the domain essence also supports the changeabil-

ity of the associated system.

• Design for understandability consists partially of designing the domain essence.

Carving out the long-term stable parts of a system usually makes it a lot more

understandable. But by far the largest chunk of the work is creating the detailed

structure—the structure details needed to keep the solution understandable.

• Structuring is split into three pieces: The long-term stable parts, the mid-term sta-

ble parts, and the volatile parts. The long-term stable parts are the essence

hUnfortunately, it is often forgotten to adapt the rights to the obligations. If someone is responsible for

the success of a system and does not have any means to enforce required actions to be executed, the

separation of responsibilities approach will not work.

352 CHAPTER 14 Opportunities and Threats of Emergent Architecture

(“form”) of the system, which needs to be distilled explicitly. To identify the mid-

term stable parts and identify the proper additional flexibility points, design for

change is used—which is also an explicit activity. The volatile parts evolve using

emergent architecture, possibly guided by some architectural constraints to avoid

duplicate solutions. As described before, the volatile part is by far the biggest part

of the structuring effort. By using an emergent approach for this part, work is

spread better and potentially scarce skills that are required for the other architec-

tural activities are not wasted.

From an architectural work style perspective, the following observation can be

made:

• Alignment, distilling the direction of change, and designing the domain essence

are usually explicit architectural activities. They do not emerge from the emer-

gent cycle of coding and refactoring. Even though it is possible to let the domain

essence evolve from an emergent cycle, designing it explicitly usually conforms

better to the goals of architectural work.

• Creating the detailed structure, and sometimes also designing the domain essence

(with the limitations described before), can be done in an emergent way, leaving

it to the emergent cycle of implementation and refactoring—accompanied

by some guiding principles and some additional architectural constraints, if

required.

Design for change

Design for
understandability

Explicit

Development
process

Solution & code

Alignment

Distill direction
of change

Create
detailed structure

Design
domain essence

Stakeholder & requirements

Architectural
work style

Development
team

Emergent

People with
required skillset
and experience
(“architect”)

All developers

FIGURE 14.6

Joint approach for agile architectural work utilizing emergence.

35314.4 Discussion

Figure 14.6

From a team point of view, the following observations can be made:

• The emergent parts should be done by the whole development team.

• The explicit parts require a specific skill set and a lot of experience. Usually, only

a few team members can take care of those tasks. For best knowledge sharing,

these team members should also do normal software development. Based on

the experience of the author, knowledge sharing works best if people work

together on a task. Also, it is important that those specifically skilled people

do not lose connection to the rest of the development team.i

This approach drastically reduces the amount of explicit architectural work, leverag-

ing the power of emerging architecture. This way, the value of the overall architec-

tural work is maximized and the skills of the persons involved are used best.

14.5 CONCLUSION
This chapter examined the claim that emergent architecture can replace explicit

architectural work. As a prerequisite to the analysis, the purpose, activities, and

objectives of architectural work were identified. After a careful examination, align-

ment, design for change, and design for understandability (which consists of distill-

ing the essence of the system and detailed design) were identified as architectural

activities that need to be analyzed with respect to the question of whether emergent

architecture can replace explicit architectural work.

The analysis of the activities showed that alignment and design for change are not

covered by the emergent architecture cycle consisting of coding and refactoring.

Neglecting these activities would violate the purpose of architecture (i.e., overall

stakeholder satisfaction would not be maximized and overall costs would not be min-

imized across the lifecycle of the corresponding system).

Distilling the essence (“form”) of the system is also not covered by emergent

architecture. It is possible to let the essence of the system evolve using emergent

architecture, but this would also sacrifice the purpose of architecture by costing extra

time and effort.

Creating an understandable, detailed design is very well covered by emergent

architecture. Since this is by far the biggest activity of architectural work, it makes

a lot of sense to use emergent architecture for it. This approach better spreads the

majority of the architectural work and makes sure that potentially scarce skills are

available for the other architectural activities that are not covered by emergent

architecture.

iThis is often a challenge, especially at the beginning of projects. Alignment uses up a lot of time, often

leaving little opportunity for the people involved in it to perform other tasks. The author of this chapter

does not know an easy solution for this problem, but it is important that the whole team deals with it

actively.

354 CHAPTER 14 Opportunities and Threats of Emergent Architecture

A joint approach for agile architectural work was derived from the findings sum-

marized before. It utilizes emergent architecture for the detailed design, while the

other activities are done explicitly. The approach distributes the architectural work

well across the team, and the potentially scarce people having the required skill set

and experience can focus on the activities that are not covered by the emergent archi-

tecture cycle. This way, agile values are adopted best by maximizing the value

created with the skills and experience available.

References
[1] Goldstein J. Emergence as a construct: history and issues. Emergence: complexity

and organization (1.1) 49–72. Retrieved from http://www.anecdote.com.au/papers/

EmergenceAsAConsutructIssue1_1_3.pdf; 1999.

[2] Wikipedia. Emergence. Retrieved from http://en.wikipedia.org/wiki/Emergence; 2012.

[3] Martin RC. The principles of OOD. Retrieved from http://butunclebob.com/ArticleS.

UncleBob.PrinciplesOfOod; 2005.

[4] Starke G, Hruschka P. arc42 process model (available in German only). Retrieved from

http://www.arc42.de/process/process/processdetails.html; 2012.

[5] Software Engineering Institute, CarnegieMellon University. Community software archi-

tecture definitions. Retrieved from http://www.sei.cmu.edu/architecture/start/glossary/

community.cfm; 2012.

[6] International Organization for Standardization. ISO/IEC 9126–1:2001 Software engi-

neering—product quality—part 1: quality model. Retrieved from http://www.iso.org/

iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber¼22749; 2011.

[7] Zachman JA. Introduction to the Zachman framework. [Presentation]. Presented at the

enterprise architecture conference London 2008; 2007.

[8] Bredemeyer D, Malan R. The role of the architect. Retrieved from http://www.

bredemeyer.com/pdf_files/role.pdf; 2006.

[9] Bredemeyer D, Malan R. Architect competence framework. Retrieved from http://www.

bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF; 2002.

[10] Coplien JO, Bj�rnvig G. Lean architecture. Hoboken, NJ: John Wiley & Sons; 2010.

[11] Clements P, Kazman R, Klein M. Evaluating software architectures. Boston, MA:

Addison-Wesley; 2002.

[12] Software Engineering Institute, Carnegie Mellon University. Cost benefit analysis

method. Retrieved from http://www.sei.cmu.edu/architecture/tools/evaluate/cbam.cfm;

2012.

355References

http://www.anecdote.com.au/papers/EmergenceAsAConsutructIssue1_1_3.pdf
http://www.anecdote.com.au/papers/EmergenceAsAConsutructIssue1_1_3.pdf
http://en.wikipedia.org/wiki/Emergence
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.arc42.de/process/process/processdetails.html
http://www.sei.cmu.edu/architecture/start/glossary/community.cfm
http://www.sei.cmu.edu/architecture/start/glossary/community.cfm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.bredemeyer.com/pdf_files/role.pdf
http://www.bredemeyer.com/pdf_files/role.pdf
http://www.bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF
http://www.bredemeyer.com/pdf_files/ArchitectCompetencyFramework.PDF
http://refhub.elsevier.com/B978-0-12-407772-0.00013-7/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00013-7/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00013-7/rf0015
http://refhub.elsevier.com/B978-0-12-407772-0.00013-7/rf0015
http://www.sei.cmu.edu/architecture/tools/evaluate/cbam.cfm

CHAPTER

Architecture as a Key
Driver for Agile Success:
Experiences at Aviva UK

15
Ben Isotta-Riches and Janet Randell

Aviva, Norwich, UK

CHAPTER CONTENTS

15.1 Introduction .. 357

15.2 Challenges to Agile Adoption at Aviva UK ... 359

15.3 The Key Role of Architecture in Driving Agile Success 360

15.3.1 Sufficient Up-Front Architecture and Design361

15.3.1.1 Determining What Is “Sufficient” Up-Front Architecture

and Design Activity ... 362

15.3.1.2 Continuing Architecture and Design Activity

During Sprints .. 364

15.3.2 Layered Architecture Enabling Independent Change Agility367

15.3.3 “Change-Time” Architecture and “Run-Time” Architecture371

15.4 Incremental Agile and Architecture Transformation ... 372

15.5 Conclusions .. 373

15.1 INTRODUCTION
Aviva UK is part of a global organization that provides insurance, savings, and invest-

ment products to 43 million customers worldwide. Aviva is the UK’s largest insurer,

with more than 14 million customers, and is one of Europe’s leading providers of

life and general insurance. The UK business operates via a number of distribution

channels including Internet, call center, broker, and corporate partners. The range

of product offerings covers personal and commercial insurance, savings, investments,

and pensions, and the company is frequently at the forefront of innovative new

customer offerings, such as the provision of personal claims handlers.

In common with other large corporate organizations, Aviva has recognized the

benefits of an agile approach to information technology (IT) change and has

embarked on an agile transformation journey to give the business the agility and

flexibility it needs in today’s fast-changing business and financial environment.

This chapter focuses on the experiences of Aviva UK during this transformation.

357

The waterfall approach has served us well historically. However, it has become

increasingly clear that this approach alone no longer adequately supports the changing

needs of the business. The pace of change in insurance markets is increasing rapidly,

led by legislative changes, an increasing number and variety of competitor offerings,

and the rapidly expanding range of opportunities offered by new technology and the

use of social media. Financial markets change substantially in a period of days or even

hours, reducing the validity, and therefore value, of change deliveries that are based on

requirements documented and agreed to months, if not years, before deployment.

The key driver for transformation from the business side could be summarized as

the need for business agility, interpreted as a shorter time from idea to delivery and

increased flexibility in rebalancing investments as market demands evolve. To meet

these needs requires IT to be able to respond to business requirements faster than ever

before and, once engaged in the change delivery, to be responsive to changing

requirements and priorities without increasing the risk and costs of the project.

Simultaneously, the IT department is increasingly focused on the need to drive fur-

ther reductions in longer-term maintenance costs by increasing the quality and flexi-

bility of delivered code. Although there is a strong focus on testing within the waterfall

software delivery lifecycle, it is recognized that, in line with shifts in the industry,

action must be taken to embed quality much earlier in the delivery life cycle.

The adoption of agile principles and practices is seen as a key enabler to achieve

both business and IT aims. Transformation activity started in 2009, with the initiation

of a small number of pilot projects.

Agile transformation is not, however, a trivial task for large and complex orga-

nizations such as Aviva UK. Many of the early adopters of agile approaches were

small organizations, or at least had small, discrete IT development teams. These

organizations have enjoyed considerable success; hence the increasing adoption

of agile practices by larger, enterprise-scale organizations. Unfortunately, those that

have applied an identical approach to the small, early adopters have frequently found

themselves hitting significant issues and failing to achieve the expected benefits.

The experience that our agile consultants brought to us was that a “pure” Scrum

approach is unlikely to be successful in this type of organization: enhanced

approaches and techniques are usually needed. These enhanced approaches must

remain true to the agile manifesto and principles but must also acknowledge and

allow for the size and complexity that is the reality both of our organization

itself and the IT estate we manage (i.e., the complex portfolio of deployed IT appli-

cations and services). There are a range of changes to the “pure” Scrum approach that

may be needed in a large corporate organization. However, we believe that the key

driver for success in adopting agile practices within our organization is a focus on

the impacts and requirements of the IT architecture, and we concentrate on these

aspects for the purposes of this chapter.

In the early days of agile adoption, there was little mention of the word architec-
ture in the available literature. Similarly, references to design activity tended to focus

only on “in-sprint” design that would emerge during team collaboration and via

refactoring. For example, The Scrum Guide, by Ken Schwaber and Jeff Sutherland

358 CHAPTER 15 Agile Success: Experiences at Aviva UK

[1], makes no reference to architecture, and the only reference in Xprogramming.

com [2] is the reference to build activity that may be undertaken as an “architectural

spike.” However, for large, complex organizations, the impacts of architectural com-

plexity cannot be ignored, and a successful solution architecture and design is

unlikely to emerge entirely as a result of in-sprint development.

Our own experiences of agile adoption, together with the external experience we

have drawn on, have led us to the conclusion that there are three key architectural

strategies that are necessary to drive agile success in a large, corporate organization

such as Aviva UK. Before we describe these strategies in detail, we first provide

some background to Aviva UK and the challenges inherent in a large-scale agile

adoption for an organization of this size and complexity. We conclude by discussing

how agile transformation and implementation of the architecture strategies must be

pursued in parallel to drive early business benefit.

15.2 CHALLENGES TO AGILE ADOPTION AT AVIVA UK
Large financial services organizations like Aviva typically face a range of challenges

to agile adoption. The complexity of these organizations will tend to be reflected

in the IT systems that they have developed and delivered over time. As stated in

Conway’s law [3], organizations which design systems . . . are constrained to pro-
duce designs which are copies of the communication structures of these organiza-
tions. This tendency, and the sheer size of the organizations themselves, will

typically result in a number of characteristics that represent challenges to agile

adoption:

• A mix of legacy and modern IT applications across the IT estate, using a range of

technologies from legacy Cobol/CICS through to modern C# MVC frameworks

and responsive design.

• A range of suppliers and external partners, including offshore development, fully

outsourced IT services and delivery via external software houses.

• Some legacy, tightly coupled architecture components.

• Organizational separation of IT delivery participants, with some IT teams aligned

to optimize business proximity and engagement and other teams aligned by appli-

cation or technology to optimize application integrity, technical skill deployment

and cost reduction.

These underlying architectural and organizational characteristics also drive a

number of practices that can, in turn, represent further challenges to agile adoption.

For example:

• Scheduled (e.g., quarterly) release processes, usually introduced to simplify the

complexity of the configuration management involved in deploying multiple

interdependent changes across multiple applications, but reducing the deploy-

ment flexibility that can be offered to the business as a result of using an agile

approach.

35915.2 Challenges to Agile Adoption At Aviva UK

• Restricted availability of integration testing environments due to the alignment of

environments to waterfall lifecycles and the complexity of the environment

requirements.

• “Silo” mentality, with the majority of resources familiar with a small number of

IT components rather than the full end-to-end architecture.

• Project, rather than product, focus, with teams assembled for a particular project

delivery and then disbanded.

• Milestone-based governance, based on waterfall phase completion.

In common with most large organizations, Aviva UK faced many of these chal-

lenges when embarking on our agile transformation. It would appear tempting, in the

face of such challenges, to abandon agile principles and revert to traditional waterfall

approaches. However, even working within these constraints, our early experiences

in agile development convinced us that the short feedback loop inherent in the agile

approach offered clear benefits in terms of the quality of the delivered solutions and

their alignment to business requirements. We recognized, therefore, that a more flex-

ible approach to agile adoption was necessary, and that failure to apply any agile

principles and techniques at all—simply because it is not possible to implement them

all—would be counter to agile incremental principles. The approach in Aviva UK

has therefore been to work within these constraints while taking the necessary actions

to address and/or remove them.

15.3 THE KEY ROLE OF ARCHITECTURE IN DRIVING AGILE
SUCCESS
It can be seen from the analysis of the challenges described above that the complexity

of the IT architecture is a significant underlying factor. Although there are a number of

other factors that need to be addressed to scale agile adoption in large enterprise orga-

nizations, this chapter focuses on architecture strategies as the key driver for success.

Our experience in the early stages of agile transformation has led us to the con-

clusion that there are three key architectural strategies that are needed to drive agile

success in large, corporate organizations—particularly those with complex legacy

IT estates. These architectural strategies are described in detail in the following

sections, but can be summarized as:

• Sufficient architecture and design activity must be completed during project ini-

tiation to set the context for, and ensure the success of, emergent design activity

throughout the remainder of the project.

• The IT architecture strategy must drive a high level of independence between

architecture layers by establishing effective abstraction and separation of con-

cerns. The aim is to reduce the impact of integration complexity on speed

and agility by allowing the impact of business changes to be either contained

within one or two architectural layers, or for those changes to be decoupled

and deployed separately in each layer.

360 CHAPTER 15 Agile Success: Experiences at Aviva UK

• There must be a clear focus on the importance of the “change-time” attributes

of architecture components, such as automated testing frameworks. These must

be seen as fundamental requirements of the future strategic architecture, along-

side the usual “run-time” attributes, such as performance.

15.3.1 Sufficient up-front architecture and design
In the previous section, we referred to the fact that much of the early agile literature

makes no reference to the need for any architecture or design activity prior to starting

development in sprints. Once the backlog is created, for example, Scrum practi-

tioners are encouraged to make a start on development, completing any necessary

design activity in-sprint. Although this approach works well on discrete, well-

architected applications, it can be an extremely high-risk strategy when the IT land-

scape incorporates many different applications and technologies and where a variety

of development skills are needed to create an integrated end-to-end solution. An

organization such as Aviva UK has multiple teams, widely distributed knowledge

and multiple possible impacts of architectural decisions. In this type of environment,

there is a clear need to have a sufficient understanding and agreement of the overall

architecture and context for the design to inform the build.

The challenge of up-front design was clearly demonstrated to us in one of our

early agile projects. Although the need for up-front architecture was recognized,

the team was keen to get started as soon as possible and development was initiated

as soon as the backlog was prepared. The project in question involved the redevel-

opment of online policy administration functionality—improving the level of func-

tionality, quality and stability of the application, as well as improving the customer

experience. One aspect of this redevelopment involved refactoring some existing

services that provided a range of read and update capabilities against our legacy pol-

icy administration system. Some of the early stories included both front-end screen

and transactional changes, and new services. These therefore included developers

from three separate teams, working in different technologies and on different under-

lying applications, representing different architectural layers. Unfortunately, devel-

opment of these stories hit two significant issues:

• Insufficient time had been devoted to the overall service design and in particular

how the transition from old, complex services to the new, more specific and

fine-grained services would be managed. This made incremental delivery of

working end-to-end software quite challenging.

• There was a disconnect between the speed of front-end development compared to

the speed of service development. This caused the overall project to fall behind

expected timescales to the extent that the project reverted to use of the old ser-

vices to ensure that the delivery met business benefit expectations.

Both of these issues could have been successfully addressed if a little more time

had been spent prior to the start of development in sprints in agreeing on the overall

architecture and design approach—particularly increasing the level of understanding

36115.3 The Key Role of Architecture in Driving Agile Success

between the developers working on different aspects of the application and the

dependencies between them.

There will be readers who say that the solution to the problems described above is

to have multi-skilled teams who both understand, and are able to work on, the end-to-

end solution. This may well be the case, but will take some time due to the cross-

skilling required in a large organization with a varied IT estate. In such situations,

there is a need to ensure that sufficient architecture and design activity is completed

during initiation to mitigate the risk of starting development with too much uncer-

tainty still unresolved. In this environment, attempting to develop the design purely

incrementally during the sprints, without sufficient context setting up front, will

almost certainly lead to significant problems: excessive rework, poor overall design,

and project delays while impact analysis, architecture and design activity “catch up”

with the build.

15.3.1.1 Determining what is “sufficient” up-front architecture
and design activity
It is important to stress that this is not advocating “big design up front” as an effective

design and architecture approach for agile projects. Neither is it removing the need

for ongoing emergent architecture and design activity throughout the remainder

of the project lifecycle. The aim is to complete sufficient architecture and design

analysis to the point that there is an acceptable level of risk involved in starting devel-

opment with some architectural and significant design questions still outstanding.

Determining what it “sufficient” and completing the right level of up-front architec-

ture and design activity are vital to enable setup of a successful agile project, but will

vary from project to project. Fundamentally, it is a risk-based decision, and will

always rely on the skill and experience of the project team members.

The ongoing management of uncertainty is fundamental to the agile approach.

Where waterfall development approaches attempt to remove uncertainty at the start

of the project, by completing all requirements gathering and design activity prior to

commencing build, an agile project will start development with a significant level of

uncertainty outstanding and will manage and reduce this uncertainty gradually

throughout the project via incremental development and feedback. Successful

management of this uncertainty is core to the successful delivery of the project,

and the completion of sufficient architecture and design activity prior to starting

build is a fundamental part of that uncertainty management. In our experience,

the key factors that need to be taken into account when determining howmuch uncer-

tainty to resolve prior to sprint one—and therefore howmuch architecture and design

work is “sufficient”—are these:

• The potential impacts of the uncertainties on the architecture

Whilst there may be significant uncertainty in the requirements at the start of the

project, these may not in themselves be significant to the design or architecture of the

solution. The key is to determine which uncertainties need some form of resolution to

362 CHAPTER 15 Agile Success: Experiences at Aviva UK

ensure that the architecture you set out with is going to be fit for purpose and not

require major and fundamental surgery in later sprints. There may well be no uncer-

tainties that fall into this category, in which case little up-front architecture and

design will be needed. However, there may be significant questions that would be

overlooked in a purely emergent architecture and design approach, requiring signif-

icant rework—or worse—later in the process.

An illustration of the kinds of up-front architectural decisions needed arose in one

of our recent agile projects that was aimed at increasing the resilience of our call

center applications by enabling them to continue to function in the event of a failure

in the back-end policy administration systems. There were a number of possible

architectural solutions for this functionality, involving different choices in architec-

ture components. It was necessary for the underlying approach to be agreed and val-

idated against the overall architecture strategy prior to starting build. Failure to do so

would almost certainly have resulted in very significant rework.

In contrast, in another of our early agile projects to enhance the Aviva UK Travel

Insurance web application, a minimal approach to up-front architectural design was

possible. The project included the creation of an online documentation facility that

was defined at a very high level at the start of the project, and without clear guidance

on the IT solution architecture. However, it was known from the architecture options

available that none of the possible solutions would impact other, higher-priority,

deliverables. Sprints therefore were initiated after a minimal period of architecture

and design activity, and this activity continued in parallel to the build.

• The number of significant uncertainties

Although the individual impact of each identified uncertainty may be manage-

able, where there are a high number of significant uncertainties, the overall risk

to the project will be high and it is likely that some additional time should be taken

during project initiation to understand the impacts and mitigate the risks.

For example, in delivering complex web applications, two recent Aviva UK pro-

jects had very different experiences. One project took a “pure” Scrum approach and

went straight into development of the screens. Some way through the project, as the

more complex user journeys were created, it became clear that the overall journey

structure was flawed, and significant rework was needed. In contrast, in the second

project, a high-level view of the major customer journeys was generated prior to the

start of the first sprint. This not only significantly reduced the level of rework later

required, but also produced a higher-quality end product.

• The level of effort required to resolve the uncertainties

The complexity of the uncertainties is another key factor in establishing how

much design to do up front. The effort required to resolve some of the key uncer-

tainties, with potential material impacts on the suitability of the design, could drive

a number of outcomes at this point. The decision will be based on an assessment of

the relative costs of delaying the project to resolve the uncertainties against the pos-

sible cost of rework. If the costs of delay are high, then the decisionmaywell be taken

36315.3 The Key Role of Architecture in Driving Agile Success

to progress against an assumption and accept the level of possible rework as a sig-

nificant risk to the project.

During the early stages of our agile adoption, our experience has been that it has

taken several projects for us to begin to get a feel for the right level of up-front design.

Some projects slipped back towards waterfall as too many uncertainties were

resolved in the up-front design stage during initiation, whilst others had difficult exe-

cution phases with delays and rework as a result of insufficient up-front impact anal-

ysis and design. There will always be variation in the level required, based on the

nature of the project, the complexity of the impacted systems and the existing level

of understanding of the solution architecture. However, in our experience in a large

financial services environment, an element of up-front architecture and design activ-

ity is always required.

15.3.1.2 Continuing architecture and design activity during sprints
Once sufficient up-front analysis and design has been completed, there are a number

of other key points that should be considered regarding the approach needed to con-

tinue with an emergent architecture and design approach throughout the remainder of

the project. These include:

• Inclusion of solution architects in project teams

As we have previously discussed, the complexity of the Aviva UK IT estate

means that developers will often have insufficient understanding of the end-to-

end solution for a particular business change project. We have a team of solution

architects who provide this integration knowledge and expertise and develop the

high-level, end-to-end solution architecture and design. These solution architects

are involved in the initial architecture and design activity on agile projects, and will

usually be required to remain involved with the project team to assist in the ongoing

development of the emergent architecture.

• “Just in time” approach to emergent architecture and design

Architecture and design uncertainties that remain unresolved during the project

initiation cannot necessarily be left to be resolved within a sprint. In fact, this is rarely

appropriate. At this point, the estimated effort required to resolve each uncertainty

becomes a key factor in planning the approach to resolution. Resolving too early is

likely to waste time and resources, since there may well be insufficient information

available, and requirements are likely to change, impacting the validity of the agreed

resolution. Leaving resolution too late, however, will impact project progress.

Uncertainties therefore need to be closely tracked by both analysts and solution

architects to ensure their timely resolution just prior to development within sprints.

Two aspects of our agile framework ensure that design activity to resolve uncer-

tainties is completed at the “last responsible moment” prior to development: a design

plan, and a “look ahead” meeting.

With respect to the design plan, we found that when an uncertainty is identified

that will require some significant impact analysis, architecture and design activity

364 CHAPTER 15 Agile Success: Experiences at Aviva UK

to be completed, the estimated time needed to resolve that uncertainty should be

annotated to the relevant story. As with relative estimation, this is not intended

to be accurate or fully researched, but gives a view of the optimum timescales

for architecture and design activity to start for that story. For example, in the Travel

application example described earlier, the architecture and design activity needed

to agree that the end-to-end solution for online documentation required 4 weeks

(2 sprints). This information was attached to the online documentation story,

clearly visible in the product backlog.

With respect to a “look ahead” meeting, we found that holding an additional

meeting midway between the sprint kickoff and sprint review provides an opportu-

nity for team members—particularly those focusing on design activity—to “look

ahead” to future stories in the prioritized backlog and identify any actions that are

needed, such as the following:

• To resolve any remaining significant uncertainties for the stories likely to be

included in the next sprint. The definition of “significant” in this context is

anything that would cause unacceptable delay to sprint progress if it were

resolved in-sprint.

• To resolve any significant uncertainties for future stories as indicated by

the lead times previously assigned to stories. For example, if the project is

currently working on sprint 4, and a story that is likely to be included in

sprint 6 has some architecture and design activity that is believed to

need 2 sprints elapse time to complete, then that activity must be started

immediately.

In this way, architecture and design activity continues throughout the life

of the project delivery, both in-sprint and ahead of sprints, allowing the flow of

valuable software delivery to continue smoothly without interruption or unnecessary

delay.

Our agile framework, depicted in Figure 15.1, illustrates the aspects that are

fundamental to architecture and design activity:

• Initiation, which includes sufficient up-front architecture and design;

• Uncertainty management (design plan), which ensures that ongoing emergent

architecture and design activity is completed at the “last responsiblemoment”;

• The “look ahead,” which ensures sufficient focus on emergent architecture

and design activity beyond the current sprint.

• Emergent architecture and design skills

Solution architects who are familiar with using a waterfall approach, and are

therefore used to creating the complete high-level design up front, need to develop

a different skill set. They need to both understand how much architecture and design

activity to complete during initiation, and also develop the skills needed to evolve

the architecture and design in response to changing requirements during the sprints.

The cultural change here should not be underestimated, as this is a very different

technique and requires a different approach to risk, complexity and ambiguity, as

36515.3 The Key Role of Architecture in Driving Agile Success

well as to the principles of architecture and design. It also requires a significantly

more collaborative approach, working with the business analysts, developers and tes-

ters throughout the project lifecycle. Supporting the solution architecture community

through this change with training and awareness exercises is required to ensure

success. In Aviva UK, we have used a number of methods to provide this support,

including training, the use of skilled external resources, and the creation of role-

specific peer-support groups.

• Architecture and design documentation

Not least amongst the challenges facing solution architects and designers who are

accustomed to working in a waterfall delivery lifecycle is the question of architecture

and design documentation. Using the waterfall approach, the documentation need is

quite clear: to document the high level solution architecture and design of the end-to-

end solution and provide sufficient information to allow the creation of detailed

application designs, and subsequently, the build process for the applications. In an

agile project, however, there is far greater use of verbal communication and collab-

oration to align application designers and developers, so that architecture and design

documentation can, and should, be kept to a minimum.We have not yet finalized our

guidelines in this area, but broadly recommend that architecture and design docu-

mentation should be sufficient to ensure a common understanding of the agreed

scope, context and high-level component architecture of the solution. It must also

be sufficient to enable future application changes to be effective. The documentation

FIGURE 15.1

Aviva UK agile framework, highlighting the architecture and design activity.

366 CHAPTER 15 Agile Success: Experiences at Aviva UK

Figure 15.1

must be concise and easy to change, so diagrams are ideal, and indeed will frequently

be sufficient.

• Designing for change

The ability to design in such a way as to facilitate future change is another core

skill that is essential for success. Taking an agile approach by allowing requirements

to emerge will in itself help to drive this behavior and develop the appropriate skills.

For example, experienced software designers at Aviva UK often state that “. . .in
order to develop a good service, I need to know all the requirements up front.” Taken

to its logical conclusion, this means that any future change to the service is expected

to be difficult. With such a high expectation for change and adaptability in today’s

environment, this is not a good mindset, and leads to inefficient behaviors. Instead,

by forcing change during the development of the service through emergent require-

ments, the chances of easily incorporating future change are significantly increased.

15.3.2 Layered architecture enabling independent change agility
The need for a layered architecture, with a high level of independence between the

layers, is the second key architectural strategy needed to drive success,

At Aviva UK, we are adapting the Gartner pace layering approach to corporate

applications strategy to develop governance, development and management prac-

tices in our agile projects [4]. Pace layering can be seen as an architectural pattern

taken from physical building architecture and then applied to the software arena.

As Gartner states:

The concept of pace layering (Brand 1994) [5] sees a building as a series of layers

that have differing life spans. The site itself has an eternal life, whereas the build-

ing structure might last 50 to 100 years. Other layers such as the external cladding

of the building or the interior walls might have a life of 20 years with internal

design, decoration and furniture lasting for 5 to 10 years. In a rapidly moving

world it makes sense to locate the capacity for change in those items with the

potential shortest life span and avoid, if possible, creating some layers, such as

internal dividing walls, that have a medium term life span and are a potential bar-

rier to accommodating changing activities.

Gartner describes the application of this approach to software as allowing “dif-

ferent rates of change, depending on the type of application, providing slow change

and high control for some, while a more agile and experimental approach for others.”

Designing the IT architecture to support this distinction is essential, and we later dis-

cuss the challenge of applying this pace layering approach to an IT estate not archi-

tected with this in mind. The most important part of this type of architectural layering

is defining clear service boundaries and appropriately grained service interfaces

between the layers to allow for change on either side of the service interface to

be carried out transparently to the layers on either side of it. Integration complexity

and a lack of effective service boundaries between architectural layers impact

36715.3 The Key Role of Architecture in Driving Agile Success

agility—particularly where one layer of the architecture can be developed at a sig-

nificantly different pace to others.

The challenge to agility here is not the changes themselves in isolation, but the

ability to test the impact of these with certainty and to coordinate releasing the

changes into the production environment. Traditionally, a stack of interconnected

applications in a large corporate environment would be tested together end-to-

end, and then changes to those systems would be released on the same day as a single

software release, with a limited number of these releases each year constrained by the

cost of maintaining multiple environments.

The solution is to establish a layered architecture, decoupling those layers as far

as possible. Creating effective service boundaries with well-defined interfaces

should enable a scenario that makes it possible for changes to be implemented with-

out the need to do extensive integration or regression testing above or below these

service boundaries. Where such testing is required, a risk-based testing approach can

be adopted to minimize the extent and focus of the testing required. This model in

turn opens up the possibility of operating different release schedules for each of the

layers in the architecture, maximizing the benefits by utilizing the inherent agility of

each layer. This approach also enables the move to a more “product”-focused, con-

tinuous delivery philosophy, rather than a more inflexible “project”-focused

approach.

To illustrate the advantages of this layered architectural approach, consider a typ-

ical quote system that is part of every General Insurance portfolio—an online web

quotation interface connected to a policy administration system, which is in turn con-

nected to a finance system, with a number of other downstream systems attached to

it. In this scenario, it is highly likely that there will be different stakeholders driving

change at different paces across this architecture stack:

• Marketing will push for rapid change to the user interface, driven by specific

campaigns.

• There may be frequent product changes or iterative and experimental change,

driven by multi-variant testing or insight from web analytics.

• Product launches will have longer timeframes, but will still be required to meet

fixed marketing deadlines.

• Regulatory changes to finance systems may be introduced over an extended

period of time, based on external factors.

In a scenario where the systems have not been designed with clear service inter-

faces between each layer, the pace of change across these systems is defined by the

lowest common denominator due to the need to test and release these systems

together. It is, however, unacceptable to everyone to have to make changes to

web applications (particularly experimental user experience change) at the same

pace as regulatory changes to the finance system. Many large complex organizations

find themselves facing this dilemma as their legacy systems continue to undergo

transformation activity.

368 CHAPTER 15 Agile Success: Experiences at Aviva UK

The approach to this dilemma at Aviva UK has been to pursue a strategy to mod-

ernize its UK application stack: rearchitecting key applications to establish clear ser-

vice interfaces to enable the benefits outlined above. The organization is only

partway through this journey, but has already been able to realize some of the ben-

efits discussed. This has included the introduction of new release windows (known as

“delta releases”) enabling some significant project deliveries outside their normal

release cycle. These delta releases are targeted at changes where the impact is

restricted (broadly) to one or two layers of the architecture, and where there is there-

fore little or no need for full integration testing. This strategy has enabled delivery of

agile change independent of a full test and release cycle involving the wider system

estate. Usage has predominantly been in the web application layer to date, as would

be in line with the expectations of Gartner’s pace layering approach. However, the

approach will be expanded into deeper layers of the architecture as we gain further

experience.

As previously outlined, other impacts and implications of our large, complex IT

estates are:

• Changes requiring work across a number of different technologies increase

the number of different skilled resources in the team, increasing the effort

required for collaboration and communication.

• Testing environments required to support development across a complex inte-

grated environment can be expensive and time-consuming to maintain.

These factors also drive the need to provide greater independence between tiers

of the IT architecture, so that each tier can be changed and released independently to

drive business benefit. The ultimate goal here would be for end-to-end stories that

create business value to only require simultaneous changes in one or two tiers of

the architecture; however, in practice this is unrealistic due to the nature of business

changes required in typical corporate situations.

The layered architectural approach in use at Aviva UK is illustrated in

Figure 15.2. Effective abstraction and separation of concerns between architecture

layers will reduce the impact of integration complexity on speed and agility, by

allowing the impact of business changes to either be contained within one or two

architectural layers, or for those changes to be decoupled and deployed separately

in each layer.

In line with Brand’s pace layering approach, Gartner suggests that “to get

the whole benefit, you need to differentiate governance and change processes

by layer.” The concept of pace layering in relation to the application of different

delivery approaches has at times been divisive (including between the authors

of this chapter) and has driven strong debates about both strategy and architecture

in agile systems. There are several key areas of agreement, particularly around

the need to have a strongly layered architecture to enable potentially different

rates of change across the tiers. However, the concept of agile approaches

being more appropriate in different layers of the architecture is a more

contentious area.

36915.3 The Key Role of Architecture in Driving Agile Success

In terms of the experiences at Aviva UK, we believe it is important not to lose

sight of all the benefits to be derived from the use of agile practices. Many of those

benefits are just as important for slower-paced regulatory change as for fast-paced

user interface change. These slower-paced changes benefit from close collaboration

with business stakeholders and a regular feedback loop; incremental build and test

will drive higher quality than the traditional full build/test waterfall approach, and

clear prioritization by business benefit drive efficiencies and maximize return on

investment. Hence, agile is a clear benefit driver across all layers.

It is also imperative when following a layered architecture approach to not lose

sight of the need to maintain the agile discipline of delivering incremental change

that provides end-to-end business functionality and value. It will not always be pos-

sible for a change project to avoid making changes across multiple layers of the

architecture, from web systems through to systems of record, to deliver the end-

to-end solution. Adopting a truly layered architecture with sufficient loose coupling

and clear separations of concerns between the layers of the architecture will increase

the possibility of business functionality requiring changes in only one or two layers,

and will provide a platform for agile change at varying speeds for each layer. How-

ever, there is still great value in using an agile approach across multiple layers when

necessitated by the business requirement and incumbent architecture.

In summary, from the Aviva UK experiences we believe that in the longer term

the debate will not center on the choice of “waterfall or agile” approaches, but will

Systems of
innovation

Systems of
innovation

New channels Mobile
apps

Mobile
apps

Web
portals

Web
portals

Web
services

Claims Agency

Workflow

Call
entr tre

ESB ESB

Sales
&

admin

Sales
&

admin
Clai

Presentation

Business
change
impact

Business
change
impact

Middleware

Policy admin

Finance

New channels

Presentation

Middleware

Policy admin

FinanceBI DW BI DW HR

Systems of
differentiation

Systems of
differentiation

Systems of
record

Systems of
record

FIGURE 15.2

Aviva UK layered architectural approach (simplified).

370 CHAPTER 15 Agile Success: Experiences at Aviva UK

Figure 15.2

instead be focused on the speed of change, frequency of iterations and the level of

quality-focused engineering and architecture practices being applied to enable these

practices.

15.3.3 “Change-time” architecture and “run-time” architecture
It is well understood that to achieve the level of flexibility and quality required for

successful agile delivery, the use of modern software engineering practices is essen-

tial. The tools, frameworks and processes needed to apply these practices must there-

fore be considered to be an integral part of the overall solution architecture.

Architecture that does not include this framework cannot succeed, as the ability

to change at low cost and low risk over time is a fundamental requirement underpin-

ning the system’s requirements.

Traditionally, architecture strategies and decision-making has been based on “run-

time” attributes of the architecture components, such as scalability, resilience and

performance. For an organization to develop greater agility, the architecture must,

however, focus equally strongly on change attributes. The software engineering tools

and practices must be seen as a part of the architecture, rather than an add-on to it.

An architecture that meets these “change-time” requirements must have a num-

ber of characteristics and components, including the following:

• The inclusion of automated testing frameworks as part of the core system (rather

than being considered as “process elements”). Architecting the system alongside

frameworks to enable effective testing and ease of development at a later date

ensures that the system can be picked up and changed with lower overheads in

the future.

• Componentization at a sufficient level of granularity to enable and support the

use of test driven development, with appropriate stubs and/or mock-ups to enable

testing at that level. For example, some legacy package software requires full

compilation and deployment to implement minor changes, which does not easily

align with agile development practices.

• Configuration management models that support rapid development and deploy-

ment of parallel streams of activity, enabling flexible support to the business.

• Infrastructure tools and practices that enable environments to be created dynam-

ically, on demand, to support multiple project change demands.

• Environment configuration that enables automated, continuous integration (reg-

ular end-to-end build and deployment) and supports both stand-alone and inte-

grated testing using virtualization and simulation techniques.

At Aviva UK, we experienced such challenges early in our agile transformation

when we were evaluating software packages to replace a number of legacy applica-

tions supporting our commercial insurance business. Initial evaluations had focused

on the traditional “run-time” capabilities of the candidate packages: functional

scope, scalability, performance, resilience, and so on. However, it soon became clear

that to protect and support future business agility, there were other features that were

37115.3 The Key Role of Architecture in Driving Agile Success

of equal importance. These were the “change-time” attributes: the ability to write

automated tests to validate functionality at a low granular level, the ability to apply

modern configuration management approaches to enable parallel development and

“release on demand,” and so on. Including these factors in the decision-making pro-

cess provided a great deal of clarity and enabled a clear replacement winner to be

chosen.

15.4 INCREMENTAL AGILE AND ARCHITECTURE
TRANSFORMATION
In this chapter, we have put forward three key architectural strategies that we believe

are critical to successful agile adoption in large, complex corporate environments. It

must be remembered, however, that significant architectural change takes time to

complete and must be integrated into the ongoing business change objectives of

the organization. Hence, it is important that these architectural constraints do not

unnecessarily impede the move to an agile culture and use of an agile framework.

Taking an agile approach to the agile transformation journey itself will ensure early

delivery of benefit for both business and IT.

This has certainly been our experience in Aviva UK. Despite the constraints and

challenges discussed above, we have demonstrated significant benefit through our

early agile transformation journey, such as increased levels of collaboration with

the business, delivery prioritization based on business value, and the drive to embed

quality throughout the life-cycle through early and repeated testing. These have all

made very successful contributions to driving business benefit and agility.

We are aware, however, that a step-change increase in these benefits would be

possible with an aligned architecture strategy focused on enabling agility in system

delivery. Architectural transformation is therefore an essential element of our overall

agile transformation activity. Each step we take towards establishing the loosely

coupled, layered and service-based architecture described above will drive a corre-

sponding, and even more significant, increase in the business and IT benefit that gov-

erns our use of an agile approach .

In practical terms, the focus on architectural transformation at Aviva UK will be

achieved via our existing change book of work, and by implementing the necessary

changes incrementally. New services will be written to support the requirements of a

specific project, and will subsequently be enhanced to support further changes,

enabling a gradual transition away from existing, tightly coupled applications.

Where cost effective, however, aspects of the IT estate will be refactored explicitly

to improve the architecture to enhance agility. We are also increasing our focus on

the “change-time” attributes of our architectural components, allowing modern soft-

ware engineering practices to be embedded across the IT estate.

Alongside the application architecture changes required, a move towards the

use of agile practices also places new and different demands on the underlying infra-

structure. The need for early and repeated end-to-end integration testing is driving

372 CHAPTER 15 Agile Success: Experiences at Aviva UK

investment in virtualization and mock-up techniques. Although techniques like test-

driven development and business-driven development are relatively new introduc-

tions to Aviva UK, other aspects, such as configuration management, are not

new. Use of agile techniques, based on loosely coupled and service-based architec-

ture, does, however, bring new demands to configuration management techniques

and disciplines. Recognizing this, we are increasing our focus here, with the devel-

opment of new guidelines and processes together with the introduction of improved

modern tools where appropriate.

Our education and training program will continue for at least the next few years.

Alongside this program, however, we recognize the need for a particular focus on the

cultural change required. Both of these activities are fundamental to success, partic-

ularly with respect to architecture and design. As discussed previously, understand-

ing what constitutes “sufficient” architecture and design up front is a skill that

requires not only practice and experience, but also a very different mindset and

approach. Our architects and designers have worked for many years with a funda-

mental belief that they must “get it right” prior to handing anything over to the devel-

opers. It will take time to develop acceptance that it is permissible to change things

later, together with the skill to design in such a way to facilitate these changes.

15.5 CONCLUSIONS
In this chapter, we have discussed the challenges facing large corporate organiza-

tions adopting an agile approach to change, based on our own experiences at Aviva

UK. Agile transformation is essential to allow these organizations to respond to the

speed of change in financial markets, rapidly changing technology capability, and

increasingly high customer expectations. However, large organizations frequently

find that the size, complexity and legacy attributes of their IT estates present signif-

icant challenges to the use of agile practices and application of agile principles, and

therefore constrain the resulting benefits. In our experience, it has been essential for

Aviva UK to understand and focus on the core objectives and principles underlying

agile approaches, rather than on the mechanical application of simple agile method-

ologies, such as Scrum. This has ensured that we adopt an agile framework that

acknowledges the reality of our organization and drives the maximum possible ben-

efit for the business. This is not to say that the constraints should not be addressed and

removed where possible; as we have described in this chapter, architecture strategies

may need to be established to drive ongoing increases in the return on investment

achievable.

Despite the challenges, the benefits of agile practices are clear—and at Aviva

UK, our transformation journey is well underway. We understand the architectural

strategies that are key drivers for success, and these are now embedded both in our

agile framework and our architecture governance and strategic planning. We are see-

ing clear business benefits from the use of our agile framework today, and expect to

see an increasing return on investment as we drive Architecture transformation to

37315.5 Conclusions

establish a layered architecture that supports fully effective modern software engi-

neering approaches across the IT estate. It will take some time to fully realize that

goal, but in true agile style, we are making a start and making the most of the incre-

mental benefits to be gained along the way.

References
[1] Schwaber K, Sutherland J. The Scrum guide. Retrieved from: http://www.scrum.org/

Scrum-Guides; 1991.

[2] Jeffries R. An agile software development resource. Retrieved from: http://

xprogramming.com; 1999.

[3] Wikipedia. Conway’s law. Retrieved from: http://en.wikipedia.org/wiki/Conway’s_law;

2012.

[4] Gaughan D, Genovese Y, Shepherd J, Sribar V. How to use Pace Layering to develop a

modern application strategy. ID G00208964, Gartner; 2010.

[5] Brand S. How buildings learn: what happens after they’re built. New York: Viking Press;

1994.

374 CHAPTER 15 Agile Success: Experiences at Aviva UK

http://www.scrum.org/Scrum-Guides
http://www.scrum.org/Scrum-Guides
http://xprogramming.com
http://xprogramming.com
http://en.wikipedia.org/wiki/Conway's_law
http://refhub.elsevier.com/B978-0-12-407772-0.00014-9/rf0010
http://refhub.elsevier.com/B978-0-12-407772-0.00014-9/rf0010

Author Index

Note: Page numbers followed by f indicate figures, t indicate tables, and np indicate footnote.

A
Abowd, G., 10, 161–162, 163, 165, 171, 172,

193–194, 251

Abrahamsson, P., 1–3, 12, 14–16, 114, 189,

199–200, 208–209, 215–216, 217–218,

245–246, 274–275, 316

Ahn, G.-J., 248–249

Aiello, M., 141

Akerman, A., 116–117, 118–120

Alarcon, P.P., 140, 142, 143

Al-Azzani, S., 265

Albin, S., 176

Alexander, C., 27, 29, 30, 33, 34, 40, 43–44,

56–57, 58

Ali Babar, M., 2–3, 4, 8, 14–17, 114, 143–144,

146–148, 189–190, 196–197, 199–200,

208–209, 245–246

Allen, R.J., 165–166

Al-Naeem, T., 8

Alur, R., 247, 251

Ambler, S.W., 14–15, 81, 246, 317, 321, 323–324,

325–326

Ameller, D., 84

America, P., 2, 5–6, 13, 146–147, 162np, 163, 199

Anderson, D.J., 147, 149–150

Andres, C., 14–15

Andreychuk, D., 139–140, 143, 144

Anthony, R., 167

Antoniol, G., 248

Appelo, J., 131

Archer, L.B., 33

Armbrust, M., 269–270, 271

Arnold, R.S., 230

Assmann, U., 227

Asundi, J., 162, 193–194

Augustin, L.M., 10

Aulbach, S., 270, 272

Avgeriou, P., 5–6, 5f, 146–147, 149–150, 151–152,

162np, 165, 189, 190–191, 193–197, 209,

225–227

Avizienis, A., 247, 256

Awazu, Y., 209

Ayala, C.P., 84

B
Babar,M.A., 5–7, 5f, 8, 10, 15–16, 83–84, 114, 162np,

165, 167, 172, 215–216, 217–218, 251, 316

Bachmann, F., 6–7, 9, 10, 141, 223–225

Bahsoon, R., 265

Baloh, P., 209

Balzert, H., 165

Banks, D., 285

Barbacci, M., 3–4, 6–7, 119–120, 161–162, 165, 172

Basin, D.A., 248–249

Bass, L., 1–2, 4, 5–7, 7t, 8, 9, 10, 72, 95, 100, 132,

161–162, 163, 165, 167, 171, 172, 193–194,

195, 251, 301, 318

Bckle, G., 225–227

Beck, K., 1–2, 12, 14–15, 27–28, 31–32, 44, 53–54,

167, 169, 215–216, 225–227, 238, 274, 322

Beedle, M., 12, 167, 198, 274, 317, 321–322

Benatallah, B., 8

Benefield, R., 285

Bengtsson, P.O., 10, 11

Beregi, W.E., 166–167

Berenbach, B., 105–106

Bezemer, C., 272

Binder, R.V., 264

Bischofberger, W.R., 166, 172

Bishop, M., 246–247

Bj�rnvig, G., 49, 52, 55, 114, 132, 192, 317–318,

346, 347

Blair, S., 16–17

Block, M., 270

Bode, S., 225–227

Boehm, B.W., 2, 3, 14–15, 84, 167, 295–296, 320,

325–326

Boer, R.C., 190–191

Bohem, B., 292

Bohner, S.A., 230

Booch, G., 36, 40, 216, 217–218, 248–249,

274–275, 316

Boone, W.E., 40

Bortolazzi, J., 165

Bosch, J., 8, 10, 11, 84, 114, 118–119, 132, 141–142,

147–148, 163, 167, 199, 225–227, 231

Bosch-Sijtsema, P.M., 114

Bot, S., 10–11

Bowers, J., 216

Brand, S., 367

Brandt, S., 31

Bredemeyer, D., 117–118, 343

Breivold, H.P., 114, 132, 151–152

Brooke, P.J., 143, 144

Brown, A.W., 323–324, 326–328

375

Bruin, H.D., 6–7

Bryan, D., 10

Bu, W., 116–117

Buchgeher, G., 177

Budd, T., 48

Bulanov, P., 141

Burnstein, I., 169

Buschmann, F., 71

C
Cabot, J., 84

Calavaro, G., 16–17, 245–246, 247

Cannon, H., 48

Cantone, G., 16–17, 245–246, 247

Capilla, R., 5–6, 5f, 146–148, 162np, 196–197, 209

Card, S.K., 41

Carraro, G., 270, 272

Carriere, J., 119–120, 161–162, 165, 172

Carrière, S.J., 3–4, 172

Carrington, D., 248

Chang, C.K., 102–103

Chatley, R., 246

Chen, C.-Y., 230

Chen, L., 6–7, 83–84

Chen, P.-C., 230

Chivers, H., 217–218

Cho, H., 230

Chong, F., 270, 272

Christensen, H.B., 167, 172

Christensen, M.J., 102–103

Chung, L., 6–7, 8, 83–84, 93, 95

Çinar, M., 101–102

Cleland-Huang, J., 6–7, 83–86, 101–103, 105–106

Clements, P.C., 1–2, 4, 5–7, 7t, 8, 9, 10, 72, 95, 100,

132, 141, 142, 152, 162, 165, 167, 171, 172,

193–195, 206, 251, 275, 284, 301, 318, 348

Clerc, V., 116–117, 118–119, 190–191

Cockburn, A., 12, 40, 84, 167, 192, 216, 217

Coffee, P., 270, 272

Coffin, R., 169

Cohen, D., 12

Cohen, M., 84

Constantine, L.L., 3–4

Conway, M., 36–37, 56

Cooper, A., 86

Cooper, K., 143, 144, 145

Coplien, J.O., 30, 31, 33, 34, 41, 48, 49, 55, 114,

132, 192, 296, 317–318, 346, 347

Costa, P., 12

Crettaz, V., 172

Cripps, P., 318–319

Crnkovic, I., 151–152

Cross, N., 32–33

Cull, T., 16–17

Cunningham, W., 167

Czauderna, A., 6–7, 84–85, 86, 103, 105–106

D
da Mota Silveira Neto, P.A., 143

D’Amore, C., 16–17, 245–246, 247

Darwin, C., 315

Dashofy, E.M., 162np, 162, 163–164, 165, 166,

167, 173

de Almeida, E.S., 143

de Boer, R.C., 116–117, 118–119, 189–190, 209

de Graaf, K.A., 132, 190–191, 197, 209

de Lemos Meira, S.R., 143

de Silva, I.F., 143

de Sousa, F.C., 263

DeLine, R., 10

Demeyer, S., 80, 230

Desouza, K., 209

Dı́az, J., 140, 142, 143, 217, 230–232

Dings�yr, T., 4, 189–190, 208–209, 216

Dobrica, L., 165

Doser, J., 248–249

Dotan, A., 86

Ducasse, S., 80

Duvall, P.M., 169

Dvorak, D., 84

Dyba, T., 216

E
Eeles, P., 318–319, 329

Egyed, A., 84

Eick, S.G., 101–102

Eisenhardt, K.M., 116

Eloranta, V.-P., 190–191, 193–194, 195–196, 197,

199–200, 201, 206, 207, 209

Emery, D., 152

Endres, A., 162

Eriksson, P., 151–152

Etessami, K., 247, 251

F
Faber, R., 16–17

Fægri, T.E., 143, 274

Falessi, D., 16–17, 216, 217, 218, 245–246, 247

Farenhorst, R., 116–117, 118–119, 132, 189–191,

197, 209

Farley, D., 312

Feiler, P.H., 165

Felsing, J.M., 1–2, 149

Fennel, H., 165

376 Author Index

Fiadeiro, J.L., 143–144

Fink, G., 246–247

Fink, L., 275, 285

Floyd, C., 166–167

Fowler, M., 10, 65, 67–70, 81, 167, 169, 229–230,

322–323

Franch, X., 84, 143

Fredriksz, H., 122–123

G
Gabriel, R., 27, 31

Galster, M., 149–150, 225–227

Gamma, E., 3–4, 35, 39, 44, 66

Garbajosa, J., 140, 142, 143

Garlan, D., 3–4, 9, 10, 132, 165, 166

Garland, J., 167

Gaughan, D., 367

Ge, X., 217–218

Genovese, Y., 367

Germanovich, L., 86

Ghanam, Y., 139–140, 143, 144

Gilb, T., 84

Glinz, M., 83–84

Glover, A., 169

Gluch, D.P., 165

Godfrey, M.W., 166

Goldstein, J., 336

Gonzalez, C., 323

Gorlick, M.M., 143–144

Gorton, I., 4, 8, 9, 167, 251

Grance, T., 271, 272

Graves, T.L., 101–102

Griffiths, M., 326

Groefsema, H., 141

Gruenbacher, P., 143, 149

H
Hallsteinsen, S., 143–144

Han, J., 116–117

Hansen, K.M., 167, 172

Hansen, M.T., 118–119, 209

Hanssen, G.K., 143, 274

Happel, H.-J., 119, 132

Harrison, N.B., 151–152, 165, 193–194,

195–196, 296

Hartong, M., 249

Hedeman, B., 122–123

Heimbigner, D., 143–144

Heimdahl, M., 101–102

Heinecke, H., 165

Helm, R., 3–4, 35, 66

Hernan, S., 249

Hewitt, C., 49, 54

Hibbs, C., 169

Highsmith, J.A., 225–227

Hilliard, R., 152, 163, 166, 195–196

Hofmeister, C., 2, 5–6, 8, 13, 132, 146–147, 162np,

163, 199

Holt, R.C., 166

Hoorn, J.F., 117, 132

Hopkins, R., 307–308

Howard, J., 253–254

Howard, M., 250

Hruschka, P., 340

Hudak, J.J., 165

Huffman Hayes, J., 101–102

Humble, J., 312

Hylli, O., 190–191, 193–194, 197, 201, 206, 207, 209

I
Ihme, T., 1–3, 8, 14–17, 114, 217–218

Inverardi, P., 172

Ivers, J., 9, 10, 132

J
Jackson, D., 166

Jacobs, D., 270, 272

Jacobson, I., 36, 41, 248–249

Jameson, F., 35

Jansen, A.G.J., 5–6, 5f, 116–117, 118–119, 132,

146–147, 162np, 190–191, 196–197, 199, 209

Jeffery, D., 10

Jeffery, R., 165, 172

Jeffries, R., 358–359

Jenkins, K., 307–308

Jenkov, J., 48

Jewett, S., 169

Jiang, S., 143–144

Johnson, G., 143–144

Johnson, R., 3–4, 35, 66

Jordan, E., 166

Joseph, A.T., 255–256

Jürjens, J., 248

K
Kalaichelvan, K., 10–11

Kandé, M.M., 172

Karpov, A., 163

Karr, A.F., 101–102

Kay, A., 38

Kazman, R., 1–2, 3–4, 5–7, 7t, 8, 9, 10–11, 72, 95,

100, 119–120, 161–162, 163, 165, 167, 171,

172, 193–195, 206, 251, 301, 318, 348

Keenan, E., 6–7, 84–85, 86

377Author Index

Kenney, J.J., 10

Kerievsky, J., 66, 81

Klein, D., 10

Klein, J., 162

Klein, M.H., 3–4, 6–7, 8, 10, 119–120, 161–162,

165, 167, 172, 193–195, 206, 348

Kniberg, H., 118, 124, 132

Kolko, B.E., 86

Koskimies, K., 149, 190–191, 193–194, 195–196,

197, 199–200, 201, 206, 207, 209

Kotter, J.P., 330

Kozaczynski, W., 163

Kr, J., 285

Kramer, J., 165, 246, 251–252, 263

Krishnan, P., 265

Kruchten, P., 2, 3, 5–6, 9–10, 12, 13, 14–16, 114,

116–117, 118–120, 121, 129, 130, 132,

146–147, 162np, 163, 189, 199–200,

208–209, 215–216, 217–218, 229, 245–246,

270, 274–275, 316–317, 318

Kühl, J., 166, 172

Kumara, I., 151

Kundu, D., 263

Kwan, J., 84

L
Lago, P., 4, 116–117, 118–119, 132, 189,

197, 208–209

Lambert, S., 249

Landwehr, C., 247, 256

Laplante, P.A., 166

Larman, C., 14–15, 216

Larsson, S., 114, 132, 317, 323

Lasseter, R., 219

Lassing, N., 7, 10–11

Lattanze, T., 162

Laurel, B., 40, 41

Leach, G., 85

LeBlanc, D.C., 250

Lee, E.H.S., 166

Leffingwell, D., 208–209, 215–216, 218, 221–223,

225–229, 230, 232–234

Leflour, J., 165

Lehman, M., 230

Liang, P., 132, 190–191, 197, 209

Lichtner, V., 86

Linden, F., 225–227

Lindvall, M., 12

Lines, M., 317, 321, 323–324, 325–326

Lippert, M., 81, 166, 169

Lipson, H., 119–120, 161–162, 165, 172

Little, R., 9, 10

Liu, G., 271–272

Liu, S., 270

Lodderstedt, T., 248–249

Löffler, S., 166, 172

Longstaff, T.A., 6–7, 119–120, 161–162, 165, 172,

253–254

Lopes, A., 143–144, 149

Lopes, C., 48

Luckham, D.C., 10

Lundh, L., 165

Lung, C., 10–11

Lutz, R., 101–102

Lycett, M., 3, 12, 14–15

M
Macredie, R.D., 3, 12, 14–15

Madachy, R.J., 84

Madison, J., 16–17, 217–218, 229, 274–275, 325

Maeder, P., 101–102

Magee, J., 165, 246, 251–252

Maiden, N.A.M., 86

Malan, R., 117–118, 343

Mann, W., 10

Maranzano, J.F., 10, 165, 171, 194–195

Markovich, S., 275, 285

Marron, J.S., 101–102

Martin, J.L., 217, 234

Martin, R.C., 31, 336

Massoud, S., 219

Matyas, S., 169

Maurer, F., 139–140, 143, 144

McConnell, S., 302

McGraw, G., 245–246, 249

McGregor, J.D., 143, 145, 156–157, 275

McMahon, P., 229

Medvidovic, N., 10, 143–144, 162np, 162, 163–164,

165–166, 167, 173

Mell, P., 271, 272

Mendon, N., 263

Mens, T., 230

Merkle, B., 172

Meunier, R., 71

Michael, C.C., 248, 250

Michalik, B., 189–190

Mirakhorli, M., 83–84, 86, 101–102, 103

Mockus, A., 101–102

Mogyorodi, G., 248

Molter, G., 10–11

Monroe, R., 165

Moran, T.P., 41

Moreno, G., 195

Moritz, E., 85

378 Author Index

Muccini, H., 172

Murphy, G.C., 166

Mustafa, K., 247

Myers, G.J., 3–4

Mylopoulos, J., 6–7, 8

N
Naur, P., 30, 32–33

Newell, A., 41

Nielsen, L., 86

Niemela, E., 165

Nierstrasz, O., 80

Nijhuis, J., 132, 199

Nixon, B.A., 6–7, 8

Nohria, N., 118–119, 209

Noor, M.A., 143, 149

Nord, R.L., 1–3, 5–6, 8, 11–12, 13, 14–15, 132,

146–147, 152, 162np, 163, 172, 189, 191,

199–200, 208–209, 223–225, 319, 323, 325

Northrop, L., 142, 162, 165, 171, 284

Notkin, D., 166

Nuseibeh, B., 6–7, 83–84, 94

O
Obbink, H., 2, 5–6, 13, 146–147, 162np, 163, 199

O’Leary, P., 143

Oreizy, P., 143–144

Ortega, A.R., 281

Ostwald, T., 249

Ozkaya, I., 223–225

P
Paige, R.F., 143, 144, 217–218

Palmer, S.R., 1–2, 149

Papazoglou, M.P., 271–272

Parkhill, D.F., 271

Parnas, D.L., 3–4, 165

Parsons, R., 1–3, 14–15

Patel, C., 3, 12, 14–15

Pathirage, M., 151

Paul, R.J., 3, 12, 14–15

Paulish, D.J., 167

Pei Breivold, H., 317, 323

Pelliccione, P., 172

Perera, S., 151

Pérez, J., 140, 142, 143, 217, 225–227

Perry, D.E., 4

Petersen, K., 132

Petroski, H., 55

Pfleeger, C.P., 247

Pfleeger, S., 230

Pham, A., 225

Pichler, R., 217, 225, 233–234

Pikkarainen, M., 8, 15–17, 114

Pohjalainen, P., 143

Pohl, K., 225–227, 275, 284

Pollio, V., 26–27

Poppendieck, M., 191, 194–195, 323

Poppendieck, T., 191, 194–195, 323

Port, D., 84

Postema, H., 163

Potter, B., 245–246

Putnam, C., 86

Q
Qaisar, E.J., 270, 271, 272

R
Rabhi, F., 8

Rabiser, R., 143, 149

Radosevich, W., 248, 250

Rady, B., 169

Ramakrishnan, C., 247, 264–265

Ramil, J., 230

Ran, A., 2, 5–6, 13, 146–147, 162np, 163, 199

Randell, B., 30, 247, 256

Randy, S., 34

Raskin, J., 31, 32

Rasmusson, J., 132, 215–216, 225

Reenskaug, T., 40, 49, 52

Rehman, S., 247

Reinertsen, D.G., 225–227

Rico, A., 270, 281

Rico Ortega, A., 270, 281

Riebisch, M., 225–227

Rijsenbrij, D., 7, 10–11

Robertson, J., 84, 86

Robertson, S., 84, 86

Rodero-Merino, L., 271

Rodrigues, G.N., 263

Rohnert, H., 71

Rombach, D., 162

Rommes, E., 5–6

Ronkainen, J., 12

Roock, S., 81, 166, 169

Rosenblum, D.S., 263

Ross, K.J., 265

Ross, T., 10

Royce, W., 209, 320

Rozanski, N., 166–167

Rozsypal, S.A., 10, 165, 171, 194–195

Rumbaugh, J., 248–249

Rybczinski, W., 29, 41, 48

379Author Index

S
Sadalage, P.J., 81

Salas, P.A.P., 265

Salo, O., 12

Samanta, D., 263

Samuel, P., 255–256

Sanders, R., 143–144

Sangal, N., 166

Sangwan, R.S., 166

Santos, A.L., 149

Sarcià, S.A., 16–17, 245–246, 247

Schmerl, B., 166

Schneier, B., 249

Schnelle, K.-P., 165

Schwaber, K., 1–2, 12, 191, 198, 200, 202, 274,

317, 321–322, 358–359

Scott, D., 264

Seedorf, S., 119, 132

Sekar, R., 247, 264–265

Sendall, S., 172

Sessions, R., 304

Sfetsos, P., 169

Shah, A., 84

Sharp, R., 264

Shaw, M., 3–4, 10

Shepherd, J., 367

Shin, M.E., 248–249

Shin, Y., 85, 101–102

Shokry, H., 143–144

Shostack, A., 249

Shreyas, D., 245–246

Sinha, V., 166

Siviy, J., 162

Smith, C.U., 10, 11

Smits, H., 216, 221–225

Snowden, D.J., 40

Snyder, W., 249

Sommerlad, P., 71

Sommerville, I., 163

Soni, D., 5–6, 8, 132

Spinellis, D., 323

Sribar, V., 367

Stafford, J., 132

Staite, C., 256

Stal, M., 71, 79, 81

Stamelos, I.G., 169

Starke, G., 340

Stephenson, Z., 143, 144

Stevens, W.P., 3–4

Stocks, P., 248

Strohmeier, A., 172

Subiaco, P., 16–17, 245–246, 247

Sullivan, K.J., 166

Sullivan, M., 169

Sundmark, D., 114, 132, 317, 323

Sutherland, J., 200, 358–359

Sutherland, K.S.J., 12

Svahnberg, M., 141–142, 147–148, 225–227

Swiderski, F., 249

T
Tamai, T., 108

Tang, A., 5–6, 5f, 116–117, 132, 146–147, 162np,

190–191, 196–197, 209

Taylor, R.N., 3, 10, 14–15, 143–144, 162np, 162,

163–164, 165–166, 167, 173

Thackara, J., 32–33, 35, 56

Thapparambil, P., 2

Thompson, H.H., 250

Tian, K., 144, 145

Tidwell, J., 30

Tierney, T., 118–119, 209

Tomayko, J.E., 1–3, 11–12, 14–15, 189, 191,

199–200, 208–209, 319, 323, 325

Tran, J.B., 166

Turner, M., 271

Turner, R., 167, 292, 326

Turpe, S., 250

Tyree, J., 116–117, 118–120

U
Uchitel, S., 246, 251–252, 263

Ungar, D., 34, 48

V
van Bennekum, A., 167

van der Hoek, A., 165

van der Linden, F., 165

van der Ven, J.S., 132

van Grup, J., 141–142, 147–148, 225–227

van Heemst, G.V., 122–123

van Heesch, U., 193–196

van Ommering, R., 165

van Vliet, H., 4, 6–7, 10–11, 116–117, 118–119, 132,

189, 190–191, 197, 208–209

Vaquero, L., 271

Ven, J., 190–191, 199

Vepsäläinen, T., 190–191, 193–194, 197, 201, 206,

207, 209

Vera, J., 10

Vercellone-Smith, P., 166

Vliet, H., 190–191

Vlissides, J., 3–4, 35, 66

Vodde, B., 216

Völter, M., 166

380 Author Index

W
Wallin, P., 114, 132, 317, 323

Wang, X., 143, 144

Warnken, G.W., 10, 165, 171, 194–195

Warsta, J., 12

Watt, R., 16–17

Webb, M., 10, 161–162, 163, 165, 172, 193–194

Weerawarana, S., 151

Weinberg, G., 29–30

Weinberg, J., 29–30

Weinreich, R., 177

Weinstock, C.B., 6–7

Weiss, D.M., 10, 165, 171, 194–195

Weyns, D., 189–190

Whittle, J., 249

Widrig, D., 221

Wieloch, M., 86, 103

Wijesekera, D., 249

Wile, D., 165

Williams, L.G., 10, 11

Wimmel, G., 248

Wing, J., 247, 248

Wirfs-Brock, R., 43

Wirth, P.E., 10, 165, 171, 194–195

Wohlin, C., 132

Wolf, A.L., 4

Wollenberg, B.F., 219

Wood, S., 86

Woods, E., 165, 166–167, 194–195

Woods, S.G., 172

Y
Yannakakis, M., 247, 251

Young, D., 10

Yu, E., 6–7, 8

Z
Zachman, J.A., 342

Zaidman, A., 272, 285

Zaremski, A., 165, 171

Zelesnik, G., 10

Zhu, L., 10, 165, 172

Zimmerman, G.H., 10, 165, 171, 194–195

381Author Index

Subject Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Abstract storage, 70–71

Accelerate delivery, architecture

Agile Bubble myopia, 302

automated deployment pipeline, 311–313

banking system, 302

business context, 302

concentric onion rings, 302

costly and time-consuming, 302–303

early and continuous testing

agile systems-integration project, 309, 310f

architectural documents, 310–311

iteration and release cycle, core agile

elements, 309

level, constraint, 309

nonfunctional static tests, 310

post commit, code, 310

standard test-driven development, 311

test system and test data approach, 310

early integration

Agile Bubble anti-pattern, 306

constraints types, large agile projects,

307, 307t

description, interface, 308

integration testing, 306

stage testing, 308

environment specifications, 303

maximizing capacity

architectural layering, 305

balance, partitioning and complexity, 304

characterizable, 305

composable—services, 304

comprehensible—services, 304

CRC card technique, 305

delivery life cycle, 303

development capacity, 304

development team organization, 303

inherent technical standards, 304–305

“ivory tower” architectures, 303

synergistic partitioning, 304

unit testing costs, 303–304

nonfunctional characteristics, 303

solution components, 303

ADL. SeeArchitecture description languages (ADL)

Agile adoption

architecture and design activity, 360

organizational characteristics, 359–360

principles and practices, 358

waterfall approaches, 360

Agile agenda, 31–32, 53–54

Agile and complex systems development

approaches

agile delivery, 295

agile development practices, 293, 294–295

antithesis of agile, 292

business-case–led increments, 294

development life cycle, 292

duration-based roles, 293

heavyweight process, 292

IT system development projects, 292

low-cost resources, 293

off-shore development capability, 293, 294f

optimal or gold-plated solution, 294

plan-driven projects, 292

Agile architecture

accelerate delivery, 302–313

agile practitioners, 217

agile values, 238

Barry Boehm’s iterative spiral method,

295–296

complex systems development approaches,

294–295

cost reduction, 297–299

COTS, 296

definition, 296–297

life cycle management tooling, 313

lower-level decisions, 296

mechanisms

features, 223

feature tree, 223, 224f

feature-user story product backlog, 226f

identifier, title and statement, 221

meter reading, 221, 222f

Olympic pool, 223–225

product’s characteristic, 221

project’s roadmap, 223–225

Scaling Agile, 221

user stories, 225

mobile and security-based applications, 217–218

portfolio, 218

in practice

iSSF, 234

OPTIMETER I, 235

project requirements, 235, 236f

383

Agile architecture (Continued)

Sprint 1, 235

Sprint 2, 235

Sprint 3, 235–237

Sprint 4, 237

Sprint 5-8, 237

rework minimization

asonable foresight, 299–300

prototypes, 300–301

software architecture design, flexibility

changeability, 225–227

CIA support, 230–232

PPC, 227–229

variability, 225–227

working architecture, 229–230

software architecture, qualities, 218

static testing/simulations, 296

tailored Scrum

backlog grooming sessions, 233–234

decision-making process, 232

delaying decisions, 233–234

Olympic pool, 233

portfolio, 232–233

pregame phase, 232–233

prioritization, 233–234

retrospective meeting, 234

sprint backlog, 234

sprint review meeting, 234

Agile architecture axes framework

architectural design decisions, 116

artifacts, 118–119

decision-making, 117–118

formal/informal responsibility, 118

industrial cases, 117–118

periodicity, 117

Triple-A Framework, 120, 120f

Agile development

architecture, and security testing, 263–264

CQC (see Continuous quality control (CQC))

CSAA (see Continuous software architecture

analysis (CSAA))

risk reduction, 167

security testing (see Security testing)

Agile-inspired variability handling

approach, 146–147, 146f

generic architecture design activities, 147

mapping, 148

phase 1, 147

proactive, 146–147

software architecture level, 147–148

up-front analysis, 148

Agile methods

attribute-driven design, 325

concurrent testing, 324

continuous integration, 322

enablement, 325

enterprise-wide distributed development,

324–325

evolutionary design, 322–323, 324t

formal change management, 324

measured performance, 324

practice selection, 325

refactoring, 322

scaling factors, 323–324

TDD, 322

team change management, 322

user story-driven development, 322

Agile software development (ASD)

Agile Manifesto, 11–12

architectural issues, 2

architectural repositories management,

techniques

AIR, 196–197

AKM infrastructure, 198

bookkeeping tool, ATAM, 197–198

ISO/IEC 42010, 197

TopDocs, 197

architecture-centric principles, 3

architecture evaluation methods, agility, and

AKM

ASRs, 194

ATAM, 194

DCAR, 195–196

decision documentation, 196

decision drivers, 196

heavyweightness, ATAM, 194–195

integration, ATAM, 195

lightweightness, DCAR, 196

proper time, 195

system design, risk, 194

description, 1–2

extreme programming (XP), 13–14

Scrum, 12–13

Agility

code refactoring, 270

multitenancy monotarget, 275–276

and multitenant architectures, 274–275

replication, 276

SPLE and, 275

AIR. SeeArchitectural information repository (AIR)

Alignment, architecture

agile developer team, 344

conflicts and contradicting requirements, 343

different skill sets, architects and developers,

344, 344f

knowledge distribution, 344, 344f

384 Subject Index

repeating cycle, implementation and

refactorings, 343

skill set, 344

soft skills, 344

ALMA. See Architecture level maintainability

analysis (ALMA)

Alpha case

phase one, 121–122

phase two, 122

shifts, 122

software system construction, 121

Analysis goals. See also Continuous software

architecture analysis (CSAA)

analysis methods and, 173, 175t

architecture implementation, 176

completeness analysis, 174–176

correctness analysis, 176

internal completeness, 176

AOP. See Aspect-oriented programming (AOP)

Architectural information repository (AIR), 190

Architecturally savvy personas (ASPs)

imaginary communication device for Spies, 108

mechatronics traceability, 106–107

online trading, 108

Architecturally significant requirements (ASRs)

architectural preservation, 101–105

definition, 6

design space, 86–87

discovery, 87–93

driving architectural design, 93–101

Gilb’s Planguage method, 84

IEEE Software, 84

quality attributes, 6–7

Robertson and Robertson’s Volere approach, 84

set of personas, 85–86

Six Elements Scenario Generation

Framework, 7t, 8

TraceLab project, 84–85

Architectural preservation

change impact analysis, 103–105

generating persona-centric perspectives, 103

trace by subscription, 103

Architecture assessment

applications and metrics, 74

identification, architecture smells and design

problems, 73

software and refactoring, iterations, 67, 67f

Architecture decisions

agile axes framework, 116–121

agile software development, 114

artifacts, 118–119

computational modeling, 132

creation, software systems, 114

decision process, 114

design decision research hierarchical

structures, 132

documentation, 132

feedback loop, 119–120

identified problems, 129–130

industrial cases, 119–120

mapping, Triple-A Framework, 128

reflection, 130–132

research methodology, 115–116

software development organizations, 115

visual representation, Triple-A Framework,

133–135

Architecture description languages (ADL),

165–166

Architecture heritage

architecture-centric methods, 317–318

architecture proving, 318

asset reuse, 318

component-based development, 318

decision capture, 318

design documentation, 317–318

multiple views, 318

plan-centric methods, 317

quality attribute-driven development, 318

waterfall, iterative, and agile methods, 319

Architecture knowledge management (AKM)

agile architecture documentation, challenges

Agile Manifesto, 191–192

cofidification, 193

fragmentation, 192

information packages, 193

separated architecture documentation, 192

size, 192

storing, 193

agile development, 190

agile software development, supporting

techniques, 193–198

AIR, 190

architectural information flow in industry

big-up-front-design and sprint-zero

approaches, 202, 202f

in-sprints approach, 204

interviewees comments, 204–205

interview setup, 201

limitations, 205

patterns, 203–204

results, 202–204

codification and personalization, 209

definition, 189

lightweight, 190

Scrum (see Scrum)

software development, 191

385Subject Index

Architecture level maintainability analysis (ALMA),

10, 11

Architecture trade-off analysis method (ATAM),

10–11, 193–194

ASD. See Agile software development (ASD)

Aspect-oriented programming (AOP)

inventors, 48

objectives, 48

ASPs. See Architecturally savvy personas (ASPs)

ASRs. See Architecturally significant requirements

(ASRs)

ATAM. See Architecture trade-off analysis

method (ATAM)

Automated deployment pipeline

automation level, 312–313

collaborative application life cycle management

tools, 312

development scripts, 311–312

environment specifications, 311

formal process, 312

level, 312–313

stages, non-development testing, 311

standardization and machine virtualization, 312

testing strategies, 313

tools and scripts, 312

Aviva UK

agile adoption (see Agile adoption)

business agility, 358

“change-time” architecture, 371–372

design activity, 358–359

incremental agile and architecture transformation,

372–373

layered architecture, 367–371

longer-term maintenance costs, 358

“pure” Scrum approach, 358

“run-time” architecture, 371–372

sufficient up-front architecture and design

architecture and design uncertainties, 364

design activity, 365, 366f

development skills, 361

form, resolution, 362–363

integration knowledge, 364

IT solution architecture, 363

legacy policy administration system, 361

management, uncertainty, 362

optimum timescales, 364–365

project initiation, 363

service development, 367

solution architecture community, 365–366

stages, agile adoption, 364

suitability, design, 363–364

up-front architectural decisions, 363

waterfall approach, 366–367

waterfall software delivery lifecycle, 358

B
Barry Boehm’s iterative spiral method, 295–296

BDUF. See Big design up front (BDUF)

Beta case

administrative case management system, 122–123

Java technology, 122–123

phase one, 123

phase two, 123

shifts, 123

“Big Bang” approach, 65

Big design up front (BDUF), 316–317

“Booch diagrams”, 36

Breaking dependency cycles

patlet, 75, 76f

time stamps, 75, 76f

BUs. See Business units (BUs)

Business units (BUs), 125

C
CBP. See Common business processing (CBP)

Change impact analysis (CIA)

algorithm, 232

Alternative Design Decisions, 231

architectural knowledge, 230

Closed Design Decisions, 230

documentation of knowledge, support, 231

Open Design Decisions, 231

Optional Design Decisions, 231

techniques, 231–232

CIA. See Change impact analysis (CIA)

Cloud computing

cloud services, 271

Globalgest (see Globalgest)

multitenancy architectures

(see Multitenancy (MT))

multitenancy multitarget (see Multitenancy

multitarget (MT2))

PaaS, 271

SaaS architectures (see Software as a

Service (SaaS))

utility computing and SaaS, 271

CMSs. See Content management systems (CMSs)

Code quality management (CQM), 166

Code refactoring

areas, research, 81–82

“code smells”, 67–70

extract method, code fragments, 65, 65f

Commercial-off-the-shelf (COTS) software, 296

Common business processing (CBP), 279

Content management systems (CMSs), 270

Continuous architecture

assessment, 73

prioritization, 73

386 Subject Index

QA, 74

refactoring activities, 67f, 73–74

Scrum process, 74

selection, 74

Continuous quality control (CQC)

approaches, characteristics, 169–170

build server, 169

continuous code analysis, 169

continuous refactoring, 169

continuous testing, 169

pair programming, 169

regression testing, 169

TDD, 169

Continuous software architecture analysis (CSAA)

Ad hoc analysis, 172

ADLs, 172

analysis goals (see Analysis goals)

approaches and CQC requirements, 174t

architecture analysis and, 168

architecture/implementation conformance

rules, 179

architecture prototyping approaches, 172

automated, 184

automatic evaluation, 183

average lifespan, problem, 180–181, 181f

completeness rules check, 178–179

consistency rules check, 179

CQC approaches (see Continuous quality control

(CQC))

dependency analysis and metric-based

analysis, 172

dependency analysis approaches, 173

experiences, 176–182

heavyweight architecture reviews, 171

lightweight architecture reviews, 171–172

LISA Toolkit, 177–178, 177f

problem detection, 180, 180t

process, 170–171, 171f

quick fixes, 178, 181, 182t

risk reduction, 183

SAAM, 172

software architecture analysis (see Software

architecture analysis)

validation, 179–182

Cost reduction, architecture

off-shore development, 297–298

TCO, 298–299

CQC. See Continuous quality control (CQC)

CQM. See Code quality management (CQM)

CRM. See Customer relationship management

(CRM)

CSAA. See Continuous software architecture

analysis (CSAA)

Customer relationship management (CRM), 270

D
Data, Context, and Interaction (DCI)

advantages, 51

and agile agenda, 53–54

and architecture (see Software architecture)

class-oriented programming, 53

form and function

“anthropomorphic” techniques, object

orientation, 34

architecture determination, object foothold,

35–36

coupling and cohesion, 33

creation, built artifacts, 37

modules, 36–37

patterns, 34

postmodernism, 35

prototype-based approaches, 34

software engineering and architecture, 36

technology-based community, 34

full OO, 50

MVC (see Model-view-controller (MVC))

network paradigm, 42–43

object canon, 45–49

object orientation (see Object orientation)

patterns, 43–44

and Restricted OO, 50–51, 50f, 52

shear layers, built artifacts, 42

use cases, 44, 45f

DCI. See Data, Context, and Interaction (DCI)

Deep architecture refactoring, 75

Delta case

BUs, 125

management and evolution, product architectures,

125

phase one, 125

phase two, 126

shifts, 126

Design for change

analysis paralysis, 347

architectural decisions, 349

business domain, 348

design time, 348

flexibility points, 349

repeating cycle, implementation and

refactorings, 349

scenario-based architecture assessment, 348

types, reaction, 347–348

understandability, 348

Design for understandability

design decisions, 347

distilling, 347

lifecycle, system, 346

stable interfaces, 346–347

structure, solution domain, 346

387Subject Index

Design space, 86–87

Design vulnerability detection, 247

Discovering ASRs

embedding architectural concerns into personas,

90–93

from features to architectural concerns, 87–90

process for exploring user stories and creating

personas, 87, 88f

DMSs. SeeDocument management systems (DMSs)

Documenting software architecture (SA)

boxes and lines notation, 9

4þ1 View Model

development view, 9

logical view, 9

physical view, 10

process view, 9

scenarios, 10

Views and Beyond (V&B) approach, 10

Document management systems (DMSs), 270

Driving architectural design

all-inclusive examples

Achieving Multi-Language Compatibility and

Portability, 95–96

Achieving Plug and Play, 99

Architectural Issues Template, 101

model view view model (MVVM) architecture,

96, 98–99

user stories and architectural decisions,

98f, 99f

generating and evaluating architectural solutions,

95

goal analysis, 94–95

E
Emergent architecture

activities, 340–341

alignment, 343–345

characteristics, 336

definition, 336

design, change, 347–349

design, understandability, 346–347

vs. explicit, 349–352

implementation, nonfunctional

requirements, 346

joint approach, agile architecture, 352–354

objectives

agile approach, 342

efficiency, 342

functionality, 341

maintainability, 342

portability, 342

reliability, 341

usability, 341

object-oriented designs, 336

purpose, 339–340

refactoring, 337

structuring, 345

test-driven development cycle, 336

Enterprise resource planning (ERP), 270

Epsilon case

phase one, 126–127

phase two, 127

shifts, 127

web-based product, 126

ERP. See Enterprise resource planning (ERP)

Explicit vs. emergent architecture

alignment, 349

architectural constraints, 351

architectural work, 350–351, 350f

design, change/alignment, 351

implementation of nonfunctional

requirements, 349

nonfunctional requirements, 351

software development knowledge, 352

structuring, 349

Extreme programming (XP)

collective ownership, 14

continuous integration, 14

description, 13–14

fourty-hour weeks, 14

just rules, 14

metaphor, 13

on-site customer, 14

open workspace, 14

pair programming, 13

planning game, 13

refactoring, 13

simple design, 13

small releases, 13

tests, 13

G
Gamma case

medium-sized product company, 124

phase one, 124

phase two, 124

shifts, 124–125

Globalgest

advantages, 283

HTMLCreator, 283–284, 283f

IBP classes, 283

multitarget applications, 284

new client setup process, 281–282, 282f

rapid provisioning, 281

SMS functionality, 283–284, 284f

tenants subscription, 283

388 Subject Index

H
Heavyweight reviews, 165

High-level MSC (hMSC), 251–252

Howard Cannon’s Flavors system, 48

I
IBP. See Individual business processing (IBP)

Implied scenarios

application, 252–253

automated verification techniques, 252

definition, 251

detection, 251–253

label transition systems (LTSs), 251, 252

live security testing, 254

management models, 259

MSCs specifications, 251–252

review of detected, 253–254

Scrum and, mapping, 255f

Individual business processing (IBP), 280

Industrial cases

case alpha, 121–122

case beta, 122–123

case delta, 125–126

case epsilon, 126–127

case gamma, 124–125

characteristics, 127, 127t

K
Kay model, object orientation, 37–38

L
Label transition systems (LTSs), 251

Layered architecture

advantages, 368

Aviva UK layered approach, 369, 370f

business requirement and incumbent architecture,

370

end-to-end business functionality and

value, 370

full test and release cycle, 369

integration/regression testing, 368

pace layering approach, 367–368

quality-focused engineering, 370

service interfaces, 368

slower-paced regulatory change, 370

transformation activity, 368

Lean Architecture, 55

Lightweight reviews, 165

LTSs. See Label transition systems (LTSs)

M
Mechatronics Traceability Project, 106–107

Mental system models, object orientation, 38

Message sequence charts (MSCs), 251–252

Meta object protocols (MOPs), 49

Model-view-controller (MVC)

Fortran/Pascal and use case models, 41

orthogonal, DCI, 43

partitioning, 39

surface, Kay’s communication paradigm, 40–41

user mental models, 41

MOPs. See Meta object protocols (MOPs)

MSCs. See Message sequence charts (MSCs)

MT. See Multitenancy (MT)

MT2. See Multitenancy multitarget (MT2)

Multitarget master panel (MTMP), 277

Multitenancy (MT)

administrative and instance tiers, 272, 273f

agility and, 274–275

architectures, 272–274, 273f

cloud computing, 272

Globalgest, 270

metadata usage, 272

monotarget, agility challenges, 275–276

MTAs, 270

MTMP, 272, 273f

supporting agility, 276–281

tenants, 272

Multitenancy multitarget (MT2)

architecture model, 278f

business process reutilization, 279–281

CBP, 279

end-user level, 281

functional portfolio management, 278

Globalgest (see Globalgest)

IBP, 280

MT2 metadata, 278–279

MTMP and, 277

multitarget market, 277

multitarget security, 281

static and dynamic import, 280f

tenant level, 281

Multi-tenant master panel (MTMP), 272

MVC. See Model-view-controller (MVC)

O
Object canon

class thinking, 46

epicycles, 48–49

locality/intentionality, lack of, 46–47

object-oriented programming, 45–46

traditional object orientation, 47–48

389Subject Index

Object orientation

Kay model, 37–38

Mental system models, 38

MVC (see Model-view-controller (MVC))

software patterns, 39

use cases, 39–40

OBS. See Online bargain shop (OBS)

One-time password (OTP), 260

Online bargain shop (OBS), 256

Online trading, ASPs, 108

OTP. See One-time password (OTP)

P
PaaS. See Platform as a Service (PaaS)

PASA. See Performance assessment

of SA (PASA)

Performance assessment of SA (PASA), 10, 11

Piecemeal growth approach, 65, 67, 78

Plan-centric methods

case-driven development, 321

release planning, 321

shared vision, 321

Plastic partial components (PPC)

clustering, 227

OPTIMETER-Sprint III, 228f

partial, 227

plastic, 229

variability, 227

Platform as a Service (PaaS), 271

PPC. See Plastic partial components (PPC)

Prototypes, 166–167

Q
QA. See Quality assurance (QA)

Quality assurance (QA)

architecture assessment, 74

formal approach, 74

piecemeal growth, 78

testing, 71, 74

R
Rational Unified Process (RUP), 319, 319f

Reengineering, 79–80, 80t

Refactoring techniques, software architecture

erosion prevention

abstraction, warehouse management system,

70–71, 70f

applicability, 79

architectural smells, 67–70

and assessment, 67, 67f

“Big Bang” approach, 65

breaking dependency cycles, 75

code (see Code refactoring)

continuous (see Continuous architecture)

definition, 64

design erosion, 64, 64f

development process, 78

management and organization, 78

observer pattern, 66, 66f

piecemeal growth approach, 65

quality, 72–73

software architects, reengineering/rewriting,

79–80, 80t

splitting subsystems, 75–77

structure, implementation, 66

tactics, transformation patterns, 71, 72f

technology and tools, 78

RUP. See Rational Unified Process (RUP)

S
SA. See Software architecture (SA)

SAAM. See SA analysis method (SAAM)

SA analysis method (SAAM), 10–11

SaaS. See Software as a Service (SaaS)

Scrum

agile architecting (see Agile architecture)

agile practitioners, 216, 217

agile principles, 215–216

agile project management, 198, 199f

in AKM

AIR usage, 207

big-up-front-architecture and sprint-zero

architecting approaches, 202f, 205–207,

206f

DCAR bookkeeping tool, 206–207

in-sprints architecting approach, 203f,

207

separated-architecture-team architecting

approach, 207–208

analysis phase, 198

big-up-front-design practice, 200

in-sprints practice, 200

metering management system

IMPONET, 219

meter capturing, 220

meter processing, 220

meter providing, 221

OPTIMETER, 219–220, 219f, 220f

real-time data processing, 219–220

Smart Grids, 219

separate-architecture-team approach, 200

software architecture, 199

software system, failure, 216

sprints, 198

sprint-zero practice, 200

tailored Scrum (see Agile architecture)

390 Subject Index

Security testing

abstraction, 264

agile software development, 250–251

agility, 254–255, 260

application phase, 263

approach

Stage 1: implied scenario detection, 253

Stage 3: performing live security testing, 254

Stage 2: review of detected implied scenarios,

253–254

attacker model, 265

Cybercop, 249

device-based identification, 256, 258f

generality and applicability, 263

hacking and, 250

hybrid model, two-factor authentication, 262f

implementation model, 265

implied-scenario-detection algorithms,

255–256

implied scenarios (see Implied scenarios)

ISS scanner, 249

LTSA-MSC tool, 255–256

management identification, 255–260

OBS, 256

OTP, 260

post-implementation methods, limitations

functional testing, 248

penetration testing, 248–249

requirements-based testing, 248

threat modeling, 249

research motivation, 246–247

retailers and wholesalers, 256

scalability, 263

service-based identity management model, 257f,

261f, 262f

specification model, 265

traditional software testing techniques, 264

Shallow architecture refactoring, 75

Smalltalk, 42

Software architecture (SA)

and agile agenda, 31–32

analysis (see Software architecture analysis)

ASRs, 6–8

characterization, 28–29

CSAA (see Continuous software architecture

analysis (CSAA))

DCI and network computation model, 58

DCI and postmodern view

changes, 56

characterization, 55

compositional strategies, individual

parts, 55

human-centric agenda, 56

objects, 55

defined, 4

definition, 28

description, 3–4

design, DCI application, 54, 54f

design methods, 8

documenting, 9–10

Dynabook, 31

evaluation, 10–11

firmitas, utilitas and venustas, 58–59

form and structure, 29

metaphor (see Software architecture metaphors)

non-functional requirements (NFRs), 16–17

objectives, 29

pattern community, 30

patterns and DCI, 56–58

placing agile and architectural practices, 7t, 15

principles and practices, 15–16, 30

process and lifecycle

analyze problem domain, 5

architectural evaluation, 5

attribute-driven design (ADD) method, 5–6

design and describe architectural decisions, 5

maintenance of architecture, 6

realize architecture, 6

rationalunifiedprocess (RUP)andXPprocess,14–15

Responsibility-Driven Architecture (RDA)

approach, 16–17

solution, 17

Software architecture analysis

Ad hoc analysis, 167

ADL, 165–166

aim, 163

architecture reviews, 164–165

automatic analysis, 163–164

compatibility analysis, 164

completeness analysis, 164

consistency analysis, 164

correctness analysis, 164

definition, 162

dependency analysis approaches and architecture

metrics, 166

process, 163, 163f

prototypes, 166–167

scenario-based evaluation methods, 165

system’s architecture quality, 163–164

validation and verification, 163

Software architecture documentation

Agile Manifesto, 191–192

cofidification, 193

fragmentation, 192

information packages, 193

separated, 192

size, 192

storing, 193

391Subject Index

Software architecture metaphors, 32

Software architecture process

agile methods, 321–323

architecture heritage, 317–319

BDUF, 316–317

definition, 315–316

elements, development environment,

329–330, 329f

evolution, species, 315

incremental adoption patterns, 331, 331f

iterative development

definition, 320

plan-centric methods, 320–321

risk-value lifecycle, 320

RUP, 319, 319f

waterfall methods, 319

method-tailoring considerations, 328, 328t

minimization, productivity dip, 331–332,

332f

project lifecycle selection framework,

326–327, 327t

software development lifecycles, 317

technology-independent factors, 316

Software as a Service (SaaS)

cloud computing, 271

MTAs, 275

tenants and, 272

utility computing, 271

vendors, 279

Software product line engineering (SPLE),

275, 284

SPLE. See Software product line engineering

(SPLE)

Splitting subsystems

actual container and distribution middleware,

75–77, 77f

development, proprietary container infrastructure,

75–77

Structuring, emergent architecture

architectural structure, 345

e-mails, 345

emergent coding and refactoring cycle, 345

orientation and communication, 345

T
TCO. See Total cost of ownership (TCO)

Test-driven design (TDD), 78, 81

Test-driven development (TDD), 169, 322

Total cost of ownership (TCO), 298–299

Traceability, 217, 231–232

U
UML. See Unified Modeling Language (UML)

UML 2.0, 9–10

Unified Modeling Language (UML), 36, 40

Use cases

design emergence, 44, 45f

object-oriented design, 44

V
Variability

agile-inspired handling, 146–155

agile-inspired lightweight approach, 155–156

agile methods, 140

architectural profile, 149–150

architecture evaluation and testing, 151–154

arguments, combination, 145

challenges, integration, 144–145

conduct initial analysis, 149

creation, architecture, 150–151

definition, 139–140

design, software systems, 140–141

Dutch e-government system, 148–149

dynamic and adaptive architectures, 143–144

implement initial architecture, 154

lightweight feature model, 143

one type, variability-intensive systems, 143

principles, Agile Manifesto, 142, 142t

production-focused projects, 141

product line engineering, 143

refactor architecture, 155

requirements, 154

revise architecture variability profile, 154–155

service-oriented architectures, 143–144

software architecture, 140

software artifacts, 141–142

software product line domain, 142

variability-handling approach, 156–157

web services, 139–140

W
Working architecture

architectural connections, 230

architecture runway, 229

continuous architecting, 229

PPCs/components, 229

selection, 229–230

variants, 230

X
XP. See Extreme programming (XP)

392 Subject Index

	Front Matter
	Copyright
	Acknowledgments
	About the Editors
	Muhammed Ali Babar
	Alan W. Brown
	Ivan Mistrik

	List of Contributors
	Foreword by John Grundy Architecture vs Agile: competition orcooperation?
	Software Architecture-the ``Traditional´´ View
	Agile Methods-the ``Traditional´´ View
	Software Architecture-Strengths and Weaknesses with Regard to Agility
	Agile-Strengths and Weaknesses with Regard to Software Architecture
	Bringing the Two Together-Agile Architecting or Architecting for Agile?
	Looking Ahead
	References

	Foreword by Rick Kazman
	Preface
	Part I: Fundamentals of agile architecting
	Part II: Managing software architecture in agile projects
	Part III: Agile architecting in specific domains
	Part IV: Industrial viewpoints on agile architecting

	Making Software Architecture and Agile Approaches Work Together: Foundations and Approaches
	Introduction
	Software architecture
	Software architecture process and architecture lifecycle
	Architecturally significant requirements
	Software architecture design methods
	Documenting software architecture
	Software architecture evaluation

	Agile software development and architecture
	Scrum
	Extreme programming

	Making architectural and agile approaches work
	References

	The DCI Paradigm: Taking Object Orientation into the Architecture World
	Introduction
	Agile apologia
	Architecture and DCI

	The vision: what is architecture?
	Why do we do architecture?
	Into software
	Why software architecture?
	Architecture and the agile agenda
	DCI as an integrative view of the architecture metaphor

	Form and function in architectural history
	Historic movements and ideologies
	Enter postmodernism
	Architecture finds an object foothold
	Software engineering and architecture today
	Measures of the vision

	What is object orientation? Achieving the vision
	The Kay model
	Mental system models
	Model-view-controller
	Patterns
	Use cases
	Many views of objects and the boundaries of MVC

	Shortcomings of the models
	The network paradigm
	Model-view-controller
	Patterns
	Use cases
	The object canon
	Object-oriented programming isn’t about classes
	Class thinking isn’t limited to class systems
	Lack of locality of intentionality
	Summary of the shortcomings
	Epicycles: early visions of relief

	DCI as a new paradigm
	A DCI overview
	Full OO
	Restricted OO
	Data, Context, and Interaction

	Relating DCI to the original OO vision
	How DCI achieves the vision of Restricted OO
	How DCI overcomes the shortcomings of class-oriented programming

	DCI and the agile agenda

	DCI and architecture
	DCI and the postmodern view
	Ideas over objects
	Compositional strategies over individual parts
	A human-centric agenda
	Focus on change

	Patterns and DCI
	DCI and the network computation view
	Firmitas, utilitas, and venustas

	Conclusion
	References
	Further Reading

	Refactoring Software Architectures
	Introduction
	Dealing with design flaws
	Evolution and styles of refactoring?code refactoring
	Evolution and styles of refactoring?refactoring to patterns
	The motivation for software architecture refactoring
	Architectural smells
	A real-world example
	Quality improvement
	The process of continuous architecture improvement
	Shallow and deep refactoring
	Additional examples of architecture refactoring patterns
	Breaking dependency cycles
	Splitting subsystems

	Known obstacles to architecture refactoring
	Comparing refactoring, reengineering, and rewriting
	Summary
	References

	Driving Architectural Design and Preservation from a Persona Perspective in Agile Projects
	Introduction
	Personas in the design space
	Discovering ASRs
	From features to architectural concerns
	Embedding architectural concerns into personas

	Personas for driving architectural design
	Goal analysis
	Generating and evaluating architectural solutions
	Examples

	Personas and architectural preservation
	Trace by subscription
	Generating persona-centric perspectives
	Examples

	ASPs in other project domains
	Mechatronics traceability
	Online trading
	Bond, James Bond

	Conclusions
	References

	Architecture Decisions: Who, How, and When?
	Introduction
	Research methodology
	The agile architecture axes framework
	Who makes the architectural decisions?
	What artifacts are used to document the decision?
	What is the feedback loop of an architectural decision?
	Summary of the axes

	Industrial cases
	Case Alpha
	Phase one
	Phase two
	Shifts

	Case Beta
	Phase one
	Phase two
	Shifts

	Case Gamma
	Phase one
	Phase two
	Shifts

	Case Delta
	Phase one
	Phase two
	Shifts

	Case Epsilon
	Phase one
	Phase two
	Shifts

	Overview

	Analysis
	Mapping the cases to the Triple-A Framework
	Identified problems
	Summary

	Reflection
	Findings
	Questions of validity

	Related and future work
	Conclusions
	A visual representation of the case studies mapped on the Triple-A Framework
	References

	Supporting Variability Through Agility to Achieve Adaptable Architectures
	Introduction
	Background
	Variability
	Agility

	Related Work
	Challenges when combining variability and agility
	Arguments for combining variability and agility
	Agile-Inspired variability handling
	Industrial context: Dutch e-government
	Step 1: conduct initial variability analysis
	Step 2: create initial architecture variability profile
	Step 3: create architecture
	Steps 4a and 4b: evaluate architecture
	Step 5: implement initial architecture
	Step 6: elicit new variability requirements
	Step 7: revise architecture variability profile
	Step 8: refactor architecture

	Summary and conclusions
	References

	Continuous Software Architecture Analysis
	Introduction
	Software architecture analysis
	Approaches to software architecture analysis
	Architecture reviews
	Scenario-based evaluation methods
	Architecture description languages
	Dependency analysis approaches and architecture metrics
	Architecture prototyping
	Ad hoc analysis

	Continuous software architecture analysis
	CSAA and different kinds of architecture analysis
	Approaches for continuous quality control CQC
	Characteristics of CQC approaches
	CSAA process

	CSAA in existing approaches
	CSAA and analysis goals
	Experiences with an approach to CSAA
	Validation

	Findings and research challenges
	Conclusion
	References

	Lightweight Architecture Knowledge Management for Agile Software Development
	Introduction
	Challenges of agile architecture documentation
	Supporting techniques for AKM in agile software development
	Architecture evaluation methods, agility, and AKM
	Advanced techniques for managing architectural repositories

	Architecture practices in agile projects
	Scrum framework
	Architecting while using Scrum

	Architectural information flow in industry
	Interview setup
	Results
	General comments from interviewees
	Limitations

	AKM in Scrum
	Big-up-front-architecture and sprint-zero architecting approaches
	In-sprints architecting approach
	Separated-architecture-team architecting approach

	Related work
	Conclusions
	References

	Bridging User Stories and Software Architecture: A Tailored Scrum for Agile Architecting
	Introduction
	Agile architecting
	Case study: metering management system in electrical power networks
	Agile architecting mechanisms
	Feature pool and feature tree of user stories
	Flexibility in software architecture design
	Plastic partial components
	Working architecture

	Agile design decisions: CIA support

	A tailored Scrum for agile architecting
	Agile architecting in practice
	Findings about agile architecting
	References

	Architecture-Centric Testing for Security: An Agile Perspective
	Introduction
	Research motivation
	Overview of limitations in current post-implementation methods
	Functional testing of security apparatuses
	Penetration testing
	Threat modeling
	Discussion

	Introducing implied scenarios
	Detecting implied scenarios

	Approach
	Stage 1: implied scenario detection
	Stage 2: review of detected implied scenarios
	Stage 3: performing live security testing

	The agility of the approach
	Identity management case study
	Case study background
	Approach and results

	Further discussion
	Agile development, architecture, and security testing
	Related work
	Conclusion
	References

	Supporting Agile Software Development and Deployment in the Cloud: A Multitenant, Multitarget Architecture
	Introduction
	Cloud computing
	Multitenancy architectures
	Agility and multitenant architectures
	Multitenancy monotarget: agility challenges
	Supporting agility: multitenancy multitarget
	Functional portfolio management
	Multitarget metadata MT2 metadata
	Business process reutilization
	Multitarget security

	Globalgest: A real MT2 system
	Related work
	Conclusions and future work
	References

	Chapter 12: Agile Architecting: Enabling the Delivery of Complex Agile Systems Development Projects
	Agile and complex systems development approaches need to merge and adapt
	Why do complex system development best practices need to incorporate agile best practices?
	Why do complex system development projects need architecture?

	Identifying the right amount of architecture��
	Cost reduction through architecture
	Reduce costs by enabling the use of off-shore development
	Reduce costs by considering Total Cost of Ownership TCO

	Minimize rework through architecture
	Minimize rework through reasonable foresight
	Minimize rework via prototypes

	Accelerate delivery through architecture
	Accelerate the delivery pipeline by incorporating multiple perspectives
	Accelerate delivery by maximizing capacity
	Accelerate delivery through early integration
	Accelerate delivery via early and continuous testing
	Accelerate delivery via an automated deployment pipeline

	Conclusion
	References

	Building a Platform for Innovation: Architecture and Agile as Key Enablers
	Introduction
	Worlds collide
	An architecture heritage
	Iterative development
	Along came agile
	Agile with discipline
	Beyond architecture and agile
	Define a project lifecycle selection framework
	Tailor the method
	Consider all elements of a development environment
	Adopt change incrementally
	Implement a center of excellence

	Summary
	References

	Opportunities, Threats, and Limitations of Emergent Architecture
	Introduction
	A brief definition of emergence
	The idea of emergent architecture

	Purpose, activities, and objectives of architecture
	Purpose?the Why of architecture
	Activities?the How of architecture
	Objectives?the What of architecture

	Analysis of emergent architecture
	Alignment
	Structuring
	Implementation of nonfunctional requirements
	Design for understandability
	Design for change

	Discussion
	Comparison of explicit and emergent architecture
	A joint approach

	Conclusion
	References

	Architecture as a Key Driver for Agile Success: Experiences at Aviva UK
	Introduction
	Challenges to agile adoption at Aviva UK
	The key role of architecture in driving agile success
	Sufficient up-front architecture and design
	Determining what is ``sufficient´´ up-front architecture and design activity
	Continuing architecture and design activity during sprints

	Layered architecture enabling independent change agility
	``Change-time´´ architecture and ``run-time´´ architecture

	Incremental agile and architecture transformation
	Conclusions
	References

	Author Index
	Subject Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

