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Preface

In this book, we study approximate solutions of common fixed point and convex
feasibility problems in the presence of perturbations. A convex feasibility problem
is to find a point which belongs to the intersection of a given finite family of subsets
of a Hilbert space. This problem is a special case of a common fixed point problem
which is to find a common fixed point of a finite family of self-mappings of a
Hilbert space. The study of these problems has recently been a rapidly growing
area of research. This is due not only to theoretical achievements in this area,
but also because of numerous applications to engineering and, in particular, to
computed tomography and radiation therapy planning. In the book, we consider
a number of algorithms, which are known as important tools for solving convex
feasibility and common fixed point problems. According to the results known in
the literature, these algorithms should converge to a solution. But it is clear that in
practice it is sufficient to find a good approximate solution instead of constructing a
minimizing sequence. In our recent book Approximate Solutions of Common Fixed
Point Problems, Springer, 2016, we analyzed these algorithms and showed that
almost all exact iterates generated by them are approximate solutions. Moreover, we
obtained an estimate of the number of iterates which are not approximate solutions.
This estimate depends on the algorithm but does not depend on the starting point.
In this book, our first goal is to generalize these results for perturbed algorithms
in the case when perturbations are summable. These generalizations are important
because such results find interesting applications and are important ingredients
in superiorization and perturbation resilience of algorithms. The superiorization
methodology works by taking an iterative algorithm, investigating its perturbation
resilience, and then using proactively such perturbations in order to “force” the
perturbed algorithm to do in addition to its original task something useful. Our
second goal is to study approximate solutions of common fixed point problems in
the presence of perturbations which are not necessarily summable. Note that in our
recent book mentioned earlier it was shown that if perturbations are small enough,
then we have an approximate solution during a certain number of iterates, and an
estimate for this number of iterates was obtained. But these results do not show
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what happens with subsequent iterates, when an approximated solution is obtained.
In this book, we show that if our algorithms are cyclic and a computational error
is sufficiently small, then beginning from a certain instant of time iterates become
approximate solutions. This instant of time depends on the algorithm but does not
depend on its starting point.

This book contains eight chapters. Chapter 1 is an introduction. In Chapter 2, we
study iterative methods in metric spaces. The dynamic string-averaging methods for
common fixed point problems in normed space are analyzed in Chapter 3. Dynamic
string methods, for common fixed point problems in a metric space, are introduced
and studied in Chapter 4. Chapter 5 is devoted to the study of the convergence of
an abstract version of the algorithm which is called in the literature as component-
averaged row projections or CARP. In Chapter 6, we study a proximal algorithm for
finding a common zero of a family of maximal monotone operators. In Chapter 7,
we extend the results of Chapter 6 for a dynamic string-averaging version of the
proximal algorithm. In Chapter 8, subgradient projection algorithms for convex
feasibility problems are studied for infinite-dimensional Hilbert spaces.

Theorems 2.1 and 3.1 were obtained in [125]. All other results are new.

Haifa, Israel Alexander J. Zaslavski
November 16, 2017
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Chapter 1 ®
Introduction Check for

In this book we study approximate solutions of common fixed point and convex
feasibility problems in the presence of perturbations. A convex feasibility problem
is to find a point which belongs to the intersection of a given finite family of convex
subsets of a Hilbert space. This problem is a special case of a common fixed point
problem which is to find a common fixed point of a finite family of nonlinear
mappings in a Hilbert space. Our goal is to show the convergence of algorithms,
which are known as important tools for solving convex feasibility and common
fixed point problems. Some of these algorithms are discussed is this chapter.

1.1 Common Fixed Point Problems in a Metric Space

Let (X, d) be a metric space. For each x € X and each nonempty set E C X put
d(x, E) =inf{ld(x,y) : y € E}.

For each x € X and each r > 0 set
Bx,r)={ye X:dx,y) <r}.

Let m be a natural number, ¢ € (0,1) andlet P; : X — X,i = 1,...,m be
self-mappings of the space X. Suppose that for every i € {1, ..., m},

Fix(P) :={ze X: Pi(z) =z} #0.
We also suppose that for every i € {1, ..., m} the inequality

d(z,x)* > d(z, Pi(x))* + &d(x, P;(x))*

© Springer International Publishing AG, part of Springer Nature 2018 1
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holds for all x € X and all z € Fix(P;). Set
F =N Fix(P)).

Elements of the set F are solutions of the common fixed point problem.

It should be mentioned that if the space X is Hilbert and for alli = 1, ..., m,
the mapping P; is the projection on a convex closed set C; C X, then we have a
convex feasibility problem which has numerous applications to engineering and, in
particular, to computed tomography and radiation therapy planning.

For every € > Oand everyi € {1, ..., m} set

Fe(Pi) ={x € X : d(x, Pi(x)) < €},
Fe(P)={yeX:d(y, F(P)) <€},
Fe= ﬂfn:lFé(P,'),
Fe =N Fe(P).
Elements of F, (F. respectively) are considered as e-approximate solutions of
the common fixed point problem.
Fix 6 € X and a natural number N > m.

Denote by R the set of all mappings r : {1,2,...} — {1, ..., m} such that for
each number j,

{,....m}c{r(j),....r(j+ N = D}.
Every r € R generates the following algorithm.

Initialization: select an arbitrary xo € X.
Iterative step: given a current iteration point x; calculate the next iteration point

Xk+1 by
X1 = Priegny (xp).

Denote by Card(A) the cardinality of a set A. The following result is presented
in Chapter 3 of [124]. It was obtained in [123].

Theorem 1.1 Let M > 0 satisfy
BO,MYNF #0,
€ >0,
reR,

X0 € B(6, M)
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and let {x;}2 | C X satisfy for each natural number i,
xi = Prgy(xi—1).
Then
Card({i € {0,1,...}: xi & F.}) <4N3M*c e 2.

This result shows that almost all exact iterates generated by our algorithms are
e-approximate solutions. Moreover, it provides us the estimate of the number of
iterates which are not e-approximate solutions.

One of our goals is to generalize this result for perturbed algorithms in the
case when perturbations are summable. Such generalizations are important because
they find interesting applications and are essential ingredients in superiorization
and perturbation resilience of algorithms. See [9, 29, 45, 47, 49, 54, 75] and the
references mentioned therein. The superiorization methodology works by taking
an iterative algorithm, investigating its perturbation resilience, and then using
proactively such perturbations in order to “force” the perturbed algorithm to do in
addition to its original task something useful. This methodology can be explained
by the following result on convergence of inexact iterates.

Assume that (Z, || - ||) is a Banach space, T : Z — Z is nonexpansive mapping
such that

IT@x) =TI < llx -yl forallx, y € Z,

for each x € Z, the sequence {T"(x)}72 , converges in the norm topology. xo € Z,
{Bk)32, is a sequence of positive numbers satisfying

> B < oo, (1.1)
k=0

{vk}z2y C Z is a norm bounded sequence and that for any integer k > 0,
Xt = T (xx + Brvk). (1.2)

Then it follows from the result of [27] that the sequence {xk},‘:io converges in the
norm topology of Z and its limit is a fixed point of 7. In this case the mapping
T is called bounded perturbations resilient (see [49] and Definition 10 of [45]).
In other words, if exact iterates of a nonexpansive mapping converge, then its
inexact iterates with bounded summable perturbations converge too. Now assume
that xo € X and the sequence {B};2, satisfying (1.1) are given and we need to find
an approximate fixed point of 7. In order to meet this goal we construct a sequence
{xk}72, defined by (1.2). Under an appropriate choice of the bounded sequence
{vk}z2» the sequence {x;}p2, possesses some useful property. For example, the
sequence { f (xx)}7; can be decreasing, where f is a given function.
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In the next chapter we prove the following result which was obtained in [125].

Theorem 1.2 Assume that M > 0 satisfies
BO,M)NF #@,

€ is a positive number and that a sequence {€;}°, C [0, 00) satisfies

o0
A= Zei < 0.
i=1

Let a natural number ngy be such that for all integers i > ny,

€& < 2N) le.
Let
reR,
xo € BB, M)

and let a sequence {x;}7°, C X satisfy for each natural number i,
d(x;, Priy(xi-1)) < €.
Then
Card({i € {0,1,...}: x; & F.})
<ng+4N3Ee2(2M + A)? +2A02M + A)).
Denote by R ¢ the set of all » € R such that for each integer i > 1,
r(i + N) =r().
The next result, which will be proved in Chapter 2, establishes, for every positive

number €, the convergence of cyclic algorithms to the set of approximate fixed
points F.

Theorem 1.3 Assume that for every i € {l,...,m} and every pair of points
x,y€X,

d(P;(x), Pi(y)) =d(x,y).

Suppose that M, > 1 and that the following property holds:
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(P1) for each § > O there exists zs € B(0, M) such that
B(zs5,8) N Fix(P;) # D foralli = 1,...,m.
Let M > M,, € >0,
r € Rper,
X0 € B(6, M),
{x; ;’il C X and let for each natural number i,
xi = Prgy(xi=1).
Then for every integeri > NOGAMA*E3N2e 42N + D2+ 1),
x; € Fe.
Using this theorem, in Chapter 2 we establish the next convergence results under

the presence of small perturbations.
For a real number z € R! we set |z] = max{i : i is an integer and i < z}.

Theorem 1.4 Assume that for every i € {1, ..., m} and every pair of points x, y €
X,

d(Pi(x), Pi(y)) =d(x,y).

Suppose that M, > 1, property (P1) holds, M > M, ry > 0 and

F,, C B(6, M).
Let M > M, € € (0, rol,

go =3+ |4 M*N2(2N + D*¢ 3™,

a positive number § satisfy

28qoN < €/4,

r € Rpers
X0 € B(6, M)

and let {x;};2 | C X satisfy for each natural number i,
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d(x;, Pray(xi—1)) < 6.
Then for every integeri > qoN,

Xj € FE.

1.2 Common Fixed Point Problems in a Hilbert Space

In Chapter 3 we study the convergence of dynamic string-averaging methods which
were first introduced by Y. Censor, T. Elfving, and G. T. Herman in [48] for solving
a convex feasibility problem, when a given collection of sets is divided into blocks
and the algorithms operate in such a manner that all the blocks are processed in
parallel. Iterative methods for solving common fixed point problems is a special case
of dynamic string-averaging methods with only one block. Iterative methods and
dynamic string-averaging methods are important tools for solving common fixed
point problems in a Hilbert space [I1, 3, 6-9, 11, 12, 14, 17, 18, 24, 26, 28-30, 35,
38, 39, 41-46, 48, 49, 51-53, 56-58, 60-62, 65, 68, 69, 89, 96-98, 106, 107, 110,
112, 114, 117-122].

Let (X, (-, -)) be a Hilbert space with an inner product (-, -) which induces a
complete norm | - ||.

For each x € X and each nonempty set £ C X put

d(x, E) = inf{|x — y| : y € E}.
For every point x € X and every positive number r > 0 set
Bx,r)={yeX: |x=yl=r}

Suppose that m is a natural number, ¢ € (0,1), P, : X — X,i =1,...,m, for
every integer i € {1, ..., m},

Fix(P)):={zeX: Pi(z) =z} #0
and that the inequality
lz = xII” > llz = P @)I* +¢llx — P 0)I?

holds for every integer i € {1,...,m}, every point x € X, and every point z €
Fix(P;). Set

F =N Fix(P,).

For every positive number € and every integer i € {1, ..., m} set
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Fe(P)={xeX: |lx - P(x)| <€},
Fe(P) = Fe(P) + B(0, ),
Fe =N Fe(Py)
and
Fe =N Fe(P)

A point belonging to the set F is a solution of our common fixed point problem
while a point which belongs to the set F is its e-approximate solution.

In Chapter 3 we obtain a good approximative solution of the common fixed
point problem applying a dynamic string-averaging method with variable strings
and weights which is described below.

By an index vector, we mean a vector t = (t1,...,tp) such thatt; € {1,...,m}
foralli =1,..., p.
For an index vector t = (71, ..., t;) set

p(t)=q, Plt1=P, - Py.
It is not difficult to see that for each index vector ¢
Plt](x) =xforall x € F,
[ P[z](x) — P[]l = llx — PLeJD)I < llx =yl
for every point x € F and every point y € X.
Denote by M the collection of all pairs (£2, w), where £2 is a finite set of index

vectors and

w : 2 — (0, co) satisfies Z w(t) = 1.
tef2

Let (£2, w) € M. Define

Pouw(x) =Y w()Plt](x), x € X.

tes2

It is easy to see that
Poyw(x)=xforallx € F,
Po.wx) = Pouw(MI = llx = PowI < [lx — yll

for every point x € F and every point y € X.
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The dynamic string-averaging method with variable strings and variable weights
can now be described by the following algorithm.
Initialization: select an arbitrary point xo € X.
Iterative step: given a current iteration vector x; pick a pair
(%41, Wer1) € M
and calculate the next iteration vector x4 by
Xkl = Py wes k).
Fix a number
Ae O m"
and an integer
q=>m.
Denote by M., the set of all (£2, w) € M such that
p(t) <q forallt € £2,
w(t) > Aforallt € £2.
Fix a natural number N.
In the studies of the common fixed point problem the goal is to find a point x € F.
In order to meet this goal we apply an algorithm generated by

{(£2;, wi)}?il C M,

such that for each natural number j,

i+N—1
{1,....,m} C Ui’:j Uregi{t, - tpi D).

This algorithm generates, for any starting point xo € X, a sequence {x¢}p2, C X,
where

Xk4+1 = P9k+1,wk+1(xk)~

In Chapter 2 of [124] we obtained the following result which shows that
almost all exact iterates generated by our algorithms are e-approximate solutions.
Moreover, it provides us the estimate of the number of iterates which are not e-
approximate solutions.
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Theorem 1.5 Let M > 0 satisfy
BO,M)NF #¢
and let € > 0. Assume that
{(2;, w)}2, € My
satisfies for every natural number j

j+N—1
{1,...,m} C Uf:j Uregi it ... D),

xo0 € B(0, M)
and {x;}°, C X satisfies for every natural number i,
Xi = Po; w, (xi—1).
Then
Card({i €{0,1,...}: xi € F) < NGM*c 'A Ve 2N+ D22 + 1) + 1.

In Chapter 3 of this book we generalize this result for perturbed algorithms in the
case when perturbations are summable. We also establish, for every positive number
€, the convergence of cyclic algorithms to the set of approximate fixed points F¢ in
the presence of small computational errors.

1.3 Proximal Point Algorithm

Proximal point method is an important tool in solving optimization problems
[4,40,55,72,78, 81,90, 100, 111]. It is also used for solving variational inequalities
with monotone operators [2, 10, 13, 15, 16, 19-23, 25, 76, 80, 84-86, 101,
104, 105] which is an important topic of nonlinear analysis and optimization
[31-34, 36, 37, 50, 59, 64, 66, 67, 70, 71, 73, 74, 77, 79, 82, 83, 87, 88, 91, 102,
103, 108, 109, 113, 115, 116]. In Chapter 6 we study the convergence of an iterative
proximal point method to a common zero of a finite family of maximal monotone
operators in a Hilbert space, under the presence of perturbations.

Let (X, (-,)) be a Hilbert space equipped with an inner product (-, -) which
induces the norm || - ||.

A multifunction T : X — 2% is called a monotone operator if and only if

(z—Z,w—w) >0 Vz,7,w,w' €X

such that w € T(z) and w’' € T(Z).
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It is called maximal monotone if, in addition, the graph
{,w)eXxX: weT(2)}

is not properly contained in the graph of any other monotone operator 7’ : X — 2X.
A fundamental problem consists in determining an element z such that 0 € 7' (z). For
example, if T is the subdifferential df of a lower semicontinuous convex function
f + X — (—o0, oo], which is not identically infinity, then 7 is maximal monotone
(see [93, 95]), and the relation 0 € T (z) means that z is a minimizer of f.

Let 7 : X — 2% be a maximal monotone operator. The proximal point algorithm
generates, for any given sequence of positive real numbers and any starting point in
the space, a sequence of points and the goal is to show the convergence of this
sequence. Note that in a general infinite-dimensional Hilbert space this convergence
is usually weak. The proximal algorithm for solving the inclusion O € 7'(z) is based
on the fact established by Minty [92], who showed that, for each z € X and each
¢ > 0, there is a unique u# € X such that

z€ U +cT)w),

where I : X — X is the identity operator (/x = x for all x € X).
The operator

Peg = +cT)!

is therefore single-valued from all of X onto X (where c is any positive number). It
is also nonexpansive:

IPer(2) = Per() < llz— Il forall z, 2’ € X
and
P.71(z) =zifand only if 0 € T (2).
Following the terminology of Moreau [95] P, r is called the proximal mapping
associated with cT'.

The proximal point algorithm generates, for any given sequence {c}po, of
positive real numbers and any starting point z’ € X, a sequence {z* Yoy C X,
where

=P r (N, k=0.1,...
It is not difficult to see that the

graph(T) == {(x,w) e X x X : w e T(x)}

is closed in the norm topology of X x X.
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Set
F(T)={zeX: 0T}

Usually algorithms considering in the literature generate sequences which
converge weakly to an element of F(T'). In Chapter 6, for a given € > 0, we are
interested to find a point x for which there is y € T (x) such that ||y|| < €. This
point x is considered as an e-approximate solution.

For every point x € X and every nonempty set A C X define

d(x,A) :=inf{||x —y|| : y € A}.

For every point x € X and every positive number r put

Bx,r)={yeX: |lx—yl=rh

We denote by Card(A) the cardinality of the set A.

We apply the proximal point algorithm in order to obtain a good approximation
of a point which is a common zero of a finite family of maximal monotone operators
and a common fixed point of a finite family of quasi-nonexpansive operators.

Let £ be a finite set of maximal monotone operators T : X — 2% and £, be a
finite set of mappings 7 : X — X. We suppose that the set £; U £; is nonempty.
(Note that one of the sets £ or £, may be empty.)

Letc € (0,1]andletc = 1,if £, = 0.

We suppose that

F(T)#@forany T € L
and that for every mapping T € Lo,
Fix(T):={ze X: T(x) =z} #9,
lz = %1% = llz = T)I? +Ellx = T
for all x € X and all z € Fix(T).
LetA > 0andlet X = co and A~! = 0, if £; = @. Let a natural number
[ > Card(L; U L»).
Denote by R the set of all mappings
§:{0,1,2,...} = LoU{P.7: T € Ly, c €[k, 0)}

such that the following properties hold:
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(P1) for every nonnegative integer p and every mapping 7 € L, there exists an
integeri € {p,..., p+1 — 1} satisfying S(i) = T;

(P2) for every nonnegative integer p and every monotone operator 7 € L there
exist an integer i € {p,..., p + 1 — 1} and a number ¢ > by satisfying that
S@) = P.r.

Suppose that
F = (Nreg, F(T)) N (Nger, Fix(Q)) # 0.
Let € > 0. For every monotone operator T € L] define
F(T)={xeX: T(x)NB@,e) # 0}
and for every mapping T' € £, set
Fixe(T)={x e X: |IT(x) —x| <€}

Define
Fe = (Nreg, Fe(T)) N (Nger,Fixe(Q)),
Fe=(Nrep,ix € X 1 d(x, F(T)) < €))
N(Ngec,ix € X @ d(x, Fixe(Q)) < €}).

We are interested to find solutions of the inclusion x € F. In order to meet
this goal we apply algorithms generated by mappings S € R. More precisely,
we associate with every mapping S € R the algorithm which generates, for every
starting point xo € X, a sequence of points {x;}7>, C X such that

Xit1 =[SO (xx), k=0,1,....

In Chapter 8 of [124] we obtained the following result which shows that

almost all exact iterates, generated by our algorithms are e-approximate solutions.

Moreover, it provides us the estimate of the number of iterates which are not e-
approximate solutions.

Theorem 1.6 Let M > 0, € > 0,
BO,M)NF #£40.
Assume that
SeR, {xilreo C X, llxoll < M,

X1 = [SE)I(xk), k=0,1,....
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Then
Card({i € {0,1,...}: xi & F.}) <4M?*¢ e ?(min{l~!, 1)) 7%
In Chapter 6 of this book we generalize this result for perturbed algorithms in the
case when perturbations are summable. We also establish, for every positive number

€, the convergence of cyclic algorithms to the set of approximate fixed points F¢ in
the presence of small computational errors.

1.4 Subgradient Projection Algorithms

In Chapter 6 we use subgradient projection algorithms for solving convex feasibility

problems.
Let (X, (-, -)) be a Hilbert space with an inner product (-, -), which induces a
complete norm || - ||. For each x € X and each nonempty set A C X put

d(x, A) =inf{||lx — y| : y € A}.
For each x € X and each r > 0 set
Bx,r)={yeX: lx -yl =r}

It is well known (see Fact 1.5 and Lemma 2.4 of [8]) that for each nonempty,
closed, and convex subset C of X and for each x € X, there is a unique point
Pc(x) € C satisfying

lx = Pc()|l =d(x, C).
Let f : X — R! be a continuous and convex function such that
{xeX: f(x) <0} #40.
Let yo € X. Then the set
af(yo) :={leX: f(y)— f(o) =(l,y— yo) forall y € X}

is the subdifferential of f at the point yy [94, 99]. It is not difficult to see that for
any I € 9f (o),

xeX: fx)<0}c{xeX: f(yo)+{,x—y) <0}

It is well known that the following lemma holds (see Lemma 7.3 of [8]).
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Lemma 1.7 Let yg € X, f(yo) > 0,1 € 9f (yo) and let
D:={xeX: f(yo)+{,x—y) <0}

Then I # 0 and Pp(yo) = yo — f (o) 1[I 2.

Denote by N the set of all nonnegative integers. Let m be a natural number,
I={1,...,m},and f; : X — R!, i € I, be convex and continuous functions. For
eachi e [ set

Ci={xeX: filx) <0},
C:=NieaCi =Nier{x € X : fi(x) <0}.
Suppose that
C #0.

A point x € C is called a solution of our feasibility problem. For a given ¢ > 0,
a point x € X is called an e-approximate solution of the feasibility problem if
fi(x) < eforalli € I. We apply the subgradient projection method in order to
obtain a good approximative solution of the feasibility problem.

Consider a natural number p > m. Denote by S the set of all mappings S : N' —
I such that the following property holds:

(P1) For eachinteger N € N andeachi € I, thereisn € {N, ..., N+ p—1} such
that S(n) =i.

We want to find approximate solutions of the inclusion x € C. In order to meet
this goal we apply algorithms generated by S € S.
For each x € X, each number € > 0, and each i € I set

Ai(x, €)= {x}if fi(x) <€
and
Ai(x,€) i=x — f,-(x){||l||_2l s ledfix)}if fi(x) > €.

We associate with any S € S the algorithm which generates, for any starting point

xp € X, a sequence {xn},‘j"zo C X such that, for each integer n > 0,

Xpt1 € Asmn) (xn, 0).

It is not difficult to see that the sequence {x,};°, is well defined, and that for
each integer n > 0, if fg(u)(x,) > 0, then x,,41 = Pp, (x,), where

D,={xeX: f(xp)+{lp,x —x,) <0}and/, € afS(n)(xn)'
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In Chapter 10 of [124] we proved the following result which shows that, for the
subgradient projection method almost all iterates are good approximate solutions.
Denote by Card(A) the cardinality of the set A.

Theorem 1.8 Let
b>0,€eec0,1], A>0, y €[0,€],
ce BO,b)NC,
|fitw) — fi(w)| < Allu —v||, u,ve B(0,3b+ 1), i €1,
let a positive number € satisfy
€ < eA™!
and let a natural number ny satisfy
4peyb* < no.
Assume that
S eSS, xo € B0, b),
and that for each integer n > 0,
Xnt1 € Asy(Xn, V).
Then
lxn |l < 3b for all integers n > 0
and
Card({N € N': max{||x,11 —xpll: n=N,...,N+p—1} > &}) < no.
Moreover, if an integer N > 0 satisfies
[Xn41 — Xl < €0, n=N,....N+p—1,

then, for all integersn,m € {N, ..., N + p}, |xn — xm|| < peo and for all integers
n=N,...,N+pandeachi €], fi(x,) <e(p+1).

In Chapter 8 of this book we generalize this result for perturbed algorithms in the
case when perturbations are summable.
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1.5 Examples

In this section we consider examples of the problem discussed in Section 1.1 for
which Theorems 1.1-1.4 can be applied. Let (X, || - ||) be a Hilbert space equipped
with the norm || - || which is induced by its inner product. Assume that P; is the
projection on a nonempty convex closed set C; C X foralli = 1,...,10. Let us
consider a mapping r : {1,2,...} — {l,..., 10} such thatr(i) =i,i = 1,...,10
and r (i 4+ 10) = r (i) for all integers i > 10. We assume that

B#n0.CiclzeX: |z] < 10%.

Example 1.9 Let xo € X satisfy ||xp|| < 10* and let {xi}72, C X satisfy for each
natural number i,

xi = Prgy(xi-1).
Let € = 107°. Applying Theorem 1.1 with ¢ = 1, N = 10 and we obtain that
Card({i € {0,1,...}: x; € F.}) <4-10%.
This implies that there exists a nonnegative integer j < 4 - 10> such that
xj € By
By the inclusion above, foralli =1, ..., 10
xj € Fe(Py) and d(x;, F.(P;)) < 107°.
Leti € {1, ..., 10}. Then for each y € F.(P;)),
lxj — Pixpll < llxj =yl + 1y = )+ 1P () — Pi(x )]
< 2flxj =yl +e
and
lxj — Pi(xpll < 2d(x;, Fe(P)) +€ <3-107°.
Thus foralli =1, ..., 10,
llxj = Pi(xj) <3-107°.
Example 1.10 Let f : X — R! be a convex function such that

|f(z1) = f(z2)] < 10%)1z1 — 22| forall z1, 22 € X.
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The relation above implies that
Af(z) C{x e X: |zl <10 forall z € X.

Let 8; = iT2i=1,2,..., xo € X satisfy ||xg| < 10* and let for each natural
number i, x; € X satisfy

xi = Pri)(xi—1 — Bi&i), where & € 9f (x;).
It is easy to see that for each integer i > 1,
lxi — PryimDl < Bill&i Nl < 10%8; = 10% 72,

Let € = 107°. Theorem 1.2 can be applied with N =10,¢ = 1, € = 10472,
i=1,2,...,and

o0
A=10")"i7% <2-10%
i=1
We choose a natural number nq such that for each integer i > ny,

e = 10%72 < 2071107,

The relation above holds if and only if ;> < 20! - 1071°. Fix ng = 5 - 10°. By
Theorem 1.2,

Card({i € {0,1,...}: x; € F.})
<5100 +4-105(2-10* +2-10%2 +2-10* + (2- 10* + 2 - 10%)) < 107.
025

Therefore there exists a nonnegative integer j < 10 such that x; € F 10-6- As in

Example 1.9, we can show that foralli =1, ..., 10,
lxj = Pi(xp)l <3-107°.

Example 1.11 Let xo € X satisfy ||xo]| < 10* and let for each natural number i,
x; € X satisfy

xi = Priy(xi-1).
It is not difficult to see that all the assumptions of Theorem 1.3 hold and

X; € F10—6



18 1 Introduction

for each integer
i >10(64 - 102212 + 1).

Example 1.12 Note that property (P1) in Theorem 1.3 holds with M, = 10%.
Assume that C; C {x € X : |x|| < 10*}. Then

FicixeX: |x|| <10*+1}.
Set
M=10*+1, e =107,
g0 = (10* + 1)*21%10%
and
8 = (80g0) e = (80g9)~'1076.
Let xo € X satisty ||xg|| < 10* and let for each natural number i, x; € X satisfy
lxi — Priy(xi—p)l < 6.
By Theorem 1.4, for all integers i > 10qy,

Xj € Flo—ﬁ.



Chapter 2 ®
Iterative Methods in Metric Spaces Qe

In this chapter we study the convergence of iterative methods for solving common
fixed point problems in a metric space. Our main goal is to obtain an approximate
solution of the problem using perturbed algorithms. We show that the inexact
iterative method generates an approximate solution if perturbations are summable.
We also show that if the mappings are nonexpansive and the perturbations are
sufficiently small, then the inexact method produces approximate solutions.

2.1 The First Problem

Let (X, d) be a metric space. For each x € X and each nonempty set E C X put
d(x, E) =inf{ld(x,y) : y € E}.
For each x € X and each r > 0 set

Bx,r)y={yeX: dx,y) <r}.

Let m be a natural number, ¢ € (0,1) andlet P; : X — X,i = 1,...,m be
self-mappings of the space X. Suppose that for every i € {1, ..., m},
Fix(P;)) :={ze€ X: Pi(z) =z} #0. (2.1)
We also suppose that for every i € {1, ..., m} the inequality
d(z, x)? > d(z, Pi(x))* + &d(x, P;(x))* 2.2)
© Springer International Publishing AG, part of Springer Nature 2018 19
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holds for all x € X and all z € Fix(P;). Set
F = N" Fix(P). (2.3)
Elements of the set F' are solutions of common fixed point problem. In this chapter

we obtain its approximate solution. In order to meet this goal we introduce the
following notation.

For every € > O and every i € {1,...,m} set
F(P)={xeX: dx, Pi(x)) <€}, 2.4)

Fe(P) ={y € X: d(y, Fe(P)) <€}, (2.5)

Fe =N/, Fe(P), (2.6)

Fo =N Fe(P). (2.7)

i=

Fix 0 € X and a natural number N > m.
Denote by R the set of all mappings r : {1,2,...} — {1, ..., m} such that for
each natural number j,

{,....m}c{r(j),....r(j+ N —D}. (2.8)

Every r € R generates the following algorithm.

Initialization: select an arbitrary xo € X.

Iterative step: given a current iteration point xj calculate the next iteration point
Xk+1 by

X1 = Priet1) (Xp).

Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty
set is zero.

In the next section we prove the following result obtained in [125], which shows
that the inexact iterative method generates approximate solutions if perturbations
are summable.

Theorem 2.1 Assume that M > 0 satisfies
BO,M)NF #40, (2.9)

€ is a positive number and that a sequence {€;};2, C [0, 00) satisfies

o0
A::Ze,- < oo. (2.10)
i=1
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Let a natural number ngy be such that for all integers i > ny,

e < 2N)le. (2.11)

Let
reRr, (2.12)
xo € B(6, M) (2.13)

and let a sequence {x;};°, C X satisfy for each natural number i,

d(x;, Priy(xi=1)) < €. (2.14)

Then
Card({i €{0,1,...}: x; € F.})
<ng+4N3Ee2(2M + A)? +2402M + A)).
Example 2.2 Let (H, d) be a Hadamard space (see [5]), m be a natural number,
and C;, i = 1,...,m be nonempty convex closed subsets of H. In view of
Theorem 2.1.12 of [5], for every x € H and every i € {1, ..., m}, there exists
a unique point P;(x) € C; such that
d(x, Pi(x)) = inf{d(x,z) : z € Ci}

and the mappings P;, i = 1,...,m satisfy (2.2). Therefore Theorem 2.1 can be

applied in order to obtain an approximation of a common point of the sets C;,
i=1,...,m.

2.2 Proof of Theorem 2.1

It follows from (2.9) that there exists
z€ BO,M)NF. (2.15)
Relations (2.13) and (2.15) imply that
d(xp,z) <2M. (2.16)
Put

€ = 0. (2.17)
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We show that for all nonnegative integers i, we have
i
d(z,x) <2M +) €. (2.18)
j=0

By (2.16) and (2.17), inequality (2.18) is true for i = 0.
Assume that i > 0 is an integer and that inequality (2.18) is valid. It follows
from (2.2), (2.14), and (2.15) that

d(z, xit+1) < d(z, Pri+1)(xi)) +d(Pri+1)(Xi), Xit1)
i+1
<d(z,xj) + €41 <2M + Zej.
j=0
Therefore by induction we showed that inequality (2.18) is valid for all nonnegative
integers i.
Put
Yo =e@N)™". (2.19)

By (2.11) and (2.19), for all integers i > ng, we have
€ < V0. (2.20)

Let an integer i > 0 be given. By (2.2) and (2.15), we have
d(z,x)* — d(z, Prir1y(xi))? = Ed(xi, Priisy(xi))*. (2.21)
It follows from (2.2), (2.14), (2.15), and (2.18) that
ld(z, xi1)* = d(z, Py ()]
< |d(z, xi+1) —d(z, Pri+1)(xi)| x (d(z, Xi+1) + d(z, Pri+1)(xi)))

<dxit1, Priyn(xi))d(z, xiy1) +d(z, x;))

o0
<26012M + ) _€)). (2.22)
j=0
In view of (2.21) and (2.28),
&d(xi, Priip1y () < d(z, x0)* — d(z, Prsn(xi)*

o0
<d(z,x) —d(z, xip1)” + 2651 2M + ) €. (2.23)
j=0
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It follows from (2.18) and (2.23) that for every natural number n > ng, we have

o0
QM+ " €))* = d(z, xny)’
j=0

> d(z, xny)? — d(z, x2)*

n—1
= Y [d(z x)* —d @ x1)’]
k=ng
n—1 00
> Y [éd (ks Py y(0)® = 266412M + ) €))]
k=ng Jj=0

and

o o o
QM+ e))*+2> ;M + ) €))
j=0 j=0 j=0

n—1
> Z &d (x, Prern) (x))°
k=n0
> eygCard({k € {no, ...,n — 1} : d(xk, Pr+1)(xk)) = v0}).

Since the relation above holds for every natural number n > ny we conclude that

Card({k = no is an integer : d(xx, Pr(+1) (X)) = 10})

o0 o o
< HRM A )Y " e)P+2) @M+ Y €)). (2.24)
j=0 j=0 j=0
Define
Eo={k € {no,no+1,...} 1 d(xk, Pre+1)(xk)) = Yo} (2.25)

By (2.10), (2.24), and (2.25), we have

Card(Eo) < ¢ 'yy (@M + A)? +2402M + A)). (2.26)
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Define
Ei={ke{ng,no+1,...}: [k,k+ N —1]1N Eg # ). (2.27)
It follows from (2.26) and (2.27) that
Card(E;) < NCard(Ey)
< Ne7lyg (@M + A +2A02M + A)). (2.28)
Assume that a nonnegative integer p satisfies
p>noand p &€ Ey. (2.29)
By (2.27) and (2.29),
[p.p+N—11NE;=0
and for every integerk € {p, ..., p + N — 1}, we have
d(xk, Prk+1)(x1)) < yo. (2.30)

It follows from (2.14), (2.20), (2.29), and (2.30) that for every integer k €
{p,...,p+ N — 1} we have

d(xr, xp1) < d (ks Prget1) (X)) + d(Prie1) (k)5 Xk1) < Y0 + €x41 < 2)0.

By (2.31), for all pairs of integers k1, k2 € {p,..., p+ N}, @30
d(xx,, X)) < 2Nyp. (2.32)
Lets € {1, ..., m} be given. In view of (2.8) and (2.12), there is an integer k which
satisfies
ke{p,....p+N—1}, rtk+1) =s. (2.33)
By (2.30) and (2.33), we have
d(xk, Ps(xk)) < yo. (2.34)

Relations (2.32) and (2.33) imply that

d(xp, xk) < 2Nyp.
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In view of (2.19), (2.34) and the inequality above,
Xp € B (P) = Fe(Py), s=1,....m
and
Xp € I:}
for each integer p > ng satisfying p # E1. Thus
Card({i € {0,1,...} : x; € F.}) < ng+ Card(E1)
<ng+4Nc e 2(QM + A)? + 2A02M + A)).

This completes the proof of Theorem 2.1.

2.3 Cyclic Iterative Methods

In this section we use the notation and definitions introduced in Section 2.1. Assume
that for every i € {1, ..., m} and every pair of points x, y € X,

d(Pi(x), Pi(y)) =d(x,y). (2.35)

Suppose that M, > 1 and that the following property holds:
(P1) for each § > O there exists zs € B(0, M) such that

B(zs,8) NFix(P;) # W foralli =1,...,m.
Denote by R . the set of all r € R such that for each integer i > 1,
r(i +N) =r@). (2.36)

The following result shows that the exact iterative method generates approximate
solutions.

Theorem 2.3 Let M > M,, € > 0,

r € Rpers (2.37)
xo € B(6, M), (2.38)
{x; ;ﬁl C X and let for each natural number i,

xi = Priy(xi—1). (2.39)
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Then for every integer i > N(64AM*¢3N2%e 42N + 1)2 + 1),

x; € Fe.
Proof Let
vo = (2N + D)~ H2e(12MN) . (2.40)
By (2.39), for each integer i > 0,
Xit1 = Pris1) (xi). (241)
Set
N
Po=P. Py = | Pro- (2.42)
i=1

It follows from (2.36), (2.41), and (2.42) that for each integer i > 0,
X+ = Prarvmy - Prameny i) = Prixg). (2.43)

Let n be a natural number and & be an arbitrary positive number. Property (P1)
implies that there exists

25 € B0, M) (2.44)
such that
B(zs,8) NFix(Py) #0, i =1,...,m. (2.45)
In view of (2.38) and (2.44),
d(zs, x0) < 2M. (2.46)
In view of (2.45), for each integer i € {1, ..., m}, there exists
25, € Fix(P;) (2.47)

such that

d(zs, zs,;) < 6. (2.48)
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By (2.35), (2.47), and (2.48), for each integeri € {1, ..., m},

d(zs, Pi(z5)) < d(z5,25,i) +d(Pi(zs,i), Pi(zs5)) < 2d(z5,25,i) < 29.

It follows from (2.35), (2.41), and (2.49) that for each integer k > 0,

d(zs, Xkv1) = d(zs, Pret1)(xk))

<d(zs, Prea1)(@s)) +d(Pragr1)(z8), Praer1y(xx)) < 28 + d(zs, xi).

Relations (2.46) and (2.50) imply that for all integers k =0, ..., n,
d(zs, xx) < d(zs, x0) + 26k <2M + én.
In view of (2.44) and (2.51), for all integers k =0, ..., n,
d0,x) <d0,z5) +d(zs, xx) <3M + én.
Since § is an arbitrary positive number we conclude that
d(0, xi) < 3M for all integers k > 0.
Let n be a natural number and a positive number € satisfies
€ < (2nN )_1.

Since the function

(E1,&) — dELE)Y (E1,8) e X x X

27

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

is uniformly continuous on bounded subsets of X x X, there exist § € (0, 1) such

that for each
(1,82), (m,m) € BO,3M +1) x B(6,3M + 1)
satisfying
dé,m) <6, i=12
the following inequality holds:

d(&1, )% — d(n1, m)?| < €.

(2.54)
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Property (P1) and (2.55) imply that there exists

z € BB, M) (2.55)
such that
B(z,8) NFix(P;) # @ foralli =1,...,m. (2.56)
In view of (2.56), for every i € {1, ..., m}, there exists
z; € Fix(F;) (2.57)
such that
d(z,z;) < 6. (2.58)

Let k£ > 0 be an integer. By (2.52), (2.55), (2.58), and the choice of § (see (2.54)),
1 (z, x)% = d(zrerny, 20| < €0, (2.59)
ld (2, xk0)® = d@rernys 2e41)’] < €0 (2.60)

It follows from (2.2), (2.41), (2.57), (2.59), and (2.60) that
d(z, %)% = d(z, xe+1)?
> d (24t 1), X7 — d @1y, Xet1)? — 2€0
= d(@r et 1) X2 = d(@ret1)s Prisn () — 2¢€0

> &d (xi, xe41)” — 2€0 2.61)

for all integers k > 0.
By (2.52), (2.55), and (2.61),

16M? > d(z, x0)* = d(z, x0)* — d(z, x,)*

n—1
= Z[d(z, xk1\7)2 —d(z, X(k+1)/\7)2]
k=0

n—1 (k+1)N—1
=Y Y @@x)*—d@xi)d)]

k=0 j=kN
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n—1 (k+DHN—1
>30T ) (@dxj, xjq1)* = 260)]

k= j=kN

(=}

n—1  (k+HN-1
=>[¢ > dlxj.xji1)*]1—2enN
k=0 kN
> cygCard(fk € {0,...,n — 1} :
max{d(xj,xj11): j= kN,...,(k+ 1N —1} > y}) — 2¢onN.
Together with (2.53) this implies that
Card({k € {0,...,n —1}:
max{d(xj, xj41): j=kN,...,(k+ DN =1} > po}) < 16M> + ey, 2
Since the inequality above holds for any natural number n we conclude that

Card({k € {0,1,...,}:

max{d(xj,xj11): j=kN,...,(k+ DN — 1} > po}) < 16M* + )& 'y, 2

(2.62)
By (2.62), there exists an integer gg > 0 such that
go < (16M> + e 'y 2 + 1 (2.63)
and
d(xj,xj4+1) <¥0, j=¢qoN,...,(go+ 1)N — 1. (2.64)
In view of (2.43) and (2.64),
d(xyy > Pry i) = d (X 55 ¥ gorni) < YoN. (2.65)

It follows from (2.35), (2.42), and (2.65) that for each integer g > gy,
d(qu’ x(q_;,_])](/) =d((P)?™ 1 (xqoﬁ): (Pr)q_qo(x(q0+1)1\_/))

< d(Xg 55 ¥gorni) < YON. (2.66)
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Let g > go be an integer. By (2.65) and (2.66),
d(xqj\_], x(q-H)I\_/) = V0N~
Choose a positive number
6 < min{yp/4, 1}.

Property (P1) implies that there exists

z€ B, M)
such that
B(z,8) NFix(P) # 0, i=1,...,m.
In view of (2.70), foreach i € {1, ..., m}, there exists
z; € Fix(P;)
such that
d(z,zi) <94.

It follows from (2.52), (2.67), and (2.69) that
VON > d(qu'p x(q+1)1\7)

> d(z.x,5) —d(@. X 41)5)

> BM) ' (d(z, x,5)" — d(z, x4y 1))

and
8MyoN > d(z, x,3)* — d(z, x i)’
(g+DHN—-1
= Z (d(z, x;)* — d(z,x+1)2).
i=qN
Let

ie€{gN,...,(g+ 1N —1)}.

(2.67)

(2.68)

(2.69)

(2.70)

2.71)

(2.72)

(2.73)

(2.74)
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By (2.52), (2.69), and (2.72),
|d(z, xi)* = d(zri+1)s )7
< (d(z, %) +d@zri+1), x))A(Z, 2ri+1)) < M, (2.75)
. 2 . 2
|d(z, xi+1)" — d(zri+1), Xit1)7]
< (d(z, xi+1) + d(@Zri+1), Xi+1))A (2, Zri+1)) < 9SM. (2.76)
It follows from (2.2), (2.41), (2.71), (2.75), and (2.76) that

d(z, x1)* —d(z, xi+1)>

> d(zr(i+1) %) — d@ri1)s Prisn) (i) — 188M > &d(xi, xi+1)> — 185 M.
2.77)

Relations (2.73), (2.74), and (2.77) imply that

. (g+1HN-1
8MyN > Y (. x)* —d(z.x11)?)
i=qN

(g+DHN—-1 .
> Y d(xi.xip)® — 183MN. (2.78)
i=qN
Since § is any positive number satisfying (2.68) it follows from (2.78) that
. (g+1HN-1
8MyNe™' = > dxi,xip1)?
i=qN
and for each i =qN, o g+ I)N -1,
d(xi, xiy1) < @MyoNe™H'2. (2.79)
In view of (2.79), for each i, j € {gN, ..., (¢ + )N},
d(xi,x;) < N@MyNeHl/2. (2.80)
Lets € {1,...,m}. By (2.8) and (2.37), there exists

jef{gN,...,(g+ DN —1} (2.81)
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such that
r(j+ 1) =s. (2.82)
By (2.41), (2.79), (2.81), and (2.82),

d(xj, Ps(xj)) =d(xj, Prj+1)(x}))
=d(xj, xj11) < 8MyNeH'/2. (2.83)

It follows from (2.35), (2.40), (2.80), and (2.83) that for each i € {gN,....,(qg +
DN},

d(x;, Ps(xi)) < d(xi, xj) +d(xj, Ps(x))) + d(Ps(x)), Ps(x;))
< 2d(xi, x;) + BMyoNe™H'* < @BMyNe™H'?QN +1) < e

and since s is any integer belonging to {1, ..., m} we conclude in view of (2.4)
and (2.6), that

x; € Fe

for all integers i € {gN, ..., (g + 1)N}. Since ¢ is any integer satisfying ¢ > qo
this completes the proof of Theorem 2.3.

2.4 Cyclic Iterative Methods with Computational Errors

In this section we use the notation and assumptions introduced in Section 2.3. For a
real number z € R' we set |z] = max{i : i is an integer and i < z}.

The following result shows that the inexact iterative method generates approxi-
mate solutions if the perturbations are small enough.

Theorem 2.4 Suppose that M > M., ro > 0 and
F,, C B(6, M). (2.84)
Let M > M, € € (0, rol,
go =3+ |4 M*N?*2N + D*c 34, (2.85)

a positive number § satisfy
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28qoN < €/4, (2.86)
r € Rper, (2.87)
xo0 € B(O, M)

and let {x;}°, C X satisfy for each natural number i,
d(xi, Prgiy(xi-1)) < 4. (2.88)
Then for every integeri > qoN,
x; € Fe.
Proof Assume that n > 0 is an integer and that
X,y € B, M). (2.89)
Consider a sequence {y; }fin 5 C X such that
YuN = X,N (2.90)
and that for each integer i > nN +1,
vi = Priy(iz1)- (2.91)
By (2.87), (2.89)—(2.91), and Theorem 2.3, for each integer
i > NA M*N?Q2N + 1)*¢ 3¢ + 1) +nN
we have
Vi € Feya. (2.92)
In view of (2.85) and (2.92),
Vi € Feyq foreachi {nN + qoN, ...,nN +2goN}. (2.93)
We show by induction that for each integer i > nN,
d(x;, yi) < 8@ — Nn). (2.94)

By (2.90), inequality (2.94) is true for i = nN. Assume that i > Nn is an integer
and that (2.94) is true. It follows from (2.35), (2.88), (2.91), and (2.94) that
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d(xiv1, Yit1) < dxiv1, Privny (i) +d(Prirn (i), Pri+n (i)
<8+d(xi,y) <8(i+1—Nn).

Thus (2.94) holds for all integers i > nN. B B B B
By (2.86) and (2.94), for all integers i € {nN + qoN, ..., nN + 2goN}

d(x;, yi) <28qoN < €/4.
Let
i € {nN—i—qo]\_f,...,nN—i-Zqu\_/}.
By (2.93),
Vi € Feya.
In view of (2.15),
d(xi, yi) < €/4.

Relations (2.4), (2.6), (2.35), (2.95), and (2.96) imply that for every s € {1, .

d(xi, Ps(xi)) < d(xi, yi) +d(yi, Ps(yi)) +d(Ps(yi), Ps(xi))
< €/4+2d(xi, yi) < 3€/4,
x; € Fe(Py)
and
x; € Fe.

Thus we have shown that the following property holds:

(P2) if n > 0O is an integer and
X,y € B(O, M),
then

x; € Fe, i:nN+q0N,...,nN+2q0]\_/.

(2.95)

(2.96)

(2.97)

..,m},
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Property (P2) and (2.36) imply that
xi € F., i =qoN,...,2qN. (2.98)
Assume that an integer g > go and that
xi€F., i=qoN,...,qN + qoN. (2.99)
(Note that in view of (2.98) our assumption holds for ¢ = ¢g¢.) By (2.85) and (2.90),
x,5 € Fe C Fry C B, M) C B(6, M). (2.100)
Property (P2) and (2.100) imply that
xi € Fe, i =qN +qoN,...,qN +2qN.
Together with (2.99) this implies that
xi € Fe, i =qoN, ..., (q +2q0)N.

This implies that x; € F, for all integers i > goN. Theorem 2.4 is proved.

2.5 The Second Problem

Let (X, d) be a metric space. Recall that for each x € X and each r > 0,
Bx,r)={yeX: dx,y)<r}
and for each x € X and each nonempty set £ C X,

d(x, E) =inf{d(x,y): y € E}.

Fix 6 € X. Let m be a natural number, C; C X,i = 1,..., m be nonempty
closedsetsandlet P; : X — X,i =1, ..., m be self-mappings of the space X such
that for every i € {1,...,m},

P;i(x) = x forall x € C;. (2.101)

Suppose that the following assumption holds:

(A1) For each M > 0 and each y > O there exists § > 0 such that for each
i €{l,...,m},eachx € B(6, M) satisfying d(x, C;) > y, and each

z€ BO,M)NC;
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the inequality
d(Pi(x),z) =d(x,2) =8

is true.

In view of (A1) and (2.101), foreachi =1, ..., m,
{xeX: P(x)=x}=0C;, (2.102)
d(P;(x),z) <d(x,z) foreachx € X and each z € C;. (2.103)

Fix a natural number N > m. Denote by R the set of all mappings r : {1,2,...} —
{1, ..., m} such that for each number j,

(,....m}c{r(j),....,rG+N —1)} (2.104)
and denote by R, the set of all ¥ € R such that for each integeri > 1,
r(i +N) =r(. (2.105)

Suppose that M, > 1 and that the following assumption holds:
(A2) foreach é§ > O there exists zg € B(6, M,) such that

B(z5,8)NC; @ foralli =1,...,m.

In this chapter we prove the following three results: Theorem 2.5 which shows
that the inexact iterative method generates approximate solutions if perturbations
are summable, Theorem 2.6 which establishes that the exact iterative method
generates approximate solutions, and Theorem 2.7 which demonstrates that the
inexact iterative method generates approximate solutions if the perturbations are
small enough.

Theorem 2.5 Let M > M,, € be a positive number and let a sequence {6,-}?21 C
[0, c0) satisfy

o0
A= Ze,- < oo. (2.106)
i=1

Then there exists a constant Q > 0 such that for each r € R and each sequence
{xi}2, C X which satisfies
xo € B(0, M),

d(x;, Pri)(xi—1)) =< €; for all natural numbers i
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the inequality
Card({i € {0,1,...}: max{d(x;,Cs): s=1,...,m} >€}) < Q

holds.
Theorem 2.6 Assume that the following property holds:
(A3) d(P;(x), Pi(y)) <d(x,y)forallx,y e Xandalli =1, ..., m.

Let M > M,, € > 0. Then there exists a constant Q > 0 such that for each
r € Rper and each sequence {x;)3, C X which satisfies

Xxo € B(6, M),
x; = Py (x;—1) for all natural numbers i
the inequality
max{d(x;,Cs): s=1,...,m} <e€

holds for all integers i > Q.
Theorem 2.7 Assume that (A3) holds. Let M > M,, ry > 0,

(xeX:dx,Cs) <rg, s=1,...,m}C BB, M)

and €y > 0. Then there exist Q,8 > 0 such that for each r € Rper and each
sequence {x;}°, C X which satisfies

X0 € B(6, M),
d(x;, Priy(xi—1)) < & for all natural numbers i
the inequality
max{d(x;,Cs): s=1,...,m} < ¢p

holds for all integers i > Q.

2.6 Proof of Theorem 2.5

Set

yo=€Q2N + 1)~ L. (2.107)
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By (A1), there exists a positive number y < min{l, yp} such that the following
property holds:

(P3) foreachi € {1,...,m},eachz € B(,3M + 1+ A) N C;, and each x €
B(6,3M + 1 + A) satisfying d(x, C;) > yp/2 we have

d(Pi(x),z) =d(x,2) — .
By (2.106), there exists a natural number ¢ such that
€; < y /4 for all integers i > ng. (2.108)
Set
0 =no+ 2Ny~ '(4M +24). (2.109)

Assume that r € R, {x;}72, C X,

xo0 € B(6, M) (2.110)

and
d(x;, Priy(xi—1)) < ¢; for all natural numbers i. (2.111)

Set
€0 = 0. (2.112)

Let n be a natural number and § > 0. By (A2), there exists
25 € B(6, M) (2.113)
such that
B(z5,6)NC; #@foralli =1,...,m. (2.114)
By (2.114), foreach i € {1, ..., m} there exists
25, € C; (2.115)
such that

d(zs,zs,i) < 6. (2.116)
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It follows from (2.103), (2.111), (2.115), and (2.116) that for each integer i > 0,

d(zs, xi+1) < d(zs, 25.r(i+1)) + d(26.r(i+1)s Xi+1)
<3 +d(zs.ri+1)s Pri+1)(xi)) +d(Pr(it1)(Xi), Xi+1)
<3+ €it1 +d(zs ri+1), Xi)
<38+ e€it1 +d(xi,z5) +d(zs, 28.rG+1))

<28+ €41 +d(zs, xi). (2.117)
By induction we show that for all integers k =0, .. ., n,
k
d(zs, xx) §2M+Ze,~ + 28k. (2.118)
i=0

In view of (2.110), (2.112), and (2.113), the inequality (2.118) holds for £ = O.
Assume that a nonnegative integer k < n and that (2.118) holds. It follows
from (2.117) and (2.118) that

d(zs, Xky1) < 28 + €x41 + d(zs, xk)

k+1
<OM+) 6 +28(k+1).
i=0

Thus (2.118) holds for all k = 0, ..., n. It follows from (2.113) and (2.118) that for
allk=0,...,n,
n
d(O,x) < d(©,25) +d(z5, x) <3M + )€ +2n.
i=0

Since § is any positive number we conclude (see (2.106)) that

d(0, xx) < 3M + A for all integers k > 0. (2.119)

Set
Eo={i € {no,no+1,...}: d(xi, Crgt+1)) = y0/2}, (2.120)
Ey ={ng,no+1,...}\ Eo. (2.121)

Let n > ng be an integer 6 € (0, 1). By (A2), there exists

z5 € B, My) (2.122)
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such that (2.114) holds. By (2.114), foreach i € {1, ..., m} there exists
zs,i € Ci
such that
d(zs,25) < 6.
Clearly, (2.117) holds for each integer i > 0. Therefore
d(zs, xi+1) < d(zs, xi) + 26 + €;41 for all integers i > 0.
Let
i € Ey.
Property (P3), (2.119), (2.120), (2.122)—(2.124), and (2.126) imply that
d(Priiv1)(xi), 2s,r(i+1)) < d(Xi, 25,rG+1) — V-
It follows from (2.124) and (2.127) that

d(Prir1)(xi), 25) < d(Pri+1)(Xi), 28,r(i+1)) + d(2s,ri+1)> 25)
<8+d(xi, 25,G41) — VY
<d(xi,25) +26 —y.

By (2.108), (2.111), (2.120), (2.126), and (2.128),
d(xit1,25) < d(xiy1, Py () +d(Priv1y(xi), 25)
=d(xi,z5) +20 —y +€iq1
<d(xi,zs) +28 —y/2.
By (2.119)—(2.122), (2.125), and (2.129),

AM + A > d(zs, Xpy) = d(zs, Xny) — d(zs, Xp)

n—1
= Z(d(z(s, x;) — d(zs, Xi+1))

i=ng

= {d(zs, xi) —d(zs, xi41) i € EyN[0,n — 1]}

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)

(2.129)
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+ 3 (d(zs. %) —d(zs, xi41) : i € EgN[0.n — 1]}
>3 (26— €yt i€ EyN[0.n— 1]}

+(y/2 —28)Card(Eo N [0, n — 1]).
In view of (2.106) and (2.130),
(y/2 —28)Card(Eg N [0,n — 1]) < 4M +2A + 24n.
Since § is any element of the interval (0, 1) we conclude that
Card(Eg N[0, n — 1]) <2y~ '(4M +24).
Since n is any integer satisfying n > ny we conclude that
Card(Eg) <2y~ '(4M +2A).
Set
Er={ke{no,no+1,...}: [k,k+N — 11N Ey # B}.
By (2.131) and (2.132),
Card(E,) < NCard(E)
<2Ny~'(4M +24)).
Let a nonnegative integer p satisfies
p=noand p ¢ Es.
Then in view of (2.120), (2.132), and (2.134),
[p.p+N-—1NEy =9
and for each k € {p,...,p—i—N— 1},
d(xi, Crk+1)) < yo/2.
Let

kelp,....p+N—1}.

41

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)
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By (2.136) and (2.137), there exists
§ € Crkrn (2.138)
such that
d(xg, &) < v/2. (2.139)
In view of (2.103), (2.111), (2.138), and (2.139),

d(xp11,8) <dXist, Prorn ) +d(Prgerny (X)), §)
<€yl +d(xg, &) < €1 +y0/2.

Together with (2.108), (2.134), (2.137), and (2.139) this implies that
d(xk, xp41) < d(xk, §) +d(&, xk41) < Yo+ €41 < 200. (2.140)
In view of (2.137) and (2.140), for all integers k1, k> € {p, ..., p + N},
d(xi,, X)) < 2Nyp. (2.141)
Lets € {1,...,m}. By (2.104) and (2.110), there exists
ke{p,....p+N—1} (2.142)
such that
rtk+1)=s. (2.143)
It follows from (2.136), (2.142), and (2.143) that
d(xx, Cs) < y0/2. (2.144)
By (2.107), (2.141), (2.142), and (2.144),
d(xp, xx) < 2Nyo
and
d(xp, Cg) < d(xp, xx) +d(xg, Cs) < Q2N +1) =€
forall s € {1, ..., m}. Thus for every integer p > ng such that p # E,

d(xp,Cs) <€, s=1,...,m.
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Therefore in view of (2.109) and (2.133),

Card({i € {0, 1,...}: max{d(x;,Cs) : s =1,...,m} > €})
< ng + Card(E»)
<ng+2Ny~'(4M +24) = Q.

This completes the proof of Theorem 2.5.

2.7 Proof of Theorem 2.6

Set
€ =€e2N+ 1)~ (2.145)

By (Al), there exists a positive number €; < ¢€q such that the following property
holds:

(P4) foreachi € {1,...,m},eachz € B(,3M+1)NC;,andeachx € B(0,3M+
1) satisfying d(x, C;) > €p we have

d(Pi(x),z) <d(x,z) — €.
Set
v=38let@N + 1)L (2.146)

By (Al), there exists a positive number y < min{l, yp} such that the following
property holds:

(P5) foreachi € {1,...,m},eachz € B(,3M+1)NC;,andeachx € B(0,3M+
1) satisfying d(x, C;) > yp/2 we have

d(Pi(x),z) <d(x,z) —y.
Set

Q=NeMy ' +1). (2.147)
Assume that

r € Rper, (2.148)
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{xi}2y C X,
X0 € B(6, M) (2.149)
and
x; = Pp;)(x;—1) for all natural numbers i. (2.150)
Set
N
Po=P. Py = | Pro- (2.151)
i=1

It follows from (2.105), (2.148), (2.150), and (2.151) that for each integer i > 0,
XitnN = Prirnm  Praven Gin) = Prxig)- (2.152)

Let n be a natural number and § € (0, 1). Assumption (A2) implies that there exists

25 € B(6, M) (2.153)
such that
B(z5,6)NC; #0, i=1,...,m. (2.154)
In view of (2.154), for each i € {1, ..., m} there exists
z5,i € Ci N B(zs, ). (2.155)

By (A3), (2.102), and (2.155), for each integer i € {1, ..., m},
d(zs, Pi(z5)) < d(zs, 25,i) +d(Pi(zs,i), Pi(2s)) < 2d(z5,250) <25.  (2.150)
It follows from (A3), (2.150), and (2.156) that for each integer k > 0,
d(zs, xk+1) = d(zs, Prik+1)(xk))
< d(zs, Prk+1)(28)) + d(Pre+1)(28)s Priker1)(Xx)) < 28 +d(z5, x1).  (2.157)
Relations (2.149), (2.153), and (2.157) imply that for all integers k =0, ..., n,

d(zs, xx) < d(zs, x0) + 26k < 2M + én. (2.158)
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In view of (2.153) and (2.158), for all integers k =0, ..., n,
d(@,xx) <d©,zs) +d(zs, xx) < 3M + dn. (2.159)
Since § is an arbitrary element of the interval (0, 1) we conclude that
d(0, xr) < 3M for all integers k > 0. (2.160)
Set

Eo={p€{0,1,...}: max{d(xi, Cri41)) : i = pN,....(p+1)N—1} = y9/2},

(2.161)
Ei =1{0,1,...}\ Eo. (2.162)
By (2.149), (2.153), and (2.157),
2M > d(zs, x0) = d(zs, x0) — d(z5, X, )
n—1
=Y (d(zs, %) — d(@s, Xy 1)R))
k=0
n—1 (k+1)N—-1
=31 Y (@@s.x) —ds. xj1)]
k=0 j=kN
(k+DHN—1
=Y 0 D (@s,x)—d@s,xj)): ke ExN[0,n—1])
j=kN
(k+DHN—1
=Y > (@@ x)—d@.xj1): ke En[0,n— 1]}
j=kN
(k+1HN-1
>—2nN+ Y (> (dzs.x)) —d(zs.xj41)) : k€ Egn[0,n—1]}.
j=kN
(2.163)
Assume that
k € Eq. (2.164)

By (2.161) and (2.164), there exists

jo€{kN,...,(k+ 1N — 1} (2.165)
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such that
d(xjy, Cr(jo+1)) = Y0/2. (2.166)
Property (P5), (2.153), (2.155), (2.160), and (2.166) imply that
d(Pr(jor1)(Xjo) 28,0 (o) < d(Xjo, Z8.r(jo+1)) — V- (2.167)
It follows from (2.150), (2.155), and (2.167) that

d(xjy+1,28) = d(Pr(jo+1) (Xjy), 28)
< d(Pr(jo+1)(Xjo)s 28.r(o+1) T d(Z8.r(jo+1)» 28)
<d(xjy, 25,r(o+1) — ¥V +8 < d(xjy, 25) +28 — . (2.168)

By (2.157), (2.165), and (2.168),

(k+1)N—1
> (s, xj) —dizs, xj41) = ¥ — 25N. (2.169)
Jj=kN

By (2.163) and (2.169),
2M +28nN > (y — 28N)Card(Eg N [0, n — 1]).
Since § is any element of (0, 1) we conclude that
Card(Eg N[0,n — 1]) <2y~ 'M.
Since the inequality above holds for any natural number n we conclude that
Card(Eg) <2y~ 'M. (2.170)
In view of (2.161) and (2.170), there exists an integer go > 0 such that
go <2My~' +1, (2.171)
d(xj, Crj+1)) < 10/2. j=qoN.....(qo+ 1N — 1. (2.172)
Let

j€{qoN,..., (g + DN —1}. (2.173)
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Relations (2.172) and (2.173) imply that there exists
§ € Crij+n (2.174)
such that
d(xj, &) < /2. (2.175)
It follows from (2.103), (2.150), (2.174), and (2.175) that
d(xj11,8) =d(Prj+1(x)), §) <d(xj, ) < y/2.
Together with (2.175) this implies that
d(xj,xj+1) < W, j =qoN, ..., (g + DN — 1. (2.176)
In view of (2.152) and (2.176),
d(xg 5 Prxg 5)) = d 0y 5 Xgornn) < YoN. (2.177)
Assumption (A3), (2.151), (2.152), and (2.177) imply that for each integer g > qo,
dCy5 Xginm) = AP0y 1), (P (x 11y 8)
< dXy 5> Xgor i) < »oN. (2.178)
Let g > go be an integer. We show that
d(xj, Cr(j+1)) < €0, j=gN,....,(g+ DN — 1. (2.179)
By (2.178),
d(x, 5> X+ 1yi) < VON. (2.180)
Assume that (2.179) does not hold. Then there exists
jo€f{gN,...,(g+ DN —1} (2.181)
such that
d(xj,, Crjo+1)) > €o. (2.182)
It follows from (2.150), (2.153), (2.155), (2.159), (2.182), and property (P4) that

d(Xjor1, 28, (o 1) = A(Pr(jo+1)(Xjo)s 28,r o+ 1) < d(Xjy» 28,r(jo+1)) — €1-
(2.183)
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In view of (2.155) and (2.183),
d(zs, Xjo+1) < d(2s, 28,r(jo+1) + d(@s,r(jo+1)s Xjo+1)
<8+ d@s.rGor)s Xjor1) < d(Xjy, 28.r(jo+)) — €1 + 68 < d(zs, xj,) — €1 + 24.
(2.184)
By (2.157), (2.180), (2.181), and (2.184),

VON > d(qu, x(qu])]{/) > d(zs, qu) — d(zs, X(q+1)1\7)

(g+HN—1 )
= > (d@sxj) —ds xj41) = €1 — 28N.
J=qN

Since § is any element of the interval (0, 1) we conclude that
€1 < WN.

This contradicts (2.146). The contradiction we have reached proves (2.179).
Letj € {gN,...,(g+ 1)N — 1} and k > 0. In view of (2.179),

d(xj, Cr(j+1)) < €0

and there exists
§€Crij+ (2.185)

such that

d(xj,§) < e+« (2.186)
Assumption (A3), (2.102), (2.150), (2.185), and (2.186) imply that

d(xjy1,8) =d(Prj11)(x)), Prj+n()) <d(xj, &) <€+«
and
2k + 260 > d(xj,Xj+1), j=¢N,....,(g+ 1N —1.

Since « is any positive number we conclude that

2¢0 > d(xj,xj+1), j=¢qN,...,(g+ DN —1. (2.187)
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In view of (2.187), for each ji, j» € {gN, ..., (g + )N},
d(xj,, xj,) <2€N. (2.188)
Let
kef{gN,...,(g+ 1N}, sefl,...,m}. (2.189)
By (2.104), (2.148), and (2.189), there exists
jefgN,....,(g+ 1N -1} (2.190)
such that
rG+1) =s. (2.191)
By (2.179), (2.190), and (2.191),
d(xj, Cy) < €.
Together with (2.145) and (2.188)—(2.190) this implies that
d(xg, C) <d(xk, xj) +d(x;,Cs) < €N +1) = ¢
and
max{d(xx,Cs): s=1,...,m} <e€

for all integers k € {q]\_l, o (g + I)N} and all integers g > ¢p. Since Q = qol\_l
this completes the proof of Theorem 2.6.

2.8 Auxiliary Results

Let (Y, p) be a metric space. Denote by 9y the set of all mappings 7 : ¥ — Y
such that

p(T(x), T(y)) < p(x,y)forallx,ye?. (2.192)
For each y € Y and each r > 0 set

B(y,r)={zeY: p(y,2) <r}.
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Proposition 2.8 Let n > 1 be an integer, § > 0,

{E}?:] - mY? {xi}?:()v {)’z}:lzo C Y’

X0 = Y0 (2.193)
and let for all integersi =1, ..., n,
yi = Ti(yi-1), p(xi, Ti(xi-1)) < 8. (2.194)
Then for all integersi =0, ..., n,
p(xi, yi) < ié. (2.195)

Proof By (2.193), inequality (2.195) holds for i = 0. Assume that i < n is
a nonnegative integer and that (2.195) holds. It follows from (2.192), (2.194),
and (2.195) that

Pxit1, Yiv1) < pXit1, Tiv1 () + p(Tip1(x), Tip1(3i))
<d+p(xi,y) < (i +1)6.

Therefore (2.195) holds for alli =0, ..., n. Proposition 2.8 is proved.

Theorem 2.9 Let N be a natural number, 2 be a set of mappings S : {1,2,...} —
My such that

S+ N) = S@) for all integersi > 1 (2.196)

and let F C Y be a nonempty bounded set. Assume that for each M > 0 there exists
an integer Q > 0 such that the following property holds:

(P6) for each S € 2A and each sequence {x;};°, C Y which satisfies
xo € B(6, M),
Xi+1 = S0 + )(x;) for all integers i > 0

the inclusion x; € F holds for all integers i > Q.

Let M > 1,¢€ € (0, 1), an integer Q > 0 be such that property (P6) holds and
let

§=¢e(QQ2N + 1)~ L.
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Then for each S € 2 and each sequence {x;};°, C Y which satisfies

X0 € B(6, M), (2.197)
o (Xit1, SU + D(xi)) <6 forall integersi > 0 (2.198)

the relation
B(xi,e)yNF #0 (2.199)

holds for all integers i > Q.

Proof We may assume without loss of generality that

FCB®B,M-1). (2.200)
Fix
§=¢e(QQ2N + 1)~ . (2.201)
Assume that
Se (2.202)

and that a sequence {x,-}fio C Y satisfy (2.197) and (2.198). We show that (2.199)
holds.
Assume that n is a nonnegative integer and that

xpN € B(6, M). (2.203)

Consider a sequence {y; }7°

.y C Y such that
YuN = XuN, (2.204)
vit1 = S + 1)y; for all integers i > nN. (2.205)
Property (P6), the choice of Q, (2.196), and (2.202)—(2.205) imply that
y; € F for all integersi > Q +nN. (2.206)

Proposition 2.8, (2.192_), (2.196), (2.197), (2.198), and (2.202)—(2.205) imply that
for each integeri > nN,

p(xi,yi) < 8@ —nN). (2.207)
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By (2.201) and (2.207), for each integer i € {nN + Q,...,nN + Q + 20N},

p(xi,yi) <8(QQ2N +1)) <e.
Together with (2.206) this implies that for all integers
ie{nN+Q,...,nN+ Q+20N},
we have
Bxi,e)N F # .

Thus we have shown that the following property holds:

(P7) If n is a nonnegative integer and x,y € B(6, M), then

B(xi,e)NF#W, ic{nN+0Q,....nN+ Q+20N}.

Property (P7) and (2.197) imply that
Bxi,e)NF#0,i=0Q,...,Q+20N.
Assume that an integer ¢ > Q and

B, e)NF#%, i=0.....0+2N.

(2.208)

(2.209)

(2.210)

(Note that in view of (2.109), our assumption holds for ¢ = Q.) By (2.200)

and (2.210),
B(xogn,€)NF # 0,
XogN € B(O, M).

It follows from (2.211) and property (P7) applied with n = 2¢ that

B(xi,e)NF #@, i =2qN+ Q,..., 0 +2qN +20N.

In view of the relation above and (2.210),
Bxi,e)yNF#0,i=0,...,0+29gN +20N.
Thus by induction we showed that
B(x;j,€) N F # () for all integers i > Q.

Theorem 2.9 is proved.

(2.211)
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2.9 Proof of Theorem 2.7

We may assume that
€0 < min{l, ro}/4.
We deduce Theorem 2.7 from Theorems 2.6 and 2.9. Let
Y,p)=(X,d), N=N, A={i - Py, i =1,2,... :7 € Rper},
F={xeX: max{d(x,Cs): s=1,...,m} <e€y/4}. (2.212)
In view of Theorem 2.6, for each M > 0 there exists an integer Q > 0 such that

property (P6) holds. Hence Theorem 2.9 implies that there exist § > 0 and an integer
Q > 0 such that for each r € R, and each sequence {xi}?io C X which satisfies

X0 € B(6, M), (2.213)
p(Xig1, Priy1y(x;)) < 8 for all integers i > 0 (2.214)

we have
B(x;,€0/4) N F # @ for all integers i > Q. (2.215)

Assume that r € Rp. and that a sequence {x;}7°, C X satisfies (2.213)
and (2.214). Then (2.215) is true.
Assume that an integer i > Q. By (2.215), there exists
& € FN B(xj, €0/4).
In view of (2.212), foralls =1, ..., m,
d(xi, Cs) =d(xi, §) +d(§, Ci) < €0/4+ €0/4,

max{d(x;,Cs): s =1,...,m} < € for all integersi > Q.

Theorem 2.7 is proved.

2.10 The Third Problem

Let (X, d) be a metric space. Recall that for each x € X and each r > 0,

Bx,r)y={yeX: dx,y)<r}
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and that for each x € X and each nonempty set £ C X

d(x, E) =inf{d(x,y) : y € E}.

Fix 6 € X. Let m be a natural number andlet P; : X — X,i =1,...,m be
self-mappings of the space X. Suppose that for every i € {1, ..., m},
F,:=Fix(P;) ={zeX: Pi(zx) =z} #90. (2.216)
For every € > 0 and every i € {1, ..., m} set
Fe(P)={xe X: dx, Pi(x)) <¢€}, (2.217)
Fe(P)=1{yeX:d(y, F(P)) < e}, (2218)
Fe =N Fe(Py), Fe =N Fe(P). (2.219)

Let M, > 1 and suppose that the following properties hold.

(A4) For each M > 0 and each y > O there exists § > 0 such that for each
ief{l,..., m},each

z € B(6, M) NFix P;
and each x € B(6, M) satisfying d(x, P;(x)) > y, the inequality
d(Pi(x),z) <d(x,z) =3¢

is true.
(A5) For each § > 0 there exists zs € B(6, M,) such that

B(zs,8) NFix(P;)) # @ foralli =1,...,m.
In view of (A4) and (2.216), foreachi =1, ..., m,
d(P;(x),z) <d(x,z) foreach x € X and each z € Fix(F;). (2.220)

Fix a natural number N > m. Denote by R the set of all mappings r : {1,2,...} —
{1, ..., m} such that for each number j,

{1,...,m}C{r(j),...,r(j—i—N—l)} (2.221)
and denote by R, the set of all r € R such that for each integeri > 1,

r(i +N) =r(@). (2.222)
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In this chapter we prove the following three results: Theorem 2.10 which shows
that the inexact iterative method generates approximate solutions if perturbations
are summable, Theorem 2.11 which establishes that the exact iterative method
generates approximate solutions, and Theorem 2.12 which demonstrates that the
inexact iterative method generates approximate solutions if the perturbations are
small enough.

Theorem 2.10 Let M > M., € be a positive number and let a sequence {Gi}?; C
[0, 00) satisfy

o0
A=) € <o (2.223)

i=1
Then there exists a constant Q > 0 such that for each r € R and each sequence
{xi}?2, C X which satisfies

x0 € B(O, M),
d(xi, Priy(xi—1)) < € for all natural numbers i
the inequality
Card({i €{0,1,...}: x; € F) < Q

holds.
Theorem 2.11 Assume that the following property holds:
(A6) d(P;(x), Pi(y)) <d(x,y)forallx,y € Xandalli =1,...,m.

Let M > M., € > 0. Then there exists a constant Q > 0 such that for each
r € Rper and each sequence {x;};2) C X which satisfies

X0 € B0, M),
xi = Py (x;—1) for all natural numbers i

the inclusion x; € F¢ holds for all integeri > Q.

Theorem 2.12 Assume that (A6) holds. Let M > M., rg > 0,
F,, C B(6, M)

and €y > 0. Then there exist Q,8 > 0 such that for each r € Rper and each
sequence {x;}{°, C X which satisfies

x0 € B(0, M),
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d(x;, Priy(xi—1)) < & for all natural numbers i

the inclusion x; € Fg, holds for all integeri > Q.

2.11 Proof of Theorem 2.10

We may assume that € < 1.
Set

v =€2N+ 17" (2.224)

By (A4), there exists a positive number y < yg such that the following property
holds:

(P8) foreachi € {1,...,m},each z € B(#,3M + 1 + A) N Fix(P;), and each
x € B(6,3M + 1 + A) satisfying d(x, P;(x)) > yp/2 we have

d(Pi(x),z) =d(x,z) —y.
By (2.223), there exists a natural number n¢ such that
€; < y /4 for all integers i > ng. (2.225)
Set
Q0 =nyo+ 2Ny~ '(4M +24). (2.226)

Assume that {x;}7°, C X,

reR, xoe BO,M) (2.227)

and
d(x;, Pri)(xi—1)) < ¢; for all natural numbers i. (2.228)

Set
c0 = 0. (2.229)

Let n be a natural number and § € (0, 1). By (AS), there exists

25 € B0, M) (2.230)
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such that
B(zs,8) NFix(P;) # @ foralli =1,...,m. (2.231)
By (2.231), foreach i € {1, ...} there exists
zs,i € Fix(F;) (2.232)
such that
d(zs, z5,i) < 9. (2.233)

It follows from (2.216), (2.220), (2.228), (2.232), and (2.233) that for each integer
i>0,

d(zs, xiv1) < d(zs, 25,rG+1)) +d(Zs,ri+1), Xit1)
<8 +d@s,ri+1)s Priv1) (X)) +d(Pris1)(Xi), Xit1)

<8+e€ip1 +d@s, i), Xi)

<28+ €41 +d(zs, xi). (2.234)
By induction we show that for all integers k =0, ..., n,
k
d(zs. xx) <2M + ) € + 26k. (2.235)
i=0

In view of (2.227), (2.229), and (2.230), inequality (2.235) holds for k = 0. Assume
that a nonnegative integer k < n and that (2.235) holds. It follows from (2.234)
and (2.235) that

d(zs, Xkg1) < 28 + €xq1 +d (25, x1)

k+1
SOM+) € +25(k+1).
i=0

Thus (2.235) holds forall k = 0, .. ., n. It follows from (2.230) and (2.235) that for
allk=0,...,n,

n
d(0,x1) <d0,25) +d(zs, x) <3M + )€ +20n.
i=0
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Since § is any element of the interval (0, 1) we conclude (see (2.223)) that
d0, xr) < 3M + A for all integers k > 0. (2.236)
Set
Eo={i € {ng,no+1,...}: dxi, Pri+1)(x:)) = v0/2}, (2.237)
Ey={ng,no+1,...}\ Ep.
In view of (2.234), for all integers i > 0,
d(zs, xit1) < d(z5,x;) + 28 + €i41. (2.238)
Let
i € Ep. (2.239)
Property (P8), (2.230), (2.232), (2.233), (2.236), (2.237), and (2.239) imply that
d(Pri+1) (%), Zs,ri+1) = d(Xi, 25,r(i41)) — V- (2.240)
It follows from (2.233) and (2.240) that
d(Pri+1)(xi), 28) < d(Pri1)(Xi), Zs,ri+1) + d(25,rG+1), 25)
<8+d(xi, z5.,rG+1) — ¥
<d(xi,z5) +28 —y. (2.241)
By (2.225), (2.228), (2.237), (2.239), and (2.241),
d(xit1,28) < d(Xit1, Pri+1)(xi) +d(Pri+1)(Xi), 25)
<25+d(xi,z8) —y +€it1
<d(xi,zs5) +28 —y/2. (2.242)
Let n > ng be an integer. By (2.230), (2.236)—(2.238), and (2.242),
AM + A > d(z5. xng) = d(25, Xng) — (25, %)

n—1
= Z(d(z(g, xi) —d(zs, Xi+1))

i=ng
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=D {d(s.x) —d(s, xie) i € EtN[0.n —1])
=Y {d(zs, %) —d(zs, xi1) - i € EgN[0,n— 1]}

> Z{—zs —€41: i€ E;N[0,n—1])
+ (y/2 — 28)Card(Eg N [0, n — 1]).

In view of (2.223) and (2.243),

(y/2 — 28)Card(Eo N [0, n — 1]) < 4M + 2 A + 26n.

Since § is any element of the interval (0, 1) we conclude that
Card(Eg N[0, n — 1]) <2y~ '4M +24).
Since n is any integer satisfying n > ng we conclude that
Card(Eo) <2y~ '(4M +24).
Set
Ery=1{ke{no,no+1,...}: [k,k+N — 11N Ey # @}.
By (2.244) and (2.245),
Card(E>) < NCard(E)
<2Ny~'(4M +24).
Let a nonnegative integer p satisfies
p>noand p & Ej.
Then in view of (2.237), (2.245), and (2.247),
[p.p+N—11NEy =0
and for each k € {p,...,p+N— 1},

d(xk, Prie+1) (1)) < vo/2.

59

(2.243)

(2.244)

(2.245)

(2.246)

(2.247)

(2.248)
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Let
ke{p,....p+N—1}.

By (2.225), (2.228), (2.247), (2.248), and (2.249),

d(xp, xk+1) < dxk, Prgerny ) + d(Prger1y (k) Xet1)

< y0/2 + €x+1 < 3y0/4.

Thus

d(xy, xp41) < 3po/dforallk=p,...,p+ N — 1.

In view of (2.250), for all integers i1, i» € {p, ..., p + N},
d(xiy xi,) < 3Nyo/4.
Lets € {1,...,m}. By (2.221) and (2.227), there exists
kef{p,....p+N—1}
such that
rtk+1)=s.
It follows from (2.249), (2.252), and (2.253) that

d(x, Ps(xk)) < yo/2.

By (2.224), (2.251), (2.252), and (2.254), for each i € {p, ...

Xi € Fyy (P) C Fe(Py), s=1,...,m

and
x; € Fe.

Thus for all integers p > ng satisfying p & E,, we have
xp € Fo

and in view of (2.226) and (2.246),

Card({i € {0,1,...}: x; € E.})

, p+ N},

(2.249)

(2.250)

(2.251)

(2.252)

(2.253)

(2.254)
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< ng + Card(E»)
<no+2Ny~'(4M +24) = Q.

This completes the proof of Theorem 2.10.

2.12 Proof of Theorem 2.11

Set
€0 =€e(2N +1)~L. (2.255)

By (A4), there exists a positive number €; < ¢ such that the following property
holds:

(P9) foreachi € {1,...,m}, each z € B(#,3M + 1) N Fix(P;), and each x €
B(0,3M + 1) satisfying d(x, P;(x)) > €p we have

d(P[‘(.X), Z) S d(xv Z) — €].
Set
=8 les@N + 1)L (2.256)

By (A4), there exists a positive number y < min{l, yp} such that the following
property holds:

(P10) foreachi € {1,...,m}, each z € B(0,3M + 1) N Fix(P;), and each x €
B(6,3M + 1) satisfying d(x, P;(x)) > y9/2 we have

d(Pi(x),z) =d(x,z) —y.
Set
0 =My '+ 1)N. (2.257)
Assume that
r € Rper, (2.258)
{xi}iZg C X,

X0 € B(6, M) (2.259)
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and
x; = Pr)(x;—1) for all natural numbers i. (2.260)

Set
N
Po=P g Py = ]_[ Priy. (2.261)
i=1

It follows from (2.222) and (2.258)—(2.260) that for each integer i > 0,

Xi+ON = Prarnmy - Praneny i) = Prxg)- (2.262)

Let n be a natural number and § € (0, 1). Assumption (AS) implies that there exists

25 € B(6, M) (2.263)
such that
B(z5,8) NFix(P) #9, i=1,...,m. (2.264)
In view of (2.264), for each i € {1, ..., m} there exists
zs.i € Fix(P;) N B(zs, 8). (2.265)

(A6), (2.216), and (2.265) imply that foreachi =1, ...,m,
d(zs, Pi(z5)) < d(zs, 25,i) +d(Pi(zs,i), Pi(25))
< 2d(zs, zs,i) < 26. (2.266)
It follows from (A6), (2.260), and (2.266) that for each integer k > 0,
d(zs, Xg+1) = d(2s, Prikt1)(Xk))
<d(zs, Prk+1)(28)) + d(Prea1)(28)s Prery (X)) < 28 +d(z5, xk).  (2.267)
Relations (2.259), (2.263), and (2.267) imply that for all integers k =0, ..., n,
d(zs, xx) < d(zs, x0) + 28k <2M + én. (2.268)
In view of (2.263) and (2.268), for all integers k =0, .. ., n,

d@,xy) <d©,z5) +d(zs, xx) <3M + én.
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Since § is an arbitrary element of the interval (0, 1) we conclude that

d(0, xr) < 3M for all integers k > 0. (2.269)
Set
Eo={pe{0,1,...}:
max{d(x;, Pri+1)(xi)) 1 i = pN,....(p+ 1N — 1} > 1/2}, (2.270)

Ei=1{0,1,...}\ Eo.
By (2.259), (2.263), (2.267), and (2.270),

2M > d(zs, x0) = d(zs, x0) — d(z5, X, 7)

n—1
= (d(zs. x5) — d(25, X 1))
k=0
n—1 (k+1)N-1
=1 ) (@@ xj) —dzs xj41))]
k=0 j=kN
(k+1DHN-1
=Y > @@.x)—d@.xjw1): ke Ern[0,n— 1]}
j=kN
(k+DHN-1
0D @@sxj) —d(zs.xj4)) ke Egn[0.n— 1]}
j=kN
(k+1)N—1
=-2nN+) { Y (ds,x) —d(@s xj+1)) s k€ Eon[0.n — 11},
j=kN
2.271)
Assume that
k € Eyp. (2.272)

By (2.270) and (2.272), there exists

jo€{kN,...,(k+ 1N — 1} (2.273)
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such that

d(xjos Prjo+1)(Xjo)) = v0/2. (2.274)

Property (P10), (2.260), (2.263), (2.265), (2.269), and (2.273) imply that

d(Xjo+15 28,r(or 1)) = A(Pr(jor1) X jo)s 28,r(o+1) < d(Xjys 28,7 (jo+1)) — V-

(2.275)
By (2.265) and (2.275),
d(Xjyr1,25) < d (25, 28,r(jo+1) + A (@8, (jo+-1)s Xjot1)
<d(xjy, 25,r(o+1) — ¥ +6 < d(xjy,zs) +25 — y. (2.276)
It follows from (2.267), (2.273), (2.274), and (2.276) that
(k+1)N—-1
3 (@ xj) —d(zs,xj41) =y — 28N, 2.277)
j:k[\_/

By (2.271), (2.272), and (2.277),
2M +28nN > (y — 28N)Card(Ey N [0, n — 1]).
Since § is any element of (0, 1) we conclude that
Card(Eg N [0,n — 1]) <2y~ 'M.
Since the inequality above holds for any natural number n we conclude that
Card(Eg) <2y~ 'M. (2.278)
In view of (2.260), (2.270), and (2.278), there exists an integer go > 0 such that
go <2My~ ' +1, (2.279)
d(xi, xi1) = d(xi. Pri41) (i) < 10/2, i =qoN. ... (qo+DN—1.  (2.280)
In view of (2.262) and (2.280),
d(xg 5 Pr(xg5)) = dxy 5, Xgor)8) < 271N, (2.281)

Assumption (A6), (2.260)—(2.262), and (2.281) imply that for each integer g > gy,
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A5 Xgini) = AP0y 7)), (PT(x11) )
< A5 Xgor i) < 27 N,
Let g > go be an integer. We show that
dxj,xj11) <€, j= q]\_/,..., (g + 1)1\_/ —1.
By (2.282),
d(qu\-,, x(q+1)1\7) < 2_1)/01\_1.
Assume that (2.283) does not hold. Then there exists
jo€{gN,....(¢g+ DN —1}
such that
d(Xjy, Xjo+1) > €0.
It follows from (2.260) and (2.286) that
d(xjy, Pr(jo+1)(xjy)) > €o.

Property (P9), (2.260), (2.263), (2.265), (2.269), and (2.287) imply that
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(2.282)

(2.283)

(2.284)

(2.285)

(2.286)

(2.287)

d(Xjo+1, 25,r (o)) = A(Pr(jor1) (Xjo), 28, r(jo+1)) < d(Xjys 28,r(jo+1)) — €1-

In view of (2.265) and (2.288),
d(zs, Xjo41) < 8 +d(2s,r(jo+1)> Xjo+1)
<8+d(xjy, 25,r(jo+1) — €1 < d(zs, Xj,) — €1 + 2.
By (2.267), (2.284), and (2.289),
27 N > dxy5, Xy 1yR) = d(@s, x,5) — d@s, X1 R)
(g+1)N—1

= Y (d(zs,x)) —d(zs,xj41)) = €1 — 28N.
J=qN

(2.288)

(2.289)
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Since § is any element of the interval (0, 1) we conclude that
e <27 'yN.

This contradicts (2.256). The contradiction_we have reache_d proves (2.283).
In view of (2.283), for each ji, j» € {gN,...,(g + )N},

d(xj,,xj,) < e€N. (2.290)
Let
kef{gN,...,(g+ 1N}, se{l,....,m}. (2.291)
By (2.221) and (2.291), there exists
jelgN,....,(g+ 1N -1} (2.292)
such that
r(j+1) =s. (2.293)
By (2.283), (2.292), and (2.293),
d(xj, Pg(xj)) = d(xj, Prj+1)(xj)) =d(xj, xj11) < €o. (2.294)
(A6), (2.255), (2.290)~(2.292), and (2.294) imply that
d(xp, Ps(x)) < d(xg, xj) +d(xj, Py(xj)) +d(Ps(x;), Py(xx))
<eo+2d(xp,xj) <€ RN+ 1) =¢
and
xp € Fe(Py): s=1,...,m, x; € F¢

for all integers k € {gN, ..., (q + 1)N} and all integers ¢ > 2My~' + 1. This
completes the proof of Theorem 2.11.

2.13 Proof of Theorem 2.12

We may assume that

€0 < min{l, ro}/4.
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We deduce Theorem 2.12 from Theorems 2.9 and 2.11. Let
Y,p)=(X,d), N=N, A={i > Py, i =1,2,... :7 € Rper},
F = Feya. (2.295)
In view of Theorem 2.11, for each M > O there exists an integer 0 > 0 such
that property (P6) holds. Hence Theorem 2.9 implies that there exist § > 0 and an

integer Q > 0 such that for each r € R, and each sequence {x,-}f-’io C X which
satisfies

xo € B(6, M), (2.296)
P Xix1, Pri+1)(x;)) < 6 for all integers i > 0 (2.297)

we have
B(xj, €9/4) N F # @ for all integers i > Q. (2.298)

Assume that r € Rp., and that a sequence {xi}?io C X satisfies (2.296) and
(2.297). Then (2.298) is true.
Assume that an integer i > Q. By (2.296), there exists
& € FN B(xj, e9/4). (2.299)
In view of (A6), (2.295), and (2.299), foralls =1, ..., m,
d(xi, Ps(xi)) <d(xi, &) +d (&, Ps(§)) +d(Ps(§), Ps(xi))

<2d(xi,§) +€0/4 <€

and x; € F¢,. Theorem 2.12 is proved.



Chapter 3 )
Dynamic String-Averaging Methods Qe
in Normed Spaces

In this chapter we study the convergence of dynamic string-averaging methods
for solving common fixed point problems in a normed space. Our main goal is
to obtain an approximate solution of the problem using perturbed algorithms. We
show that the inexact dynamic string-averaging algorithm generates an approximate
solution if perturbations are summable. We also show that if the mappings are
nonexpansive and the perturbations are sufficiently small, then the inexact method
produces approximate solutions.

3.1 Preliminaries

Let (X, || - ||) be a normed space.
For each x € X and each nonempty set E C X put

dx,E) =inf{||x —y||: y € E}.
For each x € X and each r > 0 set

Bx,r)={yeX: x—yl=<r}

Let m be a natural number and let P; : X — X,i = 1, ..., m be self-mappings
of the space X. Suppose that for every i € {1, ..., m},

Fix(P;) :={z€ X : Pi(z) =z} # 0. (3.1
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Set
F =N Fix(P). 3.2)
Elements of the set F are solutions of common fixed point problem.
For every € > Oand every i € {1, ..., m} set
Fe(P) ={xeX: |lx—Px)| =€}, (3.3)
Fe(P)={yeX:d(y, F(P)) < e}, (34)
Fe =N/, Fe(P), (3.5)
Fo =N Fe(P). (3.6)

For a given € > 0 apoint x € F, is called an e-approximate solution of the common
fixed point problem.
We suppose that for every i € {1, ..., m} the inequality

lz = Pl < llz — x|l (3.7)

holds for all z € Fix(P;) and all x € X.
Suppose that M, > 1 and that the following assumption holds:

(A1) foreach é > O there exists zs € B(0, M,) such that
B(zs,8) N Fix(P) #@Pforalli =1,...,m.
We describe the dynamic string-averaging method with variable strings and

weights which is applied in order to obtain a good approximative solution of the
common fixed point problem.

By an index vector, we mean a vector t = (t1,...,tp) such thatt; € {1,...,m}
foralli =1,..., p.
For an index vector t = (71, ..., t;) set
pt) =gq, Plt]= P, - P. (3.8)

It is easy to see that for each index vector ¢

Plt](x) =xforallx € F, 3.9)
I Pe]1(x) — PleI)II = llx — PIeI(»)Il < llx — y|l forallx € Fandall y € X.
(3.10)

Denote by M the collection of all pairs (£2, w), where £2 is a finite set of index
vectors and
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w: 2 — (0, o) be such that Zw(z‘) =1. (3.11)
tef2

Let (2, w) € M. Define

Pg y(x) = Z w()Pt](x), x € X. (3.12)
tef2

It is not difficult to see that

Po y(x) =xforallx € F, 3.13)

| P2,w(x) = PouwWI = llx — PeuwWI = llx — yll
forallx € Fandall y € X. (3.14)

We use the following dynamic string-averaging algorithm. Initialization: select
an arbitrary xp € X.
Iterative step: given a current iteration vector x; pick a pair
(%41, wi1) €M
and calculate the next iteration vector xx41 by
Xe+1 = Py we 00)-
Fix a number
Ae0,m N (3.15)
and an integer
q = m. (3.16)
Denote by M., the set of all (£2, w) € M such that

p) <q forallt € £2, 3.17)
w(t) > Aforallt € £2. (3.18)

Fix a natural number N.
In order to state the main results of this chapter we need the following definitions.
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Let6 > 0,x € Xandlett = (1, ..., #p()) be an index vector. Define

Ag(x,t,8) ={(y,A) € X x R': thereis a sequence {yi}f:([g C X such that
y=xandforalli =1,..., p(®),
lyi = Py Qi-)Il =6,
Y =Yp®>

A=max{llyi —yi-1ll: i =1,..., p(O}}. (3.19)
Lets > 0,x € X and let (£2, w) € M. Define
A(x, (82, w),8) ={(y,1) € X x R' : there exist
(yr, Ar) € Ag(x, t,8), t € §2 such that

Iy = w@yll <8, 2 =max{x : t € 2}}. (3.20)
tef2

Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty
set is zero.

3.2 The First Problem

We suppose that ¢ € (0, 1) and that for every i € {1, ..., m} the inequality
Iz —xI? = llz = P +Ellx = P (3.21)

holds for all x € X and all z € Fix(FP;).

In this chapter we prove the following three results: Theorem 3.1 which shows
that the inexact dynamic string-averaging method generates approximate solutions if
perturbations are summable, Theorem 3.2 which establishes that the exact dynamic
string-averaging method generates approximate solutions, and Theorem 3.3 which
demonstrates that the inexact dynamic string-averaging method generates approxi-
mate solutions if the perturbations are small enough.

Theorem 3.1 Let
M > M,, (3.22)

€ € (0, 1) and let a sequence {€;}7°, C (0, 00) satisfy

o
A= Ze,- < 00. (3.23)
i=1
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Let a natural number ngy be such that for each integer i > ny,
e <e(N+ D'+~ (3.24)
Assume that
{82, w2 C My (3.25)
satisfies for each natural number j
j+N—1
{11"'7m} C Ul:/ (UZEQi{tls'--vtp(t)})9 (326)
xo € B(0, M) (3.27)

and that sequences {x;}°, C X, {A}72, C [0, 00) satisfies for each natural
number i,

(xi, i) € A(xi—1, (82;, wi), €). (3.28)
Then

Card({i € {0,1,...}: x; & F.})
<ng+ N1 +N?*1+§* ' a e 2((4M + A@G + 1)?
+AQRqg+1D@BM +2(g+ 1)+ A+2)).

Theorem 3.1 was obtained in [125].

Theorem 3.2 Assume that for each x,y € X and eachi € {1, ...,m},
1Pi(x) — Pl < llx — Il (3.29)

Let M > M,, € € (0, 1),

{(2i, w)}2 € M, (3.30)

satisfy (3.26),
('Qi+1§/’ wi+1\7) = (£2;, w;) for all integers i > 0, (3.31)
xo € B(0, M) (3.32)

and let a sequence {x;}7°, C X satisfy for each integeri > 0,

Xi+1 = Py wip (Xi)- (3.33)
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Then for each integer i > N(1 +4M?*¢3A73¢7*(83N)9),

Xi EFG.

Theorem 3.3 Assume that for each x,y € X and eachi € {1, ..., m},

1Pi(x) — Pl < llx — yll.
Let M > M,, rg € (0, 1),
F,, C B(0, M),
€0 € (0,70/2), Q= N(1+4°M*c3A3¢;*(87N)%),
0<8<4lep(Q2N +1) g+ 1"
Assume that
{(€2;, wi)};?il C M,
satisfy (3.26),

(82, 5> wiy ) = (£2i, w;) for all integersi > 0,

xo0 € B(0, M)

(3.34)
(3.35)
(3.36)

(3.37)

(3.38)
(3.39)

and let sequences {xi};.’il C X, {)‘i}?il C [0, oo) satisfy for each natural number i,

(xi, Ai) € A(xi—1, (§2;, w;), 8).

Then x; € Fy, for all integersi > Q.

3.3 Proof of Theorem 3.1

In view of assumption (A1), for each positive number § there is a point

zs € B(0, M,)
for which

B(zs,8) NFix(P) #90, i =1,...,m.

(3.40)

(3.41)

(3.42)
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By (3.42), for every positive number é and every integeri € {1, ...

a point
25, € B(zs, 8) NFixp(P;).
Let a nonnegative integer i be given. In view of (3.28), we have
(Xit1, A1) € Alxi, (£2i41, Wit1), €i41)-
It follows from (3.20) and (3.44) that there exist
(Vi,es @iy) € Ao(xi, 1, €iq1), 1 € R2i41
such that

vt = Y wip1 @il < €ig1,
1€ 1]

Aipr =max{a;, : ¢ € 241}

75

, m} there exists

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

By (3.19) and (3.45), for each index vector t = (1, ..., fp()) € £2;+1 there exists a

finite sequence { y;i’t)}?(:t()) C X such that

it it
yé’ ) = Xi, y;'(,)) = VYi,t>

for every integer j = 1, ..., p(t), we have

Iy = PO < €4,

ai =max{lyf} —y{: =0, p) =1}
Set
ey = 0.
In view of (3.27) and (3.41), we have
llzs — xoll < 2M.

Let a nonnegative integer i be given and

t=(1,....tpw) € 2i41, j=0,...,p@) — 1.

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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It follows from (3.7), (3.43), and (3.49) that

lzs — YR < zs = Py GV + 1P, GF7) — 850

< llzs = 2oy |+ 1280100 = Prpy OV + €1
Sd+€ip1+ 25 — y] l)||
< llzs — ¥ 1 428 + €1
and
(i,t)
lzs — ¥ < llzs — ¥ 1 + 28 + €1
It is clear that

(l t)||2 (@, t)”Z

llzs — llzs = ¥t

> flzs =y 1% = llzs = Prpyy )2
Hlzs = Pryyy OS2 = llzs — 5012

o2

> flzs — ¥ @02

— llzs = Py (y;
—Iy$5 = P GV DIz = Py G811+ lzs = 3550 1D

Relations (3.21), (3.42), and (3.43) imply that

lzs — ¥ 1% = llzs = Py, )11
> lzsa — 12 = N2se — Py OV
25140 — YN+ llzs — )1
Hlzs.p0 = Pryy OF I = llzs — Pt,+.(y<”))||

> ey — Py, GV

it it
—llzs = 281701 1128050 — Y0+ llzs — 351D

—l1zs = 281 11280300 = Pryy 5+ llzs = Pryyy 5D

In view of (3.7), (3.42), (3.43), and (3.56),

lzs = Y012 = llzs — Py G512

> Iy = Py, O8I

(3.54)

(3.55)

(3.56)
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=8(1z8.130 — Y+ llzs — ¥
—5(||Z¢s,z,-+1 — Py O+ llzs = Py 0D
> Gy = Py I = 8Qlzs — v+ 8)
—8Qlzs4701 — Py O +8)
> &y = P, G2 = 8@llzs — ¥V + )
—8Qlzs.y — ¥y Il +8)
> &y = Py, OV IZ = 82lIzs — ¥V + )
=8Q2lzs — ¥+ 38)

((R))

> Gy = Py GV = 2821125 — ¥ 1+ 38). (3.57)

By (3.49), (3.55), and (3.57), we have

YO 02

llzs — = llzs = yjpi

> lly$ - Pt,H(y"”)n —28Q2)1zs — ¥l + 38)
—1y$5 = Py GV lzs = Py G+ llzs — ¥
> Gy = Py G = 2821125 — ¥ 1+ 38)
—eir1(llzs — Py O+ llzs = ¥550 D (3.58)

It follows from (3.7) and (3.43) that

lzs = Pryyy O < Mlzs = 2500 |+ 28040 = Priy OF )
<8+ lzs =07
@1)

<8+ llzsyy — 28l + llzs — vl

<28+ |jzs — y 7. (3.59)

By (3.49), (3.58), and (3.59), we have

YOOI = llzs — ¥ 12

llzs — Vit

> ¢y - sz(y‘”))n — 2821z — ¥ Il +38)

—eit1Qllzs = ¥+ 46 + €. (3.60)
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Relations (3.17), (3.48), and (3.54) imply that for all integers j =0, ..., p(¢),

lzs — y 801 < llzs — yg Il + 5 (26 + €r41)
= llzs — xill + (26 + € 11)
< llzs — x| + p()(28 + €i11)
< llzs — xill + G128 + €i 1), (3.61)

In view of (3.48) and (3.61),

(it

lzs = yiill = llzs — v Il < llzs = xill +¢(28 + €i41). (3.62)

It follows from (3.11), (3.46), (3.62), and the convexity of the norm that

lzs = xipill < llzs = Y wirtOyiall + 10 Y wig1()yie — Xig1

tefiqy 1€82i41

< Y winOllzs — yidll + €

1€82i4

< llzs = xill + (g + 1)(28 + €i11). (3.63)

By induction we show that for all integers i > 0,

llzs — xill <2M +2(q + 1)di + (Z €)g+1. (3.64)
Jj=0

By (3.51) and (3.52), inequality (3.64) holds for i = 0.
Assume that i is a nonnegative integer and that (3.64) is true. In view of (3.63)
and (3.64),

lzs = xip1ll < llzs = xill + (@ + D28 + €i41)
i+1

<2M42G+ DG+ D+ Q€)@+ ).
j=0

Therefore by induction we showed that inequality (3.64) is true for all nonnegative
integers i.

Relations (3.61) and (3.64) imply that for all nonnegative integers i, all index
vectors 1 = (11, ..., 1)) € £2;41, and all integers j =0, ..., p(?),

lzs — 3§71l < llzs — xill + G286 + i)
i+1

<2M +2G+ DS+ D+ O eN@+ D). (3.65)
j=0
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Let a natural number n be given. In view of (3.23), (3.41), (3.64), and (3.65),
for all integers i = 0, ..., n, all index vectors t = (¢, ...,1p()) € 241, and all
integers j =0, ..., p(?),

llxill < llzsll + llxi — z5ll <3M +2(q + D)én + A(g + 1),

(1)

IS < zsll + 17 = 25l < 3M +2(G + Don + A@G +1).

Since the relation above holds for every number § € (0, 1) we conclude that for all
nonnegative integers i, all index vectors t = (f1, ..., tp()) € £2;+1 and all integers

J=0,....p@®),
lxill <3M + A(g + 1), (3.60)
1y01 < 3M ++A@G + D). (3.67)

It follows from (3.41), (3.60), and (3.67) that for each positive number §, each
nonnegative integer i, each index vector t = (t1, ..., fp()) € §2;11, and each integer

j=0,...,p@) —1,
llzs — ¥ 12 = lzs — ¥
> aly? — Py, G112
—28Q(4M + (G + 1) A) +38)
= €411Q2@4M + (G + 1)A) + 38 + €i41). (3.68)

By (3.49), for each positive number §, each nonnegative integer i, each index vector
t=(t,...,tpr)) € $2i11, and each integer j =0, ..., p(¢) — 1,

@0 (
”y] - Pt_/'_H (yj

=y =y = 1S = P, 8P

i,t))”z (@i,1) @i1) “2

= ||yj — Vit

> |y =y
—Iy5 = Py GF N = 3+ 1 = P 08
> |y =y
—eip1 Uy = YN+ Iy = P 08D
> [y = Y02 — €1 QBM + G + DA) + €. (3.69)

Relations (3.68) and (3.69) imply that for every positive number 3, every nonneg-
ative integer I, every index vector t = (f1,...,1p()) € £2;+1, and every integer
j=0,...,p@) — 1, we have
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it it
lzs — ¥ 12 = llzs — ¥

> &y — y {2 = 28QAM + (G + 1) A) +36)

—€i11(2(TM +2(G + 1) A) + 38 + 2¢i41). (3.70)

Let a nonnegative integer i be given and let 6 € (0,1). It follows
from (3.3), (3.17), (3.48), (3.50), and (3,70) that for all index vectors
t=(t, ..., ) € 2i41,

2 2
llzs = xill” = llzs = yisll

2 i) 2
I |

_ (i)
= |lzs — Yo —|lzs — Yp@)

p(n-1 _ _

1) 12 1) 12

= Y s =712 = llzs — ¥ 1P
j=0

rO-1 )
=y Iy = yir
=0
—28G(2(4M + (7 + 1) A) + 38)
—€i+1q2ROTM +2(g + 1)A) + 38 + 2¢€;4+1)
> Caf, — 28G(2(4M + (G + 1) A) + 39)

—€i11G(2(8M +2(G + 1) A) + 35 + 2¢141). (3.71)
By (3.11), (3.18), (3.41), (3.46), (3.47), (3.66), (3.67), (3.71), and the convexity of
the function || - ||2, we have

2
lzs — xit1ll

2 2
=lzs— Y wirt@yidll® + llzs — xiga |

1€82i41
2
—llzs — Z wi1() il
1€82i41
- B , 2
< llzs Wi+1(0) il
1€£2i41

F(xier =zl = llzs — Y wir1@yisl)

1€82411

x(Ixiv1 = zsll + llzs = ) wig1(®)yiel)

1€Q2; 41



3.3 Proof of Theorem 3.1 81
2 -
<llzs— Y wirtO@yill® + 2641 (4M + A@G + 1)
1€82i4

< Y winOllzs = yidl? +2e41@M + A@G + 1)

1€82i11

2_ -2
< Y winOlllzs — xil)> — éof,

1€82i41
+286g(8M +2(q + 1) A + 36)
+eir1G2BM +2(G + 1) A) + 38 + 2€;41)]
+2€i41(4M + A@G + 1))
< llzs — xill*> = EAAY,,
€417 2BM +2(G + 1A+ 38 + 2€141))
+26g(8M +2(q + 1) A +38) +2¢;41(4M + A(g + 1)). (3.72)

Define
vw=eWN+D1a+q" (3.73)
By (3.24) and (3.73), for every integer i > ng, we have
€ < V0. (3.74)
Relations (3.41), (3.66), and (3.72) imply that for every integer n > ny,

M + (G + DA? > |lzs — xn,l1°

2 2
> llzs — XnolI* = llzs — Xu
n—1
2 2
=Y llzs = xill* = llzs — xial®)
i=ng

n—1

n—1
> Y AN — Y €1GQRBM +2(G + DA+ 38+ 2€6141))

i=no i=ng
n—1
~2(n — n0)SG(BM +2G + DA +38) =2 Y €11 (4M + AG + 1)).
i=ng

Since § is any element of the interval (0, 1), it follows from (3.23) and (3.74) that
for every integer n > ny,
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(AM + G+ DA+ QGEBM +2(G + DA +2) +8M +2A(G + 1) A

n—1
S IICN

i=ng

> éAygCard(fk € {no, ...,n — 1} : A1 = y0}).
Since the relation above is true for every natural number n > ng we conclude that

Card({k € {no,no+1,...,} 1 Aes1 > yo})
<& ATy @M + (G + D A)?
+AQG + DM +2(G + DA +2)]. (3.75)

Assume that an integer i > 0 satisfies
i >no, Ait1 < Yo. (3.76)

Lett = (#1,...,tpr)) € £2;41 be given. In view of (3.47), (3.49), (3.50), and (3.76),
for all integers j =0, ..., p(¢) — 1, we have

vo > Iy} =y

> Iy = P OFO = Iy = P O8I

= 1y = P O = €. (3.77)

By (3.3), (3.74), (3.76), and (3.77), for all integers j =0, ..., p(t) — 1,
1y = Py ) < 230 (3.78)

and

YWD € Fayy(Pry,). (3.79)
It follows from (3.17), (3.48), (3.77), and (3.78) that for all integers j =0, ..., p(?),
i = y& 1 < jv < gwo (3.80)

and if j < p(¢), then

xi € Fgyny(Pry,).
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Thus
xi € Fginp(Py), s =1,..., p(t). (3.81)
In view of (3.48) and (3.80),
llxi — yitll < gyoforalls € 2. (3.82)
By (3.81), we have
Xi € NFG41yy0(P) s € Ueg {11 -+ Tpn})- (3.83)
In view of (3.11), (3.46), (3.74), (3.76), (3.82), and the convexity of the norm,

lxi 41 — xi |l

<lbivr— > win Oyl + 1Y win O)yie — xil

1€y 1€82; 41

<ep+I D w1 (i — xill

1€82i4
<¢€i+1+y9q < ylg+1),
lxiv1 — xill < yolg + 1). (3.84)

Define
Eoy={i e {no,no+1,...}: Xiy1 > v} (3.85)
By (3.75) and (3.83)—(3.85),

Card(Eg) < & 'A7 2 [@M + (G + DA + ARG + DEBM +2(3 + DA +2)]

(3.86)
and the following property holds:
(P1) if a natural number i > ng satisfies ;11 < yp, then
xi € Fginy(Ps), s € Ureg (t - 1) (3.87)
xXit1 — xill < yo(g +1). (3.88)

Define

Ei={i €{ng,no+1,...}: [i,i + N — 11N Egy # 0}. (3.89)



84 3 Dynamic String-Averaging Methods in Normed Spaces

It follows from (3.86) and (3.89) that

Card(E;) < NCard(Ep)
< NeT'A7y 2 @M + (G + DA + AQG + DM +2(G + 1) + A +2)]

(3.90)
Let an integer j > ng satisfy
jéE. (3.91)
By (3.91), we have
[j,j+N—11NEy=0. (3.92)

It follows from property (P1), (3.85), and (3.92) that for every integer
ie{j,....j]+ N — 1}, Aix1 < yo and (3.87) and (3.88) are true. By (3.88)
which holds for every integer i € {j,...,j + N — 1}, for every pair of integers
i1,ip € {j,...,j+1\_/},wehave

lxi, — xi, | < (G + DNyp. (3.93)

In view of (3.87) which is valid for every integer i € {j,...,j + N — 1}, (3.26)
and (3.93),

Xj € Fgriy@n Py,

j+N—1
s € U[{:j Ullti,....tpn it =1{t1, ... tpin} € i} =11, ..., m}.

By the relation above and (3.73),

Xj € Fguypw+n = Fe

for all integers j > ng such that j ¢ E;. Combined with (3.73) and (3.90) this
implies that

Card({j € {0, 1,...}: x; & F.})
< ng + Card(E1)
<no+ N1+ N1+ )% 'A7 e 2((4M + A@G + 1))?

+AQRqg+1D@M +2(g + 1)+ A+2)).

Theorem 3.1 is proved.
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3.4 Proof of Theorem 3.2

Set
Yo = €2(8GN) A (3.94)
and
N
T =[] Paiw = Paguwy - Payw- (3.95)
i=1

By (3.8), (3.12), and (3.29), for each integer i > 0, eacht = (#1, ..., 1p()) € £2i11
andallx,y e X,

IPLE1C) = PO < llx =y, (3.96)
||PQ,'+1,w,‘+| (X) - P.(Z,'+1,w,'+1 (y)”
= Y win@PEIE) — Y wip PO < llx — yll. (3.97)
tef2it 1€82i41

In view of (3.31) and (3.33), for each integer i > 0,
Xi+DN = PQ(:‘H)N*“’(:‘H)N P gy (aR) = TG g)- (3.98)

By (Al), for every 6 > 0O there exists

25 € B(0, M,,) (3.99)
such that
B(zs,8) NFix(Py) #0, i =1,...,m. (3.100)
In view of (3.100), for each § > O and eachi € {1, ..., m} there exists
2s5.i € B(zs, 8) N Fixp(F;). (3.101)

Let i > O be an integer. By (3.19), (3.20), and (3.33), there exists A;+; > 0 such
that

(Xi+1, Ai+1) € A(x;, (§2i+1, wi+1), 0). (3.102)

By (3.20) and (3.102), there exist vectors
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(Virs @iyp) € Ap(xi, 1,0), 1 € 241 (3.103)
such that
Xt =Y wip1 (i, (3.104)
1€82i4
Aipr =max{a;; : t € $2i41}. (3.105)

By (3.19) and (3.103), for every index vector t = (t1, ..., tp(;)) € §2;41 there exists
a finite sequence { yj(”t)}f(:t()) C X such that

y(()z,t) _— yg(al(’zt; = iy (3.106)

for every integer j = 1, ..., p(t),

WO = P, (3.107)
e = max{lly ) =yl j =0, p() — 1), (3.108)

Let § > 0. By (3.32) and (3.100),
llzs — xoll <2M. (3.109)

Leti > O be an integer, t = (t1,...,tp1) € Liy1, j =0,..., p@) — 1. In view
of (3.7), (3.101), and (3.107),

lzs — Y5 < D25 = 2oy |+ 280700 — Pryyy 05
)
<8+ 2o — 7
<28+ llzs — ¥ (3.110)
It follows from (3.17), (3.106), and (3.110) that for all j =0, ..., p(?),

lzs — ¥ < llzs — v 1l + 265
= llzs — xill +26) < l|zs — x;l| +267. (3.111)
In view of (3.106) and (3.111),

lzs — yiell = llzs — 301

< llzs — xill + 234. (3.112)
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By (3.11), (3.104), (3.112), and the convexity of the norm,

lzs = xipill =llzs — Y wig1 @)yl

1€82i4
< D win®llzs — yisl
1€82i41
< llzs — xill + 248. (3.113)

By (3.109) and (3.113), for all integers i > 0,
llzs — xill < llzs — xoll +28gi < 2M + 248qi. (3.114)

It follows from (3.109), (3.111), and (3.114) that for all integers i > 0, all ¢+ =
(t1, ..., tpr) € 2ip1andall j =0, ..., p(t),

lzs = YOl < llzs — xill + 26 < 2M +284( + 1). (3.115)

By (3.100), (3.114), and (3.115), for all integers i > 0, allt = (1, ..., tp¢)) € £i41
andall j =0, ..., p(),

il < Nzsll + llxi — zs]l < 3M +2g8i,
IO < lzsll + 1y — 25l < 3M +248G + 1).

Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (t1,...,tp) € Qi1 andall j =0, ..., p(1),

il < 3M, Iy§0 1 < 3m. (3.116)

Let § € (0,1), an integer i > 0,1 = (t1,...,1pr) € 241 and j €

{0,..., p(r) — 1}. By (3.99), (3.101), (3.107), and (3.116),

o o
llzs — ¥ 717 = llzs — y§i

(@i,1) 2 @i,1))2
= ||Z3,tj+1 - yj - — ”Zﬁ,tj+1 - yj+1 Il
(@i,1) 2 @i,1)2
(250 = YOI = Nz — 31D
(@i,1) 2 (@i,1) 2
sy — 3G = llzs — 50

@@,1) 12 (BN
> Nzsayer = 12 = N2suyer = Py G5

—lzs.1701 = 28l (llzs = Y1+ zs,ay0 = 35D
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(i,t) i,t)
=Nzt — 26l llzs =y + llzs.j00 — yﬁ»H )

> Nlzs.0 — 35 12 = 2800 = Pry O )IP — 28(8M + 1)

>y — % - 258M + 1), (3.117)

By (3.17), (3.106), (3.108), and (3.117),

2 2
llzs = xill” = llzs — yill

(@,1) ”2

it
= llzs — y§ 1)12

— |lzs — Yot

p)—1 ) )
1) 12 1) 12
= Y Tz =712 = llzs — ¥ 1P
=0

p)—1
> 3 ey =y - 28G(8M + 1)
=0

> Caf, —26G(8M + 1). (3.118)

It follows from (3.11), (3.18), (3.104), (3.105), (3.118), and the convexity of the
function || - ||? that

2
lzs — Xig1]l
_ 2
=lzs— Y wiri@®yisl
1€82i11
< 1(0llzs — yiell?
= Wi+1 8 — Vit

1€ 41

<llzs—xill>=¢ ) w1, +28G(8M + 1)

1€82i41

<llzs — xl»||2 - EAAZZH +28g(8M + 1). 3.119)
Let n be a natural number. By (3.109) and (3.119),

2 2
AM* = lzs — xoll

2 2
> llzs — xoll” — llzs — x5, |l

n—1

2 2

= (lzs —xgll* = llzs — xgppa1¥)
k=0
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n—1 (k+1DHN—-1
=0 Y s —xj0% = llzs — xj411%)
k=0 kN
n—1 (k+1DHN—-1
> D (@Ary, +26G(8M +1)).
k=0 kN

Since § is any element of the interval (0, 1) we conclude that
n—1 (k+1)N—1

4M222 Z (CAM)

k=0 j=kN
> CAygCard({k € {0, ...,n — 1} :
max{Aip1: i =kN,...,(k+ 1N — 1} > p})

and

Card({k € {0, ...,n — 1} :
max{Aj1: i =kN,...,(k+ DN —1} > p})

21 4—1,,-2
<4AMcT ATy,
Since the relation above holds for every natural number n we conclude that

Card({k € {0,1,...}: max{Aj11: i =kN,...,(k+ DN —1} >y}
<4am*e T aTly (3.120)

In view of (3.120), there exists an integer go > 0 such that
qo < 4AM*E ATy 1 (3.121)
and
Ait1 <%0, i =qoN,...,(go+ 1N — 1. (3.122)
By (3.17), (3.105), (3.106), (3.108), and (3.122), for all integers

i=qoN,...,(qgo+1)N —1,
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allt = (ll,...,l‘p(t)) € i1 andallj =0,...,p(l‘)— 1,

Iy =¥ < .
i = yiel =Dy = y5n
p®)—1 ) )
< > =y < an. (3.123)
j=0
It follows from (3.11), (3.104), and the convexity of the function || - || that for all
i=qoN.....(qo+ DN — 1,
llxi — xig1ll
<lxi— ) wipa ()il
1€Q2; 41
< Y winOlxi — yiell < v (3.124)
1€82i41
In view of (3.124),
%405 = Xgor il < @voN. (3.125)

By (3.95), (3.97), (3.98), and (3.125), for each integer g > qo,
I, 5 = Xgenall = N7 G, 5) = T ()
= 1xgon = Xgornall = gN. (3.126)
Let g > go be an integer. In view of (3.125) and (3.126),
X, 5 = *q+1all < @roN. (3.127)
Let§ € (0, 1). By (3.99), (3.116), and (3.127),
avoN = lIx,5 = Xgs i
> llzs — x5l = llzs = Xy pywl
> (lzs — x5 1> = llzs = x( oy 11 @M) " (3.128)

In view of (3.119) and (3.128),
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(g+1)N—-1
8GNM = > (llzs — xil* = llzs — xip1[1%)
i=qN
(g+DHN—-1
> Y EAM,, —28G(8M + N.
i=qlV

Since § is any element of the interval (0, 1) we conclude that

) (g+DHN-1
850NM >cA Y AL,
i:q]\_/
and
Aivl < BGgyoNMe'A™ W2 i =¢gN,....,(g+ 1N — 1. (3.129)
Set
AL = B8gyoNMe ' A=H1/2, (3.130)

Leti € {q]\_l, o (g + N —1}. By (3.105), (3.107), (3.108), (3.129), and (3.130),
foreveryt = (t1,...,tp¢) € $2i41andevery j =0, ..., p(t) — 1,

Iy = Py G = Dy = A
< hit1 < BgroNMe ' A™H!2 = A, (3.131)
and
@,1)
y; € Fa (Pyyy). (3.132)

It follows from (3.11), (3.104), (3.106), and (3.131) that for every
t=(t,....,tp@) € 2ir1andevery j =0, ..., p(?),

i — ¥ < A1p@) < Mg, (3.133)
lxi — yirll < Arg, (3.134)
i = xipill =l = D wipi@yicll < A1g. (3.135)

1€ 41



92 3 Dynamic String-Averaging Methods in Normed Spaces

In view of (3.135), for each i1, ir € {gN, ..., (g + 1)N},
lxi, = xi, | < NG A
Letk € {gN,...,(g+ DN}ands € {1, ..., m}. By (3.26), there exist
JEGN,....(@q+ DN =1}, t =(t1,...,tp) € 2j11
such that
seftl,....tpin}
In view of (3.138), there exists an integer / such that
le{0,...,p@)—1}, s =t141.
It follows from (3.131), (3.137), and (3.139) that
Iy = P < A
By (3.133),
;= v < A1g.
It follows from (3.29), (3.140), and (3.141) that
llxj — Ps(x))ll

<lxj =y + 1y = P+ 1Py = Potx)) |

< A+ 20k =y = 412G + 1.
By (3.136) and (3.137),
e = xj1l < 41N
Together with (3.29), (3.130), (3.141), and (3.142) this implies that

e — Py ()l
< llxk = xjll+ llxj = PoCep)ll + 1P (xj) — Ps (o)l
< A1QG+ 1)+ 20 — xj|
< A1Q27+ 1) +241GN = 412N +23 +1) <e.

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)
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In view of (3.143),

xx € Fe(Py), s=1,...,m,

x; € Fe, k:q[\_/,...,(q+1)1\_/
and all integers g > qo. Therefore
x; € Fe
for all integers
k>gqgoN =N +4M>c A7 e*8gN)°(cA)72).

Theorem 3.2 is proved.

3.5 Proof of Theorem 3.3

Theorem 3.3 is deduced from Theorems 2.9 and 3.2. Let Y = X, p(y,z) = ||y —zl,
v,z € X, U be the set of all mappings S defined on the set of natural numbers such
that

SUE) = Po, w;, i =1,2,...,

where
{(2i, w2, C M,
satisfies
(82; > Wiy i) = (82;, w;) for all integers i > 1
and
{1,....m} CUY Uieg {t1, - 1oy ).
Set

F = Feya.

Theorem 3.2 implies that property (P6) holds.
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Leti > 0 be an integer. By (3.40),
(Xig1, Aig1) € A(xi, (8241, wig1), 6). (3.144)

By (3.20) and (3.144), there exist vectors

such that
brivr = Y wis1(®yiell <6, (3.146)
1€Qi41
Aipr =max{a;;: t € $2i41}. (3.147)

It follows from (3.19) and (3.145) that for every index vector
=11, Ipw) € Riy1

there exists a finite sequence { y}i”)}fg()) C X such that

y((),,z) — yg(,tt)) = iy (3.148)
for every integer j =1, ..., p(t),

Iy = Py DI <8, (3.149)
e = max{lly ) = {0l j =0, p() — 1), (3.150)

Proposition 2.8, (3.17), (3.29), (3.148), and (3.149) imply that for every index vector
= (t]5 RN tp(l‘)) € Ql‘}*l&

Iy = PLAGo) | < Iy = PIAGyg ) < p()8 < 8.
By the relation above, (3.36) and (3.146),

||xi+1 - P9i+],wi+1 (-xl)”

<lxici— Y winOyidl+ 1 Y. wini@yie— Y wis1 () PlE1xo)]

1€82iy1 1€82i41 1€82i41

<@+ D3 =4""e(Q2N +1)7". (3.151)
Theorem 2.9 and (3.151) imply that for all integer i > Q,

B(xi, €0/4) N Fey/s # 0. (3.152)
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Leti > Q be an integer. In view of (3.152), there exists
& € B(xi, €0/4) N Fey4.
Then foralls =1,...,m,

llxi — Ps(x)l
<lxi =&l +11E = Py + |1 Py (&) — Ps(xp)|
<2|lx; — &l + €0/4 < €o.

Theorem 3.3 is proved.

3.6 The Second Problem

Recall that M, > 1. We suppose that the following assumption holds.
(A2) For each M > 0 and each y > 0 there exists § > 0 such that for each
i ef{l,...,m},each
z € B(0, M) N Fix(P;)
and each x € B(0, M) satisfying ||x — P;(x)|| > y, the inequality

[Pi(x) —zll < llx —zll =6

is true.

In this chapter we prove the following three results: Theorem 3.4 which shows
that the inexact dynamic string-averaging method generates approximate solutions if
perturbations are summable, Theorem 3.5 which establishes that the exact dynamic
string-averaging method generates approximate solutions, and Theorem 3.6 which
demonstrates that the inexact dynamic string-averaging method generates approxi-
mate solutions if the perturbations are small enough.

Theorem 3.4 Let
M=>M,, €< (0,1)

and let a sequence {€;}7°, C (0, 00) satisfy

o0
A= Ze,- < oo. (3.153)
i=1
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Then there exists a natural number Q > 0 such that for each
{(2i, w)}2, € M, (3.154)

which satisfies for each natural number j

(Loooom) C U Ureg i1, 1)) (3.155)
and each pair of sequences {x;}{°, C X and {1;}72, C [0, 00) which satisfies
x0 € B(0O, M) (3.156)
and
(xi, Ai) € A(xi—1, (824, wy), €), i =1,2,..., (3.157)

the following inequality holds:
Card({i € {0,1,...}: x; € F.}) < Q.
Theorem 3.5 Assume that for each x,y € X and eachi € {1, ...,m},
1P (x) — Pl < llx — yll. (3.158)
Let M > M, € € (0, 1). Then there exists a constant Q > 0 such that for each
{(2;, w)}2) € My
satisfying for each natural number j,
{1,....,m}C U{:;V_I(Uze(z,- {t, ... tp)})
and
(2, 5> wi§) = (i, w;) for all integersi > 0

and each sequence {x;}°, C X which satisfies

xo0 € B0, M),

Xi = Poyywipq (%)
for each integer i > 0, the inclusion
x; € Fe

holds for all integers i > Q.
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Theorem 3.6 Assume that for each x,y € X and eachi € {1, ...

1P (x) = Pl < [lx = Il
Let M > M, rg € (0, 1),
F,, C B(0, M),
€o € (0, 1). Then there exists Q > 0,8 > 0 such that for each
{(2i, w2, C M,

satisfying for each natural number j,

i+N—1
{1om) U Ureg t, - o))

and

(2, > w;i§) = (£2i, w;) for all integersi > 0

, m},

97

and each pair of sequences {x;}{°, C X and {1;}72, C [0, 00) which satisfies

xo € B(0, M),
(xi, Ai) € A(xi—1, (£2;, w;), 8)

for all natural numbers i, the inclusion
Xi € Feo

holds for all integers i > Q.

3.7 Proof of Theorem 3.4

By (Al), for every 6 > 0O there exists
zs € B(0, M)
such that

B(z5,8) NFix(P) # 0, i =1,...,m.

(3.159)

(3.160)
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In view of (3.160), for each § > 0 and each i € {1, ..., m} there exists

25,i € B(zs, 8) NFixp(P). (3.161)
Set

w=eW+D'@+D" (3.162)

By (A2), there exists ¥ € (0, yp) such that the following property holds:
(P2) foreachi € {1,...,m}, each

z € B(0,3M + 1 + A) NFix(P,)

and each x € B(0,3M + 1 + A(g + 1)) satisfying ||x — P;(x)|| > y0/2, the
inequality

1Pi(x) —zll < llx =zl — ¥

is true.

In view of (3.153), there exists a natural number nq such that

€; < y/4for all integers i > ng. (3.163)
Set
Q0 =no+2N(AY) "M + (G + D A). (3.164)
Assume that
{(2i, wil2, € M, (3.165)

satisfies (3.155) for each natural number j, {x;}72, C X and {};}72, C [0, c0)
satisfies

xo € B0, M) (3.166)
and
(xi, M) € Alxi—1, (82, wi), €), i =1,2,..., (3.167)
Leti > O be an integer. By (3.167),

(Xit1, Ait1) € A(xi, (82i11, wit1), €i41). (3.168)
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By (3.20) and (3.168), there exist vectors

Vir,ig) € Ap(xi, t,€i41), t € 82i1

such that

gt — Y win1Oyidll < €,
1€82 41

Aiy1 = max{a;; : t € 241},
It follows from (3.19) and (3.169) that for every index vector
t=(t,..., 1) € 2i41
. : @i, p(1)
there exists a finite sequence {y j } j=0 C X such that

(@i,1) @1
0

Y =Xis Yy = Jidts

for every integer j = 1, ..., p(¢),

Iy = P GO < €,

o =max{|lyfy] =y j=0,..., p) —1}.

Jj+1
Set
€y =0.
Let§ > 0. By (3.159) and (3.166),
llzs — xoll < 2M.
Leti > 0 be an integer,
t=(t1,....tp0) € 2iy1, j€{0,..., p(t) = 1}.

Relations (3.7), (3.161), and (3.173) imply that

”Z(S - y;ljf“ S ”ZB - Pt./+1 (y;l,t))|| + ||P[j+l (y;l,t)) _

()
Yj+1

(X))
< llzs = 2o, Il + 1128050y — Prpy ;7N + €41

< S+ €i+1 + ||Z5,t_,-+| _ yﬁ_l,t)”

<llzs = ¥y 1 428 + v

99

(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)
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and
(i,1) (i.1)
lzs — YO < s — 3§71+ 26 + €14, (3.178)
It follows from (3.17), (3.172), and (3.178) that for all j =0, ..., p(?),
lzs = YU <z — yg Il + 7 28+ €i1)

= llzs = xill + j (28 + €i1)
< llzs = xill + p(£)(25 + €i41)

< llzs — xill + 328 + €i11), (3.179)
By (3.172) and (3.179),
lzs = yiill = llzs — ¥5i) Il < llzs = xill + (28 + i), (3.180)

By (3.11), (3.170), (3.180), and the convexity of the norm,

lzs = xipal < llzs = Y wipnOyiel + 1Y wis1(®)yir — Xigal

tef2iy 1€ 4]
< D win®llzs = yisl + €
1€Q2; 41

< llzs = xill + (g + D (28 + €i41). (3.181)

By induction we show that for all integers i > 0,

i
lzs — xill < 2M +2(G + Dsi + Q€)@ + D). (3.182)
j=0

In view of (3.175) and (3.176), inequality (3.182) is true for i = 0.
Assume that i > 0 is an integer and that (3.182) holds. By (3.181) and (3.182),

lzs = xip1ll < llzs = xill + (@ + D28 + €41)
i+1

<2M42G+ DG+ D+ Q€)@+ ).
j=0

Therefore by induction we showed that (3.182) holds for all integers i > 0. It
follows from (3.179) and (3.182) that for all integers i > 0, all t = (¢1,...,tp)) €
ip1andall j =0,..., p(),
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lzs = YU < llzs — xill + 328 + €i41)
i+1
<2M42G+ DS+ D+ Q€)@+ 1). (3.183)
j=0

Let n be a natural number. By (3.153), (3.159), (3.182), and (3.183), for all
integersi =0,...,n,allt = (t,...,1p¢) € 2ix1andall j =0, ..., p(t),

lxill < llzsll + llxi — zsll < 3M +2(q + D)én + A(g + 1),

1520 < Dzl + 1y

i — 25l £3M +2(g+ 1)é(n+ 1) + A(g + 1).

Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (14, ..., tp(,«)) € 2iy1,and all j =0,..., p(),

lx: 1] <3M + A(g + 1), (3.184)
Iyl < 3M ++4@G + D). (3.185)
Set
Eo={i e {no,no+1,...}: Xix1 >y}, (3.186)
Ey ={no,no+1,...,}\ Ep.
Let
i € Ep.
By (3.171) and (3.186),
Ait1 = Y0
and there exists
T=(T1,..., Tp(r)) € 2i41
such that
Qjr = Aitl = Y0- (3.187)

By (3.174) and (3.187), there exists

Jjoefl,....,p(r) -1} (3.188)
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such that

Iyors = Y5 2l = e = yo. (3.189)

It follows from (3.173) and (3.189) that

(i,7) (i,7)
Iy = P 0]
> Iy et =y = 1Py ) = YD = v — € (3.190)

In view of (3.163), (3.186), and (3.190),

0D = P U = v0 — €1 = 10— ¥/4 = y0/2. (3.191)

Let § € (0, 1). Property (P2), (3.160), (3.161), (3.185), and (3.191) imply that

1Pey o ) = 2.0l S VST = 25— 7 (3.192)
By (3.161), (3.163), (3.173), (3.186), and (3.192),

(i,7) (i,7)
1Yjos1 — 28l = 1yjo1 = 2s.zjp | + 126,741 — 25l

@,7)
5 ||yj0+1 - ZS,‘E_/'O+] ” + 8

< IyED = P OO+ 1P G0 = 251+ 8

e+ Iy =z -y 40
<y/A—y45+IyET =zl +

<26 =3y /A+ 157 =z,

Iyt = zsll < 157 — 25 = 3y /4 + 28, (3.193)

By (3.17), (3.172), (3.178), (3.188), and (3.193),

llzs — xill = llzs — izl

p()—-1 . ‘
= > Mz =yl = llzs = ¥§55 10
j=0

> Iy0 ™ =zl = IY$E — 2l = (p(2) = D28 + €141)

= 3y/4 =25 — (p(r) = D28 + €i41)
= 3y/4=26-(q— D@2 +eit1). (3.194)
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It follows from (3.11), (3.17), (3.18), (3.170), (3.180), (3.194), and the convexity of
the function || - || that

lzs — xit1ll

<lzs— Y wint@yidl + 1 Y wir1@yie — xigal

1€ 1€ 4]

< Y winOllzs — yidll + €1

1€82i41

<tz —xil+ D wirtOllzs — yiell = llzs — xill]

16211
< €it1+ llzs — xill + wi1(Dlllzs — yioll — llzs — xill]
+ D fwi 1 Olllzs — yiall = llzs — xill]: ¢ € Riga \ {T})
< €1+ llzs — xill + wip1 (D) (=3y /4 + 28 + (¢ — D28 + €i41)) + G (25 + €i41)
< llzs = xill =34y /4 + 24 (28 + €i41),
llzs — xiq1ll < llzs — xill =34y /4 +2G(28 + €i41). (3.195)

By (3.152), (3.159), (3.175), (3.181), (3.184), (3.186), and (3.195), for every integer

n > ng,

AM + A(G+ 1) = llzs — xnoll

> |lzs — Xnp | — llzs — nll
n—1

> Y " (llzs — xill = llzs — xig1 1)
i=ng

= Y zs—xill=llzs = xipalD

i€eEgN[0,n—1]
+ ) lzs—xil = llzs — xigal)
ieEiN[0,n—1]
n
> Card(Eg N [0,n — 1)(3Ay/4) —4Gon =24 Y i —@G+1) Y 25+€41)
i=0 icE N[0,n—1]

> Card(Eg N[0, n — 1)) (3Ay/4) — ABG + 1) — 4Gn — 2(G + 1)én.

Since § is any element of the interval (0, 1) we conclude that
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(BAy/4)Card(Eg N [0,n — 1]) <4M +4A(g + 1),
Card(Eg N [0,n —1]) <247 'y~ 1dM +44@G + 1)).
Since n is any natural number satisfying n > ng we conclude that
Card(Eg) < 2A™ 'y 1 dM + 4A(G + 1)). (3.196)
Assume that a natural number i satisfies
i >ng, Aiv1 < Yo- (3.197)

Let 1 = (f1,.... 1) € Rit1. By (3.171), (3.173), (3.174), and (3.197), for all
j=0,....p@®—1,
vo > Iy} =y
> Iy = Py GF O = 15 = Py 8
> Y7 = Py G5 — € (3.198)
In view of (3.163), (3.197), and (3.198), forall j =0, ..., p(t) — 1,

Iy = Py G < 200 (3.199)
and
YWD € Py (Piy,). (3.200)
Relations (3.17), (3.172), (3.198), and (3.200) imply that for all j =0, ..., p(¢),
i = y5 71 < v < awo (3.201)
and if j < p(¢), then
Xi € Fgay(Py,,).
Therefore
Xi € Fgrny(Py), s=1,...,p(), t =(t1, ..., tpr) € 2it1. (3.202)
By (3.172) and (3.201),

lxi — yiell < gyoforallz € £2iy1. (3.203)
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It follows from (3.11), (3.163), (3.170), (3.197), (3.203), and the convexity of the
norm that

llxi 1 — x|l

<llxig— Y win Oyl + 11 Y wig1()yis — xil

1€y 1€82 4]

<ep+Il Y wipi(Oyis — xill

1€82i41

<erit Y winiOllyi —xill

1€y
<é€i+1t+y9 <yl(g+1),
llxiv1 — xill < yo(g + 1). (3.204)

Thus we have shown that the following property holds:
(P3) if a natural number i > ng satisfies A;+1 < yp, then (3.202) and (3.204) hold.
Set

E>={i €{no,no+1,...}: [i,i + N— 11N Ey # ?}. (3.205)
By (3.196) and (3.205),
Card(E») < NCard(Ey)
<8NA Y MM + G + D A). (3.206)
Let an integer j > ng satisfy
j € E. (3.207)
Property (P3), (3.186), (3.205), and (3.207) imply that
[j,j+N—11NEy=4,

foralli=j,...,j+ N —1,

Airl < Y0

and that (3.202) _and (3.204) hold. It follows from (3.204) which holds _for each
ie{j,...,j+ N — 1} that for each pair of integers i1, i € {j,..., j + N},

Ixi, — x5, 1l < (G + DNyo. (3.208)
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By (3.155), (3.202) which holds for eachi € {j,..., j + N — 1} and (3.208),
Xj € Figpny@sn (P,
se UM Uit o) 1= (1 ) € Qi) = {1 om).
In view of the relation above and (3.162),
xj € Fgripmavsn = Fe

for all integers j > ng such that j ¢ E,. Together with (3.165) and (3.206) this
implies that

Card({j € {0, 1,...}: x; & F.})
< ng + Card(E3)
<no+8NAT' M+ AG+ D)y = 0.

Theorem 3.4 is proved.

3.8 Proof of Theorem 3.5

Set
=€+ D "N+ (3.209)

By (3.8), (3.11), (3.12), and (3.158), for each integer (2, w) € M,, each t =
(t1, ..., tp) € 2 andall x, y € X,

I Plz](x) — Pl < llx = ¥l (3.210)
| Pe2.w(x) — PouwI
= Z w(t) P[t](x) — Z w@) Pl < llx — yll. (3.211)
tes2 tes2

By (Al), for every § > O there exists
z5 € B(0, M,,) (3.212)
such that

B(z5,8) NFix(P) # 0, i =1,...,m. (3.213)
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In view of (3.213), for each § > O and eachi € {1, ..., m} there exists
2s5.i € B(zs,8) NFixp(FP;). (3.214)

By (A2), there exists €1 € (0, €g) such that the following property holds:
(P4) foreachi €{l,...,m}, each

z € B(0,3M + 1) NFix(P;)
and each x € B(0,3M + 1) satisfying ||[x — P;(x)|| > €, the inequality
I1Pi(x) =zl < [lx —zll —e1

is true.

Set
o =€e12N + 1718y ~ta. (3.215)

By (A2), there exists ¥ € (0, yp) such that the following property holds:
(P5) foreachi € {1,...,m}, each

z€ B(0,3M + 1) NFix(P;)
and each x € B(0,3M + 1) satisfying ||lx — P;(x)|| > yo/2, the inequality

I1Pi(x) —zll < [lx =zl — ¥

is true.
Set
Q0 =N({(Ay) "2M +1). (3.216)
Assume that
{(2i, w2, C My (3.217)

satisfies for each natural number j,
j+N—1
{(.omy U Ueadtn, - o)), (3218)
(2, 5> wip ) = (£2i, w;) for all integers i > 0 (3.219)

and {x;}72, C X satisfies
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xo0 € B(0, M),

Xi+1 = Po,, wi,, (x;) for all integers i > 0.

Set

N
T = HPQiawi = P-QA’;,wN"'P-Ql,wl'
i=1

(3.220)

(3.221)

Let i > 0 be an integer. By (3.8), (3.12), (3.19), (3.20), and (3.220), there exists

Xi+1 = O such that
(Xit1, Ait1) € A(xi, (2i41, wit1), 0).
By (3.20) and (3.222), there exist vectors
(Vir> i) € Ap(xi, 1,0), 1 € 241

such that
X1 =Y wip1(O)yir,
1€Q2; 4

Air1 = max{a;; : t € 241},
It follows from (3.19) and (3.223) that for every index vector
t=(t1,..., @) € £2i11

there exists a finite sequence {yg.i’t)}f (t()) C X such that

Gy _ G
0o = Xi» Ypuy = Vit

Y
for every integer j =1, ..., p(t),

= PG,

o =max{|lyfy] — ¥ j=0,..., p() —1}.

j+1
Let§ > 0. By (3.212) and (3.220),

llzs — xoll < 2M.

(3.222)

(3.223)

(3.224)

(3.225)

(3.226)

(3.227)

(3.228)

(3.229)
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Leti > 0 be an integer, t = (t1,...,tp¢) € Li41, ] =0,..., p(t) — 1. In view
of (3.7), (3.214), and (3.227),

lzs = Y5 < D25 = 2o |+ 1280700 — Pryyy 05
<8+ Dz =20
<28+ Jlzs — 7. (3.230)
By (3.17), (3.226), and (3.230), forall j =0, ..., p(?),
lzs — ¥l < llzs — yg Il + 285
< llzs — xill + 28] < llzs — xil + 264, (3.231)
Relations (3.226) and (3.231) imply that

lzs = yiill = llzs = ¥5i) Il < llzs — xi ]l + 284 (3.232)

By (3.11), (3.224), (3.232), and the convexity of the norm,

lzs = xipal = llzs = Y wig1(®)yisll

1€ 4
< D win®llzs — yigl
1€82i1)
< llzs — x|l + 244. (3.233)

In view of (3.229) and (3.232), for all integers i > 0,
llzs — xill < llzs — xoll +28gi < 2M + 2484i. (3.234)

It follows from (3.231) and (3.234) that for all integers i > 0, all + =
(t1, ..., Ipr) € 2ip1andall j =0, ..., p(r),

lzs = YO U < llzs — xill + 26 < 2M +28G( + 1). (3.235)

By (3.212) and (3.234), for all integers i > 0, allt = (¢1, ..., fp()) € §2;41 and all
j =05"'7p(t)9

lxill < llzsll + llxi — zsll < 3M + 2444,

IO < lzsll + 1y — 25l < 3M +248G + 1),
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Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (t,..., lp(t)) € -Qi+1» and allj =0,..., p(l),

lxill < 3M, 1y < 3M. (3.236)
Set
Eo=1{i€{0,1,...}: Aix1 >}, E1={0,1,...,}\ Eo. (3.237)
Let§ € (0, 1) and
i € Ep. (3.238)

By (3.225), (3.237), and (3.238), there exists
T=(T1,...,Tp(r)) € 2i11
such that
Qjr = Aitl = Y0- (3.239)

By (3.228) and (3.239), there exists

Joe{l,...,p(x) =1} (3.240)
such that
Iyiin = 5"l = @i = y0. (3.241)

It follows from (3.212), (3.214), (3.227), (3.236), (3.241), and property (P5) that

1Py ™) =y = 0,
1Pejy oy ) = 2,0 1 2 195 = 25,0l — 7. (3.242)

In view of (3.17), (3.214), (3.227), and (3.242),

(i,7) (i,7)
||yj0+] — 5 ” = ||yj0+] - Z(S,‘L’jo+1 ” +34

i,7)

= 1Pejy s O5) = 25,011l +8

<0 =zl — v +38
< Iy — 25l — y +26. (3.243)

Jo
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By (3.226), (3.230), (3.240), and (3.243),

lzs — xill = lzs — Yz
=llzs — v "l = llzs = Yo

p(—1 ) )
= 3 Mz =y 0 = llzs — ¥§55 10
=0

> Jlzs = Y0Pl = llzs — ¥ = 28(p(z) = 1)
>y —28p(1) > y —283. (3.244)

It follows from (3.11), (3.224), (3.232), (3.244), and the convexity of the function
| - || that

llzs — xit1ll

=lzs— Y wiri®)yisl

1€Q2i 41

< Y winOllzs — yidll

1e9iq
= w;+1(T)lzs — yi|l
+ Y w1 @llzs — yiell - 1€ Qiga \ {zh)
< wis1(0)(lzs = xill — v +259)
+ ) (win1(Olzs —xill +28) : 1 € 21\ {t})
< llzs — xill + 28 — ywi+1(7)
< llzs — xill +28G — Ay.
Thus
llzs — xi1ll < llzs — xill +28g — Ay foralli € Eo. (3.245)

Let n be a natural number. By (3.229),

2M = ||zs — xol|

> llzs — xoll — llzs — x5,
n—1

= (lzs = x5l = llzs — Xy 1)
k=0
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n—1 (k+1)N—1
=D 0 Y (lzs = xjl = llzs — xj5111). (3.246)
k=0 j=kN

Set
Er=1{ke{0,1,...}: max{Ajp1: i =kN,...,(k+1)N—1} > p}. (3.247)
Assume that an integer k € [0, n — 1] satisfies
k € E>.
Then by (3.233), (3.237), (3.245), and (3.247),

(k+1D)N-1
> lzs — xjll = llzs — xj411)

j:k[\_/
= llzs —xjll = llzs —xjpall - j € kN, ..., (k+ DN =1}, Aj41 = o)
+) llzs —xjl = llzs = xjpall = j € kN, ..., (k+ DN =1}, Ajy1 < o)

> Ay —28G — 28GN. (3.248)

It follows from (3.233) and (3.246) that

(k+1)N-1
2M =D Y (lzs—xjl = lzs —xj1l) : k€ E2N[0.n— 1]}
Jj=kN
(k+1D)N-1
X4 D Ulzs—xjll = llzs —xj41l) : k€{0,....n— 1}\ Ea}
j=kN

> Card(E> N[0, n — 1])(Ay —28G(N + 1))
+Card({0, ..., n — 1} \ E2)(—283)
> AyCard(E» N[0, n — 1]) — 28§(N + D)n.

Since § is any element of the interval (0, 1) we conclude that
Card(E» N[0, n —1]) <2M(Ay)~ .
Since the relation above holds for every natural number n we conclude that

Card(E>) < 2M(Ay)~". (3.249)
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In view of (3.247) and (3.249), there exists an integer go > 0 such that
qo <2M(Ay) '+ 1, qo € E> (3.250)
and
Aig1 <0, i =qoN,...,(go+ DN —1. (3.251)

By (3.225), (3.226), and (3.251), for all integers i = goN, ..., (go+ DN — 1, all
t=(1,....,tpp) € 2irrandall j =0,..., p() — 1,

Iy§™ = 581 < w, (3.252)

i = yioll = 16" = ¥5in)

p)—1
< > =y < an. (3.253)
j=0
It follows from (3.11), (3.224), and the convexity of the function || - || that for all

i=qgoN,...,(qo+ DN —1,

llxi — xi1ll
<= ) wipa ()il
1€82i41
< Y win®lxi = yidll < gwo. (3.254)
1€82i11
In view of (3.254),
X0 = Xgos ]l < G1oN. (3.255)

By (3.211), (3.219)—(3.221), and (3.255), for each integer g > qo,

”qu - x(q+1)/\7|| = ||Tq_q0(xqo1\7) - Tq_qo(x(qo+1)1\7)||
< %405 = %o+ il < @roN. (3.256)

Let ¢ > go be an integer. In view of (3.255) and (3.256),

X, 5 = Xgrnxll < @voN. (3.257)
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Leté € (0, 1). By (3.257),

q_VOI\_] = ”xqﬁ - x(q+1)1\7||

= llzs = x5l = llzs = xgpywll- (3.258)
In view of (3.233),
(g+1HN—-1
arN = Y (lzs —xill = llzs = xia )
i=qN

=Y {llzs = xill = llzs = xiq1ll - i €{gN, ..., (g + DN — 1}, ki1 > €0}
+ Y llzs —xill = lzs —xigall s i €4gN, ..., (g + DN =1}, hiy1 < €0}

>3 Mlzs—xill—lzs—xi1ll: i €lgN, ..., (@+1DN—1}, Aiy1 > o} — 28GN.

(3.259)
Lets € (0, 1),
ie{0,1,...,}, Ait1 > €o. (3.260)
In view of (3.225) and (3.260), there exists
T=(T1,..., Tp(r)) € 2i+1
such that
it = Ait1 = €. (3.261)
By (3.228) and (3.261), there exists
joed{l,...,p(x)—1} (3.262)
such that
i = 35l = aic > €. (3.263)

Property (P4), (3.212), (3.214), (3.226), (3.227), and (3.263) imply that

(i,7) (i,7)
||ij - Pfjo+l (yjo )M = eo,

1P ) = 25, il S V8T = 250001 — €. (3.264)
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By (3.214), (3.227), and (3.264),

i,7T) (i,t
YT = zsll < V5D = 25,0 Il 8

= 1P O™ = 25,0, + 8

i,7)
< I8P =zl —e1 +8

< Iyi™ = 25l — €1 +26. (3.265)

It follows from (3.17), (3.226), (3.230), (3.262), and (3.265) that

lzs — xill = llzs — yi.c|
=llzs — 3§ VIl = llzs — Y55

p(m)—-1 ' ‘
= > Mz =70 = llzs = ¥§55 10
j=0

> flzs =yl = llzs — ¥ LI = 28(p(x) — 1)
> € — 28. (3.266)

By (3.11), (3.18), (3.224), (3.232), (3.266), and the convexity of the norm,

llzs — xit1ll
=lzs— Y wiri@®yisl
1€Qi 4
< Y win®lzs — yidll
1€ 11

= wi+1(7)lzs — yiz|l
+ Y (wir1Ollzs — yiell : 1 € Ligi \ {Th)
< wit1(T)(llzs — xill — €1 +289)
+ Y {wit1 @ (lzs — xill +267) : t € 2igy \ {t})

<llzs — xi|| +28G — eqw;11(T)

<llzs — xi|| +28q — Ae;.
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Thus
llzs — xic1ll < llzs — x;ill +28g — Ae; for all integers i > 0 such that A; 1| > €.

(3.267)
Assume that there exists

ioe{gN,...,(g+ 1N —1}
such that A, 11 > €p. In view of (3.259) and (3.267),
Ngyo > Aep —28G — 28GN.
Since § is any element of the interval (0, 1) the relation above implies that
Y > Aet(Ng)™".
This contradicts (3.215). The contradiction we have reached proves
Aiy1 <e€oforalli € {gN,...,(g+ )N —1}. (3.268)

It follows from (3.225), (3.227), (3.228), and (3.268) that for every i €
{gN,...,(¢ + DN — 1}, every t = (l1,...,1p¢)) € £2;y1 and every
J=0,....p@® -1,

eo > hip1 = IV =y =1y = Py 6L (3.269)

WO € F (P, (3.270)
Leti € {gN,..., (g + 1)N — 1}. It follows from (3.11), (3.17), (3.224), (3.226),

(3.269), and the convexity of the norm that for every t = (#1, ..., fp)) € £2;41 and
every j =0,..., p(),

i = 3§71 < eop(®) < od. (3.271)

lxi — yill < €o0q, (3.272)

lxi — xit1ll = llxi — Z Wit1 ()il < €oq. (3.273)
1€82i41

In view of (3.273), foreach i1, i» € {gN, ..., (g + 1)N},

llxi, — xi || < Ngeo. (3.274)
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Letk € {gN,...,(g+ 1)N}ands € {1, ..., m}. By (3.218), there exist
JElGN,....(@+ DN =1}, t = (t1,...,tp) € 2j41 (3.275)
such that
s €ty tri) (3.276)
In view of (3.276), there exists an integer / such that
1€{0,....p(t) =1}, s =1141. (3.277)
It follows from (3.269), (3.275), and (3.277) that
Iy = Pyl < eo. (3.278)
By (3.158), (3.271), and (3.278) that
llxj — Ps(xp)ll

< lxj =y N+ 1y = P+ 1P ) — Po(x )
< €0+ 2lx; — /"N < €0(2q + D). (3.279)
It follows from (3.158), (3.209), (3.274), and (3.279) that
e — Ps(xp) |
S llxe — xjl + llxj — PeGep) Il + | Po(x ) — Py () |l
<e0(2G + 1) +2lxx — x|
<€(2G + 1) +2€0gN = €02 + D)(N + 1) =€,
Xy € Fe(Pg), s=1,...,m,

xxr€F., k=gN,...,(g+ )N
and all integers ¢ > go. Therefore
x; € F¢

for all integers k > q0]\7 . In view of (3.216), x;y € F¢ for all integers k > Q.
Theorem 3.5 is proved.
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3.9 Proof of Theorem 3.6

We may assume that €y < r9/2. Theorem 3.6 is deduced from Theorems 2.9 and 3.5.
LetY =X, p(y,2) = lly — zll, ¥, 2 € X, 2 be the set of all mappings S defined on

the set of natural numbers such that

S(i)ZP.Q,’,wia i=1,2,...,

where
{(2;, w)}2, € My
satisfies
(2, 5> wip57) = (82i, w;) for all integers i > 1
and
{(1,....m} CUN Uiea {t1, - 1oy ).
Set
F = F¢y4.

Theorem 3.5 implies that property (P6) holds.
Let O > 0 be as guaranteed by property (P6) and

§=4""e(Q@N + 1) '@+ D7
Assume that
{(2i, w)}Z) € M,
satisfies for each natural number j
(Leooom) C U e i1, 1),
(2, 7> wiL5) = (82i, w;) for all integers i > 0
and that sequences {x;}7°, C X, {A;}72, C [0, o) satisfy

xo € B0, M),

(xi, Aj) € A(xi—1, (£2;, w;), d) for all integers i > 1.

(3.280)
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Leti > O be an integer. The inclusion
(Xi41, Aig1) € A(xi, (8241, wit1), 0)

holds. By (3.20), there exist vectors

such that
i = Y w1yl <3, (3.282)
1€Qi41

Aivr =max{o;,: t € 211}

It follows from (3.19) and the relation above that for every index vector

t = (t1,...,tp) € £2;41 there exists a finite sequence {yﬁi’t)}?(:t()) C X such
that
yél,t) - x, y;'(’[t)) = is, (3.283)
for every integer j =1, ..., p(t),
Iy = PG <8, (3.284)
J i
o;,p = max{|ly{;} - YOOI j =0, pr) =1}, (3.285)

Proposition 2.8, (3.17), (3.158), (3.283), and (3.284) imply that for every index
vector t = (f1, ..., tpr) € £iy1,

lyi = PLAGI < Iy5h) = PIIGHI < p()8 < Gs.

By the relation above, (3.11), (3.12), (3.280), (3.282), and the convexity of the
norm,

||xi+1 - P9i+],wi+1 (-xl)”

<lxipi— Y win @Oyl + 1Y win@yie— Y, wip1 ()P

1e8iy1 1€82i41 1€82i11

<@+ 18 <47 QN + 1)~ (3.286)
Theorem 2.9, the choice of Q and (3.286) imply that for all integers i > Q,

B(xi, €0/4) N Fey/s # 0. (3.287)
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Leti > Q be an integer. In view of (3.287), there exists
& € B(xi, €0/4) N Fey4. (3.288)
Then by (3.158) and (3.288), forall s = 1, ..., m,

llxi — Ps(x)l
<lxi =&l +11E = Py + |1 Py (&) — Ps(xp)|
<2|lx; — &l + €0/4 < €o.

Theorem 3.6 is proved.

3.10 The Third Problem

Recall that My, > 1. Fori =1, ..., m, set
C; = Fix(P;). (3.289)

‘We suppose that the following assumption holds.
(A3) For each M > 0 and each y > O there exists § > 0 such that for each
ief{l,...,m},eachx € B(0, M) satistfying d(x, C;) > y and each
ze€ BO,M)NC;
the inequality

[Pi(x) —zll < llx —zll =6

is true.

In this chapter we prove the following three results: Theorem 3.7 which shows
that the inexact dynamic string-averaging method generates approximate solutions if
perturbations are summable, Theorem 3.8 which establishes that the exact dynamic
string-averaging method generates approximate solutions, and Theorem 3.9 which
demonstrates that the inexact dynamic string-averaging method generates approxi-
mate solutions if the perturbations are small enough.

Theorem 3.7 Let
M>M, €€ (0,1)

and let a sequence {€; j’il C (0, co) satisfy
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o0

A= Ze,- < oo. (3.290)
i=1

Then there exists a number Q > 0 such that for each
{(82;, w)}2, C M,
which satisfies for each natural number j
j+N—1
{1 oomy UL Uregi s 1y )

and each pair of sequences {x;}{°

o C X and {A;}72, C [0, 00) which satisfies
X0 € B0, M)
and

(xi, Ai) € A(xi—1, (£2, wi),€), i =1,2,...,
the following inequality holds:

Card({i € {0,1,...}: max{d(x;,C5): s=1,...,m} > €}) < Q.
Theorem 3.8 Assume that for each x,y € X and eachi € {1, ..., m},
1P (x) — Pl < [lx — Il (3.291)
Let M > My, € € (0, 1). Then there exists a constant Q > 0 such that for each
{(82i, w)}72, C M,
satisfying for each natural number j,
{1,....,m} C U{:]&_I(Uteﬂi{tla o thob)

and

(.QH_A-,, wi+N) = (£2;, w;) for all integersi > 0
and each sequence {x;}{°, C X which satisfies

xo0 € B(0, M),

Xi+1 = P.Q,'+],U},'+] (xi)
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for each integer i > 0, the inequality
dx;,Cy) <€, s=1,...,m

holds for all integers i > Q.

Theorem 3.9 Assume that for each x,y € X and eachi € {1, ..., m},
1P (x) — Pi(WIl < llx — yll.
Let M > M,, rg € (0, 1),
(xeX:dx,Cs) <rg, s=1,...,m}C B(O,M),
€ € (0, 1). Then there exists Q > 0, > 0 such that for each
{(82;, w)}72, C My
satisfying for each natural number j,
{,...,m} C U{:;\_/_I(U[E_Qi{tl, @)
and
(82, L5 w; ) = ($2i, w;) for all integers i > 0
and each pair of sequences {x;}{°, C X and {A;}72, C [0, 00) which satisfies

xp € B(0, M),
(xi, Ai) € A(xi—1, (£2;, w;), 8)

for all natural numbers i, the inequality
d(x;,Cs) <e, s=1,...,m

holds for all integers i > Q.

3.11 Proof of Theorem 3.7

By (Al), for every § > O there exists

25 € B(0, M,,) (3.292)
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such that
B(z5,8) N C; = B(z5,8) NFix(Py) # W, i =1,...,m.
In view of (3.293), for each § > O and eachi € {1, ..., m} there exists
2s5,i € B(z5,8) N C;.
Set
vo=eWN+1D'35+ 17"

By (A3), there exists y € (0, yp) such that the following property holds:
(P6) foreachi € {l,...,m}, each

z€ BO,3M+1+A)NC;

123

(3.293)

(3.294)

(3.295)

and each x € B(0,3M + 1 + A(g + 1)) satisfying d(x, C;) > yp/2, the

inequality
I1Pi(x) —zll < llx —zll =y

is true.

In view of (3.290), there exists a natural number n( such that
€; < y/4 for all integers i > no.
Set
0 =no+8N(Ay) " (M + (G + 1) A).
Assume that
{(2i, w2, C My
satisfies for each natural number j,
(Loooom) C U e b1ty ).
{xi}72, C X and {A;}72, C [0, co) satisfies

xo € B(0, M)

(3.296)

(3.297)

(3.298)

(3.299)

(3.300)
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and
(i, X)) € Axi—1, (82, wi), &), i=1,2,...,

Leti > 0 be an integer. By (3.301),

(Xit1, Ait1) € A(xi, (82541, Wit1), €41)-

By (3.20) and (3.302), there exist vectors

Yies@ir) € Ao(xi, 1, €i41), t € 82541

such that
bivr = Y wip1@yiell < €ig1,
1€82i41

i1 =max{a;, : ¢ € 241}
It follows from (3.19) and (3.303) that for every index vector
t=(t1, ..., tpr) € 2it1

there exists a finite sequence { yﬁ-i’t) }? ([()) C X such that

yém) = Xi, y;,l(,t; = Yi,t»

for every integer j = 1, ..., p(t),
Iy = Py OO < €y
@0

o =max{|lyfy) — ¥\ j=0,..., p) —1}.

Foreveryt = (11, ...,1p@)) € $2i41, set

Bis =max{d(y\", Cp )0 j=0..... p(r) — 1}

Mi+1 = max{B;,: t € 241}
Set

e =0.

(3.301)

(3.302)

(3.303)

(3.304)

(3.305)

(3.306)

(3.307)

(3.308)

(3.309)
(3.310)

(3.311)
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Let § > 0. By (3.292) and (3.300),
llzs — xoll = 2M.
Let i > 0 be an integer,
t=(1,....tp) € 2iy1, j=0,...,p) — L

Relations (3.7), (3.294), (3.307), and (3.313) imply that

lzs = Y5 < llzs = Py G+ 1Py 0F7) = 5951

<z = 2o |+ 128050 — Prpy OV + €1
=8+e€ir1+ Nz, — y(l &l
< llzs — ¥ 1 428 + €
and
lzs = 5500 < llzs — Y921 +28 + i
By (3.17), (3.306), and (3.314), forall j =0, ..., p(1),
lzs — Y7 N < s — yg VIl + 7 25 + 1)

= |lzs — xill + j (28 + €iy1)
< llzs = xill + g (26 + €;+1).

By (3.306) and (3.315),

lzs = yiell = llzs = ¥l < llzs — xill + 28 + €i41).

By (3.11), (3.304), and the convexity of the norm,

125

(3.312)

(3.313)

(3.314)

(3.315)

(3.316)

lzs = xipill < llzs — Y wirt@Oyiall + 1Y wigi()yie — Xigi

tefiqy 1€82;41

< Y winOllzs — yidll + €

1€Qi 4

< llzs = xill + (g + D28 + €i41).

(3.317)



126 3 Dynamic String-Averaging Methods in Normed Spaces

By induction we show that for all integers i > 0,

i
lzs — xill <2M +2(G + Dsi + €)@+ 1). (3.318)
j=0

In view of (3.311) and (3.312), inequality (3.318) is true for i = 0.
Assume that i > 0 is an integer and that (3.318) holds. By (3.317) and (3.318),

lzs = xip1ll < llzs = xill + (@ + D28 + €41)
i+1

<M A2G+ DS+ D+ Q@+ D).
j=0

Therefore by induction we showed that (3.318) holds for all integers i > 0. It
follows from (3.315) and (3.318) that for all integers i > 0, all t = (¢1,...,tp)) €
Qip1andall j =0,..., p(),

lzs = YU < llzs — xill + 328 + €i41)
i+1
<2M42G+ DS+ D+ Q€)@+ 1). (3.319)
j=0

Let n be a natural number. By (3.290), (3.292), and (3.318), for all integers
i=0,...,n,alt = (ll,...,l‘,,(t)) € -Qi—H andallj =O,...,p([),

lxill < llzsll + llxi — zsll < 3M +2(q + 1)én + A(g + 1),

IO < zsll + 17 = 25l < 3M +2G + Dén + A@G +1).
Since the relation above holds for any § > 0 we conclude that for all integers i > 0,

all t = (14, ...,tp(,«)) € 2iy1andall j =0,..., p(r),

llxill < 3M + A@G + 1), (3.320)
Iyl < 3M ++4@G + D). (3.321)

Set
Eo={i €{no,no+1,...}: wmit1 > yo}, (3.322)

Ei={ng,no+1,...,}\ Ep. (3.323)
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Let
i € Ey.
By (3.310) and (3.322),

Ki+1 = Y0

and there exists
T=(T1,...,Tp)) € 2it1

such that

Bi,t = Ki+1 = Y0-
By (3.309) and (3.324), there exists

Joedl,....,p(t) = 1}

such that

d(yj'(l)’r)s er0+l) = ﬁi,‘[ Z VO

Property (P6), (3.292), (3.293), (3.321), (3.325), and (3.326) imply that

(i,T) (i,T)
||P‘L’j0+1 (yJO ) - Z(S,T_j0+1 ” =< ||y10 - Z(S,‘L’_I'O+1 ” -V

By (3.294), (3.296), (3.307), (3.322), and (3.325),

(i,7) (i,T)
||yj0+1 - Z3|| S ||yj0+1 - ZS,‘L'I'O_H ” + ||Z3,‘L'/'O+| - Z5||

(i,7)
= ||yj0+1 - Z5,Tj0+1 ” + )

(i,7) i) _

<5 = Py U+ 1P ™) = 25,0 48

e+ Iy =z -y +8

@i,7)
Jo

<28 =3y /4+y07 = zll,

<y/A—-y+d+ly, —zsll+9

15 5] = 2l < Iy ™ = zall = 3y /4 + 26,

127

(3.324)

(3.325)

(3.326)

(3.327)

(3.328)
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By (3.17), (3.306), (3.314), (3.325), and (3.328),

llzs = xill = llzs — izl

p()-1 ' _
= > llzs =¥ = llzs = 0
j=0

> Iy =zl = Iy5D) — 2sll = (p(1) = (28 + €41)
>3y /4 =20 —(q — (25 +€iv1). (3.329)
It follows from (3.11), (3.18), (3.304), (3.316), and the convexity of the function
|| - || that
llzs — xig1ll
<lzs— Y wirt@yial + 1 Y wir1@yie = xiga
1€ 1€ 41

< Y winOllzs — yidll + €1

1€82i11

<eptllzs—xill+ D wipiOllizs — yiell = llzs — xill]
1€Q2; 41

<é€i+1+llzs — xill + wir1(Dlzs — yioll — llzs — xil]
+ D fwi 1 Olllzs — yiall = llzs — xilll: ¢ € 2iga \ {T})
< €ivi+ lzs — xil + i1 (D)(=3y /4428 + (G — D28 +€41) + (28 + €i41),
lzs — xis1ll < llzs — xill = 3Ay /4 42328 + €i41) (3.330)

foralli € Ep. By (3.292), (3.317), (3.320), (3.322), (3.323), and (3.330), for every
integer n > ny,

AM + A(G + 1) = lizs — xnoll

> |lzs — Xnp | — llzs — xnll
n—1

> Y (llzs = xill = llzs — xig1l)
i=ng

= Y lzs—xill = llzs = xialD

ieEgN[0,n—1]

+ ) lzs—xil = llzs — xig1l)

ieE1N0,n—1]
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n
> Card(EgN[0.n — 1)(BAy/4) —4Gon =24 Y 6 — @G+ > Q285+€41)
i=0 icE N[0,n—1]

> Card(Eg N[0, n — 11)(3Ay/4) — A(3G + 1) — 4Gdn — 2(G + 1)én.
Since § is any element of the interval (0, 1) we conclude that

(3Ay /4)Card(Eg N[0, n — 1]) < 4M +4A(G + 1),
Card(EgN[0,n —1]) <247 'y~ 1dM +44@G + 1)).

Since n is any natural number satisfying n > ng we conclude that
Card(Eg) < 2A7 'y 1dM + 4A(G + 1)). (3.331)
Set
Er={i €{no,no+1,...}: [i,i + N— 11N Eg # ¥}. (3.332)
By (3.331) and (3.332),

Card(E») < NCard(Ey)
<8NATYY I M + (g + 1) A)). (3.333)
Let an integer j > ng satisfy
j € E. (3.334)
In view of (3.332) and (3.334),
j,j+N—-11NEy=0

andforalli=j,...,j+ N —1,

Hi+1 < Y0- (3.335)

By (3.7), (3.17), (3.296), (3.306), (3.309), (3.310), and (3.335), for all i =
oo jH N —Lallt = (11, ..., 1y0) € iy andalls =0, ..., p(1) — 1,

Y0 > fit1 = iy = d5D, CrL ) (3.336)

and there exists

E € CtSJrl
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such that

Iy — & < o,

Iy$0 — Py (D))
< 8D =&l + 18 — Py, GED
<2ly"Y — £l < 2y
and

ly& — &0y

< 1950 = P OED )+ 1Py, 08 — &1

<2y +€i+1 < 2y0 + vo/4. (3.337)

Relations (3.336) and (3.337) imply that for i = j,...,j + N — 1, all
t = (1, ---atp(t)) € Qi+1 and all s = 0, ...,p(t) -1,

lxi — ¥y < Gy + 1/4),
d(xi, Cpyy)) < llxi — yEO +d (8D, CopL )
<qyo2+1/4)+y, s=0,...,p@) — 1. (3.338)

By (3.306) and (3.337), foreachi = j, ..., j+N—landeachr = (¢, ..., tpir) €
Ri41,

lxi — yiell < gro2+1/4). (3.339)

It follows from (3.11), £3.296), (3.304), (3.339), and the convexity of the norm that
foralli=j,...,j+ N —1

lx; 41 — x; |l

<llxi— Y wiptOyiell + 11 Y wis1(Oyis — x|

t€QRi41 1€Q2i 41

<eni+ Y wiptOlyis —xil

1€82i41

<€+ yg@2+1/4) < yqg@2+1/4) + w/4. (3.340)
By (3.340), for each pair of integers i1, i € {j, ..., j + N},

Ixi, — xi, | < GNyo 2+ 1/4) + Nyo/4. (3.341)
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Lets € {1, ..., m}. In view of (3.299), there exist
i€lj,.c j+HN =1} t =1, tpr) € Rit1
such that
seft,....tpin}
In view of (3.338),
d(x;, Cs) < qyo(2+1/4) + 0. (3.342)
By (3.295), (3.341), and (3.342),

d(xj, Cy) < llxj — xil| +d(xi, Cy)

< NGgvoQ+ 1/4) + Ny /4 + 102G +§/4+1) <3(N + Dpg <,
dxj,Cs)<e, s=1,....,m (3.343)

for every j € {ng,no+ 1, ...} such that j & E;>. By (3.333) and (3.343),

Card({j €{0,1,...}: max{d(x;,Cy): s=1,...,m} > €})
< ng + Card(E>)
<ng+2A7'YwTINUM +4AG + 1) = Q.

Theorem 3.7 is proved.

3.12 Proof of Theorem 3.8

By (Al), for every § > O there exists

zs € B(0, My) (3.344)
such that
B(z5,8)NCi #0,i=1,...,m. (3.345)
In view of (3.345), for each § > O and each i € {1, ..., m} there exists

25,i € B(z5,0)NC;. (3.346)
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Set

co=eN+D'ez+1D". (3.347)
By (3.8), (3.11), (3.12), (3.291), and convexity of the norm, for each (£2, w) €

My, eacht = (t,...,tpp) € L andallx,y € X,
1 P[t](x) — PLeIOVI < llx =yl (3.348)

| P2.w(x) — PouwI
=1 Y w@)PIx) = > w@ PO < llx — yl. (3.349)
tef2 tef2

By (A3), there exists €1 € (0, €p) such that the following property holds:
(P7) foreachi € {l,...,m}, each

z€ B(0,3M +1)NC;
and each x € B(0,3M + 1) satisfying d(x, C;) > €, the inequality
I1Pi(x) —zll < [lx —zll —e1

is true.

Set
o =€ 2N + 1718y~ A. (3.350)

By (A3), there exists y € (0, yp) such that the following property holds:
(P8) foreachi €{l,...,m}, each

z€ B(0,3M +1)NC;
and each x € B(0,3M + 1) satisfying d(x, C;) > yp/2, the inequality
1Pi(x) —zll < llx —zll — vy

is true.

Set

Q0 =N((Ay) "2M + 1). (3.351)
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Assume that
{(2;, w2, C My
satisfies for each natural number j,
(Loooom) C U Urea e 1))
and
(2, Lj» w; ) = (82;, w;) for all integers i > 0
and {x;}72, C X satisfies
X0 € B0, M)
and
Xit1 = Po, y w;,, (x;) for all integers i > 0.

Set

133

(3.352)

(3.353)

(3.354)

(3.355)

(3.356)

(3.357)

Let i > 0 be an integer. By (3.8), (3.12), (3.19), (3.20), and (3.356), there exists

Xi+1 > 0 such that
(Xit1, Ait1) € A(xi, (£2i41, wit1), 0).
By (3.20) and (3.358), there exist vectors
(Vit> i) € Ao(xi, 1,0), 1 € 241
such that

Xit1 = Z wi+1 (D) Vit

1€82i4

Aivr =max{o;,: t € 211}
It follows from (3.19) and (3.359) that for every index vector

t=(t1, ..., tpr) € 2it1

(3.358)

(3.359)

(3.360)

(3.361)
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there exists a finite sequence { yﬁ-i’t) }? (t()) C X such that

vo =i, vy = Vi

for every integer j = 1, ..., p(t),

v = Py,

()]

o =max{|lyfy) — ¥\ j=0,..., p) =1}

Foreveryt = (11, ..., tpr) € $2i4+1 set
Bis =max{d(y{", C;p ) j=0,...,p(H) — 1},
Mi+1 =max{Bi;: t € 2;+1}.
Let § > 0. In view of (3.344) and (3.355),
llzs — xoll <2M.

Leti > 0 be an integer,

t=(1,....tpw) € 2i41, j=0,...,p@) — 1.

Relations (3.7), (3.346), and (3.363) imply that

lzs = 3§50 < Nz — Py G

< lzs = 2oy |+ 128015 — Prpy OV
<8+ lzs. =07
< llzs — ¥l +28.
By (3.17), (3.362), and (3.368), forall j =0, ..., p(t),
lzs — ¥V < llzs — yg 1l + 265
= llzs — xill +268j
< llzs — xill +2438.
By (3.362) and (3.369),

lzs = yiel = llzs — yoir) I < llzs — xill + 25

(3.362)

(3.363)

(3.364)

(3.365)
(3.366)

(3.367)

(3.368)

(3.369)

(3.370)
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By (3.11), (3.360), (3.370), and the convexity of the norm,

lzs = xicall < llzs = Y wir1(®)yisl

1€Qiy
< D win®llzs — yisl
1€82i41
< llzs — xill +244. (3.371)

By induction, using (3.367) and (3.371), we can show that for all integers i > O,
llzs — xill < llzs — xoll +2g8i < 2M + 2g4i. (3.372)

It follows from (3.369) and (3.372) that for all integers i > 0, all + = (1,
cootp@) €82iprandall j =0,..., p(1),
lzs — Y7 U < s — xill + 246
< llzs —xoll +2g8G + 1)
<2M +2g5@G + 1). (3.373)

By (3.344), (3.372), and (3.373), for all integers i > 0, allt = (t1,...,tp@)) € 241
andall j =0,..., p(?),

IS < Dzl + 1y = 25l < 3M + 258G + 1),
i1l < lizsll + llxi — 25l < 3M +2g6i.

Since the relations above hold for any § > 0 we conclude that for all integers i > 0,
allt = (11, ..., tp(;)) € 2i11 and all Jj= o,..., p(t),

lxill < 3M, 1y < 3M. (3.374)

Set
Eo={ief0,1,...}: piy1 = noh (3.375)
E;={0,1,...,}\ Ep. (3.376)

Let

i€ Eg §€(,1).
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By (3.366) and (3.375),
Hi+1 = Y0
and there exists
T =(T1,..., Tp(r)) € 2i+1
such that
Bit = Ki+1 = V0. (3.377)
By (3.365) and (3.377), there exists
Joefl,....p(x) =1}

such that

A" Cop) = Bie = . (3.378)

Property (P8), (3.344), (3.346), (3.374), and (3.378) that

1Pejy o ) = 2.0 Il S IV = 250l — v (3.379)
By (3.346), (3.363), and (3.379),
11 = 28l = 1Pey 0 ™) = 2l

<P O

o )~ 28t | 128,050 — 25l

<07 =zl — v +38

<07 =zl — v +28. (3.380)

By (3.17), (3.362), (3.368), and (3.380),

llzs = xill = llzs — yi<ll

p(—1 ) )
= > Mz =70 = llzs — ¥§55 10
ot

> Iy ™ =zl = YT — 25l = 28(p(x) — 1)

>y —24q. (3.381)
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It follows from (3.11) and the convexity of the function | - || that

lzs — xit1ll

=lzs— Y wir@®yisl

1€ 4

< > win®llzs = yiel-

1€82i41

By (3.11), (3.18), (3.370), (3.381), and (3.382),

llzs = xill = llzs — xi1]
> > win®lllzs —xill = llzs — yill]
1€Q2i 4
= wi+1(D[llzs — xill — llzs — yi,zll]

+ D fwin Olllzs — xill = llzs — yiilll s ¢ € Rig1 \ 7))

> wip1 (D)(y —289) Y {wis1()(289) : 1 € g1\ {7}
> Ay — 253,

llzs — xill = llzs — xi+1ll = Ay —28q foralli € E.

Set

Er={ke{0,1,...}: max{mip1: i =kN, ..., (k+1)N—1} > yo}.

Let § € (0, 1) and n be a natural number. By (3.367),

2M > |lzs — xoll

> |lzs — xoll — llzs — x5,
n—1
= lzs = x5l = llzs — X5
k=0
n—1 (k+1)N-1
=Y > lzs—xjll = llzs = xj411).
k=0 j:k]\_/

Assume that an integer k € [0, n — 1] satisfies

k € E.

137

(3.382)

(3.383)

(3.384)

(3.385)
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By (3.371), (3.376), (3.381), and (3.384),

(k+1DN—1
> lzs = x5l = llzs — xj411D

j=kN
=Y llzs —xjll = llzs —xjpall = j € kN, ..., (k+ DN — 1}, pjy1 > yo)
= Allzs = xjl = llzs = xj41ll s j € kN, ..., (k+ DN =1}, pj1 < o}
> Ay —28G —28G(N — 1) = Ay —28gN. (3.386)

It follows from (3.371), (3.385), and (3.386) that

(k+1)N—1
2M =0 > lzs—xjl = llzs — xj41l) : k € E2aN[0,n— 1]}
j=kN
(k+1N-1
A4 D Ulzs—xjll = llzs —xj41l) : k€{0,...,n— 1}\ Ea}
Jj=kN

> Card(E; N[0, n — 11)(Ay —28GN) — 2nN$8g.
Since § is any element of the interval (0, 1) we conclude that
Card(E» N[0, n —1]) < 2M(Ay)~ .
Since the relation above holds for every natural number n we conclude that
Card(E») < 2M(Ay)~ L. (3.387)
In view of (3.384) and (3.387), there exists an integer go > 0 such that
q0 <2M(Ay) ' +1, g0 ¢ Ex (3.388)
and
Wit1 < Y0, i =qoN,...,(go+ DN — 1. (3.389)

By (3.7), (3.17), (3.362), (3.363), (3.365), (3.366), and (3.389), for all integers i =
GoN.....(qo+ DN —1,allt = (11, ..., 1y4) € Rip1andall j =0,..., pt)—1,

Y0 > Mitl = Bip = d(y;-i’l), Ctih), (3.390)
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there exists

irj € Cth

such that
it
Iy = &1l < vo
and
Iy = ¥ = 11y = Py OF )
< I = &+ g — Py O8I
<20y =& 4l < 20 (3.391)
and
e = yiall = 136" = y5in)
p()—1 . '
< >0 =y < 24 (3.392)
j=0

It follows from (3.11), (3.360), (3.392), and the convexity of the function || - || that
foralli =¢goN,...,(go+ )N — 1,

llxi — xit1ll
<lxi— ) wipa ()il
1€Qi41
< D win@lx = yiill < 2Gyo. (3.393)
1€y
In view of (3.393),
X405 = Xegor il < 2G70N. (3.394)

By (3.349), (3.354), (3.356), (3.357), and (3.394), for each integer ¢ > qo,

”xqﬁ - x(q+1)1\7|| = ||Tq7q0(xq01\7) - Tqiqo(x(qo.;_l)]\_/)”

< 128 = Xgoi | < 2410N. (3.395)
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Let ¢ > go be an integer. In view of (3.394) and (3.395),

1,5 = *q+1all < 270N. (3.396)
Let§ € (0, 1). By (3.371) and (3.396),

23y0N > X5 — X4l

> |lzs — xqﬂ/” — llzs _X(q+1)1§/||
(g+DHN -1
= > (s —xill = llzs — xit1l)
i=qN

= dllzs —xill = llzs = xiall - i €{gN, ..., (g + DN =1}, i1 = €0}
+ Y llzs —xill = lzs = xiall s i €4gN, ..., (g + DN =1}, piy1 < €o}

> Mlzs—xill=llzs—xivill : i€lgN, ..., (g + DN — 1}, piy1 = e} — 25GN.

(3.397)
Let
i€{0,1,....}, mit1 > €o. (3.398)
In view of (3.365), (3.366), and (3.398), there exists
T=(T1,..., Tpr)) € R2i+1, jo € {l,..., p(r) — 1}
such that
€0 < piv1 = Bie =d(y" Coy). (3399)
Property (P7), (3.344), (3.346), (3.363), (3.374), and (3.399) imply that
YD = 2820 | = 1P 05 ™) = 25,200
< I8 = 2ol — e (3.400)
It follows from (3.367) and (3.400) that
155} = 2l < V5D = 28,250 Il + 125,150 — 2511
<5+ 130 =zl —a
< [y97 — 250 + 28 — €. (3.401)

Jo
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By (3.17), (3.18), (3.362), (3.368), and (3.401),

lzs — xill = lzs — Yz
=llzs — v "l = llzs = Yo

p(—1 ) )
= 3 Mz =y 0 = llzs — ¥§55 10
=0

> Jlzs = Y0Pl = llzs — ¥ = 28(p(z) = 1)
> €] —253. (3.402)

By (3.11), (3.360), (3.370), (3.402), and the convexity of the norm,

llzs — xit1ll
=lzs— Y wir1 Oyl
1€Q2i 41
< Y winOllzs — yidll
1€82i41

= wit+1()llzs — yi«|l
+ Y AwiniOllzs = yirll = 1€ 2igr \ {7}
< wit1(T)(llzs — xill — €1 +28g)
+ ) i1 (lzs —xil +289) : 1 € 2iga \ (7))
< llzs — xill + 23 — Ae;.

Thus

llzs — xi+1ll < llzs — xill +28q — A€ for all integers i > 0 such that ;41 > €.
(3.403)
Assume that there exists
io€{gN,...,(g+ 1N — 1}
such that w;,+1 > €o. In view of (3.397) and (3.403),

2NGyy > Aey —28G — 48GN.
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Since § is any element of the interval (0, 1) the relation above implies that
o= AN
This contradicts (3.400). The contradiction we have reached proves
wis1 < e€gforalli € {gN,..., (g +1)N —1}. (3.404)
It follows from (3.7), (3.17), (3.362), (3.363), (3.365), (3.366), and (3.404) that for
everyi € {gN,...,(q+ 1N — 1}, every t = (t1,...,tp@)) € $2;y1 and every
j=0,...,p@ -1,
€0 > pin1 = i = d, Gy L) (3.405)
and there exists
éi,z,j € Ctj+1
such that
Iy§" = &1 41l < eo,

IS = 38O < 1P G5 = I+ i — ¥

<20y = &4 41l < 260, (3.406)
b = 0= lyg™” = ¥ < 2je0 < 260, (3.407)
e = yiell = 135" = vy
p(nH—1 ' '
< >0 T =3I < 260d. (3.408)
=0

It follows from (3.11), (3.360), (3.408), and the convexity of the norm that for all
i=¢gN,...,(g+ DN -1

llxi+1 — xill
<l — Y win @)yl
1€Q2i 41
< D win®llyi; —xill < 2604 (3.409)

1€82i41
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By (3.409), for each pair of integers i1, i» € {gN, ..., (g + )N},

llxi, — xi, | <24 Neo. (3.410)
Let
kef{gN,...,(g+ 1N}, se{l,...,m}. (3.411)
In view of (3.353), there exist
JELGN,....(@+ DN =1}, t = (t1, ..., tpr) € 2j+1 (3.412)
such that
sefti,....tpin} (3.413)

In view of (3.413), there exists [ € {0, ..., p(t) — 1} such that
s = tl+] . (3414)
It follows from (3.347), (3.405), (3.407), and (3.410)—(3.412) that

d(y/™", ¢y < e,
d(xj, Co) < llxj — v/ +d (", Cy) < €02 + 1),
d(xe, Cs) < Ik — [l +d(x;, Cy)
<2Ngeo+ €7+ 1) < (N+ Dep27 + 1) =,
dxp,Cs) <e, s=1,....m (3.415)

for every k € {gN, .. g+ 1)N} and for all integers g > go. Thus (3.415) holds
for all integers k > go/N. Theorem 3.8 is proved.

3.13 Proof of Theorem 3.9

We may assume that €g < rp/2. Theorem 3.9 is deduced from Theorems 2.9 and 3.8.
LetY =X, p(y,2) = |ly — zll, ¥, z € X, A be the set of all mappings S defined on
the set of natural numbers such that

SW) = Pouw, i=1,2,...,
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where
{(2;, w)}2) € M
satisfies
(£2;, > w;, ) = (£2i, w;) for all integers i > 1
and
(,...omy C UL (Urea (1. -ty D)
Set

F={xeX:dx,C)<e/4 s=1,....,m.

Theorem 3.8 implies that property (P6) holds.
Let Q > 0 be as guaranteed by property (P6) and

§=4"'e(Q@N+1)'G+ D"
Assume that
{(82;, w)}i2; C My
satisfies for each natural number j
(Loooom) CUZN  Ureg (i1 1D,
(Qi+,\7, wi+1\7) = (£2;, w;) for all integers i > 0
and that sequences {x;}7°, C X, {A;}72, C [0, co) satisty

xo € B0, M),
(xi, i) € A(xi—1, (£2;, w;), d) for all integers i > 1.

Arguing as in the proof of Theorem 3.6 and using Proposition 2.8 we can show that
for all integers i > 0,

i1 = Pey iy (DIl < (G 4+ D8 <47 e(QRN + 1) 7"

Theorem 2.9, the choice of O and the relation above imply that for all integers

i >0,
B(xi,e/HNF #0

for all integers i > Q. This completes the proof of Theorem 3.9.



Chapter 4 )
Dynamic String-Maximum Methods Qe
in Metric Spaces

In this chapter we study the convergence of dynamic string-maximum methods for
solving common fixed point problems in a metric space. Our main goal is to obtain
an approximate solution of the problem using perturbed algorithms. We show that
the inexact iterative method generates an approximate solution if perturbations are
summable.

4.1 Preliminaries

Let (X, d) be a metric space. For each x € X and each nonempty set E C X put
d(x, E) =inf{ld(x,y) : y € E}.
For each x € X and each r > 0 set

Bx,r)y={yeX: dx,y) <r}.

Suppose that m is a natural number, P; : X — X,i = 1,...,m are self-
mappings of X and that forevery i € {1, ..., m},
Fix(P):={ze X: Pi(z) =z} #0. 4.1)
We suppose that
d(z,x) = d(z, Pi(x)) (4.2)
© Springer International Publishing AG, part of Springer Nature 2018 145
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foreveryi € {1,...,m}, every x € X, and every z € Fix(P;). For every € > 0 and
everyi € {1,...,m} put
Fe(P)={x € X: d(x, Pi(x)) <€}, 4.3)
Fe(P)={y € X: B(y.e) N Fe(P,) # 9}, (4.4)
Fe = N{L Fe(Py) 4.5)
and
Fe =" Fe(P) (4.6)

A point belonging to the set F is a solution of our common fixed point problem
while a point which belongs to the set F is its e-approximate solution.
Fix 6 € X. Suppose that M, > 1 and that the following assumption holds:

(A1) foreach § > 0 there exists z5 € B(6, M) such that
B(zs,8) N Fix(P;) #@foralli =1,...,m.
We apply a dynamic string method with variable strings in order to obtain a good

approximative solution of the common fixed point problem. Next we describe the
dynamic string method with variable strings.

By an index vector, we mean a vector t = (t1,...,tp) suchthatt; € {1,...,m}
foralli =1,..., p.
For an index vector t = (71, ..., t;) set
p(t)=gq, Pl{]=P, - Py. 4.7

Denote by M the collection of all finite sets §2 of index vectors. Fix an integer
g=m (4.8)
and denote by M, the set of all £2 € M such that
p(t) < g forallt € 2. 4.9)

The dynamic string-maximum method with variable strings can now be described
by the following algorithm.

Initialization: select an arbitrary xo € X.

Iterative step: given a current iteration vector xj pick

k41 € My,
calculate

Plt](xk), 1 € $2k11
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and choose
X1 € {P[t](xk) @ t € 2441}
such that
d(xi, Xp41) = d(xk, P[t](xk)), t € 2k41.

In this chapter we use the following definitions.
Letd > 0,x € X and lett = (t1, ..., () be an index vector. Define
Ao(x,t,8) ={(y,A) € X x R': thereisa sequence {yi}f;(tg C X such that
yo=xandforalli =1,..., p(t),
d(yi, P;(yi—1)) <6,
Y =JYp®>
A=max{d(yi,yi—1): i=1,..., p®)}}. (4.10)

Letd >0, x € X and let 2 € M,. Define
A(x,$2,8) ={(y,1) € X x R : there exist
(s, M) € Ap(x, t,68), t € §2 such that
(yv)") € {(yta)\'t) S Q}v

A=A, fE 2D, @11

Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty
set is zero.

4.2 The First Problem

We suppose that ¢ € (0, 1) and that for every i € {1, ..., m} the inequality
d(z,x)* > d(z, Pi(x))* + &d(x, P;(x))* (4.12)

holds for all x € X and all z € Fix(P;).

Let N be a natural number.

In this chapter we prove the following result which shows that the inexact
dynamic string-maximum method generates approximate solutions if perturbations
are summable.
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Theorem 4.1 Let
M > M,, € €(0,1)

and let a sequence {€;}7° | C (0, 00) satisfy
o
A=) "¢ < 0. (4.13)
i=1

Let a natural number nq be such that for each integer i > ny,
e <e(N+ D'+~ (4.14)
Assume that
{$2i}72, C M (4.15)
satisfies for each natural number j,

U N Ueaittn -ty ) (4.16)

x0 € B(#, M) (4.17)

{1,...,m} C

and that sequences {x;}°, C X, {A;}72, C [0, 00) satisfies for each natural number

i,
(xi, Ai) € A(xi—1, 824, €). (4.18)
Then

Card({i € {0,1,...}: x; & F.})

<no+ N+ N> 4§ e 2(4M + A§)* + AG(6(4M + GA) + 6)).

4.3 Proof of Theorem 3.1

By (A1), for every 6 > O there exists
zs € B(6, My) 4.19)
such that

B(z5,8) NFix(P) # 0, i=1,...,m. (4.20)
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In view of (4.20), foreach § > O and each i € {1, ..., m} there exists

25, € B(zs,8) NFixp(P;).
Let i > 0 be an integer. By (4.18),
(Xig1, Aig1) € Alxi, $2iq1, €i41).
By (4.11) and (4.22), there exist

Yies@ir) € Ao(xi, 1, €i41), t € 82541
such that

Xitt, A1) €{i i) 1 t € 2y},

Aigl = iy, 1€ £2i47.
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4.21)

4.22)

(4.23)

(4.24)
(4.25)

It follows from (4.10) and (4.23) that for every index vector t = (1, ..., tp) €

£2;4+1 there exists a finite sequence { y;i’t)}?(:t()) C X such that
o = xis v = i
for every integer j =1, ..., p(?),

A P GED) < e,

j—1
@.1)

ai = max{d(y{] ¥\ s j =0, p) — 1}

Let§ > 0. By (4.17) and (4.19),
d(zs, x0) <2M.

Leti > 0 be an integer,
t=(,....tpw) € 2i41, j=0,...,p@1) — 1.

Relations (4.2), (4.21), and (4.27) imply that

d(@, v = d s, Py 077 +d(Py, 670,

<d(zs, Zﬁ,tﬁ_]) + d(ZS,tj_H ’ Ptj_H (y]l’t))) + €41

<O test +d@sg,,. ")

< d(zs, y)") + 25 + €

()
j+l

)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)
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and
d(zs, ¥ < d(zs, y§) +28 + €iq1.
Clearly,
d(zs, ¥\ = d(zs, Y1)’
> d(zs, ¥y ") = d(zs, Py (0 ))?
+d(z, Pryyy ) = d(zs, y1D?
> d(zs. 3" = d(zs. Py, (7))
—d (3 Py O8N s, P,y 7)) + d s D).
It follows from (4.12) and (4.21) that
d(zs, Y\ = d(zs, Pryy, (05))?
> d(@.0 Y = d @5y Py 087
+d(zs, ¥ = d(2s.154, 35 ")
+d (2s.15000 Py 0P = d(zs, Py, (6))?
> ad(y\", Py, (7))

—d (25, 2541, (25,05, YY) + d (25, ¥

—d (25, 25,1, (d (25151 Py ) + d(zs, Py 0F))).

By (4.2), (4.21), and (4.33),

d(zs, ¥\ = d(zs, Py, (0F7)?
> ad(y", Py, 6F))?
—8(d (251710 ¥5 ")+ d(zs, ¥§))
—8(d(2s.15,1> Py 0 + d 25, Py 6570))
> ad(yy", Py, ) = 8Qd (2, v ") + )

—82d (254710 Py (6 +8)

(4.31)

(4.32)

(4.33)
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> ad(yy", Py 0N = 8Q2d (25, y) + 8)
—8(2d(z5, y;") + 38)
= 2d (3", Pry,, 08002 2524 (25, y) +39).
It follows from (4.27), (4.32), and (4.34) that
i,t))Z

— d(zs, yj-lj:f)z

= (i,1) (E,1)\12 @,1)
> ad(y\" Py, (7)) - 282 (25, y§) + 35)
—ei1(d(zs, Py 7)) +d (25, ¥,
In view of (4.2) and (4.21),

d(zs, Py 0F7)) < d(2s, 25.0700) +dGsiyyrs Py 0F)
<8 +d@sug,. v
<8+d(2s.0;,,28) +d (25, y) ")
<26 +d(z. ).
In view of (4.27), (4.35), and (4.36),
d(zs, ¥\ — d(zs, Y1)’
> ed (Y, Py, O8N = 262d (25, ¥ ") + 38)
—ei1(d(zs. Py 00 +d 2o, Py 057 +ei1)
> ad(y)", Py, (00 = 26Q2d (25, ) 4 39)
—eit12d(zs, Y{") + 48 + €i41).
It follows from (4.9), (4.26), and (4.31) that for all j =0, ..., p(?),
d(zs, y{") < d(zs, y§") + (28 + €iv1)

< d(z5, xi) + p(t)(26 + €it1)
< d(z5, %) +q(28 + €iy1).
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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By (4.26) and (4.38),
d(zs, yi,r) = d(zs, yﬁ,l(,t))) <d(zs5, xi) + q(28 + €i11). (4.39)
By (4.24) and (4.39),
d(zs, xi+1) < d(zs, xi) + q(28 + €i11). (4.40)
Set

€ = 0. (4.41)

By induction we show that for all integers i > 0,

i
d(zs, xi) <2M +248i + () €))g. (4.42)
j=0

In view of (4.29) and (4.41), inequality (4.42) is true for i = 0.
Assume that i > 0 is an integer and that (4.42) holds. By (4.40) and (4.42),

d(zs, xi41) < d(z5,x;) +q(28 + €i41)
i+1

<2M 42456+ 1)+ () €))i.
j=0

Therefore by induction we showed that (4.42) holds for all integers i > O.
It follows from (4.38) and (4.42) that for all integers i > O, all + =
(t1, ..., tpr) € 2ip1andall j =0, ..., p(t),
d(zs. y"") < d(zs. %) + G5 + €iq1)
i+1
<2M 42386 + D+ (Y €)d. (4.43)
Jj=0

By (4.13), (4.19), (4.42), and (4.43), for all integers i > O, all + =
(t1, ..., tpr) € 2ip1andall j =0, ..., p(t),

d®,x;) <d0,zs) +dxi,zs) <3M +2q8i + Aq,

d©,y{") <d©,2) +dO", 25) <3M +248G + 1) + AG.
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Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (t,..., lp(,)) € -Qi+1 and allj =0,..., p(l),

d(©, x;) < 3M + Ag, (4.44)
de, y](-i’t)) <3M + Aq. (4.45)

By (4.19), (4.37), and (4.45), for every 6 > 0, every integer i > 0, every t =
(t1,..., t[,(t)) € 2;y1,andevery j =0,..., pt) — 1,

2 (i,1)\2
d(zs, Y)Y —d(zs, ¥}
>ad(y\", Py, (V))?
—25(2(4M + GA) +38) — €111 Q(A4M + GA) + 45 + €i41). (4.46)

In view of (4.27) and (4.45), for every § > 0, every integer i > 0, every t =
(t1, ..., tp) € 2i41,andevery j =0,..., p(t) — 1,

A, Py, VN 2 d 0, y 2

—@G N — a0 Py )Y

> d(, yih?

—d(), Py GF @O, YD +d G P 08 ))

>d(y{0, Y

—€i11dO, VD +dO Py 6F)
> d(y{0, YD = €1 (ABM +G4) + €i41). (4.47)

It follows from (4.46) and (4.47) that for every § > 0, every integer i > 0, every
t=(t,....tpe) € 211 andevery j =0, ..., p(t) — 1,
d(zs, Y)Y = d(zs, y1{)?
> cd(y .,y — 262(4M +G.A) + 35)
—€i11(6(4M + g A) + 48 + 2€i41). (4.48)
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Leti > 0 be an integer and § € (0, 1). By (4.9), (4.26), (4.28), and (4.48), for all

t=(t1,...,p@) € §2i+1,

d(zs, xi)* — d(zs, yi.1)*

@0

@, t))2 _ d(ZS, yp(t))z

= d(zs, Y,
p()—1 )

= > @y —ds, YD
j=0

p)—1
=6 3 dof ity
—28G(2(4M + G A) + 35)
—€i+1G(6(4M + G A) + 45 + 2€i41)
> cof, — 286G (2(4M + G A) + 35)
—€i11G(6(4M + GA) + 48 + 2€i41).

It follows from (4.24), (4.25), and (4.49) that

d(z5, Xi+1)?

2 =12
< d(zs, xi)” — CAiy

+28G(8M +2G A + 38) + €i41G(6(AM + GA) + 48 + 2€i41).

Set
vw=eN+D'0+p~".
In view of (4.14) and (4.51), for all integers i > no,

€ <.

It follows from (4.19), (4.44), and (4.50)—(4.52) that for each integer n > no,

(M + GA)? > d(zs, Xny)*

> d(zs, Xng)* — d(zs, Xn)*

n—1

= Z(d(z(g, X)) —d(z5, xi41)%)

i=ng

(4.49)

(4.50)

(4.51)

(4.52)
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n—1 n—1
> Y A — Y €r1G(6(AM + GA) + 48 + 2€i41)
i=ny i=ng

—2(n — ng)8G(8M +2G A + 38).

Since § is any element of the interval (0, 1), it follows from (4.13), (4.51), and (4.52)
that for each integer n > ny,

(4M + GA)? + GAQAM + 6AG + 6)
n—1
z Z At
i=ng
> cygCard({k € {no,...,n — 1} 1 A1 > o).
Since the relation above holds for every natural number n > ny we conclude that
Card({k € {no,no+1,....} 1 A1 = yob)
<&y HEM + GA)? + AGQ4M + 6.4 + 6)]. (4.53)
Assume that a natural number i satisfies

i >ng, Aix1 < Y0- (4.54)

Let 7 = (11, ..., 1p)) € Qis1. By (4.25), (4.27), (4.28), and (4.54), for all j =
0,...,p(t) -1,

vo = d(y{}), ¥

>d(\", Py, GF) —dO8, P, O8)

2 d ()", Py ) = € (4.55)

i,t))

In view of (4.52), (4.54), and (4.55), forall j =0, ..., p(t) — 1,

A Py, 68 < 210 (4.56)

and

WD e Py (Piy,). (4.57)

Relations (4.9), (4.26), (4.55), and (4.56) imply that for all j =0, ..., p(?),

d(xi, Yy = d(yg™", ¥ < jvo < g (4.58)
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and if j < p(¢), then
Xi € Fgeyy(Pr,)).
Therefore
Xi € Fgeny(Py), s=1,..., p@).
By (4.26) and (4.58),
d(xi, yiy) < qyoforalls € £2;4.
In view of (4.24) and (4.60),
d(xi, Xi+1) < ¥0q.

Inclusion (4.59) implies that

xi € MFG1yp(Ps) : S € Ureg {11, -+ st}
Let

Eo={i €e{no,no+1,...}: Aix1 > yo).
It follows from (4.53) and (4.61)—(4.63) that
Card(Eo) < &'y 2[(4M + GA)? + AGQ24M + 6 A + 6)

and the following property holds:

(P1) if a natural number i > ng satisfies ;1 < yp, then

d(xXi+1, X)) < Y09g,

xi € NFG+1yp(Ps), 5 € Ureg 1t -« oo tpn)})-
Set
Ey={ief{no,no+1,...}: [i,i + N— 11N Eg # ?}.
By (4.64) and (4.67),

Card(E;) < NCard(Ey)

< Ny 2[(4M + GAY? + AGQRAM + 64 A + 6)].

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
(4.66)

(4.67)

(4.68)
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Let an integer j > ng satisfy
J € En. (4.69)
In view of (4.67) and (4.69),
[j,j+N—11NEy=0. (4.70)
Property (P1), (4.63), and (4.70) imply that for eachi € {j, ..., j+ N—1}, Aigl <
o0 and (4.65) and (4.66) hold. It follows from (4.65) which holds for each i €
{j,...,j+ N — 1} that for each pair of integers i1, i» € {j,..., j + N},

d(xi;, xi,) < @Nvo. 4.71)

By (4.66) which holds for eachi € {j, ..., j + N — 1}, (4.16) and (4.71),

Xj € Farnyp@n (P,
i+N—1
s € U{:j Ut ....tpn s t=1{t1, .., tpin} € i) =11, ..., m}.

In view of the relation above and (4.51),

Xj € Fguypi+n = Fe

for all integers j > ng such that j ¢ E;. Together with (4.51) and (4.68) this implies
that

Card({j € {0, 1,...}: x; & F.})
< ng + Card(E})

<no+ N+ N>+ % '€ 2(4M + AJ)*> + AGQRAM + 63 A) + 6).

Theorem 4.1 is proved.

4.4 The Second Problem

We suppose that the following assumption holds.

(A2) For each M > 0 and each y > O there exists § > 0 such that for each
i ef{l,...,m},each

z € B(6, M) NFix(P;)
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and each x € B(6, M) satisfying d(x, P;(x)) > y, the inequality

is true.

In this chapter we prove the following result which shows that the inexact
dynamic string-maximum method generates approximate solutions if perturbations
are summable.

Theorem 4.2 Let
M=>M,, €< (0,1)

and let a sequence {€;};2, C (0, 00) satisfy

o0
A= Ze,- < oo. 4.72)
i=1

Then there exists a natural number Q > 0 such that for each

{2172, c M.
which satisfies for each natural number j

(Loooom) C U U i1, 1))

and each pair of sequences {x;}{°, C X and {A;}72, C [0, 00) which satisfies

X0 € B(6, M)
and

(xi, Aj) € A(xi—1, $2i,€1), i =1,2,...

the following inequality holds:

Card({i € {0,1,...}: x; € F.}) < Q.

4.5 Proof of Theorem 4.2

By (Al), for every § > O there exists

zs € B0, M) (4.73)
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such that
B(zs,8) NFix(Py) #0, i =1,...,m. (4.74)
In view of (4.74), foreach § > O and each i € {1, ..., m} there exists
2s5.i € B(zs,8) NFixp(P;). (4.75)
Set
w=eN+D G+ (4.76)

By (A2), there exists y € (0, yp) such that the following property holds:
(P2) foreachi € {l,...,m}, each

z€ B®,3M + 1+ A) NFix(P))

and each x € B(0,3M + 1 + A(g + 1)) satisfying d(x, P;(x)) > yp/2, the
inequality

d(Pi(x),z) =d(x,2) —y

is true.

In view of (4.72), there exists a natural number ng such that

€; < y/4 for all integers i > no. @.77)
Set
Q0 =no+8Ny "M+ (G + 1DA). (4.78)
Assume that
{232, C M, (4.79)

satisfies for each natural number j,

TN ettty -t D) (4.80)

{L.....m} c U]

{xi}$2, C X and {1;}{2, C [0, 00) satisfy

x0 € B0, M) 4.81)



160 4 Dynamic String-Maximum Methods in Metric Spaces
and
(xi, Ai) € A(xi—1, 82i,€1), i =1,2,..., (4.82)
Let i > 0 be an integer. By (4.82),
(Xit1, Aig1) € A(xi, $2iq1, €i41). (4.83)

By (4.11) and (4.83), there exist

Yies@ir) € Ao(xi, 1, €i41), t € 82541 (4.84)

such that
it A1) € {Qi i) 1 t € 241}, (4.85)
Aigl = iy, T E 82i41. (4.86)

It follows from (4.10) and (4.84) that for every index vector t = (t1,...,1p()) €
£2;4+1 there exists a finite sequence { y(l t)}p (’0 C X such that

=iy = v, (4.87)

for every integer j = 1, ..., p(t),

A", Py D) < €, (4.88)
aip =max{d(y\] y) s j =0, p) = 1), (4.89)
Set
€ = 0. (4.90)
Let § > 0. By (4.73) and (4.81),
d(zs5, x0) < 2M. 4.91)
Leti > 0 be an integer,
t= (s tp) € Riv1, j=0,...,pt) — 1. (4.92)

Relations (4.2), (4.75), and (4.88) imply that

d(zs, Y1) < d (s, Py G +d(Pyy, 657,y

<d(s. 2uy) +d @00 Py OF7) + e
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<S+eipt +d @, ")
<d(zs, 3" +26 + €
and

d(zs, ¥\ < d(zs, y{"") +26 + €. (4.93)
By (4.9), (4.87), and (4.93), forall j =0, ..., p(?),

d(zs, Y{") < d(zs, y§") + 7 (28 + €iv)
< d(zs, %)+ j (28 + €i11)
< d(zs, %) + G (28 + €i11), (4.94)

By (4.87) and (4.94),

d(zs, yie) = d(zs. y0)) < d(zs,xi) + 328 + €ig1). (4.95)

In view of (4.85) and (4.95),
d(zs, xiy1) <d(z5, X)) +q(28 + €i41). (4.96)

By induction we show that for all integers i > 0,

i
d(zs. xi) < 2M +248i + (Y _€)q. (4.97)
j=0

In view of (4.90) and (4.91), inequality (4.97) is true fori = 0.
Assume that i > 0 is an integer and that (4.97) holds. By (4.96) and (4.97),

d(zs, xit1) < d(z5, xi) + (20 + €iy1)
i+1
<2M 42456+ 1)+ () _€p)i.
j=0

Therefore by induction we showed that (4.97) holds for all integers i > 0.
It follows from (4.94) and (4.97) that for all integers i > 0, all r =
(t1,..., tp(t)) € 2;yrandall j =0,..., p(r),

d(zs. y"") < d(zs. xi) + Q25 +€if1)
i+1
<2M 4248 + D) + (Y €))d- (4.98)
j=0
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By (4.72), (4.73), (4.97), and (4.98), for all integers i > 0, allt = (t1,...,tp)) €
Qirr1andall j =0,..., p(),

d©,x;) <d©,z5) +d(xi, zs) <3M +2qgdi + Aq,
A, y{"") <d©,25) +dOS", 25) < 3M + 238G + 1) + AG.

Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (t,..., tp(t)) € .Q,'.H and allj =0,..., p(t),

d0,x;) <3M + Aq, (4.99)
d®,y\") <3M + 4. (4.100)
Set
Eo={i e{no,no+1,...}: Xix1 > v}, (4.101)
Ey ={ng,no+1,...,}\ Eo.
Let
i € Ep.
By (4.85) and (4.101),
X1 =)0 (4.102)
and there exists
T=(T1,..., Tp(r)) € 2i41
such that
Xitl = Yirs Qijx = Aitl. (4.103)

By (4.89), (4.102), and (4.103), there exists

joef{0,..., p(r) —1} 4.104)
such that
@7 1)y _ _
d(ijH, Yio ) =dir =Xitl = Y0- (4.105)
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In view of (4.88) and (4.105),
@,7) @,7)
d(yj'(l) ‘ s Pfj0+l (yj'(l) ‘ )
@,7) G,1) (i,7) (i,7)
> d(yjéil ’ yj:) ’ ) - d(Pr_j0+| (yj:) ’ )v yj:)fr])
Z Y0 — €it1- (4.106)
It follows from (4.77), (4.101), and (4.106) that
AT, Py ) = v — €41 = 10 — /4 = /2. (4.107)

Let § € (0, 1). Property (P2), (4.73), (4.75), (4.100), and (4.107) imply that

d(Pey () 25,0000 <G 2500 — v, (4.108)

By (4.75), (4.77), (4.88), (4.101), and (4.108),

d(yj(l)’i)lv ZS) S d(y](:)’i)l ’ Z3,T_j0+|) + d(ZS,T_/0+1 s Z(S)

<dGET 2000) +

@i,7) (1) @,7)
jz)ila Pr_/0+1 (yj:) i ) + d(Prjo_H (yjé i ), ZS,‘E/'O_H) +36

<€ +diyt?

Jo

=d(y

2 Z8tjp) —Y O
<y/A—y+8+dGET ) 48,

A0 25) <25 = 3y /4 +d(00 2p). (4.109)

By (4.9), (4.87), (4.93), (4.104), and (4.109),

d(Zav xi) - d(Z§7 )’i,r)

p(r)—1 ' .
= Y [ds, yP7) = dzs, ¥
j=0
> d(yp", 25) —d(yi]) 2) = (p(r) = 128 + €141)
>3y/4—285 — (G — 1)(28 + €i+1).) (4.110)

It follows from (4.103) and (4.110) that

d(zs, xi) —d(zs, xi+1) >3y /4 =26 —(q — 1)(25 + €i41) 4.111)
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for each i € Ep. By (4.72), (4.73), (4.96), (4.99), (4.101), and (4.111), for every
integer n > ny,

4M + Ag > d(zs, Xn,)

> d(zs, Xpy) — d(zs, Xn)

n—1
= Z(d(z(g, Xi) — d(zs, Xi+1))

i=ng
= > (d@sxi) —d(zs. xi41))
i€Eon[0,n—1]
+ ) (ds xi) —d(zs, xi41))
i€EyN[0,n—1]

n
> Card(Eg N[0, n—11)(3y /4)—2G8(n —no)—G » _ei—G  »_. (28 +¢€it1)
i=0 i€EN[0,n—1]

> Card(Eo N [0,n — 1])(3y/4) —4gd(n — no) —2g A.
Since § is any element of the interval (0, 1) we conclude that
By /4)Card(Eg N[0, n — 1]) <4M + 3 Aq,
Card(Eg N[0, n — 1]) <2y~ '(4M 4 347).
Since n is any natural number satisfying n > ng we conclude that
Card(Ep) <2y~ '(4M +344). 4.112)
Assume that a natural number i satisfies
i >ng, Ait1 < 0. (4.113)

Lett = (11, ..., tp) € 2i1+1. By (4.77), (4.86), (4.88), (4.89), and (4.113), for all
j=0,...,p@) —1,

@ G0

jl+1’ yjl )

> d(y;,i,t)’ le(y;i,z))) —d(yy;ff, Ptm(y;i,z)))

>d(y", Py, (87 =€, (4.114)

Yo > Aigl =iy > d(y

A P, G < o+ et < 2n (4.115)
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and
Y € Fayy (Py,)-
Relations (4.87) and (4.111) imply that forall j =0, ..., p(?),
d(xi.y") < jn < aw
and if j < p(t), then
Xi € Fgyy(Pr,,).

Therefore

X; € ﬁ(é"l‘l)y()(Ptx)’ s=1,...,p@), t=(,..., tp(t)) € 2i41.

By (4.87) and (4.117),
d(xi, yii) < qyoforalls € £2;4.
It follows from (4.85) and (4.119) that
d(xit1,xi) < gyo.

Thus we have shown that the following property holds:

165

(4.116)

4.117)

(4.118)

4.119)

(4.120)

(P3) if a natural number i > ng satisfies A;+1 < yp, then (4.118) and (4.120) hold.

Set
Er={i €{no,no+1,...}: [i,i + N — 11N Ey # ¢}.
By (4.113) and (4.121),

Card(E,) < NCard(Ep)
<2Ny~'(4M + 33 A).

Let an integer j > ng satisfy
J & Ex.
Property (P3), (4.101), (4.121), and (4.123) imply that

[j,j+N—11NEy=0,

(4.121)

(4.122)

(4.123)
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foralli=j,...,j+ N —1,
Aitl < Y0

and that (4.118) and (4.120) hold. It follows from (4.120) which holds for each
i €{j,...,j+ N — 1} that for each pair of integers i1, i» € {j, ..., j + N},

d(xi,. xi,) < GNyo. (4.124)
By (4.80), (4.118) which holds for eachi € {j, ..., j + N — 1} and (4.124),
Xj € Fgrnyp@n (B,
ji+N—1
seU T UlnL L tpo) =10t € Rip = {1, m).
In view of the relation above and (4.76),
Xj € Fgrnp@+n = Fe

for all integers j > ng such that j ¢ E,. Together with (4.78) and (4.122) this
implies that

Card({j € {0, 1,...}: x; & F.})
< ng + Card(E»)
<no+2NMAM +349)y"' < 0.

Theorem 4.2 is proved.

4.6 The Third Problem

Fori =1,...,m,set
C; = Fix(P;). (4.125)

We suppose that the following assumption holds.

(A3) For each M > 0 and each y > O there exists § > 0 such that for each
i e{l,...,m},eachx € B(6, M) satisfying d(x, C;) > y and each

z€ BO,M)NC;
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the inequality
d(Pi(x),z) =d(x,2) =8

is true.

In this chapter we prove the following result which shows that the inexact
dynamic string-maximum method generates approximate solutions if perturbations
are summable.

Theorem 4.3 Let
M>M,, ¢ (0,1

and let a sequence {€;};2, C (0, 00) satisfy

o0
A= Ze,- < oo. (4.126)
i=1

Then there exists a number Q > 0 such that for each
{2172, c M.
which satisfies for each natural number j
(Loooom) C U U i1, 1))
and each pair of sequences {x;}{°, C X and {A;}72, C [0, 00) which satisfies
X0 € B(6, M)

and
(xl’)\'l)eA(xlf‘l"Qlﬂel)’ i=172""7

the following inequality holds:

Card({i € {0, 1,...}: max{d(x;,Cs): s=1,...,m} > €}) < Q.

4.7 Proof of Theorem 4.3

By (Al), for every § > O there exists

25 € B, My) (4.127)
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such that
B(zs,)NC; #0,i=1,...,m. (4.128)
In view of (4.128), for each § > O and each i € {1, ..., m} there exists
25,i € B(zs5,6) N C;. (4.129)
Set
vo=eWN+1D7'37+ 17" (4.130)

By (A3), there exists y1 € (0, yp) such that the following property holds:
(P4) foreachi € {1,...,m}, each

z€e BO,3M+14+A)NC;
andeachx € B(0,3M+ 1+ A(g+1)) satisfying d(x, C;) > yp, the inequality
d(Pi(x),z) <d(x,z) —y1/4

is true.
By (A3), there exists y € (0, y1) such that the following property holds:
(P5) foreachi € {1,...,m}, each

Z2€BO,3M+ 1+ A)NC;

and each x € B(6,3M + 1 + A(g + 1)) satisfying d(x, C;) > y1/4, the
inequality

d(Pi(x),z) =d(x,2) —y

is true.

In view of (4.126), there exists a natural number nq such that
€; < y /4 for all integers i > ng. (4.131)

Set

0 =no+8Ny "(M+ (G + 1A). (4.132)
Assume that

(2172, C M, (4.133)
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satisfies for each natural number j,

(Loooom) C U Ureg b1,y ),
{xi}72y C X and {A;}72, C [0, 0o) satisfy

X0 € B(6, M)
and
(xi, Xi) € A(xi—1, 82i,€), i =1,2,...,
Leti > 0 be an integer. By (4.136),
(Xit1, Aiv1) € A(xi, g1, €i41)-
By (4.11) and (4.137), there exist
(Vi,es @iy) € Ao(xi, 1, €iq1), 1 € 241

such that

Xit1, A1) € {i i) 1 1 € 241},

Aipl =iy, 1€ Qiyy.
It follows from (4.10) and (4.138) that for every index vector
t=(t, ..., 1) € 2iy1
there exists a finite sequence { yﬁ-i’t) }fg()) C X such that
o =i, Yo =i,
for every integer j =1, ..., p(?),

A", Py D) < €,

ai = max{d(y{}] ¥ s j =0, p) — 1},

Set

6():0.

169

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)
(4.140)

(4.141)

(4.142)

(4.143)

(4.144)
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Let§ > 0. By (4.127) and (4.135),
d(zs, x0) < 2M.
Let i > 0 be an integer,
t=(@1,...,tpr) € 2iq1, j=0,...,p@) — 1.

Relations (4.2), (4.129), and (4.142) imply that

(s, yjl“‘?) =d(zs, Py, (yj('l‘l))) +d(Py, (y;-l’t)), y

=d(zs, 28,151) T (25,0545 Pt,-+1(yji’t))) + €it1

<6 +ein 8. ")
<d(zs, y}"”)) +25+€it1
and
d (i,1) (i,1)
(28, yj41) =d(zs,y;"") + 28 +€iy1.
By (4.9), (4.141), and (4.147), forall j =0, ..., p(t),
d(zs,y") < d(zs, 35 ") + (28 + €iq)
<d(zs, xi) +q(28 + €i1).

By (4.141) and (4.148),

d(zs, yia) = d (25, ¥iis) < d(zs, i) + (28 + €i11).

By (4.139) and (4.149),
d(zs, xiy1) < d(zs, x;) +q (28 + €i4+1).

By induction we show that for all integers i > O,

1
d(zs, %) < 2M +245i + () €))q).
j=0

In view of (4.144) and (4.145), inequality (4.151) is true for i = 0.

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)
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Assume that i > 0 is an integer and that (4.151) holds. By (4.150) and (4.151),

d(zs, xi+1) < d(zs, xi) +q(28 + € +1)
i+1
<2M 42456+ 1)+ () €)q.
j=0

Therefore by induction we showed that (4.151) holds for all integers i > 0.
It follows from (4.149) and (4.151) that for all integers i > O, all + =
(t1, ..., tpr) € 2ip1andall j =0, ..., p(t),
d(zs. y"") < d(zs. %) + G5 + €iq1)
i+1
<2M 42356+ 1)+ () €)i. (4.152)
Jj=0

By (4.126), (4.127), (4.151), and (4.152), for all integers i > O, all ¢+ =
(t1, ..., tpr) € 2ip1andall j =0, ..., p(t),

d©,x;) <d(0,zs) +d(xi,zs) <3M +2géi + Aq,
d©,y{") <d©,2) + A", 25) < 3M +2G8G + 1) + AG.

Since the relation above holds for any § > 0 we conclude that for all integers i > 0,
allt = (t1,...,tp) € Qiy1andall j =0, ..., p(®),

d,x;) <3M + Aq, (4.153)
d®.y{") <3M + 4. (4.154)

Set
Eo=1{i€f{no.no+1,...}: his1 > n}, (4.155)

Ey={no,no+1,...,}\ Ep.
Fix § € (0, 1). We show that
d(zs, xi) — d(zs, xi+1) = 3/4)y — geit1 — 248.
Let

i € Ep.
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By (4.139) and (4.155),
Aitl = V1 (4.156)
and there exists
T =(T1,..., Tp(x)) € £2i+1
such that
Xit1 = Yijr, hitl = Qir. (4.157)

By (4.143), (4.156), and (4.157), there exists

joef{l,...,p(r) -1} (4.158)
such that
(i,T) (i,T)
d(ijJrl, Yio ) =oir = Ait1 = V1. (4.159)

We show that

d(yj(t),r), Crjpu) = 71/4.

There exists
§eCyyy (4.160)
such that
A\, 6) <d(D. Coy ) + 6. (4.161)
By (4.2), (4.142), (4.158), and (4.160),
AT 6) <dODL Py P +d(Pr (7). 6)
<€ +dO0T 8. (4.162)
In view of (4.161) and (4.162),

AT 0Ty <d(NT 6 +dE y i)

<€ +2d007, )

<eip1+2dG0T Cr ) 26,

0
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Since § is any positive number from the interval (0, 1) it follows from (4.131),
(4.155), and (4.159) that

y/A+2d(E0 Co ) 2 dGEDL YD) 2,

do? . Coy ) = vi/4 (4.163)

Property (PS), (4.127), (4.129), (4.154), (4.158), and (4.163) imply that

d(Pey (07) 20,00) <G 25000 — V. (4.164)
By (4.129), (4.142), and (4.164),
Ay 2)

<dOSD P a O8N +d(Pe 607, 25.0j00) + d @, 26)

<€ +o+diyiY

s ZS’T].O"’I) g
<246 +dOiT ) — . (4.165)
It follows from (4.9), (4.131), (4.141), (4.155), (4.157), (4.158), and (4.165) that

d(zs, xi) — d(zs, xi11)

= d(Z(S» .X[) - d(Z57 yi,‘E)
T—1

=D [d(zs, y) = d(zs, ¥y
j=0

>d(y\"7 25) —d(yT) 25) — (p(T) = 1)(26 + €141)
>y — €41 — 28 — (p(1) — D28 + €i41)
> 3y /4 — 287 — Geiyi.
Thus we have shown that

d(zs, x;) —d(zs, xit1) = 3y /4 —28G — g€iq (4.166)

foralli € Ey.
By (4.50), (4.126), (4.127), (4.153), (4.155), and (4.166), for every integer n >
no,
(4M + Aq) = d(zs, xXng)

> d(zs, Xny) — d(zs, Xn)
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n—1

= Z(d(Z(S, xi) — d(zs, Xi+1))

i=ng

= > (dGsx) —d(zs xi41))
ieEpN[0,n—1]

+ ) (@ x) —d(zs, xig)
ieE1N[0,n—1]

> Card(Eqg N[0, n — 1])(3y/4) — 2g5(n — no)

n
-Gy -4 Y. (8+eq)
i=0

ieE1N[0,n—1]

> Card(Eg N [0,n — 1])(3y/4) —4g5(n — ng) — 2g A.

Since § is any element of the interval (0, 1) we conclude that

By /4)Card(EgN[0,n — 1]) <4M + 3Agq,

Card(Eg N [0,n —1]) <2y~ '(4M + 3A9).
Since n is any natural number satisfying n > ng we conclude that

Card(Eg) <2y~ '(4M + 3Aq). (4.167)
Let § € (0, 1). Assume that an integer i satisfies
i >ng, Ai+1 < 1.

Lett = (t1,...,tp()) € £2;41. By the relation above, (4.131), (4.140), (4.142),
(4.143), and (4.168), forall j =0, ..., p(t) — 1,

V1> il = Qi = d(y](i’t), yﬁlﬁ)
>d(, Py, ) = a0 Py )
>d(y¢0, Py, 08 — e, (4.168)
A P, G < e+ < 2n (4.169)
Let j € {0, ..., p(t) — 1}. We show that

A" . i) < .
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Assume the contrary. Then
Ay, Ciyy) = . (4.170)
In view of (4.127), (4.129), (4.154), and (4.170),
AP, (& < d(%? —4 4.171
ti+1 y/ ), Z5,tj+1) = (yj 7Z6,tj+1) Yi- 4. )
By (4.169) and (4.171),
271 > dG, Py, )
> d(\ . 25.0,0) — APy ) 2.,,0) = 41,
a contradiction. The contradiction we have reached proves that
Ay, Ci) <. =0, pt) = 1. (4.172)
It follows from (4.9), (4.141), and (4.168) that for all j =0, ..., p(?),
A\ xi) < jn < an. (4.173)
Relations (4.172) and (4.173) imply that forall j =0, ..., p(t) — 1,
d(xi, Cijpy) < qv1 + vo. (4.174)
In view of (4.174),

d(xi, Cs) < qy1 + 7
foralls € {t1,...,tpn}and all (71, ..., 1pw) € £2i41. “4.175)

By (4.139), (4.141), and (4.173),
d(xi, xi+1) < qy1. (4.176)

Thus we have shown that the following property holds:

(P6) for each integer i > ng satisfying A;+1 < y; inequalities (4.175) and (4.176)
hold.

Set

Ex=1{iefnono+1,...}: [i,i + N — 110 Eo # 0} 4.177)
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By (4.167) and (4.177),

Card(E,) < NCard(Eo)

<2Ny~'(4M + 33 A). (4.178)
Let an integer j > ng satisfy

j € Es. (4.179)

Property (P6), (4.155), (4.177), and (4.179) imply that

[j,j+N—11NEy=9,
foreachi € {j,...,j+N— 1},

Aigl <Y1

and that (4.175) and (4.176) hold. In view of (4.176), holding foralli € {j, ..., j+
N — 1}, we have that for all for each pair of integers i1, i> € {j, ..., j+ N — 1},

d(xi,, xiy) < GNyi. (4.180)
By (4.175), holding for all i € {j, ..., j + N — 1}, and (4.180),
d(xi,Cy) <gn(N+ D+ (4.181)

foralli € {j,....j + N — 1}, all t = (t1,...,tp) € $2i41 and all 5 €
{t1, ..., tpn}. It follows from (4.130), (4.134), and (4.181) that

d(xi,Cs) < @+ Dro(N+1) <e

for all s € {1,...,m} and all integers j > ng satisfying j ¢ E;. Together
with (4.178) this implies that

Card({j €{0,1,...}: max{d(x;,C5): s=1,...,m} > €})
< ng + Card(E>)
<no+2y 'N@4M +349) < Q.

Theorem 4.3 is proved.



Chapter 5 ®
Abstract Version of CARP Algorithm Qe

In this chapter we study the convergence of an abstract version of the algorithm
which is called in the literature as component-averaged row projections or CARP.
This algorithm was introduced for solving a convex feasibility problem in a finite-
dimensional space, when a given collection of sets is divided into blocks in such
a manner that all sets belonging to every block are subsets of a vector subspace
associated with the block. All the blocks are processed in parallel and the algorithm
operates in vector subspaces of the whole vector space. This method becomes
efficient, in particular, when the dimensions of the subspaces are essentially smaller
than the dimension of the whole space. In the chapter we study CARP for problems
in a normed space, which is not necessarily finite-dimensional. Our main goal is
to obtain an approximate solution of the problem using perturbed algorithms. We
show that the inexact dynamic string-averaging algorithm generates an approximate
solution if perturbations are summable. We also show that if the mappings are
nonexpansive and the perturbations are sufficiently small, then the inexact dynamic
string-averaging algorithm produces approximate solutions.

5.1 Preliminaries and Main Results

In [68] D. Gordon and R. Gordon studied a convex feasibility problem in a finite-
dimensional space and introduced an algorithm which is called in the literature
as component-averaged row projections or CARP. According to CARP, a given
collection of sets is divided into blocks in such a manner that all sets belonging
to every block are subsets of a vector subspace associated with the block. Here
we study CARP for problems in a normed space, which is not necessarily finite-
dimensional.
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Let (Z, || - ||) be a normed space. For each x € Z and each r > 0 set
Bzx,r)={yeZ: |lx—-yll=r}
For each x € Z and each nonempty set D C Z put
dz(x, D) = inf{|lx — y| : y € D}.

Let (Y;, |- 1),i = 1,..., p be normed spaces. The vector space

Yix-xY,=]]¥

is equipped with the norm

P P
Y= 1Oyl = O IyilHY2 y = 1.y e [ ¥
i=1

i=1

Suppose that (X;, || - ||),i =1, ...,/ are normed spaces and

Let m be a natural number,
C;cX,i=1,....m

be nonempty closed subsets of X and let there exist a finite set £ of index vectors
T = (11, ..., Tp) such that

7 €{l,...,m}foreachi € {1, ..., p}, 5.1)
T;, < T;, foreach pairiy, i € {r1,..., 7} such thati; < i, 5.2)
U{{tr, ..., tpt s (T, .. 1) €€ = {1, ..., m}. (5.3)
Foreach v = (11,...,75) € & set
r(t) =gq. (5.4)
Let j € {1,...,1}. Denote by )?j the set of all x = (x1, ..., x;) € X such that

x;i = 0foralli € {1,...,1}\ {j}. Clearly, 5(\]- is a vector subspace of X and it
is equipped with the norm induced by the norm of X. Evidently, X; and X; are
isometric in a natural way.
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Let T = (11, ..., Tpr)) € €. We suppose that there exists an index vector T =
(T1, ..., Tp®) such that
Tef{l,....0},iefl,..., p(™}, (5.5)
T, < T, foreach pair iy, ip € {1, ..., p(7)} such thati; < iy (5.6)
and that for each s € {11, ..., Tp(r)} there exists a closed set
Crs CY (Xitief@.....@) (5.7)
such that
Co=Crs+ Y (Xitiell,... .\ (T,....0@)). (5.8)
Foreach v = (11, ..., 71p) € & set
Xe=Y{X;i:ie{@..... 5@l (5.9)

We suppose that

U{T, ... o) s T el ={1,....1} (5.10)
and that for each t = (71, ..., 7)(r)) € £ and each s € {71, ..., Tp(r)) there exists
a mapping

Py X: = X, (5.11)

such that
Prs(z) =zforallz € Cr, (5.12)
lz —xll = llz = Prs ()l (5.13)

forallz € Crsandall x € 5(\,.
We consider index vectors t = (f1,...,1,) such that ; € {1, ..., m}. For each
index vector t = (11, ..., ty) set

p()=gq. (5.14)

Let ¢ € (0, 1). In this chapter we use the following assumptions.

(Al) Foreacht = (11,...,75) € £andeachs € {11, ..., 1p},

Pry(X;) = Cry, (5.15)
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lz = xI* = llz = Pes()I* + Ellx — Pr (o) (5.16)
forallz € Crsandall x € 5(\,.

(A2) For each A > 0 and each A > 0 there exists ¥ > 0 such that for each
T =(T1,...,Tpx)) € Q each s € {r1,..., Ty}, each z € Cr; satisfying
llzll < A and each x € X, satisfying

x|l < A, df(r (x,Cr5) = A

the inequality

Iz = Prs)l < llz=xll =y

holds.
Lett = (z1,...,1p) € &. Consider a mapping 7, : X — 5(1 such that for each
x=(x1,...,x) €X,
e (x) = (r,1(x), ..., Tr 1 (%)),
where foreachi € {1, ...,1},
Tei(x) =x;ifi €{T1,...,Tp®) (5.17)
and
mei(x) =0ifi €{T1,..., @} (5.18)
We suppose that

C:=nNL,Cs #9.
Denote by Card(A) the cardinality of a set A. Suppose that the sum over empty set

is zero.
Foreachi € {1, ...,1} set

m; = Card({t = (11, ..., Tpr) €€ i €{T1,..., Tp® D). (5.19)
We consider linear operators
Bi: X—> X, Bbp: X—> X
such that for eachi € {1,...,[/} and each x € )?i,
1/2

Bi(x) =m;'x, By(x) =m;""x (5.20)

i .
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Fix an integer
g>mand A € (0,m™"]. (5.21)
Let t = (71, ..., Tp(r)) € € and let an index vector t = (t1, ..., t()) be such that
e{t,....,tpo) i=1,..., p@.
Set
Plt] = Pry1, - Pry. (5.22)
By (5.12), (5.13), and (5.22), foreach x € N{Cr s : s € {11,..., Tp)}}s
Plt]l(x) = x (5.23)
and foreachz € N{Cr 5 : s € {11,..., Tpr)}}, eachx € )?,,
[P[z](x) — Plt]() |l = I P[z](x) — zll < llx — 2. (5.24)

Denote by M the collection of all pairs (§2, w), where 2 is a finite set of index
vectors t = (1, ..., tp()) such that

te{t,....,tpm) i=1,..., p@), (5.25)
Ul{ts, ... tp) s t =1, - 1) € 2 = {11, ..., Tpo) ) (5.26)
pt) <gq, tes2, (5.27)
w : 2 — (0, 0o) satisfies Z w(t) =1, (5.28)
tes2
w() > A, tef. (5.29)

Let (£2, w) € M;. Define

Po.(x) = Y w(®)Plt](x), x € X-. (5.30)
teg?

By (5.23), (5.24), (5.28), (5.30), ang\the convexity of the norm, foreach z € N{Cr ; :
s € {t1,..., Tp)}} and each x € X,

Pow(2) =z, (5.31)
1Pe.w(@) — Pew®)ll =z — Peuw®)| <z — x| (5.32)



182 5 Abstract Version of CARP Algorithm

The dynamic string-averaging method with variable strings and variable weights
can now be described by the following algorithm. Initialization: select an arbitrary

x0 € X.
Iterative step: given a current iteration vector x; pick

(27 k+1, Wrpt1) E Mz, TEE
and calculate the next iteration vector x4 by

X1 = BiO) (P, g yywe i (T (60))).
te€

In order to state the main results of this chapter we need the following definitions.
Letd > 0,x € X¢, T = (11,...,Tpr) € E,and t = (t1, ..., 1)) be an index
vector such that

e{t,....,tpo) i=1,..., p@.

Define
Aro(x,1,8) = {(y, 1) € X x R':
there is a sequence { yi}f:(lo) - 5(\, such that
yo=nmn:(x)=xandforalli =1,..., p(¢),
lyi = Pry Qi-DIl =6,
Y =DYp@),

A=max{lly; —yi—ill: i =1,..., p(O}}. (5.33)

Lett =(11,...,Tp0) €&, x € )?T, 8 > 0andlet (2, w) € M. Define

A (x, (2,w),8) ={(y,A) € X; x R': there exist
(yrs Ar) € Az o(x,t,68), t € §2 such that

Iy = w®yll <8, »=max{d : t € 2}}. (5.34)
te?

Letx € X,8 >0, (2;, w;) € M, T € £. Define
A, {(27, we))res, 8) = {(y,A) € X x R' : there exist
Ve, A1) € Ar(r (x), (827, we), 8), T € £ such that

Iy = BiQ_yoll <8, » =max{r : T € E}). (5.35)
te€
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Set
mo=max{m; : i=1,...,1}. (5.36)

In this chapter we prove Theorems 5.1-5.6. In Theorems 5.1-5.3 we assume that
(A1) holds. Theorem 5.1 shows that the inexact dynamic string-averaging method
generates approximate solutions if perturbations are summable, Theorem 5.2
establishes that the exact dynamic string-averaging method generates approximate
solutions, and Theorem 5.3 demonstrates that the inexact dynamic string-averaging
method generates approximate solutions if the perturbations are small enough.

In Theorems 5.4-5.6 we assume that (A2) holds. Theorem 5.4 shows that
the inexact dynamic string-averaging method generates approximate solutions if
perturbations are summable, Theorem 5.5 establishes that the exact dynamic string-
averaging method generates approximate solutions, and Theorem 5.6 demonstrates
that the inexact dynamic string-averaging method generates approximate solutions
if the perturbations are small enough.

Theorem 5.1 Suppose that (Al) holds. Let M > 0 satisfy
Bx (0, M)NC # 0, (5.37)

€ > 0, a sequence {€;}72, C (0, 00) satisfy

o0
A= Zei < 0 (5.38)
i=1
and let
M = 8Mm)* +4A(G + 1)Card(E) + mo) + 2M. (5.39)

Let a natural number ngy be such that for each integer i > ny,
€ <e+q N (5.40)
Assume that for all natural numbers i,

(20, wir) € My, T €€, 541

xo € Bx(0, M), (5.42)
{xi}2, C X, {xi}:2, C [0, 00) and that for each natural number i,

i=1

(xi, Ai) € A(xi—1, {(£2i 0, Wi t)}eess €)- (5.43)
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Then

Card({i € {0, 1, ...} max{dx(x;,Cs): s =1,...,m} > €})

<ng+& A7 2(G + 22 [@Mm* + A(G + 1)Card(E) + mp)?)

+AQG(M + 1)Card(€) + mY/* (M + m{/*)].
Theorem 5.2 Suppose that (Al) holds and that for each v = (z1, ..., Tpw)) € &
and each s € {11, ..., Tp)}h
| Prs(x1) — Prs(x2)| < [lx1 — xal (5.44)

forall x1, x> € )?f. Let M > 0 satisfy
Bx (0, M)NC # @, (5.45)

N be a natural number and € € (0, 1). Assume that for all natural numbers i,

($2i7, wir) € Me, T EE, (5.46)
(i, wir) = (21§ Witj) TEE, (5.47)
xo0 € Bx(0, M) (5.48)

and that sequence {x;}°, C X, {1;}{2, C [0, 00) satisfy for each integeri > 1,
(xiy Ai) € A(xi—1, {($2i7, wir)}ree, 0). (5.49)
Then for each integer
i > NAM>moe ' A3 (G + D*(@MmoCard(€)V*Ng)* + 1)
the following relation holds:
dyx(x;,Cs) <€, s=1,...,m.

Theorem 5.3 Suppose that (Al) holds and that for each T = (11, ..., Tpw)) € €
and each s € {11, ..., Tpm)},

| Prs(x1) = Prs(x2)| < [lx1 — x2l (5.50)
forall x1,x; € Y,. Let

C #9, (5.51)
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My > 0, rg € (0, 1) satisfy
{(xeX:dx(x,Cy) <rg, s=1,...,m} C Bx(0, Myp), (5.52)
N be a natural number, €y € (0, 1),

0 = ¥ NMZmoe ey (G + D* A3 (dMomoCard(€)*N§)* + 1, (5.53)

§ =40 ' N + 1)"lmy "G + 1) Card(€) . (5.54)

Assume that for all natural numbers i,

(20, wic) € M, T €€, (5.55)
($2ir, wir) = (9,'4_1\7’71 wi+1\_/,r)’ Teé, (5.56)
xo € Bx(0, M) (5.57)

and that sequences {x;}7°, C X, {};}2, C [0, 00) satisfy for each integeri > 1,
(xi, Ai) € A(xi—1, {($2i ¢, wi,r)}ree, 8). (5.58)
Then for each integeri > Q,

dx(x;,Cs) <€, s=1,...,m.

Theorem 5.4 Suppose that (A2) holds. Let M > 0 satisfy
Bx(O,M)NC #0, (5.59)

€ € (0, 1) and let a sequence {€;}>°, C (0, 00) satisfy

i=1

o0
A= Zei < 00. (5.60)
i=1

Then there exists a number Q > 0 such that for each
2z, wi)eM, el i=12,...,
each
X0 € Bx(0, M),
each {x;}2, C X and each {};}{2, C [0, 00) satisfying for each natural number i,

(xis Ai) € A(xi—1, {(£2; 7, wi o) }ress &)



186 5 Abstract Version of CARP Algorithm

the inequality
Card({i € {0,1,...}: max{dx(x;,Cs): s=1,...,m}>¢€}) <Q

holds.

Theorem 5.5 Suppose that (A2) holds and that for each T = (11, ..., Tpw)) € €
and each s € {11, ..., Tp)}

| Prs(x1) — Prs(x2)| < [lx1 — x2l (5.61)
forall x1,x2 € )?T. Let M > 0 satisfy
Bx(O,M)YNC # @, (5.62)

N be a natural number and € € (0, 1). Then there exists a number Q > 0 such that
for each

(i, wiz)eM, tel i=12,...
satisfying for all integersi > 1,
(£2i, wi) = (QH_]\_]J’ wi—i—]\_/,r)’ Tef,

each

x0 € Bx(0, M),

each sequence {x;
integeri > 1,

ad

| C X and each sequence {1;}7°, C [0, 00) satisfying for each

(xi, X)) € A(xi—1, {(£2;7, wit)}reg, 0)

the inequalities

dx(x;,Cs) <€, s=1,...,m

hold for all integers i > Q.

Theorem 5.6 Suppose that (A2) holds and that for each v = (t1, ..., Tpw)) € &
and each s € {11, ..., Tp)}h
| Prs(x1) — Prs(x2)ll < [lx1 — x2]l (5.63)

forall x1, x> € )?T. Let

C#40, 5.64)
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My > 0, rg € (0, 1) satisfy
{(xeX:dx(x,Cy) <rg, s=1,...,m} C Bx(0, Myp), (5.65)
N be a natural number, €y € (0, ry). Then there exist 0, 8 > 0 such that for each
(i, wir)eM, tel i=12,...
satisfying for all integersi > 1,
(i, wir) = (21§ Witj.) TEE,

each
xo € Bx(0, M),

each sequence {x;}{°

integeri > 1,

| C X and each sequence {1;}72, C [0, 00) satisfying for each

(xi, Ai) € A(xi—1, {(2i,r, wi,r)}reg, 6)
the inequalities

dX(xiaCs) S 67 § = 17 .

holds for all integers i > Q.

5.2 Auxiliary Results
Lemma 5.7 (Lemma 7.5 of [124]) Letz,x € X. Then

> e @) = 7w (0)1* = Bz — 1)
te€

Proof Let
z2=(1,. . 2}, x=X1,...,x7)
and
T=(T1,...,Tp)) €E.

By the definition of 7, (see (5.17), (5.18)),

e (@) = eI =Y Allzi = xill*: i € @, T b (5.66)
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In view of (5.19), (5.20), and (5.66),

1
D o lme@ = w1 = llzi — xillPmi = | Ba(z — )|,

te€ i=1

Lemma 5.7 is proved. O

Lemma 5.8 (Lemma 7.6 of [124]) Letz € X, x; € X, T € &,

x = Bl(zx,). (5.67)
te€
Then
1B2z = )7 <D e (@) — xc 1%
te€
Proof Let
2=, .- al e =G0, ..., %), TEE

and

x = (x1,...,Xx1).

In view of (5.20) and (5.67), foreachi € {1, ...,1[},
xi=m 'O fxei: T i@ ... D@l (5.68)
By (5.19), (5.68), and the convexity of the function || - |2, foreachi € {1,...,1},
lzi = xil? = llzi =m; ' Q {xeis €€, i €T, TP
=Y im ' Gi—xe): TE€ i€ (@ eI
<D dm Mz —xeil?: T €€ i€ T, L T
millzi —xill> <D fllzi —xeil*: €€ i€ (@, o) (5.69)

It follows from (5.20) and (5.69) that

1
2 2
B2z = )| =Y millzi — xill
i=1
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l
<Y D Mlzi—xil?: t e i€ F Lol =) @) — x|’
i=1

te€

Lemma 5.8 is proved.

5.3 Proof of Theorem 5.1
Set
€y = 0.
By (5.37), there exists
Ze = (Zu,1, -+ 2x0) € Bx (0, M) N C.
Leti > 0 be an integer. By (5.43),
(Xig1s Ait1) € A, {(Qig1,70, Wit1,0)}ress €i41)-
In view of (5.35) and (5.72), there exist
iy Aiyr) € A (e (Xi), (Rig1,0, Wit1,0), €i41), TEE

such that

i = BiOY |yl < €ig1, digr = max{hic : T € ).

tef

By (5.34) and (5.73), for each t € &, there exist
(1) 5 (i.7)
7oA 7) € Aro(me (xi), 1, €i41), 1 € Rig1r

such that

i,T
yie = Y witt e @y 7N < g1,
1€RQi 41 ¢

Az = max{kfi’r) Dt € iq17)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

By (5.33) and (5.75), foreach T € £ and each t = (#1,...,tp)) € £2i41,; there

exists a sequence

5 . .
{yffjf)};(:()) C X
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such that
o =),
forall j =1,..., p(r),
”yr(,i}r) = Py, (yt(f}t_)l)ll < €i+1,
=
(i,7) (i,7)

)\t(i,r)

In view of (5.20), (5.42), and (5.71),

1z« — xoll = 2M,

B> (z« — x0) §2Mmaxm¥/2: i=1,...
l 0 ;

Let

T=(11,..., Tp(r)) eé, t= (11, ...,t,,(t)) S Qi+l,r~

:max{”y[’j _yt’j_ln : J= lvsp(t)}

(5.78)

(5.79)
(5.80)

(5.81)

(5.82)

By (5.7), (5.8),(5.13),(5.71), and (5.79), for each integer j satisfying 0 < j < p(z),

e (z0) = ¥ 2

l

< (@) = Peays O + 11 Prosy oy O

< ez = 357 | + €

It follows from (5.27), (5.78), and (5.83) that for all integers j € {0, ...

(i,t (i,t

17 (2 = 3501 < De @e) — ¥07 I + i

S e (zse) — e () || + geiyr.

Relations (5.80) and (5.84) imply that

172 (ze) — YN < e (20) — 70 () || + G

By (5.28), (5.76), (5.85), and the convexity of the norm,

Iz (z5) — Yi|l

,7)
j )_y

(5.83)

. P(D}

(5.84)

(5.85)

<lme@d) — Y winne Oy N+ D] wisr @y = yizll

1€82i41, 1€8Q2i41,
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< > wipne Ol @) — 37 + €

1€Q2j11,

< e ze) = e ()| + (g + Déiyr. (5.86)

Lemmas 5.7 and 5.8 and (5.86) imply that

1B2(z« = BIO_ yie)II?

te€

2
<D I (za) = yie
te€

< D (e (@) — 7w ()l + (G + Deig1)?
el

= Z[””r(z*) - ﬂr(xz‘)llz +(q + 1)261'2-',-1 +2(q + Deéit1llme(z4) — 7w (xi)]l]
e

= || B2z« — x)II* + (G + 1€}, Card(€)

+2(G + Deirr Y lIme () — e ()|
tef

< 1Ba2(zs — x)II” + (G + 1)*€] Card(€)
+2(G + Deip1Card(E) |24 — xi |
< B2z« — x)II” + (G + 1)*€],  Card(£)?
+2(G + Déig1[ICard(€) || Ba (24 — x7) |
= (I1B2(z« — x| + (G + Dei1Card(€))>. (5.87)

In view (5.87),

| B2(z+ — BI(Z Vi DIl < I1B2(z« — xi) |l + (¢ + Dei1Card(E). (5.88)
te€

By (5.20), (5.74), and (5.88),

| B2(z — xig 1)

< 1Bz = BiOQ_yie )l + 1B2(B1(Y_ yir)) — Xig |
te€ te€

< 1B2(z« — xp)|l + (g + Deip1Card(E) + € 1myo.
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Thus
| B2(zs — xix DIl < [1B2(zs — x) |l + €i41((g + DCard(E) + mo). (5.89)

By induction we show that for all integers i > 0,

1B2(zx — xi) | < 2Mmy* + (O~ €,)((G + DCard(€) + mo). (5.90)

Jj=0

In view of (5.36), (5.70), and (5.82), inequality (5.90) holds for i = 0. Assume that
i > 0 is an integer and that (5.90) holds. By (5.89) and (5.90),

i+1
1B2(zx — xi) | < 2Mmg> + (3 €,)((G + 1)Card(€) + mo).
j=0

Therefore (5.90) holds for all integers i > 0.
It follows from (5.84), (5.85), and (5.90) that for every integer i > 0, every 7 =

(t1, ..., Tp)) € & every t = (11, ..., tpw) € R2iy1,c andevery j =0,..., p(1),
I (2) = 3570 < Nlze — xill + Geia
i+1
<2Mmy> + (" €,)((G + DCard(€) + mo), (5.91)
j=0
I7e (z) = v PN < llze = xill + Geisn
i+1
<2Mmy* + (O €)((G + DCard(€) + my), (5.92)
j=0

Iz (zs) = Yiell < llzse — xill + (g + Deigy
i+1
<2Mmy* + ()" €))((G + DCard(€) + mo). (5.93)
=0

It follows from (5.38), (5.71), and (5.90)-(5.93) that for every integer i > O,

every T = (T1,...,Tpr)) € &, every t = (t1,...,1p1) € $2i41,r and every
j=0,...,p@®,

1Ba2(zs — x)Il < 2Mmy/* + A((G + 1)Card(E) + mo), (5.94)

i Il < 2Mmy* + A((G + D)Card(€) + mo) + M, (5.95)

e @) = 301 < 2Mmy/® + A(G + DCard(€) + mo). (5.96)
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Iy < 2Mmg + A(G + DCard(E) + mo) + M, (5.97)
702 (z0) = 3P < 2Mmy/? + A(@G + DCard(€) + mo), (5.98)
Iy&0) < 2Mm”2 + A((G + 1)Card(E) + mo) + M, (5.99)
172 (z4) = yie | < 2Mmy/> + A((G + DCard(€) + my), (5.100)
Iyiell < 2Mmg + A(G + DCard(€) + mo) + M. (5.101)

Let i > 0 be an integer,
T=(11,..., Tp(r)) e&, t=(t, ~--atp(t)) [S 'QH-l,r-

Assumption (Al), (5.16), and (5.71) imply that for each integer j satisfying 0 <
J < p@),

e (z2) = 31712 = e (22) = Progy 0f )2
>y = Pryy O5IR. (5.102)

It follows from (5.79) and (5.102) that for each integer j satisfying 0 < j < p(¢),

I (z0) = ¥ 12 = e (o) — 3y 1
> e (z) = 3y 0 12 = e () = Proagy O
e (20) = Proijy O O = =le (z2) = 3y 7 12
> Gy = Py, O8I

—1y 5 = Peay GO (20) = Peyy Gy )

e (2 = 3y D
=y = Py G IR
@i,7)
—€i+12llwr (z4) — ¥, L+l Il +€it1)
Ely" = Py O
—€it (4Mm(1)/ 2 4 2A((G + DCard(€) + mo) + €i41). (5.103)

In view of (5.79), for each integer j satisfying 0 < j < p(¢),

ly? - G0y

‘[ tit1 (yl
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> Iy =y = s =y P Iy = P O
>y =y
=y = Py OEAYE? = 352+ 157 = Py GO
>y =y 1P = e @Iy = v+ €. (5.104)

By (5.39), (5.97), (5.103), and (5.104), for each integer j satisfying 0 < j < p(¢),

e (z2) = ¥ 12 = e () = 3y 1
> &y =y P
—eip1 Uy =y + €

—€ip1(4Mmy/* +2A((G + 1)Card(€) + mo) + €41)

@, T) @i,7) ”

> C”y yt j+1

—eip1(4Mm> +2A((G + 1)Card(€) + mo) + 2M + €;11)

—€i 1 (4MmY* +2A((G + DCard(€) + mo) + €i41)
=aly? =y

—€i118Mm* +4A((G + 1)Card(€) + mo) + 2M + 2€;41)
=allyy " = 3T I = €1 (M 4 2€i41). (5.105)
By (5.27), (5.78), (5.80), (5.81), and (5.105),

170 (z4) — 702 D% = 702 (z) — 327 )12

= Il (22) = 300 1% = e (22) = 3,0 1P
p(H)—1 .
Z (e (ze) = 31712 = e () = 3,74 1)
p)—1

> Z Clly(”) y[(l,rﬁlll — Geiv1(M + 2€11)

> ") = Gerp1 (M + 2€141). (5.106)
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It follows from (5.28), (5.29), (5.77), (5.100), (5.106), and the convexity of || -

that
70 (z:) — YielI?

= lme(z) — Y wist Oy )P

IEQiJrl,r
e @) = yie 2 = e = Y wiprc 0y
lE.QH,l’.[
< D7 win Ol @) — 3P
1€82i41,7
Hyie = Y wirr Oy 7
ZE'QH»I,T
(17 @) = yiell + 1@ = Y wigtc @y 71
tefiy1 1

< |I7e (z4) — 7w (X)) II?

+q€i+1(1‘2 +2€i41) — C Z wi+1,r(l‘)(k§i’r))2

t€Qit1¢
i1 2lme (ze) = Vil + €i41)
< e (z4) = e () ||P = €47, A

Gei 1 (M + 2¢i41) + €41 (4Mm/> +2A((G + 1)Card(E) + mo) + €i41)

195

12

< |l (z0) = e (DI = €27 A+ 2G €141 (M + 2€i41). (5.107)

By (5.74) and (5.107),

> e () = vie 1)
te€

<Y me(z) = e @)P) =AY A7,
tef tef

+2G¢€i41(M + 2¢€;41)Card(€)

< D ez = w1 = EANy + 2G€i41(M + 2€41)Card(€).  (5.108)

te€

Lemma 5.7 implies that

Dl (ze) = 7 ()P = [|Ba(zs — x) |1 (5.109)

te€
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Lemma 5.8, (5.20), (5.36), (5.39), (5.74), (5.94), (5.108), and (5.109) imply that

I B2 (25 — xig1)]?

= 1B2(zx — BIQ)_ yieDI* + B2 (zs — xix DI = 1B2(z+ — BIO_ yio)|I?
te€ el

<Y e (@) = vieI* + 1 Ba(xigs — BiO_ vio))

te€ te€

X (2| B2(zx — xi+ 1)l + | B2(xi41 — By (Z YieDID
tef

1/2 1/2
<D e @) = il + my P€i41 QU Ba(zs — xig )|l + mg ei 1)
te€

<Y e (@) = 7 ()P =AM,
te€

+2G€i+1(M + 2€;41)Card(€)

+my/2ei1 AMmg* +2A(@G + 1)Card(€) + mo) + my*ei41)
< |Ba(zs — x> = GAMY,
+2G€i41(M + 2¢€;41)Card(E)

e (M 4+ my/%ei ). (5.110)
Set
vo=¢e@+27" (5.111)
In view of (5.40) and (5.111), for all integers i > ny,
€ < Yo (5.112)

By (5.38), (5.94), and (5.110)~(5.112),

@Mmy/* +2A((G + 1)Card(€) + mo))?

> || Ba(zs — Xnp)|I?

> || Ba(zs — Xn) 1> — 1| Ba(zs — x) >
n—1

=Y (IB2(z« — x)|I* = | Ba(zs — xi4 D11

i=0
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n—1
=AY My
i=ng
n—1 5
= D €124 (M + 2€1)Card(€) + mg/* (M + mg*ei1.1)]
i=ng
n—1
-aay i,
i=0
n—1
= D" €124 (M + DCard(€) + mg/* (M +my')]
i=ng
n—1
zcA Z M
i=n0
— ARG (M + 1)Card(€) + m/> (M +m}/®)],

@Mm{* + A(G + 1)Card(€) + mo))?

1/2

AL2G(M + 1)Card(€) + m/* (M + m}/»)]

n—1
=AY My

i=ng

> CAygCard({k € {no, ..., n— 1} : A1 = yo))

and
Card({k € {no,....n — 1} : Agg1 = Y0})

< @Ay~ IeMm* + A((G + D)Card(€) + my))?
+AQGM + 1)Card(E) 4+ m{/* (M + m/*))1.
Since the relation above holds for any natural number n > ng we conclude that
Card({k € {no,no+1,...,}: dea1 = y0))
< @A) I@Mmy* + A(@G + DCard(€) + m))?
+AQGM + 1)Card(€) + my/* (M + my/*))]1. (5.113)
Assume that an integer i > 0 satisfies

i >ng, Ait+1 < Y- (5.114)
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By (5.15), (5.17), (5.74), (5.79), (5.81), (5.112), and (5.114), for each 7 =
(t1, ..., Tp)) € E,eacht = (t1,...,tp1) € 2i41,randeach j =0, ..., p(t)—1,

¥o > hiy1 = hir = 5 = 50, (5.115)
Iy = P G5
<y =y 1 = Pra GO
<Y+ €i+1 < 2y, (5.116)
dg, (57 Crapy) < 210 (5.117)

Let

T = (rl,...,rp(r)) ef.

In view of (5.27), (5.78), (5.115), and (5.117), for each t = (t1, ..., tp()) € 2i41,2
andeach j =0,1,..., p(?),

e ) = 3,571 < 0 < v0d (5.118)

and foreach j =0,..., p(t) — 1,

dg, (r(xi), Crayyy) < e () = 501+ dg 07 Cryy)
< (g +2). (5.119)

By (5.7), (5.8), (5.26), and (5.119), for each t = (#1, ..., tp¢)) € $2i41,r and each
j=1,...,p@),

dx(xi, Crj) < yo(q +2). (5.120)
It follows from (5.3), (5.41), (5.111), and (5.120) that
dx(xi, Cs) <yvw(@+2)=¢€¢ s=1,...,m. (5.121)

Thus (5.121) holds for all integers i satisfying (5.114). Together with (5.111)
and (5.113) this implies that

Card({i € {0, 1,...}: max{dx(x;,Cs) : s=1,...,m} > €})
<no+Card({i € {no,no+1,...}: Aix1 = vo})
<ng+& ' A7 2G + 22 MCMm* + A((G + 1)Card(€) + m3))

N1

1/2 1/2

+AQ§(M + 1)Card(€) + mg (M +m

Theorem 5.1 is proved.
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5.4 Auxiliary Results for Theorems 5.2, 5.3, 5.5, and 5.6

We suppose that for each 7 = (71, ..., 7pr)) € Eand each s € {71, ..., Tp0)},
| Prs(x1) — Prs(x2)| < [lx1 — xal (5.122)
for all x1, xp € )?r.
By (5.22) and (5.122), for each T = (z1,...,Tpr)) € &, each index vector
t = (f1, ..., tp()) such that
tieft, ..., i=1,...,p@®),
we have

I Plz)(x1) — Ple](x2) | < llx1 — x2l (5.123)

for all x1,xp € 5(\,. By (5.30), (5.123) and the convexity of the norm, for each
T =(71,..., Tpr)) € € and each (2, w) € M, we have

| Po,w(x1) — Po w2l < llx1 — X2l (5.124)

forall xi, xp € )?T.
Let

x,yeX, (2, w;) e M, Te€é.

Lemmas 5.7 and 5.8, (5.20), and (5.124) imply that

1B2 0 Bi()_ Pa, w, (:(x))) — B2 o Bi(Y_ Pa, w, (T ()

te€ te€
= 1B20 Bi()_ Pa,w, (1:(x)) = Y Pow, (T M)
te€ te€
= B2 0 Bi(Q_(Pa,.w, (: (X)) = Py, (T M)
te€
<Y NP2 w, (1:(x)) = P, (91
te€
<Y e ) = m WP = 1 Balx — 0% (5.125)
te€

Lemma 5.9 Letx,ye X, A,5 >0,

(2:,w;) e M, 1€l
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and
., A) € A(x, {(27, wi)}ees, 6). (5.126)
Then

1B2(y = Bi(Y_ Payw, (e )| < my/*8(G + 1)Card(€).
el

Proof In view of (5.35) and (5.126), for each t € &, there exist

es Ar) € A (e (%), (£27, we),8), T €& (5.127)
such that
ly = BiQ_yoll <6 (5.128)
te€
A=max{A;: T € &}. (5.129)

By (5.34) and (5.127), for each 7 € & there exist

G AT € Ao (x),1,8), 1 € 2, (5.130)
such that
lye = Y w0yl < 6. (5.131)
tef2;
A =max{(A” 1 1 e 2,). (5.132)

By (5.33) and (5.130), foreach T € £ and each t = (t1, ..., t,()) € §2; there exists
a sequence

{y(r)}f(:t()) - 5(\'[

L,
such that
»o = m (), (5.133)
forall j =1,..., p(?),
Iy = Py, DIl < 8, (5.134)

% =¥ (5.135)
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w" = max{lly ) =yl =1 p@). (5.136)

In view of (5.30), for every t € &,

Po w, (T (x)) = Z we (1) P[] (7 (x)) (5.137)

tef2;

and by (5.22), forevery T € £ and every t = (t1, ..., 1p()) € §2¢,

PIGte(0) = Pryyy -+ Progg, (e (X)), (5.138)

Proposition 2.8, (5.27), (5.122), (5.133)—(5.135), and (5.138) imply that for every
= (tla RN tp(t)) € QT’

Iy(” = Pl ()| < p(0)8 < g8, (5.139)
By (5.28), (5.131), (5.137), and the convexity of the norm, for every 7 € £,

Iye — Po,.w, (T ()|
<lyr = > we@y”l

tef2;
HY S we @y =Y w0 PLG ()]
tes2, tes2;
<5+ Y we®ly” = Pl ) < 8 + 5. (5.140)

tes2,
In view of (5.20) and (5.128),

1y = Bi)_ Payw, (me ()
te€

<lly=BiQ_yoll
tef

HIBIO ye = Y Payw, (T )]
tef tef
< (g +2)Card&

and

1B2(y = B1()_ Py, (te )| < my/?8(G + 2)Cardé.

te€

Lemma 5.9 is proved.
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5.5 Proof of Theorem 5.2

Set
_ 2= -2 1277 :7—1 A=
yo=¢€"(q+ 1) “(@dMmoCard(£) '“Ng) " Ac. (5.141)
In view of (5.45), there exists
Ze = (Za,1, . -5 2x1) € Bx (0, M) N C. (5.142)

It follows from (5.44), (5.46), (5.123), and (5.124) that for every integer i > 0, every
T=(11,..., ‘Ep(f)) eé, every 1 = (t1,..., t[,(t)) € ‘Qi+1,f’

[ Plz]Cx) — Pl < [lx — vl (5.143)
forallx, y € 5(} and
||Pﬂi+lyf,w,'+1,1— (x) - P.Q,'+1;,U),'+1_g ()’)” S ”'x - )’” (5144)

forallx, y € 5(}.
Leti > 0 be an integer. By (5.49),

(Xit15 Ai+1) € Alxi, {(2i41,7, Wit1,1)}res, 0). (5.145)

In view of (5.35) and (5.145), there exist

Viyes die) € Ar (e (i), (2i41,7, Wit1,7),0), TEE (5.146)
such that
Xip1 = B1)_ yi) hip1 =max{ri;: T €E). (5.147)
1e€

By (5.34) and (5.146), for each 7 € &, there exist

G AT € A oG (), 1,0), 1€ Qiyis (5.148)
such that
Yir = Z wi+1,r(t)yz(i’r)a (5.149)
1€92i41,¢

hie =max(A"7 1 1 e Qg4 (5.150)
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By (5.33) and (5.148), for each t € £ and each t = (t1, ..., tp()) € $2i41, there
exists a sequence

SR ep &
such that
v = (), (5.151)
forall j =1,..., p(r),
v = Py 607, (5.152)
=yt (5.153)
W = max{llyD =y =1 p@). (5.154)

It follows from (5.30), (5.147), (5.149), and (5.151)—(5.153) that for each T € £ and
eacht = (¢, ..., tp([)) € Qi+]’r,

y[(iyr) = Tip) """ P‘L’,[(]) (yéivf))
= Fryp) Pr,t(l) (e (x7)) = Plt](mw: (x7)), (5.155)
Vir= Y Wit e OPT () = Payy i, (T (60), (5.156)
1€Qi11,¢

xip1 = B1O_ Py g, (T (x0)), (5.157)

te€
By(xi1) = B2 o BIQ)_ Pay,y wnp, (T (x0))). (5.158)

te€

By (5.8), (5.12), (5.20), (5.22), (5.30), and (5.142), for each T € £ and each r =
(t1, .o tpe) € Qigies

Plt](rr (z4)) = 72 (24),

P‘Qi+1,fﬂwi+l,f (T[‘[(Z*)) =Tr (Z*)

and

Bi(Y_ Pay wnin, (e (2e)) = BIOQ_ e (24)) = 2. (5.159)
te€ te€
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Relations (5.125), (5.158), and (5.159) imply that
1 B2(zs — xit DIl < | B2(zs — xi) |- (5.160)
Let
T=(t,...,Tp@) €&, t=(1,...,1p1) € Rit1,z
By (5.13), (5.142), (5.152), and (5.153), for each integer j satisfying 0 < j < p(¢),

e (z2) = v 24

= 17 (2) = Prajyy O )

< ez = 57 (5.161)

It follows from (5.151) and (5.161) that for all integers j € {0, ..., p(¢)},

7z (22) = 3571 < Nle (ze) = 3107
= |I7e () — 7 ()| (5.162)
and
17e (z2) — ¥V < 17t () — 0 (- (5.163)

By (5.28), (5.149), (5.163), and the convexity of the norm,

Iz (z4) — Yi<|l
=lme@) = Y wirn Oy
1€82i41 ¢
< Y w0l @) =yt
1€2i41,¢
< e (zs) — e ()l (5.164)

In view of (5.20), (5.48), (5.142), and (5.160), for all integers i > 0,

2 2
i — 2ol < 1B2(ze — xo)ll < my*llxo — zell < 2my/* M, (5.165)
Ixi Il < 2my*M + M. (5.166)

By (5.162), (5.164), and (5.165), for each integer i > 0, for each v € &, each
t=(t,...,tp@) € 2it1,r,andeach j =0,..., p(1),

i 1/2
e () = v < 2M 4 my, (5.167)
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e (z2) — "7 < 2M + my)?, (5.168)

172 (z4) — yiell < 2M +m})/>. (5.169)

For each integer i > 0 and each x € X, set

Ti1(0) = Bi)_ Payyy gy, (T (60)). (5.170)
te€

In view of (5.47) and (5.170), for each integeri > 1,
T, 5 =T. (5.171)
Relations (5.157) and (5.170) imply that for each integer i > 0,
Xi+1 = Tiy1(x;). (5.172)
It follows from (5.125) and (5.170) that for all x, y € X,
1B2(Ti (x)) — Bo(T; () = [|B2(x — y)I- (5.173)
Assumption (Al), (5.7), (5.8), (5.16), (5.142), and (5.152) imply that for each

integer i > 0, each t € &, each r = (t1, ..., tp)) € $2i41,7, and each
J=0,...,p@® -1,

e @) = 3N = e @) — 32
= e @) = Y571 = 117 (@) = Py GO
>y = Pryy OF5IR. (5.174)

By (5.151)—(5.154) and (5.174), for each integer i > 0, for each t € £, and each
t=(t, ..., 1) € 2411,

170 (z4) — 702 GeDII? = 1702 (z) — 327 )12

= Il (22) = 00 1% = e (22) = 3, 1P

p(H)—1

Z (e (ze) = 3112 = e () = 3,7 1)
p(H)—1

> Z ally? =y

> e(W)2, (5.175)
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It follows from (5.28), (5.29), (5.149), (5.150), (5.175), and the convexity of || - K
that for each integer i > O and each 7 € &,

72 (z4) — yic 2

=l — Y wipre @y )

1€Q2i11,c

=< Z wi+1,r(t)||7Tr(Z>k)_y;l’r)”z

1€i41,¢

= ”771(1*)_771()@)”2—5 Z wi+1,r(t)()ngi’r))2

1€82i41,

< lle (z2) = 7w ()II? = €37 A (5.176)

By Lemmas 5.7 and 5.8, (5.147), (5.156), (5.157), and (5.176), for each integer
i>0,

I Ba(zs — xi11) |

= 1B20 Bi(Y_ Py, (e () — Bazo) 12
te€

= |B2(B1(Y_ i) — Ba(za)
te€

<Y lyie — 7w @I

el
< Dol () = e @IP = Y e, A
tef tef
< 1Bazs — x)II* = AN . (5.177)

Let n be a natural number. By (5.165) and (5.177),

4M*mo > || Ba(z« — x0)|I*

> | Ba(zs — x0)|I> — | B2 (z4 — x3,) 11
n—1

=Y (B2 — ) = 1B2(ze = X))
k=0

n—1 (k+1)N—-1
C Y (B2 —x)I* = I1Balze — xj5+0)17)
0

j=kN

k=
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n—1 (k+DHN—-1

=) ) =z,
k=0

j=kN
> CAygCard({k € {0, ...,n — 1} :
max{Ajp1: i =kN,...,(k+ 1N —1} > w})
and
Card({k € {0, ...,n — 1} :
max{Aiyr ;i =kN,...,(k+ DN =1} >y}
<4aM’mo@Eayd) .

Since 7 is any natural number the relation above implies that
Card({k € {0, 1, ...} : max{)\;4;:
i=kN,...,(k+ 1N —1} = p})

<4M’moEayd)~". (5.178)

In view of (5.141) and (5.178), there exists an integer go > 0 such that
qo < 4M2moE_1A_1y072 + 1
=1+4M>moc ' A7 e (@G + D*AT2e 2(AMmoCard(E)/’Ng)?  (5.179)
and
Ait1 <Y0, i =qoN,...,(go+ 1N — 1. (5.180)
By (5.27), (5.147), (5.150), (5.151), (5.153), (5.154), and (5.180), for each integer

i €{goN,...,(gqo+ 1N —1},foreacht € £,eacht = (t1,...,1p0) € Rit17,
andeach j =0,..., p(t) — 1,

Yo > ki1 = Air = AT = Iy B0 =y, (5.181)
e (i) = 550 < G+ Do, (5.182)
Il () — 371 < p)yo < Gy (5.183)

By (5.28), (5.149), (5.183), and the convexity of the norm, for each i €
{goN,...,(go+ 1)N — 1} andeacht € &,
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lre (i) — yi<|l
= lre@) = Y w0y 7

1€Ri41¢

< > wieOlre @) =y < aw. (5.184)

1€2i41,¢
Lemma 5.8, (5.147), and (5.184) imply that for each i € {qoN, ..., (go+ )N — 1},

I Ba(xi — xis1)|?

= |B2(xi = BIO_ yie)I?

te€
< D e () = yieI? < Card(€)§ x5
tef
and
lxi — xig1]l < Card(€)'g 0. (5.185)
In view of (5.185),
105 = *gosnyill < NCard(€)?gys. (5.186)

By (5.171)—(5.173) and (5.186), for each integer g > qo,

||BZ(xq1\7 - x(q+1)1\7) I

gN (g+DHN
=B [] Tiem)— [ TiGgeni)l
j=qoN+1 j=(qo+DHN+1
gN qN
=B [] Tieom)— [ Tigena)ll
j=qoN+1 j=qoN+1
< 1Ba(x gy = Xgpiyi)- (5.187)

In view of (5.20), (5.186), and (5.187), for all integers g > qq.

1B2(xy 5 — Xgy1ym) Il = 1B2(xyy = X (g1 1yi)

< my/* NCard(€)'?gyp. (5.188)
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Let g > go be an integer. It follows from (5.160), (5.165), (5.177), and (5.188),

my/>NCard(€)'2gy

= ||B2(xqj\'/ - x(q+1)1§/)||
> [1B2(zs — 2, ) = I1B2(25 — Xy 1y i)

1/2
> (B2 — x, )1 = 1B2zx — xg oy i) D) @Mmy*)~!

and
4MmyNCard(€)*gyy
> [|Ba(zx = x, )7 = 1 Ba(zs = x gy I
(g+DHN-1
= Y B — )P = Ba(za — xig)*]
i:ql\_/
(g+DHN-1
= ) Aal,
i:q]\_/
and
Ait1 < @MmoNCard(€)?qyoa=eH1/? (5.189)

foralli =gN,...,(g+ 1)N — 1. Set
= (4MmoNCard(E)*gyoa~'e 112,

By (5.27), (5.147), (5.150)~(5.152), (5.154), and (5.189), for each integer i €
{gN,...,(q+ 1N —1},each T = (11, .. S Tp) € E,eacht = (1, ..., 1p1) €
.QH]J, and eachj=0,...,p@ —1,

I' = 4MmoNCard(€)?gyoA=te1)1/2

> Aitl = Air = Aﬁ’””

(@,7) (i,7)

>y =y =y -

e O

2 dj(\ (y,(lf ’ C‘L’,ljJrl)’

e (xi) =y, < 0 < qr
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and

dg, (T (xi). Crapyy) < e () = 301+ dg (37 Crp) < @+ DI
(5.190)
By (5.3), (5.7), (_5.8), (5.25), (5.26), (5.46), and (5.190), for each integer i €
{gN,...,(g+ DN —1},each v = (7, ..., Tp@r)) € E,each t = (t1,..., 1) €
£iy1c,andeach j =1,..., p(),
dx (xi, Cr,) = dg, (e (xi), Co)) < (@ + DT
and

dx(xi, Cs) =(@+ DI

for all s = 1, ..., m. By the relation above, (5.141) and (5.190), for all integers
i>qgoNandalls =1,...,m,

dx (xi, Cs) < (7 + D(@MmoNCard(£)*qypoa~le™H1/? < e

Theorem 5.2 is proved.

5.6 Proof of Theorem 5.3

Theorem 5.3 is deduced from Theorems 2.9 and 5.2. LetY = X, N = N, px,y) =
|B2(x — )|, x, ¥y € X, 2 be the set of all mappings S defined on the set of natural
numbers into the set of operators

Bio () Pa,w, om): X — X,
el

with
(2:,w)e M, Tel

such that for each integer i > 1,

S@) = B10()_ Pa,gwe © To)-
te€

where

(2:), wei)) € Mg, T€E
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satisfy
(82,48 Weimy) = (22> Wei))
for all integers i > 1. Let
F={xeX:dxx,Cy) <e/4, s=1,...,m}. (5.191)

Theorem 5.2 implies that for every M > O there exists Q > 0 such that property
(P6) holds. Lemma 5.9 and (5.54) imply that for each integer i > 0,

1B2(xit1 = BiY_ Payyy i © 7o) ()
te€

< my?8(G + DCard(€) < 47 '@ @N + )71, (5.192)
By Theorems 2.9 and 5.2, (5.53), and (5.192), for all integeri > Q,
B(xi,e0/4) NF # 0.
Together with (5.191) this implies that for all integers i > Q,
dx(xi,Cy) <€, s=1,...,m.

Theorem 5.3 is proved.

5.7 Proof of Theorem 5.4

By (5.59), there exists

Ze = (Za1s -+ 200) € Bx(0, M) N C. (5.193)
Set
w=e@+27", (5.194)
My = 2(G +my)@Mmy> + A(G + DCard(€) + mo + 1)Card(E),
(5.195)

My = (7 + DCard(€) + mo)22M + m)/* + A((§ + 1)Card(€) + my).

(5.196)
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By (A2) there exists y € (0, yo) such that the following property holds:

(P1) for each T = (11,...,Tp(r)) € E,Aeach s €f{t,...,Tp)), each z € Cr
satisfying ||z|| < M, and each x € X, satisfying

xll < 2Mmo + A((q + DCard(E) + mo) + M

and
df(r (x, Cr,s) > /4

the inequality
Iz = Prs)ll < llz—xll —y
holds.

In view of (5.60), there exists a natural number ng such that for each integer
i > no,

& < y/H@G+D7" (5.197)
Set
Q = ng +4y AT AWM, + My) + 2Mm)/* + A((§ + 1)Card(€) + mo + M)*].
(5.198)
Assume that for all natural numbers i,
(£2i7, wir) € Me, TEE, (5.199)
X0 € Bx(0, M), (5.200)

{xi}2, € X, {%i}72, C [0, 00) and that for each natural number i,
(i, Ai) € A(xi—1, {(82i7, wir)}reg, €)- (5.201)
Leti > 0 be an integer. By (5.201),
(Xig1s Aigr1) € A, {(2ig1,0, Wit 1,0)}regs €iv1)- (5.202)
In view of (5.35) and (5.202), there exist

(yi,ra )‘i,t) € Ar (e (xi), (Qi+1,fv wi+1,f), €i+1), tef (5.203)

such that

i = BIQ | yio)ll < €1, (5.204)
te€
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Aigr =max{rj;: T €&}
By (5.34) and (5.203), for each 7 € £ there exist

(yt("r), K;”T)) € Aro(me(x;), 1, €i41), t € Qiy17

such that

Iyie = Y wisre @y 7 < €,
1€82i41 ¢

Az = max{kgi’r) Dt € iy}

213

(5.205)

(5.206)

(5.207)

(5.208)

By (5.33) and (5.206), for each t € £ and each t = (t1, ..., 1)) € §2i11,¢ there

exists a sequence

IS c Xe

J
such that
o =),
forall j =1,..., p(?),
”yr(,i}r) = Pry (yt(,i}r_)l)ll < €itl,
D =553

a " = max{ly

In view of (5.20), (5.36), (5.193), and (5.200),
lzs — xoll <2M

and

1B2(z« — x0)l| < 2Mmy>.

Let

T=(t,....,Tp@) €&, t=(1,...,tp1) € Rit1,z

t(,l}r) - yfff,)lll s ji=1,...,p®}

(5.209)

(5.210)

(5.211)

(5.212)

(5.213)

(5.214)

By (5.12), (5.13), (5.27), (5.193), and (5.209)—(5.211), arguing as in Section 5.3 we
show that for each integer j satisfying 0 < j < p(¢), Equation (5.83) holds, for all
integers j € {0, ..., p(#)}, Equations (5.84) and (5.85) hold and by the convexity

of the norm, (5.27), (5.28), and (5.85), Equation (5.86) holds.
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Thus for all integers j € {0, ..., p(#)},

it j < p(), then e (za) — ¥y Il < o) = 3yl 4 €in, (5215
17 (2) = 301 < e (2a) = 70 )| + G, (5.216)

e (z) = PN < e (za) = T () | + G, (5.217)

1772 () = Yie | < 172 (22) = e ()| + (G + Dera (5.218)

Using Lemmas 5.7 and 5.8 and (5.218) and arguing as in Section 5.3 we show
that (5.87) holds and that

| B2(zs — BI(Z Vi)l < [1B2(zx — x) [l + (¢ + Dei1Card(E). (5.219)
tef

By (5.20), (5.204), and (5.219),

I1B2(zs — Xxi41)|l

< B2z« — BiQ_ yie D + 1 B2(B1 (Y yit)) — xigil
te€ el

< IB2(zs — x) || + (g + Dei1Card(E) + €;4.1mo. (5.220)
Set
€ =0. (5.221)

Using (5.214), (5.220), and (5.221) and arguing as in Section 5.3, we show by
induction that for all integers i > 0,

1B2(zs — xi) | < 2Mmy> + (Y~ €/)((G + DCard(€) + mo). (5.222)

j=0

It follows from (5.60), (5.216)—(5.218), and (5.222) that for every integer i > O,

every T = (T1, ..., Tpr)) € E,every t = (t1,...,1p1) € $2i11,r and every j =
0,...,p@),
e (z) = 3,7
i+1
<2Mmy* + (3" €/)(@ + DCard(€) + mo)
j=0
1/2

<2Mmy/* + A((G + 1)Card(€) + mo), (5.223)
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e (zs) — 37|
i+1
<2Mmy? + (O €))((G + DCard(E) + mo)
j=0
< 2Mm{/* + A((G + 1)Card(€) + my), (5.224)
Iz (z4) — )’i,r”
i+1
<2Mmy* + (3" €))((G + D)Card(€) + mo)
j=0
< 2Mm)* + A((G + D)Card(€) + my). (5.225)

It follows from (5.60), (5.193), and (5.222) that for every integer i > 0,

172

|B2(zs — x) Il < 2Mmy~ + A((g + DCard(£) + my), (5.226)
Ixill < 2Mm{/* + A((G + 1)Card(€) 4 mo) + M. (5.227)

Set
Eo={i e {no,no+1,...}: Xit+1 > yo}- (5.228)

Assume that an integer i satisfies
i >ng, Ai+1 = Y0- (5.229)

By (5.205), (5.208), (5.212), and (5.229), there exist

T=(T1..., Tp) €&,
t= (11, ... lpw) € 2iq17
and
je{o,....pH -1}
such that
Y < hit =iz =y =y (5.230)

We show that

dg, (07 Co ) = w/A. (5.231)

Aip
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Assume the contrary. Then there exists
EeC;;. (5.232)
i
such that

1785 =1 < vo/4. (5.233)

By (5.13), (5.197), (5.211), (5.229), (5.232), and (5.233),

@7 _
Iy, — &l
< Iyps) = Pei OEDN - 1Pe s 0157) =]

< it Iy ]
< €41+ 10/4 < /2. (5.234)

In view of (5.233) and (5.234),

(i,7) (i,7)
) =y

< Iy =&+ 18 =y < v0/4+ /2.

This contradicts (5.230). The contradiction we have reached proves that (5.231)
holds.
Property (P1), (5.193), (5.223), and (5.231) imply that

Iz ) = Pe 05 < e () =y = v (5.235)

RS En|

It follows from (5.197), (5.210), (5.229), and (5.235) that

70 (24) — yf )l
<eir1 =y +Ime ) -y ’>>||

< =3y /4+ lImi(z) =y, ”)n (5.236)

By (5.209), (5.211), (5.215), and (5.236),

775 (z5) — 703 () || — N3 (z4) — ytgt,r)”

(t 7) ”

(t r)” _ )
i ,p(t)

= [z (z4) — 77z (z4) —
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P! i.) i.5)
_ ~ _ 1,T _ - _ LT
= § . [z (z4) Vi Il = Nl (z4) Vi i+ I
]=
i,7)

I () =y

@0y
0 S

= Iz (z4) = ¥;

+ Y e () =y = Nz —
J 0. pOINITN 2 3y /4 — €@ — D),

17z @) = ¥ < e (@) — me )l = 3y /4 + €41 — D). (5.237)

It follows from (5.28), (5.29), (5.197), (5.207), (5.217), (5.229), (5.237), and the
convexity of the norm || - || that

77z (z) — yizl
<lmea — Y wiz 0y
1€82i1 17
Y wirr: (O = yil
1€82 11

< > wieOlTe@) — 30V + €

1€z
< wi DTz (22) — w6l = 3y /4 + €11 — D]
+ 3w Ollme@) =37 s 1€ 2oz N + €
< w17 (D77 (z4) — 7 (x)
=3y AJd 4wy :(Deir1(G — 1)
+ D Awip1 (O (za) = w2 () 4+ Geiv1) 11 € Loz \ (TN + e
< llme(za) — e (x| = 3y A4+ (G + Deip

< |l (ze) — e (x) | — 27 'y A (5.238)

Lemmas 5.7 and 5.8, (5.197), (5.226), (5.229), and (5.238) imply that

1B2(z« = BIO_ yie)II?

te€

2
<D I (za) = yie
te€

2
<z (zse) — yizl
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+ ) U (@) = yiel? s T € EN{EY
< (s (za) — e ()| — 27y 4)?
) e @) = e Gl + (L + ey = T € ENEN
< llms(za) — e () > — 4712 A%
+ Y e (2e) = e ()
+( 4§y, + 201+ Peipillme(za) — ()l T € E\{EY

<) (@) = m ()P — 471y A%
te€

+2(1 + @eir12Mmy + A(G + DCard(E) + mo) + 1)Card(€)
< |Ba(zs — xp) > — 47 y2 A2
F2(1 4 §)erp1 @Mmy* + A((G + )Card(€) 4+ mg) + Card(€).  (5.239)

In view of (5.20), (5.36), (5.204), and (5.226),
B2 (zs = x4 D> = 1B2(zs — B1(Y_ yie )|
te€

< 1B2(xit1 = BiY_ yio))
te€

X (211 B2z — Xit D)l + 1B2Cxier = BiCY | yio))
tef

< eipimp>(@Mm)* + 2A((G + 1)Card(€) + mo) + €imy’>).  (5.240)

It follows from (5.195), (5.239), and (5.240) that
1B2 (24 — xis)1?
< 1Ba(zs — x> — 471 y2 A2
+ei12G2MmY* + A((G + DCard(€) + mo) + 1)Card(€)
+4Mmo + 2A((G + D)Card(E)m{'*) + mo) + mo)
< 1Ba(z« — x> — 47"y A7
Feis1 (4G +mYMm{/* +2A(F + 1)Card(€) 4 2mg + 2)Card(€)
< IBaG —x) P =472 A + 1M, (5.241)

for each integer i satisfying (5.229).
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By (5.196), (5.220), and (5.226), for each integer i > ny,
1B2(zs — xiyDII* — | Bazx — xi) >
IB2(zx — xi+ DIl — 1B2(zx — x) DU B2(zx — xi+ DIl + [ B2(z — xi) )
< 2(G + Dei11Card(€) + €i41mo) @Mmg/* + A((G + 1)Card(€) + mo)
< 26141 ((F + DCard(€) + mo) @2Mmy> + A(G + 1)Card(€) + mo)
< €1 M. (5.242)

By (5.60), (5.226), (5.228), and (5.241), for each integer n > ny,

@Mm{/* + A((§ + D)Card(€)) + mo + M)?
> || Ba(zs — Xny) |12

> || Ba(zs — Xn) 1> — | B2 (25 — x)|I?
n—1

= (IB2(zs —x)I* = 1B2(z« — xixDIP)
i=0
> Y B2z — x) 1> = 1B2(z« — x4 )I* : i € Eo N [no.n — 11}
+ Y {lIBa(ze = ) = 1B2(zs — xi4 I : i € {mo, ..., n — 1} \ Eo}
> 47'y2 A*Card(Eo N [ng. n — 11) = My Y feiq1: i € EgN[no,n — 1]}
—MQZ{E,'_H s iefng,....,n—1}\ Eo}

and

47192 A2Card(Eg N [ng, n — 1])
< AM) + M) + @Mm* + A(@G + D)Card(€) + mg) + M)?.
Since the relation above holds for any natural number n > ny we conclude that

Card(Eyp)

<4y 2AT2(AM, + Ma) + @Mm* + A((G + DCard(€) + mo) + M)?).

(5.243)
Assume that an integer i > 0 satisfies

i >ng, Lit1 < Y. (5.244)
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By (5.12), (5.15), (5.197), (5.205), (5.208), (5.211), (5.212), and (5.244), for each

T = (t1,...,Tpw) € & eacht = (t1,...,tp1) € $2i41,:, and each j =
0,...,p@) —1,
(i.7) (i.7)
Yo > Aigt = die 2 My, ey — vl (5.245)
1y = Pr G
< Iy =y I = Pra O
<Y+ e+ <20 (5.246)
and
dg, (37, Ceuy) < 200 (5.247)
Let

‘L’=(‘L’1,...,‘L'p(r)) ef.

In view of (5.209) and (5.245), for each t = (t1,...,1y1)) € $2i+1,r and each
j=0,1,..., p(),

e () = 3,571 < voi < 104 (5.248)

By (5.247) and (5.248), for each t = (t1,...,tp(r)) € $2i41,r and each j =
0,1,...,p@)—1,

dg (e (%), Crupyy) < e (i) = 3501+ dg 677 Cry)
< (G +2). (5.249)

By (5.7), (5.8), and (5.249), for each t = (f1,...,1p1)) € £2i+1,r and each j =
1,..., p),

dx (xi, Crj) < yo(g +2).
Together with (5.3), (5.25), (5.26), and (5.194) this implies that
dx(xi,Cs) <p@+2)=¢€, s=1,....m (5.250)

for all integers i satisfying (5.244).
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By (5.198), (5.228), (5.243), (5.244), and (5.250),

Card({i € {0, 1, ...} : max{dx(x;, Cs): s=1,...,m} > €})
<no+ Card({i € {ng,no+1,...}: Aix1 = o})

< g+ 4272y 2(AM) + ma) + CMmY/* + A((G + D)Card(€) + mo + M)?) = Q.

Theorem 5.4 is proved.

5.8 Proof of Theorem 5.5

In view of (5.62), there exists
Z*:(Z*,lv"-9z*,l)€BX(O1 M)ncC. (5251)

Set

n=e@G+nhH" (5.252)

By (A2) there exists yg € (0, y1) such that the following property holds:

(P2) for each 7 = (11,...,Tp(r)) € E,Aeach s €{t1,...,Tp}, each z € Cr 5
satisfying ||z|| < M, and each x € X, satisfying

Ixll < M +2Mm})/?

and
d}(\r (x, Cr,s) | /4
the inequality

2z = PrsIl < llz = xI = ¢(ro)

holds where the function ¢ is defined by
¢ (r) = 2M "2 my/*Card(€) 2 Ng A~ r!/? (5.253)

for all r > 0.
By (A2) there exists y € (0, yp) such that the following property holds:

(P3) for each T = (11,..., Tp(r)) € E,Aeach s ef{t,...,Tp)), each z € Cr
satisfying ||z|| < M, and each x € X, satisfying

Ixll < M +2Mm})/?



222 5 Abstract Version of CARP Algorithm

and
dg (x,Crs) = yo/4
the inequality
Iz = Prsll = llz—xll =¥

holds.
Set

0 =NU@AM>mgA™2y 72 +1).
Assume that for all natural numbers i,

(£2ic,wiz) € Mg, T €&,
(Qi,r» wl',-[) = (Qi+1\7,r’ wi+]v,t)’ T € E’

xo9 € Bx(0, M)

(5.254)

(5.255)
(5.256)

(5.257)

and that sequences {x;}72, C X, {A;}72, C [0, o) satisfy for each integer i > 1,

(xi, X)) € A(xi—1, {(82,7, wi ¢ )}reg, 0).

(5.258)

It follows from (5.22), (5.28), (5.30), (5.61), and (5.255) that for every integeri > 0,

every T = (71, ..., Tpr)) € E,every t = (f1, ..., Ipp) € 2i41,7,

I P[t](x) — PltIDWII < llx — Il
forallx, y € )?T and
1 P2t rwivre () = P2igy cowir . DI = llx — ¥l

forallx,y € 5(\,.
Leti > 0 be an integer. By (5.258),

(Xig1, Aig1) € A, {(Q2i41,0, Wit1,0)}eee, 0).
In view of (5.35) and (5.261), there exist
Yijeo die) € Ap (e (x;), (82i41,0, Wit1,),0), T € &

such that

Xiy1 = Bl(Zyi,r), Aiyr =max{i; . : T € &}
te€

(5.259)

(5.260)

(5.261)

(5.262)

(5.263)
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By (5.34) and (5.262), for each 7 € &, there exist

O M) € Ao (), 1,0), 1 € Rigi e (5.264)
such that
Yir = Z Wi+1, r(t)y(l r)’ (5.265)
IG-QH»I T

Mir=max(A"D ;e Qii1). (5.266)

By (5.33) and (5.264), for each t € £ and each t = (t1,...,1p()) € §2;41,¢ there
exists a sequence

{ytl T)}p(t() C Xr

such that
v = e (), (5.267)
forall j =1,..., p(r),
WD = P ), (5.268)
W=yt (5.269)
G,7) _ (@,7) (082 T
A max{||y y[j e g=1...,p®O}L (5.270)

It follows from (5.30), (5.263), (5.265), and (5.267)—(5.269) that for each T € £ and
eacht = (1, ..., tp(t)) € ‘Qi+1,t’

yt(l o = — oty T T(l)(y(l T))
= Pf,lp(,) e Pf,l(l)(r[f(-xl')) = P[I](nl’(xl))9 (5271)
Vie= Y WistrOPIG () = Payy gy, (T (), (5.272)
IEQH»I,'{
xig1 = B1O_ Py g, (T (x0)), (5.273)
te€
By(xig1) = B2 o Bi()_ Payyyrowiyr . (T (60)). (5.274)

te€
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By (5.12), (5.20), (5.30), and (5.251), for each T € £ and each

t=(1,..., @) € Qit1,r,

we have
P11 (24)) = 702 (240, (5.275)
Po g, (T (24)) = 700(24) (5.276)
and
BICY. Py (e @) = Bi(Y | 7e(24)) = 2 (5.277)
te€ te€

Relations (5.125), (5.274), and (5.277) imply that
| B2(zs — Xix DIl < [1B2(zs — xi) . (5.278)
Let
T=(t,...,Tp@) €&, t =1, ..., 1p1) € Rig1z

By (5.13), (5.251), and (5.268), for each integer j satisfying 0 < j < p(¥),

e () = yp 7

= 17 (24) = Peayy Gy )
< e @) — 3501, (5.279)

In view of (5.267), (5.269), and (5.279), for all integers j € {0, ..., p(1)},

Iz ) = 301 < e ze) — 350
= |lme(z5) — e (X)) || (5.280)
and
72 (za) — YO < e (20) — 702 (i) ). (5.281)

By (5.265), (5.281), and the convexity of the norm,

l77e (z5) — Yiell < ll7we(zs) — e ()] (5.282)
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In view of (5.20), (5.251), (5.257), and (5.278),

1/2
Ilxi — zell < I1Ba(zs — x0)|| < 2my/*M, (5.283)

Ixi |l < 2my/*M + M. (5.284)

By (5.280)—(5.283), for each integer i > 0, for each 7 € &, each r =
(t1, ..., tpr)) € Liy1r,andeach j =0,..., p(1),

1 1/2
I (2) = 301 < 2my* M, (5.285)
e (z) — y71 < 2Mmg), (5.286)
I7e (z) = yiell < 2Mmg)>. (5.287)

For each integer i > 0 and each x € X, set

Tr1(¥) = BiQ)_ Py g, (T (X)), (5.288)
te€

In view of (5.256) and (5.288), for each integer i > 1,

T 5 =T (5.289)

1

Relations (5.125), (5.273), and (5.288) imply that for each integer i > 0,

Xit1 = Tiy1(x;) (5.290)
and that forall x, y € X,
1B2(Ti (x)) — B2(T; () = [|B2(x — y)I- (5.291)
Set
Eo={ie{0,1,...}: Aix1 = y0}. (5.292)

Assume that an integer i > 0 satisfies
Ai+1 = Yo- (5.293)

By (5.263), (5.266), (5.270), and (5.293), there exist

N

=(T1,.... Tp@) €€,

A

= (f], ceey fp(f)) S Qi-‘r],f
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and
jel0,...,p@ — 1}
such that
Yo < Aipl =hiz = <’ D t(’jj:l - f’f)ll (5.294)

We show that

dg, 0" Co ) = /4. (5.295)

Assume the contrary. Then there exists

§eCii (5.296)
such that
||y" D £ < yo/4. (5.297)
By (5.13), (5.268), and (5.296),
i,7)
Iy5), — &l

= 1P, 07 =&l
<||y<”> £l < /4. (5.298)

In view of (5.297) and (5.298),

(i,7) (i, r)
el

< yps) =&+ 1 — y,f;”n <w/2

-

This contradicts (5.294). The contradiction we have reached proves that (5.295)
holds.
Property (P3), (5.251), (5.268), and (5.285) imply that

I (z) = y1" e

= |l (z4) — (yf )|

< Il () — ytf}f) I—y. (5.299)
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By (5.267), (5.269), (5.279), and (5.299),

777 (z4) — 7wz (i) || — N7z (z4) — ytgz,r)”
= lz=(22) — vED — = (2.) — y& D)
= ||z (z4) yf,O I |77 (z%) yf,p(i)”

o (i,7) (i,7)
_ B N T _GF
= E . [Nz (z%) y;’j | — Iz (z) y;,]_’_l Il
=

2 e (@) =y = @) — 3 I = v (5.300)

It follows from (5.28), (5.29), (5.265), (5.281), (5.300), and the convexity of the
norm || - || that

Iz (z+) — yizll
=llme@) — Y. wiprz @Oy
1€82i11 ¢
< 3w @l — 307

1€z
< i1z D7 (@) — 72 ()| — ¥]
+ (wir s Ollme@) — 3 Pl s 1 € Qi \ (TN
< |7 (24) — 7 (i) | — v A (5.301)

Lemmas 5.7 and 5.8, (5.263), and (5.301) imply that

B2 (z4) — Ba(xis1) |12

= B2z — B1)_ yiee))I?

te€

< e (@) = yie P

te€
= ||z (z4) — yizlI?
+ Y e (ze) = yiel?: T € EN{EN
< (Ime(ze) — e ()| — ¥ A)?
+ D Mllre () — e ()2 T € E\(F)

< |7z (z4) — w2 (x) |1 — 2 A2
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+ D Mllre (@) — e ) = T € E\(EN
= ||Ba(z« — x)II> — y2 2% (5.302)

Thus we have shown that the following property holds:

(P4) for each integer i > 0 satisfying A;+1 > yp,
. 2 112 2
| B2(zs — xi+ )7 < [1B2(zs — x) 17 — (Apy)~.
Let n be a natural number. Property (P4), (5.278), and (5.283) imply that

4M?mo > || Ba(z« — x0)|I?

> | Ba(zs — x0)|I* — | B2 (24 — x3,) 12

n—1
=Y (B2« — )1 = 1B2(zx = X)) 1)
k=0
n—1 (k+1)N—-1
=Y > (IBa(zs — xpI” = B2z — x4 D11)
k=0 j=kN

> (Ay)*Card({k € {0, ..., n — 1} :
max{Ajy1: i =kN,...,(k+ DN —1} > »})
and
Card({k € {0, ...,n — 1} :
max{Ajy1: i =kN,...,(k+ DN —1} > »})
< 4M’mo(Ay) 7,
Since n is any natural number the relation above implies that
Card({k € {0, 1, ...} :
max{iiy1: i =kN,...,(k+ 1N —1} > o))
< 4M’mo(Ay) 2. (5.303)
In view of (5.303), there exists an integer go > 0 such that
qo < AM*moA™ Y2 41,

Ait1 < Y0, i =¢qoN,...,(go+ 1N — 1. (5.304)
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By (5.27), (5.263), (5.266), (5.269), (5.270), (5.287), and (5.304), for each integer
i €{gN,...,(gqo+ 1N —1},foreacht € £,eacht = (t1,...,1p0) € Rit17
andeach j =0,..., p(t) — 1,

@i,7) (i,7)

Y0 > kit = die = A0 =y =y L (5.305)
e (x0) = 3,1 < G+ Do, (5.306)
e () — v 71 < p(yo < G0 (5.307)

By _(5.28), (5.265),_ (5.307), and the convexity of the norm, for each i €
{goN,...,(qo+ 1)N — 1} andeacht € &,

7wz (xi) — yizll
=lme ) = Y wipr Oy
1€92i41,¢
< Y win Ol @) — 3P < g (5.308)

1€Qi4+1 1
Lemma 5.8, (5.263), and (5.308) imply that for each i € {goN, ..., (go+ 1)N —1},

I Ba(xi — xis1)|I*

= 1B2(xi = BIQ_ yie DI

te€
<l i) = yieI? < Card(€)@%vg. (5.309)
te€
lx; = xig1]l < Card(€)*gy0 (5.310)
1% 5 = *(gos )i ]l < NCard(€)'2gy. (5.311)

By (5.125), (5.289), and (5.291), for each integer g > qo,

||B2(xq1\7 - x(q+1)1\7) I

gN (g+DHN
=18 [] 76w = [ TiGgeeni)l
J=qoN+1 J=(qo+1)N+1
qN qN

=B [ Titem)— ] Tigena)l

j=qoN+1 j=qoN+1
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= ”BZ(-quN _x(q0+1)]\_/)||- (5312)

In view of (5.20), (5.311), and (5.312), for all integers g > qo.

I1B2(xy 5 = X(gny) Il = 1B20xg0 5 = X(go )i

< my/* NCard(€)'?gy. (5.313)

Let g > g be an integer. It follows from (5.313) that

my/> NCard (€)' gy

> ||B2(xqj\'/ - x(q+1)N)||

> [1B2(zs — 2, ) = I1B2(25 — Xy 1y i)
(g+1)N-1
= Y B2 — x)l = B2z — xi4 )]
i=gN

> max{||Ba(ze — x)Il = | B2(zs = xix D)l 1 i =g N, ..., (g + DN —1}.

(5.314)
Leti € {gN,..., (g + 1)N — 1}. In view of (5.314),
B2z = x)ll = B2z = x| < my/* NCard (€)' /G0, (5315)
We show that
Aigl = V1
Assume the contrary. Then
Aig1 > 1 (5.3106)
By (5.263), (5.266), (5.266), (5.270), and (5.316), there exist
T=(T1,....Tpi) €&,
f= (1, ...,fp(;)) € 2117
and
jefo,....pH -1}
such that
i< hizt =hip =200 =00 P (5.317)

t]+1 t]



5.8 Proof of Theorem 5.5 231

We show that
dg, 077 Co )z /4. (5318)
Assume the contrary. Then there exists
£Ee Cffjﬂ (5.319)
such that
178 — &0 < /4. (5.320)
By (5.13), (5.269), (5.319), and (5.320),

IyD — g

t +1
=Pz, (yf”) £

< ||y(’ D _ gl < y1/4. (5.321)

In view of (5.320) and (5.321),

.5 6D
||yi"]”‘+1 ;’]" ”

<y =8I+ 18 =y < /2,
This contradicts (5.317). The contradiction we have reached proves that (5.318)

holds.
Property (P2), (5.251), (5.268), (5.285), and (5.318) imply that

|z (z4) — y @ T> ||
= e = Pey G5
< Il (24) = yt.f}’) | = ¢ (o). (5.322)

By (5.267), (5.269), (5.279), and (5.322),

172 (24) — 7z )| — [z (20) — y2° 7|

(1 r) ” _ (l 7) ”

e (z) = yi0)

= |z (z4) —
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P! (i.7) (i,7)
_ . N (A N ~ N (A
=2 Oj [l ) = 37l = ez = ) D
]=

= e ) =yl = @) = 315 1 = ¢ (). (5.323)

It follows from (5.28), (5.29), (5.265), (5.281), (5.323), and the convexity of the
norm || - || that

Iz (2) = iz
=llmezo— Y wiprz @Oy
1€82i117
< 3w @l — 307
1€Q; 17

< wig i DOz (ze) — Tz () — d(10)]
+ 3 Wiz Oz — 30N 1 1€ Rigrz \ AT
< |7 (z) — 7 (6 | — B () A. (5.324)

Lemmas 5.7 and 5.8, (5.181), (5.263), and (5.324) imply that

IBa(zs — xi11)|?

< 1B2(z« = BiQ_ yio)I?
tef

<Y ez = vie I

te€
= me(z) — yizll
+ ) e (z) = yiel?: T € EN{EY
< (s (z4) — 7w ()| — p(10) A)°
+ D Mllre (@) — e )2 T € E\(EN
< [z (z4) — 7w () 1> — ¢ (v0) A%
+ D Mllre (@) — w2 T € E\(EN
= B2z« — x> — ¢ (10)* A% (5.325)
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By (5.278), (5.315), and (5.325),

¢ (10)> A% < || Ba(zs — x> = || Ba(zs — xi11)|?
< (IB2(zs — x) 1l — 1 B2z — xi+0) D1 B2(zs — x| + 1 Ba(zs — xit) )
< 4MmoNCard(E)?Gyo

and
$(v0) < 247 M my*Card(€) 4 (N goy0) /2.
This contradicts (5.235). The contradiction we have reached proves that
Airl < yi1- (5.326)
By (5.15), (5.263), (5.266), (5.268), (5.270), and (5.326), for each
T=(11,...,Tpn) €E,
eacht = (t1,...,tp) € Liy1,randeach j =0,..., p(¥) — 1,

(i,7) (i,7) (i,7) I

Y1 = )\'i—i-l = )»i,r = )\[ = ”ytJ - yt,j+1
= 1Pey 05 =357 (5.327)
and
dey D Crp) < (5.328)
X yt,j s Cotjp) =71 .
In view of (5.27), (5.267), (5.327), and (5.328),
e (i) — 3520 < G+ Dy < g (5.329)
and
de (i,7) (D) -
Xr (n'[(-xi)7 C‘L’,tj+1) S ||7TT(-xi) - yt’j ” + dXT (}’,’j ) C‘[,tj_H) S (q + 1))/1
) ) (5.330)
By (5.7), (5.8), and (5.330), for each integer i € {gN,...,(g+1)N —1},eacht =
(T1, ..., Tpr)) € E,eacht = (11, ..., 1p¢) € 2iq1,r,andeach j =1,..., p(),

dx (xi, C)) = dg, (:(x7). Cr)) < (@ + Dy
Together with (5.3), (5.25), and (5.26) this implies that

dx(xi, Cs) < (@ + Dn
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forall s = 1, ..., m. By the relation above and (5.252), for all integers i > goN
andalls =1,...,m,

dx(x;,Cs) < (@ + Dy1 =e.

Theorem 5.5 is proved.

5.9 Proof of Theorem 5.6

Theorem 5.6 is deduced from Theorems 2.9 and 5.5. Let Y = X, N = N, plx,y) =
|B2(x — y)|I, x, y € X, 2 be the set of all mappings S defined on the set of natural
numbers into the set of operators

Bio(}  Po,uw, 0m): X — X,
el

with
(2:,w)eM;, Tef

such that for each integeri > 1,

S(l) = Bl ° (Z Pgr(i)>wr(i) On‘[)a
e

where
(82:3y, We() E My, TEE
satisfy
(i 17y Weirn)) = 226y, wei))
for all integers i > 1. Let
F={xeX:dxx,Cs) <ey/4, s=1,...,m}.

Theorem 5.5 implies that for every M > O there exists Q > 0 such that property
(P6) holds. Let Q > 1 be such that property (P6) holds with M = M. Set

§=4"1G+ 1) 'my ' PCard(€) o0 @N + 1)
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Assume that for all natural numbers i,

(Ric,wir) €My, TEE,
(‘Qi,f9 wi,T) = (Qi_;,_[\_]’-[, wi+1\_/,r)’ T € 5,

xo € Bx (0, Mp)
and that sequences {x;}72, C X, {A;}72, C [0, o) satisfy for each integer i > 1,
(xi, Ai) € A(xi—1, {(82i0, Wi )}eee, §).

By Lemma 5.9 and the choice of §, for each integer i > 0,

1Ba(xig1 — BiQY | Payy pwisre © T )|
tef

<mi/%8(G + 1)Card(€) <47 'Q ' QN + 1)\
Theorem 2.9 implies that for all integers i > Q,
B(xj,e0/4)NF #0
and
dx(x;,Cs) <€, s=1,...,m.

Theorem 5.6 is proved.



Chapter 6 ®
Proximal Point Algorithm Qe

In a Hilbert space, we study the convergence of an iterative proximal point
method to a common zero of a finite family of maximal monotone operators under
the presence of perturbations. We show that the inexact proximal point method
generates an approximate solution if perturbations are summable. We also show that
if the perturbations are sufficiently small, then the inexact proximal point method
produces approximate solutions.

6.1 Preliminaries and Main Results

Let (X, (-, -)) be a Hilbert space equipped with an inner product (-, -) which induces
the norm || - ||
A multifunction T : X — 2% is called a monotone operator if and only if

(z—Z,w—w) >0 Vz,7,w,w' €X

such that w € T(z) and w’ € T(Z)). (6.1)
It is called maximal monotone if, in addition, the graph
{,w)eXxX: weT(2)}

is not properly contained in the graph of any other monotone operator 7 : X — 2%,
A fundamental problem consists in determining an element z such that 0 € 7' (z). For
example, if T is the subdifferential df of a lower semicontinuous convex function
f + X — (—o0, oo], which is not identically infinity, then 7" is maximal monotone
(see [93, 95]), and the relation 0 € T (z) means that z is a minimizer of f.

Let 7 : X — 2% be a maximal monotone operator. The proximal point algorithm
generates, for any given sequence of positive real numbers and any starting point in
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the space, a sequence of points and the goal is to show the convergence of this
sequence. Note that in a general infinite-dimensional Hilbert space this convergence
is usually weak. The proximal algorithm for solving the inclusion O € 7'(z) is based
on the fact established by Minty [92], who showed that, for each z € X and each
¢ > 0, there is a unique # € X such that

z€ I +cT)(u),

where I : X — X is the identity operator (/x = x for all x € X).
The operator

Per = +cT)™! (6.2)

is therefore single-valued from all of X onto X (where c is any positive number). It
is also nonexpansive:

| Pe,7(z) — Per (DIl < llz — 2|l forall z, 2" € X (6.3)
and

P.7(z) =zifand only if 0 € T (2). (6.4)

Following the terminology of Moreau [95] P, r is called the proximal mapping
associated with cT'.

The proximal point algorithm generates, for any given sequence {c}72, of
positive real numbers and any starting point z0 € X, a sequence {zk}gio C X,
where

=P, 75, k=0,1,...
It is not difficult to see that the
graph(T) :={(x,w) e X x X : w e T(x)}

is closed in the norm topology of X x X.
Set

F(T)={zeX: 0T} (6.5)

Usually algorithms considering in the literature generate sequences which
converge weakly to an element of F (7). In this chapter, for a given € > 0, we
are interested to find a point x for which there is y € T'(x) such that ||y| < €. This
point x is considered as an e-approximate solution.
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For every point x € X and every nonempty set A C X define
d(x, A) =inf{||lx — y| : y € A}.

For every point x € X and every positive number r put
Bx,r)={yeX: |x—yl=r}h

We denote by Card(A) the cardinality of the set A.

We apply the proximal point algorithm in order to obtain a good approximation
of a point which is a common zero of a finite family of maximal monotone operators
and a common fixed point of a finite family of quasi-nonexpansive operators.

Let £ be a finite set of maximal monotone operators 7 : X — 2X and £ be a
finite set of mappings T : X — X. We suppose that the set £; U £, is nonempty.
(Note that one of the sets £; or £, may be empty.)

Letc € (0,1]andletc = 1,if L, = 0.

We suppose that

F(T)#@forany T € L (6.6)
and that for every mapping T € L5,

Fix(T) :={ze€ X: T(z) =z} #9, (6.7)
Iz —xII> > lz = T)I1? + Ellx — T ()|
for all x € X and all z € Fix(T). (6.8)

LetA > 0andlet X = co and A~! = 0, if £; = @. Let a natural number

[ > Card(L£1 U Ly). (6.9)
Denote by R the set of all mappings
§:{0,1,2,...} - LoU{P.7: T € Ly, c €[k, 0)}

such that the following properties hold:

(P1) for every nonnegative integer p and every mapping 7 € L, there exists an
integeri € {p,..., p+1 — 1} satisfying S(i) = T;

(P2) for every nonnegative integer p and every monotone operator 7 € L there
exist an integeri € {p,..., p +1 — 1} and a number ¢ > A satisfying S(i) =
P.r.

Suppose that

F = (Nreg, F(T)) N (Nger,Fix(Q)) # 0. (6.10)
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Let € > 0. For every monotone operator 7 € £ define
F(T)={xeX: T(x)NB(,¢) # 0} (6.11)

and for every mapping T € L set

Fixe(T)={x € X : |T(x) —x| <e€}. (6.12)
Define

Fe = (Nreg, Fe(T)) N (Nger,Fixe (0)), (6.13)

Fe=(Nregfx € X 1 d(x, F(T)) < €})

N(Nger,ix € X : d(x,Fixc(Q)) < €}). (6.14)

We are interested to find solutions of the inclusion x € F. In order to meet
this goal we apply algorithms generated by mappings S € R. More precisely,
we associate with every mapping S € R the algorithm which generates, for every
starting point xo € X, a sequence of points {x;};2, C X such that

X1 =[S Gx), k=0,1,....

According to the results known in the literature, this sequence should converge
weakly to a point of the set F. In this chapter, we study the behavior of the sequences
generated by mappings S € R taking into account perturbations.

In this chapter we prove the following three results: Theorem 6.1 which shows
that the inexact proximal point method generates approximate solutions if perturba-
tions are summable, Theorem 6.2 which establishes that the exact proximal point
method generates approximate solutions, and Theorem 6.3 which demonstrates
that the inexact proximal point method generates approximate solutions if the
perturbations are small enough.

Theorem 6.1 Assume that M > 0,
BO,M)NF # @, (6.15)

€ € (0, 1) and that a sequence {Ei}?il C [0, oo) satisfy
o
A= Zei < 00. (6.16)
i=1

Let a natural number ngy be such that for each integer i > ny,

€ <minf{e(2l + 1)7', €A} (6.17)
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Assume that

SeR, {xilgeo C X, llxoll < M,
lxes1 — ST < €41, k=0,1,....

Then

Card({i € {0,1,...}: x; & F.})

<no+ (M + A)?> +2¢71ACM + A)(min{e 2l + D)™, ex) 2.

Theorem 6.2 Suppose that for every mapping T € L3,

1T (1) =TI =< lly1 = y2ll for all y1, y € X.

Let M > 1,
BO,M)NF #40,
€ €(0,1],
SeR
satisfies

S(k +1) = S(k) for all integers k > 0,
{xk}p2y C X satisfies

lxoll < M,
X1 = [SE)(xe), k=0,1,....

Then for every integer

i > 1(1+4M?c "min{(@MD) ™ (er)?e, @M)~'ee2™3Y))

the inclusion
X; € Fé

holds.
Theorem 6.3 Suppose that for every mapping T € L3,

1T (1) = TN < lly1 — y2ll forall y1, y2 € X,

241

(6.18)

(6.19)

(6.20)

(6.21)

6.22)

(6.23)
(6.24)
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ro € (0,1), Mo > 1,

F,, C B(0, My), (6.25)
€0 € (0, rol,

Qo = LI(1 +4MZe (min{(4MoD) ™" (o /D)%, (4Mo)~'E(eo/HH3H N1,

(6.26)
8 € (0,47 ep(Qo2 + 1) (6.27)
Assume that
SeR
satisfies
S(k + 1) = S(k) for all integers k > 0, (6.28)
{xk}52y C X satisfies
Ixoll =M, (6.29)
X1 =[S <6, k=0,1,.... (6.30)
Then for every integeri > Qy,
x; € Fe. (6.31)

6.2 Auxiliary Results

It is easy to see that the following lemma holds.

Lemma 6.4 Let z, xo, x1 € X. Then
27z = ol =27z = I = 27 o — %1117 = (w0 — x1,31 = 2).
Lemma 6.5 (Lemma 8.17 of [124]) Assume that S € R,
Z€F, (6.32)
the integers p, q satisfy0 < p < q,

e}~ € (0,00), {xi}f_, C X
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and that for all integers k € {p,...,q — 1},
IXk+1 = [SCNxOI < €k1- (6.33)
Then, for every integer k € {p + 1..., q} the following inequality holds:
k
lz—xll <llz=xll + Y .
i=p+1

Proof Letaninteger k € {p, ..., q — 1}. By (6.3)~(6.5), (6.7), (6.8), (6.10), (6.32),
and (6.33),

2 = Xp1ll < llz = IS | + 1S K) (k) — xpp1 || < Mz — xill + €x1-

This implies the validity of Lemma 6.4. O
Lemma 6.6 (Lemma 8.18 of [124]) Assume that for every mapping T € L;

IT@x) =TI < llx —yll forallx, y € X, (6.34)
S € R, the integers p, q satisfy 0 < p < g,
{Gk}Z:p+1 C (07 00)9 {xk}Z:p - X7 {yk}Z:p C Xa yp = xp

and that for all integers k € {p, ..., q — 1},

Yir1 =[S, xkr1 — ST < €xy1. (6.35)

Then, for every integer k € {p + 1..., q} the following inequality holds:

k
e —xill < ) e (6.36)
i=p+1

Proof We prove the lemma by induction. In view of (6.35) and the equality x, = y),
inequality (6.36) holds for k = p + 1.

Assume that an integer j satisfies p + 1 < j < g, (6.36) holds for all k =
p+1,...,jand that j < q.

By (6.3), (6.34), (6.35), and (6.36) with k = j,

lyjr1 —xjell < MSDHI@;) — x4l
< MSWIG) = ST+ IES;1Ge;) — xj1l
j j+1

j
<llyj —xjll +€j+1 < Z € t€j+1 = Z €
i=p+1 i=p+1
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and (6.36) holds for all k = p + 1, ..., j + 1. Therefore we showed by induction
that (6.36) holds forallk = p + 1, ..., g. This completes the proof of Lemma 6.6.

Lemma 6.7 (Lemma 8.19 of [124]) Let

AeLoyU{P.7: TeLy, celroo)}, xeX,
zeF. (6.37)

Then
Iz — x> — lz — A@)I? = Ellx — A@)|* > 0. (6.38)

Proof There are two cases:

(i) T € La; )
(ii) there exist a mapping 7 € L,a number ¢ € [A, c0) such that A = P, r.

If (i) holds, then (6.38) follows from (6.8) and (6.37). Assume that (ii) holds. Then
by Lemma 6.4,

27 Nz—x P =27z A P27 x— AW |1? = (x—ARX), A(x)—z).  (6.39)
By (ii) and (6.2),

A(x) =P, r(x)andx € (I +cT)(A(x)),
x — A(x) € cT(A(x)). (6.40)

By (6.1), (6.5), (6.10), (6.37)—(6.39), and (6.40), equation (6.38) holds. Lemma 6.7
is proved.

6.3 Proof of Theorem 6.1

In view of (6.15), there exists a point
z€ B(O,M)NF. (6.41)
By (6.18) and (6.41),
lz —xoll <2M. (6.42)
Set

€0 = 0. (6.43)
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It follows from Lemma 6.5, (6.18), (6.18), and (6.41)—(6.43) that for all integers
i>0,

llz —xill <2M + Xl:ei. (6.44)
j=0
Put
vo = min{e (2] + 1)7!, e} (6.45)
In view of (6.17) and (6.45), for all integers i > no,
€ < V0. (6.46)
Leti > 0 be an integer. Lemma 6.7, (6.18), and (6.41) imply that
Iz = xil? = Iz = [SOIE) I = el — [SOI) 1. (6.47)
By (6.16), (6.18), and (6.44),

Nz = xis1l? =z =[S ]

<z = xit1ll = llz = SOICH Nz — xi41 1l + 1z — xi 1)
< 2[lxi+1 = [SOIx)HI2ZM + A)
<261 2M + A). (6.48)

It follows from (6.47) and (6.48) that

ellxi — [S@)1x)|I*
< llz = x> = llz = [S@O1)II*
< llz = xil1* = llz = xit1 11> + 26i412M + A). (6.49)

By (6.16), (6.43), (6.44), and (6.49), for each natural number n > no,

QM + A)? > [xy — zl1?

2 2
= 1%y = 2lI” = llxn — 2]l

n—1

2 2
= dlxi = zl* = llxigr — 2l

i=ng
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n—1
> Y (@l = [SOIE)* — 2€i412M + A))

i=ng
and

QM + A)? +2Q2M + A) A

o
2
= Q2M + A) +2(2M+A)Zej
j=0

n—1
> Y @llxi — (SOOI

i=ng

> eygCard({i € {no,...,n — 1} : |lxi — [SOIx)I = yob).

Since the relation above holds for every natural number n > ny we conclude that

Card({i € {no,no+1,...}: [lx; = [SOIx)I = yob)

<&y (@M + A +202M + A)A).

Define

Eg={k € {no.no+1,....}: lxx = [SEIx) I = yo}-

In view of (6.50) and (6.51), we have
Card(Eo) < ¢ 'yy 2(2M + A)? +22M + A)A).

Define

Ei={ke{ng,no+1,...}: [k,k+1— 11N Eg # %)

By (6.52) and (6.53), we have

Card(E) < ICard(Eyp)
< 1E7 'y (@M + ) +202M + A)A).
Let an integer p satisfies
p=no, p¢Er

In view of (6.51), (6.53), and (6.55),

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)
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and foreachk € {p,...,p+1—1},
lxr — SN < yo. (6.57)
By (6.18), (6.46), (6.55), and (6.57), foreachk € {p, ..., p+1— 1},

llxk — Xkl < Ml = [SETx N+ TS K1 Cex) — xpq1 |l
<Y+ €+1 < 2y0. (6.58)

In view of (6.58), for all integers k1, k> € {p, ..., p + [}, we have
Xk, — xi, |l < 2Lp0. (6.59)

Let T € L. It follows from property (P1) that there exists an integer i €
{p,..., p+1— 1} such that

Si)=T. (6.60)
In view of (6.57) and (6.60),
lxi = T (x) Il < yo- (6.61)
By (6.45), (6.59), and (6.61), we have
d(xp, Fixe(T)) < llxp — xill =2y < e. (6.62)
Relation (6.62) implies that
d(xp,Fixe(T)) < eforall T € L5. (6.63)
Let T € L;. Property (P2) implies that there exist
iel{p,....,p+l—1}, c>xr (6.64)
such that
S@i) = Per. (6.65)
By (6.57) and (6.65),

llxi — Pe,r (x|l < vo. (6.66)



248 6 Proximal Point Algorithm

It follows from (6.2) that

xi € (I +cT)(Pe,7(xi)),
xi — Per(xi) € cT (P 7(x;)),

@i = Per (i) € T(Per(x2)).
By (6.45), (6.64), and (6.66), we have
le™ i = Per@ill < ' <2 ' <e
Relations (6.11), (6.67), and (6.68) imply that
Per(xi) € Fe(T).
It follows from (6.45), (6.59), (6.64), and (6.66) that

lxp = Per (x|l < llxp — xill + llxi — P, (xi)l

<2y+y <e.
In view of (6.69) and (6.70),
d(xp, Fe(T)) < llxp — Pe,r(xi)|l < €.
Therefore by (6.70),
d(xp, Fe(T)) <eforallT € L;.
By (6.63) and (6.71),

Xp € Fe

(6.67)

(6.68)

(6.69)

(6.70)

6.71)

for all integers p > noq satisfying p ¢ E;. Together with (6.45) and (6.54) this

implies that

Card({i € {0,1,...}: x; € F.})
< ng + Card(E;)

<no+ (M + A)?> +2A2M + A)e U(min{e 2l + D7, ex) 2.

Theorem 6.1 is proved.
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6.4 Proof of Theorem 6.2

Put
yo = min{(4M1) " (er)?E, (4M)~'ee?i 3.
In view of (6.24), for each integer i > 0,
Xig1 = [SO1(x).

Set
-1
Ts =S —1)---80) =[] SG).
i=0

It follows from (6.22), (6.73), and (6.74) that for each integer i > 0,
X+ = S+ DI —=1)--- SED(xi) = Ts(xip).
In view of (6.20), there exists a point
z€BO,M)NF.
By (6.23) and (6.76),
llz — xoll =2M.
Lemma 6.7, (6.73), (6.76), and (6.77) imply that for all integers k > O,

2 2 = 2
lz — xell” = llz = xk11I7 = cllxke — X117

Iz = xkt1ll < llz — xeell
and
lz —xell < 2M.
Define

Eo=1{ke{0,1,...,}: max{|lxijt1 — x| :

i=kl,....,(k+ 1Dl —1} > po}.
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(6.72)

(6.73)

(6.74)

(6.75)

(6.76)

6.77)

(6.78)
(6.79)

(6.80)

6.81)
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Let n be a natural number. It follows from (6.77) and (6.78) that

4M? > ||lxo — z|I?

2 2
> llxo — zll” — llxn — 2l

n—1
= bw — zl* = ey — 21
k=0
n—1 (k+1)I—1
2 2
=Y 0 > b=zl = llxje1 — 2]
k=0 j=kl

n—1 (k+1)i-1

>3 @ Y lxj—xjl?)
k=0

j=ki
> GygCard({k € {0, ..., n — 1} : max{||xj+1 — x;]| :

Jj=k,...,(k+ 1l -1} = yo})

and
Card({k € {0, ..., n — 1} : max{||x;y1 — x;|l :
J=kl,....(k+ 1Dl —1} >y}
<4amMPely;

Since the relation above holds for every natural number n we conclude that

Card({k € {0, 1, ...} : max{llxj {1 — x|l :
J=klL . kDI =1} > b
<amPely;

In view of (6.81) and (6.82), we have
Card(Eo) < 4M*¢ 1y,
In view of (6.82), there exists an integer gg > 0 such that

qo < 4M*E P 41,

lxj —xj+1ll <o, j=gqol,...,(qo+ DI —1.

By (6.85),

lxgor — X(go+1) Il < Yol.

(6.82)

(6.83)

(6.84)
(6.85)

(6.86)
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It follows from (6.3), (6.19), (6.74), (6.75), and (6.86) that for every integer g > qo,

”qu — X(g+1) I
= 1T (xgo) — Td™ P (xgo+ 1)

< |lxgor — X(go+i Il < vol. (6.87)
Let ¢ > go be an integer. Relations (6.86) and (6.87) imply that
Ixqr — xg+1yll = vol. (6.88)
By (6.78), (6.80), and (6.88),
vol = llxg1 — xg+nill
= llz = xqll — llz = x@g+ 1yl
> (lz = xgil* = llz = xrau D @M) ™",

2 2
AMyol > llz — xqll” — llz — xg+ 1l

(g+Dil—-1
2 2
= Y llz=xil? = llz = xig1ll°]
i=ql
(g+1)I—-1
= 2
> Y el —xipll
i=ql

and foreachi =gql, ..., (g + 1)l — 1,

lxi = xig1ll < @Myole™H'2. (6.89)
In view of (6.89), foreach i, j € {ql, ..., (g + 1)I},

lx; —x;j 1| < l(@Myple™")/2. (6.90)

Let T € L. It follows from property (P1) that there exists an integer j €
{ql,..., (g +1)] — 1} such that

S()=T. (6.91)
In view of (6.73), (6.89), and (6.91),

lxj — T = llxj — SHEHI = llxj41 — x| < @Mple=HY2 (6.92)
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By (6.72), (6.90), and (6.92), for each i € {ql, ..., (g + DI},

d (x;, Fix gprypie-1y12(T)) < 1@Myole™H'? < e
and

d(x;, Fixe(T)) < eforall T € L5. (6.93)
Let T € L. Property (P2) implies that there exist
jelgl,....(q+Dl—1}, c =2 (6.94)

such that

S(j) = Per. (6.95)
By (6.73), (6.89), (6.94), and (6.95),
Ixj = PerGepll = llxj = S(HEHI = llxj — xjp1ll < @Myle™H'2 (6.96)
It follows from (6.2) that

Xj € ¢ +CT)(PC,T(xj))s
Xj— Per(xj) € cT(Per(x))),

¢ Ny = Per(x))) € T(Per(x))). (6.97)
By (6.72), (6.94), and (6.96), we have

le™ x; — Per o)l

<c'@Mple™H'? < Y@Myl H? <e. (6.98)
Relations (6.11), (6.73), (6.95), (6.97), and (6.98) imply that
Xja1 = Per(x)) € Fe(T). (6.99)
It follows from (6.72), (6.90), (6.94), and (6.99) that for eachi = ¢ql, ..., (g + 1),
d(xi, Fe(T)) < 1(4Mpple™)'? <
forall T € L. Together with (6.14) and (6.93) this implies that
x; € Fe

for all integers i € {¢ql, ..., (g+1)I} and all integers g > go. Theorem 6.2 is proved.
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6.5 Proof of Theorem 6.3

Theorem 6.3 is deduced from Theorems 2.9 and 6.2. LetY = X, N =1, p(y,2) =
ly —zll, y, z € X, 2 be the set of all mappings

S:{1,2,...} > LoU{Per: T € Ly, c €[k, o0)}
such that the mapping
i—Si+1),i=01,...
have properties (P1) and (P2) and that
Sk +1) = S() for all integers k > 1.
Set
F = Feya.
For each S € 2 define

S$:{0,1,2,...} > LoU{Peg: T € Ly, ¢ € [k, 0)}

§(i) = S(@{ + 1) for all integers i > 0
and set
A=(5: seA.
Theorem 6.2 implies that for every M > 0 property (P6) holds with
Qo = [I(1 +4M*c " (min{(dMD) " (er)?e, @M)~'ce’I73)))].
In view of Theorems 2.9 and 6.2, for all integer i > Q,
B(xj,e0/4) NF #0.
By the relation above and the choice of F, for all integers i > Qp,
xi €y,

Theorem 6.3 is proved.
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Dynamic String-Averaging Proximal Qe
Point Algorithm

In a Hilbert space, we study the convergence of a dynamic string-averaging proximal
point method to a common zero of a finite family of maximal monotone operators
under the presence of perturbations. Our main goal is to obtain an approximate solu-
tion of the problem using perturbed algorithms. We show that the inexact dynamic
string-averaging proximal point algorithm generates an approximate solution if
perturbations are summable. We also show that if the perturbations are sufficiently
small, then the inexact produces approximate solutions.

7.1 Preliminaries and Main Results

Let (X, (-, -)) be a Hilbert space equipped with an inner product (-, -) which induces
the complete norm || - ||.
For each x € X and each nonempty set A C X put

d(x,A) =inf{]lx — y| : y € A}.
For each x € X and each r > 0 set
Bx,r):={yeX: |lx—yl=r}
Denote by Card(A) the cardinality of a set A. The sum over an empty set is assumed
to be zero.
Recall (see Section 6.1) that a multifunction T : X — 2% is called a monotone

operator if

(z—Z,w—w) >0 Vz,7,w,w €X

© Springer International Publishing AG, part of Springer Nature 2018 255
A. J. Zaslavski, Algorithms for Solving Common Fixed Point Problems, Springer
Optimization and Its Applications 132, https://doi.org/10.1007/978-3-319-77437-4_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77437-4_7&domain=pdf
https://doi.org/10.1007/978-3-319-77437-4_7

256 7 Dynamic String-Averaging Proximal Point Algorithm

such that w € T(z) and w’ € T(Z)).
It is called maximal monotone if, in addition, the graph
{z,w)e X xX: weT(z)}
is not properly contained in the graph of any other monotone operator 7’ : X — 2%,
Let T : X — 2% be a maximal monotone operator. Then (see Section 6.1) for
each z € X and each ¢ > 0, there is a unique # € X such that

z€ U +cT)w),

where I : X — X is the identity operator (Ix = x for all x € X).
The operator

Per = +cT)! (7.1)

is therefore single-valued from all of X onto X (where c is any positive number). It
is also nonexpansive:

I1Pe.7(z) = Per(@)Il < llz = Z'l| forall z,z" € X (7.2)
and
P.7(z) = zifand only if 0 € T () (7.3)
(see Section 6.1).
Set
F(T)={zeX: 0€T(2)} (7.4)

Let £ be a finite set of maximal monotone operators T : X — 2% and £, be a
finite set of mappings 7 : X — X. We suppose that the set £; U £; is nonempty.
(Note that one of the sets £; or £, may be empty.)

Letc € (0,1]andletc = 1,if £, = 0.

We suppose that

F(T)#@forany T € L (7.5)

and that foreach T € L»,
Fix(T) = {ze€ X : T(2) =z} # 9, (7.6)
Iz —xlI> > lz = T)I1? + ¢llx — T ()| (7.7)

for all x € X and all z € Fix(T).
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Suppose that
F = (Nreg, F(T)) N (Nger, Fix(Q)) # 0. (7.8)
Lete > 0.Forany T € L set
F(T)={xe X: T(x)N B(,¢) # 0} (7.9)
and for any T € £, put
Fixe(T) ={x e X : ||[T(x) — x| <e€}. (7.10)

Set
Fe=(Nreg,ix € X 1 d(x, F(T)) < €})
N(Nger,fx € X : d(x,Fixe(Q)) < €}). (7.11)

LetA > 0OandletA = coand A~1 = 0, if £; = @. Set
L=LyU{P.7: TeLy, celr ). (7.12)

Next we describe the dynamic string-averaging method with variable strings and
weights.

By a mapping vector, we mean a vector ' = (T, ..., T),) such that 7; € £ for
alli=1,...,p.
For a mapping vector T = (11, ..., T,) set
p(T)=gq, PIT1=T4---Ti. (7.13)
It is easy to see that for each mapping vector T = (11, ..., Tp),
P[T](x) =xforallx € F, (7.14)
IPIT](x) — PITIDI = llx = PITIDDI < llx =yl (7.15)

forevery x € F and every y € X.
Denote by M the collection of all pairs (§2, w), where 2 is a finite set of
mapping vectors and

w : £2 — (0, 00) be such that Z w(T) = 1. (7.16)
Tes2

Let (£2, w) € M. Define

Po(x) = Y w(T)P[T](x), x € X. (7.17)
Tes2
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It is not difficult to see that

Poyw(x)=xforallx € F, (7.18)
I P2.wx) — PouwWIl = llx = PouwWI < llx —yl (7.19)

forallx € Fandall y € X.

The dynamic string-averaging method with variable strings and variable weights
can now be described by the following algorithm.

Initialization: select an arbitrary xo € X.

Iterative step: given a current iteration vector x; pick a pair

(2441, wiy1) € M

and calculate the next iteration vector xx41 by
Xk+1 = PQk+1,wk+1 (.Xk).

Fix a number

A€ (0,Card(L; U L)) (7.20)
and natural numbers N and g satisfying
g > Card(Ly U Ly). (7.21)
Denote by M., the set of all (£2, w) € M such that

p(T) <q forall T € £2, (7.22)
w(T) > Aforall T € 2. (7.23)

Denote by R the set of all sequences

{(£2;, wi)}?il C M,

such that the following properties hold:

(P1) for each integer j > 1 and each S € L, there existk € {j,...,j + N — 1},
T =(T1,...,Tyr)) € §2 such that

Se(l,....Tym}h

(P2) for each integer j > 1 and each S e_ﬁl there existk € {j,...,j + N — 1},
T =(T1,...,Tyr)) € £2¢ and ¢ > A such that

Pc,S € {Tl, ey T,,(T)}.

In order to state our main results we need the following definitions.
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Let6 >0,x € Xandlet T = (T1, ..., Tp()) be a mapping vector. Define

Ao(x, T,8) ={(y,1) € X x R': thereisa sequence {yi}{’z(t(; C X such that
y=xandforalli =1,..., p(®),
ly: = T (i-DIl <8,

Y = Yp)
A=max{lly; — yi1ll s i =1,..., p(T)}}. (7.24)

Letd > 0,x € X and let (2, w) € M. Define

A(x, (82, w),8) ={(y,1) € X x R' : there exist
(yr, A1) € Ag(x, T, 8), T € £2 such that

Iy = > w@yrl <8, »=max{dr: T € 2}}. (7.25)
Tes2

In this chapter we prove the following three results: Theorem 7.1 which shows
that the inexact dynamic string-averaging method generates approximate solutions if
perturbations are summable, Theorem 7.2 which establishes that the exact dynamic
string-averaging method generates approximate solutions, and Theorem 7.3 which
demonstrates that the inexact dynamic string-averaging method generates approxi-
mate solutions if the perturbations are small enough.

Theorem 7.1 Let M > 0,¢ € (0, 1],

B(O,M)NF # 0, (7.26)

{ei}i2) C [0, 00),

o0
A= Z < 00 (7.27)
i=1

and ng be a natural number such that for all integers i > ny,

€ < €N+ D71+ ¢ "'min{2, 1}. (7.28)

Assume that
{(2i, w)}2, e R, (7.29)
x0 € B0, M), {x;}72, C X, {&}{2; C [0, 00) (7.30)

satisfy for each natural number i,

(xi, i) € A(xi—1, (82;, wi), €). (7.31)
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Then
Card({i €{0,1,...}: x; € F.})
<ng+ Ne'A7'[eM + A@G +1)?

+8GAQM + (G + D Ale >(N + 1)@ + D(min{1, A)~>.
Theorem 7.2 Assume that for each T € L, and each x,y € X,
ITx) =TI =< llx =yl
Let M > 1, € € (0, 1),

BO,M)NF # @,
{(Q2;, w)}2, e R,
for all integers i > 0,

Poiw = Pe, g, 5

xo € B(O, M), {x;}{2; C X, {M}j2; C [0, 00)
satisfy for each integeri > 1,
(xi, Ai) € A(xi—1, ($2i, w;), 0).

Then for each integer

i >N +64M*c 3 A3 2(G + D*(N + D* min{1, 1}72),

x; € Fe.
Theorem 7.3 Assume that for each T € L, and each x,y € X,
I17C) =TI < llx =yl
Letrg € (0,1), My > 1,
F,, C B(0, My),
€0 € (0, ro),
Qo= N1+ 64M*c3A73¢;2(G + D*(N + D* min{1, 1}72))
and

8= (co/HCN+ Do G+

(7.32)

(7.33)
(7.34)
(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)
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Assume that

{(2i, w)}2, € R,

Pg; w; = Po,

_ _ 1 | >
Wi for all integers i > 0,

X0 € B(Oa M)s {xl'}?il C Xa {)"l}loil C [07 OO)

satisfy for each integeri > 1,
(xi, Ai) € Axi—1, (§2;, wi), 8).
Then for each integeri > Qy,

Xi € Feo~

7.2 Proof of Theorem 7.1

Set
vo=¢€(N + 171G+ 1D "min{1, 1}.
By (7.26) there exists
z€ BO,bM)NF.
Let £ > 0 be an integer. By (7.31),
(k15 Ak+1) € A(xe, (2641, Wkt1), €k41)-
By (7.25) and (7.43) there exist

Ok, A1) € Ao(xk, T €x41), T € 2544

such that
s — Y wen (Myerll < €,
Tes2kqy
M1t =max{ig 7 0 T € 21}
Let

T=T,...,Tyr)) € 2k41.
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(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)
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It follows from (7.24) and (7.44) that there exists a finite sequence

k. T T
oY c x

such that

k, T

y(() ) = -xks

(k,T) T)
ly; —T; (y 1 )l < €41 foreachintegeri =1, ..., p(T),

(k,T)

Ypry = YkT>

k,T k,T .
der =max{ly " =y &0 i =1, p())

By (7.7), (7.12), (7.29), (7.42), and Lemma 6.7, for each

=T, ..., Ty1)) € 211
andeachi € {1, ..., p(T)}, we have

k,T k,T k,T k, T
Iz =y &1 = 1z = OEDIP +ay®D — oS PR

and
Iz = ToEDI < 1z = yEI.
Relations (7.48) and (7.52) imply that for each
= (T1,..., Tpry) € 2pt1
andeachi € {1,..., p(T)}, we have
lz =y < 1z = oSN+ IT 08 — &7
<z = &1 + e
In view of (7.22), (7.47), (7.49), and (7.53), for each
= (T1,..., Tyry) € 2pt1

andeachi € {0, 1, ..., p(T)},

k, T k,T
lz = y* U < iz = y& D) + i€

= |lz — xi|l + i€k,

(7.47)
(7.48)
(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)
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k, T
Iz = vzl = llz = ¥y |
< llz = xell + p(T)éx+1 = llz — xll + G€r+1- (7.55)

By (7.16), (7.45), (7.55), and the convexity of the norm | - ||,

lz—xisill <Mz — Y wern@yerl+ 1 D wert (Dyr — xes1l
T €11 T ek

< Y wen(Dllz =yl + €rg
TeRk41

< llz = xll + (g + Dégq1. (7.56)

In view (7.30) and (7.42),
lxo — zll < 2M. (7.57)
Set

€ =0. (7.58)
By (7.22), (7.54), and (7.55)—(7.58), for each integer k > 0, for each
T = (Tl, ey Tp(T)) € -Qk—H

andeachi =1,..., p(T),

k
lz—xl < llz —xol + @G+ DD e
i=0
k
<M+ @G+ e, (7.59)
i=0

Iz — yirll < Iz — xell + Gexsr
k
<M+ @G+ e, (7.60)
i=0
k, T .
Iz =y <z = xell + iexsn

k
<M+ G+ D)) €+ e
i=0
k+1
<S2M+@G+D ) e (7.61)
i=0
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By (7.27) and (7.59)—(7.61), for each integer k > 0, for each
=T, ..., Tyr)) € k11

andeachi =1,..., p(T),

lz —xkll <2M + A(g + 1), (7.62)
lz = ye,7ll <2M + A(G + 1), (7.63)
lz —y*& D <2M + A@G +1). (7.64)

Let k£ > 0 be an integer,
=T, ....Ty)) € k41, P €{1,..., p(T)}.

By (7.48), (7.52), and (7.64),

k,T k, T
lz = TSI = 1z = y &2

k, k, k
<z =TGEDN =1z = 5Nz = TGS+ 1z = yE 1)
k,
<2Iy*" 1,5 eM + A@G + 1)

<26+12M + A(g + 1)). (7.65)

In view of (7.51) and (7.65),

lz =y &2 =z = &2
k, k, _
>z =y 512 =1z = OE? = 26041 2M + A@G + 1)
>yl — TR )P - 2601 2M + A@G + 1)). (7.66)

By (7.48), (7.52), (7.62), and (7.64),

kT kT kT kT

My~ = ly;Z
<My“” y &) - |w“T> T@“Thm
)yl =y &0+ 1yE D = noE DD
<Iy*&P —1o®I
)yl =zl + 1z = yEPU+ yED =zl + 1z - oS D

<de12M + A(g + 1)). (7.67)
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In view of (7.66) and (7.67),

k, T k, T
Iz —y &2 = 1z = y& D)2

> ¢lly*D — yED 2 6ep 1 QM + AG + 1)). (7.68)

It follows from (7.22), (7.47), (7.49), (7.50), and (7.68) that

2 2
lz = xkll” = llz = ye. 7l

k,T k,T
= llz = 36" 1% =z = v 17

p(T)

k,T k,T
=z =y &1 =z = 371

p(T)
> Y elyE =y )P — bep1 @M + A@G + 1)
i=1

p(T)
> ¢ Z CD =y D12 — 6er1g2M + AG + 1)
> EkkﬁT — 66,119 (2M + A(g + 1)). (7.69)
By (7.16), (7.23), (7.46), (7.69), and the convexity of the function || - 12,

lz— Y wer(Myerl?

T €41
< Y wenMllz = yrlP
T €41
2 _ =2 = =
< Y wi (Dl =’ — 3 7 + 6113 2M + A@G + 1))

Te2k41

<llz—xl?=¢ Y w1 (MAF p +6641G2M + A@G + 1))
Te2kq1

< llz = x> = GAAL 4y + 613 2M + A@G + 1)). (7.70)

By (7.16), (7.45), (7.62), (7.63), and the convexity of the function || - ||,

2 2
Mz = x> =z = DY went(Myerl?l
T ekt
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<lllz=xerill =z = D wert(Myerll
Te2k41

x(lz = xipill +llz = Y wira(Myerl)
Te2kq1

< %41 — Z Wi+ 1(T) ye, 7|l
T e

<z =xpil+ D wen(Dllz = yerl)
TeRk4

< 2e,412M + A(g + 1)). (7.71)
Relations (7.70) and (7.71) imply that
Iz = w1117
<z — x> — ANy + 81§ (M + A(G + 1)). (7.72)
Let n > ng be an integer. In view of (7.62) and (7.72),

QM + A@G + 1)? = Iz — xn 17

2 2
= llz = XnolI” = llz = xal

n—1
2 2
= Mz = xl? = llz = xeq1l1°]

k=ng

n—1
> Y [EAM, — 8G2M + A@G + D)ertal.
k=ng

Together with (7.27) this implies that

QM+ A@G + 1)*>+8G2M + A(G + 1) A

n—1
=AY iy
k=ng

> cAygCard({k € {no.....n — 1} i1 = yo}).
Since the relation above holds for any natural number n > ny we conclude that

Card({k € {no,no+1,...}: A1 > o))
<& ' AT Y I@M + AG + D) +8G2M + A@G + 1)A]. (7.73)
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Set

E={kef{ng,no+1,...}:
max{riy1: i €fk,....k+N—1}} > w}.

By (7.73) and (7.74),

Card(E)

< Ne'A7y 2 2M + A@G + 1)? +8GARM + A@G + D)].
In view of (7.28) and (7.41), for all integers k > ny,
€k+1 < Y0-
Assume that an integer ¢ satisfies
q=no, q¢E.
In view of (7.74) and (7.77),

Myl < poforallk e {g,...,q+ N —1}.
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(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

It follows from (7.16), (7.22), (7.45)j(7.50), (7.76)—(7.78), and the convexity of the
norm that foreachk € {q,...,q+N —1},each T = (T1, ..., Tp(T)) € $2k+1,and

each j € {1,..., p(T)},

k.T kT
Y0 > Al = AT = ||yj( ) - y;_l)ll,

k,T k,T . -
e = 31l = Y71 < v0i < G,

lxe — ye, 71l < gyo,

Iy = 105
< Iy = yEP D — o))
< Y0 + €+1 = 20,
lxk — X1l
<l — Y wertMyerl+11 D wert(Dyer — xes
T ek T €241

< Y wir (Dl — yirll + €
T €41

(7.79)

(7.80)
(7.81)

(7.82)
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= qv0+ €+1 < (@ + Dyo.
Relation (7.83) implies that for each k1, k € {g, ..., q + N},
Xk, — X0, | < 0N (G + D).
Let
0 e L.

Property (P1) and (7.85) imply that there exist

kelg,....g + N =14, T =(Th,...,Tpr)) € 241, s €{1,...

such that
0 =T;.

In view of (7.10), (7.82), and (7.87),

kT .
ys(—l ' e Fixa,,(Q).

By (7.41), (7.80), and (7.88),
d(xx, Fixay, (0)) < Ik — y* DIl < wog.

It follows from (7.41), (7.84), and (7.89) that

(7.83)

(7.84)

(7.85)

. p(T)}

(7.86)

(7.87)

(7.88)

(7.89)

d(xq, Fixa,y(Q)) < llxg — x|l + d(xk, Fixa,y(Q)) < N(@ + Dyo +Gvo

S@+HWN+hp<e
and
d(xy, Fixc(Q)) < e forall Q € £;.
Let
Q€L
Property (P2) and the inclusion above imply that there exist

kelg,....g + N =1}, T =(T1,..., Tpr) € k41,
sefl,...,p(D)}, c=>x

(7.90)

(7.91)
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such that

By (7.82) and (7.92),

k,T
20 > IyED — 1,0 D))

(k, T) (k, T))”

=y, Pe o (y;

By (7.1) and (7.93),

YED e (14 c0)(Peoy* DY),

k,T k,T T
YED P o0* D)y e coP o 3® 1),

— k,T
l(y( ) _

It follows from (7.91) and (7.93) that

kT k,T
®D _ P oD <227 .

e (i
By (7.94) and (7.95),

Peo(yED) € Fyzo1,,(0).
In view of (7.48), (7.76)—(7.78), (7.91), and (7.92),

(k,T) _

k,T
Iy P oG D) < et < y0.

By (7.96) and (7.97),
Ay, Fyo1, (@) < o

Relations (7.80) and (7.98) imply that

PeoE) € 0P o % D).
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(7.92)

(7.93)

(7.94)

(7.95)

(7.96)

(7.97)

(7.98)

d(xi, Fys-1,(@)) < i = y& DI +d &, Fyio1, (Q) < o+ vo.

It follows from (7.41), (7.84), (7.92), and the inequality above that

d(xg, Fe(Q)) =< llxg — xill +d(xx, Fe(Q))
<@+DwN+@+ Dy <e

and

d(xy4, Fe(Q)) < eforall Q € L.
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Together with (7.90) this implies that

xq4 € F¢

for all integers g > no satisfying g ¢ E. Together with (7.41) and (7.75) this implies

that
Card({i € {0, 1,...}: x; & Fe})
< ng + Card(E)
<no+ Ne'AT@M + A@G + 1))?

+8GACM + (G + 1) Ale 2(N + 1)(¢ + 1)*(min{1, 1}) 2.

Theorem 7.1 is proved.

7.3 Proof of Theorem 7.2

Set

vo=€(N + 172G + D 2min{1, A}cA@M)~".

By (7.33) there exists
z€ BO,M)NF.

Let k£ > 0 be an integer. By (7.37),

(Xk+1> Ak1) € Alxg, (82k+1, Wit1), 0).

By (7.25) and (7.101) there exist

Ok,7> A7) € Aok, T,0), T € 2441

such that
Xkl = Z Wi 1 (T) yr,T
T€Qk+1
Mt =max{ier 0 T € Qpy1}.
Let

T=(T,....Tyr)) € 2k41-

(7.99)

(7.100)

(7.101)

(7.102)

(7.103)

(7.104)
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It follows from (7.24) and (7.103) that there exists a finite sequence

k. T T
oY c x

such that
k, T
y(() ) - 'xka
yl(k D= =T (y(k T)) for each integeri = 1, ..., p(T),

(k,T)
Ypry = YkT>

der =max{lly/“" =y BN i =1, p(D)
By (7.7), (7.12), (7.34), (7.100), (7.106), and Lemma 6.7, for each

T=(T,....Tyr)) € 2141

andeachi € {1,..., p(T)}, we have
k, T
Iz — y &)
kT k,T (k,T
=iz = y& PP g epy®D — &2,
and
k,T k,T
lz —y* D < 1z = y& D).

Relations (7.105), (7.107), and (7.110) imply that for each

=(T1,....Tyr)) € 211
andeachi € {0, 1, ..., p(T)}, we have

k, T k,T
yE I <z = yE PN =11z = xll,

lz—
Iz = yerll =z = Y5 I < e = xll.
It follows from (7.13), (7.17), (7.103), and (7.105)—(7.107) that

Xk+1 = PQkJrl‘warl(xk)'

Set

N
= HP.Q,-,wi = Pogwy - Pojw-
viiv

k,T k, T k,T
>z = iED) 2 + ey & — 1% Dy 12
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(7.105)
(7.106)
(7.107)

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)
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In view of (7.35), (7.113), and (7.114), for each integer k > 0,

(k+1)N
Xpnm = || P (i) = Q(xq)- (7.115)
i=kN+1

By (7.2), (7.16), (7.17), (7.32), (7.72), and (7.114), for each x, y € X,
1) — O < llx — yIl. (7.116)

It follows from (7.16), (7.103), (7.112) and the convexity of the norm that for each
integer k > 0,

iz = xi1l
=lz= > wip(Myerl
Tes24
< Y wen(Dllz = yirl
Tes24
< llz = xll. (7.117)
In view (7.36), (7.100), and (7.117),
lz = xkll < llz = xoll < 2M. (7.118)

By (7.105) and (7.107)—(7.109), for each integer k£ > 0 and for each
= (T1,..., Tp(r)) € 241,
we have

2 2
lz —xkll” = llz = yx. 7l

k, T k, T
YD iz = y &2

=z — ~Yp(r)

p(T)

k, T k, T
= > U=y 12 =Nz =y 513

p(T)
> Z clylD =y &2 = a2, (7.119)
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By (7.16), (7.23), (7.103), (7.104), (7.119), and the convexity of the function | - 12,

for each integer k > 0,

2
lz = X1l

=lz— Y winMyerl?

Te24

2
< > wMlz =yl
T2+

< > weMlz =5l = &3 p)
Tes2k+

< llz = xl® = g,
and
Iz = xesll® < lz — xel® — EAAE,.
Let n be a natural number. In view of (7.118) and (7.120),

4M? > ||z — xoll?

2 2
> llz = xoll” = llz = x5,

—_

n—

2 2
= Mz = x5 1% = llz = xgey 1y 1171
k=0
n—1 (k+1)N—1
2 2
=31 D> Uz=x* = llz = xj1l™)]
k=0 j=kN
n—1 (k+1D)N-1
= 2
=1 ) caryl
k=0 j=kN

> CAygCard({k € {0, ...,n — 1} :
max{Aj11: j=kN,...,(k+ DN =1} > o))

and

Card({k € {0,...,n — 1} :
max{Aji1: j=kN,...,(k+ DN —1} > p})

<4am*e a7y

(7.120)
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Since the relation above holds for any natural number n we conclude that
Card({k € {0, 1, ...} :
max{Aj1: j=kN,...,(k+ DN —1} > po})

<4am*e a7y (7.121)
In view of (7.121), there exists an integer
go <4c Ay M2 +1 (7.122)
such that
Aj+1 <0, j=qoN,...,(go+ DN — 1. (7.123)

It follows from (7.16), (7.22), (7.103)~(7.105), (7.107), (7.108), (7.123), and the
convexity of the function || - || that for all k = goN, ..., (go + 1)N — 1,

lxk — Xg41ll

e — > wipr(Myer|

TeRk4

< > wp (Ml — yerll
TeRk41

< Y Canp(MHwi(T) < Me1d < Gwo. (7.124)
T €82+

IA

In view of (7.115) and (7.124),
1505 = QG| = Xy — Xgornyi |l < @VON. (7.125)
By (7.115), (7.116), and (7.125), for each integer g > qo,

Iy — Xganal = 107 5) — QT (x4
< Ixgon — Xgornall = gnN.
Together with (7.125) this implies that

X, 5 — X115l < gyoN for all integers ¢ > go. (7.126)
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Let g > go be an integer. In view of (7.118), (7.120), and (7.126),

qyoN > ”xqﬁ _x(q+1)1\7”
> iz = x5l = 2 = x5

> (Iz — x 517 = llz = x g I @M) !

(g+1)N—-1
=@M C Y dlz =l =z = i 1)
k=gN
(g+1HN-1
> @t Y My,
k=gN

This implies that for all k = gN, ..., (g + )N — 1,
Mt < 4gnoNMe Al (7.127)

By (7.16), (7.22), (7.103)~(7.105), (7.107), (7.108), (7.127), and the convexity of
the norm, for each integer k € {gN, ..., (¢ + )N — 1}, each

T=(T,....Tyr)) € 211
and each j € {1, ..., p(T)}, we have

__ _1- - k, T k, T
47 AT G M = e = der = YT =D (7.128)

k.t k,t
e = Y01 e — D)

<4jc AT\ NM < 467 AP N M, (7.129)
lxe =yl <467 AT G2 N M, (7.130)
bee = xepll = e — Y we(Dyerll
Tefkty
< Y waMlx =yl
TeRk4
<4¢'A71 G2 yN M. (7.131)

In view of (7.131), for each k1, ks € {qN, e g+ DN},

lxk, — xi, || < 461 A71G2 N2 M. (7.132)
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Set
yi =4 'A71G0NM. (7.133)
Let
S e L. (7.134)
Property (P1) and (7.134) imply that there exist
kelg,....(g+ 1N —1}, T=,...,Tyr) € k41, P €{1, ..., p(T)}
(7.135)
such that

S=T,. (7.136)

In view of (7.37), (7.106), (7.128), and (7.132),

k, T k,T k,T k,T k,T k,T
yi > IyED =y &0 = &0 1 EDy ) = 1y ED — s EDy)|
and
y & D e Fix,, (5). (7.137)

By (7.22), (7.129), (7.133), and (7.137),

d(xx, Fixy, () < e — y o
<4 ' AT N M = g1 (7.138)
It follows from (7.99), (7.132)—(7.135), and (7.138) that for all

pefgN,...,(g+ N},

we have
d(xp, Fixy, (8)) < llxp — xx || + d(xk, Fixy, (S5))
< NGy +aqn
<GgIN+ Dy <e
and

d(xp, Fixy, (S)) < e forall § € L. (7.139)
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Let
Sel.

Property (P2) and (7.140) imply that there exist

kelg,....g + N =14 T =(Th, ..., Tpa)) € 241,

ie{l,...,p(T)}, c> 1

such that

By (7.106), (7.119), (7.133), and (7.142),
n o= Iyl =%

kT k, T k,T k,T
“CO o8 =1y*D - ©Dy.

=y Pes(y™®
By (7.1) and (7.143),
yED e (1 4 e8)(Pe sy,
yED —pos® D) e esp sy Dy,
oD — Pos DY) € S(P s ED)).

It follows from (7.141) and (7.143) that
e G = PesGE DI = A
By (7.106), (7.142), (7.144), and (7.145),
W =168 = PsE) € Froa, (5).
In view of (7.129), (7.133), and (7.146),

k, T
d(xe, Fy-1,,(8) < Il — 37|

<4 AP WNM = 4.

By (7.99), (7.132), (7.133), (7.141), and (7.147), for all p € {gN, ...,

d(xp, Fe(S)) < d(xp, F5-1,,(S))

2717

(7.140)

(7.141)

(7.142)

(7.143)

(7.144)

(7.145)

(7.146)

(7.147)

(g + DN},
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= llxp = xkll + d(xg, F5-1,, ()
<VgN +73 =ngN +1) <e
and
d(xp, Fe(S)) < eforall S € L.
Together with (7.140) this implies that
xg € Fe

for all integers ¢ > qo and all integers p € {gN, ..., (g + 1)N}. This completes
the proof of Theorem 7.2.

7.4 Proof of Theorem 7.3

Theorem 7.3 is deduced from Theorems 2.9 and 7.2. Let Y = X, N = N, p(y,z2) =
ly — zll, y,z € X, 2A be the set of all mappings S defined on the set of natural
numbers into the set of all nonexpansive self-mappings of X for which there exists

(@P, we, e R

such that
Pos 9 = Poe o forallintegersi > 0
! ! i+N’"i+N
and
S@) = P.Qfs),wfs) for all integers i > 1.
Set

F = Fea.
Theorem 7.2 implies that for every M > O property (P6) holds with
0 =N +64M* A5G + D*(N + D*min{1, 2)7%)].
By (7.25), for each integer k > 0, there exist vectors

Ok, 7> A7) € Aok, T,8), T € 241 (7.148)
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such that

e = Y wen (Myerl < 6. (7.149)
T €824

Proposition 2.8, (7.22), (7.29), and (7.148) imply that for every integer ¥ > 0 and
every T = (Tl, ey Tp(T)) € -Qk+1,

lye,r — Ple](x)|l < ¢8. (7.150)
By (7.16), (7.149), and (7.150), for each integer k > 0,

lxk1 — Poywe i)l

<= Y wen(Dyerll

T €k
S wenyer — Y wint (M PITI)]
T ek Te$2k41
< (g + 1)s. (7.151)

Theorems 2.9 and 7.2 and (7.151) imply that for all integer i > Qy,
B(xj,e0/4) N F #£ 0.
By the inclusion above,
x; € Fy,

for all integers i > Q. Theorem 7.3 is proved.



Chapter 8 ®
Convex Feasibility Problems Qe

We use inexact subgradient projection algorithms for solving convex feasibility
problems. We show that almost all iterates, generated by a perturbed subgradient
projection algorithm in a Hilbert space, are approximate solutions. Moreover, we
obtain an estimate of the number of iterates which are not approximate solutions.

8.1 Preliminaries

Let (X, (-, -)) be a Hilbert space with an inner product (-,-), which induces a
complete norm || - ||. For each x € X and each nonempty set A C X put

d(x, A) = inf{||lx — y|] : y € A}.
For each x € X and each r > 0 set
Bx,r)={yeX: [lx—yll <r}

It is well known that the following proposition holds (see Fact 1.5 and Lemma 2.4
of [8]).

Proposition 8.1 Let C be a nonempty, closed and convex subset of X. Then, for
each x € X, there is a unique point Pc(x) € C satisfying

lx — Pe(x)| = d(x, C).

Moreover, || Pc(x) — Pc(V)|| < |lx — yll forall x,y € X and, for each x € X and
each z € C,

(z = Pc(x), x = Pc(x)) =0,
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Iz = Pc@)1* + llx = Pe@)|* < llz = x[1*. 8.1)
Let f : X — R! be a continuous and convex function such that
{xeX: f(x) <0} #40. (8.2)
Let yo € X. Then the set

of o) :={leX: f(y)— f(yo) =(l,y — yo) forall y € X} (8.3)

is the subdifferential of f at the point yy [63, 94, 99]. For any [ € df (yp), in view
of (10.3),

freX: f(x) =0 CixeX: flyo)+ (L, x—y) =0} (8.4)

It is well known that the following lemma holds (see Lemma 7.3 of [8]).

Lemma 8.2 Let yo € X, f(yo) > 0,1 € 3f (yo) and let
D:={xeX: f(yo)+(l,x —yo) =0}

Thenl # 0 and Pp(yo) = yo — f (o) lL| 21

8.2 Iterative Methods

Let m be a natural number, [ = {1,...,m} and f; : X — RYLi=1,...,m, be
convex and continuous functions. For eachi € {1, ..., m} set

Ci={xeX: filkx) <0},
C:=nNL,C=nN"{xeX: filx) <0}

Suppose that
C #0.

A point x € C is called a solution of our feasibility problem. For a given ¢ > 0,
a point x € X is called an e-approximate solution of the feasibility problem if
fi(x) < eforalli = 1,...,m. We apply the subgradient projection method in
order to obtain a good approximative solution of the feasibility problem.

Consider a natural number p > m. Denote by R the set of all mappings § :
0,1,... — {1, ..., m} such that the following property holds:
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(P1) For each integer N > 0 and each i € {1,...,m}, thereisn € {N,..., N +
p — 1} such that S(n) =i.

We want to find approximate solutions of the inclusion x € C. In order to meet
this goal we apply algorithms generated by S € R.
For each x € X, each number € > 0, and eachi € {1, ..., m} set

Ai(x,e) = {x}if fi(x) <e (8.5)
and, in view of Lemma 8.2,
Ai(x,e) :=x — fi(x){||l||_2l ledfi)}if fi(x) > e. (8.6)

We associate with any S € R the algorithm which generates, for any starting point
xo € X, a sequence {x, },30:0 C X such that, for each integer n > 0,

Xn+1 € AS(n)(xna 0).

Note that by Lemma 8.2 the sequence {x,},°, is well defined, and that for each
integer n > 0, if fg(,)(x,) > 0, then x,41 = Pp, (x,), where

Dy={xeX: f(xn)+ (n.x —x,) <0} and L, € fsn)(xn)-

We will prove the following result (Theorem 8.3) which shows that, for the
inexact subgradient projection method with summable errors, considered in the
chapter, almost all iterates are good approximate solutions. Denote by Card(A) the
cardinality of the set A.

Suppose that M > 0, My > 0, M1 > 2 and A > 0 be such that

BOMyN{fxeX: fix)<0,i=1,...,m}#40, (8.7)

fi(B(O0,3M + A)) C[-Mo, Mpl, i =1,...,m, (8.8)
|fi(w) — fi)] = (M1 = 2D)llu — vl

forallu,v e B(O,3M + A+ 1)andalli =1,...,m. (8.9)

Theorem 8.3 Ler A € (0, 1],

Al =14 16MyA™>(4M + A)?, (8.10)
()22, € (0,27'A@M + A~ M 1, (8.11)
o
Ze,- <A7'A, (8.12)
i=1

w=4"ap Mt (8.13)
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Assume that
SeR, {xli2o C X, lxoll =M, {Ik}72, C X, (8.14)

and that for each integer k > 0,

Xt =Xk, Ie =0, 0 fsgo () < A4, (8.15)
if fsao(xx) > A, then
Iy € X\ {0}, dk, ofs@) (X)) < €xy1 (8.16)
and
lxg+1 — xk + fS(k)(xk)”lk”_zlk” < €kt1. (8.17)
Then
llxi |l <3M + A forall integers i > 0
and

Card(in € 0,1, ...} : max{||xj+1 —x;|| : i =n,...,n+p—1} >y}
< pyy 24M + 6AQ2M + A)).

Moreover, if an integer n > 0 satisfies
Ixi41 —xill <vo, i=n,....,.n+p—1,

then, for all integersk =n, ... ,n+ pandeach j =1,...,m, fj(xx) < 2A.

8.3 An Auxiliary Result

Lemma 8.4 Let 8, A € (0, 1] satisfy

§<27'A@UM + A7, (8.18)
an integer j € {1, ..., m},
x € B(0,3M + A), fi(x) > A, (8.19)
z€BO,M)NC (8.20)
and

§e€dfj(x), l € B,9). 8.21)
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Thenl # 0, £ # 0,

yi=x— fi0)lENT*E
satisfy

Iy —zll < llz — xII,

Iy =z < e —xI* = llx — yI?
and for each
e B(x — fi(oll~%,8)
the following inequalities hold:

lu — yll <81+ 16MoA~2(4M + A)?),

lu —z|| < |lx — z|| + 8(1 + 16MoA™2(4M + A)?).

Proof Define
D={veX: fij(x)+(§,v—x)=<0}.

In view of (8.19) and (8.21), & # 0.
Lemma 8.2, (8.19), (8.21), and (8.23) imply that

Pp(x) =y.
By Proposition 8.1, (8.4), (8.20), (8.27), and (8.28),
Iz = ylI* = llz — Pp(x)|I?
<z —xII> = Ilx =yl

It is clear that (8.29) implies (8.23).
It follows from (8.8) and (8.19) that

[fj ()] < M.
Relations (8.9), (8.19), and (8.21) imply that

I§1l = My —2,
Il = M — 1.
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(8.22)

(8.23)

(8.24)

(8.25)
(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

8.31)
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By (8.19)—(8.21),

—A = fi() = fj(x) = (5,2 —x) = —llllllz — x|
> —lI€I(4M + A)

and

Il > A4M + A)~". (8.32)
Relations (8.18), (8.21), and (8.32) imply that

Il = gl —8 > AdM + )~ =35

>27'AuM + A7 (8.33)
In view of (8.33),
1 0.
Let
u € B(x — fj(x)||l||_2l, 3). (8.34)

It follows from (8.22), (8.30), and (8.34) that

lu —yll <8+ Illx — £~ — yll
< S+ IfNENIT2E = FCONNT2
<8+ MolllEIN2E — 111211 (8.35)

In view of (8.18), (8.21), (8.32), and (8.33),

IIEN2E — WEI~220 < W20~ 00 — €L+ DENTNEN™> — 1201~
< N2 = &L+ 0202060 > — g
< 217208 + NEN~" 81N + €]
< 2172800+ 161 QIEN + )1 < 4811~
< 165(4M + A)? A2 (8.36)

Relations (8.35) and (8.36) imply that

lu— yll <8+ 168MoA"2(4M + A)?
=5(1 + 16MyA™2(4M + A)?). (8.37)
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It follows from (8.29) and (8.37) that

lu —zll < llu—yll+Ily—zl
<z = x|l +8(1 4+ 16MyA™2(4M + A)?). (8.38)

This completes the proof of Lemma 8.4. O

8.4 Proof of Theorem 8.3

In view of (8.7), there exists
ze BO,M)NC. (8.39)
Relations (8.14) and (8.39) imply that
llxo —zll <2M. (8.40)
Set
€ = 0. (8.41)
We show that for all integers i > 0,
i
lz —xill <2M + A1)y €. (8.42)
j=0
By (8.40) and (8.41), inequality (8.42) holds fori = 0.

Assume that i > 0 is an integer and (8.42) holds. It follows from (8.12), (8.39),
(8.41), and (8.42) that

v
il < 3M + A1) ¢
j=0
o0
<3M+ A1) € <3M+ A. (8.43)
j=0

If fs)(x;) < A, then by (8.15) and (8.42),

Xi+1 = Xi,
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i+1
lz = xip1ll S2M + A1) €.
j=0
Assume that

fsi(xi) > A.

In view of (8.10), (8.11), (8.16), (8.17), (8.39), (8.42), (8.43), and Lemma 8.4
applied with x = x;, j = §(i),8 = €11, A = A, u = xp41,§ = I,

i+1
IXk+1 — 2l < llxk — zll + €141 <2M + Ay Zéj-
j=0
Thus (8.42) holds for all integers i > 0.
By (8.12), (8.39), and (8.42), for all integers i > 0,
lz —xill <2M + A,
llxill <3M 4+ A. (8.44)

Let i > 0 be an integer. It follows from (8;10), (8.39), (8.43), and Lemma 8.4
applied with x = x;, j = S@(), § = €i+1, A = A, u = xij41, § = [; that the
following property holds:

P2) if
Ssy(xi) > A,
then
lxit1 — zll < llxi — zll + €414

and there exists y; € X such that

lxiv1 — yill < €141, (8.45)
lyi — zlI* < i — 2l> = llxi — vill*. (8.46)

Assume that
fS(,')(x,') > A. (8.47)

Property (P2) and (8.47) imply that there exists y; € X satisfying (8.45) and (8.46).
By (8.39), (8.44), and (8.46),
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Iy —zll < llx; —zll <2M + A,
lyill <3M + A.
It follows from (8.44), (8.45), and (8.48) that
Hlxier — 2l = Iy — zI1?|

< lxipr —zll = lyi — 2l (lxier — 2l + llyi = zID

<2@2M + Mlxi+1 — yill <2601 A412M + A).
By (8.44), (8.45), and (8.48),

i — yill* = llxi — xi1 117
< e = will = o — xier Al — yill + Nl — xi1 1D
< xier = yilldlx =zl + Nz = yill + llxi — zll + llz — xi1 )
<4(; A+ DM + A).
It follows from (8.46), (8.50), and (8.51) that

Ixit1 — 2zl < llyi — zlI* + 2641 A12M + A)
<z —xi 1% = llxi — yill* + 264141 2M + A)

2
I

2
<z = xilI” = llxi — xi1ll

+4€;i1A12M 4+ A) + 2641 A12M 4 A)

= |lz — x> = llx; — xi111> + 6€i11 A1 2M + A).

Thus we have shown that the following property holds:
(P3) if

Fsiy(xi) > A,
then
Irier = 2I® <z = xil? = % = xis1I? + 641 A1 M + A).
Assume that an integer N > 0 and that

|xn41 — xnll <poforn=N,....,N+p—1.
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(8.48)

(8.49)

(8.50)

(8.51)

(8.52)
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This implies that for all ny, ny € {N, ..., N + p},

X0, = Xny | < Pyo- (8.53)

Leti € {1,...,m}. By (P1), thereisq € {N,..., N + p — 1} such that

S(g) =i. (8.54)
We show that
fi(xq) = fs(xq) < Ay (8.55)
Assume the contrary. Then
fs@)(xg) > A. (8.56)

By (8.17), (8.52), and (8.56),

70 = llxg+1 — xgl
-2
I fsi@) ) llg ™" lg Il — €g41.

Y0 + €1 > Alllg 172Nl > AlllglI ™" (8.57)
By (8.16) and (8.56), there exists
& € fs(g)(xg) (8.58)
such that
1€ — Igll < €q1. (8.59)
In view of (8.9), (8.44), and (8.58),
5q1l < My —2. (8.60)
In view of (8.11), (8.59), and (8.60),
gl = My — 1. (8.61)
It follows from (8.11), (8.57), and (8.61) that

Yo +é€gi1 > AM; — 17!
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and
Y > AM; — 1) — 4
>M7'A-27" M AUM + AT =27 am

This inequality contradicts (8.13). This contradiction we have reached proves (8.55).
Letn € {N,..., N 4+ p}. It follows from (8.9), (8.44), and (8.53)—(8.55) that

JiGen) < fsq)(Xg) + | fsq)(xn) — fsq) (xg)]
<A+ My —=2)[xn — xgll
<A+ pyo(Mi —2),
filxn) = A+ pyo(M; —2) <24
forn=N,...,N + pandallintegersi =1, ..., m.

Thus we have shown that the following property holds:
(P4) if an integer N > 0 and (8.52) holds, then

filxn) <24
forn =N,..., N+ pandallintegersi =1, ..., m.

Set

Eo={ne{0,1,....}: llxp — xus1ll > Yo} (8.62)
Er={ne{0,1,...}: {n,....n+ p—1}N Ey # %) (8.63)

Property (P3), (8.12), (8.15), and (8.40) imply that for any natural number 7,

4M? > ||z — xoll?

2 2
> llz = xoll” — llz — xnll

n—1
= [z = xil* = llz = xig111%]
i=0
n—1
> llxi — xig1I* — 6QM + A)Aj€iyi]
i=0
n—1

= Z lx; — xip1 12 — 6Q2M + A)A
i=0
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and

AM? + 62M + A)A

n—1
2
> Y llxi = xiqall
i=0

> ygCard({i €{0,....,n—1}: |lxi — xip1] > yo}),
Card({i €{0,...,n—1}: llxi — xit1ll > yo}) = vy 2(4M* + 6(2M + A) A).

Since the inequality above holds for any natural number n, we conclude that

Card(Ep) = Card({i € {0, ..., n — 1} : |lxi — xi+1ll > o})
< ¥y 2(4M? +6(2M + A)A).

By the relation above and (8.63),

Card(E1) < p Card(Ep)
< pyy 24M? +602M + A)A).

Together with (8.62), (8.63), and property (P4) this completes the proof of Theo-
rem 8.3. O

8.5 Dynamic String-Averaging Subgradient Projection
Algorithm

In this chapter we study convergence of dynamic string-averaging subgradient
projection algorithms for solving convex feasibility problems in a general Hilbert
space. Our goal is to obtain an approximate solution of the problem in the presence
of perturbations. We show that our subgradient projection algorithm generates a
good approximate solution, if the perturbations are summable.

Let us now describe the convex feasibility problem studied in the chapter and
dynamic string-averaging subgradient projection algorithms which will be used for
its solving.

Let m be a natural number and f; : X — RY,i =1, ..., mbe convex continuous
functions.
Foreachi =1,...,m set

Ci={xeX: fix) =0},
C =ML Ci=nL{reX: fi(x) <0}
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Suppose that
C #0.

Recall that a point x € C is called a solution of our feasibility problem. For a
given € > 0 a point x € X is called an e-approximate solution of the feasibility
problem if

filx) <eforalli=1,...,m.

In this chapter we apply a dynamic string-averaging subgradient projection
method with variable strings and weights in order to obtain a good approximative
solution of the feasibility problem.

Next we describe the dynamic string-averaging subgradient method with variable
strings and weights.

By an index vector, we mean a vector t = (t,...,t,) suchthatt; € {1,..., m}
foralli =1,..., p.
For an index vector t = (11, ..., ty) set
p) =gq. (8.64)

Denote by M the collection of all pairs (§2, w), where £2 is a finite set of index
vectors and

w : £ — (0, 00) be such that Y " w(r) = 1. (8.65)
tef2
Fix a number
Ae0,m N (8.66)
and an integer
g =m. (8.67)

Denote by M., the set of all (£2, w) € M such that

p) <q forallt € £2, (8.68)
w(t) > Aforallt € 2. (8.69)
Foreach x € X,eache > 0,eache > 0,and eachi € {1, ..., m} set

Ai(x,€,e) = {x}if fi(x) <€ (8.70)
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and if f;(x) > €, then set

Ai(x,E,€) = {x—fi)II72 : 1 € 3fi(x)+B(0,€), [ #0}+B(0,e).

(8.71)

Letx € X andlett = (11, ..., tp()) be an index vector, € > 0, € > 0. Define

Ao(t,x,€,€) ={(y, 1) € X x R': thereis a sequence {y,-}f:(tg C X such that

Yo = X,
foreachi =1,..., p(?),
Vi € A (Yi-1, €, €),

Y =Yp@),
A=max{lly; —yi—ill: i=1,..., p(®)}}.

Letx € X, (2, w) € M, e >0, € > 0. Define

A(x, (2,w),&,€) ={(y,A) € X x R' : there exist
(ytv)\'f) S Ao(tax7é7€)a e Q

such that

by =Y w®yl <e,

tes2

A =max{A; : t € 2}}.

Fix a natural number N.

(8.72)

(8.73)
(8.74)
(8.75)

(8.76)

(8.77)

(8.78)

Suppose that M > 1, My > 0, M] > 2, A > 0,and A € (0, 1] be such that

BO,M)N{xeX: filx) <0,i=1,...,m}#40,
.fl(B(O93M+A)) C [_M()?Mo]y l= 15"'7m7
[fi(w) — fi()| < (M —2)|lu — v
forallu,v € B(O,3M + A+ 1)andalli =1,...,m.
Let

Ao =2""A@M + A" MINTY
Al =14 16MyA™>(4M + A)?,

w=4"AN+ 1D MG

(8.79)
(8.80)

(8.81)

(8.82)
(8.83)
(8.84)
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Theorem 8.5 Assume that

{ei}72; € (0, Aol, (8.85)
e <(Mg+D7'A, (8.86)
i=1

{(2i, w2, C M, (8.87)

satisfies for each natural number j,

(h.omy U Uttty (8.88)
x0 € B(0, M), (8.89)
()22, C X, (M), € [0, 00) (8.90)

satisfy for each natural number i,
(xi, Ai) € A(xi—1, ($2i, wi), A, €). (8.91)
Then

llxi|l < 3M + A for all integersi > 0,
Card({n €0,1,...}: max{Ajy1: i=n,....,.n+N—1} > y})
I Ny 22M + A)2RM +TA).

Moreover, if an integer n > 0 satisfies

A<y, i=n,...,n+N-—1,

then, for all integersk =n, ..., n +Nandeachs =1,...,m, fs(xp) < 2A.

8.6 Proof of Theorem 8.5

By (8.79), there exists
z€ BO,M)NC. (8.92)
In view of (8.89) and (8.92),

lxo —zll < 2M. (8.93)
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Set
€y = 0.
Let n be a natural number. In view of (8.91),
(Xn, An) € Axn—1, (£2, wn), A, €,).
By (8.76)—(8.78) and (8.95), there exist
n,ts Anyt) € Ao(t, Xp—1, A, €p), t € §2
such that

e = D waynell < €n,

tef2,

Ap =max{A,;: t € £2,}.

It follows from (8.72)—(8.75) and (8.96) that for each t = (1, ..

exists a sequence {yy i}f’:(lg C X such that

Yn,t,0 = Xn—1,
Yn,t,i € At,- (yn,t,i—la Ayen), 1=1,...,p(),
Yn,t = Yn,t,p(t)>

Anp = MaxX{|| Yn,ri — Ynpi-1ll 2 i =1,..., p(D}
Let

t=(t,....1p1) € 2p.
Assume that an integer

je{o, ..., p@)— 1}
In view of (8.100),

Ynt,j+1 € Atj+1(yn,t,jv A, €).

If

ftj+1 (yn,t,j) < A,

(8.94)

(8.95)

(8.96)

(8.97)

(8.98)

< Ipr)) € §2, there

(8.99)
(8.100)
(8.101)
(8.102)

(8.103)
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then (8.70) and (8.103) imply that

Yn,t, j+1 = Yn,t,j- (8.104)
Assume that
St Onej) > A (8.105)
and
Iynejll <3M + A. (8.106)

It follows from (8.71), (8.82), (8.83), (8.85), (8.92), (8.103), (8.105), (8.106), and
Lemma 8.4 applied withd = €,, A = A, X = yu 1 j, U = Yn s, j+1 that

Iynrj+1 =2l < Iynr.; — 2l + (1 4+ 16MoA™2(4M + A)?)
< yns,j—zll + € Aq

and that there exists

Vni,j € X
such that
1 Vn.e,j — Yn,j+1ll
< (1 + 16MoAT>(4M + A)?) < €, 4
and

~ 2 2 ~ 2
Vnej—zll” < Wynej — 2l = 1Ynej — Yna il
Thus we have shown that for each natural number n, each
t= (..., 1) € §2y

and each j € {0, ..., p(¢) — 1}, the following properties hold:
(P5) if

ft_,'+1 (yn,t,j) < A»

then

Ynt,j+1 = Yn,t,js
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(P6) if
ft,-H()’n,t,j) > A
and
Yn,,jll <3M + A,
then
yne,j+1 =2l < 1yne,j — zll + €2 A1 (8.107)
and there exists
yn,t,j eX
such that
1Vn.e.j = Ynrj+1ll < €nAn (8.108)
and
UFncj = 2 < Wy = 20 = Wymrj = Fur 1% (8.109)

Assume that n > 0 is an integer and that

n
lz —xull <2M +(A1G+ 1)) e (8.110)
i=0

(Note that in view of (8.93) and (8.94), inequality (8.110) holds for n = 0.)

Let t = (t1,...,1pw)) € £2y41. By induction we show that for all j =
0,...,p@),
n
Iz = Yot S2M + (A1G+ 1) )€ + jentiAr. (8.111)
i=0

In view of (8.99) and (8.110) inequality (8.111) holds for j = 0.
Assume that j € {0,...,p() — 1} and (8.111) holds. It follows
from (8.86), (8.92), and (8.111) that

Iz = Ynsrejll <2M + A, |lypg14,jll =3M + A. (8.112)
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Properties (P5) and (P6), (8.111), and (8.112) imply that
|yt j+1 = zll < Nynt1ej — 2l + €nr141
n
<OM+ MG+ DY €+ G+ Den14r
i=0

Therefore (8.111) holds for all j =0, ..., p(¢) and in view of (8.68) and (8.101),

n
Insrs =2l 2M + (MG + 1)) € +Gens1 4. (8.113)
i=0

By the convexity of the norm, (8.65), (8.97), and (8.113),

lz = Xns1ll

<llz= Y Wt Oyurrdll + 11 Y wWar1t@¥nsis — Xapa

1€2+1 1€82y41

=< Z Wyt 1Oz = Ynt1.ell + €nt1

16824
n
<2M 4 (A1G+ 1) Y6+ (A + Denp.
i=0
Thus we have shown by induction that the following property holds:

(P7) forall integers n > 0, allt = (t1,...,1p1) € 2py1andall j =0,..., p(1),
relations (8.110), (8.111), and (8.113) hold.

Property (P7), (8.86), (8.92), (8.110), (8.111), and (8.113) imply that for all
integersn > 0,allt = (t1,...,1p1) € 2441 andall j =0, ..., p(@),

lz—xpll <2M 4+ A, |lx,ll <3M + A, (8.114)

lz = Yna1,,jll S2M + A, |yng10,ill <3M + A, (8.115)

Iz = yn+1ell S2M + A, Nlyng1:ll <3M + A, (8.116)

Letn > O be an integer, t = (f1,...,1p) € 241 and j € {0,..., p(t) — 1}.
Assume that

Jtio Ont1,e,5) > A. (8.117)

Property (P6), (8.115), and (8.117) imply that there exists

Ytz €X
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such that
Fnt1,e,j = Yurtejrill < €14 (8.118)
and
ISt = 20 < Wyt = 20 = Dyns1) = Fatrn I (8.119)
In view of (8.92), (8.115), and (8.119),
lz = Yna1.0,jll S2M + A, | Ypg1,0,jl <3M + A (8.120)

By (8.115), (8.118), and (8.120),

2 = 2
MY+t 41 = 217 = NYnt1,e.5 — 27|

S Mynsrej+1 = 2l = 1Vn+1,e — 2+t j+1 — 2l + 1 Yns1e — 2D
<2C2M + D ynt1.j+1 — Ynt+1.2,l
<202M + A)ens1 Al (8.121)

By (8.115), (8.118), and (8.120),

Wynste.j = Yntt ot P = Dntrej — Fnrra 1]
< Myntrej — Yntvej+1ll = 1nt1ej — Ynt1.,41l]
XIYnt1,0,j = Ynttoe, j+1ll F 1Ynst,e,j — It 71D
<4CM + MDlynt1.ej+1 — Int+1.ejll
<42M + A)ep+14. (8.122)

It follows from (8.119), (8.121), and (8.122) that
Inste a1 — 20 < IFntrnj — 2l +2QM + Aens1 Ay
< gt — 20 = Instr — Fnsraj 12 +2QM + Aénp1 A
< Mgt — 20 = Inttr = Ynste 41 lF + 6Q2M + A)ent1 Ar.
Thus if
flj+] (yn+l,t,j) > A,
then

2
| Yn+1,e,j+1 — 2l

< Iyntj — 212 = U¥nt1,j — Ynrir, jr1 12 +6Q2M + A)enir Ay
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Together with property (P5) this implies that for each integer n > 0, each r =
(t1, .-, tp@r)) € 2p41andeach j € {0, ..., p(¢) — 1},

1Yt 1 — 2l
< vnttrg = 20 = Iynstig = Ynsra 41> +6Q@M + Aen1 Ay (8.123)
Set
Eo={ne{0,1,...}: kuy1 > 1) (8.124)
Let

n € Ey. (8.125)

By (8.98), (8.102), (8.124), and (8.125), there exist T = (11, ..., Tp(r)) € §2,+1 and
s €{0,..., p(r) — 1} such that

Y0 < Antl = Anttr = IYntt,00s — Ynrtosttll (8.126)
In view of (8.123) and (8.126),
Iynstmss1 = 2% < Iynties — 27 — v +6@M + Aen1 Ay (8.127)
It follows from (8.68), (8.99), (8.101), (8.123), and (8.127) that

2 2
lxn = 2l1* = lynt1.0 — 2l

2 2
= ||yn+l,r,0 —z|” = ”yn—i-l,r,p(t) -zl
p(v)—1
— 2 2
= Z Uynttej = 2l1" = Iyns1ej4+1 — 2lI7]
Jj=0

> ¢ — 62M + A)eny1 A p(T)
> y¢ — 6Q2M + A)en1417. (8.128)
By (8.68), (8.99), (8.101), and (8.123), for each t = (11 . ... tp()) € 2ns1.

2 2
ln = zl1* = lyn+1. — 2l

2 2
= llyn+1,6,0 = 21 = IYnt1,0,p) — 2l

p(H—1
— 2 2
= > ynrreg = 27 = Iynra+1 — 2]
—

> —6Q2M + A)éni1A1g. (8.129)
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By convexity of the norm, (8.65), (8.97), (8.114), and (8.116),

2 2

Wxner =212 =11 D) w1 @yngr — 2l
1€8241

<xarr =zl =1 D wap1 (Oynrrs —zll|
tegnJrl

x(ns1 =2l + 11 Y war1t@ynsre — 2l

IEQ)H—]
< lxnpr— Y wapt O ICM + A+ Y w1 O llynsrs — 2l
1€82, 41 1€, +1
< 2€,412M + A). (8.130)

It follows from the convexity of the function | - ||%, (8.65), (8.69), (8.128),
and (8.129) that

2
1Y wapr (Oynyre — 2l

teﬂn-H

2
< > WartOllynsre =zl

€241
= Wo i1 (O Yns1r — 2l
D Wit Ollyngrs — 2P 1 € 2ugr \ {7}
< wop 1 (O (xa — 2l = ¥ + 6Q@M + A)eny141§)
+ D a1 O lxn — 21> + 62M + Aeny1813) 1 1 € 2yp1 \ {T})
< oxn = zlI* + 62M + Aeni141G — Ay (8.131)
In view of (8.91), (8.124), (8.125), (8.130), and (8.131),
IxXn41 = 2I* < lxn — 2l = Ayg +2@M + A)en1(3G A+ 1) (8.132)

for every n € Ey.
Let n > 0 be an integer. By (8.68), (8.99), (8.101), and (8.123), for each ¢t =
(tlv DR} tp(l)) € -Qn+1,

2 2
X0 = 2l1" = l[Yns10 = 2l

2 2
= [IYa+1,6,0 — 217 = IYn+1.6.p¢0) — 2l
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pt)—1

2 2

= > Mynsreg — 21 = Iynsrejrn — zlP]
j=0

> —602M + A)ey11419.
By the convexity of the function || - |2, (8.65), and (8.133),

2
1> wapr (Oynsr — zll

te-Qn-H

2
< > WartOllynsre =zl

legn+1

< Y wart Ol — 2l” + +6(2M + A)ent1Aig]

168241

= |lxy — zlI* + 62M + A)éns141G.

In view of the convexity of the norm, (8.97), (8.114), and (8.116),

2 2
Wxnr = zIP =11 D w1 @ynsrs — 2l
1€2, 41

<= Y Wapr (OYnrdl
t69n+1

<1 =zl + 1Y was1 Oynrrs — 2D
tEQn-H

< €41(4M +2A4).
Together with (8.134) this implies that

241 — zII?
< |lxp — zI* + 6Q2M + A)en141G + €nt1 (4M + 24)
= llxn — 21> + 2CM + Aen1(341G + 1).
Let n be a natural number. By (8.86), (8.93), (8.132), and (8.135),
QM + A)* > |lxo — z|I?

2
> llxo — zll — llxn — zll

303

(8.133)

(8.134)

(8.135)
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n—1

2 2

= (lxe = 2> = ks — 201
k=0

= lxx = zl* = lbeesr — 2l* : k€ EgN [0, n— 1]}
+ ) Ul = zl* = v —zl* s k€ {0.....n— 1)\ Eo}
> Z{Ayg —202M + ANexs13GA + 1) : ke EgN[0,n — 1]}

+Z{—2(2M+A)ek+1(3A1c} +1): kef0,...,n—1}\ Eo}

n—1
= AygCard(EqN[0.n — 11) = O ex41)(4M +24)(3G A1 + 1)
k=0

> AydCard(Eg N [0.n — 1) — (Y &)(4M +24)(3G A1 + 1)

i=1

and
Card(EqgN[0,n —1])

< A7y @M + A+ @AM +24) (3 A + DAA G+ DT
< A7 'yP@eM + HRM +74).

Since the relation above holds for any natural number n we conclude that
Card(Eo) < A7y, 22M + A)2M +74). (8.136)

Set
Ei={ne{0,1,....}: {n,....,n+ N — 1} N Ey # ?}. (8.137)

In view of (8.136) and (8.137),
Card(E;) < NCard(Eg) < NA™'yy22M + A)2M +74). (8.138)
Assume that an integer n > 0 satisfies
n¢kE;. (8.139)
By (8.124), (8.137), and (8.139),

(n,....n+N—1}NEy =0,
a1 <o, k=n,...,n+N—1. (8.140)
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It follows from the convexity of the function || - ||, (8.65), (8.68), (8.85), (8.97)-
(8.99), (8.101), (8.102), and (8.140) that for each integer k € {n,...,n + N — 1},
eacht = (t1,...,tp(r) € S2ky1,andeach j € {0, ..., p(r) — 1},

YO = Akl = Mkt = V41,041 — Yi+1,,5 1 (8.141)

lxx = yes1,0,; 1l < Jjvo,

lxx = yk1,6,j+11l < (G + Dyo, (8.142)
lxx — yea1.4l < qvo, (8.143)
lxx — xq1ll

Slx— Y0 w1 O yigral

1€82%+41

HY D w1 Ok — Xkl

1€82% 41

< Y wen Olx = Yernall + €xg
1E€82)41

< gyt €k+1 < qyo + Ao. (8.144)
In view of (8.144), for each k1, k; € {n, ..., n + N},
X%, — Xi, |l < N(@yo + Ao). (8.145)
Lets € {1, ..., m}. By (8.88) there exist

ke{n,....n+N—1}, t =1, ..., tp)) € Rut1, j €1{0,..., p(t) — 1}

(8.146)
such that
S =1j4+1. (8.147)
It follows from (8.103) and (8.146) that
Y1, j+1 € Aty Okt1,8,j5 A, €k41)- (8.148)
Assume that
S OGk+1,,) > A. (8.149)

By (8.71), (8.82), (8.84), (8.85), (8.141), (8.148), and (8.149),

Y0 = ks j+1 = Y jll = Sy Okt1,0,j) — €15

ftj+1(yk+l,t,j) <y + A < A.
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This contradicts (8.149). The contradiction we have reached proves that

A= [t Okt1,,) = fsOkti,e,5)- (8.150)
By (8.68), (8.81), (8.114), (8.115), (8.142), and (8.150),
Fs ) = fsOkre, ) + 1 fsGan) = fsOrt1,e,5)]

<A+ My —2)Ixk — Yet+1.0.5
<A+ (M1 —2)gy. (8.151)

It follows from (8.82), (8.84), (8.114), (8.145), and (8.151) that for each p €
{n,....,n+ N — 1},

fs(xp) < fsGp) + |fs(xp) — fs (i)
<A+ My —2)gyo + (M1 —2)|lxp — xill
< A+ My —2)gyo + (Mi —2)N(Gyo + Ao)

<A+ (M —2)[Gy(N + 1)+ Nyy) <24

foralls =1, ..., m. Theorem 8.5 is proved.
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