
 COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

A ndroid Best Practices shows you how to make your Android apps stand out from the crowd
with great reviews. Why settle for just making any Android app? Build a brilliant Android app

instead that lets your users praise it for ease of use, better performance, and more.

Using a series of examples apps which gradually evolve throughout this book, Android Best
Practices brings together current Android best practices from user interface (UI)/user experi-
ence (UX) design, test-driven development (TDD), and design patterns (e.g., MVC) to help you
take your app to the next level.

In this book you’ll learn how to:

• Use Android design patterns for consistent UI experience on many devices

• Use agile techniques such as test-driven development, behavior-driven development,
and continuous integration

• Improve the speed and overall performance of your app

• Organize an Android app using design patterns such as MVC/MVP

• Create and consume REST and SOAP web services

Designing and developing an app that runs well on many if not all the leading Android smart-
phones and tablets today can be one of the most daunting challenges for Android developers.
Well, this book takes much of the mystery out of that for you.

After reading and using Android Best Practices, you’ll become a much better Android app
designer and developer, which in turn can make your apps better placed and more successful
in the market place.

Android
Best Practices

Godfrey Nolan | Onur Cinar | David Truxall

Create Android apps that stand out from the crowd

Companion

eBook
Available

Nolan
Cinar

Truxall
Android Best Practices

SOURCE CODE ONLINE

Android

2585757814309

ISBN 978-1-4302-5857-5
54499

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Authors���xi

About the Technical Reviewers��xiii

Chapter 1: Before You Start■■ ��1

Chapter 2: Android Patterns■■ ���5

Chapter 3: Performance■■ ��43

Chapter 4: Agile Android■■ ��75

Chapter 5: Native Development■■ ��93

Chapter 6: Security■■ ���121

Chapter 7: Device Testing■■ ���147

Chapter 8: Web Services■■ ���165

Index��211

1

Chapter 1
Before You Start

In late 2011 as I got more into Android development, I tried to look for a book that I hoped would
take my development to the next level. I’d already completed a couple of apps and wanted to
know what everyone else was doing that I might have missed. Sure, there was a wealth of Android
documentation from Google, but the Android docs had some odd recommendations; they suggest
using jUnit3 for my unit testing, which felt like going backwards. I already knew there were existing
jUnit4 testing frameworks for Android, such as Roboelectric, so maybe there were other cool things
out there that I’d missed that I simply didn’t know about that could really help me write better code.

This book is an attempt to pull together the research on the best practices that developers have
created for the Android platform in the hope that you can find all the information you need in one place.

Once you’ve written an app or are part of an Android team of developers, it quickly becomes clear
that Android development, just like any other language or environment, can get messy and inefficient
if you don’t think about how you’re going to get organized. This book will help you take those steps
to become a well oiled, productive team.

You may want to consider reading this book if you want to do one or more of the following:

Get better at Android Development by looking at best practices sample code.	

Write apps that are easier to extend and maintain.	

Write more secure apps.	

Learn how to write not only the client side of the app but also its often ignored 	
server side.

Introduction to Android
Android is a Linux-based open source operating system for smartphones. The company started
back in October 2003 and was acquired by Google in August 2005. The HTC Dream, released in
October 2008, was the first phone to run Android.

2 CHAPTER 1: Before You Start

From a developer’s perspective typically Android apps are written in Java. Google provides an
Android SDK which provides the necessary libraries and applications to convert the Java code into
a format that can run on Android phones. Most people use Eclipse or the command line to create
Android apps. The Android Studio has recently emerged as an alternative to Eclipse and is likely to
become the IDE of choice over the next year or two.

Android is the premier operating system for mobile devices, with over 75% of the world’s devices
and 52% of the US market running on it.

In my own personal experience there was a time when Android development was the redheaded
stepchild. All development was first done on iOS and then developed in Android once the app
became successful. This has changed now that Android phones have such a large market share.

Who Should Read This Book?
This book is designed to be approachable by developers who have any level of familiarity with
Android. However, your degree of experience will dictate which parts you find most useful. If you’re
entirely new to Android development, or have only tinkered here and there, this book should help
you develop great habits and practices for your future Android work. This is especially true if you find
yourself doing more and more work with Android. The approaches and tools for testing, performance
profiling, and so forth are great for instilling productive habits and avoiding some classic pitfalls and
anti-patterns of good development. If you end up never saying “I’ll write the tests later,” then this
book has served you well.

For the intermediate or advanced Android developer, this book will walk you through details of the
current state of the art in Android tool chains; you’ll see how best to refactor and improve existing
code and applications, and it will push you to embrace some of the advanced topics you might
have put off until now. If you’ve never thought of NDK-based development, you’ll learn how to do it
right the first time. If you’ve never had the wherewithal to do multiplatform, multihandset testing and
modeling, you’ll take the plunge and see what you’ve been missing all this time.

What You Need Before You Begin
To get the most out of this book, having a few of the housekeeping items sorted out up front will
remove distractions later, and it will let you get straight to implementing the tools and techniques
you’ll learn in each chapter.

An Actual Android Application
To get the best return from this book it will help if you have already written one or two Android apps.
They don’t even need to have made it all the way to Google Play; but ideally it helps if you’ve gone
through the process and have real-world users who have kicked the tires on your Android app, and
you’ve made revisions based on their feedback or reviews.

3CHAPTER 1: Before You Start

A Working Development Environment
You need to have the Android SDK installed with the IDE of your choice: either Eclipse with the
ADT toolset; Android Developer Studio; or for the more adventurous, one of the exotic third-party
development environments like Intel’s Beacon Mountain. You’ll need an actual device to follow along
with some of our examples, but the emulator will do for most of the code in the book.

All the Bells and Whistles
In addition to the stock Android Developer Studio, Eclipse with ADT, or other IDE, you should also
ensure that you have the optional libraries available for the Android SDK. These include the SDK
Build-tools, the Google APIs associated with your SDK release level, Android Support Library,
and Web Driver and USB driver if available for your operating system.

As each chapter unfolds, you will also be introduced to specific additional tools for unit testing,
handset diversity testing, performance profiling and so on. We’ll discuss those tools one by one in
the relevant chapters.

Source Code for the Sample Application
The Android app we’re using in each of the chapters is a simple to-do list and task reminder
application. You should download the code from www.apress.com/9781430258575/ so you can follow
along. We’ll be using the to do list app to show best practices for Android walking you through
design patterns, performance issues, security problems and more in each chapter.

What’s in This Book
Here’s a chapter-by-chapter summary of what you can expect over the course of this book:

Chapter 2: We begin in Chapter 2 with Patterns. You may already have some
familiarity with Android’s user interface (UI) patterns, which help create a consistent
user experience (UX) across multiple devices. You’ll also learn about how you can
use other libraries such as ActionBarSherlock and NineOldAndroids to help your
users on older devices get a more up-to-date Android experience.

Chapter 3: Following on from UI and UX patterns, Chapter 3 looks at implementing
the MVC and MVVM developer design patterns as an alternative to the standard
Android design before we dive deeply into Android Annotations and how that can
help you create clean understandable Android code.

Chapter 4: Chapter 4 takes a close look at the basic Agile elements of test-driven
Development (TDD), behavior-driven design (BDD), and continuous integration (CI)
that you can use during development. We look at the unit testing available in the
Android SDK and the benefits of looking further afield at tools such as Roboelectric,
Calabash, and Jenkins and how you can use them to create a more efficient Agile
development environment.

http://www.apress.com/9781430258575/

4 CHAPTER 1: Before You Start

Chapter 5: Android allows you to incorporate C++ code directly using the Android
NDK, but there can be a significant performance hit because of the context switch
between Java and C++. There are still times, however, when it makes more sense to
use new or existing C++ code in Android without porting it to Java. Chapter 5 looks
at the reasons when C++ is the right answer and the best way to approach using it
for Android.

Chapter 6: Chapter 6 is an up-to-date look at several industry-standard Top 10
security lists that have emerged to give you a much better idea on the do’s and
don’ts of Android security. The chapter ends with a new list that combines the best
elements of Google and OWASP’s top 10 lists.

Chapter 7: Device testing can be the bane of Android development. Whether you
want to create your own testing platform or using one of the many online services
Chapter 8 looks at practical approaches to tame device fragmentation.

Chapter 8: For most Android applications in the business world, the Android part
of the application acts as a client to a back-end server. Information is usually but
not always sent as JSON via a REST API. Chapter 8 explores in depth how to talk
to both REST and SOAP APIs. You’ll learn how to create a REST API and why the
Richardson Maturity model is important for the longevity of your API. You’ll also
create your own web services using Google App Engine.

5

Chapter 2
Android Patterns

We begin in Chapter 2 by looking at Android design patterns. In my mind this can mean two things,
user Interface design and architecture; and we’ll look at both here. In the “UI Design Patterns”
section we’ll take a look at Android UI guidelines that Google released around the time Ice Cream
Sandwich was released.

You don’t have to follow the out-of-the-box programming structure when you’re coding Android
applications; there are MVC, MVVM, and DI alternatives. And in the second half of this chapter,
“Architectural Design Patterns,” we’re going to look at some of the alternatives to classic Android
programming design.

UI Design Patterns
Before Ice Cream Sandwich, Android design was not very well defined. Many early apps looked
very similar to the example shown in Figure 2-1. This app has built-in Back button functionality and
iOS-like tabs because more than likely it was a port of an existing iOS app; the app even has a
name, iFarmers, that belongs in the iTunes app store.

6 CHAPTER 2: Android Patterns

I don’t want to single out the iFarmers app, as there are many examples of similar apps on Google
Play. I’m sure the app developers pushed for more of an Android design, and no doubt at the
time they were not able to point to a design resource and say it was the industry standard way of
designing an Android app; they were probably told to just get on with it.

These days, the Android platform is less about iOS conversions and more about leveraging the
massive Android user base. Google has also produced a design guide, available at
http://developer.android.com/design/get-started/principles.html, and those principles are
what this section is going to explain.

To help demonstrate different best practices we’re going to be using a simple To Do List app
throughout this book. So to begin with, let’s look at the code for the sample app; at the moment it
has a splash screen, shown in Figure 2-2, and a to-do list screen to add items, shown in Figure 2-3.

Figure 2-1.  iFarmers is a typical early Android app

http://developer.android.com/design/get-started/principles.html

7CHAPTER 2: Android Patterns

Figure 2-2.  The TodDoList app splash screen

Figure 2-3.  The app’s main To Do List screen

8 CHAPTER 2: Android Patterns

The complete code for this app is provided with the book’s downloadable source code, but for our
purposes here there are two Java files we will work with, TodoActivity.java, shown in Listing 2-1,
and TodoProvider.java, which you’ll see in Listing 2-2.

Listing 2-1.  TodoActivity.java

package com.logicdrop.todos;
 
import java.util.ArrayList;
import java.util.List;
 
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import android.os.StrictMode;
 
public class TodoActivity extends Activity
{
 public static final String APP_TAG = "com.logicdrop.todos";
 
 private ListView taskView;
 private Button btNewTask;
 private EditText etNewTask;
 private TodoProvider provider;
 
 private OnClickListener handleNewTaskEvent = new OnClickListener()
 {
 @Override
 public void onClick(final View view)
 {
 Log.d(APP_TAG, "add task click received");
 
 TodoActivity.this.provider.addTask(TodoActivity.this
 .getEditText()
 .getText()
 .toString());
 
 TodoActivity.this.renderTodos();
 }
 };
 

9CHAPTER 2: Android Patterns

 @Override
 protected void onStart()
 {
 super.onStart();
 }
 
 private void createPlaceholders()
 {
 this.getProvider().deleteAll();
 
 if (this.getProvider().findAll().isEmpty())
 {
 List<String> beans = new ArrayList<String>();
 for (int i = 0; i < 10; i++)
 {
 String title = "Placeholder " + i;
 this.getProvider().addTask(title);
 beans.add(title);
 }
 }
 }
 
 EditText getEditText()
 {
 return this.etNewTask;
 }
 
 private TodoProvider getProvider()
 {
 return this.provider;
 }
 
 private ListView getTaskView()
 {
 return this.taskView;
 }
 
 public void onCreate(final Bundle bundle)
 {
 super.onCreate(bundle);
 
 this.setContentView(R.layout.main);
 
 this.provider = new TodoProvider(this);
 this.taskView = (ListView) this.findViewById(R.id.tasklist);
 this.btNewTask = (Button) this.findViewById(R.id.btNewTask);
 this.etNewTask = (EditText) this.findViewById(R.id.etNewTask);
 this.btNewTask.setOnClickListener(this.handleNewTaskEvent);
 
 this.showFloatVsIntegerDifference();
 

10 CHAPTER 2: Android Patterns

 this.createPlaceholders();
 
 this.renderTodos();
}
 
 private void renderTodos()
 {
 List<String> beans = this.getProvider().findAll();
 
 Log.d(APP_TAG, String.format("%d beans found", beans.size()));
 
 this.getTaskView().setAdapter(
 new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, beans
 .toArray(new String[]
 {})));
 
 this.getTaskView().setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(final AdapterView<?> parent,
 final View view, final int position, final long id)
 {
 Log.d(APP_TAG, String.format(
 "item with id: %d and position: %d", id, position));
 
 TextView v = (TextView) view;
 TodoActivity.this.getProvider().deleteTask(
 v.getText().toString());
 TodoActivity.this.renderTodos();
 }
 });
 }
 
}
 
TodoActivity.java controls the layout of the app, and TodoProvider.java, shown in Listing 2-2,
manages the data for the items you add to your list. In the app we’ve populated it with a list of initial
placeholder items.

Listing 2-2.  TodoProvider.java

package com.logicdrop.todos;
 
import java.util.ArrayList;
import java.util.List;
 
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
 

11CHAPTER 2: Android Patterns

import com.logicdrop.todos.TodoActivity;
 
public class TodoProvider
{
 private static final String DB_NAME = "tasks";
 private static final String TABLE_NAME = "tasks";
 private static final int DB_VERSION = 1;
 private static final String DB_CREATE_QUERY = "CREATE TABLE " + TABLE_NAME + " (id integer
primary key autoincrement, title text not null);";
 
 private SQLiteDatabase storage;
 private SQLiteOpenHelper helper;
 
 public TodoProvider(final Context ctx)
 {
 this.helper = new SQLiteOpenHelper(ctx, DB_NAME, null, DB_VERSION)
 {
 @Override
 public void onCreate(final SQLiteDatabase db)
 {
 db.execSQL(DB_CREATE_QUERY);
 }
 
 @Override
 public void onUpgrade(final SQLiteDatabase db, final int oldVersion,
 final int newVersion)
 {
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
 this.onCreate(db);
 }
 };
 
 this.storage = this.helper.getWritableDatabase();
 }
 
 public synchronized void addTask(final String title)
 {
 ContentValues data = new ContentValues();
 data.put("title", title);
 
 this.storage.insert(TABLE_NAME, null, data);
 }
 
 public synchronized void deleteAll()
 {
 this.storage.delete(TABLE_NAME, null, null);
 }
 
 public synchronized void deleteTask(final long id)
 {
 this.storage.delete(TABLE_NAME, "id=" + id, null);
 }
 

12 CHAPTER 2: Android Patterns

 public synchronized void deleteTask(final String title)
 {
 this.storage.delete(TABLE_NAME, "title='" + title + "'", null);
 }
 
 public synchronized List<String> findAll()
 {
 Log.d(TodoActivity.APP_TAG, "findAll triggered");
 
 List<String> tasks = new ArrayList<String>();
 
 Cursor c = this.storage.query(TABLE_NAME, new String[] { "title" }, null, null, null, null, null);
 
 if (c != null)
 {
 c.moveToFirst();
 
 while (c.isAfterLast() == false)
 {
 tasks.add(c.getString(0));
 c.moveToNext();
 }
 
 c.close();
 }
 
 return tasks;
 }
}
 
This is a very basic app, and the design and functionality are reminiscent of an early Android 2.x
app, or what we can call classic Android.

The layout for the To Do List screen is defined in the Layout.xml file, which is available in the book’s
resources folder and is also shown in Listing 2-3.

Listing 2-3.  Layout.xml

<?xml version="1.0" encoding="utf-8"?> (change to LinearLayout)
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/widget31"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TableRow
 android:id="@+id/row"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/tasklist"
 android:orientation="horizontal" >
 

http://schemas.android.com/apk/res/android

13CHAPTER 2: Android Patterns

 <EditText
 android:id="@+id/etNewTask"
 android:layout_width="200px"
 android:layout_height="wrap_content"
 android:text=""
 android:textSize="18sp" >
 </EditText>
 
 <Button
 android:id="@+id/btNewTask"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@+string/add_button_name" >
 </Button>
 </TableRow>
 <ListView
 android:id="@+id/tasklist"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true" >
 </ListView>
</RelativeLayout>

Holo
Sometimes it’s hard to think in terms of a contrast between the classic (2.x) design style we’ve just
seen and the modern Holo Android design (4.x), as the technology itself is so young. However, the
changes in the phone’s UI have been significant over the last couple years, so we really do need to
differentiate between the two.

And before we look at the newer approach, remember that our apps still need to account for the
relatively large proportion of users who are still on the classic phones, currently around a quarter
of your users (but that number is shrinking all the time; see http://developer.android.com/about/
dashboards/index.html). There is also an argument that we should further separate out Android
3.x from Android 4.x phones, but based on the numbers you’ll see later in Figure 7-2 in Chapter 7,
Honeycomb or Android 3.x is dead.

So what exactly does Holo Android design mean?

The following is a list of the most basic Android elements:

Action Bar	

Navigation Drawers	

Mult Pane	

We’ll focus on the Action Bar in this chapter as its changes are all-pervasive and relevant to every
application you build. There has been a move away from the hardware action bars in Android 4.x
to the software Action Bar, which is shown in Figure 2-4. This design pattern is becoming more and
more common in Android and is a difference between Android and iOS. The less-used app settings,
however, should still be found via the hardware buttons.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

14 CHAPTER 2: Android Patterns

Figure 2-5 shows the Action Bar used in conjunction with tabs, which can be useful for more
complex menu structures.

Figure 2-4.  Action Bar

Figure 2-5.  Action Bar with tabs

Figure 2-6 shows navigation drawers or swipe menus, which can be used as an alternative pattern to
action bars.

15CHAPTER 2: Android Patterns

Figure 2-7 shows our TodoList app with an added Action Bar.

Figure 2-6.  Navigation drawers

Figure 2-7.  TodoList with Action Bar

16 CHAPTER 2: Android Patterns

The UI design patterns for Android are significantly different from those for the iOS, which often
gets people into trouble who are new to Android, although there are some similarities such as the
navigation drawers. There is no need for on-screen Back button or putting tabs in the bottom bar.
Cross-platform HTML5 apps often suffer from this problem, as they often have a mixture of iOS and
Android design patterns.

To implement the Action bar, create the strings in strings.xml, shown in Listing 2-4.

Listing 2-4.  Strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 
 <string name="app_name">ToDoList</string>
 <string name="action_settings">Settings</string>
 <string name="add_button_name">Add item</string>
  
 <string-array name="action_bar_action_list">
 <item>Select Filter</item>
 <item>A-H</item>
 <item>I-P</item>
 <item>Q-Z</item>
 </string-array>
  
</resources>
 
In Listing 2-5 we set up the adapter code for the Action Bar, which in this case is an Action Bar Spinner.

Listing 2-5.  actionBarSpinnerAdapter

this.actionBarSpinnerAdapter = ArrayAdapter.createFromResource(this, R.array.action_bar_action_list,
android.R.layout.simple_spinner_dropdown_item);
final ActionBar myActionBar = getActionBar();
myActionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
myActionBar.setListNavigationCallbacks(actionBarSpinnerAdapter, handleActionBarClick);
 
Add the OnNavigationListener method shown in Listing 2-6 to handle when the menu items are
selected in the spinner list.

Listing 2-6.  Action Bar Listener

private OnNavigationListener handleActionBarClick = new OnNavigationListener() {
 
 @Override
 public boolean onNavigationItemSelected(int position, long itemId) {
 
 switch (position) {
 
 case 0:
 Log.d(APP_TAG, "Action Clear Filter selected");
 TodoActivity.this.provider.clearFilter();
 TodoActivity.this.renderTodos();
 break;

17CHAPTER 2: Android Patterns

 case 1:
 Log.d(APP_TAG, "Action A-H selected");
 TodoActivity.this.provider.setFilter('A', 'H');
 TodoActivity.this.renderTodos();
 break;
 case 2:
 Log.d(APP_TAG, "Action I-P selected");
 TodoActivity.this.provider.setFilter('I', 'P');
 TodoActivity.this.renderTodos();
 break;
 case 3:
 Log.d(APP_TAG, "Action Q-Z selected");
 TodoActivity.this.provider.setFilter('Q', 'Z');
 TodoActivity.this.renderTodos();
 break;
 default:
 break;
 }
 return true;
 }
};
 
There are no changes needed to the renderTodos method, as it’s already being filtered.

ActionBarSherlock Navigation
Now that the Action Bar has become the design pattern of choice for Android 4.0 and above, where
does that leave earlier versions of Android and more specifically the folks still running 2.x? If you’re
releasing a consumer app, chances are you or your business stakeholders don’t want to ignore
those customers.

One option is to use the hardware buttons in earlier phones that were largely replaced by the
Action Bar pattern and code around the different functionality based on the Android version or
API level.

A better option is to use a library called Action Bar Sherlock, from Jake Wharton, which is available
at http://actionbarsherlock.com/.

In Jake’s words, ActionBar Sherlock is a “Library for implementing the action bar design
pattern using the native action bar on Android 4.0+ and a custom implementation on pre-4.0
through a single API and theme.” It allows you to code once for all versions of Android and the
hardware buttons can be largely ignored. Figure 2-8 shows the ToDoList app using
ActionBarSherlock.

Download and install the library in Eclipse and add the items to the resources file shown Listing 2-7.

http://actionbarsherlock.com/

18 CHAPTER 2: Android Patterns

Listing 2-7.  main.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item
 android:id="@+id/action_A_H"
 android:title="A-H"
 android:showAsAction="always"
 android:orderInCategory="100">
 </item>
 <item
 android:id="@+id/action_I_P"
 android:title="I-P"
 android:showAsAction="always">
 </item>
 <item
 android:id="@+id/action_Q_Z"
 android:title="Q-Z"
 android:showAsAction="always">
 </item>
</menu>
 
Add the onCreateOptionsMenu and onOptionsItemSelected code to ToDoActivity as shown
in Listing 2-8.

Listing 2-8.  OnCreateOptionsMenu and onOptionsItemSelected

public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getSupportMenuInflater();
 inflater.inflate(R.menu.activity_itemlist, menu);
 return true;
}
 
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 // Handle item selection
 switch (item.getItemId()) {
 case R.id.action_A_H:
 // filter & render
 return true;
 case R.id.action_I_P:
 // filter & render
 return true;
 case R.id.action_Q_Z:
 // filter & render
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}
 
The Action Bar is now implemented, regardless of the Android OS version; Figure 2-8 shows
it running on Android 2.1.

http://schemas.android.com/apk/res/android

19CHAPTER 2: Android Patterns

Designing for Different Devices
Android allows you to offer images and layouts for different generic screen sizes and screen pixel
densities. There are a couple of key variables that you need to understand to create a good user
experience across multiple devices. The most common screen sizes are small, normal, large, and
xlarge (for tablets). As of September 4, 2013, almost 80 percent of all devices on the market were
normal size; see Table 2-1.

Figure 2-8.  Action Bar implemented using ActionBarSherlock on Android 2.1

Also shown in Table 2-1 is our second variable, the number of pixels per square inch of the display
or screen pixel density. The most common screen pixel densities are mdpi (medium), hdpi (high),
xhdpi (extra high) and xxhdpi (extra extra high) density. An image or layout will have a different size
based on the screen density or number of pixels in a device screen.

Table 2-1.  Screen Pixel Density and Screen Sizes

20 CHAPTER 2: Android Patterns

An up to date version of this table can always be found at http://developer.
android.com/about/dashboards/index.html.

Figure 2-9 shows just the layouts in the resources directory for the open source Wordpress app.
It contains all the default normal layouts in the layout folder as well as small, large, and xlarge.
There are also further resources defined for portrait and landscape for some but not all
screen sizes.

Figure 2-9.  Wordpress layouts

But what is layout-sw720dp? In Android 3.2, new layout definitions were included to handle tablets;
in this example the sw stands for smallest width and the layout targets tablets that have a minimum
width of 720 density pixels for a 10" tablet. These new qualifiers also allow you to target specific
widths (w) and heights (h).

Fragments
Google introduced fragments in Android 3.0 as a way to create a more modular user interface
design so that the same fragments could be used in a modular fashion on Android phones and
Android tablets.

An activity is now split into multiple fragments, allowing for much more complex layouts based on
the device. Figure 2-10 shows a task item with the corresponding task detail on a phone.

http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html

21CHAPTER 2: Android Patterns

Figure 2-11 shows how this look on a tablet, where there is more real estate and the task item and
detail can be viewed on a single screen.

Figure 2-10.  Task Item and Task Detail on a phone

22 CHAPTER 2: Android Patterns

Listing 2-8 shows the updated and commented ToDoActivity.java code for the new fragment
layout. ToDoActivity now extends FragmentActivity, and we create a TaskFragment and
NoteFragment, which are swapped in and out depending on the device layout. The code shown in
Listing 2-9 checks to see if the note fragment exists in the layout and displays it. The note fragment
is only found in the layout-large/main.xml resource and not the layout/main.xml file.

Listing 2-8.  ToDoActivity.java Fragment Source

public class TodoActivity extends FragmentActivity implements TaskFragment.OnTaskSelectedListener
{
 @Override
 public void onCreate(final Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 
 this.setContentView(R.layout.main);
 
 // Check whether the activity is using the layout version with
 // the fragment_container FrameLayout. If so, we must add the first
 // fragment
 if (this.findViewById(R.id.fragment_container) != null)

Figure 2-11.  Task Item and Task Detail on a tablet

23CHAPTER 2: Android Patterns

 {
 // However, if we're being restored from a previous state,
 // then we don't need to do anything and should return or else
 // we could end up with overlapping fragments.
 if (savedInstanceState != null)
 {
 return;
 }
 
 final TaskFragment taskFrag = new TaskFragment();
 
 // In case this activity was started with special instructions
 // from an Intent,
 // pass the Intent's extras to the fragment as arguments
 taskFrag.setArguments(this.getIntent().getExtras());
 
 // Add the fragment to the 'fragment_container' FrameLayout
 this.getSupportFragmentManager().beginTransaction().add(R.id.fragment_container,
taskFrag).commit();
 }
 }
 
 /**
 * User selected a task
 */
 @Override
 public void onTaskSelected(final int position)
 {
 // Capture the title fragment from the activity layout
 final NoteFragment noteFrag = (NoteFragment) this.getSupportFragmentManager()
 .findFragmentById(R.id.note_fragment);
 
 if (noteFrag != null)
 {
 // If note frag is available, we're in two-pane layout…
 noteFrag.updateNoteView(position);
 }
 else
 {
 // If the frag is not available, we're in the one-pane layout
 // Create fragment and give it an argument for the selected task
 final NoteFragment swapFrag = new NoteFragment();
 final Bundle args = new Bundle();
 args.putInt(NoteFragment.ARG_POSITION, position);
 swapFrag.setArguments(args);
 final FragmentTransaction fragTx = this.getSupportFragmentManager().beginTransaction();
 
 // Replace whatever is in the fragment_container view
 // and add the transaction to the back stack so the user can
 // navigate back
 fragTx.replace(R.id.fragment_container, swapFrag);
 fragTx.addToBackStack(null);
 

24 CHAPTER 2: Android Patterns

 // Commit the transaction
 fragTx.commit();
 }
 }
}
 

Listing 2-9.  layout-large/main.xml

<?xml version="1.0" encoding="utf-8"?>
 
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 
 <fragment
 android:id="@+id/tasks_fragment"
 android:name="com.example.TaskFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1" />
 
 <fragment
 android:id="@+id/note_fragment"
 android:name="com.example.NoteFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="2" />
 
</LinearLayout>

Architectural Design Patterns
One of the fundamental problems with all types of software can be summed up in the concept
of entropy, which suggests that ordered code naturally becomes disordered over time. Or in
other words, no matter how hard you try, your code will gradually go from an organized state to a
disorganized state in what is also known as highly coupled, or perhaps more frankly, spaghetti code.

For smaller Android applications with one or two careful developers, this at first doesn’t seem to be an
issue. But as new versions are released and new people join, as Bob Martin would say the code starts
to smell and if you want to keep the code clean it needs to be regularly reorganized or refactored.

For larger enterprise Android applications, the way you organize your code is going to be an issue from
the very beginning. And unfortunately, classic Android design doesn’t lend itself to long-term cleanliness.

In this section we’ll look at some of the frameworks or software design patterns that you might want
to consider when you’re thinking about your app’s architecture.

If you want to have less coupling and greater separation in your Android app, you need to move your
logic to classes other than the main Activity class. We begin with classic Android design, then look
at MVC and MVVM and finish off with Dependency Injection to help you see how you can use these
frameworks to better organize your code.

http://schemas.android.com/apk/res/android

25CHAPTER 2: Android Patterns

Classic Android
In classic Android design, the user interface is defined in XML layout files. Activities then use these
XML files to draw the screens and load images, size information and strings for multiple screen
resolutions and hardware. Any other user interface code is written in other classes outside of the
main UI thread.

The code for the TodoList app, shown in Listings 2-1 and 2-2 earlier, is for a classic Android design.
We’ll be using a number of different versions of this application throughout the book.

MVC
MVC (Model-View-Controller) is a software design pattern that separates the user interface (view)
from the business rules and data (model) using a mediator (controller) to connect the model to
the view.

The main benefit of MVC for us is separation of concerns. Each part of MVC takes care of its own
job and no more: the View takes care of the user interface, the Model takes care of the data, and the
Controller sends messages between the two.

The Controller provides data from the Model for the View to bind to the UI. Any changes to the
Controller are transparent to the View, and UI changes won’t affect the business logic and vice-versa.

Design patterns help to enforce a structure on the developers so that the code becomes more
controlled and less likely to fall into disrepair. MVC’s separation of concerns makes it much easier to
add unit testing if we want to at a later stage.

There is an argument that Android already uses an MVC pattern, with the XML files acting as the
View. However this does not provide us any real possibilities for separation of concerns.

In the following example the Classic Android code has been refactored into an MVC framework
as follows.

The Model
The MVC Model component, shown in Listing 2-10, largely replaces the ToDoProvider.java code
from before.

Listing 2-10.  MVC Model code

final class TodoModel
{
 private static final String DB_NAME = "tasks";
 private static final String TABLE_NAME = "tasks";
 private static final int DB_VERSION = 1;
 private static final String DB_CREATE_QUERY = "CREATE TABLE " + TodoModel.TABLE_NAME +
" (id integer primary key autoincrement, title text not null);";
 
 private final SQLiteDatabase storage;
 private final SQLiteOpenHelper helper;
 

26 CHAPTER 2: Android Patterns

 public TodoModel(final Context ctx)
 {
 this.helper = new SQLiteOpenHelper(ctx, TodoModel.DB_NAME, null, TodoModel.DB_VERSION)
 {
 @Override
 public void onCreate(final SQLiteDatabase db)
 {
 db.execSQL(TodoModel.DB_CREATE_QUERY);
 }
 
 @Override
 public void onUpgrade(final SQLiteDatabase db, final int oldVersion,
 final int newVersion)
 {
 db.execSQL("DROP TABLE IF EXISTS " + TodoModel.TABLE_NAME);
 this.onCreate(db);
 }
 };
 
 this.storage = this.helper.getWritableDatabase();
 }
 
 public void addEntry(ContentValues data)
 {
 this.storage.insert(TodoModel.TABLE_NAME, null, data);
 }
 
 public void deleteEntry(final String field_params)
 {
 this.storage.delete(TodoModel.TABLE_NAME, field_params, null);
 }
 
 public Cursor findAll()
 {
 Log.d(TodoActivity.APP_TAG, "findAll triggered");
 
 final Cursor c = this.storage.query(TodoModel.TABLE_NAME, new String[]
 { "title" }, null, null, null, null, null);
 
 return c;
 }
}

The View
The View code in MVC, shown in Listing 2-11, is a modified version of the ToDoActivity.java
code from before. Any UI changes now happen here, and the control code is now moved to the
ToDoController.java file.

27CHAPTER 2: Android Patterns

Listing 2-11.  MVC View code

public class TodoActivity extends Activity
{
 public static final String APP_TAG = "com.example.mvc";
 
 private ListView taskView;
 private Button btNewTask;
 private EditText etNewTask;
 
 /*Controller changes are transparent to the View. UI changes won't
 *affect logic, and vice-versa. See below: the TodoModel has
 * been replaced with the TodoController, and the View persists
 * without knowledge that the implementation has changed.
 */
 private TodoController provider;
 
 private final OnClickListener handleNewTaskEvent = new OnClickListener()
 {
 @Override
 public void onClick(final View view)
 {
 Log.d(APP_TAG, "add task click received");
 
 TodoActivity.this.provider.addTask(TodoActivity.this
 .etNewTask
 .getText()
 .toString());
 
 TodoActivity.this.renderTodos();
 }
 };
 
 @Override
 protected void onStop()
 {
 super.onStop();
 }
 
 @Override
 protected void onStart()
 {
 super.onStart();
 }
 
 @Override
 public void onCreate(final Bundle bundle)
 {
 super.onCreate(bundle);
 
 this.setContentView(R.layout.main);
 

28 CHAPTER 2: Android Patterns

 this.provider = new TodoController(this);
 this.taskView = (ListView) this.findViewById(R.id.tasklist);
 this.btNewTask = (Button) this.findViewById(R.id.btNewTask);
 this.etNewTask = (EditText) this.findViewById(R.id.etNewTask);
 this.btNewTask.setOnClickListener(this.handleNewTaskEvent);
 
 this.renderTodos();
 }
 
 private void renderTodos()
 {
 final List<String> beans = this.provider.getTasks();
 
 Log.d(TodoActivity.APP_TAG, String.format("%d beans found", beans.size()));
 
 this.taskView.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 beans.toArray(new String[]
 {})));
 
 this.taskView.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(final AdapterView<?> parent, final View view, final int
position, final long id)
 {
 Log.d(TodoActivity.APP_TAG, String.format("item with id: %d and position: %d", id,
position));
 
 final TextView v = (TextView) view;
 TodoActivity.this.provider.deleteTask(v.getText().toString());
 TodoActivity.this.renderTodos();
 }
 });
 }
}

The Controller
Shown in Listing 2-12, the controller binds the UI to the data but also creates a layer of separation
between the model and view code above. This interface between the two layers provides a
framework for the code to expand and for new developers to follow the MVC pattern to know what
new code belongs where.

Listing 2-12.  MVC Controller code

public class TodoController {
 /*The Controller provides data from the Model for the View
 *to bind to the UI.
 */
 

29CHAPTER 2: Android Patterns

 private TodoModel db_model;
 private List<String> tasks;
 
 public TodoController(Context app_context)
 {
 tasks = new ArrayList<String>();
 db_model = new TodoModel(app_context);
 }
 
 public void addTask(final String title)
 {
 final ContentValues data = new ContentValues();
 data.put("title", title);
 db_model.addEntry(data);
 }
 
 //Overrides to handle View specifics and keep Model straightforward.
 public void deleteTask(final String title)
 {
 db_model.deleteEntry("title='" + title + "'");
 }
 
 public void deleteTask(final long id)
 {
 db_model.deleteEntry("id='" + id + "'");
 }
 
 public void deleteAll()
 {
 db_model.deleteEntry(null);
 }
 
 public List<String> getTasks()
 {
 Cursor c = db_model.findAll();
 tasks.clear();
 
 if (c != null)
 {
 c.moveToFirst();
 
 while (c.isAfterLast() == false)
 {
 tasks.add(c.getString(0));
 c.moveToNext();
 }
  
 c.close();
 }
 
 return tasks;
 }
}

30 CHAPTER 2: Android Patterns

MVVM
The MVVM (Model-View-ViewModel) pattern comes from the Microsoft world. It’s a specialized case
of MVC that deals with UI development platforms like Silverlight, and although its origins are in .Net,
it might also be applicable to Android. The difference between MVC and MVVM is that the Model
should contain no logic specific to the view—only logic necessary to provide a minimal API to the
ViewModel.

The Model only needs to add/delete, and the ViewModel handles the specific needs of the View.
All event logic and delegation is handled by the ViewModel, and the View handles UI setup only.

In our example the Model component largely stays the same, as you can see in Listing 2-13. The
ViewModel, shown in Listing 2-15 acts as a delegate between the ToDoActivity (View) and the
ToDoProvider (Model). The ViewModel receives references from the View and uses them to update
the UI. The ViewModel handles rendering and changes to the view’s data and the View, shown in
Listing 2-14, simply provides a reference to its elements.

The Model
Shown in Listing 2-13, the Model largely stays the same in MVVM as it was in the MVC version.

Listing 2-13.  MVVM Model Code

package com.example.mvvm;
 
import java.util.ArrayList; 
import java.util.List;
 
import android.content.ContentValues; 
import android.content.Context; 
import android.database.Cursor; 
import android.database.sqlite.SQLiteDatabase; 
import android.database.sqlite.SQLiteOpenHelper; 
import android.util.Log;
 
final class TodoModel
 
{
 
 //The Model should contain no logic specific to the view - only 
 //logic necessary to provide a minimal API to the ViewModel. 
 private static final String DB_NAME = "tasks"; 
 private static final String TABLE_NAME = "tasks"; 
 private static final int DB_VERSION = 1; 
 private static final String DB_CREATE_QUERY = "CREATE TABLE " + TodoModel.TABLE_NAME + " (id
integer primary key autoincrement, title text not null);";
 
 private final SQLiteDatabase storage; 
 private final SQLiteOpenHelper helper; 
 public TodoModel(final Context ctx) 

31CHAPTER 2: Android Patterns

 { 
 this.helper = new SQLiteOpenHelper(ctx, TodoModel.DB_NAME, null, TodoModel.DB_VERSION)
  { 
 @Override 
 public void onCreate(final SQLiteDatabase db) 
 { 
 db.execSQL(TodoModel.DB_CREATE_QUERY); 
 }
 
 @Override 
 public void onUpgrade(final SQLiteDatabase db, final int oldVersion, 
 final int newVersion) 
 { 
 db.execSQL("DROP TABLE IF EXISTS " + TodoModel.TABLE_NAME); 
 this.onCreate(db); 
 } 
 };
 
 this.storage = this.helper.getWritableDatabase(); 
 }
 
 /*Overrides are now done in the ViewModel. The Model only needs 
 *to add/delete, and the ViewModel can handle the specific needs of the View. 
 */ 
 public void addEntry(ContentValues data) 
 { 
 this.storage.insert(TodoModel.TABLE_NAME, null, data); 
 }
 
 public void deleteEntry(final String field_params) 
 { 
 this.storage.delete(TodoModel.TABLE_NAME, field_params, null); 
 }
 
 public Cursor findAll() 
 { 
 //Model only needs to return an accessor. The ViewModel will handle 
 //any logic accordingly. 
 return this.storage.query(TodoModel.TABLE_NAME, new String[] 
 { "title" }, null, null, null, null, null); 
 } 
}

The View
The View, shown in Listing 2-14, in MVVM simply provides a reference to its elements.

Listing 2-14.  MVVM View Code

package com.example.mvvm; 
import android.app.Activity; 
import android.os.Bundle; 
import android.view.View; 

32 CHAPTER 2: Android Patterns

import android.widget.Button; 
import android.widget.EditText; 
import android.widget.ListView;
 
public class TodoActivity extends Activity 
{ 
 public static final String APP_TAG = "com.logicdrop.todos";
 
 private ListView taskView; 
 private Button btNewTask; 
 private EditText etNewTask; 
 private TaskListManager delegate;
 
 /*The View handles UI setup only. All event logic and delegation 
 *is handled by the ViewModel. 
 */
 
 public static interface TaskListManager 
 { 
 //Through this interface the event logic is 
 //passed off to the ViewModel. 
 void registerTaskList(ListView list); 
 void registerTaskAdder(View button, EditText input); 
 }
 
 @Override 
 protected void onStop() 
 { 
 super.onStop(); 
 }
 
 @Override 
 protected void onStart() 
 { 
 super.onStart(); 
 }
 
 @Override 
 public void onCreate(final Bundle bundle) 
 { 
 super.onCreate(bundle);
 
 this.setContentView(R.layout.main);
 
 this.delegate = new TodoViewModel(this); 
 this.taskView = (ListView) this.findViewById(R.id.tasklist); 
 this.btNewTask = (Button) this.findViewById(R.id.btNewTask); 
 this.etNewTask = (EditText) this.findViewById(R.id.etNewTask); 
 this.delegate.registerTaskList(taskView); 
 this.delegate.registerTaskAdder(btNewTask, etNewTask); 
 } 
}

33CHAPTER 2: Android Patterns

The ViewModel
The ViewModel component, shown in Listing 2-15, acts as a delegate between the ToDoActivity
(View) and the ToDoProvider (Model). The ViewModel handles rendering and changes to the View’s
data; it receives references from the View and uses them to update the UI.

Listing 2-15.  MVVM View-Model Code

package com.example.mvvm;
 
import android.content.ContentValues; 
import android.content.Context; 
import android.database.Cursor; 
import android.view.View; 
import android.widget.AdapterView; 
import android.widget.ArrayAdapter; 
import android.widget.EditText; 
import android.widget.ListView; 
import android.widget.TextView;
 
import java.util.ArrayList; 
import java.util.List;
 
public class TodoViewModel implements TodoActivity.TaskListManager 
{ 
 /*The ViewModel acts as a delegate between the ToDoActivity (View) 
 *and the ToDoProvider (Model). 
 * The ViewModel receives references from the View and uses them 
 * to update the UI. 
 */
 
 private TodoModel db_model; 
 private List<String> tasks; 
 private Context main_activity; 
 private ListView taskView; 
 private EditText newTask;
 
 public TodoViewModel(Context app_context) 
 { 
 tasks = new ArrayList<String>(); 
 main_activity = app_context; 
 db_model = new TodoModel(app_context); 
 }
 
 //Overrides to handle View specifics and keep Model straightforward.
 
 private void deleteTask(View view) 
 { 
 db_model.deleteEntry("title='" + ((TextView)view).getText().toString() + "'"); 
 }
 

34 CHAPTER 2: Android Patterns

 private void addTask(View view) 
 { 
 final ContentValues data = new ContentValues();   
 
 data.put("title", ((TextView)view).getText().toString()); 
 db_model.addEntry(data); 
 }

 private void deleteAll() 
 { 
 db_model.deleteEntry(null); 
 }
 
 private List<String> getTasks() 
 { 
 final Cursor c = db_model.findAll(); 
 tasks.clear();
 
 if (c != null) 
 { 
 c.moveToFirst();
 
 while (c.isAfterLast() == false) 
 { 
 tasks.add(c.getString(0)); 
 c.moveToNext(); 
 } 
   
 c.close(); 
 }
 
 return tasks; 
 }
 
 private void renderTodos() 
 { 
 //The ViewModel handles rendering and changes to the view's 
 //data. The View simply provides a reference to its 
 //elements. 
 taskView.setAdapter(new ArrayAdapter<String>(main_activity, 
 android.R.layout.simple_list_item_1, 
 getTasks().toArray(new String[] 
 {}))); 
 }
 
 public void registerTaskList(ListView list) 
 { 
 this.taskView = list; //Keep reference for rendering later 
 if (list.getAdapter() == null) //Show items at startup 
 { 
 renderTodos(); 
 }
 

35CHAPTER 2: Android Patterns

 list.setOnItemClickListener(new AdapterView.OnItemClickListener() 
 { 
 @Override 
 public void onItemClick(final AdapterView<?> parent, final View view, final int
position, final long id) 
 { //Tapping on any item in the list will delete that item from the database and
re-render the list 
 deleteTask(view); 
 renderTodos(); 
 } 
 }); 
 }
 
 public void registerTaskAdder(View button, EditText input) 
 { 
 this.newTask = input; 
 button.setOnClickListener(new View.OnClickListener() 
 { 
 @Override 
 public void onClick(final View view) 
 { //Add task to database, re-render list, and clear the input 
 addTask(newTask); 
 renderTodos(); 
 newTask.setText(""); 
 } 
 }); 
 } 
}

Dependency Injection
If our aim is to move away from highly coupled code, then the Dependency Injection pattern probably
allows a greater degree of separation across the application than MVC or MVVM. It removes any
hard-coded dependencies between classes and allows you to plug in different classes at compile-time.
This is very useful for multiple developers working in teams because it can enforce a much stricter
framework to follow.

Just as important is that dependency injection also facilitates the writing of testable code, which
we’ll see more of in Chapter 4, on Agile Android.

Dependency Injection or DI has been around for many years in Java development. It usually comes in
two flavors, compile-time DI (such as Guice) or run-time DI (such as Spring). In compile-time DI, the
injections are known at compile time and are controlled by a mapping file. Run-time DI takes more of
an aspect oriented programming approach, where classes are injected while the app is running.

There are a number of DI frameworks available in Android such as Roboelectric and Dagger, all of
them are compile time DI.

In the following example we’re going to look at using Dagger to mock out a database connection.
Often you want to test the app and not the database.

36 CHAPTER 2: Android Patterns

There are four pieces in this example that we need to wire together. The ToDoModule.java contains
the injection map that tells the app whether to use the ToDoProvider stub file or the ToDoProvider2
file that connects to the database. ToDoProvider.java contains the stub file that returns a fake task
list, ToDoProvider2.java contains the real database connection, and ToDoApplication.java contains
a currentChoice Boolean flag that tells the app whether to use the stub or the real connection.

The ToDoModule
Listing 2-16 shows how the ToDoModule wires in the two database providers; the first is the real
database and the second is a stub function.

Listing 2-16.  Dagger ToDoModule.java

import dagger.Module;
import dagger.Provides;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
 
@Module(complete = true, injects = { TodoActivity.class })
public class TodoModule {
 
 static final String DB_NAME = "tasks";
 static final String TABLE_NAME = "tasks";
 static final int DB_VERSION = 1;
 static final String DB_CREATE_QUERY = "CREATE TABLE "
 + TodoModule.TABLE_NAME
 + " (id integer primary key autoincrement, title text not null);";
 
 private final Context appContext;
 public static boolean sourceToggle = false;
 private TodoApplication parent;
 
 /** Constructs this module with the application context. */
 public TodoModule(TodoApplication app) {
 this.parent = app;
 this.appContext = app.getApplicationContext();
  
 }
 
 @Provides
 public Context provideContext() {
 return appContext;
 }
  
 /**
 * Needed because we need to provide an implementation to an interface, not a
 * class.
 *
 * @return

37CHAPTER 2: Android Patterns

 */
 @Provides
 IDataProvider provideDataProvider(final SQLiteDatabase db) {
 //Here we obtain the boolean value for which provider to use
 boolean currentChoice = parent.getCurrentSource();
 if(currentChoice == true){
 //Here is a log message to know which provider has been chosen
 Log.d(TodoActivity.APP_TAG, "Provider2");
 return new TodoProvider2(db);
 }else{
 Log.d(TodoActivity.APP_TAG, "Provider");
 return new TodoProvider(db);
 }
 }
 
 /**
 * Needed because we need to configure the helper before injecting it.
 *
 * @return
 */
 @Provides
 SQLiteOpenHelper provideSqlHelper() {
 final SQLiteOpenHelper helper = new SQLiteOpenHelper(this.appContext,
 TodoModule.DB_NAME, null, TodoModule.DB_VERSION) {
 @Override
 public void onCreate(final SQLiteDatabase db) {
 db.execSQL(TodoModule.DB_CREATE_QUERY);
 }
 
 @Override
 public void onUpgrade(final SQLiteDatabase db,
 final int oldVersion, final int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS " + TodoModule.TABLE_NAME);
 this.onCreate(db);
 }
 };
 
 return helper;
 }
 
 @Provides
 SQLiteDatabase provideDatabase(SQLiteOpenHelper helper) {
 return helper.getWritableDatabase();
 }
}

The Database Provider
The Boolean currentChoice tells the code which database provider to use; we can connect either to the
real database, ToDoProvider2, as shown in Listing 2-17, or the stub, ToDoProvider, as shown in Listing 2-18.

38 CHAPTER 2: Android Patterns

Listing 2-17.  Dagger ToDoProvider2.java

package com.example.dagger;
 
import java.util.ArrayList;
import java.util.List;
 
import javax.inject.Inject;
 
import android.content.ContentValues;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;
 
class TodoProvider2 implements IDataProvider {
 
 private final SQLiteDatabase storage;
 
 @Inject
 public TodoProvider2(SQLiteDatabase db)
 {
 this.storage = db;
 }
  
 @Override
 public void addTask(final String title) {
 final ContentValues data = new ContentValues();
 data.put("title", title);
 
 this.storage.insert(TodoModule.TABLE_NAME, null, data);
 }
 
 @Override
 public void deleteAll() {
 this.storage.delete(TodoModule.TABLE_NAME, null, null);
 }
 
 @Override
 public void deleteTask(final long id) {
 this.storage.delete(TodoModule.TABLE_NAME, "id=" + id, null);
 }
 
 @Override
 public void deleteTask(final String title) {
 this.storage.delete(TodoModule.TABLE_NAME, "title='" + title + "'",
 null);
 }
 
 @Override
 public List<String> findAll() {
 Log.d(TodoActivity.APP_TAG, "findAll triggered");
 
 final List<String> tasks = new ArrayList<String>();
 

39CHAPTER 2: Android Patterns

 final Cursor c = this.storage.query(TodoModule.TABLE_NAME,
 new String[] { "title" }, null, null, null, null, null);
 
 if (c != null) {
 c.moveToFirst();
 
 while (c.isAfterLast() == false) {
 tasks.add(c.getString(0));
 c.moveToNext();
 }
 
 c.close();
 }
 
 return tasks;
 }
 
}

The Stub Provider
Listing 2-18 shows the fake or stubbed out database; we include this to make sure we’re only testing
our code and not the database connections.

Listing 2-18.  ToDoProvider.java

package com.example.dagger;
 
import java.util.ArrayList;
import java.util.List;
 
import javax.inject.Inject;
 
import android.content.ContentValues;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.util.Log;
 
class TodoProvider implements IDataProvider {
 
 private final SQLiteDatabase storage;
 
 @Inject
 public TodoProvider(SQLiteDatabase db)
 {
 this.storage = db;
 }
  
 @Override
 public void addTask(final String title) {
 final ContentValues data = new ContentValues();
 data.put("title", title);
 

40 CHAPTER 2: Android Patterns

 this.storage.insert(TodoModule.TABLE_NAME, null, data);
 }
 
 @Override
 public void deleteAll() {
 this.storage.delete(TodoModule.TABLE_NAME, null, null);
 }
 
 @Override
 public void deleteTask(final long id) {
 this.storage.delete(TodoModule.TABLE_NAME, "id=" + id, null);
 }
 
 @Override
 public void deleteTask(final String title) {
 this.storage.delete(TodoModule.TABLE_NAME, "title='" + title + "'",
 null);
 }
 
 @Override
 public List<String> findAll() {
 Log.d(TodoActivity.APP_TAG, "findAll triggered");
 
 final List<String> tasks = new ArrayList<String>();
 
 final Cursor c = this.storage.query(TodoModule.TABLE_NAME,
 new String[] { "title" }, null, null, null, null, null);
 
 if (c != null) {
 c.moveToFirst();
 
 while (c.isAfterLast() == false) {
 tasks.add(c.getString(0));
 c.moveToNext();
 }
 
 c.close();
 }
 
 return tasks;
 }
 
}

ToDoApplication
Finally we need to tell the code what code to inject. We do this in the getCurrentSource method of
ToDoApplcation.java, shown in Listing 2-19. Ideally, we’d like to set this in a config file somewhere,
but here it is hard-coded in a file.

41CHAPTER 2: Android Patterns

Listing 2-19.  ToDoApplication.java

package com.example.dagger;
 
import android.app.Application;
import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import dagger.ObjectGraph;
 
public class TodoApplication extends Application {
 
 private ObjectGraph objectGraph;
 SharedPreferences settings;
 
 @Override
 public void onCreate()
 {
 super.onCreate();
  
 //Initializes the settings variable
 this.settings = getSharedPreferences("Settings", MODE_PRIVATE);
 Object[] modules = new Object[] {
 new TodoModule(this)
 };
  
 objectGraph = ObjectGraph.create(modules);
 }
 
 public ObjectGraph getObjectGraph() {
 return this.objectGraph;
 }
  
 //Method to update the settings
 public void updateSetting(boolean newChoice){
 Editor editor = this.settings.edit();
 editor.putBoolean("CurrentChoice", TodoModule.sourceToggle);
 editor.commit();
 }
  
 //Method to obtain the value of the provider setting
 public boolean getCurrentSource(){
 return this.settings.getBoolean("CurrentChoice", false);
 }
}

Summary
In this chapter we looked at the Holo GUI design pattern to see best practices for GUIs as well as
the MVC, MVVM and DI architectural design patterns using Dagger to see how to best organize or
separate your code so that it’s got some room for growth. We’ll return to Dagger in Chapter 4, on
Agile Android, to show how we can use DI for mock testing. All the code for the examples in this
chapter and the book is available on the Apress website if you want to investigate it further.

43

Chapter 3
Performance

Michael A. Jackson famously coined the first and second rules of program optimization:

Rule 1. Don’t do it.

Rule 2. (For experts only!): Don’t do it yet.

This can be interpreted in a number of ways. To me, it really means “keep your code clean and don’t
worry about optimizing its flow.” Avoid making the code too complicated. It also points to the fact
that as computers and JIT compilers get more advanced, you probably won’t have to worry about it
in six months, as the hardware will have overtaken any minimal optimizations that you can apply.

What it doesn’t mean is to do nothing if your mobile app takes 10 or more seconds to load an
activity and is a terrible user experience. Remember that whatever you thought was an acceptable
time on the Web is most definitely not acceptable on a phone, whether that’s on Android or iOS.

And it gets worse, because if your app takes too long, then Android will display the dreaded Android
Not Responding image (see Figure 3-1), and your user will probably leave the app. This is more
likely to happen on older devices with less memory and less power; and contrary to the second
law of program optimization there are many of older Android devices from the Gingerbread era that
continue to hang around in the field and are not expected to go away any time soon.

44 CHAPTER 3: Performance

For comparison’s sake we’re going to talk a little about how performance tuning works on the Web.
Optimizing Android apps is still a bit of a black art; while there’s a general consensus on how you
should go about optimizing your web server, it’s nowhere as neat and tidy on the Android platform.
After all, the variety of Android devices on the market makes optimizing your app a moving target.

We’ll also spend some time on Android performance tips that can really make a difference to your
code. Finally, we’ll look at the some of the tools that come with the Android SDK, such as Dalvik
Debug Monitor Server (DDMS) and Traceview, that can help identify bottlenecks and hopefully point
the way to creating a better app.

History
Back in the 2000s, performance optimization was all about how to optimize web applications
typically sitting on IIS or Apache web servers, and many of the same points apply to what we are
trying to do in this chapter. Unfortunately, it’s not as easy to measure Android performance as it is on
a web server.

The Web server metric that is often aimed for is that 95% of pages should be returned in a second or
less. The raw stats, such as the number of page hits and page timings (using the time-taken token,
as shown in Figure 3-2), are all there to see in the log files. The trick is to optimize the slowest, most
visited pages, which give the perception of a faster web server; perception is reality when it comes
to performance. The same is true on mobile devices.

Figure 3-1.  Android “not responding” popup

45CHAPTER 3: Performance

Dramatic increases in page speed are commonly achieved on the worst-performing pages by adding
indexes on the database, fixing SELECT statements to limit the amount of data returned, or fixing
problems with programming control flow logic. Iteratively fixing the most-visited, worst-performing
pages over an extended time can transform a web server’s speed using this “wash, rinse, repeat”
approach.

Android, on the other hand, is not as simple. In Android there is no metric like “95% of pages should
be returned in a second or less.” There really isn’t any consensus on how responsive an app needs
to be. And the metric would probably also vary from one device to the next. It’s also a lot harder to
measure how long each activity takes, as there are no log files with a handy time-taken token that
you can easily use.

It’s not all bad news, however, as the Android SDK does come with a number of tools, such as
DDMS and Traceview, that really help debug performance problems, but they measure different
aspects of an Android app’s performance.

Ideally, you want a good load testing tool with some sort of reliable time measurement. If possible,
it should run as part of a build on a continuous integration server so you could see regression test
reports; by seeing how long the same actions are taking as the app progresses, you’ll be able to
identify if something is suddenly taking dramatically longer than it was in the past.

We will need to look at Web server statistics when we’re trying to optimize Web services, which we’ll
return to later in the book.

Performance Tips
Let’s take a look at some Android, Java, Web services, and SQL tips that you might want to try if
your app is not responding correctly.

Android Performance
Google publishes an excellent list of performance tips (see http://developer.android.com/
training/articles/perf-tips.html), which the following are largely taken from and expanded upon.
Some of these optimizations take a very macro approach, and some take a very micro approach to
optimization and will only remove a line or two of bytecode from the generated classes.dex in the
APK. These micro-optimizations will probably be handled by future just-in-time DVM optimizations
or ahead of time by the new ART or Android Runtime virtual machine, which is a replacement for the
DVM. However as ART is at the time of writing available only on Android KitKat, it may be a while
before these automated optimizations become commonplace.

Figure 3-2.  Web Server log files with time-taken token

http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html

46 CHAPTER 3: Performance

Avoid creating unnecessary objects or memory allocations. There are two basic
rules for writing efficient code:

Don’t do work that you don’t need to do.	

Don’t allocate memory if you can avoid it.	

Mobile development is relatively simple right now; we don’t have the layers and
layers of complexity that always appear as a technology matures, such EJBs.

But it is inevitable that this is going to happen sooner or later on Android. People
are already putting ORMs into their Android apps, so try to move to more of a TDD
(test-driven development) model, and think about what you’re introducing. Do
you really need to reinvent some caching mechanism to satisfy the feature you’re
implementing, or not? If you are still worried, then apply the YAGNI concept— You
Aren’t Going to Need It, because you really don’t need it.

Avoid internal getters/setters. Virtual method calls are expensive, more so
than instance field lookups. It’s reasonable to follow common object-oriented
programming practices and have getters and setters in the public interface, but
within a class you should always access fields directly. This is an example of a
micro-optimization that removes a line or two of bytecode from the generated
classes.dex in the APK.

Use static/final where appropriate. Because of the way the code is compiled into
Davlik bytecode, any code that refers to intVal will use the integer value 42 directly if
you use a static final, and accesses to strVal will use a relatively inexpensive “string
constant” instruction instead of a field lookup.

Use floats judiciously. Floating-point calculation is expensive, usually taking twice
as long as integer calculations on Android devices.

Make fewer, more productive, NDK calls. Context switching between Java and
C++ using the JNI or NDK can be expensive. There are also no JIT optimizations.

But if the app uses some core algorithm or functionality that doesn’t need to be tied
to the UI in any significant way, it should probably be run natively. Running things
natively is almost always going to be faster than Java even with the JIT compiler.
The NDK also comes with some major security benefits, as it’s much harder to
reverse-engineer C++ code.

Inflate Views only when needed. Basically, the idea here is that you only inflate the
views a minimum number of times or better still delay displaying the view, because
inflating views is pretty expensive.

Use standard libraries and enhancements. Use libraries rather than rolling
your own code. Android also sometimes replaces library methods with
optimized hand-coded assembler. For example, using String.indexOf()
and the System.arraycopy() method is about nine times faster than a
hand-coded loop.

47CHAPTER 3: Performance

Use StrictMode. To limit the chance of an Android Not Responsive (ANR) error,
it helps to not include any slow network or disk access in the applications main
thread. Android provides a utility called StrictMode, which is typically used to detect
if there are any unwanted disk or network accesses introduced into your application
during the development process. Add StrictMode to your onCreate() method as
shown in Listing 3-1. StrictMode calls are also pretty expensive, so make sure the
code isn’t shipped as production code.

Listing 3-1.  Using the Strictmode utility

public void onCreate()
{
 // remove from production code
 if (BuildConfig.DEBUG){
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder(),
 .detectDiskReads()
 .detectDiskWrites()
 .detectNetwork()
 .penaltyLog()
 .build());
 {
 super.onCreate();
 
}

 
Optimize the onSomething( ) classes. Earlier we talked about perception being
reality for web applications; in the Android world, if your onStart(), onCreate(), and
onResume() classes are lightning fast, then the application is going to be perceived
to be a faster Android app. So if there is any code that you can put elsewhere or
optimizations that you might want to apply, then spending time in these classes will
bring rewards. Wait as long as you can to inflate any views. Using android.view.
ViewStub will allow objects to be created when needed, a technique known as lazily
inflating a view.

Use Relativelayouts instead of Linearlayouts. New Android developers tend to
create a UI over-using LinearLayouts. As the application becomes more complex,
these linear layouts can often become quite nested. Replacing these LinearLayouts
with a single RelativeLayout will improve your UI loading speed. Lint and the
Hierarchy Viewer will help you identify deeply nested LinearLayouts.

Java Performance
There are books and books written about Java performance, and Android can also benefit from
some well-written Java code. The Java Performance Tuning page
(http://www.javaperformancetuning.com/tips/rawtips.shtml) is a page of links to articles about
Java optimization with summaries and reviews of each of these pages of optimization tips.

http://www.javaperformancetuning.com/tips/rawtips.shtml

48 CHAPTER 3: Performance

The most common optimizations are as follows:

1.	 Use + for concatenating two Strings; use Stringbuffer for concatenating
more Strings.

Don’t synchronize code unless synchronization is required.	

Close all resources, such as connections and session objects, when finished.	

Classes and methods that aren’t going to be redefined should be declared as final.	

Accessing arrays is much faster than accessing vectors, Strings, and StringBuffers.	

SQLite Performance
Website inefficiencies could often be summed up as “It’s the database, Stupid.” And while it’s less
of an issue on Android, where SQLite is used more for client-side caching of information, there is no
reason why EXPLAIN PLAN cannot still be very useful in your performance tuning. And don’t forget
you can create indexes on SQLite, too, if you need them (see Figure 3-3).

Figure 3-3.  SQLite indexes

Learn the SQLite Android libraries and use the DatabaseUtils.InsertHelper command for inserting
large amounts of data or use compileStatement where appropriate. Don’t store the database on
the SD Card. Finally, don’t return the entire table of data in a SELECT statement; always return the
minimum of rows using carefully crafted SQL statements.

49CHAPTER 3: Performance

Web Services Performance
For Web services it’s a case of “everything old is new again.” We’re right back to the web site
optimization techniques I mentioned earlier. Use the server logs, as shown in Figure 3-2 earlier, to
see how long each call is taking and optimize the slowest, most-used Web services. Some common
optimizations for Web services are as follows:

Minimize the size of the Web service envelopes; choose REST over SOAP and 	
JSON over XML where possible.

Reduce the number of round trips, steer clear of chatty Web service calls, and 	
keep the number of Web service transactions to a minimum.

Remove any duplicate calls, which are not as uncommon as they might seem.	

Similar to database SELECT * FROM TABLE statements, careful choice of query 	
parameters can dramatically limit the amount of data returned via the Web service.

Avoid maintaining state across calls; the most scalable of Web services maintain 	
no state.

Gzip the data.	

Web proxy tools such as Charles Proxy (http://www.charlesproxy.com/) are an excellent way to see
how your app is interacting with Web services.

The topic of Web services is covered in more detail in Chapter 8.

Optimized Code
In the next few pages you’re going to see how some of these optimizations are used in the ToDo List
application. To begin, Listing 3-2 shows Splash.java, which has a bare-bones onCreate() method.

Listing 3-2.  The ToDo List Application’s Splash.java page

package com.logicdrop.todos;
 
import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;
 
public class Splash extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 // TIP: Optimized the onSomething() classes, especially onCreate()
 super.onCreate(savedInstanceState);
 
 // TIP: View - inflate the views a minimum number of times
 // inflating views are expensive
 /*for (int i=0; i<10000; i++)
 setContentView(R.layout.splash);*/
 

http://www.charlesproxy.com/

50 CHAPTER 3: Performance

 // TIP: Splashscreen optional (DONE)
 setContentView(R.layout.splash);
 Thread timer = new Thread() {
 public void run() {
 try {
 sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 } finally {
 Intent openStartingPoint = new Intent("com.logicdrop.todos.TodoActivity");
 startActivity(openStartingPoint);
 }
 }
 };
 timer.start();
 }
}
 

ToDoActivity.java, shown in Listing 3-3, has many of the Android and Java optimizations mentioned
in this chapter; see comments in the code for more information. It also shows how to stop and start
profiling using the Traceview API.

Listing 3-3.  The ToDo List Application’s ToDoActivity.java page

package com.logicdrop.todos;
 
import java.util.List;
import java.util.ArrayList;
 
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.TextView;
import android.os.StrictMode;
 
import com.logicdrop.todos.R;
 
public class TodoActivity extends Activity
{
 public static final String APP_TAG = "com.logicdrop.todos";
 
 private ListView taskView;
 private Button btNewTask;
 private EditText etNewTask;
 private TodoProvider provider;
 

51CHAPTER 3: Performance

 // TIP: Use static/final where appropriate
 private final OnClickListener handleNewTaskEvent = new OnClickListener()
 {
 @Override
 public void onClick(final View view)
 {
 Log.d(APP_TAG, "add task click received");
 
 TodoActivity.this.provider.addTask(TodoActivity.this
 .etNewTask
 .getText()
 .toString());
 
 TodoActivity.this.renderTodos();
 }
 };
 
 // TIP: Traceview
 @Override
 protected void onStop()
 {
 super.onStop();
 
 // Debug.stopMethodTracing();
 }
 
 @Override
 protected void onStart()
 {
 // Debug.startMethodTracing("ToDo");
 
 super.onStart();
 }
 
 // TIP: Use floats judiciously
 @SuppressWarnings("unused")
 private void showFloatVsIntegerDifference()
 {
 int max = 1000;
 float f = 0;
 int i = 0;
 long startTime, elapsedTime;
 
 // Compute time for floats
 startTime = System.nanoTime();
 for (float x = 0; x < max; x++)
 {
 f += x;
 }
 elapsedTime = System.nanoTime() - startTime;
 Log.v(APP_TAG, "Floating Point Loop: " + elapsedTime);
 

52 CHAPTER 3: Performance

 // Compute time for ints
 startTime = System.nanoTime();
 for (int x = 0; x < max; x++)
 {
 i += x;
 }
 elapsedTime = System.nanoTime() - startTime;
 Log.v(APP_TAG, "Integer Point Loop: " + elapsedTime);
 }
 
 // TIP: Avoid creating unnecessary objects or memory allocation
 private void createPlaceholders()
 {
 // TIP: Avoid internal getters/setters
 provider.deleteAll();
 
 if (provider.findAll().isEmpty())
 {
 // TIP: Arrays are faster than vectors
 List<String> beans = new ArrayList<String>();
 
 // TIP: Use enhanced for loop (DONE)
 // This is example of the enhanced loop but don't allocate objects if not necessary
 /*for (String task : beans) {
 String title = "Placeholder ";
 this.provider.addTask(title);
 beans.add(title);
 }*/
 
 /*for (int i = 0; i < 10; i++)
 {
 String title = "Placeholder " + i;
 this.getProvider().addTask(title);
 beans.add(title);
 }*/
 }
 }
 
 // TIP: Avoid private getters/setters - consider using package (DONE)
 /*EditText getEditText()
 {
 return this.etNewTask;
 }*/
 
 /*private TodoProvider getProvider()
 {
 return this.provider;
 }*/
 
 /*private ListView getTaskView()
 {
 return this.taskView;
 }*/
 

53CHAPTER 3: Performance

 @Override
 public void onCreate(final Bundle bundle)
 {
 // TIP: Use Strictmode to detect unwanted disk or network access
 // Remove from production code (DONE)
 //StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 // .detectDiskReads()
 // .detectDiskWrites()
 // .detectNetwork()
 // .penaltyLog()
 // .build());
 super.onCreate(bundle);
 
 // TIP: Do not overuse Linearlayouts, as they become more complex (DONE)
 // Replace them with Relativelayouts, increasing UI loading speed
 this.setContentView(R.layout.main);
 
 this.provider = new TodoProvider(this);
 this.taskView = (ListView) this.findViewById(R.id.tasklist);
 this.btNewTask = (Button) this.findViewById(R.id.btNewTask);
 this.etNewTask = (EditText) this.findViewById(R.id.etNewTask);
 this.btNewTask.setOnClickListener(this.handleNewTaskEvent);
 
 this.renderTodos();
 
 // TIP: Again, don't allocate unnecessary objects that expand the heap size to
significant proportions (DONE)
 // Once GC occurs, a large amount of the heap memory is dumped, especially with
 // local data structures, which renders a large portion of the heap unused.
 // SEE: optimizedHeap.png, deoptimizedHeap.png, heap-before.tiff, heap-after.tiff
 /*ArrayList<uselessClass> uselessObject = new ArrayList<uselessClass>();
 for (int i=0; i<180000; i++)
 uselessObject.add(new uselessClass());*/
 }
 
 private void renderTodos()
 {
 final List<String> beans = this.provider.findAll();
 
 Log.d(TodoActivity.APP_TAG, String.format("%d beans found", beans.size()));
 
 this.taskView.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 beans.toArray(new String[]
 {})));
 
 this.taskView.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(final AdapterView<?> parent, final View view, final int
position, final long id)

54 CHAPTER 3: Performance

 {
 Log.d(TodoActivity.APP_TAG, String.format("item with id: %d and position: %d",
id, position));
 
 final TextView v = (TextView) view;
 TodoActivity.this.provider.deleteTask(v.getText().toString());
 TodoActivity.this.renderTodos();
 }
 });
 }
 
 // Class with 26 double data members used to expand heap size in example
 /*private class uselessClass {
 double a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z;
 }*/
}
 
Finally, ToDoProvider.java, shown in Listing 3-4, has examples of some of the remaining
optimizations, such as always closing resources and only using SELECT statements to return a
minimum of data.

Listing 3-4.  The ToDo List Application’s ToDoProvider.java Page

package com.logicdrop.todos;
 
import java.util.ArrayList;
import java.util.List;
 
import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;
 
final class TodoProvider
{
 private static final String DB_NAME = "tasks";
 private static final String TABLE_NAME = "tasks";
 private static final int DB_VERSION = 1;
 private static final String DB_CREATE_QUERY = "CREATE TABLE " + TodoProvider.TABLE_NAME +
" (id integer primary key autoincrement, title text not null);";
 
 // TIP: Use final wherever possible (DONE)
 private final SQLiteDatabase storage;
 private final SQLiteOpenHelper helper;
 
 public TodoProvider(final Context ctx)
 {
 this.helper = new SQLiteOpenHelper(ctx, TodoProvider.DB_NAME, null, TodoProvider.DB_VERSION)
 {

55CHAPTER 3: Performance

 @Override
 public void onCreate(final SQLiteDatabase db)
 {
 db.execSQL(TodoProvider.DB_CREATE_QUERY);
 }
 
 @Override
 public void onUpgrade(final SQLiteDatabase db, final int oldVersion,
 final int newVersion)
 {
 db.execSQL("DROP TABLE IF EXISTS " + TodoProvider.TABLE_NAME);
 this.onCreate(db);
 }
 };
 
 this.storage = this.helper.getWritableDatabase();
 }
 
 // TIP: Avoid synchronization (DONE)
 public void addTask(final String title)
 {
 final ContentValues data = new ContentValues();
 data.put("title", title);
 
 this.storage.insert(TodoProvider.TABLE_NAME, null, data);
 }
 
 public void deleteAll()
 {
 this.storage.delete(TodoProvider.TABLE_NAME, null, null);
 }
 
 public void deleteTask(final long id)
 {
 this.storage.delete(TodoProvider.TABLE_NAME, "id=" + id, null);
 }
 
 public void deleteTask(final String title)
 {
 this.storage.delete(TodoProvider.TABLE_NAME, "title='" + title + "'", null);
 }
 
 // TIP: Don't return the entire table of data. (DONE)
 // Unused
 public List<String> findAll()
 {
 Log.d(TodoActivity.APP_TAG, "findAll triggered");
 
 final List<String> tasks = new ArrayList<String>();
 
 final Cursor c = this.storage.query(TodoProvider.TABLE_NAME, new String[]
 { "title" }, null, null, null, null, null);
 

56 CHAPTER 3: Performance

 if (c != null)
 {
 c.moveToFirst();
 
 while (c.isAfterLast() == false)
 {
 tasks.add(c.getString(0));
 c.moveToNext();
 }
 
 // TIP: Close resources (DONE)
 c.close();
 }
 
 return tasks;
 }
}

Tools
In this section we’ll look at two types of tools useful in finding performance bottlenecks—tools that
come with the Android SDK, and Unix command-line tools.

The Android SDK ships with the following tools to help us identify any performance issues:

DDMS	

Traceview	

Lint	

Hierarchy Viewer	

Viewer	

The Dalvik Debug Monitor Server (DDMS) is an Android SDK application that works as either a
standalone tool or an Eclipse plugin. DDMS does lots of things, including device screen capture and
providing a place to find logging output. But it also provides heap analysis, method allocation, and
thread monitoring information. The Android SDK also has the Traceview tool for method profiling,
layoutopt for optimizing your XML layouts, and Hierarchy Viewer for optimizing your UI.

And because Android is basically a Linux shell, we can leverage many of the following command-line
Unix tools for performance testing:

	Top

	Dumpsys

	Vmstat

	Procstats

In this section we’re going to look at how to use those tools to get a quick idea of where your
application is spending most of its time.

57CHAPTER 3: Performance

DDMS
In this section we’ll be covering the System Performance, Heap Usage, Threads, and Traceview
tools, all of which come as part of DDMS. We’ll also look at the Memory Analyzer Tool (MAT), which
can be downloaded as part of the Eclipse tool and used to report on how memory is being managed
in the Heap.

System Performance
The most basic tool in the DDMS suite is System Performance, which gives a quick snapshot
overview of the current CPU load, memory usage, and frame render time, as shown in Figure 3-4.
The first sign that you have an underperforming app is when your application is consuming too much
CPU or memory.

Figure 3-4.  The System Performance tool displaying CPU load for CallCenterApp

Heap Usage
DDMS also offers a Heap Usage tool. Take the following steps to view the memory heap, where
you can see what objects are being created and if they’re being destroyed correctly by the garbage
collection. (See Figure 3-5.)

1.	 In the Devices tab, select the process for which you want to view the heap.

2.	 Click the Update Heap button to enable heap information for the process.

3.	 Click Cause GC in the Heap tab to invoke garbage collection, which enables
the collection of heap data.

4.	 When garbage collection completes, you will see a group of object types and
the memory that has been allocated for each type.

58 CHAPTER 3: Performance

5.	 Click an object type in the list to see a bar graph that shows the number of
objects allocated for a particular memory size in bytes.

6.	 Click Cause GC again to refresh the data. Details of the heap are given along
with a graph of allocation sizes for a particular allocation type. Watch the
overall trend in Heap Size to make sure it doesn’t keep growing during the
application run.

Figure 3-5.  Viewing the DDMS heap

Eclipse Memory Analyzer
Eclipse has an integrated Memory Analyzer Tool (MAT) plugin, which you can download and install
from http://www.eclipse.org/mat/downloads.php. MAT can help you make sense of the heap
output. Now when you dump the heap profile or hprof file (see Figure 3-6), it will be automatically
analyzed so you can make some sense of the heap file.

http://www.eclipse.org/mat/downloads.php

59CHAPTER 3: Performance

MAT provides a number of reports, including a Dominator Tree for the biggest class, a Top Consumers
report, and a Leak Suspects report. Figure 3-7 shows Biggest Objects by Retained Size.

Figure 3-6.  Dumping the hprof file

60 CHAPTER 3: Performance

Memory Allocation
The next level of detail about allocations is shown in the Allocation Tracker view (Figure 3-8). To
display it, click Start Tracking, perform an action in the application, and then click Get Allocations.
The list presented is in allocation order, with the most recent memory allocation displayed first.
Highlighting it will give you a stack trace showing how that allocation was created.

Figure 3-7.  Memory Analyzer Tool overview

61CHAPTER 3: Performance

Threads
The thread monitor and profiling view in DDMS is useful for applications that manage a lot of
threads. To enable it, click the Update Threads icon, shown in Figure 3-9.

Figure 3-8.  Allocation Tracker

62 CHAPTER 3: Performance

The total time spent in a thread running user code (utime) and system code (stime) is measured in
what are known as jiffies. A jiffy was originally the time it takes light to travel 1cm, but for Android
devices it is the duration of one tick of the system timer interrupt. It varies from device to device but
is generally accepted to be about 10ms. The asterisk indicates a daemon thread, and the status
Native means the thread is executing native code.

Looking at the sample data in Figure 3-9, it is clear that an unusual amount of time is spent doing
GC. A closer look at how the application is handling object creation might be a good idea for
improving performance.

Method Profiling
Method Profiling is the tool of choice within DDMS for getting a quick overview of where time is
really spent in your application and is the first step in homing in on methods that are taking too much
time. With your application running and ideally performing some interesting task that you would like
to get more performance data about, take the following steps to use Method Profiling:

1.	 Click on Start Method Profiling.

2.	 Click the icon again to stop collection after a couple of seconds.

3.	 The IDE will automatically launch the Traceview window and allow you to
analyze the results from right within the IDE.

4.	 Click a method call in the bottom pane to create a hierarchy, showing you
the current method, the parent(s) that call this method, and then the children
methods called from within the selected method (Figure 3-10).

Figure 3-9.  DDMS threads

63CHAPTER 3: Performance

5.	 Identify the methods that are taking the most time so you can look at them
closer by creating Traceview files, which we’ll explore later in this section.

Each method has its parents and children, and the columns are as follows:

Inc % The percentage of the total time spent in the method plus any called methods

Inclusive The amount of time spent in the method plus the time spent in any called
methods

Excl % The percentage of the total time spent in the method

Exclusive The amount of time spent in the method

Calls + Recursive The number of calls to this method plus any recursive calls

Time/Call The average amount of time per call

Figure 3-10.  Method Profiling in DDMS using Traceview

64 CHAPTER 3: Performance

Traceview
Once you’ve identified the methods to take a closer look at, you can use the command-line version
of Traceview with the tracing API for more accurate measurement. Add Debug.startMethodTracing,
and Debug.stopMethodTracing around the code you want to profile, as shown in Listing 3-5.
Compile your code again and push the APK to your device.

Listing 3-5.  startMethodTracing and stopMethodTracing

public class ScoresActivity extends ListActivity {
 public void onStart() {
 // start tracing to "/sdcard/scores.trace"
 Debug.startMethodTracing("scores");
 super.onStart();
 // other start up code here
 }
 
 public void onStop() {
 super.onStop();
 // other shutdown code here
 Debug.stopMethodTracing();
 }
 
 // Other implementation code
}
 
The trace file can now be pulled off the device and displayed in Traceview using the following
commands:
 
adb pull /sdcard/scores.trace scores.before.trace
 
Figure 3-11 shows the results before code optimization.

Figure 3-11.  The trace file before optimization

65CHAPTER 3: Performance

Optimize the code using some of the suggestions earlier in the chapter and measure again, this time
using the following command:
 
adb pull /sdcard/scores.trace scores.after.trace
 
Figure 3-12 shows the results after optimization; the difference is clear.

Figure 3-12.  The trace file after optimization

Lint
Lint is, like its original Unix namesake, a static code-analysis tool. It replaces the layoutopt tool,
which was used to analyze your layout files and point out potential performance issues to get quick
performance gains by reorganizing your UI layout. It now does so much more, including the following
error-checking categories:

Correctness	

Correctness:Messages	

Security	

Performance	

Usability:Typography	

Usability:Icons	

Usability	

Accessibility	

Internationalization	

If you run the command lint --list Performance it will tell you that Lint does the following
performance checks, many of which we’ve already seen in the Android Tips section:

FloatMath: Suggests replacing android.util.FloatMath calls with java.lang.Math.

FieldGetter: Suggests replacing use of getters with direct field access within a class.

InefficientWeight: Looks for inefficient weight declarations in LinearLayouts.

66 CHAPTER 3: Performance

NestedWeights: Looks for nested layout weights, which are costly.

DisableBaselineAlignment: Looks for LinearLayouts, which should set
android:baselineAligned=false.

ObsoleteLayoutParam: Looks for layout params that are not valid for the given
parent layout.

MergeRootFrame: Checks whether a root <FrameLayout> can be replaced with a
<merge> tag.

UseCompoundDrawables: Checks whether the current node can be replaced by a
TextView using compound drawables.

UselessParent: Checks whether a parent layout can be removed.

UselessLeaf: Checks whether a leaf layout can be removed.

TooManyViews: Checks whether a layout has too many views.

TooDeepLayout: Checks whether a layout hierarchy is too deep.

ViewTag: Finds potential leaks when using View.setTag.

HandlerLeak: Ensures that Handler classes do not hold on to a reference to an
outer class.

UnusedResources: Looks for unused resources.

UnusedIds: Looks for unused IDs.

SecureRandom: Looks for suspicious usage of the SecureRandom class.

Overdraw: Looks for overdraw issues (where a view is painted only to be fully
painted over).

UnusedNamespace: Finds unused namespaces in XML documents.

DrawAllocation: Looks for memory allocations within drawing code.

UseValueOf: Looks for instances of “new” for wrapper classes, which should use
valueOf instead.

UseSparseArrays: Looks for opportunities to replace HashMaps with the more efficient
SparseArray.

Wakelock: Looks for problems with wakelock usage.

Recycle: Looks for missing recycle() calls on resources.

Lint can be run from within Eclipse or on the command line. If you just want to run the performance
checks on your project, type lint --check Performance <ProjectName> on the command line. Listing
3-6 displays the output of this command for the sample application, showing that there are some
layouts that need to be better organized.

67CHAPTER 3: Performance

Listing 3-6.  Lint Performance output for the CallCenterApp project

Scanning CallCenterV3: ...
Scanning CallCenterV3 (Phase 2):
res\layout\custom_titlebar.xml:6: Warning: Possible overdraw: Root element paints background #004A82
with a theme that also paints a background (inferred theme is @style/CustomTheme) [Overdraw]
 android:background="#004A82"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\custom_titlebar_with_logout.xml:6: Warning: Possible overdraw: Root element paints 
background #004A82 with a theme that also paints a background (inferred theme is @style/CustomTheme) 
[Overdraw]
    android:background="#004A82"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\custom_titlebar_with_settings.xml:6: Warning: Possible overdraw: Root element paints
background #004A82 with a theme that also paints a background (inferred theme is @style/CustomTheme)
[Overdraw]
 android:background="#004A82"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\login_screen.xml:5: Warning: Possible overdraw: Root element paints background  
@drawable/bg_app with a theme that also paints a background (inferred theme is @style/CustomTheme) 
[Overdraw]
    android:background="@drawable/bg_app"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queues_screen.xml:5: Warning: Possible overdraw: Root element paints background
@drawable/bg_app with a theme that also paints a background (inferred theme is @style/CustomTheme)
[Overdraw]
 android:background="@drawable/bg_app"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\settings_screen.xml:5: Warning: Possible overdraw: Root element paints background #1D1D1D 
with a theme that also paints a background (inferred theme is @style/CustomTheme) [Overdraw]
    android:background="#1D1D1D"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\drawable-hdpi\bg_login.9.png: Warning: The resource R.drawable.bg_login appears to be unused
[UnusedResources]
res\drawable-hdpi\btn_ok_xlarge.png: Warning: The resource R.drawable.btn_ok_xlarge appears to be
unused [UnusedResources]
res\drawable-hdpi\no_xlarge.png: Warning: The resource R.drawable.no_xlarge appears to be unused
[UnusedResources]
res\menu\settings_menu.xml: Warning: The resource R.menu.settings_menu appears to be unused
[UnusedResources]
res\values\strings.xml:7: Warning: The resource R.string.loginMessage appears to be unused
[UnusedResources]
 <string name="loginMessage">Enter Your Login Credentials</string>
            ~~~~~~~~~~~~~~~~~~~
res\values\strings.xml:8: Warning: The resource R.string.CSQ_default appears to be unused 
[UnusedResources]
    <string name="CSQ_default">Log In</string>
            ~~~~~~~~~~~~~~~~~~
res\values\strings.xml:11: Warning: The resource R.string.default_time appears to be unused
[UnusedResources]
 <string name="default_time">00:00:00</string>

68 CHAPTER 3: Performance

            ~~~~~~~~~~~~~~~~~~~
res\values\strings.xml:12: Warning: The resource R.string.oldest_in_queue appears to be unused 
[UnusedResources]
    <string name="oldest_in_queue">Oldest Call In Queue:&#160;</string>
            ~~~~~~~~~~~~~~~~~~~~~~
res\values\strings.xml:16: Warning: The resource R.string.add_to_queue appears to be unused
[UnusedResources]
 <string name="add_to_queue">Add To Queue</string>
            ~~~~~~~~~~~~~~~~~~~
res\layout\login_screen.xml:9: Warning: This LinearLayout view is useless (no children, no 
background, no id, no style) [UselessLeaf]
    <LinearLayout
    ^
res\layout\custom_titlebar.xml:10: Warning: This RelativeLayout layout or its LinearLayout parent is 
useless; transfer the background attribute to the other view [UselessParent]
    <RelativeLayout
    ^
res\layout\custom_titlebar_with_logout.xml:10: Warning: This RelativeLayout layout or its 
LinearLayout parent is useless; transfer the background attribute to the other view [UselessParent]
    <RelativeLayout
    ^
res\layout\custom_titlebar_with_settings.xml:10: Warning: This RelativeLayout layout or its 
LinearLayout parent is useless; transfer the background attribute to the other view [UselessParent]
    <RelativeLayout
    ^
res\layout\queue_list_item.xml:13: Warning: This TableRow layout or its TableLayout parent is 
possibly useless [UselessParent]
        <TableRow
        ^
res\layout\queue_list_item.xml:45: Warning: This TableRow layout or its TableLayout parent is 
possibly useless [UselessParent]
        <TableRow
        ^
res\layout\custom_titlebar.xml:3: Warning: The resource R.id.photo_titlebar appears to be unused 
[UnusedIds]
    android:id="@+id/photo_titlebar"
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:7: Warning: The resource R.id.nameTable appears to be unused
[UnusedIds]
 android:id="@+id/nameTable"
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:14: Warning: The resource R.id.tableRow1 appears to be unused 
[UnusedIds]
            android:id="@+id/tableRow1"
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:19: Warning: The resource R.id.activeIndicatorDummy appears to be
unused [UnusedIds]
 android:id="@+id/activeIndicatorDummy"
                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:46: Warning: The resource R.id.tableRow2 appears to be unused 
[UnusedIds]
            android:id="@+id/tableRow2"



 
69CHAPTER 3: Performance

            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:62: Warning: The resource R.id.callsInQueueLabel appears to be unused
[UnusedIds]
 android:id="@+id/callsInQueueLabel"
                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 errors, 27 warnings
 
res\layout\queue_list_item.xml:7: Warning: The resource R.id.nameTable appears to be unused [UnusedIds]
        android:id="@+id/nameTable"
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:14: Warning: The resource R.id.tableRow1 appears to be unused
[UnusedIds]
 android:id="@+id/tableRow1"
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:19: Warning: The resource R.id.activeIndicatorDummy appears to be 
unused [UnusedIds]
                android:id="@+id/activeIndicatorDummy"
                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:46: Warning: The resource R.id.tableRow2 appears to be unused
[UnusedIds]
 android:id="@+id/tableRow2"
            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
res\layout\queue_list_item.xml:62: Warning: The resource R.id.callsInQueueLabel appears to be unused 
[UnusedIds]
                android:id="@+id/callsInQueueLabel"
                ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 errors, 27 warnings

Hierarchy Viewer
Another useful tool in debugging performance issues, specifically for layouts, is the Hierarchy Viewer.
At its most basic it will show you how long it takes to inflate the layouts. You start Hierarchy Viewer
from within Eclipse by adding the perspective; this is similar to the way you would add back DDMS if
it ever disappeared.

Hierarchy Viewer first displays a list of devices and emulators; click the name of your app from the
list and then click Load View Hierarchy. The Tree View, the Tree Overview, and the Tree Layout will
then open, as shown in Figure 3-13. The Tree View shows all the layouts that you defined in your
XML files. We talked earlier in this chapter about how nested layouts can be bad for performance,
and Tree Overview is a great way to see just how nested your layouts have become and figure out
if it’s time to merge them into a RelativeLayout. Tree View shows how long each layout took to
display, so you can identify which views you need to debug and optimize to speed up your UI.

70 CHAPTER 3: Performance

In Figure 3-13 we can see that our login view took almost 33ms to display. It also shows what
layouts are part of the login view, and by hovering over specific views you can see just how long
each took to display.

Hierarchy Viewer also includes a Pixel Perfect tool for designers. We won’t be covering that in this
book.

Unix Tools
Because Android is built on Linux, we can leverage many of the same shell command tools as Linux
for performance testing. The main tools focus on total process load, individual process details, and
memory utilization.

Top
The top command will give you an idea of where your app is in relation to all other processes on
the device. The higher up the list, the more resources it is consuming. You can log onto the phone
using the adb shell command, or you can run the command remotely using adb shell top from your
command line. Figure 3-14 shows the results.

Figure 3-13.  Hierarchy Viewer for CallCenterApp login screen

71CHAPTER 3: Performance

Dumpsys
Top also gets you the process ID or PID of your application, which you can then use for the dumpsys
command, as follows:
 
adb shell dumpsys meminfo 1599
 
Dumpsys will give you information about the memory and heap being used by your application;
see Figure 3-15.

Figure 3-15.  Dumpsys Meminfo

Figure 3-14.  Output from the top command

72 CHAPTER 3: Performance

Figure 3-16.  Dumpsys Procstats

All of the Unix tools mentioned in this section are taking measurements at a point in time. Procstats
was introduced in Android 4.4 or KitKat to show how much memory and CPU the apps running in
the background will consume. Use the command to see the procstats output:
 
adb shell dumpsys procstats
 
with the results shown in Figure 3-16.

Vmstat
Vmstat allows you to view virtual memory levels on the device; see Figure 3-17. It is a simple Linux
command that reports about processes, memory, paging, block IO, traps, and CPU activity. The “b”
column shows which processes are blocked. Use the command as follows: adb shell vmstat.

73CHAPTER 3: Performance

Figure 3-17.  Dumpsys Meminfo

Summary
In this chapter we’ve looked at the tools to first find out if you have a performance problem and then
identify the call that needs to be fixed; we also saw some techniques you can use to optimize your
application. The Android SDK, and the Android platform, because of their close Unix relationship,
come with a wealth of tools that can help you identify issues.

75

Chapter 4
Agile Android

As a developer, you want to get better at Android development, have fewer bugs, make a better
product, or simply make the customer happy. Whether you’re developing for the web, mobile,
or even the desktop, it pays to adopt an Agile approach to your development and testing.

Benefits
I’m going to talk about the real benefits of the Agile approach for Android and indeed mobile
development in general. By the end of this chapter, it should be clear just how much of a sweet
spot Agile really is for Android developers.

Let’s begin with the most obvious benefits of Agile development:

You’ll have fewer errors.	

You’ll get faster feedback.	

It’s repeatable and reliable.	

You’ll need less manual testing.	

It’s cheaper.	

It offers built in regression testing.	

Using test-driven development (TDD) will result in fewer defects and remove the need for lots of
people doing manual testing, which makes the development of an app much cheaper. Continuous
integration (CI) will provide faster feedback to the customer and by its nature make the APKs
creation process repeatable and reliable as well as providing built-in regression testing for any new
features that you introduce into your app.

Benefits to the Business
What is the goal behind adding Agile practices to your Android projects? If we’re using continuous
integration we’re going to get faster feedback from the business, with repeatable and reliable

76 CHAPTER 4: Agile Android

development and all the time making sure that you’re producing something useful for what
people are trying to do to perform their basic needs. In a nutshell, if you’re using Agile in mobile
development, it makes the business happy, as there are fewer defects and team members get to see
how the app is progressing day to day.

For me, Agile is about lessons learned and how to integrate best practices to make sure we raise the
bar for everyone, not just a single app. It’s about trying to make sure that people are using Agile the
right way and the customers are happy, whoever they may be.

Benefits to the Developer
When I first started working on mobile apps, it came as a surprise that when people started mobile
development they got so excited they just started coding and seemed to forget everything we’ve
learned in the last 10 years.

One of the main reasons I favor adopting Agile practices is to make sure everyone is following the
same standard so we can have repeatable quality over many different apps. I see when people don’t
use Agile and when they do in mobile, and there is no reason we would go back to not using TDD
and behavior-driven development (BDD) in our development. Without them the quality goes out the
window. Using Agile is also about trying to make sure that as new developers come in, they’re all
doing their work the way they should be.

We’ll look at the elements of Agile in the next section. I’m sure your list may be different, but for me
at its most basic Agile development includes TDD, BDD, and CI. BDD isn’t ever really an issue for
developers to adopt. That’s probably because it’s mainly the job of the Business Analyst and QA
folks to get BDD up and running. CI also tends to be readily adopted, as it allows any and all code
deployment and integration issues to be fixed much earlier in the process. CI takes away those
last-minute deployment snafus or issues that have plagued software development for decades now.

TDD, on the other hand, can be difficult for many developers to grasp and properly adopt. As its
name suggests, TDD means writing a unit test first and then writing the simplest piece of code to
make the test pass. Once it passes the test, the code is cleaned up or refactored. Then rinse and
repeat to add any new requested features. TDD does not mean adding unit tests after the code is
complete. This is a huge reversal of the coding practices for many developers; and for many it is the
software world’s equivalent of quantum mechanics, as it just does not make intuitive sense.

However, there are two great benefits that TDD provides to developers. First, it tilts development
into a YAGNI—You Aren’t Going to Need It—mindset. There is often a temptation to develop a truly
wonderful new framework or architecture for your new app, but trust me, You Aren’t Going to Need
It. TDD takes away that temptation and makes sure that you’re only writing code for functionality that
is necessary and nothing more. Second, TDD also provides developer insurance against defects. For
any new feature, you write a new test and then the corresponding code to make the test pass; then,
if the unit tests all pass, you can be relatively sure that the new code did not introduce any unwanted
side effects.

The Sweet Spot
Agile lends itself very well to mobile development for a number of reasons. I’ve mentioned some
of its benefits in the previous sections, but Agile processes and mobile development make a

77CHAPTER 4: Agile Android

particularly good partnership, as it is so much easier to do mobile Agile than it is to do mainframe
Agile or even web Agile.

The first reason for this is that mobile projects have smaller teams and also have shorter
development lifecycles than other development work. According to Kinvey, which runs cloud
back-end services for mobile developers, the average time to create a mobile application is 18
weeks (see http://www.kinvey.com/blog/2086/how-long-does-it-take-to-build-a-mobile-app).

The reason for this is that mobile apps tend not to be as complex as web sites, and have fewer
features developed from start to finish. Often the work can be completed in a handful of sprints,
where s sprint is an Agile term that means a regular period of time (2 weeks is common) in which
some work is completed and made ready for review.

The Kinvey report further notes that the work takes approximately 8 weeks for the front-end and
10 weeks for the back-end work.

Because mobile apps and teams tend to be smaller, adopting Agile practices for mobile application
development does not require a huge company reorganization. All that is required is the team’s
interest in trying an Agile approach, and the benefits listed in previous section can be quickly
realized.

Second, although we’ll see later that the Google TDD and BDD aren’t the best place to start, there
are open source alternatives that make it very easy to adopt Agile Android development practices.

So even if you start off in small steps using just TDD or even something as simple as recording
your scripts using Monkey Runner, Agile will help you in the long run keeping your customer happy,
whoever that might be.

Elements of Agile
Let’s take a look at what are we going to need to have in our Agile Android project in its basic form.
There was a time when you could get away with just doing unit testing and claim you were doing
Agile development. But what we’re ultimately trying to do is make sure the customer is happy, and
unit testing alone probably won’t get us that. Ideally we’re looking for more, at the very least for a
continuous integration process with unit testing and functional tests.

The elements of Agile Android are as follows:

Continuous integration server	

Unit testing	

BDD or functional testing	

Deployment; that is, emailing out an APK	

The rest of this chapter will show how you can create Android projects using those elements.

Goals
Before we look at in the details of setting up an Agile Android project, let’s talk a little about
our goals.

http://www.kinvey.com/blog/2086/how-long-does-it-take-to-build-a-mobile-app

78 CHAPTER 4: Agile Android

Tests should be automated; we don’t want to be running them manually over and over again, as
that’s not efficient. We also want to build early and build often so we don’t have any deployment
issues. And we want to run the unit and functional tests before sending out the APK to anyone. How
often you run the whole process is up to you. Some people run it every evening, others choose to
run tests every time any new code is checked in.

So ideally we want an automated build process that starts when the code is checked into our source
code repository, such as GitHub. Then the CI server checks it out and builds the code, and the unit
tests are automatically run, followed by the functional tests (in the form of executable requirements).
If nothing fails—that is, if everything is green—then the APK is emailed to the customer so it can be
installed on a device.

I’d be lying if I said we were completely finished. Code coverage is an issue, but the goal here is to
pass on information so you can get started, too. I’ll try to point out the main elements you’re going to
need and what you can and currently cannot do.

Following the Agile approach we can start small with the basic elements and build from there. You
may want to add more elements later, such as load testing, performance testing, or security testing,
but for now if we do TDD, BDD and CI, then we are including the primary elements of Agile Android.

Roll Call
Now I’d like to introduce you to the names behind these elements of Agile Android, as the rest of this
chapter is going to be practical rather than theoretical. Table 4-1 shows the Android development
tools we’ll use for each element of the Agile model.

Table 4-1.  Agile Android Element Names

Agile Element Android Tool Name

TDD Robolectric

BDD Calabash

CI Jenkins

Source Code Management GitHub

From Table 4-1 we can see that our elements now become the following:

Robolectric (	 robolectric.org): Although jUnit is the out-of-the-box unit-testing
system with Android, it has some drawbacks and I do not recommend it as a
good place to start. You should be able to run unit tests quickly and efficiently,
but jUnit on Android device emulators does not lend itself to efficient unit
testing. Instead we’re going to use Robolectric, which has none of the jUnit
drawbacks and is also jUnit4 and not jUnit3.

Calabash (calaba.sh): We’re going to use Calabash for our BDD or executable 	
requirements. Calabash allows us to impose executable requirements in a
given-when-then format. Calabash is the easiest system to get BDD up and
running for your Android projects.

79CHAPTER 4: Agile Android

Jenkins (	 jenkins-ci.org): The de facto industry standard continuous integration
server, formerly known as Hudson.

GitHub (	 github.org): Rapidly becoming the de facto industry standard source
version control or source code repository. Although people often treat them as
the same thing, I should point out that Git is the version control system and
GitHub is a website where you can post your Git projects.

TDD
Test-driven development (TDD) has been around for some time now; it comes from XP’s test-first
programming in the late 1990s. The concept is simple: write a test for each new feature, run the test
so that it fails, write code to satisfy the test, and finally tidy or refactor the code; Figure 4-1 illustrates
the process. Each test is typically called a unit test.

Figure 4-1.  Test-driven development

And although the idea isn’t exactly new, it hasn’t been massively adopted by the programming
community, as it seems counterintuitive to many developers. However, in smaller applications such
as mobile development projects, TDD can show dramatic improvements. It can reduce the number
of defects as well as increase the speed of development.

80 CHAPTER 4: Agile Android

A huge benefit of TDD is the built-in regression testing. If the TDD tests all pass after you make a
small change during the refactoring phase or when adding a new feature, then you can be sure your
app is behaving correctly. Unit tests are the best insurance against problems that can be introduced
by refactoring or adding new functionality.

The other major benefit of TDD is the focus it brings to the development process. Gone are the great
architectural additions to the code or inventing new frameworks that no one will ever use again. The
developer’s job becomes writing a unit test or tests to satisfy the next feature and then writing the
simplest code to make the unit test pass. This is also called YAGNI or You Aren’t Going to Need It,
another XP principle. So a decision about whether to use an ORM instead of just using SQLite, for
example, becomes much simpler; the question becomes “do I need an ORM to make the unit test
pass?” And the answer is inevitably no or YAGNI.

As noted earlier, we’ll use Roboelectric to write our unit tests, because the built-in solution from
Android uses an older version of jUnit and requires us to use the incredibly slow Android emulator to
run tests, which makes TDD a very painful exercise. And while Roboelectric simplifies the process,
code coverage reporting (how much of your code is covered by unit tests) can still be an issue.

BDD
Behavior-driven development (BDD), in this case in the form of executable requirements, extends
TDD by adding another layer, as shown in Figure 4-2. What it means is that we’re adding executable
requirements as one of our elements. These are use case or user story–type requirements, which are
written in the gherkin format, also known as given/when/then to you and me.

Figure 4-2.  Behavior-driven development

Figure 4-3 shows a simple example of an executable requirement. It doesn’t matter if this is for an
Android game or something on the web; the description of the requirement is still the same. It’s not a
huge stretch to see how you would convert your old-style user stories into this gherkin format.

81CHAPTER 4: Agile Android

Executable requirements are written in feature files, which are made up of one or more scenarios,
often with a small table of data to drive the scenarios. Feature files always go hand-in-hand with step
definition files, which usually include some Ruby code to drive the web or mobile application. Simple
regex expressions in the step definition files glue the two together and make your requirements
executable.

It can sometimes take a few minutes for the whole given/when/then idea (as used by the Cucumber
approach we discuss later in the chapter) to sink in. I hope Figure 4-4 will make the penny drop for you,
too. Given a set of preconditions, when you do X, then you expect the following testable outcome.

Figure 4-3.  A sample feature file

Figure 4-4.  The Given/When/Then development model

82 CHAPTER 4: Agile Android

When I started trying to adopt Agile practices to Android work, BDD tools simply weren’t available,
but now there is plenty of scope to allow you to use given/when/then development.

We’re going to use Calabash for our BDD tool because it’s so easy to use. One of the main reasons
Calabash is so easy is its library of step definition functions that allow you to test Android apps,
often without needing to write any of your own step definitions.

So how do you decide how much unit testing vs. functional testing to do? The Agile pyramid shown
in Figure 4-5 gives us a good idea. How does this diagram apply to Android? The GUI Tests and
Acceptance Tests layers are implemented using BDD, and the Unit Tests/Component Tests layer is
obviously done using unit tests.

Figure 4-5.  The Agile testing triangle

What is the difference between a unit test and a GUI test? Unit tests act on a method, typically a
public method; by contrast, GUI tests or BDD functional tests are tests that typically run against
the emulator.

Android apps are usually client-server apps; they’re front-ends with corresponding back-end
databases. So they typically have APIs that we’ll test using BDD. We’ll also be testing for exceptions
and wrong paths as well as the “ideal path.”

Continuous Integration
Continuous Integration (CI) takes the form of a build server where each developer’s code is merged
together on a regular basis, usually daily or whenever any code is checked into the project’s source
code repository. Originally CI was created to stop the integration hell that arose when multiple
developers’ code was merged just before an application is released; all sorts of new defects,
unforeseen dependencies, and performance issues could conspire to delay a project’s launch.
CI makes the code merging happen much more often, so theoretically the integration should be
less painful, as it’s only at most a day’s code that you’re merging.

83CHAPTER 4: Agile Android

CI servers automate the build process, simplifying deployment and making it much easier to spot
any dependencies earlier in the project. CI servers also allow us to do other things, such as run our
unit tests (TDD) and executable requirements (BDD) along with performance testing, device testing
and all sorts of reporting. They will even stop the deployment if any of tests fail, preventing the app
from getting the business user when it’s not ready for prime time.

We’ll be using Jenkins as the CI server in this chapter. Jenkins and CI in general work very well for
mobile projects. If you can run a command manually from the command line, then you can automate
it in Jenkins. There are also lots of plugins available that make the build, test, and deployment stages
easy to set up and maintain.

We’ll also look at using CI for automated testing on multiple phones and tablets, which for me has
long been the holy grail of Android development.

Putting It All Together
We start off adopting Agile in our mobile development processes by using Jenkins as our CI server.
Download Jenkins from http://jenkins-ci.org/. You can also download and install a windows or
Mac OS native binary, but it’s just as easy to download the war file and run java -jar jenkins.war
from the command line. Next, point your browser at http://localhost:8080 to load Jenkins; you
should see something like the dashboard page in Figure 4-6.

Figure 4-6.  The Jenkins opening dashboard display

Tip  There are also web sites such as Cloudbees (cloudbees.com) that will host Jenkins for you. With
Cloudbees you can have it simply compile your apps or set up slave clients to compile the code and just
get Cloudbees to orchestrate everything.

http://jenkins-ci.org/
http://localhost:8080/

84 CHAPTER 4: Agile Android

There are two areas where we typically go when we’re working with Jenkins, as shown in the
Manage Jenkins screen in Figure 4-7. The first is Manage Plugins, where we can pull in the Ant,
GitHub, and Android emulator plugins. We also need to go to Configure System to add the default
project settings for the JDK, Ant location, and so on.

Figure 4-7.  The Manage Jenkins screen

What gives Jenkins its power is the availability of literally thousands of plugins. Figure 4-8 shows the
Manage Plugins ➤ Installed tab; be sure to grab the plugins listed earlier if you don’t have them.

85CHAPTER 4: Agile Android

Next go to Configure System to add the Android SDK, JDK, Git, and Ant locations on your CI server;
Figure 4-9 shows this display on a Mac.

Figure 4-8.  Managing plugins in Jenkins

86 CHAPTER 4: Agile Android

Jenkins on its own it pretty useless; we need to get it to do something, and the first thing we want it
to do is to build the code from GitHub.

1.	 Create a new job called ToDoList and make it a free-style software project.

2.	 Click on Configure and enter a GitHub project, for example
https://github.com/godfreynolan/ToDoList.

3.	 Under Source Code Management, enter the Repository URL such as
git@github.com:godfreynolan/ToDoList.git.

4.	 Under Build Triggers, choose “Build when a change is pushed to GitHub.”

Next we need to tell Jenkins how to build the project. In this case we need two commands as
follows. We’re creating a debug build, using the Configure Project settings shown in Figure 4-10.

 

Figure 4-9.  Use the Configure System page to add plugins in Jenkins

https://github.com/godfreynolan/ToDoList

87CHAPTER 4: Agile Android

android update project –name "ToDoList"
ant –Dadb.device.arg='-s $ANDROID_AVD_DEVICE' debug 

Figure 4-10.  Jenkins Configure Project settings for ToDoList

88 CHAPTER 4: Agile Android

Hit Save and run the build by clicking on the new project, which should now be in the Jenkins
Dashboard, as shown in Figure 4-11.

Figure 4-11.  The Jenkins dashboard showing the new project added

Now we’re going to add some TDD to the process using a version of jUnit. As described earlier,
test-driven development is the process of writing tests before writing any code and then writing code
that will satisfy that test, repeating the process until the features are completed.

Typically when we run the unit tests, the first time around they’ll fail—because you have no code—
and then when you write the code that satisfies the test they should go green. Also, all TDD classes
have a setup and teardown along with the unit test.

Google’s recommended unit testing suffers from a number of issues. First, it’s jUnit3, which is
cumbersome to use, and not jUnit4. It also has no good code coverage tool for unit testing. I’m
not usually someone who asks a client, “Can you tell me what your code coverage is?” or argues
about how to get code coverage up from 83% to 90%. Code coverage is good enough when you
come up with a number that’s right for you. Usually when I hear someone say “reflection” and “code
coverage” in the same sentence, I know they’ve gone too far. However, there is also a point where
you’ve gone too far in the other direction and there simply isn’t enough unit testing. Android’s jUnit3
makes it easier to fall into that trap.

Adopting Robolectric implicitly lets you use jUnit4, including its code coverage smarts. Robolectric
also has some other nice features, and as a bonus, your entire toolchain for TDD, BDD and CI is
using the highest quality contemporary components.

In the following example we created five simple tests for our ToDoList application:

	should_create_activity fails if an activity isn’t created. This is the most basic
Robolectric test possible and can be used in any Android app.

	should_find_tasks adds three tasks and fails if the newly created tasks are
not found.

	should_add_new_task adds a task via a ToDoProvider method and fails if the task
is not found.

89CHAPTER 4: Agile Android

	should_add_task_using_ux adds a task via the GUI and fails if the task is
not found.

	should_remove_tasks adds a task and deletes a task and fails if it finds the newly
created task.

Listing 4-1 shows the ToDoActvityTest class, which includes these five tests, and the
Robolectric/jUnit4 decorators @RunWith and @Test that are the hallmarks of writing such tests.

Listing 4-1.  ToDoActivityTest.java

import java.util.List;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.robolectric.Robolectric;
import org.robolectric.RobolectricTestRunner;
 
import android.app.Activity;
 
@RunWith(RobolectricTestRunner.class)
public class TodoActivityTest
{
 @Test
 public void should_add_new_task() throws Exception
 {
 final TodoActivity activity = Robolectric.buildActivity(TodoActivity.class).
create().get();
 
 activity.getProvider().addTask("Some task");
 final List<String> tasks = activity.getProvider().findAll();
 Assert.assertEquals(tasks.size(), 1);
 }
 
 @Test
 public void should_add_task_using_ux() throws Exception
 {
 final TodoActivity activity = Robolectric.buildActivity(TodoActivity.class).
create().get();
 
 activity.getEditableTextbox().setText("My task");
 activity.getSaveTaskButton().performClick();
 
 final int tasks = activity.getTaskListView().getCount();
 Assert.assertEquals(tasks, 1);
 }
 
 @Test
 public void should_create_activity() throws Exception
 {
 final Activity activity = Robolectric.buildActivity(TodoActivity.class).create().
get();
 Assert.assertTrue(activity != null);
 }
 

90 CHAPTER 4: Agile Android

 @Test
 public void should_find_tasks() throws Exception
 {
 final TodoActivity activity = Robolectric.buildActivity(TodoActivity.class).
create().get();
 
 activity.getProvider().addTask("Some task 1");
 activity.getProvider().addTask("Some task 2");
 activity.getProvider().addTask("Some task 3");
 final List<String> tasks = activity.getProvider().findAll();
 Assert.assertEquals(tasks.size(), 3);
 }
 
 @Test
 public void should_remove_task() throws Exception
 {
 final TodoActivity activity = Robolectric.buildActivity(TodoActivity.class).
create().get();
 
 activity.getProvider().addTask("Some task");
 activity.getProvider().deleteTask("Some task");
 final List<String> tasks = activity.getProvider().findAll();
 Assert.assertEquals(tasks.size(), 0);
 }
}
 
Robolectric works best with the Maven build tool instead of Ant. To Mavenize your project, take the
steps in Listing 4-2.

Listing 4-2.  Mavenizing ToDoList

git clone https://github.com/mosabua/maven-android-sdk-deployer.git
cd maven-android-sdk-deployer
mvn install -P 4.3
cd ToDoList
mvn clean test
 
The first time you run Maven or mvn it will install all the missing jars, which can take some time. If the
project has been Mavenized correctly, the test output should be similar to Listing 4-3.

Listing 4-3.  Test Results

 T E S T S

Running com.example.TodoActivityTest
WARNING: no system properties value for ro.build.date.utc
DEBUG: Loading resources for android from jar:/Users/godfrey/.m2/repository/org/ToDoList/android-
res/4.1.2_r1_rc/android-res-4.1.2_r1_rc-real.jar!/res...
DEBUG: Loading resources for com.example from ./res...
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 12.168 sec
 

https://github.com/mosabua/maven-android-sdk-deployer.git

91CHAPTER 4: Agile Android

Results :
 
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0
 
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 19.018s
[INFO] Finished at: Tue Nov 19 20:03:48 EST 2013
[INFO] Final Memory: 18M/81M
[INFO] --
 
Adding this to the CI server as unit tests requires being able to run the Robolectric code from the
command line, which simply means running the Maven tests:
 
mvn clean test
 
in Chapter 2 we used Dagger to show an example of a Dependency Injection framework we first
met. Dagger allows you to create mocking frameworks so that we’re testing our code and not any
network connections to a web service or in the given example the SQLite database. In the example
we mocked out the data provider in our ToDoList application. Listing 2-1 showed how to wire in the
two database providers; the first is the real database and the second was a stub function.

The penultimate step is to now add the executable requirements code using Calabash. We’re
using Calabash to provide BDD or behavior-driven design, in this case in the form of executable
requirements. Apologies to the Calabash folks as they don’t really have an icon so I had to
make one up.

When we started trying to adopt Agile practices to our Android work, options for using executable
requirements simply weren’t there, but now there is plenty of scope to allow you to use
Cucumber-style given/when/then programming using Calabash and other tools.

BDD extends TDD by adding another layer, what are called acceptance tests here. So now you write
your executable requirement as well as your unit test and then make them both pass by writing code
that satisfies the tests before releasing the executable to the business stakeholder.

Listing 4-4 has a simple example of an executable requirement. It doesn’t matter if this is for an
Android game or something on the web; the description of the requirement is still the same. It’s not a
huge stretch to see how you would convert your old-style user stories into this format.

Listing 4-4.  Implementing Given/When/Then Development

Feature:
 As a user I want to see my To Do List and individual reminders
 
Scenario: Display an individual reminder
 
 Given I wait for the "ToDoListActivity" screen to appear
 When I touch the "Get The Milk" text
 Then I wait up to 3 seconds for the "ReminderActivity" screen to appear
 Then I see the text "Remember to Get The Milk"
 

92 CHAPTER 4: Agile Android

As described earlier, executable requirements are written in feature files, which are made up of one
or more scenarios, often with a small table of data to drive the scenarios, which are then matched up
step definition files.

In Cucumber the feature files define the requirement and the step definitions execute the code. In
Calabash you can mostly get away with feature files, as the nice Calabash folks have written a library
of step definitions that will cover most of the scenarios you are trying to test, or in other words they
have already done the hard work for you.

To run Calabash you first need to install the Calabash Gem. Then create your feature files in the
calabash folder in your test APK and call the calabash-android command. Use the following syntax
to call Calabash from the command line; it can be added as another execute shell in Jenkins.
 
calabash-android run ToDoListApplication.apk
 
Calabash works by disassembling your test APK, injecting the calabash server, and then
reassembling your APK so that you can run your tests.

Finally, once the unit testing and executable requirements have all passed, you need to email the
APK out to your business stakeholders. There are other options you might want to consider, such as
using an over-the-air deployment model such as TestFlightApp; however, on the Android platform
that’s probably overkill, so we’ll just email out the APK. Thankfully Jenkins has an email plugin that
allows you to simply add a list of email recipients to send the APK.

Summary
What is the goal behind adding Agile practices to your Android projects? You’ll get faster feedback
from the customer, with repeatable and reliable development and all the time making sure that you’re
producing something useful to help them perform their basic business needs. In a nutshell, if you’re
using Agile in mobile development, it makes the customer happy as they see fewer defects because
you are doing unit testing and implementing executable requirements.

You’ll find that mobile apps also have great visibility. Although the overall expense to complete an
app is probably less than for web work, the visibility is very high and usually means seeing and
talking to C-level execs. Making a positive impression usually leads to more work. So even if you
start off in small steps using just TDD or even something as simple as recording your scripts using
Monkey Runner, it will help you in the long run keeping the customer happy.

The Agile Manifesto (http://www.agilemanifesto.org/principles.html) states as its first principle.

Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

Applying the principles of Agile Android gets us there.

Finally, feel free to add more plugins to your Jenkins server, for features such as code coverage,
performance testing, and security vulnerability testing. This is not a complete list of tasks;
it’s meant to get you started on the Agile road. Look for areas of improvement and gradually
apply them—whatever works for you and your team to help create better software is the best
Agile process.

http://www.agilemanifesto.org/principles.html

93

Chapter 5
Native Development

Although the Android framework is designed purely for Java-based applications, the Android
Native Development Kit (NDK) is also provided by Google as an official companion toolset for the
Android SDK to enable developers to implement and embed performance-critical portions of their
applications using native machine code–generating programming languages, such as C, C++, and
assembly.

Through the Java Native Interface (JNI) technology, the native components can be accessed
seamlessly as ordinary Java methods. Both the Java and native code portions of the application run
within the same process. Although the JNI technology permits both the Java and the native code to
coexist within the same application, it does not expand the boundaries of the Dalvik Virtual Machine (VM).
The Java code is still managed and executed by the Dalvik VM, and all native code is expected to
manage itself throughout the life cycle of the application. This imposes additional responsibilities
on developers.

To execute effectively side by side with the virtual machine, the native components are expected
to be good neighbors and interact with their Java counterparts maintaining a delicate boundary. If
this interaction is not properly managed, the native components can cause hardly traceable errors
within the application; such errors can even take the entire application down by crashing the virtual
machine.

In this chapter, you will learn some of the best practices for developing well-behaving native
components on the Android platform.

Deciding Where to Use Native Code
The first best practice that you will learn in this chapter is to properly identify the components of your
application that can benefit from using native code support.

94 CHAPTER 5: Native Development

Where Not to Use Native Code
The biggest and most common false assumption about native code is the expectation of an
automatic performance gain by simply coding application modules in native code instead of Java.

Using native machine code does not always result in an automatic performance boost. Although
earlier versions of Java were known to be much slower than native code, the latest Java technology
is highly optimized, and the speed difference is negligible in many cases. The JIT compilation feature
of the Java Virtual Machine, specifically the Dalvik VM in the case of Android, allows the translation
from the interpreted byte-code into machine code during application startup. The translated machine
code is then used throughout the execution of the application, making the Java applications run as
fast as their native counterparts.

Caution  Using native machine code does not always result in an automatic performance improvement.

Be aware that overusing the native code support in your application can easily lead to much bigger
stability problems. Because native code is not managed by the Dalvik VM, most of that memory
management code has to be written by you; and this itself increases the complexity and the code
size of the overall application.

Where to Use Native Code
Using native code in Android applications is definitely not a bad practice. In certain cases, it
becomes highly beneficial because it can provide for code reuse and improve the performance of
some complex applications. Here is a list of some common areas that can benefit from native code
support:

	Use of Existing Third Party Libraries: Imagine that you will be developing
a Video Editing application on the Android platform. For your application to
operate, it needs to be able to read and write in various video formats, such as
the Theora video codec. The Java framework does not provide any APIs to deal
with Theora. Developing the code necessary to deal with this video format is
not an efficient use of time, so your best option is to utilize an already available
third-party library that can understand the Theora video codec. Despite the
popularity of the Java programming language, the code library ecosystem is
still highly mandated by C/C++-based native code libraries. There is a much
better chance that you will find various implementations of the Theora video
codec as C/C++ libraries. Native code support becomes really handy here, as it
can enable you to blend the native C/C++ library into your Android application
seamlessly. It is a good practice to use native code support to promote code
reuse, as that facilitates the development process.

95CHAPTER 5: Native Development

	Hardware Specific Optimization of Performance Critical Code: As a
platform-independent programming language, Java does not provide any
mechanism for using the CPU-specific features for optimizing the performance-
critical portions of Android applications. Compared to desktop platforms,
mobile device resources are highly scarce. For complex applications with high
performance requirements, such as 3D games and multimedia applications,
effectively using every possible CPU feature is crucial. ARM processors, such
as ARM NEON and ARM VFPv3-D32, provide additional instruction sets to
allow mobile applications to hardware-accelerate many performance-critical
operations. It is a good practice to use native code support to benefit from these
CPU specific features.

Java Native Interface
As indicated earlier in this chapter, JNI is a mechanism and a set of APIs that are exposed by the Java
Virtual Machine to enable developers to write parts of a Java application using a native programming
language. These native components can be accessed transparently from the Java code as ordinary
Java methods. JNI also provides a set of API functions to enable the native code to access the
Java objects. Native components can create new Java objects or use objects created by the Java
application, which can inspect, modify, and invoke methods on these objects to perform tasks.

Difficulties Writing Native Code Using JNI
Integrating native code into a Java application through JNI requires native functions to be declared
with a specially crafted name conforming to JNI specification. In addition to the function name,
each parameter to the native function should also use the JNI data types. Because the Java and
the native code are compiled in separate silos, any issues in this part of the code are not visible at
compile-time.

Reaching back from native code to Java space also requires a sequence of API calls. As the native
programming language has no knowledge about the Java portion of the code, it cannot provide
any compile-time errors if you use a wrong API call. In addition, a change in the Java portion of the
code could also break the native portion of the code, and you would not be informed about this at
compile-time, either.

Even if you take extraordinary measures to prevent bugs from occurring, keeping native methods
and their declarations in Java space aligned can be a cumbersome and redundant task. In this
section, you will learn how to benefit from the available tools to auto-generate the necessary code
instead of typing it manually.

Generate the Code Using a Tool
A common good practice in almost every programming language is that as a good developer, you
should always minimize the number of code lines you manually produce. Any code line that you
produce, you will have to maintain throughout the lifetime of your application. As a good practice,
you should always take advantage of the code generators that are provided by the SDKs and the
IDEs to achieve that.

96 CHAPTER 5: Native Development

Tip  Benefit from the code generators that are provided by the SDKs to minimize the amount of code that
you need to write.

Generating C/C++ Header Files Using javah
The javah tool is part of the Java JDK distribution. It operates on the Java class files with native
method declarations and generates corresponding C/C++ header files with appropriate signatures
based on the JNI specification. Because the generated header files are not expected to be modified
by the developer, you can invoke javah as many times as you like to keep the native method
declarations in sync.

The javah tool is a standalone application that is located in the <JDK_HOME>/bin directory on
your machine. Invoking it without any command-line arguments would present a list of available
arguments. Depending on your project structure and unique requirements, you can decide where to
involve the javah tool in your build process.

Following is a simple example demonstrating how javah works. For the sake of simplicity, and to be
as platform-independent as possible, in this example you will be using javah through an ANT build
script that is extending the Android ANT build framework. Only the relevant portions of the source
code will be highlighted here. You can download the full source code from the book’s website.

1.	 As shown in Listing 5-1, define a new ANT task called headers in the
custom_rules.xml file in order to extend the Android build system with the
ability to generate C/C++ header files for native methods. List your classes
with native modules accordingly. The javah tool will process only the classes
that are explicitly mentioned.

Listing 5-1.  Content of custom_rules.xml File

<?xml version="1.0" encoding="UTF-8"?>
<project name="custom_rules">
 <target name="headers" depends="debug">
 <path id="headers.classpath">
 <path refid="project.all.jars.path" />
 <path path="${out.classes.absolute.dir}" />
 </path>
 
 <property name="headers.bootclasspath.value"
 refid="project.target.class.path" />
 <property name="headers.classpath.value"
 refid="headers.classpath" />
 <property name="headers.destdir" value="jni" />
 
 <echo message="Generating C/C++ header files..." />
 
 <mkdir dir="${headers.destdir}" />
 

97CHAPTER 5: Native Development

 <javah destdir="${headers.destdir}"
 classpath="${headers.classpath.value}"
 bootclasspath="${headers.bootclasspath.value}"
 verbose="true">
 
 <!-- List of classes with native methods. -->
 <class name="com.apress.example.MainActivity" />
 </javah>
 </target>
</project>
 

2.	 Assume that your Android application contains a native method, called
nativeMethod, within the MainActivity class as shown in Listing 5-2.

Listing 5-2.  Content of MainActivity.java file with a Native Method

public class MainActivity extends Activity
{
 ...
 
 /**
 * Native method that is implemented using C/C++.
 *
 * @param index integer value.
 * @param activity activity instance.
 * @return string value.
 * @throws IOException
 */
 private static native String nativeMethod(int index,
 Activity activity) throws IOException;
}
 

3.	 You can now use the ANT script by invoking the following on the command line:
 
ant headers
 

4.	 This will first trigger a full compile of your application, for the class files to
be generated. Then it will invoke the javah tool on the specified class files to
parse the method signatures of your native methods. While the javah tool is
working, it will print a status message as shown in Listing 5-3.

Listing 5-3.  The javah Tool Generating the Header Files

headers:
 [echo] Generating C/C++ header files...
 [mkdir] Created dir: C:\src\JavahTest\jni
 [javah] [Creating file ... [com_apress_example_MainActivity.h]]
 

98 CHAPTER 5: Native Development

5.	 The javah tool will generate a set of header files in the jni subdirectory of
your project. The header files will be named according to the name of the
Java class that encapsulates the native method. In this example, the header
file com_apress_example_MainActivity.h header fill will be generated. As
shown in Listing 5-4, the content of this header file will include the native
function signature for each native method that you need to implement.

Listing 5-4.  Generated C/C++ Header File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_apress_example_MainActivity */
 
#ifndef _Included_com_apress_example_MainActivity
#define _Included_com_apress_example_MainActivity
#ifdef __cplusplus
extern "C" {
#endif
 
...
 
/*
 * Class: com_apress_example_MainActivity
 * Method: nativeMethod
 * Signature: (ILandroid/app/Activity;)Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_com_apress_example_MainActivity_nativeMethod
 (JNIEnv *, jclass, jint, jobject);
 
#ifdef __cplusplus
}
#endif
#endif
 

6.	 As suggested at the top of the header file, you should not modify this header
file directly, because it will be overwritten each time you execute the javah
tool. Instead, you are expected to provide the implementation of all native
methods that are declared in this header file in a separate C/C++ source file.

Because the Java and native portions of the code are in two separate silos, the Android build system
does not perform any validation while building your application. Any missing native function merely
triggers a java.lang.UnsatisfiedLinkError once it is called at runtime. The javah tool helps you to
prevent these errors by auto-generating signatures.

Tip  Using the javah tool helps to prevent java.lang.UnsatisfiedLinkError runtime exceptions in
your Android application.

99CHAPTER 5: Native Development

As each native method is declared in the header files, any missing implementations of those
functions trigger a compile-time error to prevent you from releasing your Android application with
missing implementations.

Generating the JNI Code using SWIG
In the previous section, you learned how to utilize the javah tool. Although javah helps you by
generating the native function signatures and keeping them in sync with the Java code, you still
have to provide the wrapper code to glue the native implementation of those native functions to the
Java layer. This will require you to use plenty of JNI API calls, which is a cumbersome and
time-consuming development task.

In this section, you will learn about another powerful tool, known as Simplified Wrapper and
Interface Generator (SWIG). It simplifies the process of developing native functions by generating the
necessary JNI wrapper code. SWIG is an interface compiler, merely a code generator; it does not
define a new protocol nor is it a component framework or a specialized runtime library. SWIG takes
an interface file as its input and produces the necessary code to expose that interface in Java. SWIG
is not a stub generator; it produces code that is ready to be compiled and run. You can download
SWIG from its official website at www.swig.org. A simple example application will help you better
understand how SWIG can help.

In this example, assume that you need to obtain the Unix username of your Android application
during runtime. This information is available through the POSIX getlogin function, which is
accessible only from the native C/C++ code, but not from Java. Although the implementation of this
function is already provided by the platform, you still have to write JNI API calls to expose the result
of this function to Java space, as shown in Listing 5-5.

Listing 5-5.  Getlogin Function Exposed Through JNI

JNIEXPORT jstring JNICALL Java_com_apress_example_Unix_getlogin(JNIEnv* env, jclass clazz) {
 jstring loginString = 0;
 
 const char* login = getlogin();
 if (0 != login) {
 loginString = env->NewStringUTF(login);
 }
 
 return loginString;
}
 
SWIG can help you by generating this code automatically. In order to let SWIG know about which
function to wrap, you will need to specify it in a SWIG interface file. As indicated earlier, SWIG is an
interface compiler; it generates code based on the provided interface. The SWIG interface file for
exposing the getlogin function looks as shown in Listing 5-6.

http://www.swig.org/

100 CHAPTER 5: Native Development

Listing 5-6.  The Unix.i SWIG Interface File

/* Module name is Unix. */
%module Unix
 
%{
/* Include the POSIX operating system APIs. */
#include <unistd.h>
%}
 
/* Ask SWG to wrap getlogin function. */
extern char* getlogin(void);
 
Assuming that you have installed the SWIG tool on your workstation, and the SWIG binary directory
is added to your PATH environment variable, invoke the following on the command prompt all in one
line:
 
swig -java
 -package com.apress.example
 -outdir src/com/apress/example
 jni/Unix.i
 
The SWIG tool processes the Unix.i interface file and generates the Unix_wrap.c C/C++ JNI
wrapper code, as shown in Listing 5-7, in the jni directory as well as the UnixJNI.java and Unix.
java Java proxy classes in the com.apress.example Java package.

Listing 5-7.  The Unix_wrap.c Native Source File Generated by SWIG

/* --
 * This file was automatically generated by SWIG (http://www.swig.org).
 * Version 2.0.11
 *
 * This file is not intended to be easily readable and contains a number of
 * coding conventions designed to improve portability and efficiency. Do not make
 * changes to this file unless you know what you are doing--modify the SWIG
 * interface file instead.
 * --- */
 
#define SWIGJAVA
 
...
  
/* Include the POSIX operating system APIs. */
#include <unistd.h>
  
#ifdef __cplusplus
extern "C" {
#endif
 

http://www.swig.org/

101CHAPTER 5: Native Development

SWIGEXPORT jstring JNICALL Java_com_apress_example_UnixJNI_getlogin(JNIEnv *jenv, jclass jcls) {
 jstring jresult = 0 ;
 char *result = 0 ;
  
 (void)jenv;
 (void)jcls;
 result = (char *)getlogin();
 if (result) jresult = (*jenv)->NewStringUTF(jenv, (const char *)result);
 return jresult;
}
 
...
 
To use the native function, you can now simply use the getlogin Java method from the com.apress.
example.Unix class in your application. Without writing any JNI wrapper code, SWIG enabled you to
utilize the native function in your Android application.

Minimize the Number of JNI API Calls
Although SWIG tool is highly promising, needless to say there will be still cases where automatic
code generation is simply not an option. In those cases, you will need to write the necessary JNI API
calls to provide the functionality. Even when manual JNI API calls cannot be prevented, minimizing
the number of such calls can still help in optimizing the overall application and reducing the code
footprint. In this section you will learn about some of the best practices to minimize the number of
JNI API calls needed in your application.

Use Primitive Data Types as Native Method Parameters
There are two sorts of data types in the Java programming language: the primitive data types, such
as byte, short, int, and float, and the complex data types, such as Object, Integer, and String.
JNI can automatically map most of the primitive data types to C/C++ primitive data types. The
native function can use data that is passed as primitive types directly without the need to make any
specific JNI API call, as shown in Table 5-1.

Table 5-1.  Primitive Data Type Mapping

Java Type JNI Type C/C++ Type Size

boolean jboolean unsigned char Unsigned 8 bits

byte jbyte char Signed 8 bits

char jchar unsigned short Unsigned 16 bits

short jshort short Signed 16 bits

int jint Int Signed 32 bits

long jlong long long Signed 64 bits

float jfloat float 32 bits

double jdouble double 64 bits

102 CHAPTER 5: Native Development

However, the complex data types are passed as opaque references to the native function. In order to
use that data, the native function must make various JNI API calls to extract the pieces of the data
in a primitive data format that can be used in native code. When defining your native methods, as
a best practice, focus on eliminating complex data types in both the parameter list and the return
value as much as possible. This will help you to minimize the number of JNI API calls in your native
code, and it will also improve the performance of the native function drastically.

Minimize Reach-Back from Native Code to Java Space
A native function is not limited by the data that is passed to it through its parameters. JNI provides
the necessary API to enable the native code to interact with the Java space. This flexibility comes
with a cost. Using JNI API calls to reach back from native code to Java space consumes CPU cycles
and impacts the application performance; meanwhile, it increases the complexity of the native code
because of the number of necessary JNI API calls.

As a best practice, make sure you are passing all of the required data into your native function
through its parameters, instead of having the native function reach back to Java space to obtain
them.

Take a look at the following code example. As shown in Listing 5-8, the native code makes multiple
JNI API calls to access the data it needs.

Listing 5-8.  Native Method Accessing Two Fields from the Object Instance

JNIEXPORT void JNICALL Java_com_apress_example_Unix_method(JNIEnv* env, jobject obj) {
 
 jclass clazz = env->GetObjectClass(obj);
  
 jfieldID field1Id = env->GetFieldID(clazz, "field1", "Ljava/lang/String;");
 jstring field1Value = env->GetObjectField(obj, field1Id);
  
 jfieldID field2Id = env->GetFieldID(clazz, "field2", "Ljava/lang/Integer;");
 jobject field2Value = env->GetObjectField(obj, field2Id);
 
 ...
}
 
As shown in Listing 5-9, the native method declaration can be modified to include field1 and field2
as part of the native method parameters to eliminate those JNI API calls.

Listing 5-9.  Both the field1 and field2 Passed to Native Method Directly

JNIEXPORT jstring JNICALL Java_com_apress_example_Unix_method(JNIEnv* env, jobject obj,
 jstring field1, jobject field2) {
 ...
}
 
To avoid redundant coding in Java space, it is also a common practice to utilize helper methods
that would aggregate these extra data items prior calling the native method instead of requiring the
developer to pass them each time, as shown in Listing 5-10.

103CHAPTER 5: Native Development

Listing 5-10.  Helper Method that Aggregates the Necessary Parameters

public void method() {
 jniMethod(field1, field2);
}
 
public native void jniMethod(String field1, Integer field2); 

Memory Usage
Compared to desktop-based platforms, memory is a scarce resource on mobile devices. Java is
known as a managed programming language, meaning that the Java Virtual Machine (JVM) manages
the application memory on behalf of the developer. During the execution of an application, JVM
keeps an eye on the available references to the allocated memory regions. When JVM detects
that an allocated memory region can no longer be reached by the application code, it releases the
memory automatically through a mechanism known as garbage collection. This frees the developer
from managing the application memory directly, and it drastically reduces the complexity of
the code.

JVM garbage collectors boundaries are limited to the Java space only. Because the native code
does not run in the managed environment, the JVM garbage collector cannot monitor or free the
memory that your application allocates in the native space. It is the developer’s responsibility to
manage the application memory in native space properly. Otherwise, the application can easily
cause the device to run out of memory. This can jeopardize the stability of both the application and
the device.

In this section, you will learn about some of the best practices for using memory efficiently in the
native space.

Local References
As they do in the Java space, references continue to play an important role in the native space as
well. JNI supports three kinds of references: local references, global references, and weak global
references. Because the JVM garbage collector does not apply to native space, JNI provides a set of
API calls to enable the developer to manage the lifecycle of each of these reference types.

All parameters passed to the native function are local references. In addition, most JNI API calls also
return local references.

Never Cache Local References
The lifespan of a local reference is limited to that of the native method itself. Once the native method
returns, JVM frees all local references that are either passed in or allocated within the native method.
Therefore, you cannot cache and reuse these local references in subsequent invocations. To reuse
a reference, you must explicitly create a global reference based on the local reference, using the
NewGlobalRef JNI API call, as shown in Listing 5-11.

104 CHAPTER 5: Native Development

Listing 5-11.  Obtaining a Global Reference from a Local Reference

jobject globalObject = env->NewGlobalRef(localObject);
if (0 != globalObject) {
 // You can now cache and reuse globalObject
}
 
You can release the global reference when it is no longer needed using the DeleteGlobalRef
JNI API call:
 
env->DeleteLocalRef(globalObject);
 
As always, global references in native space can be avoided by passing the necessary data as a
parameter to the native method directly. Otherwise, it is the developer’s responsibility to manage the
lifecycle of global references in native code, as they are not managed by the JVM.

Release Local References in Complex Native Methods
Although JVM still manages the lifecycle of local references, it can only do so once the native
method returns. Because JVM has no knowledge about the internals of your native method, it
cannot touch the local references while the native method is executing. For that reason it is the
developer’s responsibility to manage the local references during the execution of the native method.

Caution  Please note that the memory footprint of the local references is not the only reason you need to
manage them; the JVM local reference table can hold only up to 512 local references during the execution of
your native method. If the local reference table overflows, your application will be terminated by the JVM.

To better understand the problem, take a look at the code shown in Listing 5-12.

Listing 5-12.  Native Code Allocating Local References

jsize len = env->GetArrayLength(nameArray); // len = 600
 
for (jsize i=0; i < len; i++) {
 jstring name = env->GetObjectArrayElement(nameArray, i);
 ...
}
 
As you can see, if the number of elements in the stockQuotes array is greater than 512, your
application will crash. To resolve this problem, take a look at the body of the for-loop. Each time
the loop iterates, the value of the variable quote is used only once, and the previous value becomes
unreachable; however, it still stays in the local reference table, as the JVM has no knowledge about
the internals of your native method.

To address the problem, you should use the DeleteLocalRef JNI API call to release the local
reference once it is known that the local reference won’t be used in the native method. After the
necessary change is made, the code looks as shown in Listing 5-13.

105CHAPTER 5: Native Development

Listing 5-13.  Native Code Releasing Local References

jsize len = env->GetArrayLength(nameArray);
 
for (jsize i=0; i < len; i++) {
 jstring name = env->GetObjectArrayElement(nameArray, i);
 ...
 env->DeleteLocalRef(name);
}
 
This code can handle a much larger number of elements without crashing the application, as the
local reference table will not overflow.

Dealing with Strings
Java strings are handled by the JNI as reference types. These reference types are not directly usable
as native C strings. JNI provides the necessary functions to convert these Java string references to
C strings and back, as shown in Listing 5-14.

Listing 5-14.  Converting a Java String into a C String

const jbyte* str;
jboolean isCopy;
 
str = env->GetStringUTFChars(javaString, &isCopy);
if (0 != str) {
 /* You can use the string as an ordinary C string. */
}
 
Once the Java string is converted to a C string, it is simply a pointer to a character array. Because
JNI cannot manage that memory allocation automatically anymore, it is the developer’s responsibility
to release these character arrays explicitly using the ReleaseString or ReleaseStringUTF functions,
as shown inListing 5-15. Otherwise, memory leaks will occur.

Listing 5-15.  Releasing the C string

const jbyte* str;
jboolean isCopy;
 
str = env->GetStringUTFChars(javaString, &isCopy);
if (0 != str) {
 /* You can use the string as an ordinary C string. */
 
 env->ReleaseStringUTFChars(javaString, str);
 str = 0;
}
 

106 CHAPTER 5: Native Development

Use Proper Memory Management Function
Although the Java programming language has no memory management functions, the C/C++ space
has multiple ways of managing the memory. In addition, JNI also introduces its set of functions to
manage the lifecycle of references:

The 	 malloc and free functions are the way to manage memory in C code.

The 	 new and delete functions are introduced by C++ and are the proper way to
manage memory in C++ applications.

The 	 DeleteLocalRef, DeleteGlobalRef, and other functions are provided by JNI
to enable the application to manage the memory of JNI objects in the native
space. Any reference that is obtained by JNI should be released using those
methods.

In a complex application, because there is no clear way to detect the method used to allocate the
memory for a data variable, developers can easily introduce problems in the code by using the
wrong pair of memory-management functions. At the very least, it is a good practice to replace
malloc and free with new and delete in C++ code.

Operating on Arrays
As described earlier in this chapter, although the primitive data types are mapped directly to native
data types, the complex data types are passed as opaque references, and the native code can
utilize them through a set of JNI API calls. Because arrays are also part of the complex data types,
JNI provides API calls to manipulate Java arrays in native space as well. The main reason for
multiple API methods is that each one of them is specifically crafted for different use cases. Using
the right API call for the unique needs of your application is a good practice and can improve the
performance of your application. Likewise, using the wrong API, or using the right API with carelessly
set parameters, can badly impact your application’s overall performance.

Do Not Request Unnecessary Array Elements
In order to keep both the Java code and the native code running in separate silos without impacting
each other, JNI does not provide direct access to the actual data. Through the opaque references
it provides, JNI enables the native code to interact with the actual data through the designated
JNI API functions. This ensures that the communication flows only through the JNI APIs and no
other media. In certain scenarios, such as operating on arrays, reaching back from native to Java
space for each piece of the data introduces unbearable performance overhead. JNI resolves this
problem by duplicating the actual data and letting the native code interact on it as an ordinary native
data set. Calling the Get<Type>ArrayElements JNI API produces a full replica of the actual array in
native code. Although this sounds like a convenient way of operating on arrays, it comes with a
price. When operating on large arrays, the entire array needs to be duplicated for the native code
to start working on it. Once the native code is finished operating on the array data, it can invoke
the Release<Type>ArrayElements JNI API call to apply the changes back to the Java array and also
release its duplicate copy. As indicated earlier, the internals of the native method are fully opaque to

107CHAPTER 5: Native Development

JNI, and it will not know which elements of the array were modified in the native code. Therefore, it
simply copies back each element to the original Java array. To better understand the consequences,
take a look at the example code shown in Listing 5-16.

Listing 5-16.  Modifying the Entire Java Array in Native Code

jsize len = env->GetArrayLength(stockQuotesArray); // len = 1000
 
jint* stockQuotes = env->GetIntArrayElements(stockQuotesArray, 0);
 
stockQuotes[0] = 1;
stockQuotes[1] = 2;
 
env->ReleaseIntArrayElements(stockQuotesArray, stockQuotes, 0);
 
There are two main problems with this code:

Although the entire 1000 elements were duplicated by the 	 GetIntArrayElements,
only the first two elements were accessed by the native code. The remaining
998 elements in this example are simply a waste of CPU cycles and of runtime
memory.

Upon invoking the 	 ReleaseIntArrayElements, JNI starts copying all 1000
elements from the native array back to the Java array, as JNI is unaware that
only the first two elements were modified by the native code.

As a good practice, make sure you are requesting only the relevant piece of data from JNI.
If your application requires only a subset of the larger array, replace the API calls to the
Get<Type>ArrayElements API functions with Get<Type>ArrayRegion. The Get<Type>ArrayRegion JNI
API allows you to define the data region, and it duplicates that specific region only. This ensures that
only the data that matters will be processed, as shown in Listing 5-17.

Listing 5-17.  Modifying a Portion of the Java Array in Native Code

jint stockQuotes[2];
 
env->GetIntArrayRegion(stockQuotesArray, 0, 2, stockQuotes);
 
stockQuotes[0] = 1;
stockQuotes[1] = 2;
 
env->SetIntArrayRegion(stockQuotesArray, 0, 2, stockQuotes);
 

108 CHAPTER 5: Native Development

Prevent Updating Unchanged Arrays
In certain scenarios you would only need to access the Java array to read its values. Although the
JNI does not support the concept of read-only data, you can explicitly inform JNI to not to write the
values back to the Java array. To do that, use the final parameter of the Release<Type>ArrayElements
function, mode;
 
void Release<Type>ArrayElements(JNIEnv* env, ArrayType array,
 NativeType* elements, jint mode);
 
The mode parameter can take the following values:

	0: Copy back the content and free the native array.

	JNI_COMMIT: Copy back the content but do not free the native array.

	JNI_ABORT: Free the native array without copying its content.

Most developers simply ignore this parameter by passing 0 to it to trigger the default mode of
operation. Instead, it is a good practice to pass the proper mode to the JNI API call depending on
the unique use case. If the developer is aware that the data is not going to be modified in the native
method, the code should instead pass JNI_ABORT to inform JNI that it can release the native array
without copying back its content.

Native I/O
Although minimizing the impact of the array copy by limiting it to a small subset of the larger data
can benefit many use cases, there will still be cases where this best practice cannot be applied. For
example, developing a multimedia application will require you to operate on large arrays containing
data such as high-resolution video frames or multiple channels of audio data. In such situations, you
will not be able to limit the boundaries of the data to a small set, as all that will need to be consumed
by the native code.

In such scenarios, you can rely on the JNI Native I/O (NIO) API calls. NIO provides improved
performance in the areas of buffer management, scalable network and file I/O, and character-set
support. JNI provides functions to use the NIO buffers from native code. Compared to array
operations, NIO buffers deliver much better performance. NIO does not duplicate the data; it simply
provides direct memory access to it. NIO buffers are therefore highly suitable for delivering a vast
amount of data between the native code and the Java application.

Assuming the NIO buffer is allocated on the Java space as an instance of the java.nio.ByteBuffer
class, you can obtain a direct pointer to its memory by invoking the GetDirectBufferAddress JNI API
call, as shown in Listing 5-18.

Listing 5-18.  Getting the Direct Pointer to Byte Buffer Memory

unsigned char* buffer;
buffer = (unsigned char*) env->GetDirectBufferAddress(directBuffer);
 
Operating using NIO buffers is the best practice for data-intensive Android applications that would
like to benefit from native code support.

109CHAPTER 5: Native Development

Caching Classes, Method and Field IDs
JNI does not expose the fields and methods of Java classes directly in the native code. Instead, it
provides a set of APIs to access them indirectly. For example, to get the value of a field of a class,
the following steps will be taken:

1.	 Obtain a reference to the class object, through the FindClass function.

2.	 Obtain the ID for the field that will be accessed, through the GetFieldID
function.

3.	 Obtain the actual value of the field by supplying the class instance and the
field ID to the Get<Type>Field function.

Although they are used very frequently in JNI applications, both the GetFieldID and GetMethodID
functions are very heavy function calls by their nature. As you would imagine, these functions have
to traverse through the entire inheritance chain for the class to identify the right ID to return. Because
neither the Class object, the Class inheritance, nor the field ID can change during the execution of
the application, those values can actually be cached in the native layer for subsequent access with
fewer API calls.

The return type of the FindClass function is a local reference. In order to cache that, you will need to
create a global reference first through the NewGlobalRef function. On the other hand, the return value
of GetFieldID is jfieldID, which is simply an integer, and it can be cached as is.

Tip  Although you can improve the performance of JNI functions in accessing Java fields and methods
from the native space, the transition between the Java and native code is a costly operation. It is strongly
recommended that you take this into the account when deciding where to split the Java and the native code.
Minimizing the reach-backs between Java and native code can improve your application’s performance.

As a good practice, you should focus on caching both the field and method IDs for the pieces that
are accessed multiple times during the execution of your application.

Threading
JNI does not enforce any limitations on the execution model of the native code. Both the Java code
and the native code can achieve parallel processing through the use of threads. These threads
can be either Java threads or platform threads, like POSIX threads. This flexibility makes it easier
to reuse existing native modules as part of a Java application through JNI, as the threading model
remains compatible.

Although both threading mechanisms can run simultaneously side by side, there are certain
constraints of JNI to keep in mind if you expect your native, non-Java threads to access any of the
JNI functions.

110 CHAPTER 5: Native Development

Never Cache the JNI Environment Interface Pointer
As indicated earlier in this chapter, local references that are obtained either through method
parameters or through JNI API calls cannot be cached and reused outside the execution scope of
that native method call.

Moreover, in order to execute any JNI API function, a pointer to the JNI environment interface
(JNIEnv) needs to be available to the native code. As with the local references, the JNIEnv interface
pointer is also valid only during the execution scope of native method calls, and it cannot be cached
and reused.

In order to obtain the proper JNIEnv interface pointer for the current thread, it needs to be attached
to the Java VM.

Never Access Java Space from Detached Native Threads
You can attach your non-Java threads to the Java VM through the AttachCurrentThread function
of the JavaVM interface. The JavaVM interface pointer can be obtained from a valid JNIEnv interface
through the GetJavaVM function call, as shown inListing 5-19.

Listing 5-19.  The GetJavaVM Function Obtaining the JavaVM

static JavaVM* vm = 0;
 
JNIEXPORT jstring JNICALL Java_com_apress_example_Unix_init(JNIEnv* env, jclass clazz) {
 if (0 != env->GetJavaVM(&vm)) {
 /* Error occured. */
 } else {
 /* JavaVM obtained. */
 }
}
 
The obtained JavaVM pointer can be cached and used in native threads. Upon invoking the
AttachCurrentThread function using the JavaVM interface from your non-Java thread, the native
threads will be added to the Java VM’s list of known threads, and a unique JNIEnv interface pointer
for the current thread will be returned, as shown in Listing 5-20.

Listing 5-20.  Attaching Current Native Thread to Java VM

void threadWorker() {
 JNIEnv* env = 0;
 
 if (0 = (*vm)->AttachCurrentThread(vm, &env, NULL)) {
 /* Error occurred. */
 } else {
 /* JNI API can be accessed using the JNIEnv. */
 }
}
 

111CHAPTER 5: Native Development

Note  If the non-Java thread is already attached to the Java VM, subsequent calls won’t have any side effect.

Now using the proper JNIEnv interface pointer you can access the JNI API functions from your non-
Java thread. The JNIEnv interface pointer for the thread remains valid until the thread is detached
using the DetachCurrentThread function, as shown in Listing 5-21.

Listing 5-21.  Detaching the Current Native Thread from Java VM

(*vm)->DetachCurrentThread();
env = 0; 

Troubleshooting
Despite the ease of the Java code, debugging the native code can be very complicated. When you
are facing the unexpected, having troubleshooting skills becomes a life-saver. Knowing the right
tools and techniques enables you to resolve problems rapidly. In this section, you will briefly explore
some of the best practices for troubleshooting problems in native code.

Extended JNI Check
In order to deliver high performance at runtime, the JNI functions do very little error checking. Errors
usually result in a crash that is hard to troubleshoot. Dalvik VM provides an extended checking mode
for JNI calls, known as CheckJNI. When it is enabled, JavaVM and JNIEnv interface pointers are
switched to tables of functions that perform an extended level of error checking before calling the
actual implementation. CheckJNI can detect the following problems:

Attempt to allocate a negative-sized array	

Bad or 	 NULL pointers passed to JNI functions’ Syntax errors while passing class
names

Making JNI calls while in critical section	

Bad arguments passed to 	 NewDirectByeBuffer

Making JNI calls when an exception is pending	

	JNIEnv interface pointer used in wrong thread

Field type and 	 Set<Type>Field function mismatch

Method type and 	 Call<Type>Method function mismatch, such as
DeleteGlobalRef/DeleteLocalRef called with wrong reference type

Bad release mode passed to 	 Release<Type>ArrayElement function

Incompatible type returned from native method	

Invalid UTF-8 sequence passed to a JNI call	

112 CHAPTER 5: Native Development

By default, the CheckJNI mode is enabled only in the emulator, not on the regular Android devices,
because of its effect on the overall performance of the system. On a regular device, the CheckJNI
mode can be enabled by issuing the following on the command prompt:

adb shell setprop debug.checkjni 1

This won’t affect the running applications, but any application launched afterwards will have
CheckJNI enabled. It is a good practice to observe your application running in the CheckJNI mode
to spot any problems in your native code before they lead the application into much complicated
problems.

Always Check for Java Exceptions
Exception handling is an important aspect of the Java programming language. Exceptions behave
differently in the JNI than they do in Java. In Java, when an exception is thrown, the virtual
machine stops the execution of the code block and goes through the call stack in reverse order
to find an exception handler code block that can handle the specific exception type. This is also
called catching an exception. The virtual machine clears the exception and transfers the control
to the exception handler block. In contrast, the JNI requires developers to explicitly implement the
exception handling flow after an exception has occurred.

You can catch Java exceptions in native code using the JNI API call ExceptionOccurred. This
function queries the Java VM for any pending exception, and it returns a local reference to the
exception Java object, as shown in Listing 5-22.

Listing 5-22.  Catching and Handling Exceptions in Native Code

jthrowable ex;
...
env->CallVoidMethod(instance, throwingMethodId);
ex = env->ExceptionOccurred(env);
if (0 != ex) {
 env->ExceptionClear(env);
 
 /* Exception handler. */
}
 
Failure to do so will not block the execution of your native function; however, any subsequent calls to
JNI API will silently fail. This can become very hard to troubleshoot, as the actual exception does not
leave any traces behind.

As a good practice, you should always check whether a Java exception has been thrown after
invoking any Java methods that may throw an exception.

Upon handling the exception, you should also clear it using the ExceptionClear function to inform
the Java VM that the exception is handled and JNI can resume serving requests to Java space.

113CHAPTER 5: Native Development

Always Check JNI Return Values
Exceptions are extensions of the programming language for developers to report and handle
exceptional events that require special processing outside the actual flow of the application.
Although exceptions have been part of the Java programming language since its very beginning,
exception support is not widely available for C/C++ programming language on all platforms.
Because JNI is designed to be a universal solution to facilitate integration of native modules into
Java applications, it does not use exceptions. The JNI API functions instead rely on their return
values to indicate any errors during the execution of the API call, as shown in Listing 5-23.

Listing 5-23.  Checking the Return Value of JNI API Calls

jclass clazz;
...
clazz = env->FindClass("java/lang/String");
if (0 == clazz) {
 /* Class could not be found. */
} else {
 /* Class is found, you can use the return value. */
}
 
Thus, as a good practice, never assume it is safe to use the return value of a JNI API call as is.
Always check the return value to make sure the JNI API call was successfully executed and the
proper usable value is returned to your native function.

Always Add Log Lines While Developing
Logging is the most important part of troubleshooting, but it is tricky to achieve, especially on mobile
platforms where the development and the execution of the application happen on two different
machines. As a good practice, you should always include log messages while developing your
application, not when you are trying to troubleshoot a problem, as it will be too late by then. Having
proper logging part of your application can help you to troubleshoot problems much easily by simply
looking at the log output of your applications. Needless to say, reading and sharing log messages is
much easier process than using sophisticated debugger applications to inspect the execution of an
application.

Although adding logging into your application is an appealing solution, having an extensive amount
of logging will impact the performance of your application, and it will also expose too much about
the internal flow of your application to external parties. Although it’s good to have extensive logging
during the development and troubleshooting stage, you should strip those components from your
application before releasing it. Despite the vast number of logging frameworks that are available
in Java space, the options are fairly limited for C/C++ code. In this section, you will fill this gap by
building a small logging framework for C/C++ code.

In order to achieve the same functionality that is offered by the advanced logging frameworks, the
solution that is presented in this section will be rely heavily on the preprocessor support provided
by the native C/C++ compiler. The my_log.h header file that is shown in Listing 5-24 through a set
of preprocessor directives, wraps the Android native logging APIs to provide a compile-time control
over the intensity of logging.

114 CHAPTER 5: Native Development

Listing 5-24.  The my_log.h Logging Header File

#pragma once
 
/**
 * Basic logging framework for NDK.
 *
 * @author Onur Cinar
 */
 
#include <android/log.h>
 
#define MY_LOG_LEVEL_VERBOSE 1
#define MY_LOG_LEVEL_DEBUG 2
#define MY_LOG_LEVEL_INFO 3
#define MY_LOG_LEVEL_WARNING 4
#define MY_LOG_LEVEL_ERROR 5
#define MY_LOG_LEVEL_FATAL 6
#define MY_LOG_LEVEL_SILENT 7
 
#ifndef MY_LOG_TAG
define MY_LOG_TAG __FILE__
#endif
 
#ifndef MY_LOG_LEVEL
define MY_LOG_LEVEL MY_LOG_LEVEL_VERBOSE
#endif
 
#define MY_LOG_NOOP (void) 0
 
#define MY_LOG_PRINT(level,fmt,...) \
 __android_log_print(level, MY_LOG_TAG, "(%s:%u) %s: " fmt, \
 __FILE__, __LINE__, __PRETTY_FUNCTION__, ##__VA_ARGS__)
 
#if MY_LOG_LEVEL_VERBOSE >= MY_LOG_LEVEL
define MY_LOG_VERBOSE(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_VERBOSE, fmt, ##__VA_ARGS__)
#else
define MY_LOG_VERBOSE(...) MY_LOG_NOOP
#endif
 
#if MY_LOG_LEVEL_DEBUG >= MY_LOG_LEVEL
define MY_LOG_DEBUG(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_DEBUG, fmt, ##__VA_ARGS__)
#else
define MY_LOG_DEBUG(...) MY_LOG_NOOP
#endif
 

115CHAPTER 5: Native Development

#if MY_LOG_LEVEL_INFO >= MY_LOG_LEVEL
define MY_LOG_INFO(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_INFO, fmt, ##__VA_ARGS__)
#else
define MY_LOG_INFO(...) MY_LOG_NOOP
#endif
 
#if MY_LOG_LEVEL_WARNING >= MY_LOG_LEVEL
define MY_LOG_WARNING(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_WARN, fmt, ##__VA_ARGS__)
#else
define MY_LOG_WARNING(...) MY_LOG_NOOP
#endif
 
#if MY_LOG_LEVEL_ERROR >= MY_LOG_LEVEL
define MY_LOG_ERROR(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_ERROR, fmt, ##__VA_ARGS__)
#else
define MY_LOG_ERROR(...) MY_LOG_NOOP
#endif
 
#if MY_LOG_LEVEL_FATAL >= MY_LOG_LEVEL
define MY_LOG_FATAL(fmt,...) \
 MY_LOG_PRINT(ANDROID_LOG_FATAL, fmt, ##__VA_ARGS__)
#else
define MY_LOG_FATAL(...) MY_LOG_NOOP
#endif
 
#if MY_LOG_LEVEL_FATAL >= MY_LOG_LEVEL
define MY_LOG_ASSERT(expression, fmt, ...) \
 if (!(expression)) \
 { \
 __android_log_assert(#expression, MY_LOG_TAG, \
 fmt, ##__VA_ARGS__); \
 }
#else
define MY_LOG_ASSERT(...) MY_LOG_NOOP
#endif
 
In order to use this tiny logging framework, simply include the my_log.h header file:

 
#include "my_log.h"
 
This will make the logging macros available to the source code. You can then use them in your native
code, as shown in Listing 5-25.

116 CHAPTER 5: Native Development

Listing 5-25.  Native Code with Logging Macros

...
 
MY_LOG_VERBOSE("The native method is called.");
 
MY_LOG_DEBUG("env=%p thiz=%p", env, thiz);
 
MY_LOG_ASSERT(0 != env, "JNIEnv cannot be NULL.");
 
...
 
The tiny logging framework still relies on the Android logging functions. As the last step, you should
modify the Android.mk build file as shown in Listing 5-26.

Listing 5-26.  Setting the Log Level Through the Build Script

LOCAL_MODULE := module
...
Define the log tag
MY_LOG_TAG := module
 
Define the default logging level based build type
ifeq ($(APP_OPTIM),release)
 MY_LOG_LEVEL := MY_LOG_LEVEL_ERROR
else
 MY_LOG_LEVEL := MY_LOG_LEVEL_VERBOSE
endif
 
Appending the compiler flags
LOCAL_CFLAGS += -DMY_LOG_TAG=$(MY_LOG_TAG)
LOCAL_CFLAGS += -DMY_LOG_LEVEL=$(MY_LOG_LEVEL)
 
LOCAL_SRC_FILES := module.c
 
Dynamically linking with the log library
LOCAL_LDLIBS += -llog
 
You can always improve this simple logging framework based on the unique requirements of your
application. Using a logging framework is a good practice, as it will enable you to control the amount
of logging your application will produce, without making any modifications to the source code.
Having logging available in advance can save you time while troubleshooting complicated errors in
native components.

Native Code Reuse Using Modules
Because C/C++ is more a programming language than a complete framework like Java, you will
often rely on third-party libraries to achieve basic operations, such as accessing a URL through the
HTTP protocol using the libcurl HTTP client library.

117CHAPTER 5: Native Development

It is always a best practice to keep those third-party modules outside the main code base, so that
they can be reused, shared across multiple modules, and updated seamlessly. Starting from version
R5, the Android NDK allows sharing and reusing modules between NDK projects.

To resume our previous example, the libcurl third-party module can be shared between multiple
NDK projects easily by doing the following:

1.	 Move the shared module to its own location outside any NDK project, such
as /home/cinar/shared-modules/libcurl.

Note  In order to prevent name conflicts, the directory structure can also include the module’s provider
name, such as /home/cinar/shared-modules/haxx/libcurl. The Android NDK build system does not
accept the space character in shared module paths.

2.	 Every shared module also required its own Android.mk build file. An example
build file is shown in Listing 5-27.

Listing 5-27.  Shared Module Android.mk Build File

LOCAL_PATH := $(call my-dir)
 
#
LibCURL HTTP client library.
#
include $(CLEAR_VARS)
 
LOCAL_MODULE := curl
LOCAL_SRC_FILES := curl.c
 
include $(BUILD_SHARED_LIBRARY)
 

3.	 Now the shared module can be imported in other Android NDK projects
using the import-module macro as shown in Listing 5-28. The import-module
macro call should be placed at the end of the Android.mk build file to prevent
any build system conflicts.

Listing 5-28.  Project Importing the Shared Module

#
Native module
#
 
include $(CLEAR_VARS)
 
LOCAL_MODULE := module
 
LOCAL_SRC_FILES := module.c
 

118 CHAPTER 5: Native Development

LOCAL_SHARED_LIBRARIES := curl
 
include $(BUILD_SHARED_LIBRARY)
 
$(call import-module,haxx/libcurl)
 

4.	 The import-module macro must first locate the shared module and then
import it into the NDK project. By default, only the <Android NDK>/sources
directory is searched by the import-module macro. In order to include
the /home/cinar/shared-modules directory into the search, define a new
environment variable called NDK_MODULE_PATH and set it to the root directory
of shared modules:
 
export NDK_MODULE_PATH=/home/cinar/shared-modules
 

5.	 Now running the ndk-build script will pull the shared module during the build
process.

Maintaining the common modules using this method is a good practice, as it will promote reuse and
make it easier to add functionality into your Android NDK project without any additional effort.

Benefit from Compiler Vectorization
The last best practice you will learn in this chapter is compiler vectorization, which improves the
performance of your native functions by seamlessly benefiting from the available Single Instruction
Multiple Data (SIMD) support in mobile CPUs. SIMD enables data-level parallelism by performing
the same operation on multiple data points all at once. It is also known as NEON support on
ARM-based processors. Using SIMD support can drastically improve the performance of native
functions that are applying the same set of operations to large data sets. For example, multimedia
applications can benefit from SIMD greatly as they apply the same set of operations to multiple
audio and video frames.

Using the assembly language or the compiler intrinsics is not the only way of benefitting from
SIMD support. If the native code is structured in a form that can be parallelized, the compiler can
seamlessly inject the necessary instructions to benefit from the SIMD support seamlessly. This
process is known as compiler vectorization.

Compiler vectorization is not enabled by default. In order to enable it, please follow these
simple steps:

1.	 Open the Application.mk build script and make sure that the APP_ABI
contains armeabi-v7a.
 
APP_ABI := armeabi armeabi-v7a
 

2.	 Open the Android.mk build script for your NDK project, and add the –ftree-
vectorize argument to the LOCAL_CFLAGS build system variable as shown in
Listing 5-29.

119CHAPTER 5: Native Development

Listing 5-29.  Enabling Compiler Vectorization Support

...
LOCAL_MODULE := module
...
LOCAL_CFLAGS += -ftree-vectorize
...
 

3.	 For the compiler vectorization to occur, the native code should also be
compiled with ARM NEON support if the target CPU architecture is ARM.
In order to do so, update the Android.mk build script file as shown in Listing 5-30.

Listing 5-30.  Enabling ARM NEON Support

...
LOCAL_MODULE := module
LOCAL_CFLAGS += -ftree-vectorize
...
Add ARM NEON support to all source files
ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
LOCAL_ARM_NEON := true
endif
...
 

Simply enabling compiler vectorization is not enough. As indicated earlier in this section, the C/C++
language does not provide any mechanism to specify parallelizing behavior. You will have to give the
C/C++ compiler additional hints about where it is safe to have the code automatically vectorized.
For a list of automatically vectorizable loops, please consult the “Auto-vectorization in GCC”
documentation at http://gcc.gnu.org/projects/tree-ssa/vectorization.html.

Tip  Getting the loops vectorized is a delicate operation. The C/C++ compiler can provide you with a
detailed analysis of the native loops in your native code if you append –ftree-vectorizer-verbose=2
to LOCAL_CFLAGS.

Summary
In this chapter you have learned about some of the best practices to follow while developing
native components for your Android applications. By following these simple recommendations you
can easily improve the reliability of your native components and you can minimize the time spent
troubleshooting problems in the native space. In the next chapter, you will discover some of the best
practices in Android security.

http://gcc.gnu.org/projects/tree-ssa/vectorization.html

121

Chapter 6
Security

In this chapter we will explore recommendations for secure Android development and coding, from
a range of industry sources. These different security recommendations represent the best current
thinking on the topic, and I’ve added my own additional measures gathered from hard-earned
experience building and deploying leading Android applications.

The State of Android Security
There have probably been more books, blog postings, and magazine articles written on the topic
of Android security than on any other mobile platform. Whether we like it or not, Android is seen
as the Wild West of the mobile world. Because all iOS apps are reviewed by a human, rightly or
wrongly this gives people the perception that iOS apps are safer than Android apps. But how
can that be? After all, the Android platform does a pretty good job of separating APKs so that
each one runs in its own sandbox? Let’s take a look at some empirical data to see if there is any
truth in the rumor. Figure 6-1 shows a Secure List report, available at
http://www.securelist.com/en/analysis/204792239/IT_Threat_Evolution_Q2_2012.

http://www.securelist.com/en/analysis/204792239/IT_Threat_Evolution_Q2_2012

122 CHAPTER 6: Security

You can see that the number of malware apps in the Android space is indeed growing dramatically.
The report goes on to say that among the 15k apps, malware characteristics were found as listed
in Table 6-1.

Figure 6-1.  The number of malware modifications targeting Android OS

Table 6-1.  Breakdown of the Types of Malware

Percentage Malware Type

49% Steal data from telephones

25% SMS messaging

18% Backdoor apps

2% Spy programs

There have also been some famous fake apps, like the phony Netflix app (see http://www.symantec.
com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna),
which looked like the Netflix app and simply collected usernames. And almost every famous Android
app from Angry Birds to the Amazon App Store app itself has a suspicious clone that hopes to dupe
a customer into downloading it for a fee. And yes, this aspect of security should really be a two-way
street; I’m sure that users pay little or no attention to that permission screen when they’re installing
an APK and will typically approve anything. So while it seems that we do have a problem on the
Android platform, perhaps it’s not all the developer’s fault.

http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna

123CHAPTER 6: Security

Back in the Cupcake and Donut eras there were few if any checks. But now we can say that every
developer needs to have a credit card to upload an app. Since around the time of Gingerbread,
Google Bouncer has also automatically checked to see if the app has any malware or Trojans
installed on your APKs, so it should be much safer. (However, Jon Oberheide’s paper describing
how he created a fake developer account and bypassed the Google Bouncer, at
http://jon.oberheide.org/files/summercon12-bouncer.pdf, is some cause for concern about
the effectiveness of the Google signup process.) Things are definitely getting more secure as more
users move to Ice Cream Sandwich and Jelly Bean; at the time of writing, 40% of Android devices
hitting Google Play were on some version of 4.x.

But perception is reality, and even if most of these hacks are becoming a thing of the past, Android
is still seen as a less secure platform than iOS. So what can a developer do? You can make sure that
your APKs are secure as possible to help change that Wild West perception. This chapter will show
how to ensure that your APKs do what your users expect—no more and no less, in a consistent way.

There are a number of best practices that you can adopt to make your Android apps more secure. In
this chapter I’ll provide you with a better understanding of what it takes to create a trustworthy app;
the goal is that if someone downloads your app, they can be safe in thinking that it’s not going to
cause them any security problems.

The bulk of this chapter compiles a top 10 list of secure coding practices. We’ll first look at some
industry standard lists and merge them into our own best-practices top 10 list. This isn’t really
meant to be a definitive list; it’s simply a list of the most important issues from personal experience,
research, and a couple of industry-standard lists.

It also makes sense to look at an Android app that my company, RIIS, uses to teach our developers
how to write secure code and talk you through how we go about that.

Secure Coding Practices
Your APKs should use a least-privileges concept so that they always get access only to the
privileges they really need, and are not being granted other privileges that are never used but could
open vulnerabilities. So exactly how do you make sure of that?

If you’re a consumer, there are a variety of tools that check permissions, but if you’re a developer or
a manager, there are a very limited number of tools out there.

Once your APK is out on Google Play, phones can be rooted, and the APK can be very easily
reverse-engineered to see any usernames/passwords or other login info. It’s in everyone’s interest
to make sure that a customer’s data is not in plain text so it can be compromised. We’ve seen some
really strange method names when decompiling an APK, one of my favorites being updateSh*t,
which probably isn’t something you want out there with your company’s name attached.

You may also want to get a better feel for whatever third-party libraries you’re using and make
sure they’re not doing anything they shouldn’t be; for example, AdMob makes location requests
for collecting marketing information. You might want to know if the third-party APK has hardcoded
usernames and passwords, too, and what they might be doing.

To solve this problem, I came up with my top 10 list of Secure Coding practices. Most of them came
from looking at other security lists that smarter people than I have developed.

http://jon.oberheide.org/files/summercon12-bouncer.pdf

124 CHAPTER 6: Security

This list becomes my firm’s barometer on what’s acceptable and not acceptable in an Android APK
that we develop. That’s not to say that some APKs won’t violate one or more of the guidelines in the
top 10 list for perfectly good reasons, but it raises a red flag so that someone can ask why it’s doing
something that we didn’t expect it to do.

These are not the type of issues that Google Bouncer would be checking; this is code that shouldn’t
be in your APK—in our humble opinion—without a good reason.

Industry Standard Lists
Before we come up with our own list, let’s take a look at the following security lists:

PCI’s Mobile Payment Acceptance Security Guidelines	

OWASP or Open Web Application Security Project’s top 10 mobile controls and 	
design principles

Google’s Security Tips	

PCI List
In September 2012, The PCI Security Standards Council released v1.0 of the Mobile Payment
Security Guidelines. PCI’s focus is on payment processing, and while the guidelines are not yet
mandatory, they are an excellent place to start. Some of the items in the PCI guidelines don’t directly
apply to mobile developers, but there are some that are crucial, which we’ve included here.

Prevent account data from compromise while processed or stored within the
mobile device. Android developers should ensure that all data is securely stored
and minimize any chance of data leakage. Storing sensitive customer information
unencrypted in SQLite or in a file on an SD card is not acceptable. The safest option
is to not store cryptographic keys anywhere on the mobile phone if possible, but if
that’s not an option, then the keys need to be stored securely so that they are not
accessible even when a phone is rooted.

Prevent account data from being intercepted upon transmission out of
the mobile device. Any sensitive customer information, in this case payment
information, should be transmitted securely using SSL and not sent in clear text.

Create server-side controls and report unauthorized access. Report on
unauthorized access over a given threshold via server side logging messages,
updates to software, phone rooting, and so on.

Prevent escalation of privileges and remotely disable payments. If the user roots
their phone, the application should report the change and provide the ability to stop
taking payments if necessary.

Prefer online transactions. Transactions should be taken when the phone is online
and not saved for later processing if the phone is offline for any reason. Storing the
payment data increases the risk of a hacker gaining access to the payment data.

125CHAPTER 6: Security

Conform to secure coding, engineering, and testing. There are a number of
Android specific coding techniques, such as avoiding the use of MODE_WORLD_
WRITABLE or MODE_WORLD_READABLE when writing to files, that the developer should
know. In the remainder of the chapter we’re going to look at what secure coding
means for an Android developer.

Support secure merchant receipts. Any receipt-type messages, whether they are
displayed on screen or sent via email, should always mask the credit card number
and never display the complete number.

Provide an indication of a secure state. Unfortunately, unlike web browsers,
Android apps don’t have the concept of a locked and unlocked padlock to show the
user that any payment information is being sent securely, so currently there is no
way to indicate a secure or insecure state.

OWASP
OWASP, the Open Web Application Security Project, is aimed at providing information to developers
so that they can write and maintain secure software. No longer only for the web, OWASP also provides
information on secure cloud programming as well as secure mobile programming. OWASP together
with ENISA (the European Network and Information Security Agency) published the Top Ten Mobile
Controls as shown following. This list is aimed at mobile device security, rather than just payment
security. OWASP also provide another resource called GoatDroid, which consists of a couple of
Android applications showing examples of insecure code that does not follow the advice on the list.

Identify and protect sensitive data on the mobile device. Mobile phones have
a higher risk than laptops of being stolen. Store any sensitive user data on the
server side and not on the mobile device. If you do need to store data on the mobile
device, then encrypt the data and provide a way to remotely remove the key or data
so that the user can wipe the information if the phone is stolen. Consider restricting
access to the data or functionality using the phone’s location, for example, if the
phone is no longer in the same state, province, or country where the app was first
installed. Practice secure key management.

Handle password credentials securely on the device. Store passwords on the
server. If they do need to be stored on the phone, never store passwords in clear
text; use encryption or hashing. If possible use tokens, for example OAuth, instead
of passwords where possible and make sure they expire. Make sure passwords are
never visible in logs. Do not store any keys or passwords, for example to back-end
servers, in the application binary, as mobile apps can be reverse-engineered.

Ensure sensitive data is protected in transit. Use SSL/TLS when sending any
sensitive information to back-end systems. Use strong and well known encryption
with appropriate key lengths when encrypting data. User passwords are often too
short to provide adequate key lengths. Use trusted Certificate Authorities or CAs.
Do not disable or ignore SSL certs if the trusted CA is not recognized by the Android
OS. Do not use SMS or MMS to send sensitive user information. Let the end user
know, by using some visual indicator, that the CA is valid.

126 CHAPTER 6: Security

Implement user authentication, authorization, and session management
correctly. Use unpredictable seeds and a random number generator for key
generation. Instead of just using date and time, use other inputs such as phone
temperature, current location, and so on. When the user is logged in, make sure that
any further requests to the back-end server still require the same login credentials or
token to get the information.

Keep the back-end APIs (services) and the platform (server) secure. Test your
back-end servers and APIs for any vulnerabilities. Apply the latest OS patches and
updates to the server. Log all requests and check to see if there is any unusual
activity. Use DDOS limiting techniques such as IP/per-user throttling.

Secure data integration with third party services and applications. There is so
much open source Android code available that sometimes coding an app can seem
more plug and play than desktop programming. However, third-party libraries also
need to be checked for insecure coding practices. Apply the same checks to your
third party code as you would to your own code. Don’t assume that commercial
apps are going to be secure. There are plenty of examples of third party issues,
such as advertising networks collecting location and device information. Check for
software patches and update your mobile applications as needed.

Pay specific attention to the collection and storage of consent for the
collection and use of the user’s data. Ask for consent before asking for and
storing a user’s personally identifiable information. Allow the end user to opt out.
Perform audits to ensure that you are not leaking any unintended information, for
example in image metadata. Be aware that the data collection rules may be different
in different regions; for example, user consent is mandatory for any personal data
collection in the European Union.

Implement controls to prevent unauthorized access to paid-for resources
(wallet, SMS, phone calls, and so on.) In the PCI list introduced earlier in this
chapter, we saw that many of the malware apps wreak havoc by using costly paid-
for resources such as SMS messaging to offshore numbers. To prevent your app
from being hijacked in a similar fashion, there are certain steps that you should take
if you use paid-for resources in your mobile app.

Track any significant changes in usage or a user’s location and notify the user or
shut down the app. Authenticate all API calls to paid for resources and warn the user
for any paid for access. Finally, maintain logs of any paid-for access API calls. Audit
the logs, as they may alert you to any changes in overall behavior before you app is
compromised and can also help you understand what happened after an attack.

Ensure secure distribution/provisioning of mobile applications. Don’t distribute
your app through nonsecure mobile app stores, as they may not monitor for insecure
code. Provide a security email address (such as security@acme.com) for users to
report any security problems with your app. Plan your security update process.
Remember that many users will not automatically accept the latest update. So if you
have a security flaw, it may take many months before all your users have updated to
the latest secure version of your mobile app. And once an APK is out there, if your
app has lots of users, then it’s always going to be out there on any number of hacker
forums ready for someone to see if they can exploit your flaw.

127CHAPTER 6: Security

Carefully check any runtime interpretation of code for errors. Test all user inputs
and make sure all input parameters are correctly validated and there are no options
for either cross-site scripting or SQL injection.

 OWASP’s General Secure Coding Guidelines
OWASP also offers more general secure coding guidelines, which apply to mobile programming:

1.	 Perform abuse case testing, in addition to use case testing.

2.	 Validate all input.

3.	 Minimize lines and complexity of code. A useful metric is cyclomatic
complexity.

4.	 Use safe languages (for example, from buffer-overflow).

5.	 Implement a security report handling point (address), such as
security@example.com.

6.	 Use static and binary code analyzers and fuzz-testers to find security flaws.

7.	 Use safe string functions, and avoid buffer and integer overflow.

8.	 Run apps with the minimum privilege required for the application on the
operating system. Be aware of privileges granted by default by APIs and
disable them.

9.	 Don’t authorize code/app to execute with root/system administrator privilege.

10.	 Always perform testing as a standard as well as a privileged user.

11.	 Avoid opening application-specific server sockets (listener ports) on the client
device. Use the communication mechanisms provided by the OS.

12.	 Remove all test code before releasing the application.

13.	 Ensure that logging is done appropriately but do not record excessive logs,
especially those including sensitive user information.

OWASP’s Top 10 Mobile Risks
OWASP has another top 10, called the Top 10 Mobile Risks. These have a lot of overlap with the
earlier Top 10 Mobile Control, which is more of a best practices list. I show the Top 10 Mobile Risks
here for completeness.

1.	 Insecure data storage

2.	 Weak server-side controls

3.	 Insufficient transport layer protection

4.	 Client-side injection

http://security@example.com/

128 CHAPTER 6: Security

5.	 Poor authorization and authentication

6.	 Improper session handling

7.	 Security decisions via untrusted inputs

8.	 Side channel data leakage

9.	 Broken cryptography

10.	 Sensitive information disclosure information

Google Security Tips
The last list we’re going to look at is Google’s Android-specific list of security tips. You’ll see some
overlap with the earlier lists, but because it’s so specific to our Android requirements, it may very
well prove to be the most useful of the three lists.

Storing Data: Avoid using MODE_WORLD_WRITEABLE or MODE_WORLD_READABLE modes
for files, especially if you’re using the files to store user data. If you do need to share
data between applications then use a content provider where there is a much finer
degree of control on what applications can access the data. Keys should be placed
in a keystore encrypted with a user password that is not stored on the device.

Do not store any sensitive user data on external storage such as an SD card. The SD
card can be removed and examined, as it’s globally readable and writable.

Using Permissions: Android APKs work within a sandbox. The APK can
communicate outside of the sandbox by a series of permissions, which the
developer requests and the user accepts. Developers should adopt a least-privileges
approach to permissions and ask for only the very minimum level of permissions to
provide the desired functionality. And if there is an option to not request permissions,
such as using internal rather than external storage, then the developer should take
steps to define as few permissions as possible.

Using Networking: Use SSL instead of sending any sensitive user information in
clear text across the network. Do not rely on unauthenticated SMS data to perform
commands, as it may have been spoofed.

Performing Input Validation: Perform input validation and ensure that there is no
SQL or JavaScript script injection. If you are using any native code in your app, then
apply C++ secure coding best practices to catch any buffer overflows. These should
be taken care of by proper management of buffers and pointers.

Handling User Data: The topic of how to handle user data is one that appears time
and time again in security lists. Minimize any access to sensitive user data. While it
may be necessary to transmit usernames, passwords, and credit card information,
the data should not be stored on the device. User data should also be hashed,
encrypted, or tokenized on the server so that the data is not transmitted in clear text.
User data should also not be written to logs. Use a short-lived authorization token
after initial authentication with a username and password entered by the user.

129CHAPTER 6: Security

Using WebView: Disable JavaScript when using WebView if it’s not required. To
reduce the chance of cross-site-scripting, do not call setJavaScriptEnabled()
unless you absolutely must, such as when building hybrid native/web applications.
By default setJavaScriptEnabled is false.

Using Cryptography: Use existing cryptography such as AES and RSA; don’t
implement your own cryptographic algorithms. Use a secure random number
generator. Store any keys that are needed for repeated use in KeyStore.

Using Interprocess Communication:Use Android’s interprocess communication,
for examples intents, services and broadcast receivers. Do not use network sockets
or shared files.

Dynamically Loading Code: Dynamically loading code is strongly discouraged.
In particular, loading code from outside of the APK over the network could allow
someone to modify the code in transit or from another application and should be
avoided.

Security in Native Code: Simply put, using the Android NDK is discouraged as C++
is prone to buffer overflows and other memory corruption errors.

Our Top 10 Secure Coding Recommendations
Not content with the existing lists, I’ve come up with my own Top 10 list, which is a mashup of the
other lists, where I’ve picked what I feel are the best practices for each of the lists.

I’m also a great believer in automating the analysis wherever possible and not manually checking
every app, so I’ve written a secure code analyzer called Secure Policy Enforcer or SPE to ensure that
your apps are following the top 10 list.

Apply secure coding techniques. There shouldn’t be any need to open a file as
WORLD_READABLE or WORLD_WRITEABLE as done in Listing 6-1; the default behavior is
not to open a file as WORLD_READABLE or WORLD_WRITEABLE See.

Listing 6-1.  Insecure technique - opening a file as WORLD_READABLE, WORLD_WRITEABLE

// Code fragment showing insecure use of file permissions
FileOutputStream fos;
try {
 fos = openFileOutput(FILENAME, MODE_WORLD_READABLE |
 MODE_WORLD_WRITEABLE);
 fos.write(str.getBytes());
 fos.close();
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

 
Similarly, opening a database as WORLD_READABLE or WORLD_WRITEABLE shouldn’t be a
requirement.

130 CHAPTER 6: Security

Use encrypted SQLite. SQLite is a great place to store information but it’s not a
good place to store credit card information. One of the APKs my company looked
at stored the credit card number encrypted in SQLite, but it also stored the key
unencrypted in another column. If you do use SQLite, then use something like
SQLCipher, which takes three lines of code to encrypt the database so it’s harder
to find anything. Listing 6-2 shows an unencrypted database connection, which
can be encrypted by using Import net.sqlcipher.database.SQLiteDatabase
instead of android.database.sqlite.SQLiteDatabase and calling SQLiteDatabase.
loadLibs(this) before the database is connected.

Listing 6-2.  Insecure technique - unencrypted database connection

public UserDatabase(Context context) {
 super(context, DATABASE_NAME, null, 1);
  
 String CREATE_TABLE = "CREATE TABLE IF NOT EXISTS " + TABLE + " ("
 + KEY_DATE + " INTEGER PRIMARY KEY, "
 + KEY_LOC + " TEXT NOT NULL)";
 db.execSQL(CREATE_TABLE);
}

 
Reading a SQLite database from a device is relatively straightforward, although the
commands are a bit arcane. Using the Android backup command, you first back up
the APK’s application data using the following command

 
adb backup -f data.ab -noapk com.riis.callcenter-1.apk

 
This exports the data in an Android backup format, which can be extracted using
the following command:

 
dd if=data.ab bs=1 skip=24 | openssl zlib -d | tar -xvf -

 Note  Using openssl as shown requires your version of openssl to be compiled with zlib support.

The SQLite database file can then be opened by an intruder using SQLite
Database Browser, shown in Figure 6-2, which displays credit card
information in clear text. SQLite Database Browser is available at
http://sourceforge.net/projects/sqlitebrowser.

http://sourceforge.net/projects/sqlitebrowser

131CHAPTER 6: Security

To avoid this security risk, using SQLCipher encrypts the data so it can no longer be
seen, as illustrated in Figure 6-3.

Figure 6-2.  SQLite Database Browser with unencrypted data

132 CHAPTER 6: Security

Don’t store anything on an SD card. If you’re storing data on an SD card (a real one,
not the impersonated style in later versions of ICS, Jelly Bean, or KitKat), then it’s easy
for an intruder to read any data externally on a PC or MAC. Unless you have to support
very old devices and Android versions that relied on SD cards because of limited internal
memory, you could write the data out to a local file or possibly use shared preferences
to store any data. Listing 6-3 shows an example of writing to an SD card.

Lsiting 6-3.  Insecure technique - writing to an SD Card

private void writeAnExternallyStoredFile() {
 //An example of what not to do, with poor SD card data security
 try {
 File root = Environment.getExternalStorageDirectory();
 if (root.canWrite()){
 File gpxfile = new File(root, "gpxfile.gpx");
 FileWriter gpxwriter = new FileWriter(gpxfile);
 BufferedWriter out = new BufferedWriter(gpxwriter);
 out.write("Hello world");
 out.close();
 }
 } catch (IOException e) {
 Log.e("TAGGYTAG", "Could not write file " + e.getMessage());
 }
} 

Figure 6-3.  SQLite Database Browser with encypted data

133CHAPTER 6: Security

Avoid unnecessary permissions. Permissions are set in the android_manifest.xml
file. If any app is asking for permissions, such as reading contacts, sending texts,
recording audio, sending SMS messages, or calling home, you may want to ask
yourself if that’s really needed and remove it from the manifest file if it doesn’t affect
the functionality of your app. Here’s the list of permissions that are best avoided:

ACCESS_COARSE_LOCATION	

ACCESS_FINE_LOCATION	

CALL_PHONE	

CAMERA	

INTERNET	

READ_CALENDAR	

READ_CONTACTS	

READ_INPUT_STATE	

READ_SMS	

RECORD_AUDIO	

SEND_SMS	

WRITE_CALENDAR	

WRITE_CONTACTS	

Looking for root permissions. Some apps will check for root permissions to make
sure the phone is not rooted before it starts, as shown in Listing 6-4. I recommend
not checking to see if the device has been rooted. There is rarely a good reason
to check. If the APK has been installed on a rooted device, then it’s already at risk
of being reverse-engineered; checking to see if the phone is rooted at run time is
probably too late.

Listing 6-4.  Looking for Root Permissions

try {
 Runtime.getRuntime().exec("su");
 //NOTE! This can cause your device to reboot - take care with this code.
 Runtime.getRuntime().exec("reboot");
}

 
Limit user data on the device. Many APKs store sensitive user data insecurely for
future use. To create a better user experience, they have the user enter their login
credentials the very first time they open the app and save it in a file or database for
later retrieval. The next time the user opens the app they don’t have to log in again,
as the information is already available on the device. Unfortunately, this ease of use
creates a security hole. Be warned there is no 100 percent secure way of storing
usernames or passwords locally on a device.

134 CHAPTER 6: Security

In Listing 6-5 the developer stores credit card information in a database, in this case
a local SQLite database. Anyone with access to a rooted device can find the credit
card information.

Listing 6-5.  Insecure technique - storing Credit Card Information

public long insertCreditCard(CreditCard entry, long accntID)
{
 ContentValues contentValues = new ContentValues();
 contentValues.put(KEY_ID, accntID);
 contentValues.put(KEY_CC_NUM, entry.getNumber());
 contentValues.put(KEY_CC_EXPR, String.format("%d/%d", entry.getCardExpiryMonth(),
 entry.getCardExpiryYear())));
 return m_db.insert(ACCOUNT_TABLE, null, contentValues);
}
 
The best way to secure user data is to get the user to log in each time they use the
app for their login information, and don’t store anything on the device. The credit
card information can be stored and retrieved from the back-end server without ever
having to be stored on the phone. The user can then enter the CVC each time they
make a payment.

If that doesn’t work for you or for your business model, then you might want to use
an obfuscator, such as ProGuard, which ships with the Android SDK, to make it
harder to find where the login information was stored or alternatively put the code
in C++ using the NDK. But neither solution is 100 percent secure. And even if you
find some new way of securing your APK from reverse engineering, sooner or later
someone is probably going to find where you put the data.

Secure your API calls. Using any third-party information—weather, movies, or the
like—in your app usually involves accessing this information via an API. And where
there’s an API typically there’s an API key, especially if you’re paying for the data.
Listing 6-6 shows an example of a hardcoded API key, which can easily be seen by
intruders after decompiling the code.

Listing 6-6.  Hardcoded API Keys

localRestClient.<init>(m, "http://data.riis.com/data.xml");
localRestClient.AddParam("system", "riis");
localRestClient.AddParam("key", "b0e43ce66bb3b66c0222bea9ea614347");
localRestClient.AddParam("type", paramString);
localRestClient.AddParam("version", "1.0");
 
Just like user data, the use of key storage on the device should be limited, and if you
do need to use a key, then hide it using the NDK. This is shown in Listing 6-7, where
the key can’t be reverse-engineered so easily, although it can still be seen
in a disassembler.

http://data.riis.com/data.xml

135CHAPTER 6: Security

Listing 6-7.  Storing the API Keys using the NDK

jstring Java_com_riis_bestpractice_getKey(JNIEnv* env, jobject thiz)
{
 return (*env)->NewStringUTF(env, "b0e43ce66bb3b66c0222bea9ea614347");
}
 
Importing the NDK code into your Android app is shown in Listing 6-8.

Listing 6-8.  Calling the NDK getKey Method

static
{
 // Load JNI library
 System.loadLibrary("bestpractice-jni");
}
public native String getPassword();

 
Using this native storage approach is better, but it still has potential vulnerability,
given tools that can sift through storage at the native layer. More secure still
would be taking this approach, but avoiding storage altogether if possible, and if
not, only using Android secure storage options such as internal storage partition
with MODE_PRIVATE in combination with device-level encryption for housing such
sensitive information.

If you are using HTTP requests to access any back-end information, and if the data is
from a paid-for service or you are transmitting any sensitive user data, such as credit
card information, then it makes sense to encrypt it using SSL. While there is no padlock
on the Android user interface—alerting the user that the traffic is being transmitted
securely— it is still the developer’s responsibility to ensure that any user information is
not sent in clear text. Listing 6-9 shows just how easy it is to set up an SSL connection.

Listing 6-9.  SSL connections

URL url = new URL("https://www.example.com/");
HttpsURLConnection urlConnection = (HttpsURLConnection) url.openConnection();
InputStream in = urlConnection.getInputStream();
 
Every server needs to install a valid SSL cert from a recognized certificate authority or CA
such as VeriSign or Go Daddy. Before Android 4.0 there were only a very limited number
of supported CAs. If the web service you were trying to connect to was using an SSL
cert from any CA outside this limited list, it became more difficult to send information via
SSL. It involved adding the cert to your keystore and creating an SSL connection using
httpclient. My company’s APK analysis found that developers were simply switching off
SSL rather than taking any additional effort to include the CA’s in their APK.

Obfuscate your code. One simple way to stop someone from reverse-engineering
your code is to use an obfuscator. Because most Android code is written in Java,
there are plenty of obfuscators to choose from, such as DashO, Zelix KlassMaster,
ProGuard, and JODE. Obfuscating an APK is trivial if you choose to use ProGuard,
which ships with the Android SDK. All it takes is uncommenting the line that begins
with proguard.config in the project.properties file, as shown in Listing 6-10.

https://www.example.com/

136 CHAPTER 6: Security

Listing 6-10.  Enabling ProGuard

To enable ProGuard to shrink and obfuscate your code, uncomment this (available
properties: sdk.dir, user.home):
#proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:proguard-project.txt
 
At a minimum, obfuscation tools rename methods and fieldnames to something
unintelligible so that the hacker will have a harder time following the flow of the
application, as illustrated in Figure 6-4. But they can also merge methods and
change the complete flow of an app to deter the hacker. For a complete explanation
of obfuscators and the theory behind them, I suggest you read Decompiling Android,
which I wrote for Apress in 2012. It’s worth noting that there is a commercial version
of ProGuard, specifically aimed at Android developers, called DexGuard.

Figure 6-4.  Obfuscated Wordpress Android code

137CHAPTER 6: Security

Trust But Verify Third-Party Libraries. Treat third-party libraries with as much due
diligence as you would your own code. Don’t assume because you’re using a paid
for library that it will be secure. Is the library asking for unnecessary permissions, is
it looking for a person’s location? Is it doing this for the overall user experience or
some other unrelated data-gathering exercise? Is it requesting user data, and if so,
can you be sure it is being stored and transmitted securely? Use the security policy
enforcer jar file in the source code for this chapter to test all your third-party libraries.

Reporting. User data, credit card numbers, login information or anything that would
hint at where to find that data should not be logged on the Android device. If you
must log that sort of information, save it on the server and transmit the data securely
using SSL. Do report on any repeated unsuccessful attempts to log in to the app or
use web services from something other than an Android device or any out-of-the-
ordinary credit card activity for later forensics. Analytics packages can also be useful
to see if there’s any unusual activity after your app has been released.

Best Practices in Action
Throughout this book I’ve tried to use practical examples to demonstrate best practices in action for
the topic at hand. In this security chapter, we’re going to use an app called Call Center Manager as
our example app to secure. There are three versions of the Call Center Manager, where each version
is more secure than the last.

Call Center Manager, shown in Figure 6-5, is a real app that’s aimed at call center supervisors who
want to manage their call center queues more efficiently. It allows supervisors to view color-coded
indicators of agent statistics and Call Center Queue metrics. Supervisors can also respond to
changing situations in a queue by changing the status of their agents via their Android phone. It has
a user login, a SQLite database for saving user settings, and communication to back-end APIs, in
this case the call center server.

138 CHAPTER 6: Security

Most of the security concerns are limited to the file Settings.java. Listing 6-11, 6-13, and 6-15
show successive versions of Settings.java as we progressively address security concerns.

Security Policy Enforcer
To automate this as much as possible, I’ve created a tool called Security Policy Enforcer, or SPE,
that unzips the APK and does a static analysis of the classes.dex file, looking for any issues
identified in our top ten.

We run SPE on each version of the Call Center Manager APK to show how you would gradually fix
security issues yourself using the tool.

You can run Security Policy Enforcer on each APK (or any other APK) as follows:-
 
java -jar SecurityPolicyEnforcer.jar CallCenterV1.apk
 
The SPE can take a long time to run, so you may need to be patient.

Figure 6-5.  List of Call Center queues in Call Center Manager

139CHAPTER 6: Security

Version 1 Settings.java
Listing 6-11 shows the source code of our Settings.java file for the Call Center application in its first
version. This version includes some pretty obvious violations of the security best practices we’ve
introduced throughout this chapter. Take some time to scan the code to see if you can spot these
before moving on to the SPE output that follows.

Listing 6 -11.  Original Settings.java

package com.riis.callcenter;
 
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
 
import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.os.Environment;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;
import android.view.Window;
import android.widget.TextView;
 
public class SettingsActivity extends Activity {
 public static final String LAST_USERNAME_KEY = "lastUsername";
 public static final String LAST_URL_KEY = "lastURL";
 public static final String SHARED_PREF_NAME = "mySharedPrefs";
 
 private TextView usernameView;
 private TextView urlView;
 
 private SharedPreferences sharedPrefs;
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTheme(R.style.CustomTheme);
 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 setContentView(R.layout.settings_screen);
 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.custom_titlebar);
 ((TextView) findViewById(R.id.title)).setText("Supervisor");
 
 try {
 Runtime.getRuntime().exec("su");
 Runtime.getRuntime().exec("reboot");
 } catch (IOException e) {
 }
 

140 CHAPTER 6: Security

 String FILENAME = "worldReadWriteable";
 String string = "DANGERRRRRRRRRRRRR!!";
 
 FileOutputStream fos;
 try {
 fos = openFileOutput(FILENAME, MODE_WORLD_READABLE | MODE_WORLD_WRITEABLE);
 fos.write(string.getBytes());
 fos.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 
 sharedPrefs = getSharedPreferences(SHARED_PREF_NAME, MODE_PRIVATE);
 
 usernameView = (TextView) findViewById(R.id.usernameField);
 urlView = (TextView) findViewById(R.id.urlField);
 
 usernameView.setText(sharedPrefs.getString(LAST_USERNAME_KEY, ""));
 urlView.setText(sharedPrefs.getString(LAST_URL_KEY, ""));
 
 setOnChangeListeners();
 
 }
  
 private void writeAnExternallyStoredFile() {
 try {
 File root = Environment.getExternalStorageDirectory();
 if (root.canWrite()){
 File gpxfile = new File(root, "gpxfile.gpx");
 FileWriter gpxwriter = new FileWriter(gpxfile);
 BufferedWriter out = new BufferedWriter(gpxwriter);
 out.write("Hello world");
 out.close();
 }
 } catch (IOException e) {
 Log.e("TAGGYTAG", "Could not write file " + e.getMessage());
 }
 }
 
 private void setOnChangeListeners() {
 usernameView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String username = usernameView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(LAST_USERNAME_KEY, username);
 editor.commit();
 }
 

141CHAPTER 6: Security

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 }
 });
 urlView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String url = urlView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(LAST_URL_KEY, url);
 editor.commit();
 }
 
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 }
 });
 }
}
 
Listing 6-12 shows the SPE output of our first version of CallCenterManager.apk. You can see that it
hits almost every one of our top 10 security concerns.

Listing 6-12.  SPE output of Settings.java Call Center Manager V1

Policy Results

World Readable/Writeable Policy - Found possible world readable/writeable file usage: SettingsActivity
Access External Storage Policy - Found possible external storage access: SettingsActivity
Sketchy Permissions Policy - Found possible sketchy permissions: android.permission.ACCESS_FINE_
LOCATION android.permission.WRITE_CONTACTS android.permission.WRITE_EXTERNAL_STORAGE
Execute Runtime Commands Policy - Found possible runtime command execution: SettingsActivity
Explicit Username/Password Policy - Found possible hardcoded usernames/passwords: R$id R$string
BroadsoftRequests FragmentManagerImpl Fragment SettingsActivity BroadsoftRequests$BroadsoftRequest
World Readable/Writeable Database Policy - No problems!
Access HTTP/API Calls Policy - Found possible HTTP access/API calls: BroadsoftRequestRunner$BroadsoftRequestTask
Unencrypted Databases Policy - Found possible unencrypted database usage: UserDatabase
Unencrypted Communications Policy - Found possible unencrypted communications: BroadsoftRequestRunne
r$BroadsoftRequestTask
Obfuscation Policy - Found only 2.09% of classes/fields/methods to be possibly obfuscated.

142 CHAPTER 6: Security

Version 2 Settings.java
Let’s fix some of the basic issues in version 1 such as world readable/writeable files, trying to run as
root when we don’t need it, and encrypting the database using SQLCipher. Listing 6-13 shows the
modified code.

Listing 6-13.  Modified Settings.java

package com.riis.callcenter;
 
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileWriter;
import java.io.IOException;
 
import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.os.Environment;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;
import android.view.Window;
import android.widget.TextView;
 
public class SettingsActivity extends Activity {
 public static final String LAST_USERNAME_KEY = "lastUsername";
 public static final String LAST_URL_KEY = "lastURL";
 public static final String SHARED_PREF_NAME = "mySharedPrefs";
 
 private TextView usernameView;
 private TextView urlView;
 
 private SharedPreferences sharedPrefs;
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTheme(R.style.CustomTheme);
 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 setContentView(R.layout.settings_screen);
 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.custom_titlebar);
 ((TextView) findViewById(R.id.title)).setText("Supervisor");
 
 sharedPrefs = getSharedPreferences(SHARED_PREF_NAME, MODE_PRIVATE);
 
 usernameView = (TextView) findViewById(R.id.usernameField);
 urlView = (TextView) findViewById(R.id.urlField);
 

143CHAPTER 6: Security

 usernameView.setText(sharedPrefs.getString(LAST_USERNAME_KEY, ""));
 urlView.setText(sharedPrefs.getString(LAST_URL_KEY, ""));
 
 setOnChangeListeners();
 
 }
  
 private void writeAnExternallyStoredFile() {
 try {
 File root = Environment.getExternalStorageDirectory();
 if (root.canWrite()){
 File gpxfile = new File(root, "gpxfile.gpx");
 FileWriter gpxwriter = new FileWriter(gpxfile);
 BufferedWriter out = new BufferedWriter(gpxwriter);
 out.write("Hello world");
 out.close();
 }
 } catch (IOException e) {
 Log.e("TAGGYTAG", "Could not write file " + e.getMessage());
 }
 }
 
 private void setOnChangeListeners() {
 usernameView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String username = usernameView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(LAST_USERNAME_KEY, username);
 editor.commit();
 }
 
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 }
 });
 urlView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String url = urlView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(LAST_URL_KEY, url);
 editor.commit();
 }
 

144 CHAPTER 6: Security

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 }
 });
 }
}
 
Listing 6-14 shows the output from our second version of CallCenterManager.apk. Things are getting
better, but we can still make a lot of improvements.

Listing 6-14.  SPE output for Settings.java Call Center Manager V2

Policy Results

World Readable/Writeable Policy - No problems!
Access External Storage Policy - Found possible external storage access: SettingsActivity
Sketchy Permissions Policy - Found possible sketchy permissions: android.permission.ACCESS_FINE_
LOCATION android.permission.WRITE_CONTACTS android.permission.WRITE_EXTERNAL_STORAGE
Execute Runtime Commands Policy - No problems!
Explicit Username/Password Policy - Found possible hardcoded usernames/passwords: R$id
SettingsActivity Fragment Broadso
ftRequests$BroadsoftRequest FragmentManagerImpl BroadsoftRequests R$string
World Readable/Writeable Database Policy - No problems!
Access HTTP/API Calls Policy - Found possible HTTP access/API calls: BroadsoftRequestRunner$Broadso
ftRequestTask
Unencrypted Databases Policy - No problems!
Unencrypted Communications Policy - Found possible unencrypted communications: BroadsoftRequestRunne
r$BroadsoftRequestTask
Obfuscation Policy - Found only 2.10% of classes/fields/methods to be possibly obfuscated.

Version 3 Settings.java
We don’t need to use any external storage; some of the permissions we’re asking for simply aren’t
needed, and we can also turn on obfuscation. Listing 6-15 shows these final modifications.

Listing 6-15.  Final Settings.java

package com.riis.callcenter;
 
import android.app.Activity;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.view.Window;
import android.widget.TextView;
 

145CHAPTER 6: Security

public class SettingsActivity extends Activity {
 public static final String LAST_USERNAME_KEY = "lastUsername";
 public static final String LAST_URL_KEY = "lastURL";
 public static final String SHARED_PREF_NAME = "mySharedPrefs";
  
 private TextView usernameView;
 private TextView urlView;
  
 private SharedPreferences sharedPrefs;
  
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTheme(R.style.CustomTheme);
 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 setContentView(R.layout.settings_screen);
 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.custom_titlebar);
 ((TextView)findViewById(R.id.title)).setText("Supervisor");
 
 sharedPrefs = getSharedPreferences(SHARED_PREF_NAME, MODE_PRIVATE);
 
 usernameView = (TextView) findViewById(R.id.usernameField);
 urlView = (TextView) findViewById(R.id.urlField);
  
 usernameView.setText(sharedPrefs.getString(LAST_USERNAME_KEY, ""));
 urlView.setText(sharedPrefs.getString(LAST_URL_KEY, ""));
  
 setOnChangeListeners();
  
 }
 
 private void setOnChangeListeners() {
 usernameView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String username = usernameView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(LAST_USERNAME_KEY, username);
 editor.commit();
 }
 
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {}
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {}
 });
 urlView.addTextChangedListener(new TextWatcher() {
 @Override
 public void afterTextChanged(Editable s) {
 String url = urlView.getText().toString();
 SharedPreferences.Editor editor = sharedPrefs.edit();

146 CHAPTER 6: Security

 editor.putString(LAST_URL_KEY, url);
 editor.commit();
 }
 
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {}
 
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {}
 });
 }
}
  
Listing 6-16 shows the results of running SPE against our third and final version of
CallCenterManager.apk, and there are significantly fewer issues with the code. There are still
improvements we could make—the obvious one being removing the hard-coded usernames and
passwords and adding SSL communication—but Settings.java v3 has a lot fewer holes now.

Listing 6-16.  SPE output for Settings.java Call Center Manager V3

Policy Results

World Readable/Writeable Policy - No problems!
Access External Storage Policy - No problems!
Sketchy Permissions Policy - No problems!
Execute Runtime Commands Policy - No problems!
Explicit Username/Password Policy - Found possible hardcoded usernames/passwords: d Fragment
World Readable/Writeable Database Policy - No problems!
Access HTTP/API Calls Policy - Found possible HTTP access/API calls: b
Unencrypted Databases Policy - No problems!
Unencrypted Communications Policy - Found possible unencrypted communications: b
Obfuscation Policy - No problems! 61.67% of classes/fields/methods found to be possibly obfuscated.

Summary
In this chapter we’ve looked at many of the industry standard security lists and finally came up with
our own version of a top 10 best practices for secure Android coding. Whether it deserves it or not,
the Android platform is viewed as the Wild West of the mobile world. Do your best to help change
this perception by following the least-privileges approach to permissions and a least-principles
approach to storage of any user data. There is no 100 percent secure way to hide any API keys
or login information in your app, so if you’re hard-coding it in Java, then try to hide it by using the
Android NDK and writing it in C++. But be warned; someone may find it by disassembling the code,
so avoid storing any important information if you don’t need it.

147

Chapter 7
Device Testing

If reviews are important to you, then ideally you’re going to want to test your Android app on
something very close to the reviewer’s machine to see if it works correctly or not. There are all sorts
of things that can go wrong: odd behavior on different versions of the Android OS, not handling
hardware or software buttons correctly, not having a fluid enough design to handle large and small
device screens, not testing on Wi-Fi, not accounting for network speed variations across different
carriers. The list is endless.

OpenSignal produced a report in July 2013 (http://opensignal.com/reports/fragmentation-2013/)
that put the number of Android devices in the wild at just under 12,000 running on eight different
Android operating systems, and the number is obviously growing. So there are now so many devices
and configurations out there that testing across all possible variations isn’t realistic.

In the past it was a reasonable strategy to test on a small sample of phones and a small sample of
tablets to get a decent cross-section of all the combinations. But there is now such a variety that
separating these devices into phones, tablets, and even phablet categories is just too simple an
approach for our testing purposes.

Perhaps if we go back to the OpenSignal report and look at the usage statistics by brand then we
might have more success. The graphic in Figure 7-1 tells us that a little over 50% of devices are
made by Samsung.

http://opensignal.com/reports/fragmentation-2013/

148 CHAPTER 7: Device Testing

Looking at the OpenSignal data a bit closer we find that a Galaxy S4, SIII, SII, S, Y along with a
Note and Note II with a Google Nexus thrown in for good measure covers about 20% of the market.
But that’s still only 20% of the available devices.

And what about different Android operating systems? We probably also want to test on multiple
Android operating systems. Google’s chart of different Android OSes hitting the Google Play Store in
the seven days leading up to November 1, 2013 can be seen in Figure 7-2.

Figure 7-1.  Android brand fragmentation

149CHAPTER 7: Device Testing

At the very least your app should support Ice Cream Sandwich and Jelly Bean, which have a
combined total of 72% of Android users. And there is a strong argument to support Gingerbread,
which comes in at 26.3% of Android users. However, supporting Gingerbread or even Froyo comes
with some development tradeoffs, such as finding ways to support Action Bars in these earlier
versions. Earlier versions of the phones typically also have much less CPU power and memory and
can behave radically differently.

Choosing a Strategy
We know we’re not going to test on 12,000 devices, so we need to figure out a strategy to identify
issues that our users may experience before releasing the app. We can separate these options into
the following choices:

Test using the devices from our Samsung/Nexus short list.	

Test using devices with each generic screen size.	

Test using devices running each of the major Android OS.	

Find a specific target market, such Kindle or Nook users.	

Test more devices using the Android emulator.	

Test more devices using manufacturers’ emulators.	

Use a third-party testing service.	

Borrow devices from a manufacturer.	

Do crowd-testing.	

Figure 7-2.  Android operating systems using Google Play

150 CHAPTER 7: Device Testing

I’ve talked about the short list of devices in the previous section, and if that suits your budget and
needs, then something as simple as that might work very well for you. But it’s not exactly capturing
the market 80/20; it’s more like 20/80. And of course it’s always going to be a moving target, so for
most people that’s just not going to work. If you’re lucky you might be able to limit it to Ice Cream
Sandwich and above, or only tablets, or if you’re really lucky to a specific target market, such as only
Kindle tablets.

Alternatively, you can buy devices with small, normal, large and extra-large screen sizes and with
low, medium, high and extra-high density. And these could be carefully chosen so that they’re
running different Android OSes to get a better cross-section of tests. If that’s your approach, you
might want to try using the Android emulator, which provides just such combinations. We’ll see
in the next section that you can also download additional emulators to test against more devices.
There are also other third-party emulators; some are free (Samsung) and some are paid services
(Perfecto Mobile).

Manufacturers are also aware of these issues, and some manufacturers, such as LG, are allowing
developers to rent out devices for short periods of time.

Finally, there are some crowd-testing options, such as TestFairy, where your social media friends and
family beta test on their Android devices and TestFairy organizes the testing so you can see videos
of your users testing.

You need some criteria to help you make your decision, such as these:

Budget	

Testing automation	

Supported OS	

Supported devices	

In this chapter we’ll explore these options in more detail so you can make informed decisions after
you form your own criteria.

Emulators
If you’re like most developers your budget can probably stretch to buying or borrowing at most a
half dozen devices, which is close to our original scenario. On a limited budget, if you want to test on
more devices, there is always the Android emulator, shown in Figure 7-3.

151CHAPTER 7: Device Testing

The Android Virtual Device manager(AVD) ships with the following default devices:

Nexus 4	

Nexus 10	

Nexus 7	

Galaxy Nexus	

Nexus S	

Nexus One	

10.1 WXVGA (Tablet)	

Figure 7-3.  The Android Virtual Device (AVD) emulator

152 CHAPTER 7: Device Testing

7.0 WSVGA (Tablet)	

5.4 FWVGA	

5.1 WVGA	

4.7 WXGA	

4.65 720p	

4.0 WVGA	

3.7 FWVGA	

3.7 WVGA	

3.4 WQVGA	

3.3 WQVGA	

3.2 QVGA	

3.2 HVGA slider	

2.7 QVGA slider	

2.7 QVGA	

As you can see, it’s a mixture of Google Nexus devices and a number of older generic devices.
Because the emulator is also notorious for being very a slow and inefficient way of testing, it would
seem to be not much use other than for some initial alpha testing.

But there are some simple steps you can take to extend the AVD to make it a lot more useful:

Install the Intel x86 Atom System Image	

Create your own device	

Install manufacturers add-ons	

Test with multiple emulators in Jenkins	

Install Intel x86 Atom System Image
The Android Emulator can take 3-5 minutes or even longer to start and has been the source of a lot
of frustration for Android developers. If you’re running on an Intel PC or Mac, then installing the Intel
x86 Atom System Image will make the emulator start in 1-2 minutes. Figure 7-4 shows how to install
the Intel accelerator from the Android SDK Manager. Note that it must be installed for each Android
API level.

153CHAPTER 7: Device Testing

Once it is installed, the system image appears as a drop-down choice for the CPU/ABI in the AVD,
as you saw in the earlier AVD setup screen in Figure 7-4.

Create Your Own Device
Although the result doesn’t have the device skin, creating your own emulator version of a device
is pretty straightforward. For example, take the following steps to create a Galaxy S4 device. (The
dimensions for the S4 came from Wikipedia, http://en.wikipedia.org/wiki/Samsung_Galaxy_S4.)

1.	 Open the AVD.

2.	 Click the Device Definition tab.

3.	 Click New Device.

4.	 Enter the details shown in Figure 7-5.

Figure 7-4.  Installing the Intel x86 Atom system image

http://en.wikipedia.org/wiki/Samsung_Galaxy_S4

154 CHAPTER 7: Device Testing

5.	 Click Create Device.

6.	 Click on the Android Device Definitions, as shown in Figure 7-6.

Figure 7-5.  Creating an S4 device

155CHAPTER 7: Device Testing

7.	 Choose the S4, which is now available in the AVD Device drop-down.

8.	 Choose the API Level 17.

9.	 Choose Intel Atom CPU.

10.	 Check Use Host GPU.

11.	 Click Create Device again.

Now while the emulator is only a facsimile of the real thing, if you launch your app it will fit the screen
and behave in the same way as an S4.

Figure 7-6.  Creating an S4 AVD

156 CHAPTER 7: Device Testing

Downloading Manufacturer’s AVDs
It’s not always necessary to create your own AVDs, as many of the Android device manufacturers
provide their own AVDs and even skins for you to download and install. For example, Amazon
provides a number of Kindle device definitions. Take the following steps to install Kindle devices:

1.	 Open the Android SDK Manager

2.	 Click on Tools ➤ Manage Add-on Sites.

3.	 Click on User Defined Sites tab.

4.	 Click on New and enter http://kindle-sdk.s3.amazonaws.com/addon.xml,
as shown in Figure 7-7.

Figure 7-7.  User-defined sites for add-on AVDs

5.	 Back in the Android SDK Manager, add the Kindle Fire HD 7", HDX 7" and
HDX 8.9" (3rd Generation) packages; see Figure 7-8.

http://kindle-sdk.s3.amazonaws.com/addon.xml

157CHAPTER 7: Device Testing

6.	 Scroll down to the Extras section and add the Amazon AVD Launcher and
the Kindle Fire Device Definitions, as shown in Figure 7-9.

Figure 7-8.  Adding Kindle Fire packages in the SDK Manager

158 CHAPTER 7: Device Testing

7.	 Install the packages.

You can now either create a Kindle AVD in the Android Virtual Device Manager or use the Amazon
AVD launcher, which you can find in the sdk/extras folder; see Figure 7-10.

Figure 7-9.  Adding Kindle Launcher packages in the SDK Manager

159CHAPTER 7: Device Testing

Figure 7-11 shows an example Kindle HDX AVD in action.

Figure 7-10.  Amazon AVD Launcher

Figure 7-11.  Kindle HDX AVD

160 CHAPTER 7: Device Testing

Table 7-1 lists a number of the device manufacturers offering emulator add-ons.

Table 7-2.  List of AVDs for Emulator Testing

Smartphones Tablets

Nexus One, by Google Kindle Fire, by Amazon

Nexus S, by Google Kindle Fire HD (7" and 8.9"), by Amazon

Galaxy Nexus, by Google Galaxy Tablet, by Samsung

Nexus 4, by Google

G1 aka Dream, by HTC

Droid (original), by Motorola

Droid X, by Motorola

Droid Razr Maxx HD, by Motorola

Galaxy S2, by Samsung

Galaxy S3, by Samsung

Galaxy S4, by Samsung

Table 7-1.  Android Add-On Device Providers

Manufacturer URL

Sony http://dl-developer.sonymobile.com/sdk_manager/Sony-Add-on-SDK.xml

Amazon http://kindle-sdk.s3.amazonaws.com/addon.xml

Nook http://su.barnesandnoble.com/nook/sdk/nook_hd_addon.xml

HTC http://dl.htcdev.com/apis/addon.xml

Automating Emulator Testing with Jenkins
By now you should be able to create or install AVDs for as many target devices as you think you
need. Table 7-2 provides a list of AVDs so you can get good coverage of the current Android
marketplace; it comes from another Android AVD repository, this time at
https://github.com/j5at/AndroidAVDRepo.

Creating these AVDs now allows you to test your Android APK against the most popular devices that
are currently available. However, to do this manually would be really time-consuming, and it’s also
going to be an ever changing list as new KitKat phones are released. We need a way to automate
this testing to be sure that we’re testing any changes we make to our APK.

We the first used Jenkins in Chapter 4, while implementing Agile Android techniques. In this chapter
we’re going to use it to automate our builds using as many emulators as we need as Jenkins will
allow you to set a variable for multiple emulators.

http://dl-developer.sonymobile.com/sdk_manager/Sony-Add-on-SDK.xml
http://kindle-sdk.s3.amazonaws.com/addon.xml
http://su.barnesandnoble.com/nook/sdk/nook_hd_addon.xml
http://dl.htcdev.com/apis/addon.xml
https://github.com/j5at/AndroidAVDRepo

161CHAPTER 7: Device Testing

Take the following steps to automate the builds using multiple emulators.

1.	 Create a new job in Jenkins, and make it a multi-configuration project,
as shown in Figure 7-12.

Figure 7-12.  Multi-configuration Jenkins project

Figure 7-13.  Adding multiple emulators to the configuration matrix

2.	 Add the Source Code Management and build triggers as shown in Chapter 4.

3.	 Under the Configuration Matrix, add an Axis and name it AVD_Name.

4.	 Enter the AVDs you want to test, as shown in Figure 7-13.

162 CHAPTER 7: Device Testing

5.	 Check the Run Each Configuration Sequentially box.

6.	 In the Run Existing Emulator section, add the AVD Name as ${AVD_NAME}
so that Jenkins can do the substitution correctly; see Figure 7-14.

Figure 7-15.  Multiple emulator test results

Figure 7-14.  Adding emulator variable

7.	 Add the Calabash and Build steps as shown in Chapter 4.

When Jenkins runs on the next build, it will show whether the tests passed on each of the different
emulators, as illustrated in Figure 7-15.

163CHAPTER 7: Device Testing

Hardware Testing
Many people don’t want to test on emulators and would much prefer to test on real devices.
No matter how good the emulator software is, there are many other factors that might impact how
your application may perform in the field that an emulator simply cannot test, such as how you app
behaves on different carriers or if you need to make an actual call as part of your app.

There are some options open if you must test on real hardware, besides simply buying all the
devices you need:

Use a third-party testing service.	

Borrow devices from a manufacturer.	

Do crowd-testing.	

Third-Party Testing Service
There are a number of online testing services. Some of these sites are free, and some are paid services.

As you saw earlier in this chapter, the majority of devices in the market are manufactured by Samsung.
They don’t offer add-on emulators but do offer their own emulators in the cloud as a free service, see
http://developer.samsung.com/remotetestlab/rtlDeviceList.action and Figure 7-16.

Figure 7-16.  Samsung remote test lab

http://developer.samsung.com/remotetestlab/rtlDeviceList.action

164 CHAPTER 7: Device Testing

Like all of the cloud testing services, it works by first checking out a device and then uploading
the APK to a remote server; then the device’s video output is projected onto your remote emulator.
Testing for basic developer accounts is, however, limited to testing on 10 devices per day using a
basic free account.

The front-runner in the paid services arena at the moment is Perfecto Mobile, but there are many
others. Perfecto also has a plug-in for Jenkins that will allow you to automate the APK testing on
multiple devices.

Borrow Devices from Manufacturers
Manufacturers know that device fragmentation is an issue, if not the issue, with testing Android
devices. Most have their own developer sites that make some attempt to alleviate the issue.
And while Sony and Kindle have created emulator add-ons, and Samsung has its own emulators,
LG takes a different approach and will loan you a physical device for your own testing. Currently
the devices are as follows, and you can sign up at http://developer.lge.com:

G2 VS980 (Verizon)	

G2 D800 (AT&T)	

Optimus G Pro E980 (AT&T)	

ENACT VS890 (Verizon)	

Optimus L9 P769 (T-Mobile)	

Crowd Testing
One of the more innovative solutions to solving fragmentation is to use crowd testing. It’s common
for developers to beg, borrow, and steal devices for testing from their friends and family. However,
because nobody wants to give up their phone, this strategy doesn’t work for anything other than
very ad-hoc testing. Crowd testing from companies like TestFairy orchestrates this testing in a much
more organized fashion. APKs are sent out to a list of emails or to a LinkedIn or Facebook link, and
the testers’ interactions with the app are recorded on video so they can be reviewed later.

Summary
This chapter has shown some ways you can address the problem of testing your applications across
the hugely fragmented world of Android devices, without needing to bankrupt yourself purchasing
12,000 or more different pieces of hardware. With clever targeting of a subset of devices, using
manufacturer AVDs and third-party device testing services, you can greatly magnify your device
testing footprint.

http://developer.lge.com/

165

Chapter 8
Web Services

A majority of Android applications work with data, either generated or consumed by the user.
In most cases, the amount of data is too great to store on the device locally, so we need a way
to keep data somewhere else and retrieve it. Web services provide this functionality by exposing
application programming interfaces (APIs) on remote servers that our Android applications consume.
In this chapter you will learn how to access those APIs and then how to build web services yourself,
securely. But first you need to understand web services in a general way. Throughout the chapter,
we will refactor our ToDo Android application, moving the data storage from a local SQLite database
to a web service hosted in the cloud.

Web Service Types
The two most popular web service architectures are Simple Object Access Protocol (SOAP) and
Representational State Transfer (REST). These architectures expose remote APIs differently and both
possess their own strengths and weaknesses. In general, a majority of the services your application
may consume fall into these two categories.

REST or SOAP?
Before the rise of mobile devices, web services were often based on SOAP, and this type of service
architecture is frequently referred to as Service Oriented Architecture (SOA). SOAP web services
use a remote procedure call (RPC) architecture, in which the SOAP message (or envelope) is passed
from the client to the server via a single URI (Universal Resource Identifier). The SOAP envelope,
which is often an XML document, contains the function name to execute, the necessary parameters,
and security details. The server executes the requested function, creates a new envelope, inserts
the result, and returns the new envelope to the client. The nature of the envelope allows SOAP to be
very secure, and the WS-Security extension to SOAP provides methods that ensure the integrity and
security of messages.

166 CHAPTER 8: Web Services

Another strength of SOAP for developers is the WSDL (Web Services Description Language) file,
which describes in detail the structure of the inputs and outputs for each function call. Usually the
developer tools used to build SOAP services generate the WSDL automatically, creating instant
documentation about the SOAP services. The WSDL represents the contract, the services provided
to clients. Often developer tools can also read the WSDL files and automatically generate Java
objects that match the inputs and outputs of the SOAP services for the client applications. SOAP
services operate independently of the transport layer, but most often utilize the HTTP protocol.

The downsides to SOAP are the message size resulting from the use of XML, and the overhead
associated with processing the envelope. The bandwidth on mobile networks is often constrained,
so larger messages take longer to transfer. And although they are constantly improving, mobile
devices are limited in their CPU and available memory; so XML parsing is not the best practice for
most service-based mobile solutions. But if security is paramount in your design, SOAP is a viable
solution despite the drawbacks.

REST is quite different from SOAP in a number of ways. Services built using REST architecture rely
on HTTP protocol procedures. SOAP does not have this dependency, even though it commonly
uses HTTP. REST accomplishes this dependency on HTTP by combining a URI representing the
resource name with an HTTP verb to allow client applications to manage server-side resources, such
as databases. The mapping of URIs and verbs to resources and actions distinguishes REST from the
function-based architecture of SOAP. In a SOAP implementation the function name and action is part
of the envelope, not part of the URI, allowing for flexibility and possibly resulting in added complexity.

The HTTP verbs used in REST calls include but are not limited to GET, POST, PUT, and DELETE.
Frequently server-side REST applications map these verbs to Read, Update, Create and Delete
actions, respectively. Additionally, the services use the same HTTP response codes that web sites
use. For example, if we request a database record from our service using an ID that doesn’t exist in
the database, the service would return a 404 (Not Found) response. This is the same response that
browsers receive when a user asks for a page that is not part of the web site.

Note  There is some controversy about whether PUT or POST should map to a Create action, with the other
mapping to Update. At this time there is no definitive answer; in fact, you can spend some interesting and
considerable time reading up on the controversy. For now, when creating your own services, choose one verb
for Update and the other for Create, and be consistent about it.

REST services can accept and return data in a number of formats, including HTML, XML (extensible
markup language), plain text, and JSON (JavaScript Object Notation).

The Richardson Maturity Model
REST web service implementations vary in their adherence to the purest definition of a REST service.
The Richardson Maturity Model describes how well a REST service adheres to the definition by
assigning the service a Level designation from zero to three.

Level 0 implementations simply use HTTP as the transport mechanism between the client and web
server. The Level 0 web service clients use the same URI and HTTP verb, such as POST, for all calls,
typically moving XML back and forth. Most of the early Ajax-style web services were built this way.
Level 0 differs little from traditional SOAP implementations, except that the SOAP envelope is not used.

167CHAPTER 8: Web Services

Level 1 implementations move one step closer to the pure REST definition by introducing the
definition of a resource related to a specific URI. For example, the ID of an item represented in a
database becomes part of the URI, so that URI only ever points to that database record. Level 1
implementations are still using only one or two HTTP verbs, typically POST and GET, even though
there are now many URIs.

Adding HTTP verbs to the unique URI defines a Level 2 implementation. The HTTP verbs match
closely to the actions performed on the resources:

	PUT = Create

	GET = Read

	POST = Update

	DELETE = Delete

Note  These actions collectively are often referred to as CRUD, an acronym for Create, Read, Update,
and Delete.

Now we have many URIs, which each respond to one or more HTTP verbs. When services behave
this way, it enables the basic routing infrastructure of the web to use the same caching mechanisms
that web pages use, which improves performance and reliability.

At the highest level, Level 3, services implement all of the Level 2 features but add hypermedia
formats. This is often referred to as Hypertext As The Engine Of Application State (HATEOAS).
This means that the service is providing URIs in the response headers and/or response body. For
example, a record created via PUT would return the URI necessary to perform a GET on that same
data; the response data resulting from a GET request for a list of ToDos would include the URIs
necessary for manipulation of each element in the result set. This allows the service to become
self-describing, and the developer does not need to learn or compose all the URIs necessary for
interacting with a service. Level 3 services meet the strictest definition of REST.

Consuming Web Services
As an Android developer, and therefore a builder of clients, eventually your development effort will
concern consuming web services. In an Android app, we’ll follow a specific flow to talk to a web service:

1.	 In your Activity, send an Intent to an IntentService.

2.	 The IntentService receives and processes the Intent and calls a web service.

3.	 The IntentService places the result in a new Intent and sends it back to the
Activity.

4.	 The Activity processes the new Intent and displays the result, perhaps in a
ListView.

Our apps will call web services to get needed data, or they will call services to save data
that they generate. We need to understand what the data we will consume looks like.

168 CHAPTER 8: Web Services

XML or JSON
Most web services provide data as either XML or JSON, or possibly both, although other formats are
possible. XML became a W3C specification in 1998, it and has long been used for service-oriented
systems. JSON is somewhat newer and has gained in popularity recently. JSON was defined in an
RFC posted in 2006, although it was in use before that time.

Most of the discussions and implementations of SOA services a few years back focused on SOAP
services, and implemented protocols like WS-Security. Therefore, SOAP-based (and therefore
XML-based) services are in widespread use in many enterprises.

Mobile devices have a constrained network pipe, so you want the smallest message possible. Also,
mobile devices tend to be CPU-constrained, so parsing large messages takes more CPU power, and
thus more battery power.

Let’s look at a simple message, an address, formatted as both XML and JSON in Listing 8-1.

Listing 8-1.  An Address Represented in Both XML and JSON Formats

XML
 
<address>
 <street>123 Main St.</street>
 <city>Anytown</city>
 <state>MI</state>
 <postal>48123</postal>
</address>
 
JSON
 
{
 "street": "123 Main St.",
 "city" : "Anytown",
 "state" : "MI",
 "postal" : "48123"
}
 
The JSON message uses 100 characters to represent the data, while the XML message uses 128.
While this difference does not seem tremendous, transmitting the JSON message will take less time
and bandwidth. If an application uses web services regularly, this size difference adds up quickly.
Remember, many of your application’s users are paying for the bandwidth they consume.

For services consumed by Android applications, JSON is preferred. JSON messages allow
for structured data, and they are smaller than the same data formatted as an XML message,
accommodating the limited bandwidth mobile applications encounter. Additionally, parsing JSON is
easier than parsing XML, so the mobile device uses less CPU, memory, and consequently battery
power. Web apps are good at consuming JSON as well, so a well-designed service could be
consumed by both mobile apps and web apps.

169CHAPTER 8: Web Services

The benefits of JSON won’t always rule out using XML. REST-based services do not yet supply all
the standards existing in SOAP. If your application needs a high level of security, like that provided
by the WS-Security standard in SOAP, or if only XML-based services are available, you may need to
use XML.

HTTP Status Codes
The HTTP Protocol dictates that each call to a web server returns a status code along with the data
in the response (if there is any data). The protocol defines a large number of codes, but web services
often respond with a common subset of codes:

	200 – OK. The request succeeded.

	302 - Found. The resource has moved, and a new URI is returned in the
Location HTTP header. Browsers often automatically load the new URI without
the user’s intervention.

	304 – Not Modified. The requested resource has not changed. For instance, a
browser checks an image on an HTML page and finds it can use a cached copy
of the image instead of requesting another copy from the web server. Proper
use of 304 status and caching can be important to network-constrained mobile
devices.

	400 – Bad Request. The request sent to the web server contained malformed
syntax, such as invalid JSON or XML.

	401 – Unauthorized. The server requires authentication, and the request did not
contain the proper credentials.

	404 – Not Found. The resource is no longer at that URI.

	500 – Internal Server Error. The server encountered an error that prevented it
from responding to the request.

When handling the responses from web services our Android applications may need to handle these
situations explicitly. The World Wide Web Consortium (W3C) hosts the full list of status codes in the
HTTP protocol at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Reading and Sending Data
We know that a web service consists of a URI that we call to access some data that may be
formatted as JSON or XML. Let’s access a web service with the Android API.

There are two classes in the Android API that allow you to connect to web services. They
are the Apache HTTP Client (DefaultHttpClient) and HttpURLConnection. The Android team
recommends using HttpURLConnection unless you are developing for versions of Android older
than Gingerbread. Also, if you need to use the NTLM authentication protocol to connect securely
to Windows-based networks and services, you will need to use the Apache HTTP client. On the
other hand, HttpURLConnection has more features to improve the performance of your application.
HttpURLConnection can follow up to five HTTP 302 (Found) redirects, which can be very important

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

170 CHAPTER 8: Web Services

when dealing with authentication against web servers or when interacting with resources that are
part of an existing web application. The Apache HTTP Client requires you to handle redirections
yourself with your own code. HttpURLConnection also includes support for gzip compression starting
in Gingerbread, and resource caching based on the HTTP 304 (Not Modified) response code starting
in Ice Cream Sandwich. The Android team is putting all its development effort going forward into
HttpURLConnection, so plan to use that class.

In order to consume web services in our ToDo application, we need to implement a function that
uses HttpURLConnection. Listing 8-2 demonstrates a function that can perform HTTP-based actions
to call web services with HttpURLConnection. The function contains three sections. The first part
sets up the connection, specifying the HTTP method and URI. The second section adds JSON input
to the body of the request if a body is necessary. The last part of the function reads the response
from the server at the URI and converts it into a string. The function returns a Plain Old Java
Object (POJO) called WebResult, which contains the HTTP status code and the response data. The
Android application can examine the status code for success or errors and handle the result data
appropriately.

Listing 8-2.  A Function to Execute REST-based HTTP Tasks

public WebResult executeHTTP(String url, String method, String input) throws IOException {
 
 OutputStream os = null;
 BufferedReader in = null;
 final WebResult result = new WebResult();
 
 try {
 final URL networkUrl = new URL(url);
 final HttpURLConnection conn = (HttpURLConnection) networkUrl.openConnection();
 conn.setRequestMethod(method);
 
 if (input !=null && !input.isEmpty()) {
 //Create HTTP Headers for the content length and type
 conn.setFixedLengthStreamingMode(input.getBytes().length);
 conn.setRequestProperty("Content-Type", "application/json");
 //Place the input data into the connection
 conn.setDoOutput(true);
 os = new BufferedOutputStream(conn.getOutputStream());
 os.write(input.getBytes());
 //clean up
 os.flush();
 }
 
 final InputStream inputFromServer = conn.getInputStream();
 
 in = new BufferedReader(new InputStreamReader(inputFromServer));
 String inputLine;
 StringBuffer json = new StringBuffer();
 
 while ((inputLine = in.readLine()) != null) {
 json.append(inputLine);
 }
 

171CHAPTER 8: Web Services

 result.setHttpBody(json.toString());
 result.setHttpCode(conn.getResponseCode());
 return result;
 
 } catch (Exception ex) {
 Log.d("WebHelper", ex.getMessage());
 result.setHttpCode(500);
 return result;
 } finally {
 //clean up
 if (in != null) {
 in.close();
 }
 if (os != null) {
 os.close();
 }
 }
}
 
public class WebResult {
 
 private int mCode;
 private String mBody;
 
 public int getHttpCode() {
 return mCode;
 }
 
 public void setHttpCode(int mCode) {
 this.mCode = mCode;
 }
 
 public String getHttpBody() {
 return mBody;
 }
 
 public void setHttpBody(String mResult) {
 this.mBody = mResult;
 }
}
 
The results returned from web services are actually just strings, either XML or JSON, which we
would like to transform into POJOs. There are many ways to parse JSON, from built-in APIs to
many-third party libraries. To simplify working with string results, we are going to use a library called
Gson to convert the JSON results into POJOs.

Download the Gson library from: https://code.google.com/p/google-gson/. Extract the jar files, and
import them into the libs folder of your Android project. Add this library to your classpath using the
Build Path in Eclipse.

Using Gson is straightforward. Pass it the JSON string result from the web service call and the type
of POJO you expect from the JSON as in Listing 8-3.

https://code.google.com/p/google-gson/

172 CHAPTER 8: Web Services

Listing 8-3.  Creating an ArrayList of ToDo Objects from JSON

final Gson parser = new Gson();
results = parser.fromJson(webResult, new TypeToken<ArrayList<ToDo>>(){}.getType());
parser.toJson(newToDo, ToDo.class);
 
Of course there is more to parsing the JSON than just passing some parameters into the library.

To use Gson, you will have to annotate your objects. We do that in our ToDo class in Listing 8-4,
mapping the field names from our JSON result to the member variables of our ToDo class. This
allows us to name our class member variables according to convention and not be forced to match
the names and cases of the fields in the JSON.

Listing 8-4.  An Annotated, Parcelable ToDo Class for Gson Serialization, Getter and Setters Omitted

public class ToDo implements Parcelable {
 @SerializedName("id")
 private Long mId;
 
 @SerializedName("title")
 private String mTitle;
 
 @SerializedName("email")
 private String mEmail;
 
 // Default constructor for general object creation
 public ToDo() {
 }
 
 // Constructor needed for parcelable object creation
 public ToDo(Parcel item) {
 mId = item.readLong();
 mTitle = item.readString();
 mEmail = item.readString();
 }
 
 //Getters and setters omitted
 
 // Used to generate parcelable classes from a parcel
 public static final Parcelable.Creator<ToDo> CREATOR
 = new Parcelable.Creator<ToDo>() {
 public ToDo createFromParcel(Parcel in) {
 return new ToDo(in);
 }
 
 public ToDo[] newArray(int size) {
 return new ToDo[size];
 }
 };
 
 @Override
 public int describeContents() {

173CHAPTER 8: Web Services

 return 0;
 }
 
 @Override
 public void writeToParcel(Parcel parcel, int i) {
 if(mId != null) {
 parcel.writeLong(mId);
 }
 else {
 parcel.writeLong(-1);
 }
 parcel.writeString(mTitle);
 parcel.writeString(mEmail);
 }
}

Also notice the class in Listing 8-4 that implements the Parcelable interface. A parcelable class in
Android allows the application to pass the data across process boundaries using intents. There are
two items to note about the Parcelable class in Listing 8-4. The first is that the writeToParcel()
function and matching constructor write and read the items into the parcel in the same order.
There is no key to match up the fields; you must get the order correct. The second item of note is a
Creator function that allows the Parcelable class to be stored and regenerated from a parcel.

Performance
Accessing web services means that our applications usually communicate over a slow and
sometimes less-than-reliable network. Therefore, these integration points can become bottlenecks
in our application’s performance. In order to make our applications feel responsive during these
calls, there are a number of design approaches we can take, from running on different threads to
optimizations of the HTTP calls, to the services the application consumes.

Services and the AsyncTask Class
When calling web services, our applications must make those calls asynchronously. Therefore, any
call to the web service should occur on a different thread than the UI thread. If the application doesn’t
do this, a number of bad things may occur, depending on the version of Android running the app:

The UI becomes unresponsive or blocked.	

The user gets an Application Not Responding (ANR) dialog. 	

The app throws an exception immediately.	

Any well-written app should avoid all of those scenarios. The basic idea is to move any calls to web
services into their own thread.

Many examples show how to accomplish this using the AsyncTask class from within an Activity.
While this approach will work most of the time, an orientation change from portrait to landscape or
vice versa will have an unintended effect. The Activity that created the AsyncTask is destroyed on
the orientation change and re-created in the new orientation. The AsyncTask remains associated
with the destroyed activity, so the result cannot return to the new activity. Additionally, references

174 CHAPTER 8: Web Services

to callback methods in the original Activity in the AsyncTask prevent the garbage collector from
reclaiming the memory of the original Activity unless special care is taken when the activity is
destroyed. There are some solutions to this problem using AsyncTask, but a better way to solve the
problem is to use an IntentService class because it lives outside the Activity lifecycle.

Besides an IntentService, the Android SDK also provides a Service class. The IntentService class
has a number of benefits when compared to the Service class. First, it behaves asynchronously on
its own thread. But one of the best features of the IntentService is that once completed, it stops
itself. There is no need for your application to manage the state of the IntentService. By contrast,
the Service class requires you to manage threading yourself, as well as starting and stopping the
Service. Some situations may warrant the control imposed by implementing a Service, but an
IntentService can handle most service calls with less code.

Before we can use an IntentService in the app, it must be registered in our project’s
androidmanifest.xml file, in the <application> tag, as shown in Listing 8-5. Setting the
android:exported attribute to false ensures that the service cannot be used by components outside
the application.

Listing 8-5.  Declaring an IntentService in androidmanifest.xml

<service android:name="com.logicdrop.todos.service.RestService" android:exported="false"></service> 

Once our IntentService is registered in androidmanifest.xml, starting it is straightforward. Simply
create an Intent, and then call startService(intent) as in Listing 8-6.

Listing 8-6.  Starting an IntentService from an Activity

Intent intent = new Intent(this, ToDoService.class);
intent.setAction("todo-list");
intent.putExtra("email", emailAddress);
startService(intent);
 
The IntentService itself is also straightforward. It has only one method to implement,
onHandleIntent(). This function is the listener for any intents sent to the IntentService. If the
IntentService handles multiple functions, set the action on the incoming intent to differentiate the
incoming requests and then check the action inside the IntentService.

Listing 8-7 shows an implementation of onHandleIntent(). The function is passed the Intent sent
from the Activity. It checks the action of the Intent and responds by calling different functions that
ultimately call a REST service using the executeHTTP() function described previously.

Listing 8-7.  Implementing an IntentService that Handles Multiple Intent Actions

public class RestService extends IntentService {
 
 public static final String SERVICE_NAME ="REST-TODO";
 
 public static final String LIST_ACTION = "todo-list";
 public static final String ADD_ACTION = "todo-add";
 public static final String DELETE_ACTION = "todo-remove";
 

175CHAPTER 8: Web Services

 public RestService() {
 super("RestService");
 }
 
 @Override
 protected void onHandleIntent(Intent intent) {
 
 if (LIST_ACTION.equals(intent.getAction())) {
 final String email = intent.getStringExtra("email");
 listToDos(email);
 }
 else if (ADD_ACTION.equals(intent.getAction())) {
 final ToDo item = intent.getParcelableExtra("todo");
 addToDo(item);
 }
 else if (DELETE_ACTION.equals(intent.getAction())) {
 final long id = intent.getLongExtra("id", -1);
 final int position = intent.getIntExtra("position", -1);
 
 removeToDo(id, position);
 }
 }
 //Other private methods not shown....
}
 
Once the executeHTTP() function returns some JSON, it is converted back into a Parcelable POJO
and returned to the activity via another Intent.

The most important aspect of sending the data back via Intent in Listing 8-8 is the
LocalBroadcastManager class. This class is part of the Support Library, an add-on to the Android
SDK, and provides some important benefits. The first is that the scope of the Intent is kept within
our application. Normal Intents that applications throw can be seen and responded to by other
applications installed on the Android device, including malware. Also, the LocalBroadcastManager
allows the Activity to process the result while in the background, so your app wouldn’t be forced
to the foreground when a long-running result returns, as it would when listening for an Intent that
starts an Activity.

Listing 8-8.  Sending Back an Intent from the IntentService

final Intent sendBack = new Intent(SERVICE_NAME);
sendBack.putExtra("result", result);
sendBack.putExtra("function", LIST_ACTION);
 
if(results != null){
 sendBack.putParcelableArrayListExtra("data", results);
}
 
//Keep the intent local to the application
LocalBroadcastManager.getInstance(this).sendBroadcast(sendBack);
 
The main negative to the IntentService is that it handles all requests sequentially; requests do not
run in parallel. If you need to download many items in a short period of time, an IntentService may
not be a good solution.

176 CHAPTER 8: Web Services

Now that the IntentService is sending back results, let’s examine how to handle those results
properly using the same LocalBroadcastManager that we used to send the Intents. Earlier we
discussed the shortcoming of AsyncTask with regard to device rotation. The LocalBroadcastManager
provides a solution as shown in Listing 8-9.

Listing 8-9.  Processing the Return Intent in an Activity

// Unhook the BroadcastManager that is listening for service returns before rotation
@Override
protected void onPause() {
 super.onPause();
 LocalBroadcastManager.getInstance(this).unregisterReceiver(onNotice);
}
 
// Hook up the BroadcastManager to listen to service returns
@Override
protected void onResume() {
 super.onResume();
 
 IntentFilter filter = new IntentFilter(RestService.SERVICE_NAME);
 LocalBroadcastManager.getInstance(this).registerReceiver(onNotice, filter);
 
 //Check for records stored locally if service returned while activity was not in the foreground
 mData = findPersistedRecords();
 if(!mData.isEmpty()) {
 BindToDoList();
 }
}
 
// The listener that responds to intents sent back from the service
private BroadcastReceiver onNotice = new BroadcastReceiver() {
 
 @Override
 public void onReceive(Context context, Intent intent) {
 final int serviceResult = intent.getIntExtra("result", -1);
 final String action = intent.getStringExtra("function");
 
 if (serviceResult == RESULT_OK) {
 
 if(action.equalsIgnoreCase(RestService.LIST_ACTION)){
 mData = intent.getParcelableArrayListExtra("data");
 }
 else if(action.equals(RestService.ADD_ACTION)) {
 
 final ToDo newItem = intent.getParcelableExtra("data");
 mData.add(newItem);
 etNewTask.setText("");
 
 } else if(action.equals(RestService.DELETE_ACTION)) {
 final int position = intent.getIntExtra("position", -1);

177CHAPTER 8: Web Services

 if(position > -1){
 mData.remove(position);
 }
 }
 
 BindToDoList();
 
 } else {
 Toast.makeText(TodoActivity.this, "Rest call failed.", Toast.LENGTH_LONG).show();
 }
 
 Log.d("BroadcastReciever", "onNotice called");
 }
};
 
In the OnResume event handler, we create an IntentFilter for the intents returned from our
IntentService. The OnResume event is part of the activity life cycle and is always called when an
activity is created. We register a BroadcastReceiver with the LocalBroadcastManager to use this filter
to listen for incoming intents.

In the OnPause event handler, we unhook the BroadcastReceiver from the LocalBroadcastManager.
This event is also part of the activity life cycle, and is called when an activity is destroyed, such as
during an orientation change. Because the IntentService lives on its own thread, the creation and
destruction of activities has no bearing on its behavior, in contrast to an AsyncTask. A pitfall in this
pattern is that the IntentService may complete and send the resulting intent when the activity is
no longer in the foreground or has been destroyed. To mitigate this condition, the IntentService
should write the web service call results to a database. When the activity resumes, it can check the
database for pending web service results.

When the BroadcastManager gets the data from the service call, it places the list of ToDos in a
class-level member variable and binds the list to the UI.

Dealing with Long-Running Calls
If the problem you are solving requires a long-running web service call, it may be better to implement
a Service instead of an IntentService. In a long-running call, there are some problems to be solved.
First is that a long running call should notify the user of the status of the call. Otherwise, the
application may seem unresponsive. Also, the operating system could kill our service if it needs
memory, because it seems idle during the long-running call.

To solve this problem, we implement a Service instead of an IntentService. The Service class
provides the facilities needed to both inform the user of the status and keep the operating system
from killing the application when it is actually busy. Each service can run in its own process separate
from the application, and can be set to restart should the operating system kill the service. This type
of service is declared in the AndroidManifest.xml file, as shown in Listing 8-10. This type of service
implementation should only be used when necessary. Starting another process uses more memory
resources, which good applications minimize.

178 CHAPTER 8: Web Services

Listing 8-10.  A Service Declaration in the AndroidManifest.xml File, Which Runs in Its Own Process

<service
 android:name="LongRunningService"
 android:process=":serviceconsumer_process"
 android:icon="@drawable/service-icon"
 android:label="@string/service_name">
</service>
 
In order to tell the Android operating system that our service is functional during a long-running call,
we need to call startForeground() on our service as in Listing 8-11. The onStartCommand() function
returns the constant Service.START_REDELIVER_INTENT. This allows the OS to kill the service in
low-memory situations, and then to restart the service with the last delivered intent. The service can
then attempt to reprocess the last intent it needs to do that because the OS killed off service before
finishing last time.

Listing 8-11.  Methods for Setting Up a Service for a Long-Running Call in a Service

private static final int mServiceId = 42;
 
@Override
public IBinder onBind(Intent intent) {
 
 Notification notice;
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 notice = APIv11.createNotice(this);
 } else {
 notice = new Notification(R.drawable.icon, "Service Finished", System.currentTimeMillis());
 }
  
 startForeground(mServiceId, notice);
 return null;
}
 
private static class APIv11 {
 public static Notification createNotice(Service context){
 Notification notice = new Notification.Builder(context.getApplicationContext()).
setContentTitle("Service finished").build();
 return notice;
 }
}
 
@Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 
 return Service. START_REDELIVER_INTENT;
 }
 
@Override
public boolean onUnbind (Intent intent){
 stopForeground(true);
 return false;
}

179CHAPTER 8: Web Services

Optimizations
Because network bandwidth acts as a constraint for mobile devices, our web service need to exploit
the optimizations available in modern web servers to reduce the bandwidth our Android apps
consume. These optimizations include compression and caching.

Compression
Modern web servers, like IIS, Nginx, and Apache’s httpd all support gzip compression. Compression
of text is very effective, and since our web services pass around only text, our code should take
advantage of compression. As mentioned previously, the HttpURLConnection object has built in
support for gzip from Gingerbread going forward, and in fact is set to use this feature by default
when calling getInputStream() on the connection. That call causes the HttpURLConnection object
to add the HTTP header Accept-Encoding: gzip automatically to the request. As long as the web
server is configured for gzip, the HTTP request/response pair will be compressed, which is important
for mobile devices using limited bandwidth.

Http-Based Caching
When a web server sends content to a client, it can add an expiration date to the content via the
expires HTTP header. Often larger, static items like images frequently have an expires header
set days or weeks into the future to keep web browsers from continually re-downloading these
files when users return to pages that have already downloaded the images. With Ice Cream
Sandwich, HttpURLConnection supports HTTP-based caching. If an item previously fetched by
HttpURLConnection comes with a future expires header or the web server responds with a 304 code
due to conditional expiration, these items are loaded from local storage instead of over the network,
again minimizing bandwidth usage. Because only Ice Cream Sandwich or newer supports this
feature, a little reflection allows our code to use the feature as shown in Listing 8-12.

Listing 8-12.  A Method for Selectively Enabling HTTP Caching for Android Versions that Support Caching

private void enableHttpResponseCache() {
try {
 long httpCacheSize = 10 * 1024 * 1024; // 10 MiB
 File httpCacheDir = new File(getCacheDir(), "http");
 Class.forName("android.net.http.HttpResponseCache")
 .getMethod("install", File.class, long.class)
 .invoke(null, httpCacheDir, httpCacheSize);
 } catch (Exception httpResponseCacheNotAvailable) {}
}
 
We previously noted that IntentServices operate serially, which is not good in all situations, such
as downloading a large number of images. At Google I/O 2013, Google announced the release of a
new library called Volley (http://www.youtube.com/watch?v=yhv8l9F44qo). Volley supports concurrent
downloads and has built-in support for image handling and client-controllable caching. Volley is not
currently part of the Android SDK but may be in the future, but it represents a good solution when
serial HTTP connections don’t provide the necessary performance.

http://www.youtube.com/watch?v=yhv8l9F44qo

180 CHAPTER 8: Web Services

Security
In a time of frequent security breaches and organizations impinging upon the privacy of users,
security on both the client and server sides of an application has become a main concern for
application developers.

The Open Web Application Security Project (OWASP) is a nonprofit organization dedicated to
educating developers about security threats and supplying them with tools and information to
mitigate those threats. Periodically OWASP publishes a list of the top ten threats to application
security. In 2013, OWASP published a new Top 10 for web applications (https://www.owasp.org/
index.php/Category:OWASP_Top_Ten_Project), and in 2011 expanded to include a list of the top 10
mobile threats as well:

M1: Insecure Data Storage

M2: Weak Server Side Controls

M3: Insufficient Transport Layer Protection

M4: Client Side Injection

M5: Poor Authorization and Authentication

M6: Improper Session Handling

M7: Security Decisions Via Untrusted Inputs

M8: Side Channel Data Leakage

M9: Broken Cryptography

M10: Sensitive Information Disclosure

A number of these threats apply directly to Android applications consuming web services, including
these:

	M1: Insecure Data Storage. This problem arises from not properly securing or
encrypting data stored on the device, such as a user ID, or storing data intended
to be temporary, such as a password.

	M3: Insufficient Transport Layer Protection. Applications that do not use
transport layer security or ignore security warnings such as certificate errors are
susceptible to this vulnerability.

	M5: Poor Authorization and Authentication. This often happens when an
application uses a hardware-based identifier such as the IMEI (International
Mobile Equipment Identity) number that can be determined by an attacker and
used to impersonate the user.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

181CHAPTER 8: Web Services

	M6: Improper Session Handling. Mobile user sessions tend to be much
longer than web site sessions, so at the user’s convenience the mobile app
keeps users logged in longer. Long sessions can lead to unauthorized access,
especially when the device is lost. Make users re-authenticate periodically,
and ensure that your server-side application can revoke a session remotely if
necessary.

	M9: Broken Cryptography. Do not confuse encoding, obfuscation, or
serialization with encryption. Use the strongest cryptographic algorithm
possible. Do not store a key used for two-way encryption with the data or in an
insecure location, such as in the application code.

	M10: Sensitive Information Disclosure. Android application code can be
easily decompiled back into Java code. Any sensitive information stored in the
code, such as encryption keys, usernames, passwords, and API keys will be
discovered.

Be sure to spend time on OWASP’s web site at https://www.owasp.org to become more familiar with
each threat and with all the tools OWASP can provide to help you build secure applications.

Dos and Don’ts for Web Services
Security is an extensive subject, and is covered more in depth in other books, such as Android Apps
Security by Sheran Gunasekera (Apress, 2012). As we move on to talk about building your own web
services, here are some general practices to follow as you build web services.

Don’t Store the Password
If you must store passwords in your service database, do not store them in clear text. The proper
procedure is to salt the password with a unique value, and then perform a one-way hash to the
salted password with a strong hashing algorithm (at least SHA-256, or bcrypt). Simpler hashing
algorithms, such as MD-5 or SHA-1, are often chosen for their speed, but security professionals
have demonstrated those algorithms as insecure. A fast hashing algorithm is the enemy of hashed
password storage, as the computing power to break those hashes is becoming more and more
available.

Salting is appending or prepending a value to the password. When a user attempts to authenticate,
the application can recreate the salted hash from the password entered by the user, and then
compare that result to the result stored in the database. The salt adds randomness and size to the
password, making it more difficult to guess should the database become compromised.

Attackers attempt to break hashes using a technique called a Rainbow Table, which is essentially
a precompiled, reverse engineering of the hashing algorithm. Sufficiently strong hashing algorithms
make Rainbow Tables very large and take an extremely long time to calculate. The addition of a salt
forces an attacker to use a separate rainbow table for each possible salt, which increases the time
and computing power necessary to find a match and successfully recover a password. At this point
in late 2013, a sufficiently strong hash with a random salt is too difficult to break. As computing
power and the availability of disturbed computing increase over time, hashing algorithms will
become less secure.

https://www.owasp.org/

182 CHAPTER 8: Web Services

Don’t Send the Password
If you can avoid sending a user’s password over the network, there is no way an attacker can
discover the password remotely. On Android devices, typically the user is already authenticated to
Google via the Google account stored on the device. Your web services can integrate with Google’s
OAuth services to use the device account for authentication (who is this user) and authorization
(what is this user allowed do). Listing 8-13 shows how to get the Google account names currently
on the Android device. Of course, some Android devices, such as the Kindle Fire, do not allow for
Google accounts to be stored on the device.

Listing 8-13.  A Method for Acquiring the List of Google Accounts on an Android Device

private String[] getAccountNames() {
 try {
 AccountManager accountManager = AccountManager.get(this);
 Account[] accounts = accountManager.getAccountsByType(GoogleAuthUtil.GOOGLE_ACCOUNT_TYPE);
 String[] names = new String[accounts.length];
 for (int i = 0; i < names.length; i++) {
 names[i] = accounts[i].name;
 }
 return names;
 } catch (Exception ex) {
 Log.d(APP_TAG, "Account error", ex);
 return null;
 }
}
 
Once you have the Google account from the device, you can generate a token for the OAuth-based
Google services as in Listing 8-14. This token allows the user to access other Google services
and APIs without re-authenticating for each service and without ever sending a password over the
network from the device. The token is typically sent as part of the JSON body of a request, although
it can also be part of the URI or sent in an HTTP header. The token also carries an expiration date,
and the services that accept the token will check the token for validity before fulfilling the request.
This function also needs a client_id from the application whose services we are consuming. This
value is acquired by the web service developers when integrating with Google, and must be shared
with the clients in order to perform Google OAuth authentication.

Listing 8-14.  Getting the Google OAuth token

private String authenticateGoogle(String accountName) {
 String token = "";
 try {
 String key = "audience:server:client_id:123456.apps.googleusercontent.com";
 token = GoogleAuthUtil.getToken(this, accountName, key, null);
 
 } catch (IOException e) {
 Log.d("IO error", e.getMessage());
 } catch (GoogleAuthException ge) {
 Log.d("Google auth error", ge.getMessage());

183CHAPTER 8: Web Services

 } catch (Exception ex) {
 Log.d("error", ex.getMessage());
 }
 return token;
}

Don’t Own the Password
If you do not store the password in your database, attackers cannot exploit your users if your
database becomes compromised. Large providers like Google, Yahoo, Twitter, and Facebook offer
integration APIs that allow users to log in to your application using credentials from one of those
providers. While you need to trust those providers to keep their users safe, there is less risk for your
application by integrating with one of those providers.

OpenID is a decentralized, open authentication protocol that makes it easy for people to sign up and
access web accounts using mobile applications. Many of the same providers just listed participate
in OpenID. StackOverflow, the popular crowd-sourced discussion site for developers, uses OpenID
to authenticate users. OpenID Connect is an API layer on top of OpenID designed for mobile
application use, and should see general release in the near future.

Use Transport Layer Security (TLS/SSL)
At a minimum, web services that transmit user credentials or any kind of personal information need
to be secured using Transport Layer Security (TLS). TLS protects data in transit from unauthorized
access or modification between the mobile application and the web services. The term TLS is often
used interchangeably with Secure Sockets Layer (SSL). TSL v1.0 is indeed equivalent to SSL v3.1.
Most modern browsers support the various versions of SSL and TLS.

Use Sessions
Web services built using REST architecture are inherently stateless, and therefore sessionless. I am
not suggesting we violate this tenet of REST. By sessions, I mean using a session token that is
created upon login and subsequently sent along with each request to verify the authenticity of the
request. The token should not be sent as part of the URL, but in the body of the request or in the
HTTP headers. These session tokens should have an expiration date and rotate with each request to
prevent replays of tokens. OWASP provides an open-source web application security control library
called the Enterprise Security API you can use to create and manage session tokens in your web
services (https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API). The library
is released for Java and Ruby, and in development for other platforms, including PHP, .Net,
and Python.

Authentication
There are a number of ways to authenticate users to web services, mostly based on traditional
web technologies. While it is possible to use your own authentication method, that is not a good
idea. Many smart, security-oriented professionals have spent thousands of hours thinking through,
designing, and implementing these protocols to keep data safe. Your web services should take
advantage of these protocols.

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

184 CHAPTER 8: Web Services

HTTP Basic Authentication is the simplest protocol, and is supported natively by the Android SDK.
The username and password are passed in the Authorization HTTP header. The username and
password are concatenated with a colon, and then Base-64 encoded. Encoding is not encryption,
and is not secure. Therefore, any use of Basic Authentication requires the use of TLS/SSL. Because
Basic Authentication is part of the HTTP protocol specification, all modern web servers support it,
making it easy to develop services that use Basic Authentication, since that plumbing already exists
on the server side.

Listing 8-15 demonstrates how to implement Basic Authentication in an Android client application.
The Authenticator class sets the authentication handler for subsequent calls to HttpURLConnection,
so place this code before any calls to HttpURLConnection. You could calculate the HTTP
Authorization header yourself and add it via a call to the setHeader() function on the Request
object, but that method won’t support the preemptive authentication checks that many web servers
support. A preemptive check occurs before the actual request in order to reduce the overhead of
making the initial HTTP connection, which is important because of the constrained bandwidth the
mobile device typically operates with.

Listing 8-15.  Use of the Authenticator Class to Implement Basic Authentication in an Android Client

Authenticator.setDefault(new Authenticator() {
 protected PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(username, password.toCharArray());
 });
 }
 
Many of the largest web sites on the Internet, including Google, Twitter, Facebook, Yahoo, and
LinkedIn implement their web service authentication via OAuth, an open standard for authorization
that is more like a framework than a strictly defined protocol. Currently OAuth exists as two versions,
1.0 and 2.0, both of which are in production across the sites mentioned previously. Generally OAuth
allows users to authorize an application to act on their behalf without sharing their password with
the application. As a side effect of this authorization process, users also need to be authenticated,
thereby also allowing the application to authenticate users. OAuth servers typically provide a token
that expires at some point in the future to authenticated users. Applications can use this token to
provide additional services. For instance, a user of an Android device with a Google account can
acquire a token from Google that allows the phone to access other Google services, such as the
Google Maps API that may be used within your custom application (see Listing 8-14 earlier). The
user never enters their password, nor is any password ever sent to the Google Maps API. The token
acquired from the Google OAuth Service manages all those authorizations.

Create Your Own Web Service
Most web frameworks in just about every programming language provide a way to create your own
web services. Because we are writing Android code in Java, for our example we will create some
basic web services using Java. While many options exist for creating web services using Java,
we will focus on the JAX-RS API.

185CHAPTER 8: Web Services

JAX-RS is a Java API for RESTful web services first introduced in Java SE 5. JAX-RS uses
annotations to map a POJO (Plain Old Java Object) to a web service. We can write a function in a
Java class as we have done any number of times in the past, but this time add annotations to make
the function available via a REST URI. A number of frameworks implement the JAX-RS specification
including Jersey, Restlet, Apache CXF, and RESTeasy. Jersey provides a straightforward,
understandable approach, so we will build our examples using Jersey.

Sample Web Services
Web services that you can consume in your apps can come from literally anywhere. Large Internet
companies like Google, Facebook, Twitter, ESPN, Amazon, eBay, and Yahoo, local and federal
government departments all offer a myriad of services you (or your users) can consume. Some
examples of available services include shipping rates, location services, social media integration,
financial data, and even fantasy sports. Many of these services are free while others come at a
small cost. In all these cases, the service providers typically require you sign up for their developer
program. There are also web sites, such as programmableweb.com and usgovxml.com, that act as
directories for sites that offer web services you can consume.

Google App Engine
An easy and cost effective way to get started writing your own web services is to host them in the
cloud on Google App Engine (GAE). As an Android developer, you probably already have an account
set up with Google.

GAE supports web applications written in Java (as well as Python, Go, and PHP), so we can build a
REST service using the Jersey library to store our ToDo data in the cloud instead of on the device.
This allows our applications a number of advantages, including storing larger amounts of data
than would be appropriate on a mobile device, allowing our ToDo lists to be shared across multiple
devices for the same user, such as a phone and a tablet, and providing for easier upgrades to the
app on the device, because we no longer have to worry about what happens to the local database
during the upgrade process.

We’ll start building our own web service on GAE by browsing to https://appengine.google.com.
Sign in with your Google account. You may be prompted for a second factor for authentication, such
as receiving and SMS with a code or an automated phone call. Once that step is complete you will
be prompted to create an application. Click that button, and then you will be prompted for some
additional information regarding the application. Each GAE application needs a unique URL, so you
will need to be creative for a unique Application Identifier for your service. Leave the service open to
all Google Account users, agree to the Terms of Service, and create the application (see Figure 8-1).

http://programmableweb.com/
http://usgovxml.com/
https://appengine.google.com/

186 CHAPTER 8: Web Services

Setting Up Eclipse
Before we begin writing Java code, we need to download the Google App Engine SDK for Java and
set up ADT (or Eclipse) to work with GAE. First we need to download the Google plug-in for Eclipse
and the GAE SDK:

1.	 In ADT, open the Help menu and click Install New Software (see Figure 8-2).

Figure 8-1.  Creating an application on the Google App Engine site

187CHAPTER 8: Web Services

2.	 Click the Add button in the upper-right part of the dialog. The Add Repository
dialog opens (see Figure 8-3).

3.	 Name the repository GAE Plugin, and enter this URL from the Google
Developer site in the Location field: http://dl.google.com/eclipse/
plugin/4.2.

Figure 8-2.  The Install software dialog

Figure 8-3.  The Add Repository dialog for adding the URL to repository for the GAE Eclipse plug-in

http://dl.google.com/eclipse/plugin/4.2
http://dl.google.com/eclipse/plugin/4.2

188 CHAPTER 8: Web Services

4.	 Click OK.

5.	 Expand the Google App Engine Tools for Android (requires ADT) item, and
select Google App Engine Tools for Android (see Figure 8-4).

6.	 Expand the Google Plugin for Eclipse (required) item and select Google
Plugin for Eclipse 4.2 (see Figure 8-4).

7.	 Expand the SDKs item, and choose Google App Engine Java SDK 1.8.1.1
(see Figure 8-4).

8.	 Click Next.

9.	 Click Next again on the Install Details dialog.

Figure 8-4.  Choosing the plug-ins needed to support GAE

189CHAPTER 8: Web Services

10.	 Review and accept the license agreements.

11.	 Click Finish and the software installs into ADT. You may be prompted to
restart ADT.

We will also use the Jersey implementation of JAX-RS. For this example we will download and use
the zip bundle of version 1.17.1 of Jersey from https://jersey.java.net. Decompress the archive
into a location on your computer where you will get the JAR files needed for the project.

Create the Project
Now that you have the necessary components and SDKs downloaded, set up the project in Eclipse.

1.	 In Eclipse, in the GDT pull-down menu in the toolbar, choose New Web
Application Project (see Figure 8-5).

Figure 8-5.  Creating a new Web Application project

2.	 Enter a name for your project, such as AppEngineToDoService, and a
Package name, such as com.example.todo (see Figure 8-6).

https://jersey.java.net/

190 CHAPTER 8: Web Services

3.	 Uncheck the Use Google Web Toolkit option.

4.	 Uncheck the Sample Code option.

5.	 Click the Finish button. Eclipse creates the project structure.

Now that the project is created, we need to make a configuration change in the project to ensure
compatibility between the GAE SDK and Jersey.

Configure the Project
The project requires some configuration changes in order to allow GAE to use the Jersey library.
JDO/JPA version 2 conflicts with the version of Jersey in this example.

1.	 Right-click the project in the Package Explorer, and choose Properties.

2.	 Expand the Google item in the left pane, and then click App Engine
(see Figure 8-7).

Figure 8-6.  Setting up a new web application project for the ToDo service

191CHAPTER 8: Web Services

3.	 Change the Datanucleus JDO/JPA version to v1 and click OK.

The project is now ready for us to import the Jersey JARs.

Add Jersey to the Project
Now that you saved the JDO/JPA version change in the project configuration, add the JARs that
make up the Jersey library.

1.	 Expand the war, WEB-INF, and lib folders of your project in the Package
Explorer (see Figure 8-8).

Figure 8-7.  Changing the project configuration for GAE

192 CHAPTER 8: Web Services

2.	 Right-click the lib folder and choose Import.

3.	 Expand the General item.

4.	 Click the File System item under General (see Figure 8-9).

Figure 8-8.  The project location for the Jersey JARs

193CHAPTER 8: Web Services

5.	 Click Next.

6.	 Browse to the location where you expanded the Jersey archive downloaded
earlier and select the lib folder.

7.	 In the Import dialog, click the lib folder in the left pane, which selects all the
jars in the right pane (see Figure 8-10).

Figure 8-9.  Importing from the file system

194 CHAPTER 8: Web Services

8.	 Click Finish.

Add Jersey to the Classpath
After adding the JARs to the project, you must add them to the Classpath in order for Eclipse to
compile your project correctly.

1.	 Right click the project in the Package Explorer, and choose Build Path and
then Configure Build Path (see Figure 8-11).

Figure 8-10.  Importing the Jersey JARs

195CHAPTER 8: Web Services

2.	 Click the Libraries tab.

3.	 Click the Add Library button.

4.	 Click User Library (see Figure 8-12).

Figure 8-11.  The Build Path dialog for adding Jersey as a library

196 CHAPTER 8: Web Services

5.	 Click Next.

6.	 Click the User Libraries button.

7.	 Click the New button on the right side of the Preferences dialog box.

8.	 Type Jersey for the library name.

9.	 Click the OK button.

10.	 Click the Add JARs button.

11.	 Select the JARs that belong to Jersey (see Figure 8-13).

Figure 8-12.  Creating a user library for the Build Path

197CHAPTER 8: Web Services

12.	 Click OK.

13.	 Click the next OK button.

14.	 Click Finish.

15.	 Click the OK button. The Jersey Library should appear in the Package
Explorer (see Figure 8-14).

Figure 8-13.  Choosing the JARs for inclusion in the User Library

198 CHAPTER 8: Web Services

Now that we have the libraries set up, we should configure the web.xml file for Jersey. The web.xml
file is located in the WEB-INF folder of the project. Open web.xml, and you’ll see a single XML tag,
<web-app>. Take note that the version in this tag is 2.5, which is the servlet specification supported
by Google App Engine currently.

Add the servlet tag within the <web-app> tag of web.xml as shown in Listing 8-16.

Listing 8-16.  Servlet tag contents for the Jersey library

<servlet>
 <servlet-name>Jersey REST Service</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>com.example.todo.service</param-value>
 </init-param>
 <init-param>

Figure 8-14.  The result of adding the Jersey JARs as a User Library

199CHAPTER 8: Web Services

 <param-name>com.sun.jersey.api.json.POJOMappingFeature</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
 
Notice in Listing 8-16 that our package name is included in an <init-param> tag. This tells Jersey
where to look for the classes that comprise our web service. The POJOMappingFeature is also
important; it allows classes to automatically serialize to XML or JSON, saving us from writing code to
map our classes to a format for the input and output of the web service.

Below the servlet tag we’ll add a servlet mapping, but still inside the <web-app> tag as shown in
Listing 8-17. The <url-pattern> tag in Listing 8-17 provides a way to map a base URI pattern for
Jersey to listen for when receiving requests from clients. The mapping also allows web projects to
host both web pages and services.

Listing 8-17.  Mapping the base URI structure in web.xml

<servlet-mapping>
 <servlet-name>Jersey REST Service</servlet-name>
 <url-pattern>/api/*</url-pattern>
</servlet-mapping>

Create the Service
Now that the project is all set up, we can finally write some Java code for our service. We’ll start with
the data and work our way out of the service to the client.

The data will be stored using a NoSQL database built into GAE, known as the datastore. The
datastore holds objects known as entities, which map to a Java classes in our service. Each entity
contains properties, which map to the member variables of a Java class. Each entity we store must
have a key unique among all stored instances of like entities. When an application deployed to GAE
contains entity definitions, the datastore will be able to store those entities without any administrative
work, such as creating a table or setting up a data schema. Additionally, the datastore can be
manipulated from the Admin Console of the Google App Engine web site (see Figure 8-15).

200 CHAPTER 8: Web Services

Our service will utilize the JPA 1.0 implementation that ships with the Google App Engine SDK.
This version is compatible with Jersey, which the JPA 2.0 version currently is not compatible
with—even though it shares some libraries with Jersey; unfortunately, the Jersey and
GAE JPA 2.0 use incompatible versions of these libraries.

Let’s start with a ToDo class that is a slight variation on what we built earlier. The ToDo class will serve
two purposes. The first is to act as the schema for the data we will persist on GAE. The second
purpose is to provide a data structure that will become both input and output from our web service.

The class in Listing 8-18 is annotated with a number of JPA attributes, including
@PersistenceCapable to tell JPA to persist this data structure, and @Persistent to mark the member
variables that we want to save. Note that the primary key is a Long, which is a requirement for GAE,
and that the primary key will be auto-generated when new records are created. We have also added
an email address, so that we can store the records of many different users.

Listing 8-18.  The ToDo data class annotated for JPA persistence

@PersistenceCapable
public class ToDo {
 
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

Figure 8-15.  The GAE datastore management web page

201CHAPTER 8: Web Services

 private Long id;
 
 @Persistent
 private String title;
 
 @Persistent
 private String email;
 
 public Long getId() {
 return id;
 }
 
 public void setId(Long id) {
 this.id = id;
 }
 
 public String getTitle() {
 return title;
 }
 
 public void setTitle(String title) {
 this.title = title;
 }
 
 public String getEmail() {
 return email;
 }
 
 public void setEmail(String email) {
 this.email = email;
 }
}
 
Listing 8-19 defines different actions in a data layer to manipulate ToDo records in the GAE
datastore:

Create	

Delete	

List ToDos for a user	

Listing 8-19.  Data Layer Class for Manipulating ToDos in the Cloud

public class ToDoAppEngineData {
 //Ensure there is only one instance of the factory
 private static final PersistenceManagerFactory factory = JDOHelper
 .getPersistenceManagerFactory("transactions-optional");
 private PersistenceManager manager;
 
 public ToDoAppEngineData(){
 manager = factory.getPersistenceManager();
 }
 

202 CHAPTER 8: Web Services

 public Long createToDo(ToDo item) {
 ToDo newItem;
 Transaction trans = manager.currentTransaction();
 try {
 trans.begin();
 newItem = manager.makePersistent(item);
 trans.commit();
 return newItem.getId();
 } catch (Exception ex) {
 trans.rollback();
 return -1l;
 } finally {
 manager.close();
 }
 }
 
 public boolean deleteToDo(Long id) {
 ToDo item = getToDo(id);
 
 if(item == null)
 return false;
 Transaction trans = manager.currentTransaction();
 
 try {
 trans.begin();
 manager.deletePersistent(item);
 trans.commit();
 return true;
 } catch (Exception ex) {
 trans.rollback();
 return false;
 } finally {
 manager.close();
 }
 }
 
 public List<ToDo> getAll(String email) {
 
 if(email == null || email.isEmpty()) {
 return new ArrayList<ToDo>();
 }
 
 PersistenceManager manager = factory.getPersistenceManager();
 
 Query query = manager.newQuery(ToDo.class);
 query.setFilter("email == emailParam");
 query.declareParameters("String emailParam");
 List<ToDo> results;
 
 try {
 List<ToDo> temp = (List<ToDo>) query.execute(email);
 if (temp.isEmpty()) {

203CHAPTER 8: Web Services

 return new ArrayList<ToDo>();
 }
 
 results = (List<ToDo>) manager.detachCopyAll(temp);
 } catch (Exception e){
 results = new ArrayList<ToDo>();
 e.printStackTrace();
 } finally {
 query.closeAll();
 manager.close();
 }
 return results;
 }
}
 
Most of the code in Listing 8-19 is fairly straightforward and somewhat repetitive. Each method
retrieves an instance of a PersistenceManager, which takes the annotated ToDo class and performs
CRUD operations wrapped in a Transaction.

The last function in Listing 8-19, getAll(), contains some interesting elements. This function creates
a Query object and searches for the saved ToDo entities that match an email address specified in the
input parameter. Also, the functions that read data call a function that detaches the objects from the
PersistenceManager. The detachment action ensures that if consumers of our read functions modify
any ToDo entities, those changes won’t be accidentally persisted to the datastore.

Now that the ToDo entities are persistable, those CRUD operations can be exposed as web services
by wrapping them in a class annotated with attributes from the Jersey library.

At the start of Listing 8-20, our class is annotated with the @Path attribute. This attribute provides
Jersey with a piece of the URI that our class responds to. At this point, all the URIs mapped the
function calls in our class will start with http://localhost:8888/api/todo. Remember that the
/api/ portion of the URI came from the Jersey configuration in web.xml. Each function may also
have an @Path annotation that denotes additional elements of the URI needed for mapping incoming
parameters.

Listing 8-20  A Jersey-Annotated Class Exposing ToDo Entities via REST Operations

@Path("/todo")
public class ToDoResource {
 
 private ToDoAppEngineData datastore;
 
 public ToDoResource(){
 datastore = new ToDoAppEngineData();
 }
 
 @GET
 @Path("list/{email}")
 @Produces(MediaType.APPLICATION_JSON)
 public List<ToDo> getToDoList(@PathParam("email") String email) {
 
 List<ToDo> result = datastore.getAll(email);
 

http://localhost:8888/api/todo

204 CHAPTER 8: Web Services

 return result;
 }
 
 @DELETE
 @Path("{id}")
 public void deleteToDo(@PathParam("id") long id) {
 
 if(!datastore.deleteToDo(id)) {
 throw new WebApplicationException(Response.Status.NOT_FOUND);
 }
 }
 
 @PUT
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public ToDoId createToDo(ToDo item) {
 
 Long newId = datastore.createToDo(item);
 
 if(newId == -1){
 throw new WebApplicationException(Response.Status.INTERNAL_SERVER_ERROR);
 }
 
 ToDoId result = new ToDoId(newId);
 
 return result;
 }
}
 
Each function is annotated with the HTTP verb corresponding to the CRUD operation in the data
layer class we created. There can be more than one operation per HTTP verb. For instance, our
class could have more than one GET operation. The @Path annotation distinguishes these functions
from one another in our REST URIs. Each function must be annotated with a unique combination of
HTTP verb and @Path attributes.

The functions returning data are annotated with @Produces(MediaType.APPLICATION_JSON), which
tells Jersey to serialize the output of the function into JSON. Additionally, the content type in the
HTTP header of the response will be application/JSON, telling the consumers of our REST service to
expect JSON in the response body. The functions that accept ToDo entities as input are annotated
with @Consumes(MediaType.APPLICATION_JSON). This forces the client calling our REST function to
add the content type application/JSON to the header of the incoming HTTP call. If this annotation
is absent, the client could conceivably send XML or even plain text instead. Because mobile apps
consume these services, JSON is our preferred format. If the content type were not set at the
Android client, our service would throw an HTTP 400 error, indicating that the combined HTTP
headers and body are not formatted properly.

Notice that none of the function calls contain any code converting the incoming messages from
JSON or the outgoing results to JSON. In the web.xml file the POJOMappingFeature is enabled, which
allows the Jackson library (included as part of the set of jars that make up Jersey) to perform the
serialization of our ToDo objects to or from JSON automatically.

205CHAPTER 8: Web Services

The createToDo() function returns a new type, the ToDoId class. This simple class simply returns the
new id generated by the datastore when a new ToDo is inserted into the datastore.

By returning a class instead of a single number, clients to our API will get a JSON object and not just
plain text in the body of the response which would happen if we simply returned a long. Notice the
lack of annotations in Listing 8-21. We don’t persist this class in the datastore; we simply use it as a
data transfer object.

Listing 8-21.  A Data Transfer Object for Returning Newly Generated ToDo IDs

public class ToDoId {
 
 public ToDoId(Long id){
 Id = id;
 }
 
 private Long Id;
 
 public Long getId() {
 return Id;
 }
 
 public void setId(Long id) {
 Id = id;
 }
}
 
For the version of Jersey that we are using, we need to create an application class that knows which
specific Java classes we would like to expose as web services, as shown in Listing 8-22.

Listing 8-22.  The Jersey Application object that registers the service class

public class ToDoApplication extends Application {
 
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(ToDoResource.class);
 return s;
 }
}

Tools
Once we create a service, we want to be able to test our code. There are a few options for testing a
service before we have built the Android client.

The first and most valuable tool for testing web services is to write unit tests. No matter which
testing framework you choose, you can write Java code that calls the service. If you host the
service remotely, tests can be a challenge, since the data is not local to the unit tests. The upside
to unit tests is much greater than with manual testing because the unit tests can become part of a
continuous integration (CI) cycle. The CI build provides regular feedback and may help development
teams find and fix bugs in the service sooner than when the service is released for manual testing.

206 CHAPTER 8: Web Services

Another option to exercise a service is to use a pre-made REST client, such as Advanced REST
Client for Google Chrome or RESTClient for Firefox (https://addons.mozilla.org/en-us/firefox/
addon/restclient/). These manual tools help you compose raw HTTP calls, including the HTTP
method, headers and body. They also show the resulting HTTP response and headers.

We will test our service manually using Advanced REST Client for Google Chrome.

1.	 In ADT, run the web services project.

2.	 Open Google Chrome.

3.	 Follow this URL in Chrome (https://chrome.google.com/webstore/detail/
advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US) and
install the app.

4.	 Open a new tab in Chrome, and navigate to the installed apps. Click
Advanced REST Client (see Figure 8-16).

Figure 8-16.  Advanced REST Client for testing the ToDo web service

5.	 In the URL box, enter http://localhost:8080/api/todo/.

6.	 Choose the PUT method.

https://addons.mozilla.org/en-us/firefox/addon/restclient/
https://addons.mozilla.org/en-us/firefox/addon/restclient/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US)and
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo?hl=en-US)and
http://localhost:8080/api/todo/

207CHAPTER 8: Web Services

Figure 8-17.  Inserting a new ToDo record using Advanced REST Client

7.	 In the Payload box enter:

 {
"title": "This is a test",
"email":"dave@androidbestpractices.com"
} 

8.	 In the drop-down list below the Payload box, choose application/json.

9.	 Click the Send button. The service should return a new ID for the record sent
to the web service (see Figure 8-17).

http://dave@androidbestpractices.com/

208 CHAPTER 8: Web Services

Once you move from debugging the service to debugging an Android application, you may want to
examine the raw HTTP message after the Android client generates it. An HTTP proxy set up
between the Android emulator and the web server allows for capture and examination of the
message and response. There are a number of HTTP proxy tools, including Charles Proxy
(http://www.charlesproxy.com/), WireShark (http://www.wireshark.org/), and the PC-only Fiddler
(http://fiddler2.com/). Device traffic can be captured if your computer is set up to share its
wireless network connection and the Android device attaches to the computer instead of the normal
wireless access point.

Load Balancing
As we create our own services, there are some infrastructure considerations we must account for.
These are the concepts of availability and scalability. Availability is the amount of time our application
is “up,” that the web services are available to use by our clients. Availability is often expressed
as a percentage, like 99.9%, or “three nines.” That represents 8.76 hours/per year of down time,
which translates to about 10 minutes of down time per week. A system gains availability by adding
redundant servers, so that in the event that one server goes down, whether intentionally or not,
another server is available to service requests.

Scalability, on the other hand, is the ability of your service to handle increasing numbers or spiking
numbers of requests. If you build a successful mobile app using your own web services, you will
eventually encounter scalability issues. You will need more servers to handle the increasing number
of requests.

A load balancer is a network tool for managing both availability and scalability, provided by either
software or dedicated hardware. A load balancer sits in front of a pool of servers hosting your web
services. The load balancer distributes the requests among the available servers in the pool. Should
the pool of servers increase or decrease, the load balancer automatically handles the situation,
shifting traffic automatically. From the outside, the consumers of your web services see a single
URL that is the load balancer, making the number of servers in the pool irrelevant to the consuming
application.

Load balancing does not solve scalability problems completely, as an app could still generate more
traffic than the pool of servers could handle. The load balancer does allow you to add or remove
servers from the pool easily to adjust for the incoming traffic without disrupting the existing servers.

Additionally, your code can be written in a way that inhibits scalability. Your application code should
be using memory and external resources properly, like connections to databases or the file system,
in order to scale well. Poor design and coding is the main cause for an application to scale poorly.

If you host your web services in the cloud, one of the main benefits of a cloud platform is rapid
scaling. Creating new server instances in quick and relatively easy, so an app scales up faster than
with traditional hosting, where a hardware server needs to be purchased, configured, and deployed
before your app can scale upward. Alternatively, if your traffic drops off, servers removed from the
pool stop being a cost immediately, unlike the situation where you purchased a hardware server that
is no longer needed. Google App Engine, where we hosted our service, automatically load balances
and scales your application during its life cycle. GAE manages your application itself, automatically
building the new servers and installing your application. Other cloud services, like Amazon’s Elastic
Beanstalk and Microsoft’s Windows Azure, also offer automated scalability.

http://www.charlesproxy.com/
http://www.wireshark.org/
http://fiddler2.com/

209CHAPTER 8: Web Services

Summary
In this chapter we covered many aspects of web services as they relate to Android applications.
We examined the types of web services, and saw that REST is the best fit for mobile applications.
We also explored data formatting, noting that JSON is much smaller and better for data transfer over
mobile networks.

We then looked at the many ways to access web services using Android, examining the design
options, and how to transform JSON data into Java objects.

Finally, we built our own web services in the cloud, using Google App Engine and the Jersey
REST library.

A, B■■
Agile Android

behavior-driven development, 80
benefits

business, 75
developer, 76

Calabash (calaba.sh), 78
Cloudbees, 83
continuous integration, 82
GitHub (github.org), 79
goals, 77
Google TDD and BDD, 77
Jenkins (jenkins-ci.org), 79

Configure Project settings, 86–87
Configure System page, 86
Jenkins dashboard, 83, 88
Manage Jenkins screen, 84

Robolectric (robolectric.org), 78
test-driven development, 79
ToDoActivityTest.java, 89

Android coding practices
APK, 123
Google security tips, 128
OWASP (see Open Web Application

Security Project)
PCI guidelines, 124
SPE

android_manifest.xml file, 133
API, 134
credit card information, 134
encrypted SQLite, 130
limit user data, 133
obfuscator, 135
root permissions, 133
SD Card, 132

third-party library, 137
WORLD_READABLE/WORLD_

WRITEABLE, 129
Android design pattern

architecture
classic Android, 25
dependency injection (see Dependency

injection (DI))
MVC (see Model-view-controller (MVC))
MVVM (see Model-View-View

Model (MVVM))
Holo Android design

Action Bar, 14
ActionBarSherlock navigation, 17–19
actionBarSpinnerAdapter, 16
elements, 13
layout-large/main.xml, 24
navigation drawers, 15
OnNavigationListener method, 16
screen pixel density/sizes, 19
strings.xml, 16
task item/detail, 21–22
ToDoActivity.java fragment, 22
TodoList, 15
Wordpress layout, 20

UI pattern
iFarmers, 6
Layout.xml file, 12
TodDoList app, 7
TodoActivity.java, 9–10
TodoProvider.java, 11–12

Android development
ADT toolset, 3
agile elements, 3
Android NDK, 4
bells and whistles, 3

Index

211

device testing, 4
MVC and MVVM, 3
REST API, 4
security, 4
source code, 3
user experience, 3
user interface, 3

Android KitKat, 45, 72
AndroidManifest.xml file, 177
Android Not Responsive (ANR) error, 47
Android performance

Java optimization, 47
macro approach, 45
micro approach, 45
micro-optimizations, 45
optimized code

Splash.java, 49
ToDoActivity.java, 50
ToDoProvider.java, 54

Optimizing Android apps, 44
SQLite, 48
time-taken token, 45
tools (see Android SDK ships tools)
wash, rinse, repeat approach, 45
Web services, 49

Android Runtime virtual machine (ART), 45
Android SDK ships tools

DDMS (see Dalvik Debug Monitor
Server (DDMS))

Lint
CallCenterApp project, 67
error-checking categories, 65
Hierarchy Viewer, 69
layoutopt tool, 65
lint--check Performance, 66
lint--list Performance, 65

Traceview, 56, 64
Unix

Dumpsys, 71
Procstats, 72
top command, 70
Vmstat, 72

Android Virtual Device (AVD), 151
AsyncTask/service class

IntentService, 174
LocalBroadcastManager class, 175

onHandleIntent() method, 174
startService(intent), 174

AttachCurrentThread function, 110

C■■
Charles Proxy, 49
CheckJNI, 111
Cntinuous integration (CI), 82
Compiler vectorization, 118
createToDo() function, 205

D■■
Dalvik Debug Monitor

Server (DDMS)
Allocation Tracker, 60
Heap Usage tool, 57
MAT, 58
Method Profiling tool, 62
System Performance tool, 57
threads, 61

Dependency injection (DI)
database provider, 37
stub provider, 39
ToDoApplication, 40
ToDoModule, 36

DetachCurrentThread function, 111
Device testing

Android brand fragmentation, 147–148
emulators

add-on device providers, 160
Amazon AVD Launcher, 157–159
AVD emulator, 150–151
configuration matrix, 161
Galaxy S4 device, 153
HDX AVD, 159
Intel x86 Atom System, 152
Jenkins run, 162
Kindle device, 156
multi-configuration

project, 161
SDK manager, 157
testing, 160
user-defined sites, 156

hardware testing, 163
borrow devices, 164
cloud testing, 163

212 Index

Android development (cont.)

crowd testing, 164
online testing, 163
remote test lab, 163

OpenSignal data, 148
operating systems, 148
strategy, 149

DexGuard, 136

E■■
European Network and Information

Security Agency (ENISA), 125

F■■
FindClass function, 109

G■■
GetFieldID function, 109
Get<Type>Field function, 109
GetMethodID functions, 109
GoatDroid, 125
Google App Engine (GAE), 185

H■■
Holo Android design

Action Bar, 14
ActionBarSherlock

navigation, 17–19
actionBarSpinnerAdapter, 16
elements, 13
layout-large/main.xml, 24
navigation drawers, 15
OnNavigationListener method, 16
screen pixel density/sizes, 19
strings.xml, 16
task item/detail, 21–22
ToDoActivity.java fragment, 22
TodoList, 15
Wordpress layout, 20

Hypertext As The Engine Of Application
State (HATEOAS), 167

I■■
IntentService class, 174–175

J, K■■
javah tool

ANT script, 97
custom_rules.xml file content, 96
downloading source code, 96
generated C/C++ header file, 98
generating header files, 97
<JDK_HOME>/bin directory, 96
MainActivity.java file content, 97
runtime error, 98

Java Native Interface (JNI), 93
caching classes, method

and field IDs, 109
compiler vectorization, 118
javah tool

ANT script, 97
custom_rules.xml file content, 96
downloading source code, 96
generated C/C++ header file, 98
generating header files, 97
<JDK_HOME>/bin directory, 96
MainActivity.java file content, 97
runtime error, 98

JVM usage
arrays, 106
garbage collection, 103
local references, 103
memory management

function, 106
with strings, 105

minimizing API calls
primitive data type mapping, 101
reach-back minimization, 102

native code
reuse, 116
usage, 93
writing difficulties, 95

SWIG
getlogin function, 99
JNI wrapper code, 99
Unix interface, 100
Unix_wrap, 100

threading
detached native threads, 110
JNIEnv, 110

213Index

troubleshooting, 111
CheckJNI, 111
Java exceptions, 112
logging macros, 116
my_log.h logging

header file, 114
return values, 113
setting log level, 116

Java Virtual Machine (JVM), 103
arrays

GetIntArrayElements, 107
Get<Type>ArrayElements, 106
modifying, 107
native I/O, 108
ReleaseIntArrayElements, 107
Release<Type>ArrayElements, 106
updating unchanged arrays, 108

garbage collection, 103
local references

DeleteGlobalRef, 104
NewGlobalRef, 103
releasing, 104

Jersey library, 190
build path creation, 196
class path, 195
file system importing, 193
JAR importing, 194
JAR location, 192
JAR selection, 197
package explorer, 198
servlet tag contents, 198
<url-pattern> tag, 199

JNI. See Java Native Interface (JNI)

L■■
Lazily inflating a view, 47

M■■
Memory Analyzer Tool (MAT), 57
Model-view-controller (MVC)

benefits, 25
components, 25
controller, 28
View code, 26

Model-View-View Model (MVVM)
model component, 30
View code, 31
ViewModel component, 33

mode parameter, 108

N■■
NDK getKey method, 135
NewGlobalRef function, 109

O■■
onStartCommand() function, 178
Open Web Application Security

Project (OWASP), 180
ENISA, 125
mobile programming, 127
mobile risks, 127

P, Q■■
PCI Security Standards

Council, 124
Plain Old Java Object (POJO), 170

R■■
ReleaseString function, 105
ReleaseStringUTF function, 105
Representational State

Transfer (REST), 165
Richardson Maturity model, 166

S■■
Secure Policy Enforcer (SPE)

android_manifest.xml file, 133
API, 134
credit card information, 134
encrypted SQLite, 130
limit user data, 133
obfuscator, 135
root permissions, 133
SD Card, 132
third-party library, 137
WORLD_READABLE/WORLD_

WRITEABLE, 129

214 Index

Java Native Interface (JNI) (cont.)

Secure sockets layer (SSL), 183
Security

APK, 122
Call Center Manager

call center queues, 138
final Settings.java, version 3, 144
modified Settings.java, version 2, 142
original Settings.java, version 1, 139
SPE, 138

coding practices (see Android coding
practices)

malware characteristics, 122
malware modification, 122
two-way street, 122

Service class, 177
Simple Object Access Protocol (SOAP), 165
Simplified Wrapper and Interface

Generator (SWIG)
getlogin function, 99
Unix interface, 100
Unix_wrap, 100

SSL connection, 135
String.indexOf() method, 46
SWIG. See Simplified Wrapper and

Interface Generator (SWIG)
System.arraycopy() method, 46

T, U, V■■
Test-driven development (TDD) model, 46
ToDo class, 200
Transport layer security (TLS), 183

W, X, Y, Z■■
WebResult function, 170
Web service

Android API
HTTP client, 169
HttpURLConnection, 169

consuming
Android app, 167
HTTP status code, 169
parcelable class, 172
ToDo object, 172
WebResult class, 170
XML/JSON, 168

GAE
Add Repository dialog, 187
Advanced REST Client, 206
application creation, 186
datastore, 201
Jersey lib (see Jersey library)
@Path attribute, 203
@PersistenceCapable attribute, 200
plug-ins select, 188
project configuration, 191
ToDo entitiy class, 201
ToDo IDs class, 205
ToDo REST client, 206
ToDo service application, 190
tools, 205
Web Application Project, 189
web page, 200

Install software, 187
Internet companies, 185
load balancing, 208
performance

AsyncTask/service class
(see AsyncTask/service class)

compression, 179
HTTP caching method, 179
long-running call method, 177

REST/SOAP architecture, 165
HTTP verbs, 166
WSDL, 166

Richardson Maturity model, 166
HTTP verbs, 167
hypermedia format, 167
URI, 167

security
authentication, 183
Google OAuth token, 182
mobile threats, 180
password, don’t own, 183
password, don’t send, 182
password, don’t store, 181
sessions usage, 183
TLS/SSL, 183

Web Services Description
Language (WSDL), 166

World Wide Web Consortium
(W3C), 169

215Index

Android Best Practices

Godfrey Nolan

Onur Cinar

David Truxall

Android Best Practices

Copyright © 2014 by Godfrey Nolan, Onur Cinar, and David Truxall

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5857-5

ISBN-13 (electronic): 978-1-4302-5858-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The images of the Android Robot (01 / Android Robot) are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License. Android and all Android and
Google-based marks are trademarks or registered trademarks of Google, Inc., in the U.S. and other countries.
Apress Media, L.L.C. is not affiliated with Google, Inc., and this book was written without endorsement from Google, Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Douglas Pundick: Douglas Pundick
Technical Reviewers: Nitin Khanna and Grant Allen
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: James Compton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Authors���xi

About the Technical Reviewers��xiii

Chapter 1: Before You Start■■ ��1

Introduction to Android���1

Who Should Read This Book?���2

What You Need Before You Begin���2

An Actual Android Application��� 2

A Working Development Environment�� 3

All the Bells and Whistles��� 3

Source Code for the Sample Application�� 3

What’s in This Book��3

Chapter 2: Android Patterns■■ ���5

UI Design Patterns��5

Holo��13

ActionBarSherlock Navigation�� 17

Designing for Different Devices�� 19

Fragments�� 20

vi Contents

Architectural Design Patterns��24

Classic Android��� 25

MVC�� 25

MVVM��� 30

Dependency Injection��� 35

Summary��41

Chapter 3: Performance■■ ��43

History��44

Performance Tips���45

Android Performance�� 45

Java Performance��� 47

SQLite Performance�� 48

Web Services Performance�� 49

Optimized Code�� 49

Tools���56

DDMS�� 57

Traceview��� 64

Lint�� 65

Hierarchy Viewer�� 69

Unix Tools�� 70

Summary��73

Chapter 4: Agile Android■■ ��75

Benefits��75

Benefits to the Business��� 75

Benefits to the Developer��� 76

The Sweet Spot��76

Elements of Agile��77

Goals��� 77

Roll Call��� 78

Putting It All Together��� 83

Summary��92

viiContents

Chapter 5: Native Development■■ ��93

Deciding Where to Use Native Code���93

Where Not to Use Native Code�� 94

Where to Use Native Code�� 94

Java Native Interface���95

Difficulties Writing Native Code Using JNI�� 95

Generate the Code Using a Tool�� 95

Minimize the Number of JNI API Calls�� 101

Memory Usage�� 103

Caching Classes, Method and Field IDs�� 109

Threading��� 109

Troubleshooting��111

Extended JNI Check�� 111

Always Check for Java Exceptions��� 112

Always Check JNI Return Values�� 113

Always Add Log Lines While Developing�� 113

Native Code Reuse Using Modules���116

Benefit from Compiler Vectorization���118

Summary��119

Chapter 6: Security■■ ���121

The State of Android Security���121

Secure Coding Practices��123

Industry Standard Lists��124

PCI List�� 124

OWASP�� 125

Google Security Tips��� 128

Our Top 10 Secure Coding Recommendations�� 129

viii Contents

Best Practices in Action��137

Security Policy Enforcer��� 138

Version 1 Settings.java��� 139

Version 2 Settings.java��� 142

Summary��146

Chapter 7: Device Testing■■ ���147

Choosing a Strategy���149

Emulators���150

Install Intel x86 Atom System Image�� 152

Create Your Own Device��� 153

Downloading Manufacturer’s AVDs�� 156

Automating Emulator Testing with Jenkins�� 160

Hardware Testing���163

Third-Party Testing Service�� 163

Borrow Devices from Manufacturers�� 164

Crowd Testing��� 164

Summary��164

Chapter 8: Web Services■■ ���165

Web Service Types���165

REST or SOAP? �� 165

The Richardson Maturity Model�� 166

Consuming Web Services���167

XML or JSON��� 168

HTTP Status Codes��� 169

Reading and Sending Data��� 169

Performance���173

Services and the AsyncTask Class�� 173

Dealing with Long-Running Calls��� 177

Optimizations�� 179

ixContents

Security��180

Dos and Don’ts for Web Services��� 181

Authentication�� 183

Create Your Own Web Service��184

Sample Web Services��� 185

Google App Engine�� 185

Load Balancing��� 208

Summary��209

Index��211

xi

About the Authors

Godfrey Nolan is president of RIIS LLC, where he specializes in web site optimization. He has written
numerous articles for magazines and newspapers in the United States, the United Kingdom, and Ireland.
Nolan has had a healthy obsession with reverse-engineering bytecode since he wrote “Decompile Once,
Run Anywhere,” which first appeared in Web Techniques in September 1997.

Onur Cinar is the author of Android Apps with Eclipse and Pro Android C++ with the NDK, both from
Apress. He has over 17 years of experience in design, development, and management of large-scale
complex software projects, primarily in mobile and telecommunication space. His expertise spans VoIP,
video communication, mobile applications, grid computing, and networking technologies on diverse
platforms. He has been actively working with the Android platform since its beginning. He has a
B.S. degree in Computer Science from Drexel University in Philadelphia, PA. He is currently working at
the Skype division of Microsoft as the Principal Development Manager for the Skype and Lync clients on
the Android platform.

David Truxall A long-time resident of metro Detroit, Dr. Truxall has programmed for a living since 1995,
working with enterprise web technologies, modeling business processes, and building public web
sites for some of the largest companies in Michigan. Always an enthusiast for troubleshooting systems,
David has rescued numerous troubled applications and improved their performance. He speaks at local
conferences and user groups. Currently David is working as a mobile architect, bringing mobile apps and
their supporting systems to the enterprise.

xiii

About the Technical
Reviewers

Nitin Khanna is a technology enthusiast and an evangelist with over 10 years of experience in
various Computing technologies ranging from IP based telecom networks to mobile applications
and infrastructure. Over the years Nitin has created and contributed to a number of Open Source
projects; key being Sipdroid and Karura (hybrid application development framework) for Android.

Nitin works for Skype PLC, a Microsoft owned, world renowned communications application.
He is currently responsible for Skype and Lync applications on Android with combined support
over 100m users.

In his spare time, Nitin likes to contribute to Open Source projects, experimenting with new
technologies and Arduino based automation systems.

Grant Allen has worked in the IT field for over 20 years, as a CTO, entrepreneur, enterprise architect,
mobile computing and data management expert. Grant’s roles have taken him around the world,
specializing in global-scale systems design, development, and performance. He is a frequent
speaker at industry and academic conferences, on topics such as data-mining, database systems,
content management, collaboration, disruptive innovation, and mobile ecosystems like Android.
His first Android application was a task list to remind him to finish all his other unfinished Android
projects. Grant works for Google, and in his spare time is completing a PhD on building innovative
high-technology environments. Grant is the author of six books, on topics including mobile
development with Android and data management.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical
Reviewers
	Chapter 1: Before You Start
	Introduction to Android
	Who Should Read This Book?
	What You Need Before You Begin
	An Actual Android Application
	A Working Development Environment
	All the Bells and Whistles
	Source Code for the Sample Application

	What’s in This Book

	Chapter 2: Android Patterns
	UI Design Patterns
	Holo
	ActionBarSherlock Navigation
	Designing for Different Devices
	Fragments

	Architectural Design Patterns
	Classic Android
	MVC
	The Model
	The View
	The Controller

	MVVM
	The Model
	The View
	The ViewModel

	Dependency Injection
	The ToDoModule
	The Database Provider
	The Stub Provider
	ToDoApplication

	Summary

	Chapter 3: Performance
	History
	Performance Tips
	Android Performance
	Java Performance
	SQLite Performance
	Web Services Performance
	Optimized Code

	Tools
	DDMS
	System Performance
	Heap Usage
	Eclipse Memory Analyzer

	Memory Allocation
	Threads
	Method Profiling

	Traceview
	Lint
	Hierarchy Viewer
	Unix Tools
	Top
	Dumpsys
	Vmstat

	Summary

	Chapter 4: Agile Android
	Benefits
	Benefits to the Business
	Benefits to the Developer

	The Sweet Spot
	Elements of Agile
	Goals
	Roll Call
	TDD
	BDD
	Continuous Integration

	Putting It All Together

	Summary

	Chapter 5: Native Development
	Deciding Where to Use Native Code
	Where Not to Use Native Code
	Where to Use Native Code

	Java Native Interface
	Difficulties Writing Native Code Using JNI
	Generate the Code Using a Tool
	Generating C/C++ Header Files Using javah
	Generating the JNI Code using SWIG

	Minimize the Number of JNI API Calls
	Use Primitive Data Types as Native Method Parameters
	Minimize Reach-Back from Native Code to Java Space

	Memory Usage
	Local References
	Never Cache Local References
	Release Local References in Complex Native Methods

	Dealing with Strings
	Use Proper Memory Management Function
	Operating on Arrays
	Do Not Request Unnecessary Array Elements
	Prevent Updating Unchanged Arrays
	Native I/O

	Caching Classes, Method and Field IDs
	Threading
	Never Cache the JNI Environment Interface Pointer
	Never Access Java Space from Detached Native Threads

	Troubleshooting
	Extended JNI Check
	Always Check for Java Exceptions
	Always Check JNI Return Values
	Always Add Log Lines While Developing

	Native Code Reuse Using Modules
	Benefit from Compiler Vectorization
	Summary

	Chapter 6: Security
	The State of Android Security
	Secure Coding Practices
	Industry Standard Lists
	PCI List
	OWASP
	OWASP’s General Secure Coding Guidelines
	OWASP’s Top 10 Mobile Risks

	Google Security Tips
	Our Top 10 Secure Coding Recommendations

	Best Practices in Action
	Security Policy Enforcer
	Version 1 Settings.java
	Version 2 Settings.java
	Version 3 Settings.java
	Summary

	Chapter 7: Device Testing
	Choosing a Strategy
	Emulators
	Install Intel x86 Atom System Image
	Create Your Own Device
	Downloading Manufacturer’s AVDs
	Automating Emulator Testing with Jenkins

	Hardware Testing
	Third-Party Testing Service
	Borrow Devices from Manufacturers
	Crowd Testing

	Summary

	Chapter 8: Web Services
	Web Service Types
	REST or SOAP?
	The Richardson Maturity Model

	Consuming Web Services
	XML or JSON
	HTTP Status Codes
	Reading and Sending Data

	Performance
	Services and the AsyncTask Class
	Dealing with Long-Running Calls
	Optimizations
	Compression
	Http-Based Caching

	Security
	Dos and Don’ts for Web Services
	Don’t Store the Password
	Don’t Send the Password
	Don’t Own the Password
	Use Transport Layer Security (TLS/SSL)
	Use Sessions

	Authentication

	Create Your Own Web Service
	Sample Web Services
	Google App Engine
	Setting Up Eclipse
	Create the Project
	Configure the Project
	Add Jersey to the Project
	Add Jersey to the Classpath
	Create the Service
	Tools

	Load Balancing

	Summary

	Index

